sched: Fix schedule_tail() to disable preemption
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
126 if (delta < 0)
127 return;
fe44d621
PZ
128 rq->clock += delta;
129 update_rq_clock_task(rq, delta);
3e51f33f
PZ
130}
131
bf5c91ba
IM
132/*
133 * Debugging: various feature bits
134 */
f00b45c1 135
f00b45c1
PZ
136#define SCHED_FEAT(name, enabled) \
137 (1UL << __SCHED_FEAT_##name) * enabled |
138
bf5c91ba 139const_debug unsigned int sysctl_sched_features =
391e43da 140#include "features.h"
f00b45c1
PZ
141 0;
142
143#undef SCHED_FEAT
144
145#ifdef CONFIG_SCHED_DEBUG
146#define SCHED_FEAT(name, enabled) \
147 #name ,
148
1292531f 149static const char * const sched_feat_names[] = {
391e43da 150#include "features.h"
f00b45c1
PZ
151};
152
153#undef SCHED_FEAT
154
34f3a814 155static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 156{
f00b45c1
PZ
157 int i;
158
f8b6d1cc 159 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
160 if (!(sysctl_sched_features & (1UL << i)))
161 seq_puts(m, "NO_");
162 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 163 }
34f3a814 164 seq_puts(m, "\n");
f00b45c1 165
34f3a814 166 return 0;
f00b45c1
PZ
167}
168
f8b6d1cc
PZ
169#ifdef HAVE_JUMP_LABEL
170
c5905afb
IM
171#define jump_label_key__true STATIC_KEY_INIT_TRUE
172#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
173
174#define SCHED_FEAT(name, enabled) \
175 jump_label_key__##enabled ,
176
c5905afb 177struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
178#include "features.h"
179};
180
181#undef SCHED_FEAT
182
183static void sched_feat_disable(int i)
184{
c5905afb
IM
185 if (static_key_enabled(&sched_feat_keys[i]))
186 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
187}
188
189static void sched_feat_enable(int i)
190{
c5905afb
IM
191 if (!static_key_enabled(&sched_feat_keys[i]))
192 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
193}
194#else
195static void sched_feat_disable(int i) { };
196static void sched_feat_enable(int i) { };
197#endif /* HAVE_JUMP_LABEL */
198
1a687c2e 199static int sched_feat_set(char *cmp)
f00b45c1 200{
f00b45c1 201 int i;
1a687c2e 202 int neg = 0;
f00b45c1 203
524429c3 204 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
205 neg = 1;
206 cmp += 3;
207 }
208
f8b6d1cc 209 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 210 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 211 if (neg) {
f00b45c1 212 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
213 sched_feat_disable(i);
214 } else {
f00b45c1 215 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
216 sched_feat_enable(i);
217 }
f00b45c1
PZ
218 break;
219 }
220 }
221
1a687c2e
MG
222 return i;
223}
224
225static ssize_t
226sched_feat_write(struct file *filp, const char __user *ubuf,
227 size_t cnt, loff_t *ppos)
228{
229 char buf[64];
230 char *cmp;
231 int i;
5cd08fbf 232 struct inode *inode;
1a687c2e
MG
233
234 if (cnt > 63)
235 cnt = 63;
236
237 if (copy_from_user(&buf, ubuf, cnt))
238 return -EFAULT;
239
240 buf[cnt] = 0;
241 cmp = strstrip(buf);
242
5cd08fbf
JB
243 /* Ensure the static_key remains in a consistent state */
244 inode = file_inode(filp);
245 mutex_lock(&inode->i_mutex);
1a687c2e 246 i = sched_feat_set(cmp);
5cd08fbf 247 mutex_unlock(&inode->i_mutex);
f8b6d1cc 248 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
249 return -EINVAL;
250
42994724 251 *ppos += cnt;
f00b45c1
PZ
252
253 return cnt;
254}
255
34f3a814
LZ
256static int sched_feat_open(struct inode *inode, struct file *filp)
257{
258 return single_open(filp, sched_feat_show, NULL);
259}
260
828c0950 261static const struct file_operations sched_feat_fops = {
34f3a814
LZ
262 .open = sched_feat_open,
263 .write = sched_feat_write,
264 .read = seq_read,
265 .llseek = seq_lseek,
266 .release = single_release,
f00b45c1
PZ
267};
268
269static __init int sched_init_debug(void)
270{
f00b45c1
PZ
271 debugfs_create_file("sched_features", 0644, NULL, NULL,
272 &sched_feat_fops);
273
274 return 0;
275}
276late_initcall(sched_init_debug);
f8b6d1cc 277#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 278
b82d9fdd
PZ
279/*
280 * Number of tasks to iterate in a single balance run.
281 * Limited because this is done with IRQs disabled.
282 */
283const_debug unsigned int sysctl_sched_nr_migrate = 32;
284
e9e9250b
PZ
285/*
286 * period over which we average the RT time consumption, measured
287 * in ms.
288 *
289 * default: 1s
290 */
291const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292
fa85ae24 293/*
9f0c1e56 294 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
295 * default: 1s
296 */
9f0c1e56 297unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 298
029632fb 299__read_mostly int scheduler_running;
6892b75e 300
9f0c1e56
PZ
301/*
302 * part of the period that we allow rt tasks to run in us.
303 * default: 0.95s
304 */
305int sysctl_sched_rt_runtime = 950000;
fa85ae24 306
0970d299 307/*
0122ec5b 308 * __task_rq_lock - lock the rq @p resides on.
b29739f9 309 */
70b97a7f 310static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
311 __acquires(rq->lock)
312{
0970d299
PZ
313 struct rq *rq;
314
0122ec5b
PZ
315 lockdep_assert_held(&p->pi_lock);
316
3a5c359a 317 for (;;) {
0970d299 318 rq = task_rq(p);
05fa785c 319 raw_spin_lock(&rq->lock);
cca26e80 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 321 return rq;
05fa785c 322 raw_spin_unlock(&rq->lock);
cca26e80
KT
323
324 while (unlikely(task_on_rq_migrating(p)))
325 cpu_relax();
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
cca26e80 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
cca26e80
KT
346
347 while (unlikely(task_on_rq_migrating(p)))
348 cpu_relax();
1da177e4 349 }
1da177e4
LT
350}
351
a9957449 352static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
353 __releases(rq->lock)
354{
05fa785c 355 raw_spin_unlock(&rq->lock);
b29739f9
IM
356}
357
0122ec5b
PZ
358static inline void
359task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 360 __releases(rq->lock)
0122ec5b 361 __releases(p->pi_lock)
1da177e4 362{
0122ec5b
PZ
363 raw_spin_unlock(&rq->lock);
364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
365}
366
1da177e4 367/*
cc2a73b5 368 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 369 */
a9957449 370static struct rq *this_rq_lock(void)
1da177e4
LT
371 __acquires(rq->lock)
372{
70b97a7f 373 struct rq *rq;
1da177e4
LT
374
375 local_irq_disable();
376 rq = this_rq();
05fa785c 377 raw_spin_lock(&rq->lock);
1da177e4
LT
378
379 return rq;
380}
381
8f4d37ec
PZ
382#ifdef CONFIG_SCHED_HRTICK
383/*
384 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 385 */
8f4d37ec 386
8f4d37ec
PZ
387static void hrtick_clear(struct rq *rq)
388{
389 if (hrtimer_active(&rq->hrtick_timer))
390 hrtimer_cancel(&rq->hrtick_timer);
391}
392
8f4d37ec
PZ
393/*
394 * High-resolution timer tick.
395 * Runs from hardirq context with interrupts disabled.
396 */
397static enum hrtimer_restart hrtick(struct hrtimer *timer)
398{
399 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400
401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402
05fa785c 403 raw_spin_lock(&rq->lock);
3e51f33f 404 update_rq_clock(rq);
8f4d37ec 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 406 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
407
408 return HRTIMER_NORESTART;
409}
410
95e904c7 411#ifdef CONFIG_SMP
971ee28c
PZ
412
413static int __hrtick_restart(struct rq *rq)
414{
415 struct hrtimer *timer = &rq->hrtick_timer;
416 ktime_t time = hrtimer_get_softexpires(timer);
417
418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419}
420
31656519
PZ
421/*
422 * called from hardirq (IPI) context
423 */
424static void __hrtick_start(void *arg)
b328ca18 425{
31656519 426 struct rq *rq = arg;
b328ca18 427
05fa785c 428 raw_spin_lock(&rq->lock);
971ee28c 429 __hrtick_restart(rq);
31656519 430 rq->hrtick_csd_pending = 0;
05fa785c 431 raw_spin_unlock(&rq->lock);
b328ca18
PZ
432}
433
31656519
PZ
434/*
435 * Called to set the hrtick timer state.
436 *
437 * called with rq->lock held and irqs disabled
438 */
029632fb 439void hrtick_start(struct rq *rq, u64 delay)
b328ca18 440{
31656519 441 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 442 ktime_t time;
443 s64 delta;
444
445 /*
446 * Don't schedule slices shorter than 10000ns, that just
447 * doesn't make sense and can cause timer DoS.
448 */
449 delta = max_t(s64, delay, 10000LL);
450 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 451
cc584b21 452 hrtimer_set_expires(timer, time);
31656519
PZ
453
454 if (rq == this_rq()) {
971ee28c 455 __hrtick_restart(rq);
31656519 456 } else if (!rq->hrtick_csd_pending) {
c46fff2a 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
458 rq->hrtick_csd_pending = 1;
459 }
b328ca18
PZ
460}
461
462static int
463hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464{
465 int cpu = (int)(long)hcpu;
466
467 switch (action) {
468 case CPU_UP_CANCELED:
469 case CPU_UP_CANCELED_FROZEN:
470 case CPU_DOWN_PREPARE:
471 case CPU_DOWN_PREPARE_FROZEN:
472 case CPU_DEAD:
473 case CPU_DEAD_FROZEN:
31656519 474 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
475 return NOTIFY_OK;
476 }
477
478 return NOTIFY_DONE;
479}
480
fa748203 481static __init void init_hrtick(void)
b328ca18
PZ
482{
483 hotcpu_notifier(hotplug_hrtick, 0);
484}
31656519
PZ
485#else
486/*
487 * Called to set the hrtick timer state.
488 *
489 * called with rq->lock held and irqs disabled
490 */
029632fb 491void hrtick_start(struct rq *rq, u64 delay)
31656519 492{
7f1e2ca9 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 494 HRTIMER_MODE_REL_PINNED, 0);
31656519 495}
b328ca18 496
006c75f1 497static inline void init_hrtick(void)
8f4d37ec 498{
8f4d37ec 499}
31656519 500#endif /* CONFIG_SMP */
8f4d37ec 501
31656519 502static void init_rq_hrtick(struct rq *rq)
8f4d37ec 503{
31656519
PZ
504#ifdef CONFIG_SMP
505 rq->hrtick_csd_pending = 0;
8f4d37ec 506
31656519
PZ
507 rq->hrtick_csd.flags = 0;
508 rq->hrtick_csd.func = __hrtick_start;
509 rq->hrtick_csd.info = rq;
510#endif
8f4d37ec 511
31656519
PZ
512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 rq->hrtick_timer.function = hrtick;
8f4d37ec 514}
006c75f1 515#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
516static inline void hrtick_clear(struct rq *rq)
517{
518}
519
8f4d37ec
PZ
520static inline void init_rq_hrtick(struct rq *rq)
521{
522}
523
b328ca18
PZ
524static inline void init_hrtick(void)
525{
526}
006c75f1 527#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 528
fd99f91a
PZ
529/*
530 * cmpxchg based fetch_or, macro so it works for different integer types
531 */
532#define fetch_or(ptr, val) \
533({ typeof(*(ptr)) __old, __val = *(ptr); \
534 for (;;) { \
535 __old = cmpxchg((ptr), __val, __val | (val)); \
536 if (__old == __val) \
537 break; \
538 __val = __old; \
539 } \
540 __old; \
541})
542
e3baac47 543#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
544/*
545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546 * this avoids any races wrt polling state changes and thereby avoids
547 * spurious IPIs.
548 */
549static bool set_nr_and_not_polling(struct task_struct *p)
550{
551 struct thread_info *ti = task_thread_info(p);
552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553}
e3baac47
PZ
554
555/*
556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557 *
558 * If this returns true, then the idle task promises to call
559 * sched_ttwu_pending() and reschedule soon.
560 */
561static bool set_nr_if_polling(struct task_struct *p)
562{
563 struct thread_info *ti = task_thread_info(p);
564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565
566 for (;;) {
567 if (!(val & _TIF_POLLING_NRFLAG))
568 return false;
569 if (val & _TIF_NEED_RESCHED)
570 return true;
571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 if (old == val)
573 break;
574 val = old;
575 }
576 return true;
577}
578
fd99f91a
PZ
579#else
580static bool set_nr_and_not_polling(struct task_struct *p)
581{
582 set_tsk_need_resched(p);
583 return true;
584}
e3baac47
PZ
585
586#ifdef CONFIG_SMP
587static bool set_nr_if_polling(struct task_struct *p)
588{
589 return false;
590}
591#endif
fd99f91a
PZ
592#endif
593
c24d20db 594/*
8875125e 595 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
8875125e 601void resched_curr(struct rq *rq)
c24d20db 602{
8875125e 603 struct task_struct *curr = rq->curr;
c24d20db
IM
604 int cpu;
605
8875125e 606 lockdep_assert_held(&rq->lock);
c24d20db 607
8875125e 608 if (test_tsk_need_resched(curr))
c24d20db
IM
609 return;
610
8875125e 611 cpu = cpu_of(rq);
fd99f91a 612
f27dde8d 613 if (cpu == smp_processor_id()) {
8875125e 614 set_tsk_need_resched(curr);
f27dde8d 615 set_preempt_need_resched();
c24d20db 616 return;
f27dde8d 617 }
c24d20db 618
8875125e 619 if (set_nr_and_not_polling(curr))
c24d20db 620 smp_send_reschedule(cpu);
dfc68f29
AL
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
623}
624
029632fb 625void resched_cpu(int cpu)
c24d20db
IM
626{
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
629
05fa785c 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 631 return;
8875125e 632 resched_curr(rq);
05fa785c 633 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 634}
06d8308c 635
b021fe3e 636#ifdef CONFIG_SMP
3451d024 637#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
638/*
639 * In the semi idle case, use the nearest busy cpu for migrating timers
640 * from an idle cpu. This is good for power-savings.
641 *
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle cpu will add more delays to the timers than intended
644 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645 */
6201b4d6 646int get_nohz_timer_target(int pinned)
83cd4fe2
VP
647{
648 int cpu = smp_processor_id();
649 int i;
650 struct sched_domain *sd;
651
6201b4d6
VK
652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 return cpu;
654
057f3fad 655 rcu_read_lock();
83cd4fe2 656 for_each_domain(cpu, sd) {
057f3fad
PZ
657 for_each_cpu(i, sched_domain_span(sd)) {
658 if (!idle_cpu(i)) {
659 cpu = i;
660 goto unlock;
661 }
662 }
83cd4fe2 663 }
057f3fad
PZ
664unlock:
665 rcu_read_unlock();
83cd4fe2
VP
666 return cpu;
667}
06d8308c
TG
668/*
669 * When add_timer_on() enqueues a timer into the timer wheel of an
670 * idle CPU then this timer might expire before the next timer event
671 * which is scheduled to wake up that CPU. In case of a completely
672 * idle system the next event might even be infinite time into the
673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674 * leaves the inner idle loop so the newly added timer is taken into
675 * account when the CPU goes back to idle and evaluates the timer
676 * wheel for the next timer event.
677 */
1c20091e 678static void wake_up_idle_cpu(int cpu)
06d8308c
TG
679{
680 struct rq *rq = cpu_rq(cpu);
681
682 if (cpu == smp_processor_id())
683 return;
684
67b9ca70 685 if (set_nr_and_not_polling(rq->idle))
06d8308c 686 smp_send_reschedule(cpu);
dfc68f29
AL
687 else
688 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
689}
690
c5bfece2 691static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 692{
53c5fa16
FW
693 /*
694 * We just need the target to call irq_exit() and re-evaluate
695 * the next tick. The nohz full kick at least implies that.
696 * If needed we can still optimize that later with an
697 * empty IRQ.
698 */
c5bfece2 699 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
700 if (cpu != smp_processor_id() ||
701 tick_nohz_tick_stopped())
53c5fa16 702 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
703 return true;
704 }
705
706 return false;
707}
708
709void wake_up_nohz_cpu(int cpu)
710{
c5bfece2 711 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
712 wake_up_idle_cpu(cpu);
713}
714
ca38062e 715static inline bool got_nohz_idle_kick(void)
45bf76df 716{
1c792db7 717 int cpu = smp_processor_id();
873b4c65
VG
718
719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 return false;
721
722 if (idle_cpu(cpu) && !need_resched())
723 return true;
724
725 /*
726 * We can't run Idle Load Balance on this CPU for this time so we
727 * cancel it and clear NOHZ_BALANCE_KICK
728 */
729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 return false;
45bf76df
IM
731}
732
3451d024 733#else /* CONFIG_NO_HZ_COMMON */
45bf76df 734
ca38062e 735static inline bool got_nohz_idle_kick(void)
2069dd75 736{
ca38062e 737 return false;
2069dd75
PZ
738}
739
3451d024 740#endif /* CONFIG_NO_HZ_COMMON */
d842de87 741
ce831b38
FW
742#ifdef CONFIG_NO_HZ_FULL
743bool sched_can_stop_tick(void)
744{
3882ec64
FW
745 /*
746 * More than one running task need preemption.
747 * nr_running update is assumed to be visible
748 * after IPI is sent from wakers.
749 */
541b8264
VK
750 if (this_rq()->nr_running > 1)
751 return false;
ce831b38 752
541b8264 753 return true;
ce831b38
FW
754}
755#endif /* CONFIG_NO_HZ_FULL */
d842de87 756
029632fb 757void sched_avg_update(struct rq *rq)
18d95a28 758{
e9e9250b
PZ
759 s64 period = sched_avg_period();
760
78becc27 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
762 /*
763 * Inline assembly required to prevent the compiler
764 * optimising this loop into a divmod call.
765 * See __iter_div_u64_rem() for another example of this.
766 */
767 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
768 rq->age_stamp += period;
769 rq->rt_avg /= 2;
770 }
18d95a28
PZ
771}
772
6d6bc0ad 773#endif /* CONFIG_SMP */
18d95a28 774
a790de99
PT
775#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 777/*
8277434e
PT
778 * Iterate task_group tree rooted at *from, calling @down when first entering a
779 * node and @up when leaving it for the final time.
780 *
781 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 782 */
029632fb 783int walk_tg_tree_from(struct task_group *from,
8277434e 784 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
785{
786 struct task_group *parent, *child;
eb755805 787 int ret;
c09595f6 788
8277434e
PT
789 parent = from;
790
c09595f6 791down:
eb755805
PZ
792 ret = (*down)(parent, data);
793 if (ret)
8277434e 794 goto out;
c09595f6
PZ
795 list_for_each_entry_rcu(child, &parent->children, siblings) {
796 parent = child;
797 goto down;
798
799up:
800 continue;
801 }
eb755805 802 ret = (*up)(parent, data);
8277434e
PT
803 if (ret || parent == from)
804 goto out;
c09595f6
PZ
805
806 child = parent;
807 parent = parent->parent;
808 if (parent)
809 goto up;
8277434e 810out:
eb755805 811 return ret;
c09595f6
PZ
812}
813
029632fb 814int tg_nop(struct task_group *tg, void *data)
eb755805 815{
e2b245f8 816 return 0;
eb755805 817}
18d95a28
PZ
818#endif
819
45bf76df
IM
820static void set_load_weight(struct task_struct *p)
821{
f05998d4
NR
822 int prio = p->static_prio - MAX_RT_PRIO;
823 struct load_weight *load = &p->se.load;
824
dd41f596
IM
825 /*
826 * SCHED_IDLE tasks get minimal weight:
827 */
828 if (p->policy == SCHED_IDLE) {
c8b28116 829 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 830 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
831 return;
832 }
71f8bd46 833
c8b28116 834 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 835 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
836}
837
371fd7e7 838static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 839{
a64692a3 840 update_rq_clock(rq);
43148951 841 sched_info_queued(rq, p);
371fd7e7 842 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
843}
844
371fd7e7 845static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 846{
a64692a3 847 update_rq_clock(rq);
43148951 848 sched_info_dequeued(rq, p);
371fd7e7 849 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
850}
851
029632fb 852void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible--;
856
371fd7e7 857 enqueue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
029632fb 860void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
861{
862 if (task_contributes_to_load(p))
863 rq->nr_uninterruptible++;
864
371fd7e7 865 dequeue_task(rq, p, flags);
1e3c88bd
PZ
866}
867
fe44d621 868static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 869{
095c0aa8
GC
870/*
871 * In theory, the compile should just see 0 here, and optimize out the call
872 * to sched_rt_avg_update. But I don't trust it...
873 */
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 s64 steal = 0, irq_delta = 0;
876#endif
877#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
879
880 /*
881 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 * this case when a previous update_rq_clock() happened inside a
883 * {soft,}irq region.
884 *
885 * When this happens, we stop ->clock_task and only update the
886 * prev_irq_time stamp to account for the part that fit, so that a next
887 * update will consume the rest. This ensures ->clock_task is
888 * monotonic.
889 *
890 * It does however cause some slight miss-attribution of {soft,}irq
891 * time, a more accurate solution would be to update the irq_time using
892 * the current rq->clock timestamp, except that would require using
893 * atomic ops.
894 */
895 if (irq_delta > delta)
896 irq_delta = delta;
897
898 rq->prev_irq_time += irq_delta;
899 delta -= irq_delta;
095c0aa8
GC
900#endif
901#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 902 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
903 steal = paravirt_steal_clock(cpu_of(rq));
904 steal -= rq->prev_steal_time_rq;
905
906 if (unlikely(steal > delta))
907 steal = delta;
908
095c0aa8 909 rq->prev_steal_time_rq += steal;
095c0aa8
GC
910 delta -= steal;
911 }
912#endif
913
fe44d621
PZ
914 rq->clock_task += delta;
915
095c0aa8 916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
918 sched_rt_avg_update(rq, irq_delta + steal);
919#endif
aa483808
VP
920}
921
34f971f6
PZ
922void sched_set_stop_task(int cpu, struct task_struct *stop)
923{
924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 struct task_struct *old_stop = cpu_rq(cpu)->stop;
926
927 if (stop) {
928 /*
929 * Make it appear like a SCHED_FIFO task, its something
930 * userspace knows about and won't get confused about.
931 *
932 * Also, it will make PI more or less work without too
933 * much confusion -- but then, stop work should not
934 * rely on PI working anyway.
935 */
936 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937
938 stop->sched_class = &stop_sched_class;
939 }
940
941 cpu_rq(cpu)->stop = stop;
942
943 if (old_stop) {
944 /*
945 * Reset it back to a normal scheduling class so that
946 * it can die in pieces.
947 */
948 old_stop->sched_class = &rt_sched_class;
949 }
950}
951
14531189 952/*
dd41f596 953 * __normal_prio - return the priority that is based on the static prio
14531189 954 */
14531189
IM
955static inline int __normal_prio(struct task_struct *p)
956{
dd41f596 957 return p->static_prio;
14531189
IM
958}
959
b29739f9
IM
960/*
961 * Calculate the expected normal priority: i.e. priority
962 * without taking RT-inheritance into account. Might be
963 * boosted by interactivity modifiers. Changes upon fork,
964 * setprio syscalls, and whenever the interactivity
965 * estimator recalculates.
966 */
36c8b586 967static inline int normal_prio(struct task_struct *p)
b29739f9
IM
968{
969 int prio;
970
aab03e05
DF
971 if (task_has_dl_policy(p))
972 prio = MAX_DL_PRIO-1;
973 else if (task_has_rt_policy(p))
b29739f9
IM
974 prio = MAX_RT_PRIO-1 - p->rt_priority;
975 else
976 prio = __normal_prio(p);
977 return prio;
978}
979
980/*
981 * Calculate the current priority, i.e. the priority
982 * taken into account by the scheduler. This value might
983 * be boosted by RT tasks, or might be boosted by
984 * interactivity modifiers. Will be RT if the task got
985 * RT-boosted. If not then it returns p->normal_prio.
986 */
36c8b586 987static int effective_prio(struct task_struct *p)
b29739f9
IM
988{
989 p->normal_prio = normal_prio(p);
990 /*
991 * If we are RT tasks or we were boosted to RT priority,
992 * keep the priority unchanged. Otherwise, update priority
993 * to the normal priority:
994 */
995 if (!rt_prio(p->prio))
996 return p->normal_prio;
997 return p->prio;
998}
999
1da177e4
LT
1000/**
1001 * task_curr - is this task currently executing on a CPU?
1002 * @p: the task in question.
e69f6186
YB
1003 *
1004 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1005 */
36c8b586 1006inline int task_curr(const struct task_struct *p)
1da177e4
LT
1007{
1008 return cpu_curr(task_cpu(p)) == p;
1009}
1010
cb469845
SR
1011static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 const struct sched_class *prev_class,
da7a735e 1013 int oldprio)
cb469845
SR
1014{
1015 if (prev_class != p->sched_class) {
1016 if (prev_class->switched_from)
da7a735e
PZ
1017 prev_class->switched_from(rq, p);
1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1045 rq->skip_clock_update = 1;
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
dd41f596 1049void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1050{
e2912009
PZ
1051#ifdef CONFIG_SCHED_DEBUG
1052 /*
1053 * We should never call set_task_cpu() on a blocked task,
1054 * ttwu() will sort out the placement.
1055 */
077614ee 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1058
1059#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1060 /*
1061 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 *
1064 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1065 * see task_group().
6c6c54e1
PZ
1066 *
1067 * Furthermore, all task_rq users should acquire both locks, see
1068 * task_rq_lock().
1069 */
0122ec5b
PZ
1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 lockdep_is_held(&task_rq(p)->lock)));
1072#endif
e2912009
PZ
1073#endif
1074
de1d7286 1075 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1076
0c69774e 1077 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1078 if (p->sched_class->migrate_task_rq)
1079 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1080 p->se.nr_migrations++;
a8b0ca17 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1082 }
dd41f596
IM
1083
1084 __set_task_cpu(p, new_cpu);
c65cc870
IM
1085}
1086
ac66f547
PZ
1087static void __migrate_swap_task(struct task_struct *p, int cpu)
1088{
da0c1e65 1089 if (task_on_rq_queued(p)) {
ac66f547
PZ
1090 struct rq *src_rq, *dst_rq;
1091
1092 src_rq = task_rq(p);
1093 dst_rq = cpu_rq(cpu);
1094
1095 deactivate_task(src_rq, p, 0);
1096 set_task_cpu(p, cpu);
1097 activate_task(dst_rq, p, 0);
1098 check_preempt_curr(dst_rq, p, 0);
1099 } else {
1100 /*
1101 * Task isn't running anymore; make it appear like we migrated
1102 * it before it went to sleep. This means on wakeup we make the
1103 * previous cpu our targer instead of where it really is.
1104 */
1105 p->wake_cpu = cpu;
1106 }
1107}
1108
1109struct migration_swap_arg {
1110 struct task_struct *src_task, *dst_task;
1111 int src_cpu, dst_cpu;
1112};
1113
1114static int migrate_swap_stop(void *data)
1115{
1116 struct migration_swap_arg *arg = data;
1117 struct rq *src_rq, *dst_rq;
1118 int ret = -EAGAIN;
1119
1120 src_rq = cpu_rq(arg->src_cpu);
1121 dst_rq = cpu_rq(arg->dst_cpu);
1122
74602315
PZ
1123 double_raw_lock(&arg->src_task->pi_lock,
1124 &arg->dst_task->pi_lock);
ac66f547
PZ
1125 double_rq_lock(src_rq, dst_rq);
1126 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 goto unlock;
1128
1129 if (task_cpu(arg->src_task) != arg->src_cpu)
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 goto unlock;
1134
1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 goto unlock;
1137
1138 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1140
1141 ret = 0;
1142
1143unlock:
1144 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1145 raw_spin_unlock(&arg->dst_task->pi_lock);
1146 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1147
1148 return ret;
1149}
1150
1151/*
1152 * Cross migrate two tasks
1153 */
1154int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155{
1156 struct migration_swap_arg arg;
1157 int ret = -EINVAL;
1158
ac66f547
PZ
1159 arg = (struct migration_swap_arg){
1160 .src_task = cur,
1161 .src_cpu = task_cpu(cur),
1162 .dst_task = p,
1163 .dst_cpu = task_cpu(p),
1164 };
1165
1166 if (arg.src_cpu == arg.dst_cpu)
1167 goto out;
1168
6acce3ef
PZ
1169 /*
1170 * These three tests are all lockless; this is OK since all of them
1171 * will be re-checked with proper locks held further down the line.
1172 */
ac66f547
PZ
1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 goto out;
1178
1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 goto out;
1181
286549dc 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184
1185out:
ac66f547
PZ
1186 return ret;
1187}
1188
969c7921 1189struct migration_arg {
36c8b586 1190 struct task_struct *task;
1da177e4 1191 int dest_cpu;
70b97a7f 1192};
1da177e4 1193
969c7921
TH
1194static int migration_cpu_stop(void *data);
1195
1da177e4
LT
1196/*
1197 * wait_task_inactive - wait for a thread to unschedule.
1198 *
85ba2d86
RM
1199 * If @match_state is nonzero, it's the @p->state value just checked and
1200 * not expected to change. If it changes, i.e. @p might have woken up,
1201 * then return zero. When we succeed in waiting for @p to be off its CPU,
1202 * we return a positive number (its total switch count). If a second call
1203 * a short while later returns the same number, the caller can be sure that
1204 * @p has remained unscheduled the whole time.
1205 *
1da177e4
LT
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
85ba2d86 1212unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1213{
1214 unsigned long flags;
da0c1e65 1215 int running, queued;
85ba2d86 1216 unsigned long ncsw;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
85ba2d86
RM
1239 while (task_running(rq, p)) {
1240 if (match_state && unlikely(p->state != match_state))
1241 return 0;
3a5c359a 1242 cpu_relax();
85ba2d86 1243 }
fa490cfd 1244
3a5c359a
AK
1245 /*
1246 * Ok, time to look more closely! We need the rq
1247 * lock now, to be *sure*. If we're wrong, we'll
1248 * just go back and repeat.
1249 */
1250 rq = task_rq_lock(p, &flags);
27a9da65 1251 trace_sched_wait_task(p);
3a5c359a 1252 running = task_running(rq, p);
da0c1e65 1253 queued = task_on_rq_queued(p);
85ba2d86 1254 ncsw = 0;
f31e11d8 1255 if (!match_state || p->state == match_state)
93dcf55f 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1257 task_rq_unlock(rq, p, &flags);
fa490cfd 1258
85ba2d86
RM
1259 /*
1260 * If it changed from the expected state, bail out now.
1261 */
1262 if (unlikely(!ncsw))
1263 break;
1264
3a5c359a
AK
1265 /*
1266 * Was it really running after all now that we
1267 * checked with the proper locks actually held?
1268 *
1269 * Oops. Go back and try again..
1270 */
1271 if (unlikely(running)) {
1272 cpu_relax();
1273 continue;
1274 }
fa490cfd 1275
3a5c359a
AK
1276 /*
1277 * It's not enough that it's not actively running,
1278 * it must be off the runqueue _entirely_, and not
1279 * preempted!
1280 *
80dd99b3 1281 * So if it was still runnable (but just not actively
3a5c359a
AK
1282 * running right now), it's preempted, and we should
1283 * yield - it could be a while.
1284 */
da0c1e65 1285 if (unlikely(queued)) {
8eb90c30
TG
1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1290 continue;
1291 }
fa490cfd 1292
3a5c359a
AK
1293 /*
1294 * Ahh, all good. It wasn't running, and it wasn't
1295 * runnable, which means that it will never become
1296 * running in the future either. We're all done!
1297 */
1298 break;
1299 }
85ba2d86
RM
1300
1301 return ncsw;
1da177e4
LT
1302}
1303
1304/***
1305 * kick_process - kick a running thread to enter/exit the kernel
1306 * @p: the to-be-kicked thread
1307 *
1308 * Cause a process which is running on another CPU to enter
1309 * kernel-mode, without any delay. (to get signals handled.)
1310 *
25985edc 1311 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1312 * because all it wants to ensure is that the remote task enters
1313 * the kernel. If the IPI races and the task has been migrated
1314 * to another CPU then no harm is done and the purpose has been
1315 * achieved as well.
1316 */
36c8b586 1317void kick_process(struct task_struct *p)
1da177e4
LT
1318{
1319 int cpu;
1320
1321 preempt_disable();
1322 cpu = task_cpu(p);
1323 if ((cpu != smp_processor_id()) && task_curr(p))
1324 smp_send_reschedule(cpu);
1325 preempt_enable();
1326}
b43e3521 1327EXPORT_SYMBOL_GPL(kick_process);
476d139c 1328#endif /* CONFIG_SMP */
1da177e4 1329
970b13ba 1330#ifdef CONFIG_SMP
30da688e 1331/*
013fdb80 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1333 */
5da9a0fb
PZ
1334static int select_fallback_rq(int cpu, struct task_struct *p)
1335{
aa00d89c
TC
1336 int nid = cpu_to_node(cpu);
1337 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1338 enum { cpuset, possible, fail } state = cpuset;
1339 int dest_cpu;
5da9a0fb 1340
aa00d89c
TC
1341 /*
1342 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 * will return -1. There is no cpu on the node, and we should
1344 * select the cpu on the other node.
1345 */
1346 if (nid != -1) {
1347 nodemask = cpumask_of_node(nid);
1348
1349 /* Look for allowed, online CPU in same node. */
1350 for_each_cpu(dest_cpu, nodemask) {
1351 if (!cpu_online(dest_cpu))
1352 continue;
1353 if (!cpu_active(dest_cpu))
1354 continue;
1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 return dest_cpu;
1357 }
2baab4e9 1358 }
5da9a0fb 1359
2baab4e9
PZ
1360 for (;;) {
1361 /* Any allowed, online CPU? */
e3831edd 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1363 if (!cpu_online(dest_cpu))
1364 continue;
1365 if (!cpu_active(dest_cpu))
1366 continue;
1367 goto out;
1368 }
5da9a0fb 1369
2baab4e9
PZ
1370 switch (state) {
1371 case cpuset:
1372 /* No more Mr. Nice Guy. */
1373 cpuset_cpus_allowed_fallback(p);
1374 state = possible;
1375 break;
1376
1377 case possible:
1378 do_set_cpus_allowed(p, cpu_possible_mask);
1379 state = fail;
1380 break;
1381
1382 case fail:
1383 BUG();
1384 break;
1385 }
1386 }
1387
1388out:
1389 if (state != cpuset) {
1390 /*
1391 * Don't tell them about moving exiting tasks or
1392 * kernel threads (both mm NULL), since they never
1393 * leave kernel.
1394 */
1395 if (p->mm && printk_ratelimit()) {
aac74dc4 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1397 task_pid_nr(p), p->comm, cpu);
1398 }
5da9a0fb
PZ
1399 }
1400
1401 return dest_cpu;
1402}
1403
e2912009 1404/*
013fdb80 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1406 */
970b13ba 1407static inline
ac66f547 1408int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1409{
ac66f547 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1411
1412 /*
1413 * In order not to call set_task_cpu() on a blocking task we need
1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 * cpu.
1416 *
1417 * Since this is common to all placement strategies, this lives here.
1418 *
1419 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 * not worry about this generic constraint ]
1421 */
fa17b507 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1423 !cpu_online(cpu)))
5da9a0fb 1424 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1425
1426 return cpu;
970b13ba 1427}
09a40af5
MG
1428
1429static void update_avg(u64 *avg, u64 sample)
1430{
1431 s64 diff = sample - *avg;
1432 *avg += diff >> 3;
1433}
970b13ba
PZ
1434#endif
1435
d7c01d27 1436static void
b84cb5df 1437ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1438{
d7c01d27 1439#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1440 struct rq *rq = this_rq();
1441
d7c01d27
PZ
1442#ifdef CONFIG_SMP
1443 int this_cpu = smp_processor_id();
1444
1445 if (cpu == this_cpu) {
1446 schedstat_inc(rq, ttwu_local);
1447 schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 } else {
1449 struct sched_domain *sd;
1450
1451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1452 rcu_read_lock();
d7c01d27
PZ
1453 for_each_domain(this_cpu, sd) {
1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 break;
1457 }
1458 }
057f3fad 1459 rcu_read_unlock();
d7c01d27 1460 }
f339b9dc
PZ
1461
1462 if (wake_flags & WF_MIGRATED)
1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464
d7c01d27
PZ
1465#endif /* CONFIG_SMP */
1466
1467 schedstat_inc(rq, ttwu_count);
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1469
1470 if (wake_flags & WF_SYNC)
9ed3811a 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1472
d7c01d27
PZ
1473#endif /* CONFIG_SCHEDSTATS */
1474}
1475
1476static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477{
9ed3811a 1478 activate_task(rq, p, en_flags);
da0c1e65 1479 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1480
1481 /* if a worker is waking up, notify workqueue */
1482 if (p->flags & PF_WQ_WORKER)
1483 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1484}
1485
23f41eeb
PZ
1486/*
1487 * Mark the task runnable and perform wakeup-preemption.
1488 */
89363381 1489static void
23f41eeb 1490ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1491{
9ed3811a 1492 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1493 trace_sched_wakeup(p, true);
9ed3811a
TH
1494
1495 p->state = TASK_RUNNING;
1496#ifdef CONFIG_SMP
1497 if (p->sched_class->task_woken)
1498 p->sched_class->task_woken(rq, p);
1499
e69c6341 1500 if (rq->idle_stamp) {
78becc27 1501 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1502 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1503
abfafa54
JL
1504 update_avg(&rq->avg_idle, delta);
1505
1506 if (rq->avg_idle > max)
9ed3811a 1507 rq->avg_idle = max;
abfafa54 1508
9ed3811a
TH
1509 rq->idle_stamp = 0;
1510 }
1511#endif
1512}
1513
c05fbafb
PZ
1514static void
1515ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516{
1517#ifdef CONFIG_SMP
1518 if (p->sched_contributes_to_load)
1519 rq->nr_uninterruptible--;
1520#endif
1521
1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 ttwu_do_wakeup(rq, p, wake_flags);
1524}
1525
1526/*
1527 * Called in case the task @p isn't fully descheduled from its runqueue,
1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529 * since all we need to do is flip p->state to TASK_RUNNING, since
1530 * the task is still ->on_rq.
1531 */
1532static int ttwu_remote(struct task_struct *p, int wake_flags)
1533{
1534 struct rq *rq;
1535 int ret = 0;
1536
1537 rq = __task_rq_lock(p);
da0c1e65 1538 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1539 /* check_preempt_curr() may use rq clock */
1540 update_rq_clock(rq);
c05fbafb
PZ
1541 ttwu_do_wakeup(rq, p, wake_flags);
1542 ret = 1;
1543 }
1544 __task_rq_unlock(rq);
1545
1546 return ret;
1547}
1548
317f3941 1549#ifdef CONFIG_SMP
e3baac47 1550void sched_ttwu_pending(void)
317f3941
PZ
1551{
1552 struct rq *rq = this_rq();
fa14ff4a
PZ
1553 struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 struct task_struct *p;
e3baac47 1555 unsigned long flags;
317f3941 1556
e3baac47
PZ
1557 if (!llist)
1558 return;
1559
1560 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1561
fa14ff4a
PZ
1562 while (llist) {
1563 p = llist_entry(llist, struct task_struct, wake_entry);
1564 llist = llist_next(llist);
317f3941
PZ
1565 ttwu_do_activate(rq, p, 0);
1566 }
1567
e3baac47 1568 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1569}
1570
1571void scheduler_ipi(void)
1572{
f27dde8d
PZ
1573 /*
1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 * this IPI.
1577 */
8cb75e0c 1578 preempt_fold_need_resched();
f27dde8d 1579
fd2ac4f4 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1581 return;
1582
1583 /*
1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 * traditionally all their work was done from the interrupt return
1586 * path. Now that we actually do some work, we need to make sure
1587 * we do call them.
1588 *
1589 * Some archs already do call them, luckily irq_enter/exit nest
1590 * properly.
1591 *
1592 * Arguably we should visit all archs and update all handlers,
1593 * however a fair share of IPIs are still resched only so this would
1594 * somewhat pessimize the simple resched case.
1595 */
1596 irq_enter();
fa14ff4a 1597 sched_ttwu_pending();
ca38062e
SS
1598
1599 /*
1600 * Check if someone kicked us for doing the nohz idle load balance.
1601 */
873b4c65 1602 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1603 this_rq()->idle_balance = 1;
ca38062e 1604 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1605 }
c5d753a5 1606 irq_exit();
317f3941
PZ
1607}
1608
1609static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610{
e3baac47
PZ
1611 struct rq *rq = cpu_rq(cpu);
1612
1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 if (!set_nr_if_polling(rq->idle))
1615 smp_send_reschedule(cpu);
1616 else
1617 trace_sched_wake_idle_without_ipi(cpu);
1618 }
317f3941 1619}
d6aa8f85 1620
f6be8af1
CL
1621void wake_up_if_idle(int cpu)
1622{
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long flags;
1625
1626 if (!is_idle_task(rq->curr))
1627 return;
1628
1629 if (set_nr_if_polling(rq->idle)) {
1630 trace_sched_wake_idle_without_ipi(cpu);
1631 } else {
1632 raw_spin_lock_irqsave(&rq->lock, flags);
1633 if (is_idle_task(rq->curr))
1634 smp_send_reschedule(cpu);
1635 /* Else cpu is not in idle, do nothing here */
1636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 }
1638}
1639
39be3501 1640bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1641{
1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643}
d6aa8f85 1644#endif /* CONFIG_SMP */
317f3941 1645
c05fbafb
PZ
1646static void ttwu_queue(struct task_struct *p, int cpu)
1647{
1648 struct rq *rq = cpu_rq(cpu);
1649
17d9f311 1650#if defined(CONFIG_SMP)
39be3501 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1653 ttwu_queue_remote(p, cpu);
1654 return;
1655 }
1656#endif
1657
c05fbafb
PZ
1658 raw_spin_lock(&rq->lock);
1659 ttwu_do_activate(rq, p, 0);
1660 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1661}
1662
1663/**
1da177e4 1664 * try_to_wake_up - wake up a thread
9ed3811a 1665 * @p: the thread to be awakened
1da177e4 1666 * @state: the mask of task states that can be woken
9ed3811a 1667 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1668 *
1669 * Put it on the run-queue if it's not already there. The "current"
1670 * thread is always on the run-queue (except when the actual
1671 * re-schedule is in progress), and as such you're allowed to do
1672 * the simpler "current->state = TASK_RUNNING" to mark yourself
1673 * runnable without the overhead of this.
1674 *
e69f6186 1675 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1676 * or @state didn't match @p's state.
1da177e4 1677 */
e4a52bcb
PZ
1678static int
1679try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1680{
1da177e4 1681 unsigned long flags;
c05fbafb 1682 int cpu, success = 0;
2398f2c6 1683
e0acd0a6
ON
1684 /*
1685 * If we are going to wake up a thread waiting for CONDITION we
1686 * need to ensure that CONDITION=1 done by the caller can not be
1687 * reordered with p->state check below. This pairs with mb() in
1688 * set_current_state() the waiting thread does.
1689 */
1690 smp_mb__before_spinlock();
013fdb80 1691 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1692 if (!(p->state & state))
1da177e4
LT
1693 goto out;
1694
c05fbafb 1695 success = 1; /* we're going to change ->state */
1da177e4 1696 cpu = task_cpu(p);
1da177e4 1697
c05fbafb
PZ
1698 if (p->on_rq && ttwu_remote(p, wake_flags))
1699 goto stat;
1da177e4 1700
1da177e4 1701#ifdef CONFIG_SMP
e9c84311 1702 /*
c05fbafb
PZ
1703 * If the owning (remote) cpu is still in the middle of schedule() with
1704 * this task as prev, wait until its done referencing the task.
e9c84311 1705 */
f3e94786 1706 while (p->on_cpu)
e4a52bcb 1707 cpu_relax();
0970d299 1708 /*
e4a52bcb 1709 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1710 */
e4a52bcb 1711 smp_rmb();
1da177e4 1712
a8e4f2ea 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1714 p->state = TASK_WAKING;
e7693a36 1715
e4a52bcb 1716 if (p->sched_class->task_waking)
74f8e4b2 1717 p->sched_class->task_waking(p);
efbbd05a 1718
ac66f547 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1720 if (task_cpu(p) != cpu) {
1721 wake_flags |= WF_MIGRATED;
e4a52bcb 1722 set_task_cpu(p, cpu);
f339b9dc 1723 }
1da177e4 1724#endif /* CONFIG_SMP */
1da177e4 1725
c05fbafb
PZ
1726 ttwu_queue(p, cpu);
1727stat:
b84cb5df 1728 ttwu_stat(p, cpu, wake_flags);
1da177e4 1729out:
013fdb80 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1731
1732 return success;
1733}
1734
21aa9af0
TH
1735/**
1736 * try_to_wake_up_local - try to wake up a local task with rq lock held
1737 * @p: the thread to be awakened
1738 *
2acca55e 1739 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1741 * the current task.
21aa9af0
TH
1742 */
1743static void try_to_wake_up_local(struct task_struct *p)
1744{
1745 struct rq *rq = task_rq(p);
21aa9af0 1746
383efcd0
TH
1747 if (WARN_ON_ONCE(rq != this_rq()) ||
1748 WARN_ON_ONCE(p == current))
1749 return;
1750
21aa9af0
TH
1751 lockdep_assert_held(&rq->lock);
1752
2acca55e
PZ
1753 if (!raw_spin_trylock(&p->pi_lock)) {
1754 raw_spin_unlock(&rq->lock);
1755 raw_spin_lock(&p->pi_lock);
1756 raw_spin_lock(&rq->lock);
1757 }
1758
21aa9af0 1759 if (!(p->state & TASK_NORMAL))
2acca55e 1760 goto out;
21aa9af0 1761
da0c1e65 1762 if (!task_on_rq_queued(p))
d7c01d27
PZ
1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764
23f41eeb 1765 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1766 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1767out:
1768 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1769}
1770
50fa610a
DH
1771/**
1772 * wake_up_process - Wake up a specific process
1773 * @p: The process to be woken up.
1774 *
1775 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1776 * processes.
1777 *
1778 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1779 *
1780 * It may be assumed that this function implies a write memory barrier before
1781 * changing the task state if and only if any tasks are woken up.
1782 */
7ad5b3a5 1783int wake_up_process(struct task_struct *p)
1da177e4 1784{
9067ac85
ON
1785 WARN_ON(task_is_stopped_or_traced(p));
1786 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1787}
1da177e4
LT
1788EXPORT_SYMBOL(wake_up_process);
1789
7ad5b3a5 1790int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1791{
1792 return try_to_wake_up(p, state, 0);
1793}
1794
a5e7be3b
JL
1795/*
1796 * This function clears the sched_dl_entity static params.
1797 */
1798void __dl_clear_params(struct task_struct *p)
1799{
1800 struct sched_dl_entity *dl_se = &p->dl;
1801
1802 dl_se->dl_runtime = 0;
1803 dl_se->dl_deadline = 0;
1804 dl_se->dl_period = 0;
1805 dl_se->flags = 0;
1806 dl_se->dl_bw = 0;
1807}
1808
1da177e4
LT
1809/*
1810 * Perform scheduler related setup for a newly forked process p.
1811 * p is forked by current.
dd41f596
IM
1812 *
1813 * __sched_fork() is basic setup used by init_idle() too:
1814 */
5e1576ed 1815static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1816{
fd2f4419
PZ
1817 p->on_rq = 0;
1818
1819 p->se.on_rq = 0;
dd41f596
IM
1820 p->se.exec_start = 0;
1821 p->se.sum_exec_runtime = 0;
f6cf891c 1822 p->se.prev_sum_exec_runtime = 0;
6c594c21 1823 p->se.nr_migrations = 0;
da7a735e 1824 p->se.vruntime = 0;
fd2f4419 1825 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1826
1827#ifdef CONFIG_SCHEDSTATS
41acab88 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1829#endif
476d139c 1830
aab03e05
DF
1831 RB_CLEAR_NODE(&p->dl.rb_node);
1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
a5e7be3b 1833 __dl_clear_params(p);
aab03e05 1834
fa717060 1835 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1836
e107be36
AK
1837#ifdef CONFIG_PREEMPT_NOTIFIERS
1838 INIT_HLIST_HEAD(&p->preempt_notifiers);
1839#endif
cbee9f88
PZ
1840
1841#ifdef CONFIG_NUMA_BALANCING
1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1844 p->mm->numa_scan_seq = 0;
1845 }
1846
5e1576ed
RR
1847 if (clone_flags & CLONE_VM)
1848 p->numa_preferred_nid = current->numa_preferred_nid;
1849 else
1850 p->numa_preferred_nid = -1;
1851
cbee9f88
PZ
1852 p->node_stamp = 0ULL;
1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1855 p->numa_work.next = &p->numa_work;
ff1df896
RR
1856 p->numa_faults_memory = NULL;
1857 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1858 p->last_task_numa_placement = 0;
1859 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1860
1861 INIT_LIST_HEAD(&p->numa_entry);
1862 p->numa_group = NULL;
cbee9f88 1863#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1864}
1865
1a687c2e 1866#ifdef CONFIG_NUMA_BALANCING
3105b86a 1867#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1868void set_numabalancing_state(bool enabled)
1869{
1870 if (enabled)
1871 sched_feat_set("NUMA");
1872 else
1873 sched_feat_set("NO_NUMA");
1874}
3105b86a
MG
1875#else
1876__read_mostly bool numabalancing_enabled;
1877
1878void set_numabalancing_state(bool enabled)
1879{
1880 numabalancing_enabled = enabled;
dd41f596 1881}
3105b86a 1882#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1883
1884#ifdef CONFIG_PROC_SYSCTL
1885int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *lenp, loff_t *ppos)
1887{
1888 struct ctl_table t;
1889 int err;
1890 int state = numabalancing_enabled;
1891
1892 if (write && !capable(CAP_SYS_ADMIN))
1893 return -EPERM;
1894
1895 t = *table;
1896 t.data = &state;
1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 if (err < 0)
1899 return err;
1900 if (write)
1901 set_numabalancing_state(state);
1902 return err;
1903}
1904#endif
1905#endif
dd41f596
IM
1906
1907/*
1908 * fork()/clone()-time setup:
1909 */
aab03e05 1910int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1911{
0122ec5b 1912 unsigned long flags;
dd41f596
IM
1913 int cpu = get_cpu();
1914
5e1576ed 1915 __sched_fork(clone_flags, p);
06b83b5f 1916 /*
0017d735 1917 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1918 * nobody will actually run it, and a signal or other external
1919 * event cannot wake it up and insert it on the runqueue either.
1920 */
0017d735 1921 p->state = TASK_RUNNING;
dd41f596 1922
c350a04e
MG
1923 /*
1924 * Make sure we do not leak PI boosting priority to the child.
1925 */
1926 p->prio = current->normal_prio;
1927
b9dc29e7
MG
1928 /*
1929 * Revert to default priority/policy on fork if requested.
1930 */
1931 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1933 p->policy = SCHED_NORMAL;
6c697bdf 1934 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1935 p->rt_priority = 0;
1936 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 p->static_prio = NICE_TO_PRIO(0);
1938
1939 p->prio = p->normal_prio = __normal_prio(p);
1940 set_load_weight(p);
6c697bdf 1941
b9dc29e7
MG
1942 /*
1943 * We don't need the reset flag anymore after the fork. It has
1944 * fulfilled its duty:
1945 */
1946 p->sched_reset_on_fork = 0;
1947 }
ca94c442 1948
aab03e05
DF
1949 if (dl_prio(p->prio)) {
1950 put_cpu();
1951 return -EAGAIN;
1952 } else if (rt_prio(p->prio)) {
1953 p->sched_class = &rt_sched_class;
1954 } else {
2ddbf952 1955 p->sched_class = &fair_sched_class;
aab03e05 1956 }
b29739f9 1957
cd29fe6f
PZ
1958 if (p->sched_class->task_fork)
1959 p->sched_class->task_fork(p);
1960
86951599
PZ
1961 /*
1962 * The child is not yet in the pid-hash so no cgroup attach races,
1963 * and the cgroup is pinned to this child due to cgroup_fork()
1964 * is ran before sched_fork().
1965 *
1966 * Silence PROVE_RCU.
1967 */
0122ec5b 1968 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1969 set_task_cpu(p, cpu);
0122ec5b 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1971
52f17b6c 1972#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1973 if (likely(sched_info_on()))
52f17b6c 1974 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1975#endif
3ca7a440
PZ
1976#if defined(CONFIG_SMP)
1977 p->on_cpu = 0;
4866cde0 1978#endif
01028747 1979 init_task_preempt_count(p);
806c09a7 1980#ifdef CONFIG_SMP
917b627d 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1983#endif
917b627d 1984
476d139c 1985 put_cpu();
aab03e05 1986 return 0;
1da177e4
LT
1987}
1988
332ac17e
DF
1989unsigned long to_ratio(u64 period, u64 runtime)
1990{
1991 if (runtime == RUNTIME_INF)
1992 return 1ULL << 20;
1993
1994 /*
1995 * Doing this here saves a lot of checks in all
1996 * the calling paths, and returning zero seems
1997 * safe for them anyway.
1998 */
1999 if (period == 0)
2000 return 0;
2001
2002 return div64_u64(runtime << 20, period);
2003}
2004
2005#ifdef CONFIG_SMP
2006inline struct dl_bw *dl_bw_of(int i)
2007{
66339c31
KT
2008 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 "sched RCU must be held");
332ac17e
DF
2010 return &cpu_rq(i)->rd->dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e 2014{
de212f18
PZ
2015 struct root_domain *rd = cpu_rq(i)->rd;
2016 int cpus = 0;
2017
66339c31
KT
2018 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 "sched RCU must be held");
de212f18
PZ
2020 for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 cpus++;
2022
2023 return cpus;
332ac17e
DF
2024}
2025#else
2026inline struct dl_bw *dl_bw_of(int i)
2027{
2028 return &cpu_rq(i)->dl.dl_bw;
2029}
2030
de212f18 2031static inline int dl_bw_cpus(int i)
332ac17e
DF
2032{
2033 return 1;
2034}
2035#endif
2036
2037static inline
2038void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039{
2040 dl_b->total_bw -= tsk_bw;
2041}
2042
2043static inline
2044void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045{
2046 dl_b->total_bw += tsk_bw;
2047}
2048
2049static inline
2050bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051{
2052 return dl_b->bw != -1 &&
2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054}
2055
2056/*
2057 * We must be sure that accepting a new task (or allowing changing the
2058 * parameters of an existing one) is consistent with the bandwidth
2059 * constraints. If yes, this function also accordingly updates the currently
2060 * allocated bandwidth to reflect the new situation.
2061 *
2062 * This function is called while holding p's rq->lock.
2063 */
2064static int dl_overflow(struct task_struct *p, int policy,
2065 const struct sched_attr *attr)
2066{
2067
2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2069 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2070 u64 runtime = attr->sched_runtime;
2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2072 int cpus, err = -1;
332ac17e
DF
2073
2074 if (new_bw == p->dl.dl_bw)
2075 return 0;
2076
2077 /*
2078 * Either if a task, enters, leave, or stays -deadline but changes
2079 * its parameters, we may need to update accordingly the total
2080 * allocated bandwidth of the container.
2081 */
2082 raw_spin_lock(&dl_b->lock);
de212f18 2083 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2084 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 __dl_add(dl_b, new_bw);
2087 err = 0;
2088 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 __dl_clear(dl_b, p->dl.dl_bw);
2091 __dl_add(dl_b, new_bw);
2092 err = 0;
2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 __dl_clear(dl_b, p->dl.dl_bw);
2095 err = 0;
2096 }
2097 raw_spin_unlock(&dl_b->lock);
2098
2099 return err;
2100}
2101
2102extern void init_dl_bw(struct dl_bw *dl_b);
2103
1da177e4
LT
2104/*
2105 * wake_up_new_task - wake up a newly created task for the first time.
2106 *
2107 * This function will do some initial scheduler statistics housekeeping
2108 * that must be done for every newly created context, then puts the task
2109 * on the runqueue and wakes it.
2110 */
3e51e3ed 2111void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2112{
2113 unsigned long flags;
dd41f596 2114 struct rq *rq;
fabf318e 2115
ab2515c4 2116 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2117#ifdef CONFIG_SMP
2118 /*
2119 * Fork balancing, do it here and not earlier because:
2120 * - cpus_allowed can change in the fork path
2121 * - any previously selected cpu might disappear through hotplug
fabf318e 2122 */
ac66f547 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2124#endif
2125
a75cdaa9
AS
2126 /* Initialize new task's runnable average */
2127 init_task_runnable_average(p);
ab2515c4 2128 rq = __task_rq_lock(p);
cd29fe6f 2129 activate_task(rq, p, 0);
da0c1e65 2130 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2131 trace_sched_wakeup_new(p, true);
a7558e01 2132 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2133#ifdef CONFIG_SMP
efbbd05a
PZ
2134 if (p->sched_class->task_woken)
2135 p->sched_class->task_woken(rq, p);
9a897c5a 2136#endif
0122ec5b 2137 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2138}
2139
e107be36
AK
2140#ifdef CONFIG_PREEMPT_NOTIFIERS
2141
2142/**
80dd99b3 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2144 * @notifier: notifier struct to register
e107be36
AK
2145 */
2146void preempt_notifier_register(struct preempt_notifier *notifier)
2147{
2148 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149}
2150EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151
2152/**
2153 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2154 * @notifier: notifier struct to unregister
e107be36
AK
2155 *
2156 * This is safe to call from within a preemption notifier.
2157 */
2158void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159{
2160 hlist_del(&notifier->link);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163
2164static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165{
2166 struct preempt_notifier *notifier;
e107be36 2167
b67bfe0d 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2169 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170}
2171
2172static void
2173fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 struct task_struct *next)
2175{
2176 struct preempt_notifier *notifier;
e107be36 2177
b67bfe0d 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2179 notifier->ops->sched_out(notifier, next);
2180}
2181
6d6bc0ad 2182#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2183
2184static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185{
2186}
2187
2188static void
2189fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 struct task_struct *next)
2191{
2192}
2193
6d6bc0ad 2194#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2195
4866cde0
NP
2196/**
2197 * prepare_task_switch - prepare to switch tasks
2198 * @rq: the runqueue preparing to switch
421cee29 2199 * @prev: the current task that is being switched out
4866cde0
NP
2200 * @next: the task we are going to switch to.
2201 *
2202 * This is called with the rq lock held and interrupts off. It must
2203 * be paired with a subsequent finish_task_switch after the context
2204 * switch.
2205 *
2206 * prepare_task_switch sets up locking and calls architecture specific
2207 * hooks.
2208 */
e107be36
AK
2209static inline void
2210prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 struct task_struct *next)
4866cde0 2212{
895dd92c 2213 trace_sched_switch(prev, next);
43148951 2214 sched_info_switch(rq, prev, next);
fe4b04fa 2215 perf_event_task_sched_out(prev, next);
e107be36 2216 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2217 prepare_lock_switch(rq, next);
2218 prepare_arch_switch(next);
2219}
2220
1da177e4
LT
2221/**
2222 * finish_task_switch - clean up after a task-switch
344babaa 2223 * @rq: runqueue associated with task-switch
1da177e4
LT
2224 * @prev: the thread we just switched away from.
2225 *
4866cde0
NP
2226 * finish_task_switch must be called after the context switch, paired
2227 * with a prepare_task_switch call before the context switch.
2228 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2230 *
2231 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2232 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2233 * with the lock held can cause deadlocks; see schedule() for
2234 * details.)
2235 */
a9957449 2236static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2237 __releases(rq->lock)
2238{
1da177e4 2239 struct mm_struct *mm = rq->prev_mm;
55a101f8 2240 long prev_state;
1da177e4
LT
2241
2242 rq->prev_mm = NULL;
2243
2244 /*
2245 * A task struct has one reference for the use as "current".
c394cc9f 2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2247 * schedule one last time. The schedule call will never return, and
2248 * the scheduled task must drop that reference.
c394cc9f 2249 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2250 * still held, otherwise prev could be scheduled on another cpu, die
2251 * there before we look at prev->state, and then the reference would
2252 * be dropped twice.
2253 * Manfred Spraul <manfred@colorfullife.com>
2254 */
55a101f8 2255 prev_state = prev->state;
bf9fae9f 2256 vtime_task_switch(prev);
4866cde0 2257 finish_arch_switch(prev);
a8d757ef 2258 perf_event_task_sched_in(prev, current);
4866cde0 2259 finish_lock_switch(rq, prev);
01f23e16 2260 finish_arch_post_lock_switch();
e8fa1362 2261
e107be36 2262 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2263 if (mm)
2264 mmdrop(mm);
c394cc9f 2265 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2266 if (prev->sched_class->task_dead)
2267 prev->sched_class->task_dead(prev);
2268
c6fd91f0 2269 /*
2270 * Remove function-return probe instances associated with this
2271 * task and put them back on the free list.
9761eea8 2272 */
c6fd91f0 2273 kprobe_flush_task(prev);
1da177e4 2274 put_task_struct(prev);
c6fd91f0 2275 }
99e5ada9
FW
2276
2277 tick_nohz_task_switch(current);
1da177e4
LT
2278}
2279
3f029d3c
GH
2280#ifdef CONFIG_SMP
2281
3f029d3c
GH
2282/* rq->lock is NOT held, but preemption is disabled */
2283static inline void post_schedule(struct rq *rq)
2284{
2285 if (rq->post_schedule) {
2286 unsigned long flags;
2287
05fa785c 2288 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2289 if (rq->curr->sched_class->post_schedule)
2290 rq->curr->sched_class->post_schedule(rq);
05fa785c 2291 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2292
2293 rq->post_schedule = 0;
2294 }
2295}
2296
2297#else
da19ab51 2298
3f029d3c
GH
2299static inline void post_schedule(struct rq *rq)
2300{
1da177e4
LT
2301}
2302
3f029d3c
GH
2303#endif
2304
1da177e4
LT
2305/**
2306 * schedule_tail - first thing a freshly forked thread must call.
2307 * @prev: the thread we just switched away from.
2308 */
722a9f92 2309asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2310 __releases(rq->lock)
2311{
1a43a14a 2312 struct rq *rq;
70b97a7f 2313
1a43a14a
ON
2314 /* finish_task_switch() drops rq->lock and enables preemtion */
2315 preempt_disable();
2316 rq = this_rq();
4866cde0 2317 finish_task_switch(rq, prev);
3f029d3c 2318 post_schedule(rq);
1a43a14a 2319 preempt_enable();
70b97a7f 2320
1da177e4 2321 if (current->set_child_tid)
b488893a 2322 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2323}
2324
2325/*
2326 * context_switch - switch to the new MM and the new
2327 * thread's register state.
2328 */
dd41f596 2329static inline void
70b97a7f 2330context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2331 struct task_struct *next)
1da177e4 2332{
dd41f596 2333 struct mm_struct *mm, *oldmm;
1da177e4 2334
e107be36 2335 prepare_task_switch(rq, prev, next);
fe4b04fa 2336
dd41f596
IM
2337 mm = next->mm;
2338 oldmm = prev->active_mm;
9226d125
ZA
2339 /*
2340 * For paravirt, this is coupled with an exit in switch_to to
2341 * combine the page table reload and the switch backend into
2342 * one hypercall.
2343 */
224101ed 2344 arch_start_context_switch(prev);
9226d125 2345
31915ab4 2346 if (!mm) {
1da177e4
LT
2347 next->active_mm = oldmm;
2348 atomic_inc(&oldmm->mm_count);
2349 enter_lazy_tlb(oldmm, next);
2350 } else
2351 switch_mm(oldmm, mm, next);
2352
31915ab4 2353 if (!prev->mm) {
1da177e4 2354 prev->active_mm = NULL;
1da177e4
LT
2355 rq->prev_mm = oldmm;
2356 }
3a5f5e48
IM
2357 /*
2358 * Since the runqueue lock will be released by the next
2359 * task (which is an invalid locking op but in the case
2360 * of the scheduler it's an obvious special-case), so we
2361 * do an early lockdep release here:
2362 */
8a25d5de 2363 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2364
91d1aa43 2365 context_tracking_task_switch(prev, next);
1da177e4
LT
2366 /* Here we just switch the register state and the stack. */
2367 switch_to(prev, next, prev);
2368
dd41f596
IM
2369 barrier();
2370 /*
2371 * this_rq must be evaluated again because prev may have moved
2372 * CPUs since it called schedule(), thus the 'rq' on its stack
2373 * frame will be invalid.
2374 */
2375 finish_task_switch(this_rq(), prev);
1da177e4
LT
2376}
2377
2378/*
1c3e8264 2379 * nr_running and nr_context_switches:
1da177e4
LT
2380 *
2381 * externally visible scheduler statistics: current number of runnable
1c3e8264 2382 * threads, total number of context switches performed since bootup.
1da177e4
LT
2383 */
2384unsigned long nr_running(void)
2385{
2386 unsigned long i, sum = 0;
2387
2388 for_each_online_cpu(i)
2389 sum += cpu_rq(i)->nr_running;
2390
2391 return sum;
f711f609 2392}
1da177e4 2393
2ee507c4
TC
2394/*
2395 * Check if only the current task is running on the cpu.
2396 */
2397bool single_task_running(void)
2398{
2399 if (cpu_rq(smp_processor_id())->nr_running == 1)
2400 return true;
2401 else
2402 return false;
2403}
2404EXPORT_SYMBOL(single_task_running);
2405
1da177e4 2406unsigned long long nr_context_switches(void)
46cb4b7c 2407{
cc94abfc
SR
2408 int i;
2409 unsigned long long sum = 0;
46cb4b7c 2410
0a945022 2411 for_each_possible_cpu(i)
1da177e4 2412 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2413
1da177e4
LT
2414 return sum;
2415}
483b4ee6 2416
1da177e4
LT
2417unsigned long nr_iowait(void)
2418{
2419 unsigned long i, sum = 0;
483b4ee6 2420
0a945022 2421 for_each_possible_cpu(i)
1da177e4 2422 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2423
1da177e4
LT
2424 return sum;
2425}
483b4ee6 2426
8c215bd3 2427unsigned long nr_iowait_cpu(int cpu)
69d25870 2428{
8c215bd3 2429 struct rq *this = cpu_rq(cpu);
69d25870
AV
2430 return atomic_read(&this->nr_iowait);
2431}
46cb4b7c 2432
372ba8cb
MG
2433void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2434{
2435 struct rq *this = this_rq();
2436 *nr_waiters = atomic_read(&this->nr_iowait);
2437 *load = this->cpu_load[0];
2438}
2439
dd41f596 2440#ifdef CONFIG_SMP
8a0be9ef 2441
46cb4b7c 2442/*
38022906
PZ
2443 * sched_exec - execve() is a valuable balancing opportunity, because at
2444 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2445 */
38022906 2446void sched_exec(void)
46cb4b7c 2447{
38022906 2448 struct task_struct *p = current;
1da177e4 2449 unsigned long flags;
0017d735 2450 int dest_cpu;
46cb4b7c 2451
8f42ced9 2452 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2453 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2454 if (dest_cpu == smp_processor_id())
2455 goto unlock;
38022906 2456
8f42ced9 2457 if (likely(cpu_active(dest_cpu))) {
969c7921 2458 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2459
8f42ced9
PZ
2460 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2461 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2462 return;
2463 }
0017d735 2464unlock:
8f42ced9 2465 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2466}
dd41f596 2467
1da177e4
LT
2468#endif
2469
1da177e4 2470DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2471DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2472
2473EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2474EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2475
2476/*
c5f8d995 2477 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2478 * @p in case that task is currently running.
c5f8d995
HS
2479 *
2480 * Called with task_rq_lock() held on @rq.
1da177e4 2481 */
c5f8d995
HS
2482static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2483{
2484 u64 ns = 0;
2485
4036ac15
MG
2486 /*
2487 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2488 * project cycles that may never be accounted to this
2489 * thread, breaking clock_gettime().
2490 */
da0c1e65 2491 if (task_current(rq, p) && task_on_rq_queued(p)) {
c5f8d995 2492 update_rq_clock(rq);
78becc27 2493 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2494 if ((s64)ns < 0)
2495 ns = 0;
2496 }
2497
2498 return ns;
2499}
2500
bb34d92f 2501unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2502{
1da177e4 2503 unsigned long flags;
41b86e9c 2504 struct rq *rq;
bb34d92f 2505 u64 ns = 0;
48f24c4d 2506
41b86e9c 2507 rq = task_rq_lock(p, &flags);
c5f8d995 2508 ns = do_task_delta_exec(p, rq);
0122ec5b 2509 task_rq_unlock(rq, p, &flags);
1508487e 2510
c5f8d995
HS
2511 return ns;
2512}
f06febc9 2513
c5f8d995
HS
2514/*
2515 * Return accounted runtime for the task.
2516 * In case the task is currently running, return the runtime plus current's
2517 * pending runtime that have not been accounted yet.
2518 */
2519unsigned long long task_sched_runtime(struct task_struct *p)
2520{
2521 unsigned long flags;
2522 struct rq *rq;
2523 u64 ns = 0;
2524
911b2898
PZ
2525#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2526 /*
2527 * 64-bit doesn't need locks to atomically read a 64bit value.
2528 * So we have a optimization chance when the task's delta_exec is 0.
2529 * Reading ->on_cpu is racy, but this is ok.
2530 *
2531 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2532 * If we race with it entering cpu, unaccounted time is 0. This is
2533 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2534 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2535 * been accounted, so we're correct here as well.
911b2898 2536 */
da0c1e65 2537 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2538 return p->se.sum_exec_runtime;
2539#endif
2540
c5f8d995
HS
2541 rq = task_rq_lock(p, &flags);
2542 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2543 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2544
2545 return ns;
2546}
48f24c4d 2547
7835b98b
CL
2548/*
2549 * This function gets called by the timer code, with HZ frequency.
2550 * We call it with interrupts disabled.
7835b98b
CL
2551 */
2552void scheduler_tick(void)
2553{
7835b98b
CL
2554 int cpu = smp_processor_id();
2555 struct rq *rq = cpu_rq(cpu);
dd41f596 2556 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2557
2558 sched_clock_tick();
dd41f596 2559
05fa785c 2560 raw_spin_lock(&rq->lock);
3e51f33f 2561 update_rq_clock(rq);
fa85ae24 2562 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2563 update_cpu_load_active(rq);
05fa785c 2564 raw_spin_unlock(&rq->lock);
7835b98b 2565
e9d2b064 2566 perf_event_task_tick();
e220d2dc 2567
e418e1c2 2568#ifdef CONFIG_SMP
6eb57e0d 2569 rq->idle_balance = idle_cpu(cpu);
7caff66f 2570 trigger_load_balance(rq);
e418e1c2 2571#endif
265f22a9 2572 rq_last_tick_reset(rq);
1da177e4
LT
2573}
2574
265f22a9
FW
2575#ifdef CONFIG_NO_HZ_FULL
2576/**
2577 * scheduler_tick_max_deferment
2578 *
2579 * Keep at least one tick per second when a single
2580 * active task is running because the scheduler doesn't
2581 * yet completely support full dynticks environment.
2582 *
2583 * This makes sure that uptime, CFS vruntime, load
2584 * balancing, etc... continue to move forward, even
2585 * with a very low granularity.
e69f6186
YB
2586 *
2587 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2588 */
2589u64 scheduler_tick_max_deferment(void)
2590{
2591 struct rq *rq = this_rq();
2592 unsigned long next, now = ACCESS_ONCE(jiffies);
2593
2594 next = rq->last_sched_tick + HZ;
2595
2596 if (time_before_eq(next, now))
2597 return 0;
2598
8fe8ff09 2599 return jiffies_to_nsecs(next - now);
1da177e4 2600}
265f22a9 2601#endif
1da177e4 2602
132380a0 2603notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2604{
2605 if (in_lock_functions(addr)) {
2606 addr = CALLER_ADDR2;
2607 if (in_lock_functions(addr))
2608 addr = CALLER_ADDR3;
2609 }
2610 return addr;
2611}
1da177e4 2612
7e49fcce
SR
2613#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2614 defined(CONFIG_PREEMPT_TRACER))
2615
edafe3a5 2616void preempt_count_add(int val)
1da177e4 2617{
6cd8a4bb 2618#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2619 /*
2620 * Underflow?
2621 */
9a11b49a
IM
2622 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2623 return;
6cd8a4bb 2624#endif
bdb43806 2625 __preempt_count_add(val);
6cd8a4bb 2626#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2627 /*
2628 * Spinlock count overflowing soon?
2629 */
33859f7f
MOS
2630 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2631 PREEMPT_MASK - 10);
6cd8a4bb 2632#endif
8f47b187
TG
2633 if (preempt_count() == val) {
2634 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2635#ifdef CONFIG_DEBUG_PREEMPT
2636 current->preempt_disable_ip = ip;
2637#endif
2638 trace_preempt_off(CALLER_ADDR0, ip);
2639 }
1da177e4 2640}
bdb43806 2641EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2642NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2643
edafe3a5 2644void preempt_count_sub(int val)
1da177e4 2645{
6cd8a4bb 2646#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2647 /*
2648 * Underflow?
2649 */
01e3eb82 2650 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2651 return;
1da177e4
LT
2652 /*
2653 * Is the spinlock portion underflowing?
2654 */
9a11b49a
IM
2655 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2656 !(preempt_count() & PREEMPT_MASK)))
2657 return;
6cd8a4bb 2658#endif
9a11b49a 2659
6cd8a4bb
SR
2660 if (preempt_count() == val)
2661 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2662 __preempt_count_sub(val);
1da177e4 2663}
bdb43806 2664EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2665NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2666
2667#endif
2668
2669/*
dd41f596 2670 * Print scheduling while atomic bug:
1da177e4 2671 */
dd41f596 2672static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2673{
664dfa65
DJ
2674 if (oops_in_progress)
2675 return;
2676
3df0fc5b
PZ
2677 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2678 prev->comm, prev->pid, preempt_count());
838225b4 2679
dd41f596 2680 debug_show_held_locks(prev);
e21f5b15 2681 print_modules();
dd41f596
IM
2682 if (irqs_disabled())
2683 print_irqtrace_events(prev);
8f47b187
TG
2684#ifdef CONFIG_DEBUG_PREEMPT
2685 if (in_atomic_preempt_off()) {
2686 pr_err("Preemption disabled at:");
2687 print_ip_sym(current->preempt_disable_ip);
2688 pr_cont("\n");
2689 }
2690#endif
6135fc1e 2691 dump_stack();
373d4d09 2692 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2693}
1da177e4 2694
dd41f596
IM
2695/*
2696 * Various schedule()-time debugging checks and statistics:
2697 */
2698static inline void schedule_debug(struct task_struct *prev)
2699{
0d9e2632
AT
2700#ifdef CONFIG_SCHED_STACK_END_CHECK
2701 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2702#endif
1da177e4 2703 /*
41a2d6cf 2704 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2705 * schedule() atomically, we ignore that path. Otherwise whine
2706 * if we are scheduling when we should not.
1da177e4 2707 */
192301e7 2708 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2709 __schedule_bug(prev);
b3fbab05 2710 rcu_sleep_check();
dd41f596 2711
1da177e4
LT
2712 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2713
2d72376b 2714 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2715}
2716
2717/*
2718 * Pick up the highest-prio task:
2719 */
2720static inline struct task_struct *
606dba2e 2721pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2722{
37e117c0 2723 const struct sched_class *class = &fair_sched_class;
dd41f596 2724 struct task_struct *p;
1da177e4
LT
2725
2726 /*
dd41f596
IM
2727 * Optimization: we know that if all tasks are in
2728 * the fair class we can call that function directly:
1da177e4 2729 */
37e117c0 2730 if (likely(prev->sched_class == class &&
38033c37 2731 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2732 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2733 if (unlikely(p == RETRY_TASK))
2734 goto again;
2735
2736 /* assumes fair_sched_class->next == idle_sched_class */
2737 if (unlikely(!p))
2738 p = idle_sched_class.pick_next_task(rq, prev);
2739
2740 return p;
1da177e4
LT
2741 }
2742
37e117c0 2743again:
34f971f6 2744 for_each_class(class) {
606dba2e 2745 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2746 if (p) {
2747 if (unlikely(p == RETRY_TASK))
2748 goto again;
dd41f596 2749 return p;
37e117c0 2750 }
dd41f596 2751 }
34f971f6
PZ
2752
2753 BUG(); /* the idle class will always have a runnable task */
dd41f596 2754}
1da177e4 2755
dd41f596 2756/*
c259e01a 2757 * __schedule() is the main scheduler function.
edde96ea
PE
2758 *
2759 * The main means of driving the scheduler and thus entering this function are:
2760 *
2761 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2762 *
2763 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2764 * paths. For example, see arch/x86/entry_64.S.
2765 *
2766 * To drive preemption between tasks, the scheduler sets the flag in timer
2767 * interrupt handler scheduler_tick().
2768 *
2769 * 3. Wakeups don't really cause entry into schedule(). They add a
2770 * task to the run-queue and that's it.
2771 *
2772 * Now, if the new task added to the run-queue preempts the current
2773 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2774 * called on the nearest possible occasion:
2775 *
2776 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2777 *
2778 * - in syscall or exception context, at the next outmost
2779 * preempt_enable(). (this might be as soon as the wake_up()'s
2780 * spin_unlock()!)
2781 *
2782 * - in IRQ context, return from interrupt-handler to
2783 * preemptible context
2784 *
2785 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2786 * then at the next:
2787 *
2788 * - cond_resched() call
2789 * - explicit schedule() call
2790 * - return from syscall or exception to user-space
2791 * - return from interrupt-handler to user-space
dd41f596 2792 */
c259e01a 2793static void __sched __schedule(void)
dd41f596
IM
2794{
2795 struct task_struct *prev, *next;
67ca7bde 2796 unsigned long *switch_count;
dd41f596 2797 struct rq *rq;
31656519 2798 int cpu;
dd41f596 2799
ff743345
PZ
2800need_resched:
2801 preempt_disable();
dd41f596
IM
2802 cpu = smp_processor_id();
2803 rq = cpu_rq(cpu);
25502a6c 2804 rcu_note_context_switch(cpu);
dd41f596 2805 prev = rq->curr;
dd41f596 2806
dd41f596 2807 schedule_debug(prev);
1da177e4 2808
31656519 2809 if (sched_feat(HRTICK))
f333fdc9 2810 hrtick_clear(rq);
8f4d37ec 2811
e0acd0a6
ON
2812 /*
2813 * Make sure that signal_pending_state()->signal_pending() below
2814 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2815 * done by the caller to avoid the race with signal_wake_up().
2816 */
2817 smp_mb__before_spinlock();
05fa785c 2818 raw_spin_lock_irq(&rq->lock);
1da177e4 2819
246d86b5 2820 switch_count = &prev->nivcsw;
1da177e4 2821 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2822 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2823 prev->state = TASK_RUNNING;
21aa9af0 2824 } else {
2acca55e
PZ
2825 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2826 prev->on_rq = 0;
2827
21aa9af0 2828 /*
2acca55e
PZ
2829 * If a worker went to sleep, notify and ask workqueue
2830 * whether it wants to wake up a task to maintain
2831 * concurrency.
21aa9af0
TH
2832 */
2833 if (prev->flags & PF_WQ_WORKER) {
2834 struct task_struct *to_wakeup;
2835
2836 to_wakeup = wq_worker_sleeping(prev, cpu);
2837 if (to_wakeup)
2838 try_to_wake_up_local(to_wakeup);
2839 }
21aa9af0 2840 }
dd41f596 2841 switch_count = &prev->nvcsw;
1da177e4
LT
2842 }
2843
da0c1e65 2844 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
606dba2e
PZ
2845 update_rq_clock(rq);
2846
2847 next = pick_next_task(rq, prev);
f26f9aff 2848 clear_tsk_need_resched(prev);
f27dde8d 2849 clear_preempt_need_resched();
f26f9aff 2850 rq->skip_clock_update = 0;
1da177e4 2851
1da177e4 2852 if (likely(prev != next)) {
1da177e4
LT
2853 rq->nr_switches++;
2854 rq->curr = next;
2855 ++*switch_count;
2856
dd41f596 2857 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2858 /*
246d86b5
ON
2859 * The context switch have flipped the stack from under us
2860 * and restored the local variables which were saved when
2861 * this task called schedule() in the past. prev == current
2862 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2863 */
2864 cpu = smp_processor_id();
2865 rq = cpu_rq(cpu);
1da177e4 2866 } else
05fa785c 2867 raw_spin_unlock_irq(&rq->lock);
1da177e4 2868
3f029d3c 2869 post_schedule(rq);
1da177e4 2870
ba74c144 2871 sched_preempt_enable_no_resched();
ff743345 2872 if (need_resched())
1da177e4
LT
2873 goto need_resched;
2874}
c259e01a 2875
9c40cef2
TG
2876static inline void sched_submit_work(struct task_struct *tsk)
2877{
3c7d5184 2878 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2879 return;
2880 /*
2881 * If we are going to sleep and we have plugged IO queued,
2882 * make sure to submit it to avoid deadlocks.
2883 */
2884 if (blk_needs_flush_plug(tsk))
2885 blk_schedule_flush_plug(tsk);
2886}
2887
722a9f92 2888asmlinkage __visible void __sched schedule(void)
c259e01a 2889{
9c40cef2
TG
2890 struct task_struct *tsk = current;
2891
2892 sched_submit_work(tsk);
c259e01a
TG
2893 __schedule();
2894}
1da177e4
LT
2895EXPORT_SYMBOL(schedule);
2896
91d1aa43 2897#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2898asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2899{
2900 /*
2901 * If we come here after a random call to set_need_resched(),
2902 * or we have been woken up remotely but the IPI has not yet arrived,
2903 * we haven't yet exited the RCU idle mode. Do it here manually until
2904 * we find a better solution.
2905 */
91d1aa43 2906 user_exit();
20ab65e3 2907 schedule();
91d1aa43 2908 user_enter();
20ab65e3
FW
2909}
2910#endif
2911
c5491ea7
TG
2912/**
2913 * schedule_preempt_disabled - called with preemption disabled
2914 *
2915 * Returns with preemption disabled. Note: preempt_count must be 1
2916 */
2917void __sched schedule_preempt_disabled(void)
2918{
ba74c144 2919 sched_preempt_enable_no_resched();
c5491ea7
TG
2920 schedule();
2921 preempt_disable();
2922}
2923
1da177e4
LT
2924#ifdef CONFIG_PREEMPT
2925/*
2ed6e34f 2926 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2927 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2928 * occur there and call schedule directly.
2929 */
722a9f92 2930asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2931{
1da177e4
LT
2932 /*
2933 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2934 * we do not want to preempt the current task. Just return..
1da177e4 2935 */
fbb00b56 2936 if (likely(!preemptible()))
1da177e4
LT
2937 return;
2938
3a5c359a 2939 do {
bdb43806 2940 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2941 __schedule();
bdb43806 2942 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2943
3a5c359a
AK
2944 /*
2945 * Check again in case we missed a preemption opportunity
2946 * between schedule and now.
2947 */
2948 barrier();
5ed0cec0 2949 } while (need_resched());
1da177e4 2950}
376e2424 2951NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2952EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2953
2954#ifdef CONFIG_CONTEXT_TRACKING
2955/**
2956 * preempt_schedule_context - preempt_schedule called by tracing
2957 *
2958 * The tracing infrastructure uses preempt_enable_notrace to prevent
2959 * recursion and tracing preempt enabling caused by the tracing
2960 * infrastructure itself. But as tracing can happen in areas coming
2961 * from userspace or just about to enter userspace, a preempt enable
2962 * can occur before user_exit() is called. This will cause the scheduler
2963 * to be called when the system is still in usermode.
2964 *
2965 * To prevent this, the preempt_enable_notrace will use this function
2966 * instead of preempt_schedule() to exit user context if needed before
2967 * calling the scheduler.
2968 */
2969asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2970{
2971 enum ctx_state prev_ctx;
2972
2973 if (likely(!preemptible()))
2974 return;
2975
2976 do {
2977 __preempt_count_add(PREEMPT_ACTIVE);
2978 /*
2979 * Needs preempt disabled in case user_exit() is traced
2980 * and the tracer calls preempt_enable_notrace() causing
2981 * an infinite recursion.
2982 */
2983 prev_ctx = exception_enter();
2984 __schedule();
2985 exception_exit(prev_ctx);
2986
2987 __preempt_count_sub(PREEMPT_ACTIVE);
2988 barrier();
2989 } while (need_resched());
2990}
2991EXPORT_SYMBOL_GPL(preempt_schedule_context);
2992#endif /* CONFIG_CONTEXT_TRACKING */
2993
32e475d7 2994#endif /* CONFIG_PREEMPT */
1da177e4
LT
2995
2996/*
2ed6e34f 2997 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2998 * off of irq context.
2999 * Note, that this is called and return with irqs disabled. This will
3000 * protect us against recursive calling from irq.
3001 */
722a9f92 3002asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3003{
b22366cd 3004 enum ctx_state prev_state;
6478d880 3005
2ed6e34f 3006 /* Catch callers which need to be fixed */
f27dde8d 3007 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3008
b22366cd
FW
3009 prev_state = exception_enter();
3010
3a5c359a 3011 do {
bdb43806 3012 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 3013 local_irq_enable();
c259e01a 3014 __schedule();
3a5c359a 3015 local_irq_disable();
bdb43806 3016 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 3017
3a5c359a
AK
3018 /*
3019 * Check again in case we missed a preemption opportunity
3020 * between schedule and now.
3021 */
3022 barrier();
5ed0cec0 3023 } while (need_resched());
b22366cd
FW
3024
3025 exception_exit(prev_state);
1da177e4
LT
3026}
3027
63859d4f 3028int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3029 void *key)
1da177e4 3030{
63859d4f 3031 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3032}
1da177e4
LT
3033EXPORT_SYMBOL(default_wake_function);
3034
b29739f9
IM
3035#ifdef CONFIG_RT_MUTEXES
3036
3037/*
3038 * rt_mutex_setprio - set the current priority of a task
3039 * @p: task
3040 * @prio: prio value (kernel-internal form)
3041 *
3042 * This function changes the 'effective' priority of a task. It does
3043 * not touch ->normal_prio like __setscheduler().
3044 *
c365c292
TG
3045 * Used by the rt_mutex code to implement priority inheritance
3046 * logic. Call site only calls if the priority of the task changed.
b29739f9 3047 */
36c8b586 3048void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3049{
da0c1e65 3050 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3051 struct rq *rq;
83ab0aa0 3052 const struct sched_class *prev_class;
b29739f9 3053
aab03e05 3054 BUG_ON(prio > MAX_PRIO);
b29739f9 3055
0122ec5b 3056 rq = __task_rq_lock(p);
b29739f9 3057
1c4dd99b
TG
3058 /*
3059 * Idle task boosting is a nono in general. There is one
3060 * exception, when PREEMPT_RT and NOHZ is active:
3061 *
3062 * The idle task calls get_next_timer_interrupt() and holds
3063 * the timer wheel base->lock on the CPU and another CPU wants
3064 * to access the timer (probably to cancel it). We can safely
3065 * ignore the boosting request, as the idle CPU runs this code
3066 * with interrupts disabled and will complete the lock
3067 * protected section without being interrupted. So there is no
3068 * real need to boost.
3069 */
3070 if (unlikely(p == rq->idle)) {
3071 WARN_ON(p != rq->curr);
3072 WARN_ON(p->pi_blocked_on);
3073 goto out_unlock;
3074 }
3075
a8027073 3076 trace_sched_pi_setprio(p, prio);
d5f9f942 3077 oldprio = p->prio;
83ab0aa0 3078 prev_class = p->sched_class;
da0c1e65 3079 queued = task_on_rq_queued(p);
051a1d1a 3080 running = task_current(rq, p);
da0c1e65 3081 if (queued)
69be72c1 3082 dequeue_task(rq, p, 0);
0e1f3483 3083 if (running)
f3cd1c4e 3084 put_prev_task(rq, p);
dd41f596 3085
2d3d891d
DF
3086 /*
3087 * Boosting condition are:
3088 * 1. -rt task is running and holds mutex A
3089 * --> -dl task blocks on mutex A
3090 *
3091 * 2. -dl task is running and holds mutex A
3092 * --> -dl task blocks on mutex A and could preempt the
3093 * running task
3094 */
3095 if (dl_prio(prio)) {
466af29b
ON
3096 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3097 if (!dl_prio(p->normal_prio) ||
3098 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3099 p->dl.dl_boosted = 1;
3100 p->dl.dl_throttled = 0;
3101 enqueue_flag = ENQUEUE_REPLENISH;
3102 } else
3103 p->dl.dl_boosted = 0;
aab03e05 3104 p->sched_class = &dl_sched_class;
2d3d891d
DF
3105 } else if (rt_prio(prio)) {
3106 if (dl_prio(oldprio))
3107 p->dl.dl_boosted = 0;
3108 if (oldprio < prio)
3109 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3110 p->sched_class = &rt_sched_class;
2d3d891d
DF
3111 } else {
3112 if (dl_prio(oldprio))
3113 p->dl.dl_boosted = 0;
dd41f596 3114 p->sched_class = &fair_sched_class;
2d3d891d 3115 }
dd41f596 3116
b29739f9
IM
3117 p->prio = prio;
3118
0e1f3483
HS
3119 if (running)
3120 p->sched_class->set_curr_task(rq);
da0c1e65 3121 if (queued)
2d3d891d 3122 enqueue_task(rq, p, enqueue_flag);
cb469845 3123
da7a735e 3124 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3125out_unlock:
0122ec5b 3126 __task_rq_unlock(rq);
b29739f9 3127}
b29739f9 3128#endif
d50dde5a 3129
36c8b586 3130void set_user_nice(struct task_struct *p, long nice)
1da177e4 3131{
da0c1e65 3132 int old_prio, delta, queued;
1da177e4 3133 unsigned long flags;
70b97a7f 3134 struct rq *rq;
1da177e4 3135
75e45d51 3136 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3137 return;
3138 /*
3139 * We have to be careful, if called from sys_setpriority(),
3140 * the task might be in the middle of scheduling on another CPU.
3141 */
3142 rq = task_rq_lock(p, &flags);
3143 /*
3144 * The RT priorities are set via sched_setscheduler(), but we still
3145 * allow the 'normal' nice value to be set - but as expected
3146 * it wont have any effect on scheduling until the task is
aab03e05 3147 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3148 */
aab03e05 3149 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3150 p->static_prio = NICE_TO_PRIO(nice);
3151 goto out_unlock;
3152 }
da0c1e65
KT
3153 queued = task_on_rq_queued(p);
3154 if (queued)
69be72c1 3155 dequeue_task(rq, p, 0);
1da177e4 3156
1da177e4 3157 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3158 set_load_weight(p);
b29739f9
IM
3159 old_prio = p->prio;
3160 p->prio = effective_prio(p);
3161 delta = p->prio - old_prio;
1da177e4 3162
da0c1e65 3163 if (queued) {
371fd7e7 3164 enqueue_task(rq, p, 0);
1da177e4 3165 /*
d5f9f942
AM
3166 * If the task increased its priority or is running and
3167 * lowered its priority, then reschedule its CPU:
1da177e4 3168 */
d5f9f942 3169 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3170 resched_curr(rq);
1da177e4
LT
3171 }
3172out_unlock:
0122ec5b 3173 task_rq_unlock(rq, p, &flags);
1da177e4 3174}
1da177e4
LT
3175EXPORT_SYMBOL(set_user_nice);
3176
e43379f1
MM
3177/*
3178 * can_nice - check if a task can reduce its nice value
3179 * @p: task
3180 * @nice: nice value
3181 */
36c8b586 3182int can_nice(const struct task_struct *p, const int nice)
e43379f1 3183{
024f4747 3184 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3185 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3186
78d7d407 3187 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3188 capable(CAP_SYS_NICE));
3189}
3190
1da177e4
LT
3191#ifdef __ARCH_WANT_SYS_NICE
3192
3193/*
3194 * sys_nice - change the priority of the current process.
3195 * @increment: priority increment
3196 *
3197 * sys_setpriority is a more generic, but much slower function that
3198 * does similar things.
3199 */
5add95d4 3200SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3201{
48f24c4d 3202 long nice, retval;
1da177e4
LT
3203
3204 /*
3205 * Setpriority might change our priority at the same moment.
3206 * We don't have to worry. Conceptually one call occurs first
3207 * and we have a single winner.
3208 */
a9467fa3 3209 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3210 nice = task_nice(current) + increment;
1da177e4 3211
a9467fa3 3212 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3213 if (increment < 0 && !can_nice(current, nice))
3214 return -EPERM;
3215
1da177e4
LT
3216 retval = security_task_setnice(current, nice);
3217 if (retval)
3218 return retval;
3219
3220 set_user_nice(current, nice);
3221 return 0;
3222}
3223
3224#endif
3225
3226/**
3227 * task_prio - return the priority value of a given task.
3228 * @p: the task in question.
3229 *
e69f6186 3230 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3231 * RT tasks are offset by -200. Normal tasks are centered
3232 * around 0, value goes from -16 to +15.
3233 */
36c8b586 3234int task_prio(const struct task_struct *p)
1da177e4
LT
3235{
3236 return p->prio - MAX_RT_PRIO;
3237}
3238
1da177e4
LT
3239/**
3240 * idle_cpu - is a given cpu idle currently?
3241 * @cpu: the processor in question.
e69f6186
YB
3242 *
3243 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3244 */
3245int idle_cpu(int cpu)
3246{
908a3283
TG
3247 struct rq *rq = cpu_rq(cpu);
3248
3249 if (rq->curr != rq->idle)
3250 return 0;
3251
3252 if (rq->nr_running)
3253 return 0;
3254
3255#ifdef CONFIG_SMP
3256 if (!llist_empty(&rq->wake_list))
3257 return 0;
3258#endif
3259
3260 return 1;
1da177e4
LT
3261}
3262
1da177e4
LT
3263/**
3264 * idle_task - return the idle task for a given cpu.
3265 * @cpu: the processor in question.
e69f6186
YB
3266 *
3267 * Return: The idle task for the cpu @cpu.
1da177e4 3268 */
36c8b586 3269struct task_struct *idle_task(int cpu)
1da177e4
LT
3270{
3271 return cpu_rq(cpu)->idle;
3272}
3273
3274/**
3275 * find_process_by_pid - find a process with a matching PID value.
3276 * @pid: the pid in question.
e69f6186
YB
3277 *
3278 * The task of @pid, if found. %NULL otherwise.
1da177e4 3279 */
a9957449 3280static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3281{
228ebcbe 3282 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3283}
3284
aab03e05
DF
3285/*
3286 * This function initializes the sched_dl_entity of a newly becoming
3287 * SCHED_DEADLINE task.
3288 *
3289 * Only the static values are considered here, the actual runtime and the
3290 * absolute deadline will be properly calculated when the task is enqueued
3291 * for the first time with its new policy.
3292 */
3293static void
3294__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3295{
3296 struct sched_dl_entity *dl_se = &p->dl;
3297
3298 init_dl_task_timer(dl_se);
3299 dl_se->dl_runtime = attr->sched_runtime;
3300 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3301 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3302 dl_se->flags = attr->sched_flags;
332ac17e 3303 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3304 dl_se->dl_throttled = 0;
3305 dl_se->dl_new = 1;
5bfd126e 3306 dl_se->dl_yielded = 0;
aab03e05
DF
3307}
3308
c13db6b1
SR
3309/*
3310 * sched_setparam() passes in -1 for its policy, to let the functions
3311 * it calls know not to change it.
3312 */
3313#define SETPARAM_POLICY -1
3314
c365c292
TG
3315static void __setscheduler_params(struct task_struct *p,
3316 const struct sched_attr *attr)
1da177e4 3317{
d50dde5a
DF
3318 int policy = attr->sched_policy;
3319
c13db6b1 3320 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3321 policy = p->policy;
3322
1da177e4 3323 p->policy = policy;
d50dde5a 3324
aab03e05
DF
3325 if (dl_policy(policy))
3326 __setparam_dl(p, attr);
39fd8fd2 3327 else if (fair_policy(policy))
d50dde5a
DF
3328 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3329
39fd8fd2
PZ
3330 /*
3331 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3332 * !rt_policy. Always setting this ensures that things like
3333 * getparam()/getattr() don't report silly values for !rt tasks.
3334 */
3335 p->rt_priority = attr->sched_priority;
383afd09 3336 p->normal_prio = normal_prio(p);
c365c292
TG
3337 set_load_weight(p);
3338}
39fd8fd2 3339
c365c292
TG
3340/* Actually do priority change: must hold pi & rq lock. */
3341static void __setscheduler(struct rq *rq, struct task_struct *p,
3342 const struct sched_attr *attr)
3343{
3344 __setscheduler_params(p, attr);
d50dde5a 3345
383afd09
SR
3346 /*
3347 * If we get here, there was no pi waiters boosting the
3348 * task. It is safe to use the normal prio.
3349 */
3350 p->prio = normal_prio(p);
3351
aab03e05
DF
3352 if (dl_prio(p->prio))
3353 p->sched_class = &dl_sched_class;
3354 else if (rt_prio(p->prio))
ffd44db5
PZ
3355 p->sched_class = &rt_sched_class;
3356 else
3357 p->sched_class = &fair_sched_class;
1da177e4 3358}
aab03e05
DF
3359
3360static void
3361__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3362{
3363 struct sched_dl_entity *dl_se = &p->dl;
3364
3365 attr->sched_priority = p->rt_priority;
3366 attr->sched_runtime = dl_se->dl_runtime;
3367 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3368 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3369 attr->sched_flags = dl_se->flags;
3370}
3371
3372/*
3373 * This function validates the new parameters of a -deadline task.
3374 * We ask for the deadline not being zero, and greater or equal
755378a4 3375 * than the runtime, as well as the period of being zero or
332ac17e 3376 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3377 * user parameters are above the internal resolution of 1us (we
3378 * check sched_runtime only since it is always the smaller one) and
3379 * below 2^63 ns (we have to check both sched_deadline and
3380 * sched_period, as the latter can be zero).
aab03e05
DF
3381 */
3382static bool
3383__checkparam_dl(const struct sched_attr *attr)
3384{
b0827819
JL
3385 /* deadline != 0 */
3386 if (attr->sched_deadline == 0)
3387 return false;
3388
3389 /*
3390 * Since we truncate DL_SCALE bits, make sure we're at least
3391 * that big.
3392 */
3393 if (attr->sched_runtime < (1ULL << DL_SCALE))
3394 return false;
3395
3396 /*
3397 * Since we use the MSB for wrap-around and sign issues, make
3398 * sure it's not set (mind that period can be equal to zero).
3399 */
3400 if (attr->sched_deadline & (1ULL << 63) ||
3401 attr->sched_period & (1ULL << 63))
3402 return false;
3403
3404 /* runtime <= deadline <= period (if period != 0) */
3405 if ((attr->sched_period != 0 &&
3406 attr->sched_period < attr->sched_deadline) ||
3407 attr->sched_deadline < attr->sched_runtime)
3408 return false;
3409
3410 return true;
aab03e05
DF
3411}
3412
c69e8d9c
DH
3413/*
3414 * check the target process has a UID that matches the current process's
3415 */
3416static bool check_same_owner(struct task_struct *p)
3417{
3418 const struct cred *cred = current_cred(), *pcred;
3419 bool match;
3420
3421 rcu_read_lock();
3422 pcred = __task_cred(p);
9c806aa0
EB
3423 match = (uid_eq(cred->euid, pcred->euid) ||
3424 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3425 rcu_read_unlock();
3426 return match;
3427}
3428
d50dde5a
DF
3429static int __sched_setscheduler(struct task_struct *p,
3430 const struct sched_attr *attr,
3431 bool user)
1da177e4 3432{
383afd09
SR
3433 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3434 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3435 int retval, oldprio, oldpolicy = -1, queued, running;
d50dde5a 3436 int policy = attr->sched_policy;
1da177e4 3437 unsigned long flags;
83ab0aa0 3438 const struct sched_class *prev_class;
70b97a7f 3439 struct rq *rq;
ca94c442 3440 int reset_on_fork;
1da177e4 3441
66e5393a
SR
3442 /* may grab non-irq protected spin_locks */
3443 BUG_ON(in_interrupt());
1da177e4
LT
3444recheck:
3445 /* double check policy once rq lock held */
ca94c442
LP
3446 if (policy < 0) {
3447 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3448 policy = oldpolicy = p->policy;
ca94c442 3449 } else {
7479f3c9 3450 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3451
aab03e05
DF
3452 if (policy != SCHED_DEADLINE &&
3453 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3454 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3455 policy != SCHED_IDLE)
3456 return -EINVAL;
3457 }
3458
7479f3c9
PZ
3459 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3460 return -EINVAL;
3461
1da177e4
LT
3462 /*
3463 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3464 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3465 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3466 */
0bb040a4 3467 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3468 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3469 return -EINVAL;
aab03e05
DF
3470 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3471 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3472 return -EINVAL;
3473
37e4ab3f
OC
3474 /*
3475 * Allow unprivileged RT tasks to decrease priority:
3476 */
961ccddd 3477 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3478 if (fair_policy(policy)) {
d0ea0268 3479 if (attr->sched_nice < task_nice(p) &&
eaad4513 3480 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3481 return -EPERM;
3482 }
3483
e05606d3 3484 if (rt_policy(policy)) {
a44702e8
ON
3485 unsigned long rlim_rtprio =
3486 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3487
3488 /* can't set/change the rt policy */
3489 if (policy != p->policy && !rlim_rtprio)
3490 return -EPERM;
3491
3492 /* can't increase priority */
d50dde5a
DF
3493 if (attr->sched_priority > p->rt_priority &&
3494 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3495 return -EPERM;
3496 }
c02aa73b 3497
d44753b8
JL
3498 /*
3499 * Can't set/change SCHED_DEADLINE policy at all for now
3500 * (safest behavior); in the future we would like to allow
3501 * unprivileged DL tasks to increase their relative deadline
3502 * or reduce their runtime (both ways reducing utilization)
3503 */
3504 if (dl_policy(policy))
3505 return -EPERM;
3506
dd41f596 3507 /*
c02aa73b
DH
3508 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3509 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3510 */
c02aa73b 3511 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3512 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3513 return -EPERM;
3514 }
5fe1d75f 3515
37e4ab3f 3516 /* can't change other user's priorities */
c69e8d9c 3517 if (!check_same_owner(p))
37e4ab3f 3518 return -EPERM;
ca94c442
LP
3519
3520 /* Normal users shall not reset the sched_reset_on_fork flag */
3521 if (p->sched_reset_on_fork && !reset_on_fork)
3522 return -EPERM;
37e4ab3f 3523 }
1da177e4 3524
725aad24 3525 if (user) {
b0ae1981 3526 retval = security_task_setscheduler(p);
725aad24
JF
3527 if (retval)
3528 return retval;
3529 }
3530
b29739f9
IM
3531 /*
3532 * make sure no PI-waiters arrive (or leave) while we are
3533 * changing the priority of the task:
0122ec5b 3534 *
25985edc 3535 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3536 * runqueue lock must be held.
3537 */
0122ec5b 3538 rq = task_rq_lock(p, &flags);
dc61b1d6 3539
34f971f6
PZ
3540 /*
3541 * Changing the policy of the stop threads its a very bad idea
3542 */
3543 if (p == rq->stop) {
0122ec5b 3544 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3545 return -EINVAL;
3546 }
3547
a51e9198 3548 /*
d6b1e911
TG
3549 * If not changing anything there's no need to proceed further,
3550 * but store a possible modification of reset_on_fork.
a51e9198 3551 */
d50dde5a 3552 if (unlikely(policy == p->policy)) {
d0ea0268 3553 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3554 goto change;
3555 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3556 goto change;
aab03e05
DF
3557 if (dl_policy(policy))
3558 goto change;
d50dde5a 3559
d6b1e911 3560 p->sched_reset_on_fork = reset_on_fork;
45afb173 3561 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3562 return 0;
3563 }
d50dde5a 3564change:
a51e9198 3565
dc61b1d6 3566 if (user) {
332ac17e 3567#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3568 /*
3569 * Do not allow realtime tasks into groups that have no runtime
3570 * assigned.
3571 */
3572 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3573 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3574 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3575 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3576 return -EPERM;
3577 }
dc61b1d6 3578#endif
332ac17e
DF
3579#ifdef CONFIG_SMP
3580 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3581 cpumask_t *span = rq->rd->span;
332ac17e
DF
3582
3583 /*
3584 * Don't allow tasks with an affinity mask smaller than
3585 * the entire root_domain to become SCHED_DEADLINE. We
3586 * will also fail if there's no bandwidth available.
3587 */
e4099a5e
PZ
3588 if (!cpumask_subset(span, &p->cpus_allowed) ||
3589 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3590 task_rq_unlock(rq, p, &flags);
3591 return -EPERM;
3592 }
3593 }
3594#endif
3595 }
dc61b1d6 3596
1da177e4
LT
3597 /* recheck policy now with rq lock held */
3598 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3599 policy = oldpolicy = -1;
0122ec5b 3600 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3601 goto recheck;
3602 }
332ac17e
DF
3603
3604 /*
3605 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3606 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3607 * is available.
3608 */
e4099a5e 3609 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3610 task_rq_unlock(rq, p, &flags);
3611 return -EBUSY;
3612 }
3613
c365c292
TG
3614 p->sched_reset_on_fork = reset_on_fork;
3615 oldprio = p->prio;
3616
3617 /*
3618 * Special case for priority boosted tasks.
3619 *
3620 * If the new priority is lower or equal (user space view)
3621 * than the current (boosted) priority, we just store the new
3622 * normal parameters and do not touch the scheduler class and
3623 * the runqueue. This will be done when the task deboost
3624 * itself.
3625 */
3626 if (rt_mutex_check_prio(p, newprio)) {
3627 __setscheduler_params(p, attr);
3628 task_rq_unlock(rq, p, &flags);
3629 return 0;
3630 }
3631
da0c1e65 3632 queued = task_on_rq_queued(p);
051a1d1a 3633 running = task_current(rq, p);
da0c1e65 3634 if (queued)
4ca9b72b 3635 dequeue_task(rq, p, 0);
0e1f3483 3636 if (running)
f3cd1c4e 3637 put_prev_task(rq, p);
f6b53205 3638
83ab0aa0 3639 prev_class = p->sched_class;
d50dde5a 3640 __setscheduler(rq, p, attr);
f6b53205 3641
0e1f3483
HS
3642 if (running)
3643 p->sched_class->set_curr_task(rq);
da0c1e65 3644 if (queued) {
81a44c54
TG
3645 /*
3646 * We enqueue to tail when the priority of a task is
3647 * increased (user space view).
3648 */
3649 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3650 }
cb469845 3651
da7a735e 3652 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3653 task_rq_unlock(rq, p, &flags);
b29739f9 3654
95e02ca9
TG
3655 rt_mutex_adjust_pi(p);
3656
1da177e4
LT
3657 return 0;
3658}
961ccddd 3659
7479f3c9
PZ
3660static int _sched_setscheduler(struct task_struct *p, int policy,
3661 const struct sched_param *param, bool check)
3662{
3663 struct sched_attr attr = {
3664 .sched_policy = policy,
3665 .sched_priority = param->sched_priority,
3666 .sched_nice = PRIO_TO_NICE(p->static_prio),
3667 };
3668
c13db6b1
SR
3669 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3670 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3671 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3672 policy &= ~SCHED_RESET_ON_FORK;
3673 attr.sched_policy = policy;
3674 }
3675
3676 return __sched_setscheduler(p, &attr, check);
3677}
961ccddd
RR
3678/**
3679 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3680 * @p: the task in question.
3681 * @policy: new policy.
3682 * @param: structure containing the new RT priority.
3683 *
e69f6186
YB
3684 * Return: 0 on success. An error code otherwise.
3685 *
961ccddd
RR
3686 * NOTE that the task may be already dead.
3687 */
3688int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3689 const struct sched_param *param)
961ccddd 3690{
7479f3c9 3691 return _sched_setscheduler(p, policy, param, true);
961ccddd 3692}
1da177e4
LT
3693EXPORT_SYMBOL_GPL(sched_setscheduler);
3694
d50dde5a
DF
3695int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3696{
3697 return __sched_setscheduler(p, attr, true);
3698}
3699EXPORT_SYMBOL_GPL(sched_setattr);
3700
961ccddd
RR
3701/**
3702 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3703 * @p: the task in question.
3704 * @policy: new policy.
3705 * @param: structure containing the new RT priority.
3706 *
3707 * Just like sched_setscheduler, only don't bother checking if the
3708 * current context has permission. For example, this is needed in
3709 * stop_machine(): we create temporary high priority worker threads,
3710 * but our caller might not have that capability.
e69f6186
YB
3711 *
3712 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3713 */
3714int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3715 const struct sched_param *param)
961ccddd 3716{
7479f3c9 3717 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3718}
3719
95cdf3b7
IM
3720static int
3721do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3722{
1da177e4
LT
3723 struct sched_param lparam;
3724 struct task_struct *p;
36c8b586 3725 int retval;
1da177e4
LT
3726
3727 if (!param || pid < 0)
3728 return -EINVAL;
3729 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3730 return -EFAULT;
5fe1d75f
ON
3731
3732 rcu_read_lock();
3733 retval = -ESRCH;
1da177e4 3734 p = find_process_by_pid(pid);
5fe1d75f
ON
3735 if (p != NULL)
3736 retval = sched_setscheduler(p, policy, &lparam);
3737 rcu_read_unlock();
36c8b586 3738
1da177e4
LT
3739 return retval;
3740}
3741
d50dde5a
DF
3742/*
3743 * Mimics kernel/events/core.c perf_copy_attr().
3744 */
3745static int sched_copy_attr(struct sched_attr __user *uattr,
3746 struct sched_attr *attr)
3747{
3748 u32 size;
3749 int ret;
3750
3751 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3752 return -EFAULT;
3753
3754 /*
3755 * zero the full structure, so that a short copy will be nice.
3756 */
3757 memset(attr, 0, sizeof(*attr));
3758
3759 ret = get_user(size, &uattr->size);
3760 if (ret)
3761 return ret;
3762
3763 if (size > PAGE_SIZE) /* silly large */
3764 goto err_size;
3765
3766 if (!size) /* abi compat */
3767 size = SCHED_ATTR_SIZE_VER0;
3768
3769 if (size < SCHED_ATTR_SIZE_VER0)
3770 goto err_size;
3771
3772 /*
3773 * If we're handed a bigger struct than we know of,
3774 * ensure all the unknown bits are 0 - i.e. new
3775 * user-space does not rely on any kernel feature
3776 * extensions we dont know about yet.
3777 */
3778 if (size > sizeof(*attr)) {
3779 unsigned char __user *addr;
3780 unsigned char __user *end;
3781 unsigned char val;
3782
3783 addr = (void __user *)uattr + sizeof(*attr);
3784 end = (void __user *)uattr + size;
3785
3786 for (; addr < end; addr++) {
3787 ret = get_user(val, addr);
3788 if (ret)
3789 return ret;
3790 if (val)
3791 goto err_size;
3792 }
3793 size = sizeof(*attr);
3794 }
3795
3796 ret = copy_from_user(attr, uattr, size);
3797 if (ret)
3798 return -EFAULT;
3799
3800 /*
3801 * XXX: do we want to be lenient like existing syscalls; or do we want
3802 * to be strict and return an error on out-of-bounds values?
3803 */
75e45d51 3804 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3805
e78c7bca 3806 return 0;
d50dde5a
DF
3807
3808err_size:
3809 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3810 return -E2BIG;
d50dde5a
DF
3811}
3812
1da177e4
LT
3813/**
3814 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3815 * @pid: the pid in question.
3816 * @policy: new policy.
3817 * @param: structure containing the new RT priority.
e69f6186
YB
3818 *
3819 * Return: 0 on success. An error code otherwise.
1da177e4 3820 */
5add95d4
HC
3821SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3822 struct sched_param __user *, param)
1da177e4 3823{
c21761f1
JB
3824 /* negative values for policy are not valid */
3825 if (policy < 0)
3826 return -EINVAL;
3827
1da177e4
LT
3828 return do_sched_setscheduler(pid, policy, param);
3829}
3830
3831/**
3832 * sys_sched_setparam - set/change the RT priority of a thread
3833 * @pid: the pid in question.
3834 * @param: structure containing the new RT priority.
e69f6186
YB
3835 *
3836 * Return: 0 on success. An error code otherwise.
1da177e4 3837 */
5add95d4 3838SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3839{
c13db6b1 3840 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3841}
3842
d50dde5a
DF
3843/**
3844 * sys_sched_setattr - same as above, but with extended sched_attr
3845 * @pid: the pid in question.
5778fccf 3846 * @uattr: structure containing the extended parameters.
db66d756 3847 * @flags: for future extension.
d50dde5a 3848 */
6d35ab48
PZ
3849SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3850 unsigned int, flags)
d50dde5a
DF
3851{
3852 struct sched_attr attr;
3853 struct task_struct *p;
3854 int retval;
3855
6d35ab48 3856 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3857 return -EINVAL;
3858
143cf23d
MK
3859 retval = sched_copy_attr(uattr, &attr);
3860 if (retval)
3861 return retval;
d50dde5a 3862
b14ed2c2 3863 if ((int)attr.sched_policy < 0)
dbdb2275 3864 return -EINVAL;
d50dde5a
DF
3865
3866 rcu_read_lock();
3867 retval = -ESRCH;
3868 p = find_process_by_pid(pid);
3869 if (p != NULL)
3870 retval = sched_setattr(p, &attr);
3871 rcu_read_unlock();
3872
3873 return retval;
3874}
3875
1da177e4
LT
3876/**
3877 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3878 * @pid: the pid in question.
e69f6186
YB
3879 *
3880 * Return: On success, the policy of the thread. Otherwise, a negative error
3881 * code.
1da177e4 3882 */
5add95d4 3883SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3884{
36c8b586 3885 struct task_struct *p;
3a5c359a 3886 int retval;
1da177e4
LT
3887
3888 if (pid < 0)
3a5c359a 3889 return -EINVAL;
1da177e4
LT
3890
3891 retval = -ESRCH;
5fe85be0 3892 rcu_read_lock();
1da177e4
LT
3893 p = find_process_by_pid(pid);
3894 if (p) {
3895 retval = security_task_getscheduler(p);
3896 if (!retval)
ca94c442
LP
3897 retval = p->policy
3898 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3899 }
5fe85be0 3900 rcu_read_unlock();
1da177e4
LT
3901 return retval;
3902}
3903
3904/**
ca94c442 3905 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3906 * @pid: the pid in question.
3907 * @param: structure containing the RT priority.
e69f6186
YB
3908 *
3909 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3910 * code.
1da177e4 3911 */
5add95d4 3912SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3913{
ce5f7f82 3914 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3915 struct task_struct *p;
3a5c359a 3916 int retval;
1da177e4
LT
3917
3918 if (!param || pid < 0)
3a5c359a 3919 return -EINVAL;
1da177e4 3920
5fe85be0 3921 rcu_read_lock();
1da177e4
LT
3922 p = find_process_by_pid(pid);
3923 retval = -ESRCH;
3924 if (!p)
3925 goto out_unlock;
3926
3927 retval = security_task_getscheduler(p);
3928 if (retval)
3929 goto out_unlock;
3930
ce5f7f82
PZ
3931 if (task_has_rt_policy(p))
3932 lp.sched_priority = p->rt_priority;
5fe85be0 3933 rcu_read_unlock();
1da177e4
LT
3934
3935 /*
3936 * This one might sleep, we cannot do it with a spinlock held ...
3937 */
3938 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3939
1da177e4
LT
3940 return retval;
3941
3942out_unlock:
5fe85be0 3943 rcu_read_unlock();
1da177e4
LT
3944 return retval;
3945}
3946
d50dde5a
DF
3947static int sched_read_attr(struct sched_attr __user *uattr,
3948 struct sched_attr *attr,
3949 unsigned int usize)
3950{
3951 int ret;
3952
3953 if (!access_ok(VERIFY_WRITE, uattr, usize))
3954 return -EFAULT;
3955
3956 /*
3957 * If we're handed a smaller struct than we know of,
3958 * ensure all the unknown bits are 0 - i.e. old
3959 * user-space does not get uncomplete information.
3960 */
3961 if (usize < sizeof(*attr)) {
3962 unsigned char *addr;
3963 unsigned char *end;
3964
3965 addr = (void *)attr + usize;
3966 end = (void *)attr + sizeof(*attr);
3967
3968 for (; addr < end; addr++) {
3969 if (*addr)
22400674 3970 return -EFBIG;
d50dde5a
DF
3971 }
3972
3973 attr->size = usize;
3974 }
3975
4efbc454 3976 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3977 if (ret)
3978 return -EFAULT;
3979
22400674 3980 return 0;
d50dde5a
DF
3981}
3982
3983/**
aab03e05 3984 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3985 * @pid: the pid in question.
5778fccf 3986 * @uattr: structure containing the extended parameters.
d50dde5a 3987 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3988 * @flags: for future extension.
d50dde5a 3989 */
6d35ab48
PZ
3990SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3991 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3992{
3993 struct sched_attr attr = {
3994 .size = sizeof(struct sched_attr),
3995 };
3996 struct task_struct *p;
3997 int retval;
3998
3999 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4000 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4001 return -EINVAL;
4002
4003 rcu_read_lock();
4004 p = find_process_by_pid(pid);
4005 retval = -ESRCH;
4006 if (!p)
4007 goto out_unlock;
4008
4009 retval = security_task_getscheduler(p);
4010 if (retval)
4011 goto out_unlock;
4012
4013 attr.sched_policy = p->policy;
7479f3c9
PZ
4014 if (p->sched_reset_on_fork)
4015 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4016 if (task_has_dl_policy(p))
4017 __getparam_dl(p, &attr);
4018 else if (task_has_rt_policy(p))
d50dde5a
DF
4019 attr.sched_priority = p->rt_priority;
4020 else
d0ea0268 4021 attr.sched_nice = task_nice(p);
d50dde5a
DF
4022
4023 rcu_read_unlock();
4024
4025 retval = sched_read_attr(uattr, &attr, size);
4026 return retval;
4027
4028out_unlock:
4029 rcu_read_unlock();
4030 return retval;
4031}
4032
96f874e2 4033long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4034{
5a16f3d3 4035 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4036 struct task_struct *p;
4037 int retval;
1da177e4 4038
23f5d142 4039 rcu_read_lock();
1da177e4
LT
4040
4041 p = find_process_by_pid(pid);
4042 if (!p) {
23f5d142 4043 rcu_read_unlock();
1da177e4
LT
4044 return -ESRCH;
4045 }
4046
23f5d142 4047 /* Prevent p going away */
1da177e4 4048 get_task_struct(p);
23f5d142 4049 rcu_read_unlock();
1da177e4 4050
14a40ffc
TH
4051 if (p->flags & PF_NO_SETAFFINITY) {
4052 retval = -EINVAL;
4053 goto out_put_task;
4054 }
5a16f3d3
RR
4055 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4056 retval = -ENOMEM;
4057 goto out_put_task;
4058 }
4059 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4060 retval = -ENOMEM;
4061 goto out_free_cpus_allowed;
4062 }
1da177e4 4063 retval = -EPERM;
4c44aaaf
EB
4064 if (!check_same_owner(p)) {
4065 rcu_read_lock();
4066 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4067 rcu_read_unlock();
16303ab2 4068 goto out_free_new_mask;
4c44aaaf
EB
4069 }
4070 rcu_read_unlock();
4071 }
1da177e4 4072
b0ae1981 4073 retval = security_task_setscheduler(p);
e7834f8f 4074 if (retval)
16303ab2 4075 goto out_free_new_mask;
e7834f8f 4076
e4099a5e
PZ
4077
4078 cpuset_cpus_allowed(p, cpus_allowed);
4079 cpumask_and(new_mask, in_mask, cpus_allowed);
4080
332ac17e
DF
4081 /*
4082 * Since bandwidth control happens on root_domain basis,
4083 * if admission test is enabled, we only admit -deadline
4084 * tasks allowed to run on all the CPUs in the task's
4085 * root_domain.
4086 */
4087#ifdef CONFIG_SMP
f1e3a093
KT
4088 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4089 rcu_read_lock();
4090 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4091 retval = -EBUSY;
f1e3a093 4092 rcu_read_unlock();
16303ab2 4093 goto out_free_new_mask;
332ac17e 4094 }
f1e3a093 4095 rcu_read_unlock();
332ac17e
DF
4096 }
4097#endif
49246274 4098again:
5a16f3d3 4099 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4100
8707d8b8 4101 if (!retval) {
5a16f3d3
RR
4102 cpuset_cpus_allowed(p, cpus_allowed);
4103 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4104 /*
4105 * We must have raced with a concurrent cpuset
4106 * update. Just reset the cpus_allowed to the
4107 * cpuset's cpus_allowed
4108 */
5a16f3d3 4109 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4110 goto again;
4111 }
4112 }
16303ab2 4113out_free_new_mask:
5a16f3d3
RR
4114 free_cpumask_var(new_mask);
4115out_free_cpus_allowed:
4116 free_cpumask_var(cpus_allowed);
4117out_put_task:
1da177e4 4118 put_task_struct(p);
1da177e4
LT
4119 return retval;
4120}
4121
4122static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4123 struct cpumask *new_mask)
1da177e4 4124{
96f874e2
RR
4125 if (len < cpumask_size())
4126 cpumask_clear(new_mask);
4127 else if (len > cpumask_size())
4128 len = cpumask_size();
4129
1da177e4
LT
4130 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4131}
4132
4133/**
4134 * sys_sched_setaffinity - set the cpu affinity of a process
4135 * @pid: pid of the process
4136 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4137 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4138 *
4139 * Return: 0 on success. An error code otherwise.
1da177e4 4140 */
5add95d4
HC
4141SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4142 unsigned long __user *, user_mask_ptr)
1da177e4 4143{
5a16f3d3 4144 cpumask_var_t new_mask;
1da177e4
LT
4145 int retval;
4146
5a16f3d3
RR
4147 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4148 return -ENOMEM;
1da177e4 4149
5a16f3d3
RR
4150 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4151 if (retval == 0)
4152 retval = sched_setaffinity(pid, new_mask);
4153 free_cpumask_var(new_mask);
4154 return retval;
1da177e4
LT
4155}
4156
96f874e2 4157long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4158{
36c8b586 4159 struct task_struct *p;
31605683 4160 unsigned long flags;
1da177e4 4161 int retval;
1da177e4 4162
23f5d142 4163 rcu_read_lock();
1da177e4
LT
4164
4165 retval = -ESRCH;
4166 p = find_process_by_pid(pid);
4167 if (!p)
4168 goto out_unlock;
4169
e7834f8f
DQ
4170 retval = security_task_getscheduler(p);
4171 if (retval)
4172 goto out_unlock;
4173
013fdb80 4174 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4175 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4176 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4177
4178out_unlock:
23f5d142 4179 rcu_read_unlock();
1da177e4 4180
9531b62f 4181 return retval;
1da177e4
LT
4182}
4183
4184/**
4185 * sys_sched_getaffinity - get the cpu affinity of a process
4186 * @pid: pid of the process
4187 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4188 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4189 *
4190 * Return: 0 on success. An error code otherwise.
1da177e4 4191 */
5add95d4
HC
4192SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4193 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4194{
4195 int ret;
f17c8607 4196 cpumask_var_t mask;
1da177e4 4197
84fba5ec 4198 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4199 return -EINVAL;
4200 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4201 return -EINVAL;
4202
f17c8607
RR
4203 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4204 return -ENOMEM;
1da177e4 4205
f17c8607
RR
4206 ret = sched_getaffinity(pid, mask);
4207 if (ret == 0) {
8bc037fb 4208 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4209
4210 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4211 ret = -EFAULT;
4212 else
cd3d8031 4213 ret = retlen;
f17c8607
RR
4214 }
4215 free_cpumask_var(mask);
1da177e4 4216
f17c8607 4217 return ret;
1da177e4
LT
4218}
4219
4220/**
4221 * sys_sched_yield - yield the current processor to other threads.
4222 *
dd41f596
IM
4223 * This function yields the current CPU to other tasks. If there are no
4224 * other threads running on this CPU then this function will return.
e69f6186
YB
4225 *
4226 * Return: 0.
1da177e4 4227 */
5add95d4 4228SYSCALL_DEFINE0(sched_yield)
1da177e4 4229{
70b97a7f 4230 struct rq *rq = this_rq_lock();
1da177e4 4231
2d72376b 4232 schedstat_inc(rq, yld_count);
4530d7ab 4233 current->sched_class->yield_task(rq);
1da177e4
LT
4234
4235 /*
4236 * Since we are going to call schedule() anyway, there's
4237 * no need to preempt or enable interrupts:
4238 */
4239 __release(rq->lock);
8a25d5de 4240 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4241 do_raw_spin_unlock(&rq->lock);
ba74c144 4242 sched_preempt_enable_no_resched();
1da177e4
LT
4243
4244 schedule();
4245
4246 return 0;
4247}
4248
e7b38404 4249static void __cond_resched(void)
1da177e4 4250{
bdb43806 4251 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4252 __schedule();
bdb43806 4253 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4254}
4255
02b67cc3 4256int __sched _cond_resched(void)
1da177e4 4257{
d86ee480 4258 if (should_resched()) {
1da177e4
LT
4259 __cond_resched();
4260 return 1;
4261 }
4262 return 0;
4263}
02b67cc3 4264EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4265
4266/*
613afbf8 4267 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4268 * call schedule, and on return reacquire the lock.
4269 *
41a2d6cf 4270 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4271 * operations here to prevent schedule() from being called twice (once via
4272 * spin_unlock(), once by hand).
4273 */
613afbf8 4274int __cond_resched_lock(spinlock_t *lock)
1da177e4 4275{
d86ee480 4276 int resched = should_resched();
6df3cecb
JK
4277 int ret = 0;
4278
f607c668
PZ
4279 lockdep_assert_held(lock);
4280
4a81e832 4281 if (spin_needbreak(lock) || resched) {
1da177e4 4282 spin_unlock(lock);
d86ee480 4283 if (resched)
95c354fe
NP
4284 __cond_resched();
4285 else
4286 cpu_relax();
6df3cecb 4287 ret = 1;
1da177e4 4288 spin_lock(lock);
1da177e4 4289 }
6df3cecb 4290 return ret;
1da177e4 4291}
613afbf8 4292EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4293
613afbf8 4294int __sched __cond_resched_softirq(void)
1da177e4
LT
4295{
4296 BUG_ON(!in_softirq());
4297
d86ee480 4298 if (should_resched()) {
98d82567 4299 local_bh_enable();
1da177e4
LT
4300 __cond_resched();
4301 local_bh_disable();
4302 return 1;
4303 }
4304 return 0;
4305}
613afbf8 4306EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4307
1da177e4
LT
4308/**
4309 * yield - yield the current processor to other threads.
4310 *
8e3fabfd
PZ
4311 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4312 *
4313 * The scheduler is at all times free to pick the calling task as the most
4314 * eligible task to run, if removing the yield() call from your code breaks
4315 * it, its already broken.
4316 *
4317 * Typical broken usage is:
4318 *
4319 * while (!event)
4320 * yield();
4321 *
4322 * where one assumes that yield() will let 'the other' process run that will
4323 * make event true. If the current task is a SCHED_FIFO task that will never
4324 * happen. Never use yield() as a progress guarantee!!
4325 *
4326 * If you want to use yield() to wait for something, use wait_event().
4327 * If you want to use yield() to be 'nice' for others, use cond_resched().
4328 * If you still want to use yield(), do not!
1da177e4
LT
4329 */
4330void __sched yield(void)
4331{
4332 set_current_state(TASK_RUNNING);
4333 sys_sched_yield();
4334}
1da177e4
LT
4335EXPORT_SYMBOL(yield);
4336
d95f4122
MG
4337/**
4338 * yield_to - yield the current processor to another thread in
4339 * your thread group, or accelerate that thread toward the
4340 * processor it's on.
16addf95
RD
4341 * @p: target task
4342 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4343 *
4344 * It's the caller's job to ensure that the target task struct
4345 * can't go away on us before we can do any checks.
4346 *
e69f6186 4347 * Return:
7b270f60
PZ
4348 * true (>0) if we indeed boosted the target task.
4349 * false (0) if we failed to boost the target.
4350 * -ESRCH if there's no task to yield to.
d95f4122 4351 */
fa93384f 4352int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4353{
4354 struct task_struct *curr = current;
4355 struct rq *rq, *p_rq;
4356 unsigned long flags;
c3c18640 4357 int yielded = 0;
d95f4122
MG
4358
4359 local_irq_save(flags);
4360 rq = this_rq();
4361
4362again:
4363 p_rq = task_rq(p);
7b270f60
PZ
4364 /*
4365 * If we're the only runnable task on the rq and target rq also
4366 * has only one task, there's absolutely no point in yielding.
4367 */
4368 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4369 yielded = -ESRCH;
4370 goto out_irq;
4371 }
4372
d95f4122 4373 double_rq_lock(rq, p_rq);
39e24d8f 4374 if (task_rq(p) != p_rq) {
d95f4122
MG
4375 double_rq_unlock(rq, p_rq);
4376 goto again;
4377 }
4378
4379 if (!curr->sched_class->yield_to_task)
7b270f60 4380 goto out_unlock;
d95f4122
MG
4381
4382 if (curr->sched_class != p->sched_class)
7b270f60 4383 goto out_unlock;
d95f4122
MG
4384
4385 if (task_running(p_rq, p) || p->state)
7b270f60 4386 goto out_unlock;
d95f4122
MG
4387
4388 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4389 if (yielded) {
d95f4122 4390 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4391 /*
4392 * Make p's CPU reschedule; pick_next_entity takes care of
4393 * fairness.
4394 */
4395 if (preempt && rq != p_rq)
8875125e 4396 resched_curr(p_rq);
6d1cafd8 4397 }
d95f4122 4398
7b270f60 4399out_unlock:
d95f4122 4400 double_rq_unlock(rq, p_rq);
7b270f60 4401out_irq:
d95f4122
MG
4402 local_irq_restore(flags);
4403
7b270f60 4404 if (yielded > 0)
d95f4122
MG
4405 schedule();
4406
4407 return yielded;
4408}
4409EXPORT_SYMBOL_GPL(yield_to);
4410
1da177e4 4411/*
41a2d6cf 4412 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4413 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4414 */
4415void __sched io_schedule(void)
4416{
54d35f29 4417 struct rq *rq = raw_rq();
1da177e4 4418
0ff92245 4419 delayacct_blkio_start();
1da177e4 4420 atomic_inc(&rq->nr_iowait);
73c10101 4421 blk_flush_plug(current);
8f0dfc34 4422 current->in_iowait = 1;
1da177e4 4423 schedule();
8f0dfc34 4424 current->in_iowait = 0;
1da177e4 4425 atomic_dec(&rq->nr_iowait);
0ff92245 4426 delayacct_blkio_end();
1da177e4 4427}
1da177e4
LT
4428EXPORT_SYMBOL(io_schedule);
4429
4430long __sched io_schedule_timeout(long timeout)
4431{
54d35f29 4432 struct rq *rq = raw_rq();
1da177e4
LT
4433 long ret;
4434
0ff92245 4435 delayacct_blkio_start();
1da177e4 4436 atomic_inc(&rq->nr_iowait);
73c10101 4437 blk_flush_plug(current);
8f0dfc34 4438 current->in_iowait = 1;
1da177e4 4439 ret = schedule_timeout(timeout);
8f0dfc34 4440 current->in_iowait = 0;
1da177e4 4441 atomic_dec(&rq->nr_iowait);
0ff92245 4442 delayacct_blkio_end();
1da177e4
LT
4443 return ret;
4444}
4445
4446/**
4447 * sys_sched_get_priority_max - return maximum RT priority.
4448 * @policy: scheduling class.
4449 *
e69f6186
YB
4450 * Return: On success, this syscall returns the maximum
4451 * rt_priority that can be used by a given scheduling class.
4452 * On failure, a negative error code is returned.
1da177e4 4453 */
5add95d4 4454SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4455{
4456 int ret = -EINVAL;
4457
4458 switch (policy) {
4459 case SCHED_FIFO:
4460 case SCHED_RR:
4461 ret = MAX_USER_RT_PRIO-1;
4462 break;
aab03e05 4463 case SCHED_DEADLINE:
1da177e4 4464 case SCHED_NORMAL:
b0a9499c 4465 case SCHED_BATCH:
dd41f596 4466 case SCHED_IDLE:
1da177e4
LT
4467 ret = 0;
4468 break;
4469 }
4470 return ret;
4471}
4472
4473/**
4474 * sys_sched_get_priority_min - return minimum RT priority.
4475 * @policy: scheduling class.
4476 *
e69f6186
YB
4477 * Return: On success, this syscall returns the minimum
4478 * rt_priority that can be used by a given scheduling class.
4479 * On failure, a negative error code is returned.
1da177e4 4480 */
5add95d4 4481SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4482{
4483 int ret = -EINVAL;
4484
4485 switch (policy) {
4486 case SCHED_FIFO:
4487 case SCHED_RR:
4488 ret = 1;
4489 break;
aab03e05 4490 case SCHED_DEADLINE:
1da177e4 4491 case SCHED_NORMAL:
b0a9499c 4492 case SCHED_BATCH:
dd41f596 4493 case SCHED_IDLE:
1da177e4
LT
4494 ret = 0;
4495 }
4496 return ret;
4497}
4498
4499/**
4500 * sys_sched_rr_get_interval - return the default timeslice of a process.
4501 * @pid: pid of the process.
4502 * @interval: userspace pointer to the timeslice value.
4503 *
4504 * this syscall writes the default timeslice value of a given process
4505 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4506 *
4507 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4508 * an error code.
1da177e4 4509 */
17da2bd9 4510SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4511 struct timespec __user *, interval)
1da177e4 4512{
36c8b586 4513 struct task_struct *p;
a4ec24b4 4514 unsigned int time_slice;
dba091b9
TG
4515 unsigned long flags;
4516 struct rq *rq;
3a5c359a 4517 int retval;
1da177e4 4518 struct timespec t;
1da177e4
LT
4519
4520 if (pid < 0)
3a5c359a 4521 return -EINVAL;
1da177e4
LT
4522
4523 retval = -ESRCH;
1a551ae7 4524 rcu_read_lock();
1da177e4
LT
4525 p = find_process_by_pid(pid);
4526 if (!p)
4527 goto out_unlock;
4528
4529 retval = security_task_getscheduler(p);
4530 if (retval)
4531 goto out_unlock;
4532
dba091b9 4533 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4534 time_slice = 0;
4535 if (p->sched_class->get_rr_interval)
4536 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4537 task_rq_unlock(rq, p, &flags);
a4ec24b4 4538
1a551ae7 4539 rcu_read_unlock();
a4ec24b4 4540 jiffies_to_timespec(time_slice, &t);
1da177e4 4541 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4542 return retval;
3a5c359a 4543
1da177e4 4544out_unlock:
1a551ae7 4545 rcu_read_unlock();
1da177e4
LT
4546 return retval;
4547}
4548
7c731e0a 4549static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4550
82a1fcb9 4551void sched_show_task(struct task_struct *p)
1da177e4 4552{
1da177e4 4553 unsigned long free = 0;
4e79752c 4554 int ppid;
36c8b586 4555 unsigned state;
1da177e4 4556
1da177e4 4557 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4558 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4559 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4560#if BITS_PER_LONG == 32
1da177e4 4561 if (state == TASK_RUNNING)
3df0fc5b 4562 printk(KERN_CONT " running ");
1da177e4 4563 else
3df0fc5b 4564 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4565#else
4566 if (state == TASK_RUNNING)
3df0fc5b 4567 printk(KERN_CONT " running task ");
1da177e4 4568 else
3df0fc5b 4569 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4570#endif
4571#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4572 free = stack_not_used(p);
1da177e4 4573#endif
4e79752c
PM
4574 rcu_read_lock();
4575 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4576 rcu_read_unlock();
3df0fc5b 4577 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4578 task_pid_nr(p), ppid,
aa47b7e0 4579 (unsigned long)task_thread_info(p)->flags);
1da177e4 4580
3d1cb205 4581 print_worker_info(KERN_INFO, p);
5fb5e6de 4582 show_stack(p, NULL);
1da177e4
LT
4583}
4584
e59e2ae2 4585void show_state_filter(unsigned long state_filter)
1da177e4 4586{
36c8b586 4587 struct task_struct *g, *p;
1da177e4 4588
4bd77321 4589#if BITS_PER_LONG == 32
3df0fc5b
PZ
4590 printk(KERN_INFO
4591 " task PC stack pid father\n");
1da177e4 4592#else
3df0fc5b
PZ
4593 printk(KERN_INFO
4594 " task PC stack pid father\n");
1da177e4 4595#endif
510f5acc 4596 rcu_read_lock();
5d07f420 4597 for_each_process_thread(g, p) {
1da177e4
LT
4598 /*
4599 * reset the NMI-timeout, listing all files on a slow
25985edc 4600 * console might take a lot of time:
1da177e4
LT
4601 */
4602 touch_nmi_watchdog();
39bc89fd 4603 if (!state_filter || (p->state & state_filter))
82a1fcb9 4604 sched_show_task(p);
5d07f420 4605 }
1da177e4 4606
04c9167f
JF
4607 touch_all_softlockup_watchdogs();
4608
dd41f596
IM
4609#ifdef CONFIG_SCHED_DEBUG
4610 sysrq_sched_debug_show();
4611#endif
510f5acc 4612 rcu_read_unlock();
e59e2ae2
IM
4613 /*
4614 * Only show locks if all tasks are dumped:
4615 */
93335a21 4616 if (!state_filter)
e59e2ae2 4617 debug_show_all_locks();
1da177e4
LT
4618}
4619
0db0628d 4620void init_idle_bootup_task(struct task_struct *idle)
1df21055 4621{
dd41f596 4622 idle->sched_class = &idle_sched_class;
1df21055
IM
4623}
4624
f340c0d1
IM
4625/**
4626 * init_idle - set up an idle thread for a given CPU
4627 * @idle: task in question
4628 * @cpu: cpu the idle task belongs to
4629 *
4630 * NOTE: this function does not set the idle thread's NEED_RESCHED
4631 * flag, to make booting more robust.
4632 */
0db0628d 4633void init_idle(struct task_struct *idle, int cpu)
1da177e4 4634{
70b97a7f 4635 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4636 unsigned long flags;
4637
05fa785c 4638 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4639
5e1576ed 4640 __sched_fork(0, idle);
06b83b5f 4641 idle->state = TASK_RUNNING;
dd41f596
IM
4642 idle->se.exec_start = sched_clock();
4643
1e1b6c51 4644 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4645 /*
4646 * We're having a chicken and egg problem, even though we are
4647 * holding rq->lock, the cpu isn't yet set to this cpu so the
4648 * lockdep check in task_group() will fail.
4649 *
4650 * Similar case to sched_fork(). / Alternatively we could
4651 * use task_rq_lock() here and obtain the other rq->lock.
4652 *
4653 * Silence PROVE_RCU
4654 */
4655 rcu_read_lock();
dd41f596 4656 __set_task_cpu(idle, cpu);
6506cf6c 4657 rcu_read_unlock();
1da177e4 4658
1da177e4 4659 rq->curr = rq->idle = idle;
da0c1e65 4660 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4661#if defined(CONFIG_SMP)
4662 idle->on_cpu = 1;
4866cde0 4663#endif
05fa785c 4664 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4665
4666 /* Set the preempt count _outside_ the spinlocks! */
01028747 4667 init_idle_preempt_count(idle, cpu);
55cd5340 4668
dd41f596
IM
4669 /*
4670 * The idle tasks have their own, simple scheduling class:
4671 */
4672 idle->sched_class = &idle_sched_class;
868baf07 4673 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4674 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4675#if defined(CONFIG_SMP)
4676 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4677#endif
19978ca6
IM
4678}
4679
1da177e4 4680#ifdef CONFIG_SMP
a15b12ac
KT
4681/*
4682 * move_queued_task - move a queued task to new rq.
4683 *
4684 * Returns (locked) new rq. Old rq's lock is released.
4685 */
4686static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4687{
4688 struct rq *rq = task_rq(p);
4689
4690 lockdep_assert_held(&rq->lock);
4691
4692 dequeue_task(rq, p, 0);
4693 p->on_rq = TASK_ON_RQ_MIGRATING;
4694 set_task_cpu(p, new_cpu);
4695 raw_spin_unlock(&rq->lock);
4696
4697 rq = cpu_rq(new_cpu);
4698
4699 raw_spin_lock(&rq->lock);
4700 BUG_ON(task_cpu(p) != new_cpu);
4701 p->on_rq = TASK_ON_RQ_QUEUED;
4702 enqueue_task(rq, p, 0);
4703 check_preempt_curr(rq, p, 0);
4704
4705 return rq;
4706}
4707
1e1b6c51
KM
4708void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4709{
4710 if (p->sched_class && p->sched_class->set_cpus_allowed)
4711 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4712
4713 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4714 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4715}
4716
1da177e4
LT
4717/*
4718 * This is how migration works:
4719 *
969c7921
TH
4720 * 1) we invoke migration_cpu_stop() on the target CPU using
4721 * stop_one_cpu().
4722 * 2) stopper starts to run (implicitly forcing the migrated thread
4723 * off the CPU)
4724 * 3) it checks whether the migrated task is still in the wrong runqueue.
4725 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4726 * it and puts it into the right queue.
969c7921
TH
4727 * 5) stopper completes and stop_one_cpu() returns and the migration
4728 * is done.
1da177e4
LT
4729 */
4730
4731/*
4732 * Change a given task's CPU affinity. Migrate the thread to a
4733 * proper CPU and schedule it away if the CPU it's executing on
4734 * is removed from the allowed bitmask.
4735 *
4736 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4737 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4738 * call is not atomic; no spinlocks may be held.
4739 */
96f874e2 4740int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4741{
4742 unsigned long flags;
70b97a7f 4743 struct rq *rq;
969c7921 4744 unsigned int dest_cpu;
48f24c4d 4745 int ret = 0;
1da177e4
LT
4746
4747 rq = task_rq_lock(p, &flags);
e2912009 4748
db44fc01
YZ
4749 if (cpumask_equal(&p->cpus_allowed, new_mask))
4750 goto out;
4751
6ad4c188 4752 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4753 ret = -EINVAL;
4754 goto out;
4755 }
4756
1e1b6c51 4757 do_set_cpus_allowed(p, new_mask);
73fe6aae 4758
1da177e4 4759 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4760 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4761 goto out;
4762
969c7921 4763 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4764 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4765 struct migration_arg arg = { p, dest_cpu };
1da177e4 4766 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4767 task_rq_unlock(rq, p, &flags);
969c7921 4768 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4769 tlb_migrate_finish(p->mm);
4770 return 0;
a15b12ac
KT
4771 } else if (task_on_rq_queued(p))
4772 rq = move_queued_task(p, dest_cpu);
1da177e4 4773out:
0122ec5b 4774 task_rq_unlock(rq, p, &flags);
48f24c4d 4775
1da177e4
LT
4776 return ret;
4777}
cd8ba7cd 4778EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4779
4780/*
41a2d6cf 4781 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4782 * this because either it can't run here any more (set_cpus_allowed()
4783 * away from this CPU, or CPU going down), or because we're
4784 * attempting to rebalance this task on exec (sched_exec).
4785 *
4786 * So we race with normal scheduler movements, but that's OK, as long
4787 * as the task is no longer on this CPU.
efc30814
KK
4788 *
4789 * Returns non-zero if task was successfully migrated.
1da177e4 4790 */
efc30814 4791static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4792{
a1e01829 4793 struct rq *rq;
e2912009 4794 int ret = 0;
1da177e4 4795
e761b772 4796 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4797 return ret;
1da177e4 4798
a1e01829 4799 rq = cpu_rq(src_cpu);
1da177e4 4800
0122ec5b 4801 raw_spin_lock(&p->pi_lock);
a1e01829 4802 raw_spin_lock(&rq->lock);
1da177e4
LT
4803 /* Already moved. */
4804 if (task_cpu(p) != src_cpu)
b1e38734 4805 goto done;
a1e01829 4806
1da177e4 4807 /* Affinity changed (again). */
fa17b507 4808 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4809 goto fail;
1da177e4 4810
e2912009
PZ
4811 /*
4812 * If we're not on a rq, the next wake-up will ensure we're
4813 * placed properly.
4814 */
a15b12ac
KT
4815 if (task_on_rq_queued(p))
4816 rq = move_queued_task(p, dest_cpu);
b1e38734 4817done:
efc30814 4818 ret = 1;
b1e38734 4819fail:
a1e01829 4820 raw_spin_unlock(&rq->lock);
0122ec5b 4821 raw_spin_unlock(&p->pi_lock);
efc30814 4822 return ret;
1da177e4
LT
4823}
4824
e6628d5b
MG
4825#ifdef CONFIG_NUMA_BALANCING
4826/* Migrate current task p to target_cpu */
4827int migrate_task_to(struct task_struct *p, int target_cpu)
4828{
4829 struct migration_arg arg = { p, target_cpu };
4830 int curr_cpu = task_cpu(p);
4831
4832 if (curr_cpu == target_cpu)
4833 return 0;
4834
4835 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4836 return -EINVAL;
4837
4838 /* TODO: This is not properly updating schedstats */
4839
286549dc 4840 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4841 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4842}
0ec8aa00
PZ
4843
4844/*
4845 * Requeue a task on a given node and accurately track the number of NUMA
4846 * tasks on the runqueues
4847 */
4848void sched_setnuma(struct task_struct *p, int nid)
4849{
4850 struct rq *rq;
4851 unsigned long flags;
da0c1e65 4852 bool queued, running;
0ec8aa00
PZ
4853
4854 rq = task_rq_lock(p, &flags);
da0c1e65 4855 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4856 running = task_current(rq, p);
4857
da0c1e65 4858 if (queued)
0ec8aa00
PZ
4859 dequeue_task(rq, p, 0);
4860 if (running)
f3cd1c4e 4861 put_prev_task(rq, p);
0ec8aa00
PZ
4862
4863 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4864
4865 if (running)
4866 p->sched_class->set_curr_task(rq);
da0c1e65 4867 if (queued)
0ec8aa00
PZ
4868 enqueue_task(rq, p, 0);
4869 task_rq_unlock(rq, p, &flags);
4870}
e6628d5b
MG
4871#endif
4872
1da177e4 4873/*
969c7921
TH
4874 * migration_cpu_stop - this will be executed by a highprio stopper thread
4875 * and performs thread migration by bumping thread off CPU then
4876 * 'pushing' onto another runqueue.
1da177e4 4877 */
969c7921 4878static int migration_cpu_stop(void *data)
1da177e4 4879{
969c7921 4880 struct migration_arg *arg = data;
f7b4cddc 4881
969c7921
TH
4882 /*
4883 * The original target cpu might have gone down and we might
4884 * be on another cpu but it doesn't matter.
4885 */
f7b4cddc 4886 local_irq_disable();
5cd038f5
LJ
4887 /*
4888 * We need to explicitly wake pending tasks before running
4889 * __migrate_task() such that we will not miss enforcing cpus_allowed
4890 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4891 */
4892 sched_ttwu_pending();
969c7921 4893 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4894 local_irq_enable();
1da177e4 4895 return 0;
f7b4cddc
ON
4896}
4897
1da177e4 4898#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4899
054b9108 4900/*
48c5ccae
PZ
4901 * Ensures that the idle task is using init_mm right before its cpu goes
4902 * offline.
054b9108 4903 */
48c5ccae 4904void idle_task_exit(void)
1da177e4 4905{
48c5ccae 4906 struct mm_struct *mm = current->active_mm;
e76bd8d9 4907
48c5ccae 4908 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4909
a53efe5f 4910 if (mm != &init_mm) {
48c5ccae 4911 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4912 finish_arch_post_lock_switch();
4913 }
48c5ccae 4914 mmdrop(mm);
1da177e4
LT
4915}
4916
4917/*
5d180232
PZ
4918 * Since this CPU is going 'away' for a while, fold any nr_active delta
4919 * we might have. Assumes we're called after migrate_tasks() so that the
4920 * nr_active count is stable.
4921 *
4922 * Also see the comment "Global load-average calculations".
1da177e4 4923 */
5d180232 4924static void calc_load_migrate(struct rq *rq)
1da177e4 4925{
5d180232
PZ
4926 long delta = calc_load_fold_active(rq);
4927 if (delta)
4928 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4929}
4930
3f1d2a31
PZ
4931static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4932{
4933}
4934
4935static const struct sched_class fake_sched_class = {
4936 .put_prev_task = put_prev_task_fake,
4937};
4938
4939static struct task_struct fake_task = {
4940 /*
4941 * Avoid pull_{rt,dl}_task()
4942 */
4943 .prio = MAX_PRIO + 1,
4944 .sched_class = &fake_sched_class,
4945};
4946
48f24c4d 4947/*
48c5ccae
PZ
4948 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4949 * try_to_wake_up()->select_task_rq().
4950 *
4951 * Called with rq->lock held even though we'er in stop_machine() and
4952 * there's no concurrency possible, we hold the required locks anyway
4953 * because of lock validation efforts.
1da177e4 4954 */
48c5ccae 4955static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4956{
70b97a7f 4957 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4958 struct task_struct *next, *stop = rq->stop;
4959 int dest_cpu;
1da177e4
LT
4960
4961 /*
48c5ccae
PZ
4962 * Fudge the rq selection such that the below task selection loop
4963 * doesn't get stuck on the currently eligible stop task.
4964 *
4965 * We're currently inside stop_machine() and the rq is either stuck
4966 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4967 * either way we should never end up calling schedule() until we're
4968 * done here.
1da177e4 4969 */
48c5ccae 4970 rq->stop = NULL;
48f24c4d 4971
77bd3970
FW
4972 /*
4973 * put_prev_task() and pick_next_task() sched
4974 * class method both need to have an up-to-date
4975 * value of rq->clock[_task]
4976 */
4977 update_rq_clock(rq);
4978
dd41f596 4979 for ( ; ; ) {
48c5ccae
PZ
4980 /*
4981 * There's this thread running, bail when that's the only
4982 * remaining thread.
4983 */
4984 if (rq->nr_running == 1)
dd41f596 4985 break;
48c5ccae 4986
3f1d2a31 4987 next = pick_next_task(rq, &fake_task);
48c5ccae 4988 BUG_ON(!next);
79c53799 4989 next->sched_class->put_prev_task(rq, next);
e692ab53 4990
48c5ccae
PZ
4991 /* Find suitable destination for @next, with force if needed. */
4992 dest_cpu = select_fallback_rq(dead_cpu, next);
4993 raw_spin_unlock(&rq->lock);
4994
4995 __migrate_task(next, dead_cpu, dest_cpu);
4996
4997 raw_spin_lock(&rq->lock);
1da177e4 4998 }
dce48a84 4999
48c5ccae 5000 rq->stop = stop;
dce48a84 5001}
48c5ccae 5002
1da177e4
LT
5003#endif /* CONFIG_HOTPLUG_CPU */
5004
e692ab53
NP
5005#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5006
5007static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5008 {
5009 .procname = "sched_domain",
c57baf1e 5010 .mode = 0555,
e0361851 5011 },
56992309 5012 {}
e692ab53
NP
5013};
5014
5015static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5016 {
5017 .procname = "kernel",
c57baf1e 5018 .mode = 0555,
e0361851
AD
5019 .child = sd_ctl_dir,
5020 },
56992309 5021 {}
e692ab53
NP
5022};
5023
5024static struct ctl_table *sd_alloc_ctl_entry(int n)
5025{
5026 struct ctl_table *entry =
5cf9f062 5027 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5028
e692ab53
NP
5029 return entry;
5030}
5031
6382bc90
MM
5032static void sd_free_ctl_entry(struct ctl_table **tablep)
5033{
cd790076 5034 struct ctl_table *entry;
6382bc90 5035
cd790076
MM
5036 /*
5037 * In the intermediate directories, both the child directory and
5038 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5039 * will always be set. In the lowest directory the names are
cd790076
MM
5040 * static strings and all have proc handlers.
5041 */
5042 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5043 if (entry->child)
5044 sd_free_ctl_entry(&entry->child);
cd790076
MM
5045 if (entry->proc_handler == NULL)
5046 kfree(entry->procname);
5047 }
6382bc90
MM
5048
5049 kfree(*tablep);
5050 *tablep = NULL;
5051}
5052
201c373e 5053static int min_load_idx = 0;
fd9b86d3 5054static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5055
e692ab53 5056static void
e0361851 5057set_table_entry(struct ctl_table *entry,
e692ab53 5058 const char *procname, void *data, int maxlen,
201c373e
NK
5059 umode_t mode, proc_handler *proc_handler,
5060 bool load_idx)
e692ab53 5061{
e692ab53
NP
5062 entry->procname = procname;
5063 entry->data = data;
5064 entry->maxlen = maxlen;
5065 entry->mode = mode;
5066 entry->proc_handler = proc_handler;
201c373e
NK
5067
5068 if (load_idx) {
5069 entry->extra1 = &min_load_idx;
5070 entry->extra2 = &max_load_idx;
5071 }
e692ab53
NP
5072}
5073
5074static struct ctl_table *
5075sd_alloc_ctl_domain_table(struct sched_domain *sd)
5076{
37e6bae8 5077 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5078
ad1cdc1d
MM
5079 if (table == NULL)
5080 return NULL;
5081
e0361851 5082 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5083 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5084 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5085 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5086 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5087 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5088 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5089 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5090 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5091 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5092 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5093 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5094 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5095 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5096 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5097 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5098 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5099 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5100 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5101 &sd->cache_nice_tries,
201c373e 5102 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5103 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5104 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5105 set_table_entry(&table[11], "max_newidle_lb_cost",
5106 &sd->max_newidle_lb_cost,
5107 sizeof(long), 0644, proc_doulongvec_minmax, false);
5108 set_table_entry(&table[12], "name", sd->name,
201c373e 5109 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5110 /* &table[13] is terminator */
e692ab53
NP
5111
5112 return table;
5113}
5114
be7002e6 5115static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5116{
5117 struct ctl_table *entry, *table;
5118 struct sched_domain *sd;
5119 int domain_num = 0, i;
5120 char buf[32];
5121
5122 for_each_domain(cpu, sd)
5123 domain_num++;
5124 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5125 if (table == NULL)
5126 return NULL;
e692ab53
NP
5127
5128 i = 0;
5129 for_each_domain(cpu, sd) {
5130 snprintf(buf, 32, "domain%d", i);
e692ab53 5131 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5132 entry->mode = 0555;
e692ab53
NP
5133 entry->child = sd_alloc_ctl_domain_table(sd);
5134 entry++;
5135 i++;
5136 }
5137 return table;
5138}
5139
5140static struct ctl_table_header *sd_sysctl_header;
6382bc90 5141static void register_sched_domain_sysctl(void)
e692ab53 5142{
6ad4c188 5143 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5144 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5145 char buf[32];
5146
7378547f
MM
5147 WARN_ON(sd_ctl_dir[0].child);
5148 sd_ctl_dir[0].child = entry;
5149
ad1cdc1d
MM
5150 if (entry == NULL)
5151 return;
5152
6ad4c188 5153 for_each_possible_cpu(i) {
e692ab53 5154 snprintf(buf, 32, "cpu%d", i);
e692ab53 5155 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5156 entry->mode = 0555;
e692ab53 5157 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5158 entry++;
e692ab53 5159 }
7378547f
MM
5160
5161 WARN_ON(sd_sysctl_header);
e692ab53
NP
5162 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5163}
6382bc90 5164
7378547f 5165/* may be called multiple times per register */
6382bc90
MM
5166static void unregister_sched_domain_sysctl(void)
5167{
7378547f
MM
5168 if (sd_sysctl_header)
5169 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5170 sd_sysctl_header = NULL;
7378547f
MM
5171 if (sd_ctl_dir[0].child)
5172 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5173}
e692ab53 5174#else
6382bc90
MM
5175static void register_sched_domain_sysctl(void)
5176{
5177}
5178static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5179{
5180}
5181#endif
5182
1f11eb6a
GH
5183static void set_rq_online(struct rq *rq)
5184{
5185 if (!rq->online) {
5186 const struct sched_class *class;
5187
c6c4927b 5188 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5189 rq->online = 1;
5190
5191 for_each_class(class) {
5192 if (class->rq_online)
5193 class->rq_online(rq);
5194 }
5195 }
5196}
5197
5198static void set_rq_offline(struct rq *rq)
5199{
5200 if (rq->online) {
5201 const struct sched_class *class;
5202
5203 for_each_class(class) {
5204 if (class->rq_offline)
5205 class->rq_offline(rq);
5206 }
5207
c6c4927b 5208 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5209 rq->online = 0;
5210 }
5211}
5212
1da177e4
LT
5213/*
5214 * migration_call - callback that gets triggered when a CPU is added.
5215 * Here we can start up the necessary migration thread for the new CPU.
5216 */
0db0628d 5217static int
48f24c4d 5218migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5219{
48f24c4d 5220 int cpu = (long)hcpu;
1da177e4 5221 unsigned long flags;
969c7921 5222 struct rq *rq = cpu_rq(cpu);
1da177e4 5223
48c5ccae 5224 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5225
1da177e4 5226 case CPU_UP_PREPARE:
a468d389 5227 rq->calc_load_update = calc_load_update;
1da177e4 5228 break;
48f24c4d 5229
1da177e4 5230 case CPU_ONLINE:
1f94ef59 5231 /* Update our root-domain */
05fa785c 5232 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5233 if (rq->rd) {
c6c4927b 5234 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5235
5236 set_rq_online(rq);
1f94ef59 5237 }
05fa785c 5238 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5239 break;
48f24c4d 5240
1da177e4 5241#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5242 case CPU_DYING:
317f3941 5243 sched_ttwu_pending();
57d885fe 5244 /* Update our root-domain */
05fa785c 5245 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5246 if (rq->rd) {
c6c4927b 5247 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5248 set_rq_offline(rq);
57d885fe 5249 }
48c5ccae
PZ
5250 migrate_tasks(cpu);
5251 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5252 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5253 break;
48c5ccae 5254
5d180232 5255 case CPU_DEAD:
f319da0c 5256 calc_load_migrate(rq);
57d885fe 5257 break;
1da177e4
LT
5258#endif
5259 }
49c022e6
PZ
5260
5261 update_max_interval();
5262
1da177e4
LT
5263 return NOTIFY_OK;
5264}
5265
f38b0820
PM
5266/*
5267 * Register at high priority so that task migration (migrate_all_tasks)
5268 * happens before everything else. This has to be lower priority than
cdd6c482 5269 * the notifier in the perf_event subsystem, though.
1da177e4 5270 */
0db0628d 5271static struct notifier_block migration_notifier = {
1da177e4 5272 .notifier_call = migration_call,
50a323b7 5273 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5274};
5275
a803f026
CM
5276static void __cpuinit set_cpu_rq_start_time(void)
5277{
5278 int cpu = smp_processor_id();
5279 struct rq *rq = cpu_rq(cpu);
5280 rq->age_stamp = sched_clock_cpu(cpu);
5281}
5282
0db0628d 5283static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5284 unsigned long action, void *hcpu)
5285{
5286 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5287 case CPU_STARTING:
5288 set_cpu_rq_start_time();
5289 return NOTIFY_OK;
3a101d05
TH
5290 case CPU_DOWN_FAILED:
5291 set_cpu_active((long)hcpu, true);
5292 return NOTIFY_OK;
5293 default:
5294 return NOTIFY_DONE;
5295 }
5296}
5297
0db0628d 5298static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5299 unsigned long action, void *hcpu)
5300{
de212f18
PZ
5301 unsigned long flags;
5302 long cpu = (long)hcpu;
f10e00f4 5303 struct dl_bw *dl_b;
de212f18 5304
3a101d05
TH
5305 switch (action & ~CPU_TASKS_FROZEN) {
5306 case CPU_DOWN_PREPARE:
de212f18
PZ
5307 set_cpu_active(cpu, false);
5308
5309 /* explicitly allow suspend */
5310 if (!(action & CPU_TASKS_FROZEN)) {
de212f18
PZ
5311 bool overflow;
5312 int cpus;
5313
f10e00f4
KT
5314 rcu_read_lock_sched();
5315 dl_b = dl_bw_of(cpu);
5316
de212f18
PZ
5317 raw_spin_lock_irqsave(&dl_b->lock, flags);
5318 cpus = dl_bw_cpus(cpu);
5319 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5320 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5321
f10e00f4
KT
5322 rcu_read_unlock_sched();
5323
de212f18
PZ
5324 if (overflow)
5325 return notifier_from_errno(-EBUSY);
5326 }
3a101d05 5327 return NOTIFY_OK;
3a101d05 5328 }
de212f18
PZ
5329
5330 return NOTIFY_DONE;
3a101d05
TH
5331}
5332
7babe8db 5333static int __init migration_init(void)
1da177e4
LT
5334{
5335 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5336 int err;
48f24c4d 5337
3a101d05 5338 /* Initialize migration for the boot CPU */
07dccf33
AM
5339 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5340 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5341 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5342 register_cpu_notifier(&migration_notifier);
7babe8db 5343
3a101d05
TH
5344 /* Register cpu active notifiers */
5345 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5346 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5347
a004cd42 5348 return 0;
1da177e4 5349}
7babe8db 5350early_initcall(migration_init);
1da177e4
LT
5351#endif
5352
5353#ifdef CONFIG_SMP
476f3534 5354
4cb98839
PZ
5355static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5356
3e9830dc 5357#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5358
d039ac60 5359static __read_mostly int sched_debug_enabled;
f6630114 5360
d039ac60 5361static int __init sched_debug_setup(char *str)
f6630114 5362{
d039ac60 5363 sched_debug_enabled = 1;
f6630114
MT
5364
5365 return 0;
5366}
d039ac60
PZ
5367early_param("sched_debug", sched_debug_setup);
5368
5369static inline bool sched_debug(void)
5370{
5371 return sched_debug_enabled;
5372}
f6630114 5373
7c16ec58 5374static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5375 struct cpumask *groupmask)
1da177e4 5376{
4dcf6aff 5377 struct sched_group *group = sd->groups;
434d53b0 5378 char str[256];
1da177e4 5379
968ea6d8 5380 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5381 cpumask_clear(groupmask);
4dcf6aff
IM
5382
5383 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5384
5385 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5386 printk("does not load-balance\n");
4dcf6aff 5387 if (sd->parent)
3df0fc5b
PZ
5388 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5389 " has parent");
4dcf6aff 5390 return -1;
41c7ce9a
NP
5391 }
5392
3df0fc5b 5393 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5394
758b2cdc 5395 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5396 printk(KERN_ERR "ERROR: domain->span does not contain "
5397 "CPU%d\n", cpu);
4dcf6aff 5398 }
758b2cdc 5399 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5400 printk(KERN_ERR "ERROR: domain->groups does not contain"
5401 " CPU%d\n", cpu);
4dcf6aff 5402 }
1da177e4 5403
4dcf6aff 5404 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5405 do {
4dcf6aff 5406 if (!group) {
3df0fc5b
PZ
5407 printk("\n");
5408 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5409 break;
5410 }
5411
c3decf0d 5412 /*
63b2ca30
NP
5413 * Even though we initialize ->capacity to something semi-sane,
5414 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5415 * domain iteration is still funny without causing /0 traps.
5416 */
63b2ca30 5417 if (!group->sgc->capacity_orig) {
3df0fc5b 5418 printk(KERN_CONT "\n");
63b2ca30 5419 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5420 break;
5421 }
1da177e4 5422
758b2cdc 5423 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5424 printk(KERN_CONT "\n");
5425 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5426 break;
5427 }
1da177e4 5428
cb83b629
PZ
5429 if (!(sd->flags & SD_OVERLAP) &&
5430 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5431 printk(KERN_CONT "\n");
5432 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5433 break;
5434 }
1da177e4 5435
758b2cdc 5436 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5437
968ea6d8 5438 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5439
3df0fc5b 5440 printk(KERN_CONT " %s", str);
ca8ce3d0 5441 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5442 printk(KERN_CONT " (cpu_capacity = %d)",
5443 group->sgc->capacity);
381512cf 5444 }
1da177e4 5445
4dcf6aff
IM
5446 group = group->next;
5447 } while (group != sd->groups);
3df0fc5b 5448 printk(KERN_CONT "\n");
1da177e4 5449
758b2cdc 5450 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5451 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5452
758b2cdc
RR
5453 if (sd->parent &&
5454 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5455 printk(KERN_ERR "ERROR: parent span is not a superset "
5456 "of domain->span\n");
4dcf6aff
IM
5457 return 0;
5458}
1da177e4 5459
4dcf6aff
IM
5460static void sched_domain_debug(struct sched_domain *sd, int cpu)
5461{
5462 int level = 0;
1da177e4 5463
d039ac60 5464 if (!sched_debug_enabled)
f6630114
MT
5465 return;
5466
4dcf6aff
IM
5467 if (!sd) {
5468 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5469 return;
5470 }
1da177e4 5471
4dcf6aff
IM
5472 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5473
5474 for (;;) {
4cb98839 5475 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5476 break;
1da177e4
LT
5477 level++;
5478 sd = sd->parent;
33859f7f 5479 if (!sd)
4dcf6aff
IM
5480 break;
5481 }
1da177e4 5482}
6d6bc0ad 5483#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5484# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5485static inline bool sched_debug(void)
5486{
5487 return false;
5488}
6d6bc0ad 5489#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5490
1a20ff27 5491static int sd_degenerate(struct sched_domain *sd)
245af2c7 5492{
758b2cdc 5493 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5494 return 1;
5495
5496 /* Following flags need at least 2 groups */
5497 if (sd->flags & (SD_LOAD_BALANCE |
5498 SD_BALANCE_NEWIDLE |
5499 SD_BALANCE_FORK |
89c4710e 5500 SD_BALANCE_EXEC |
5d4dfddd 5501 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5502 SD_SHARE_PKG_RESOURCES |
5503 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5504 if (sd->groups != sd->groups->next)
5505 return 0;
5506 }
5507
5508 /* Following flags don't use groups */
c88d5910 5509 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5510 return 0;
5511
5512 return 1;
5513}
5514
48f24c4d
IM
5515static int
5516sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5517{
5518 unsigned long cflags = sd->flags, pflags = parent->flags;
5519
5520 if (sd_degenerate(parent))
5521 return 1;
5522
758b2cdc 5523 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5524 return 0;
5525
245af2c7
SS
5526 /* Flags needing groups don't count if only 1 group in parent */
5527 if (parent->groups == parent->groups->next) {
5528 pflags &= ~(SD_LOAD_BALANCE |
5529 SD_BALANCE_NEWIDLE |
5530 SD_BALANCE_FORK |
89c4710e 5531 SD_BALANCE_EXEC |
5d4dfddd 5532 SD_SHARE_CPUCAPACITY |
10866e62 5533 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5534 SD_PREFER_SIBLING |
5535 SD_SHARE_POWERDOMAIN);
5436499e
KC
5536 if (nr_node_ids == 1)
5537 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5538 }
5539 if (~cflags & pflags)
5540 return 0;
5541
5542 return 1;
5543}
5544
dce840a0 5545static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5546{
dce840a0 5547 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5548
68e74568 5549 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5550 cpudl_cleanup(&rd->cpudl);
1baca4ce 5551 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5552 free_cpumask_var(rd->rto_mask);
5553 free_cpumask_var(rd->online);
5554 free_cpumask_var(rd->span);
5555 kfree(rd);
5556}
5557
57d885fe
GH
5558static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5559{
a0490fa3 5560 struct root_domain *old_rd = NULL;
57d885fe 5561 unsigned long flags;
57d885fe 5562
05fa785c 5563 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5564
5565 if (rq->rd) {
a0490fa3 5566 old_rd = rq->rd;
57d885fe 5567
c6c4927b 5568 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5569 set_rq_offline(rq);
57d885fe 5570
c6c4927b 5571 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5572
a0490fa3 5573 /*
0515973f 5574 * If we dont want to free the old_rd yet then
a0490fa3
IM
5575 * set old_rd to NULL to skip the freeing later
5576 * in this function:
5577 */
5578 if (!atomic_dec_and_test(&old_rd->refcount))
5579 old_rd = NULL;
57d885fe
GH
5580 }
5581
5582 atomic_inc(&rd->refcount);
5583 rq->rd = rd;
5584
c6c4927b 5585 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5586 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5587 set_rq_online(rq);
57d885fe 5588
05fa785c 5589 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5590
5591 if (old_rd)
dce840a0 5592 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5593}
5594
68c38fc3 5595static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5596{
5597 memset(rd, 0, sizeof(*rd));
5598
68c38fc3 5599 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5600 goto out;
68c38fc3 5601 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5602 goto free_span;
1baca4ce 5603 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5604 goto free_online;
1baca4ce
JL
5605 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5606 goto free_dlo_mask;
6e0534f2 5607
332ac17e 5608 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5609 if (cpudl_init(&rd->cpudl) != 0)
5610 goto free_dlo_mask;
332ac17e 5611
68c38fc3 5612 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5613 goto free_rto_mask;
c6c4927b 5614 return 0;
6e0534f2 5615
68e74568
RR
5616free_rto_mask:
5617 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5618free_dlo_mask:
5619 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5620free_online:
5621 free_cpumask_var(rd->online);
5622free_span:
5623 free_cpumask_var(rd->span);
0c910d28 5624out:
c6c4927b 5625 return -ENOMEM;
57d885fe
GH
5626}
5627
029632fb
PZ
5628/*
5629 * By default the system creates a single root-domain with all cpus as
5630 * members (mimicking the global state we have today).
5631 */
5632struct root_domain def_root_domain;
5633
57d885fe
GH
5634static void init_defrootdomain(void)
5635{
68c38fc3 5636 init_rootdomain(&def_root_domain);
c6c4927b 5637
57d885fe
GH
5638 atomic_set(&def_root_domain.refcount, 1);
5639}
5640
dc938520 5641static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5642{
5643 struct root_domain *rd;
5644
5645 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5646 if (!rd)
5647 return NULL;
5648
68c38fc3 5649 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5650 kfree(rd);
5651 return NULL;
5652 }
57d885fe
GH
5653
5654 return rd;
5655}
5656
63b2ca30 5657static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5658{
5659 struct sched_group *tmp, *first;
5660
5661 if (!sg)
5662 return;
5663
5664 first = sg;
5665 do {
5666 tmp = sg->next;
5667
63b2ca30
NP
5668 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5669 kfree(sg->sgc);
e3589f6c
PZ
5670
5671 kfree(sg);
5672 sg = tmp;
5673 } while (sg != first);
5674}
5675
dce840a0
PZ
5676static void free_sched_domain(struct rcu_head *rcu)
5677{
5678 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5679
5680 /*
5681 * If its an overlapping domain it has private groups, iterate and
5682 * nuke them all.
5683 */
5684 if (sd->flags & SD_OVERLAP) {
5685 free_sched_groups(sd->groups, 1);
5686 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5687 kfree(sd->groups->sgc);
dce840a0 5688 kfree(sd->groups);
9c3f75cb 5689 }
dce840a0
PZ
5690 kfree(sd);
5691}
5692
5693static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5694{
5695 call_rcu(&sd->rcu, free_sched_domain);
5696}
5697
5698static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5699{
5700 for (; sd; sd = sd->parent)
5701 destroy_sched_domain(sd, cpu);
5702}
5703
518cd623
PZ
5704/*
5705 * Keep a special pointer to the highest sched_domain that has
5706 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5707 * allows us to avoid some pointer chasing select_idle_sibling().
5708 *
5709 * Also keep a unique ID per domain (we use the first cpu number in
5710 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5711 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5712 */
5713DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5714DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5715DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5716DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5717DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5718DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5719
5720static void update_top_cache_domain(int cpu)
5721{
5722 struct sched_domain *sd;
5d4cf996 5723 struct sched_domain *busy_sd = NULL;
518cd623 5724 int id = cpu;
7d9ffa89 5725 int size = 1;
518cd623
PZ
5726
5727 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5728 if (sd) {
518cd623 5729 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5730 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5731 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5732 }
5d4cf996 5733 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5734
5735 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5736 per_cpu(sd_llc_size, cpu) = size;
518cd623 5737 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5738
5739 sd = lowest_flag_domain(cpu, SD_NUMA);
5740 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5741
5742 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5743 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5744}
5745
1da177e4 5746/*
0eab9146 5747 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5748 * hold the hotplug lock.
5749 */
0eab9146
IM
5750static void
5751cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5752{
70b97a7f 5753 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5754 struct sched_domain *tmp;
5755
5756 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5757 for (tmp = sd; tmp; ) {
245af2c7
SS
5758 struct sched_domain *parent = tmp->parent;
5759 if (!parent)
5760 break;
f29c9b1c 5761
1a848870 5762 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5763 tmp->parent = parent->parent;
1a848870
SS
5764 if (parent->parent)
5765 parent->parent->child = tmp;
10866e62
PZ
5766 /*
5767 * Transfer SD_PREFER_SIBLING down in case of a
5768 * degenerate parent; the spans match for this
5769 * so the property transfers.
5770 */
5771 if (parent->flags & SD_PREFER_SIBLING)
5772 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5773 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5774 } else
5775 tmp = tmp->parent;
245af2c7
SS
5776 }
5777
1a848870 5778 if (sd && sd_degenerate(sd)) {
dce840a0 5779 tmp = sd;
245af2c7 5780 sd = sd->parent;
dce840a0 5781 destroy_sched_domain(tmp, cpu);
1a848870
SS
5782 if (sd)
5783 sd->child = NULL;
5784 }
1da177e4 5785
4cb98839 5786 sched_domain_debug(sd, cpu);
1da177e4 5787
57d885fe 5788 rq_attach_root(rq, rd);
dce840a0 5789 tmp = rq->sd;
674311d5 5790 rcu_assign_pointer(rq->sd, sd);
dce840a0 5791 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5792
5793 update_top_cache_domain(cpu);
1da177e4
LT
5794}
5795
5796/* cpus with isolated domains */
dcc30a35 5797static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5798
5799/* Setup the mask of cpus configured for isolated domains */
5800static int __init isolated_cpu_setup(char *str)
5801{
bdddd296 5802 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5803 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5804 return 1;
5805}
5806
8927f494 5807__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5808
49a02c51 5809struct s_data {
21d42ccf 5810 struct sched_domain ** __percpu sd;
49a02c51
AH
5811 struct root_domain *rd;
5812};
5813
2109b99e 5814enum s_alloc {
2109b99e 5815 sa_rootdomain,
21d42ccf 5816 sa_sd,
dce840a0 5817 sa_sd_storage,
2109b99e
AH
5818 sa_none,
5819};
5820
c1174876
PZ
5821/*
5822 * Build an iteration mask that can exclude certain CPUs from the upwards
5823 * domain traversal.
5824 *
5825 * Asymmetric node setups can result in situations where the domain tree is of
5826 * unequal depth, make sure to skip domains that already cover the entire
5827 * range.
5828 *
5829 * In that case build_sched_domains() will have terminated the iteration early
5830 * and our sibling sd spans will be empty. Domains should always include the
5831 * cpu they're built on, so check that.
5832 *
5833 */
5834static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5835{
5836 const struct cpumask *span = sched_domain_span(sd);
5837 struct sd_data *sdd = sd->private;
5838 struct sched_domain *sibling;
5839 int i;
5840
5841 for_each_cpu(i, span) {
5842 sibling = *per_cpu_ptr(sdd->sd, i);
5843 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5844 continue;
5845
5846 cpumask_set_cpu(i, sched_group_mask(sg));
5847 }
5848}
5849
5850/*
5851 * Return the canonical balance cpu for this group, this is the first cpu
5852 * of this group that's also in the iteration mask.
5853 */
5854int group_balance_cpu(struct sched_group *sg)
5855{
5856 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5857}
5858
e3589f6c
PZ
5859static int
5860build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5861{
5862 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5863 const struct cpumask *span = sched_domain_span(sd);
5864 struct cpumask *covered = sched_domains_tmpmask;
5865 struct sd_data *sdd = sd->private;
aaecac4a 5866 struct sched_domain *sibling;
e3589f6c
PZ
5867 int i;
5868
5869 cpumask_clear(covered);
5870
5871 for_each_cpu(i, span) {
5872 struct cpumask *sg_span;
5873
5874 if (cpumask_test_cpu(i, covered))
5875 continue;
5876
aaecac4a 5877 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5878
5879 /* See the comment near build_group_mask(). */
aaecac4a 5880 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5881 continue;
5882
e3589f6c 5883 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5884 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5885
5886 if (!sg)
5887 goto fail;
5888
5889 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5890 if (sibling->child)
5891 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5892 else
e3589f6c
PZ
5893 cpumask_set_cpu(i, sg_span);
5894
5895 cpumask_or(covered, covered, sg_span);
5896
63b2ca30
NP
5897 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5898 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5899 build_group_mask(sd, sg);
5900
c3decf0d 5901 /*
63b2ca30 5902 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5903 * domains and no possible iteration will get us here, we won't
5904 * die on a /0 trap.
5905 */
ca8ce3d0 5906 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5907 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5908
c1174876
PZ
5909 /*
5910 * Make sure the first group of this domain contains the
5911 * canonical balance cpu. Otherwise the sched_domain iteration
5912 * breaks. See update_sg_lb_stats().
5913 */
74a5ce20 5914 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5915 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5916 groups = sg;
5917
5918 if (!first)
5919 first = sg;
5920 if (last)
5921 last->next = sg;
5922 last = sg;
5923 last->next = first;
5924 }
5925 sd->groups = groups;
5926
5927 return 0;
5928
5929fail:
5930 free_sched_groups(first, 0);
5931
5932 return -ENOMEM;
5933}
5934
dce840a0 5935static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5936{
dce840a0
PZ
5937 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5938 struct sched_domain *child = sd->child;
1da177e4 5939
dce840a0
PZ
5940 if (child)
5941 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5942
9c3f75cb 5943 if (sg) {
dce840a0 5944 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5945 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5946 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5947 }
dce840a0
PZ
5948
5949 return cpu;
1e9f28fa 5950}
1e9f28fa 5951
01a08546 5952/*
dce840a0
PZ
5953 * build_sched_groups will build a circular linked list of the groups
5954 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5955 * and ->cpu_capacity to 0.
e3589f6c
PZ
5956 *
5957 * Assumes the sched_domain tree is fully constructed
01a08546 5958 */
e3589f6c
PZ
5959static int
5960build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5961{
dce840a0
PZ
5962 struct sched_group *first = NULL, *last = NULL;
5963 struct sd_data *sdd = sd->private;
5964 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5965 struct cpumask *covered;
dce840a0 5966 int i;
9c1cfda2 5967
e3589f6c
PZ
5968 get_group(cpu, sdd, &sd->groups);
5969 atomic_inc(&sd->groups->ref);
5970
0936629f 5971 if (cpu != cpumask_first(span))
e3589f6c
PZ
5972 return 0;
5973
f96225fd
PZ
5974 lockdep_assert_held(&sched_domains_mutex);
5975 covered = sched_domains_tmpmask;
5976
dce840a0 5977 cpumask_clear(covered);
6711cab4 5978
dce840a0
PZ
5979 for_each_cpu(i, span) {
5980 struct sched_group *sg;
cd08e923 5981 int group, j;
6711cab4 5982
dce840a0
PZ
5983 if (cpumask_test_cpu(i, covered))
5984 continue;
6711cab4 5985
cd08e923 5986 group = get_group(i, sdd, &sg);
c1174876 5987 cpumask_setall(sched_group_mask(sg));
0601a88d 5988
dce840a0
PZ
5989 for_each_cpu(j, span) {
5990 if (get_group(j, sdd, NULL) != group)
5991 continue;
0601a88d 5992
dce840a0
PZ
5993 cpumask_set_cpu(j, covered);
5994 cpumask_set_cpu(j, sched_group_cpus(sg));
5995 }
0601a88d 5996
dce840a0
PZ
5997 if (!first)
5998 first = sg;
5999 if (last)
6000 last->next = sg;
6001 last = sg;
6002 }
6003 last->next = first;
e3589f6c
PZ
6004
6005 return 0;
0601a88d 6006}
51888ca2 6007
89c4710e 6008/*
63b2ca30 6009 * Initialize sched groups cpu_capacity.
89c4710e 6010 *
63b2ca30 6011 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6012 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6013 * Typically cpu_capacity for all the groups in a sched domain will be same
6014 * unless there are asymmetries in the topology. If there are asymmetries,
6015 * group having more cpu_capacity will pickup more load compared to the
6016 * group having less cpu_capacity.
89c4710e 6017 */
63b2ca30 6018static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6019{
e3589f6c 6020 struct sched_group *sg = sd->groups;
89c4710e 6021
94c95ba6 6022 WARN_ON(!sg);
e3589f6c
PZ
6023
6024 do {
6025 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6026 sg = sg->next;
6027 } while (sg != sd->groups);
89c4710e 6028
c1174876 6029 if (cpu != group_balance_cpu(sg))
e3589f6c 6030 return;
aae6d3dd 6031
63b2ca30
NP
6032 update_group_capacity(sd, cpu);
6033 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6034}
6035
7c16ec58
MT
6036/*
6037 * Initializers for schedule domains
6038 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6039 */
6040
1d3504fc 6041static int default_relax_domain_level = -1;
60495e77 6042int sched_domain_level_max;
1d3504fc
HS
6043
6044static int __init setup_relax_domain_level(char *str)
6045{
a841f8ce
DS
6046 if (kstrtoint(str, 0, &default_relax_domain_level))
6047 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6048
1d3504fc
HS
6049 return 1;
6050}
6051__setup("relax_domain_level=", setup_relax_domain_level);
6052
6053static void set_domain_attribute(struct sched_domain *sd,
6054 struct sched_domain_attr *attr)
6055{
6056 int request;
6057
6058 if (!attr || attr->relax_domain_level < 0) {
6059 if (default_relax_domain_level < 0)
6060 return;
6061 else
6062 request = default_relax_domain_level;
6063 } else
6064 request = attr->relax_domain_level;
6065 if (request < sd->level) {
6066 /* turn off idle balance on this domain */
c88d5910 6067 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6068 } else {
6069 /* turn on idle balance on this domain */
c88d5910 6070 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6071 }
6072}
6073
54ab4ff4
PZ
6074static void __sdt_free(const struct cpumask *cpu_map);
6075static int __sdt_alloc(const struct cpumask *cpu_map);
6076
2109b99e
AH
6077static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6078 const struct cpumask *cpu_map)
6079{
6080 switch (what) {
2109b99e 6081 case sa_rootdomain:
822ff793
PZ
6082 if (!atomic_read(&d->rd->refcount))
6083 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6084 case sa_sd:
6085 free_percpu(d->sd); /* fall through */
dce840a0 6086 case sa_sd_storage:
54ab4ff4 6087 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6088 case sa_none:
6089 break;
6090 }
6091}
3404c8d9 6092
2109b99e
AH
6093static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6094 const struct cpumask *cpu_map)
6095{
dce840a0
PZ
6096 memset(d, 0, sizeof(*d));
6097
54ab4ff4
PZ
6098 if (__sdt_alloc(cpu_map))
6099 return sa_sd_storage;
dce840a0
PZ
6100 d->sd = alloc_percpu(struct sched_domain *);
6101 if (!d->sd)
6102 return sa_sd_storage;
2109b99e 6103 d->rd = alloc_rootdomain();
dce840a0 6104 if (!d->rd)
21d42ccf 6105 return sa_sd;
2109b99e
AH
6106 return sa_rootdomain;
6107}
57d885fe 6108
dce840a0
PZ
6109/*
6110 * NULL the sd_data elements we've used to build the sched_domain and
6111 * sched_group structure so that the subsequent __free_domain_allocs()
6112 * will not free the data we're using.
6113 */
6114static void claim_allocations(int cpu, struct sched_domain *sd)
6115{
6116 struct sd_data *sdd = sd->private;
dce840a0
PZ
6117
6118 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6119 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6120
e3589f6c 6121 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6122 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6123
63b2ca30
NP
6124 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6125 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6126}
6127
cb83b629 6128#ifdef CONFIG_NUMA
cb83b629 6129static int sched_domains_numa_levels;
e3fe70b1 6130enum numa_topology_type sched_numa_topology_type;
cb83b629 6131static int *sched_domains_numa_distance;
9942f79b 6132int sched_max_numa_distance;
cb83b629
PZ
6133static struct cpumask ***sched_domains_numa_masks;
6134static int sched_domains_curr_level;
143e1e28 6135#endif
cb83b629 6136
143e1e28
VG
6137/*
6138 * SD_flags allowed in topology descriptions.
6139 *
5d4dfddd 6140 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6141 * SD_SHARE_PKG_RESOURCES - describes shared caches
6142 * SD_NUMA - describes NUMA topologies
d77b3ed5 6143 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6144 *
6145 * Odd one out:
6146 * SD_ASYM_PACKING - describes SMT quirks
6147 */
6148#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6149 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6150 SD_SHARE_PKG_RESOURCES | \
6151 SD_NUMA | \
d77b3ed5
VG
6152 SD_ASYM_PACKING | \
6153 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6154
6155static struct sched_domain *
143e1e28 6156sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6157{
6158 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6159 int sd_weight, sd_flags = 0;
6160
6161#ifdef CONFIG_NUMA
6162 /*
6163 * Ugly hack to pass state to sd_numa_mask()...
6164 */
6165 sched_domains_curr_level = tl->numa_level;
6166#endif
6167
6168 sd_weight = cpumask_weight(tl->mask(cpu));
6169
6170 if (tl->sd_flags)
6171 sd_flags = (*tl->sd_flags)();
6172 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6173 "wrong sd_flags in topology description\n"))
6174 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6175
6176 *sd = (struct sched_domain){
6177 .min_interval = sd_weight,
6178 .max_interval = 2*sd_weight,
6179 .busy_factor = 32,
870a0bb5 6180 .imbalance_pct = 125,
143e1e28
VG
6181
6182 .cache_nice_tries = 0,
6183 .busy_idx = 0,
6184 .idle_idx = 0,
cb83b629
PZ
6185 .newidle_idx = 0,
6186 .wake_idx = 0,
6187 .forkexec_idx = 0,
6188
6189 .flags = 1*SD_LOAD_BALANCE
6190 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6191 | 1*SD_BALANCE_EXEC
6192 | 1*SD_BALANCE_FORK
cb83b629 6193 | 0*SD_BALANCE_WAKE
143e1e28 6194 | 1*SD_WAKE_AFFINE
5d4dfddd 6195 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6196 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6197 | 0*SD_SERIALIZE
cb83b629 6198 | 0*SD_PREFER_SIBLING
143e1e28
VG
6199 | 0*SD_NUMA
6200 | sd_flags
cb83b629 6201 ,
143e1e28 6202
cb83b629
PZ
6203 .last_balance = jiffies,
6204 .balance_interval = sd_weight,
143e1e28 6205 .smt_gain = 0,
2b4cfe64
JL
6206 .max_newidle_lb_cost = 0,
6207 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6208#ifdef CONFIG_SCHED_DEBUG
6209 .name = tl->name,
6210#endif
cb83b629 6211 };
cb83b629
PZ
6212
6213 /*
143e1e28 6214 * Convert topological properties into behaviour.
cb83b629 6215 */
143e1e28 6216
5d4dfddd 6217 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6218 sd->imbalance_pct = 110;
6219 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6220
6221 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6222 sd->imbalance_pct = 117;
6223 sd->cache_nice_tries = 1;
6224 sd->busy_idx = 2;
6225
6226#ifdef CONFIG_NUMA
6227 } else if (sd->flags & SD_NUMA) {
6228 sd->cache_nice_tries = 2;
6229 sd->busy_idx = 3;
6230 sd->idle_idx = 2;
6231
6232 sd->flags |= SD_SERIALIZE;
6233 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6234 sd->flags &= ~(SD_BALANCE_EXEC |
6235 SD_BALANCE_FORK |
6236 SD_WAKE_AFFINE);
6237 }
6238
6239#endif
6240 } else {
6241 sd->flags |= SD_PREFER_SIBLING;
6242 sd->cache_nice_tries = 1;
6243 sd->busy_idx = 2;
6244 sd->idle_idx = 1;
6245 }
6246
6247 sd->private = &tl->data;
cb83b629
PZ
6248
6249 return sd;
6250}
6251
143e1e28
VG
6252/*
6253 * Topology list, bottom-up.
6254 */
6255static struct sched_domain_topology_level default_topology[] = {
6256#ifdef CONFIG_SCHED_SMT
6257 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6258#endif
6259#ifdef CONFIG_SCHED_MC
6260 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6261#endif
6262 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6263 { NULL, },
6264};
6265
6266struct sched_domain_topology_level *sched_domain_topology = default_topology;
6267
6268#define for_each_sd_topology(tl) \
6269 for (tl = sched_domain_topology; tl->mask; tl++)
6270
6271void set_sched_topology(struct sched_domain_topology_level *tl)
6272{
6273 sched_domain_topology = tl;
6274}
6275
6276#ifdef CONFIG_NUMA
6277
cb83b629
PZ
6278static const struct cpumask *sd_numa_mask(int cpu)
6279{
6280 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6281}
6282
d039ac60
PZ
6283static void sched_numa_warn(const char *str)
6284{
6285 static int done = false;
6286 int i,j;
6287
6288 if (done)
6289 return;
6290
6291 done = true;
6292
6293 printk(KERN_WARNING "ERROR: %s\n\n", str);
6294
6295 for (i = 0; i < nr_node_ids; i++) {
6296 printk(KERN_WARNING " ");
6297 for (j = 0; j < nr_node_ids; j++)
6298 printk(KERN_CONT "%02d ", node_distance(i,j));
6299 printk(KERN_CONT "\n");
6300 }
6301 printk(KERN_WARNING "\n");
6302}
6303
9942f79b 6304bool find_numa_distance(int distance)
d039ac60
PZ
6305{
6306 int i;
6307
6308 if (distance == node_distance(0, 0))
6309 return true;
6310
6311 for (i = 0; i < sched_domains_numa_levels; i++) {
6312 if (sched_domains_numa_distance[i] == distance)
6313 return true;
6314 }
6315
6316 return false;
6317}
6318
e3fe70b1
RR
6319/*
6320 * A system can have three types of NUMA topology:
6321 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6322 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6323 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6324 *
6325 * The difference between a glueless mesh topology and a backplane
6326 * topology lies in whether communication between not directly
6327 * connected nodes goes through intermediary nodes (where programs
6328 * could run), or through backplane controllers. This affects
6329 * placement of programs.
6330 *
6331 * The type of topology can be discerned with the following tests:
6332 * - If the maximum distance between any nodes is 1 hop, the system
6333 * is directly connected.
6334 * - If for two nodes A and B, located N > 1 hops away from each other,
6335 * there is an intermediary node C, which is < N hops away from both
6336 * nodes A and B, the system is a glueless mesh.
6337 */
6338static void init_numa_topology_type(void)
6339{
6340 int a, b, c, n;
6341
6342 n = sched_max_numa_distance;
6343
6344 if (n <= 1)
6345 sched_numa_topology_type = NUMA_DIRECT;
6346
6347 for_each_online_node(a) {
6348 for_each_online_node(b) {
6349 /* Find two nodes furthest removed from each other. */
6350 if (node_distance(a, b) < n)
6351 continue;
6352
6353 /* Is there an intermediary node between a and b? */
6354 for_each_online_node(c) {
6355 if (node_distance(a, c) < n &&
6356 node_distance(b, c) < n) {
6357 sched_numa_topology_type =
6358 NUMA_GLUELESS_MESH;
6359 return;
6360 }
6361 }
6362
6363 sched_numa_topology_type = NUMA_BACKPLANE;
6364 return;
6365 }
6366 }
6367}
6368
cb83b629
PZ
6369static void sched_init_numa(void)
6370{
6371 int next_distance, curr_distance = node_distance(0, 0);
6372 struct sched_domain_topology_level *tl;
6373 int level = 0;
6374 int i, j, k;
6375
cb83b629
PZ
6376 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6377 if (!sched_domains_numa_distance)
6378 return;
6379
6380 /*
6381 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6382 * unique distances in the node_distance() table.
6383 *
6384 * Assumes node_distance(0,j) includes all distances in
6385 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6386 */
6387 next_distance = curr_distance;
6388 for (i = 0; i < nr_node_ids; i++) {
6389 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6390 for (k = 0; k < nr_node_ids; k++) {
6391 int distance = node_distance(i, k);
6392
6393 if (distance > curr_distance &&
6394 (distance < next_distance ||
6395 next_distance == curr_distance))
6396 next_distance = distance;
6397
6398 /*
6399 * While not a strong assumption it would be nice to know
6400 * about cases where if node A is connected to B, B is not
6401 * equally connected to A.
6402 */
6403 if (sched_debug() && node_distance(k, i) != distance)
6404 sched_numa_warn("Node-distance not symmetric");
6405
6406 if (sched_debug() && i && !find_numa_distance(distance))
6407 sched_numa_warn("Node-0 not representative");
6408 }
6409 if (next_distance != curr_distance) {
6410 sched_domains_numa_distance[level++] = next_distance;
6411 sched_domains_numa_levels = level;
6412 curr_distance = next_distance;
6413 } else break;
cb83b629 6414 }
d039ac60
PZ
6415
6416 /*
6417 * In case of sched_debug() we verify the above assumption.
6418 */
6419 if (!sched_debug())
6420 break;
cb83b629
PZ
6421 }
6422 /*
6423 * 'level' contains the number of unique distances, excluding the
6424 * identity distance node_distance(i,i).
6425 *
28b4a521 6426 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6427 * numbers.
6428 */
6429
5f7865f3
TC
6430 /*
6431 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6432 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6433 * the array will contain less then 'level' members. This could be
6434 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6435 * in other functions.
6436 *
6437 * We reset it to 'level' at the end of this function.
6438 */
6439 sched_domains_numa_levels = 0;
6440
cb83b629
PZ
6441 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6442 if (!sched_domains_numa_masks)
6443 return;
6444
6445 /*
6446 * Now for each level, construct a mask per node which contains all
6447 * cpus of nodes that are that many hops away from us.
6448 */
6449 for (i = 0; i < level; i++) {
6450 sched_domains_numa_masks[i] =
6451 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6452 if (!sched_domains_numa_masks[i])
6453 return;
6454
6455 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6456 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6457 if (!mask)
6458 return;
6459
6460 sched_domains_numa_masks[i][j] = mask;
6461
6462 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6463 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6464 continue;
6465
6466 cpumask_or(mask, mask, cpumask_of_node(k));
6467 }
6468 }
6469 }
6470
143e1e28
VG
6471 /* Compute default topology size */
6472 for (i = 0; sched_domain_topology[i].mask; i++);
6473
c515db8c 6474 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6475 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6476 if (!tl)
6477 return;
6478
6479 /*
6480 * Copy the default topology bits..
6481 */
143e1e28
VG
6482 for (i = 0; sched_domain_topology[i].mask; i++)
6483 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6484
6485 /*
6486 * .. and append 'j' levels of NUMA goodness.
6487 */
6488 for (j = 0; j < level; i++, j++) {
6489 tl[i] = (struct sched_domain_topology_level){
cb83b629 6490 .mask = sd_numa_mask,
143e1e28 6491 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6492 .flags = SDTL_OVERLAP,
6493 .numa_level = j,
143e1e28 6494 SD_INIT_NAME(NUMA)
cb83b629
PZ
6495 };
6496 }
6497
6498 sched_domain_topology = tl;
5f7865f3
TC
6499
6500 sched_domains_numa_levels = level;
9942f79b 6501 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6502
6503 init_numa_topology_type();
cb83b629 6504}
301a5cba
TC
6505
6506static void sched_domains_numa_masks_set(int cpu)
6507{
6508 int i, j;
6509 int node = cpu_to_node(cpu);
6510
6511 for (i = 0; i < sched_domains_numa_levels; i++) {
6512 for (j = 0; j < nr_node_ids; j++) {
6513 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6514 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6515 }
6516 }
6517}
6518
6519static void sched_domains_numa_masks_clear(int cpu)
6520{
6521 int i, j;
6522 for (i = 0; i < sched_domains_numa_levels; i++) {
6523 for (j = 0; j < nr_node_ids; j++)
6524 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6525 }
6526}
6527
6528/*
6529 * Update sched_domains_numa_masks[level][node] array when new cpus
6530 * are onlined.
6531 */
6532static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6533 unsigned long action,
6534 void *hcpu)
6535{
6536 int cpu = (long)hcpu;
6537
6538 switch (action & ~CPU_TASKS_FROZEN) {
6539 case CPU_ONLINE:
6540 sched_domains_numa_masks_set(cpu);
6541 break;
6542
6543 case CPU_DEAD:
6544 sched_domains_numa_masks_clear(cpu);
6545 break;
6546
6547 default:
6548 return NOTIFY_DONE;
6549 }
6550
6551 return NOTIFY_OK;
cb83b629
PZ
6552}
6553#else
6554static inline void sched_init_numa(void)
6555{
6556}
301a5cba
TC
6557
6558static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6559 unsigned long action,
6560 void *hcpu)
6561{
6562 return 0;
6563}
cb83b629
PZ
6564#endif /* CONFIG_NUMA */
6565
54ab4ff4
PZ
6566static int __sdt_alloc(const struct cpumask *cpu_map)
6567{
6568 struct sched_domain_topology_level *tl;
6569 int j;
6570
27723a68 6571 for_each_sd_topology(tl) {
54ab4ff4
PZ
6572 struct sd_data *sdd = &tl->data;
6573
6574 sdd->sd = alloc_percpu(struct sched_domain *);
6575 if (!sdd->sd)
6576 return -ENOMEM;
6577
6578 sdd->sg = alloc_percpu(struct sched_group *);
6579 if (!sdd->sg)
6580 return -ENOMEM;
6581
63b2ca30
NP
6582 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6583 if (!sdd->sgc)
9c3f75cb
PZ
6584 return -ENOMEM;
6585
54ab4ff4
PZ
6586 for_each_cpu(j, cpu_map) {
6587 struct sched_domain *sd;
6588 struct sched_group *sg;
63b2ca30 6589 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6590
6591 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6592 GFP_KERNEL, cpu_to_node(j));
6593 if (!sd)
6594 return -ENOMEM;
6595
6596 *per_cpu_ptr(sdd->sd, j) = sd;
6597
6598 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6599 GFP_KERNEL, cpu_to_node(j));
6600 if (!sg)
6601 return -ENOMEM;
6602
30b4e9eb
IM
6603 sg->next = sg;
6604
54ab4ff4 6605 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6606
63b2ca30 6607 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6608 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6609 if (!sgc)
9c3f75cb
PZ
6610 return -ENOMEM;
6611
63b2ca30 6612 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6613 }
6614 }
6615
6616 return 0;
6617}
6618
6619static void __sdt_free(const struct cpumask *cpu_map)
6620{
6621 struct sched_domain_topology_level *tl;
6622 int j;
6623
27723a68 6624 for_each_sd_topology(tl) {
54ab4ff4
PZ
6625 struct sd_data *sdd = &tl->data;
6626
6627 for_each_cpu(j, cpu_map) {
fb2cf2c6 6628 struct sched_domain *sd;
6629
6630 if (sdd->sd) {
6631 sd = *per_cpu_ptr(sdd->sd, j);
6632 if (sd && (sd->flags & SD_OVERLAP))
6633 free_sched_groups(sd->groups, 0);
6634 kfree(*per_cpu_ptr(sdd->sd, j));
6635 }
6636
6637 if (sdd->sg)
6638 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6639 if (sdd->sgc)
6640 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6641 }
6642 free_percpu(sdd->sd);
fb2cf2c6 6643 sdd->sd = NULL;
54ab4ff4 6644 free_percpu(sdd->sg);
fb2cf2c6 6645 sdd->sg = NULL;
63b2ca30
NP
6646 free_percpu(sdd->sgc);
6647 sdd->sgc = NULL;
54ab4ff4
PZ
6648 }
6649}
6650
2c402dc3 6651struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6652 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6653 struct sched_domain *child, int cpu)
2c402dc3 6654{
143e1e28 6655 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6656 if (!sd)
d069b916 6657 return child;
2c402dc3 6658
2c402dc3 6659 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6660 if (child) {
6661 sd->level = child->level + 1;
6662 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6663 child->parent = sd;
c75e0128 6664 sd->child = child;
6ae72dff
PZ
6665
6666 if (!cpumask_subset(sched_domain_span(child),
6667 sched_domain_span(sd))) {
6668 pr_err("BUG: arch topology borken\n");
6669#ifdef CONFIG_SCHED_DEBUG
6670 pr_err(" the %s domain not a subset of the %s domain\n",
6671 child->name, sd->name);
6672#endif
6673 /* Fixup, ensure @sd has at least @child cpus. */
6674 cpumask_or(sched_domain_span(sd),
6675 sched_domain_span(sd),
6676 sched_domain_span(child));
6677 }
6678
60495e77 6679 }
a841f8ce 6680 set_domain_attribute(sd, attr);
2c402dc3
PZ
6681
6682 return sd;
6683}
6684
2109b99e
AH
6685/*
6686 * Build sched domains for a given set of cpus and attach the sched domains
6687 * to the individual cpus
6688 */
dce840a0
PZ
6689static int build_sched_domains(const struct cpumask *cpu_map,
6690 struct sched_domain_attr *attr)
2109b99e 6691{
1c632169 6692 enum s_alloc alloc_state;
dce840a0 6693 struct sched_domain *sd;
2109b99e 6694 struct s_data d;
822ff793 6695 int i, ret = -ENOMEM;
9c1cfda2 6696
2109b99e
AH
6697 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6698 if (alloc_state != sa_rootdomain)
6699 goto error;
9c1cfda2 6700
dce840a0 6701 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6702 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6703 struct sched_domain_topology_level *tl;
6704
3bd65a80 6705 sd = NULL;
27723a68 6706 for_each_sd_topology(tl) {
4a850cbe 6707 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6708 if (tl == sched_domain_topology)
6709 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6710 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6711 sd->flags |= SD_OVERLAP;
d110235d
PZ
6712 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6713 break;
e3589f6c 6714 }
dce840a0
PZ
6715 }
6716
6717 /* Build the groups for the domains */
6718 for_each_cpu(i, cpu_map) {
6719 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6720 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6721 if (sd->flags & SD_OVERLAP) {
6722 if (build_overlap_sched_groups(sd, i))
6723 goto error;
6724 } else {
6725 if (build_sched_groups(sd, i))
6726 goto error;
6727 }
1cf51902 6728 }
a06dadbe 6729 }
9c1cfda2 6730
ced549fa 6731 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6732 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6733 if (!cpumask_test_cpu(i, cpu_map))
6734 continue;
9c1cfda2 6735
dce840a0
PZ
6736 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6737 claim_allocations(i, sd);
63b2ca30 6738 init_sched_groups_capacity(i, sd);
dce840a0 6739 }
f712c0c7 6740 }
9c1cfda2 6741
1da177e4 6742 /* Attach the domains */
dce840a0 6743 rcu_read_lock();
abcd083a 6744 for_each_cpu(i, cpu_map) {
21d42ccf 6745 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6746 cpu_attach_domain(sd, d.rd, i);
1da177e4 6747 }
dce840a0 6748 rcu_read_unlock();
51888ca2 6749
822ff793 6750 ret = 0;
51888ca2 6751error:
2109b99e 6752 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6753 return ret;
1da177e4 6754}
029190c5 6755
acc3f5d7 6756static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6757static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6758static struct sched_domain_attr *dattr_cur;
6759 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6760
6761/*
6762 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6763 * cpumask) fails, then fallback to a single sched domain,
6764 * as determined by the single cpumask fallback_doms.
029190c5 6765 */
4212823f 6766static cpumask_var_t fallback_doms;
029190c5 6767
ee79d1bd
HC
6768/*
6769 * arch_update_cpu_topology lets virtualized architectures update the
6770 * cpu core maps. It is supposed to return 1 if the topology changed
6771 * or 0 if it stayed the same.
6772 */
52f5684c 6773int __weak arch_update_cpu_topology(void)
22e52b07 6774{
ee79d1bd 6775 return 0;
22e52b07
HC
6776}
6777
acc3f5d7
RR
6778cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6779{
6780 int i;
6781 cpumask_var_t *doms;
6782
6783 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6784 if (!doms)
6785 return NULL;
6786 for (i = 0; i < ndoms; i++) {
6787 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6788 free_sched_domains(doms, i);
6789 return NULL;
6790 }
6791 }
6792 return doms;
6793}
6794
6795void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6796{
6797 unsigned int i;
6798 for (i = 0; i < ndoms; i++)
6799 free_cpumask_var(doms[i]);
6800 kfree(doms);
6801}
6802
1a20ff27 6803/*
41a2d6cf 6804 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6805 * For now this just excludes isolated cpus, but could be used to
6806 * exclude other special cases in the future.
1a20ff27 6807 */
c4a8849a 6808static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6809{
7378547f
MM
6810 int err;
6811
22e52b07 6812 arch_update_cpu_topology();
029190c5 6813 ndoms_cur = 1;
acc3f5d7 6814 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6815 if (!doms_cur)
acc3f5d7
RR
6816 doms_cur = &fallback_doms;
6817 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6818 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6819 register_sched_domain_sysctl();
7378547f
MM
6820
6821 return err;
1a20ff27
DG
6822}
6823
1a20ff27
DG
6824/*
6825 * Detach sched domains from a group of cpus specified in cpu_map
6826 * These cpus will now be attached to the NULL domain
6827 */
96f874e2 6828static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6829{
6830 int i;
6831
dce840a0 6832 rcu_read_lock();
abcd083a 6833 for_each_cpu(i, cpu_map)
57d885fe 6834 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6835 rcu_read_unlock();
1a20ff27
DG
6836}
6837
1d3504fc
HS
6838/* handle null as "default" */
6839static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6840 struct sched_domain_attr *new, int idx_new)
6841{
6842 struct sched_domain_attr tmp;
6843
6844 /* fast path */
6845 if (!new && !cur)
6846 return 1;
6847
6848 tmp = SD_ATTR_INIT;
6849 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6850 new ? (new + idx_new) : &tmp,
6851 sizeof(struct sched_domain_attr));
6852}
6853
029190c5
PJ
6854/*
6855 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6856 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6857 * doms_new[] to the current sched domain partitioning, doms_cur[].
6858 * It destroys each deleted domain and builds each new domain.
6859 *
acc3f5d7 6860 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6861 * The masks don't intersect (don't overlap.) We should setup one
6862 * sched domain for each mask. CPUs not in any of the cpumasks will
6863 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6864 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6865 * it as it is.
6866 *
acc3f5d7
RR
6867 * The passed in 'doms_new' should be allocated using
6868 * alloc_sched_domains. This routine takes ownership of it and will
6869 * free_sched_domains it when done with it. If the caller failed the
6870 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6871 * and partition_sched_domains() will fallback to the single partition
6872 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6873 *
96f874e2 6874 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6875 * ndoms_new == 0 is a special case for destroying existing domains,
6876 * and it will not create the default domain.
dfb512ec 6877 *
029190c5
PJ
6878 * Call with hotplug lock held
6879 */
acc3f5d7 6880void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6881 struct sched_domain_attr *dattr_new)
029190c5 6882{
dfb512ec 6883 int i, j, n;
d65bd5ec 6884 int new_topology;
029190c5 6885
712555ee 6886 mutex_lock(&sched_domains_mutex);
a1835615 6887
7378547f
MM
6888 /* always unregister in case we don't destroy any domains */
6889 unregister_sched_domain_sysctl();
6890
d65bd5ec
HC
6891 /* Let architecture update cpu core mappings. */
6892 new_topology = arch_update_cpu_topology();
6893
dfb512ec 6894 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6895
6896 /* Destroy deleted domains */
6897 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6898 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6899 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6900 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6901 goto match1;
6902 }
6903 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6904 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6905match1:
6906 ;
6907 }
6908
c8d2d47a 6909 n = ndoms_cur;
e761b772 6910 if (doms_new == NULL) {
c8d2d47a 6911 n = 0;
acc3f5d7 6912 doms_new = &fallback_doms;
6ad4c188 6913 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6914 WARN_ON_ONCE(dattr_new);
e761b772
MK
6915 }
6916
029190c5
PJ
6917 /* Build new domains */
6918 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6919 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6920 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6921 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6922 goto match2;
6923 }
6924 /* no match - add a new doms_new */
dce840a0 6925 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6926match2:
6927 ;
6928 }
6929
6930 /* Remember the new sched domains */
acc3f5d7
RR
6931 if (doms_cur != &fallback_doms)
6932 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6933 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6934 doms_cur = doms_new;
1d3504fc 6935 dattr_cur = dattr_new;
029190c5 6936 ndoms_cur = ndoms_new;
7378547f
MM
6937
6938 register_sched_domain_sysctl();
a1835615 6939
712555ee 6940 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6941}
6942
d35be8ba
SB
6943static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6944
1da177e4 6945/*
3a101d05
TH
6946 * Update cpusets according to cpu_active mask. If cpusets are
6947 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6948 * around partition_sched_domains().
d35be8ba
SB
6949 *
6950 * If we come here as part of a suspend/resume, don't touch cpusets because we
6951 * want to restore it back to its original state upon resume anyway.
1da177e4 6952 */
0b2e918a
TH
6953static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6954 void *hcpu)
e761b772 6955{
d35be8ba
SB
6956 switch (action) {
6957 case CPU_ONLINE_FROZEN:
6958 case CPU_DOWN_FAILED_FROZEN:
6959
6960 /*
6961 * num_cpus_frozen tracks how many CPUs are involved in suspend
6962 * resume sequence. As long as this is not the last online
6963 * operation in the resume sequence, just build a single sched
6964 * domain, ignoring cpusets.
6965 */
6966 num_cpus_frozen--;
6967 if (likely(num_cpus_frozen)) {
6968 partition_sched_domains(1, NULL, NULL);
6969 break;
6970 }
6971
6972 /*
6973 * This is the last CPU online operation. So fall through and
6974 * restore the original sched domains by considering the
6975 * cpuset configurations.
6976 */
6977
e761b772 6978 case CPU_ONLINE:
6ad4c188 6979 case CPU_DOWN_FAILED:
7ddf96b0 6980 cpuset_update_active_cpus(true);
d35be8ba 6981 break;
3a101d05
TH
6982 default:
6983 return NOTIFY_DONE;
6984 }
d35be8ba 6985 return NOTIFY_OK;
3a101d05 6986}
e761b772 6987
0b2e918a
TH
6988static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6989 void *hcpu)
3a101d05 6990{
d35be8ba 6991 switch (action) {
3a101d05 6992 case CPU_DOWN_PREPARE:
7ddf96b0 6993 cpuset_update_active_cpus(false);
d35be8ba
SB
6994 break;
6995 case CPU_DOWN_PREPARE_FROZEN:
6996 num_cpus_frozen++;
6997 partition_sched_domains(1, NULL, NULL);
6998 break;
e761b772
MK
6999 default:
7000 return NOTIFY_DONE;
7001 }
d35be8ba 7002 return NOTIFY_OK;
e761b772 7003}
e761b772 7004
1da177e4
LT
7005void __init sched_init_smp(void)
7006{
dcc30a35
RR
7007 cpumask_var_t non_isolated_cpus;
7008
7009 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7010 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7011
cb83b629
PZ
7012 sched_init_numa();
7013
6acce3ef
PZ
7014 /*
7015 * There's no userspace yet to cause hotplug operations; hence all the
7016 * cpu masks are stable and all blatant races in the below code cannot
7017 * happen.
7018 */
712555ee 7019 mutex_lock(&sched_domains_mutex);
c4a8849a 7020 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7021 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7022 if (cpumask_empty(non_isolated_cpus))
7023 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7024 mutex_unlock(&sched_domains_mutex);
e761b772 7025
301a5cba 7026 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7027 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7028 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7029
b328ca18 7030 init_hrtick();
5c1e1767
NP
7031
7032 /* Move init over to a non-isolated CPU */
dcc30a35 7033 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7034 BUG();
19978ca6 7035 sched_init_granularity();
dcc30a35 7036 free_cpumask_var(non_isolated_cpus);
4212823f 7037
0e3900e6 7038 init_sched_rt_class();
1baca4ce 7039 init_sched_dl_class();
1da177e4
LT
7040}
7041#else
7042void __init sched_init_smp(void)
7043{
19978ca6 7044 sched_init_granularity();
1da177e4
LT
7045}
7046#endif /* CONFIG_SMP */
7047
cd1bb94b
AB
7048const_debug unsigned int sysctl_timer_migration = 1;
7049
1da177e4
LT
7050int in_sched_functions(unsigned long addr)
7051{
1da177e4
LT
7052 return in_lock_functions(addr) ||
7053 (addr >= (unsigned long)__sched_text_start
7054 && addr < (unsigned long)__sched_text_end);
7055}
7056
029632fb 7057#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7058/*
7059 * Default task group.
7060 * Every task in system belongs to this group at bootup.
7061 */
029632fb 7062struct task_group root_task_group;
35cf4e50 7063LIST_HEAD(task_groups);
052f1dc7 7064#endif
6f505b16 7065
e6252c3e 7066DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7067
1da177e4
LT
7068void __init sched_init(void)
7069{
dd41f596 7070 int i, j;
434d53b0
MT
7071 unsigned long alloc_size = 0, ptr;
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7078#endif
df7c8e84 7079#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7080 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7081#endif
434d53b0 7082 if (alloc_size) {
36b7b6d4 7083 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7084
7085#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7086 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7087 ptr += nr_cpu_ids * sizeof(void **);
7088
07e06b01 7089 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7090 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7091
6d6bc0ad 7092#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7093#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7094 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7095 ptr += nr_cpu_ids * sizeof(void **);
7096
07e06b01 7097 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7098 ptr += nr_cpu_ids * sizeof(void **);
7099
6d6bc0ad 7100#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102 for_each_possible_cpu(i) {
e6252c3e 7103 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
7104 ptr += cpumask_size();
7105 }
7106#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7107 }
dd41f596 7108
332ac17e
DF
7109 init_rt_bandwidth(&def_rt_bandwidth,
7110 global_rt_period(), global_rt_runtime());
7111 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7112 global_rt_period(), global_rt_runtime());
332ac17e 7113
57d885fe
GH
7114#ifdef CONFIG_SMP
7115 init_defrootdomain();
7116#endif
7117
d0b27fa7 7118#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7119 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7120 global_rt_period(), global_rt_runtime());
6d6bc0ad 7121#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7122
7c941438 7123#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7124 list_add(&root_task_group.list, &task_groups);
7125 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7126 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7127 autogroup_init(&init_task);
54c707e9 7128
7c941438 7129#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7130
0a945022 7131 for_each_possible_cpu(i) {
70b97a7f 7132 struct rq *rq;
1da177e4
LT
7133
7134 rq = cpu_rq(i);
05fa785c 7135 raw_spin_lock_init(&rq->lock);
7897986b 7136 rq->nr_running = 0;
dce48a84
TG
7137 rq->calc_load_active = 0;
7138 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7139 init_cfs_rq(&rq->cfs);
6f505b16 7140 init_rt_rq(&rq->rt, rq);
aab03e05 7141 init_dl_rq(&rq->dl, rq);
dd41f596 7142#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7143 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7144 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7145 /*
07e06b01 7146 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7147 *
7148 * In case of task-groups formed thr' the cgroup filesystem, it
7149 * gets 100% of the cpu resources in the system. This overall
7150 * system cpu resource is divided among the tasks of
07e06b01 7151 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7152 * based on each entity's (task or task-group's) weight
7153 * (se->load.weight).
7154 *
07e06b01 7155 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7156 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157 * then A0's share of the cpu resource is:
7158 *
0d905bca 7159 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7160 *
07e06b01
YZ
7161 * We achieve this by letting root_task_group's tasks sit
7162 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7163 */
ab84d31e 7164 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7165 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7166#endif /* CONFIG_FAIR_GROUP_SCHED */
7167
7168 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7169#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7170 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7171#endif
1da177e4 7172
dd41f596
IM
7173 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7174 rq->cpu_load[j] = 0;
fdf3e95d
VP
7175
7176 rq->last_load_update_tick = jiffies;
7177
1da177e4 7178#ifdef CONFIG_SMP
41c7ce9a 7179 rq->sd = NULL;
57d885fe 7180 rq->rd = NULL;
ca8ce3d0 7181 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7182 rq->post_schedule = 0;
1da177e4 7183 rq->active_balance = 0;
dd41f596 7184 rq->next_balance = jiffies;
1da177e4 7185 rq->push_cpu = 0;
0a2966b4 7186 rq->cpu = i;
1f11eb6a 7187 rq->online = 0;
eae0c9df
MG
7188 rq->idle_stamp = 0;
7189 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7190 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7191
7192 INIT_LIST_HEAD(&rq->cfs_tasks);
7193
dc938520 7194 rq_attach_root(rq, &def_root_domain);
3451d024 7195#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7196 rq->nohz_flags = 0;
83cd4fe2 7197#endif
265f22a9
FW
7198#ifdef CONFIG_NO_HZ_FULL
7199 rq->last_sched_tick = 0;
7200#endif
1da177e4 7201#endif
8f4d37ec 7202 init_rq_hrtick(rq);
1da177e4 7203 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7204 }
7205
2dd73a4f 7206 set_load_weight(&init_task);
b50f60ce 7207
e107be36
AK
7208#ifdef CONFIG_PREEMPT_NOTIFIERS
7209 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7210#endif
7211
1da177e4
LT
7212 /*
7213 * The boot idle thread does lazy MMU switching as well:
7214 */
7215 atomic_inc(&init_mm.mm_count);
7216 enter_lazy_tlb(&init_mm, current);
7217
7218 /*
7219 * Make us the idle thread. Technically, schedule() should not be
7220 * called from this thread, however somewhere below it might be,
7221 * but because we are the idle thread, we just pick up running again
7222 * when this runqueue becomes "idle".
7223 */
7224 init_idle(current, smp_processor_id());
dce48a84
TG
7225
7226 calc_load_update = jiffies + LOAD_FREQ;
7227
dd41f596
IM
7228 /*
7229 * During early bootup we pretend to be a normal task:
7230 */
7231 current->sched_class = &fair_sched_class;
6892b75e 7232
bf4d83f6 7233#ifdef CONFIG_SMP
4cb98839 7234 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7235 /* May be allocated at isolcpus cmdline parse time */
7236 if (cpu_isolated_map == NULL)
7237 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7238 idle_thread_set_boot_cpu();
a803f026 7239 set_cpu_rq_start_time();
029632fb
PZ
7240#endif
7241 init_sched_fair_class();
6a7b3dc3 7242
6892b75e 7243 scheduler_running = 1;
1da177e4
LT
7244}
7245
d902db1e 7246#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7247static inline int preempt_count_equals(int preempt_offset)
7248{
234da7bc 7249 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7250
4ba8216c 7251 return (nested == preempt_offset);
e4aafea2
FW
7252}
7253
d894837f 7254void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7255{
1da177e4
LT
7256 static unsigned long prev_jiffy; /* ratelimiting */
7257
b3fbab05 7258 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7259 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7260 !is_idle_task(current)) ||
e4aafea2 7261 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7262 return;
7263 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7264 return;
7265 prev_jiffy = jiffies;
7266
3df0fc5b
PZ
7267 printk(KERN_ERR
7268 "BUG: sleeping function called from invalid context at %s:%d\n",
7269 file, line);
7270 printk(KERN_ERR
7271 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7272 in_atomic(), irqs_disabled(),
7273 current->pid, current->comm);
aef745fc
IM
7274
7275 debug_show_held_locks(current);
7276 if (irqs_disabled())
7277 print_irqtrace_events(current);
8f47b187
TG
7278#ifdef CONFIG_DEBUG_PREEMPT
7279 if (!preempt_count_equals(preempt_offset)) {
7280 pr_err("Preemption disabled at:");
7281 print_ip_sym(current->preempt_disable_ip);
7282 pr_cont("\n");
7283 }
7284#endif
aef745fc 7285 dump_stack();
1da177e4
LT
7286}
7287EXPORT_SYMBOL(__might_sleep);
7288#endif
7289
7290#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7291static void normalize_task(struct rq *rq, struct task_struct *p)
7292{
da7a735e 7293 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7294 struct sched_attr attr = {
7295 .sched_policy = SCHED_NORMAL,
7296 };
da7a735e 7297 int old_prio = p->prio;
da0c1e65 7298 int queued;
3e51f33f 7299
da0c1e65
KT
7300 queued = task_on_rq_queued(p);
7301 if (queued)
4ca9b72b 7302 dequeue_task(rq, p, 0);
d50dde5a 7303 __setscheduler(rq, p, &attr);
da0c1e65 7304 if (queued) {
4ca9b72b 7305 enqueue_task(rq, p, 0);
8875125e 7306 resched_curr(rq);
3a5e4dc1 7307 }
da7a735e
PZ
7308
7309 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7310}
7311
1da177e4
LT
7312void normalize_rt_tasks(void)
7313{
a0f98a1c 7314 struct task_struct *g, *p;
1da177e4 7315 unsigned long flags;
70b97a7f 7316 struct rq *rq;
1da177e4 7317
3472eaa1 7318 read_lock(&tasklist_lock);
5d07f420 7319 for_each_process_thread(g, p) {
178be793
IM
7320 /*
7321 * Only normalize user tasks:
7322 */
3472eaa1 7323 if (p->flags & PF_KTHREAD)
178be793
IM
7324 continue;
7325
6cfb0d5d 7326 p->se.exec_start = 0;
6cfb0d5d 7327#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7328 p->se.statistics.wait_start = 0;
7329 p->se.statistics.sleep_start = 0;
7330 p->se.statistics.block_start = 0;
6cfb0d5d 7331#endif
dd41f596 7332
aab03e05 7333 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7334 /*
7335 * Renice negative nice level userspace
7336 * tasks back to 0:
7337 */
3472eaa1 7338 if (task_nice(p) < 0)
dd41f596 7339 set_user_nice(p, 0);
1da177e4 7340 continue;
dd41f596 7341 }
1da177e4 7342
3472eaa1 7343 rq = task_rq_lock(p, &flags);
178be793 7344 normalize_task(rq, p);
3472eaa1 7345 task_rq_unlock(rq, p, &flags);
5d07f420 7346 }
3472eaa1 7347 read_unlock(&tasklist_lock);
1da177e4
LT
7348}
7349
7350#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7351
67fc4e0c 7352#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7353/*
67fc4e0c 7354 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7355 *
7356 * They can only be called when the whole system has been
7357 * stopped - every CPU needs to be quiescent, and no scheduling
7358 * activity can take place. Using them for anything else would
7359 * be a serious bug, and as a result, they aren't even visible
7360 * under any other configuration.
7361 */
7362
7363/**
7364 * curr_task - return the current task for a given cpu.
7365 * @cpu: the processor in question.
7366 *
7367 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7368 *
7369 * Return: The current task for @cpu.
1df5c10a 7370 */
36c8b586 7371struct task_struct *curr_task(int cpu)
1df5c10a
LT
7372{
7373 return cpu_curr(cpu);
7374}
7375
67fc4e0c
JW
7376#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7377
7378#ifdef CONFIG_IA64
1df5c10a
LT
7379/**
7380 * set_curr_task - set the current task for a given cpu.
7381 * @cpu: the processor in question.
7382 * @p: the task pointer to set.
7383 *
7384 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7385 * are serviced on a separate stack. It allows the architecture to switch the
7386 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7387 * must be called with all CPU's synchronized, and interrupts disabled, the
7388 * and caller must save the original value of the current task (see
7389 * curr_task() above) and restore that value before reenabling interrupts and
7390 * re-starting the system.
7391 *
7392 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7393 */
36c8b586 7394void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7395{
7396 cpu_curr(cpu) = p;
7397}
7398
7399#endif
29f59db3 7400
7c941438 7401#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7402/* task_group_lock serializes the addition/removal of task groups */
7403static DEFINE_SPINLOCK(task_group_lock);
7404
bccbe08a
PZ
7405static void free_sched_group(struct task_group *tg)
7406{
7407 free_fair_sched_group(tg);
7408 free_rt_sched_group(tg);
e9aa1dd1 7409 autogroup_free(tg);
bccbe08a
PZ
7410 kfree(tg);
7411}
7412
7413/* allocate runqueue etc for a new task group */
ec7dc8ac 7414struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7415{
7416 struct task_group *tg;
bccbe08a
PZ
7417
7418 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7419 if (!tg)
7420 return ERR_PTR(-ENOMEM);
7421
ec7dc8ac 7422 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7423 goto err;
7424
ec7dc8ac 7425 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7426 goto err;
7427
ace783b9
LZ
7428 return tg;
7429
7430err:
7431 free_sched_group(tg);
7432 return ERR_PTR(-ENOMEM);
7433}
7434
7435void sched_online_group(struct task_group *tg, struct task_group *parent)
7436{
7437 unsigned long flags;
7438
8ed36996 7439 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7440 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7441
7442 WARN_ON(!parent); /* root should already exist */
7443
7444 tg->parent = parent;
f473aa5e 7445 INIT_LIST_HEAD(&tg->children);
09f2724a 7446 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7447 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7448}
7449
9b5b7751 7450/* rcu callback to free various structures associated with a task group */
6f505b16 7451static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7452{
29f59db3 7453 /* now it should be safe to free those cfs_rqs */
6f505b16 7454 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7455}
7456
9b5b7751 7457/* Destroy runqueue etc associated with a task group */
4cf86d77 7458void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7459{
7460 /* wait for possible concurrent references to cfs_rqs complete */
7461 call_rcu(&tg->rcu, free_sched_group_rcu);
7462}
7463
7464void sched_offline_group(struct task_group *tg)
29f59db3 7465{
8ed36996 7466 unsigned long flags;
9b5b7751 7467 int i;
29f59db3 7468
3d4b47b4
PZ
7469 /* end participation in shares distribution */
7470 for_each_possible_cpu(i)
bccbe08a 7471 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7472
7473 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7474 list_del_rcu(&tg->list);
f473aa5e 7475 list_del_rcu(&tg->siblings);
8ed36996 7476 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7477}
7478
9b5b7751 7479/* change task's runqueue when it moves between groups.
3a252015
IM
7480 * The caller of this function should have put the task in its new group
7481 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7482 * reflect its new group.
9b5b7751
SV
7483 */
7484void sched_move_task(struct task_struct *tsk)
29f59db3 7485{
8323f26c 7486 struct task_group *tg;
da0c1e65 7487 int queued, running;
29f59db3
SV
7488 unsigned long flags;
7489 struct rq *rq;
7490
7491 rq = task_rq_lock(tsk, &flags);
7492
051a1d1a 7493 running = task_current(rq, tsk);
da0c1e65 7494 queued = task_on_rq_queued(tsk);
29f59db3 7495
da0c1e65 7496 if (queued)
29f59db3 7497 dequeue_task(rq, tsk, 0);
0e1f3483 7498 if (unlikely(running))
f3cd1c4e 7499 put_prev_task(rq, tsk);
29f59db3 7500
073219e9 7501 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7502 lockdep_is_held(&tsk->sighand->siglock)),
7503 struct task_group, css);
7504 tg = autogroup_task_group(tsk, tg);
7505 tsk->sched_task_group = tg;
7506
810b3817 7507#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7508 if (tsk->sched_class->task_move_group)
da0c1e65 7509 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7510 else
810b3817 7511#endif
b2b5ce02 7512 set_task_rq(tsk, task_cpu(tsk));
810b3817 7513
0e1f3483
HS
7514 if (unlikely(running))
7515 tsk->sched_class->set_curr_task(rq);
da0c1e65 7516 if (queued)
371fd7e7 7517 enqueue_task(rq, tsk, 0);
29f59db3 7518
0122ec5b 7519 task_rq_unlock(rq, tsk, &flags);
29f59db3 7520}
7c941438 7521#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7522
a790de99
PT
7523#ifdef CONFIG_RT_GROUP_SCHED
7524/*
7525 * Ensure that the real time constraints are schedulable.
7526 */
7527static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7528
9a7e0b18
PZ
7529/* Must be called with tasklist_lock held */
7530static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7531{
9a7e0b18 7532 struct task_struct *g, *p;
b40b2e8e 7533
5d07f420 7534 for_each_process_thread(g, p) {
8651c658 7535 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7536 return 1;
5d07f420 7537 }
b40b2e8e 7538
9a7e0b18
PZ
7539 return 0;
7540}
b40b2e8e 7541
9a7e0b18
PZ
7542struct rt_schedulable_data {
7543 struct task_group *tg;
7544 u64 rt_period;
7545 u64 rt_runtime;
7546};
b40b2e8e 7547
a790de99 7548static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7549{
7550 struct rt_schedulable_data *d = data;
7551 struct task_group *child;
7552 unsigned long total, sum = 0;
7553 u64 period, runtime;
b40b2e8e 7554
9a7e0b18
PZ
7555 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7556 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7557
9a7e0b18
PZ
7558 if (tg == d->tg) {
7559 period = d->rt_period;
7560 runtime = d->rt_runtime;
b40b2e8e 7561 }
b40b2e8e 7562
4653f803
PZ
7563 /*
7564 * Cannot have more runtime than the period.
7565 */
7566 if (runtime > period && runtime != RUNTIME_INF)
7567 return -EINVAL;
6f505b16 7568
4653f803
PZ
7569 /*
7570 * Ensure we don't starve existing RT tasks.
7571 */
9a7e0b18
PZ
7572 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7573 return -EBUSY;
6f505b16 7574
9a7e0b18 7575 total = to_ratio(period, runtime);
6f505b16 7576
4653f803
PZ
7577 /*
7578 * Nobody can have more than the global setting allows.
7579 */
7580 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7581 return -EINVAL;
6f505b16 7582
4653f803
PZ
7583 /*
7584 * The sum of our children's runtime should not exceed our own.
7585 */
9a7e0b18
PZ
7586 list_for_each_entry_rcu(child, &tg->children, siblings) {
7587 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7588 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7589
9a7e0b18
PZ
7590 if (child == d->tg) {
7591 period = d->rt_period;
7592 runtime = d->rt_runtime;
7593 }
6f505b16 7594
9a7e0b18 7595 sum += to_ratio(period, runtime);
9f0c1e56 7596 }
6f505b16 7597
9a7e0b18
PZ
7598 if (sum > total)
7599 return -EINVAL;
7600
7601 return 0;
6f505b16
PZ
7602}
7603
9a7e0b18 7604static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7605{
8277434e
PT
7606 int ret;
7607
9a7e0b18
PZ
7608 struct rt_schedulable_data data = {
7609 .tg = tg,
7610 .rt_period = period,
7611 .rt_runtime = runtime,
7612 };
7613
8277434e
PT
7614 rcu_read_lock();
7615 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7616 rcu_read_unlock();
7617
7618 return ret;
521f1a24
DG
7619}
7620
ab84d31e 7621static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7622 u64 rt_period, u64 rt_runtime)
6f505b16 7623{
ac086bc2 7624 int i, err = 0;
9f0c1e56 7625
9f0c1e56 7626 mutex_lock(&rt_constraints_mutex);
521f1a24 7627 read_lock(&tasklist_lock);
9a7e0b18
PZ
7628 err = __rt_schedulable(tg, rt_period, rt_runtime);
7629 if (err)
9f0c1e56 7630 goto unlock;
ac086bc2 7631
0986b11b 7632 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7633 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7634 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7635
7636 for_each_possible_cpu(i) {
7637 struct rt_rq *rt_rq = tg->rt_rq[i];
7638
0986b11b 7639 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7640 rt_rq->rt_runtime = rt_runtime;
0986b11b 7641 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7642 }
0986b11b 7643 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7644unlock:
521f1a24 7645 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7646 mutex_unlock(&rt_constraints_mutex);
7647
7648 return err;
6f505b16
PZ
7649}
7650
25cc7da7 7651static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7652{
7653 u64 rt_runtime, rt_period;
7654
7655 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7656 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7657 if (rt_runtime_us < 0)
7658 rt_runtime = RUNTIME_INF;
7659
ab84d31e 7660 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7661}
7662
25cc7da7 7663static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7664{
7665 u64 rt_runtime_us;
7666
d0b27fa7 7667 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7668 return -1;
7669
d0b27fa7 7670 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7671 do_div(rt_runtime_us, NSEC_PER_USEC);
7672 return rt_runtime_us;
7673}
d0b27fa7 7674
25cc7da7 7675static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7676{
7677 u64 rt_runtime, rt_period;
7678
7679 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7680 rt_runtime = tg->rt_bandwidth.rt_runtime;
7681
619b0488
R
7682 if (rt_period == 0)
7683 return -EINVAL;
7684
ab84d31e 7685 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7686}
7687
25cc7da7 7688static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7689{
7690 u64 rt_period_us;
7691
7692 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7693 do_div(rt_period_us, NSEC_PER_USEC);
7694 return rt_period_us;
7695}
332ac17e 7696#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7697
332ac17e 7698#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7699static int sched_rt_global_constraints(void)
7700{
7701 int ret = 0;
7702
7703 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7704 read_lock(&tasklist_lock);
4653f803 7705 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7706 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7707 mutex_unlock(&rt_constraints_mutex);
7708
7709 return ret;
7710}
54e99124 7711
25cc7da7 7712static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7713{
7714 /* Don't accept realtime tasks when there is no way for them to run */
7715 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7716 return 0;
7717
7718 return 1;
7719}
7720
6d6bc0ad 7721#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7722static int sched_rt_global_constraints(void)
7723{
ac086bc2 7724 unsigned long flags;
332ac17e 7725 int i, ret = 0;
ec5d4989 7726
0986b11b 7727 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7728 for_each_possible_cpu(i) {
7729 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7730
0986b11b 7731 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7732 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7733 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7734 }
0986b11b 7735 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7736
332ac17e 7737 return ret;
d0b27fa7 7738}
6d6bc0ad 7739#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7740
332ac17e
DF
7741static int sched_dl_global_constraints(void)
7742{
1724813d
PZ
7743 u64 runtime = global_rt_runtime();
7744 u64 period = global_rt_period();
332ac17e 7745 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7746 struct dl_bw *dl_b;
1724813d 7747 int cpu, ret = 0;
49516342 7748 unsigned long flags;
332ac17e
DF
7749
7750 /*
7751 * Here we want to check the bandwidth not being set to some
7752 * value smaller than the currently allocated bandwidth in
7753 * any of the root_domains.
7754 *
7755 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7756 * cycling on root_domains... Discussion on different/better
7757 * solutions is welcome!
7758 */
1724813d 7759 for_each_possible_cpu(cpu) {
f10e00f4
KT
7760 rcu_read_lock_sched();
7761 dl_b = dl_bw_of(cpu);
332ac17e 7762
49516342 7763 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7764 if (new_bw < dl_b->total_bw)
7765 ret = -EBUSY;
49516342 7766 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7767
f10e00f4
KT
7768 rcu_read_unlock_sched();
7769
1724813d
PZ
7770 if (ret)
7771 break;
332ac17e
DF
7772 }
7773
1724813d 7774 return ret;
332ac17e
DF
7775}
7776
1724813d 7777static void sched_dl_do_global(void)
ce0dbbbb 7778{
1724813d 7779 u64 new_bw = -1;
f10e00f4 7780 struct dl_bw *dl_b;
1724813d 7781 int cpu;
49516342 7782 unsigned long flags;
ce0dbbbb 7783
1724813d
PZ
7784 def_dl_bandwidth.dl_period = global_rt_period();
7785 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7786
7787 if (global_rt_runtime() != RUNTIME_INF)
7788 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7789
7790 /*
7791 * FIXME: As above...
7792 */
7793 for_each_possible_cpu(cpu) {
f10e00f4
KT
7794 rcu_read_lock_sched();
7795 dl_b = dl_bw_of(cpu);
1724813d 7796
49516342 7797 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7798 dl_b->bw = new_bw;
49516342 7799 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7800
7801 rcu_read_unlock_sched();
ce0dbbbb 7802 }
1724813d
PZ
7803}
7804
7805static int sched_rt_global_validate(void)
7806{
7807 if (sysctl_sched_rt_period <= 0)
7808 return -EINVAL;
7809
e9e7cb38
JL
7810 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7811 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7812 return -EINVAL;
7813
7814 return 0;
7815}
7816
7817static void sched_rt_do_global(void)
7818{
7819 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7820 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7821}
7822
d0b27fa7 7823int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7824 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7825 loff_t *ppos)
7826{
d0b27fa7
PZ
7827 int old_period, old_runtime;
7828 static DEFINE_MUTEX(mutex);
1724813d 7829 int ret;
d0b27fa7
PZ
7830
7831 mutex_lock(&mutex);
7832 old_period = sysctl_sched_rt_period;
7833 old_runtime = sysctl_sched_rt_runtime;
7834
8d65af78 7835 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7836
7837 if (!ret && write) {
1724813d
PZ
7838 ret = sched_rt_global_validate();
7839 if (ret)
7840 goto undo;
7841
d0b27fa7 7842 ret = sched_rt_global_constraints();
1724813d
PZ
7843 if (ret)
7844 goto undo;
7845
7846 ret = sched_dl_global_constraints();
7847 if (ret)
7848 goto undo;
7849
7850 sched_rt_do_global();
7851 sched_dl_do_global();
7852 }
7853 if (0) {
7854undo:
7855 sysctl_sched_rt_period = old_period;
7856 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7857 }
7858 mutex_unlock(&mutex);
7859
7860 return ret;
7861}
68318b8e 7862
1724813d 7863int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7864 void __user *buffer, size_t *lenp,
7865 loff_t *ppos)
7866{
7867 int ret;
332ac17e 7868 static DEFINE_MUTEX(mutex);
332ac17e
DF
7869
7870 mutex_lock(&mutex);
332ac17e 7871 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7872 /* make sure that internally we keep jiffies */
7873 /* also, writing zero resets timeslice to default */
332ac17e 7874 if (!ret && write) {
1724813d
PZ
7875 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7876 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7877 }
7878 mutex_unlock(&mutex);
332ac17e
DF
7879 return ret;
7880}
7881
052f1dc7 7882#ifdef CONFIG_CGROUP_SCHED
68318b8e 7883
a7c6d554 7884static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7885{
a7c6d554 7886 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7887}
7888
eb95419b
TH
7889static struct cgroup_subsys_state *
7890cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7891{
eb95419b
TH
7892 struct task_group *parent = css_tg(parent_css);
7893 struct task_group *tg;
68318b8e 7894
eb95419b 7895 if (!parent) {
68318b8e 7896 /* This is early initialization for the top cgroup */
07e06b01 7897 return &root_task_group.css;
68318b8e
SV
7898 }
7899
ec7dc8ac 7900 tg = sched_create_group(parent);
68318b8e
SV
7901 if (IS_ERR(tg))
7902 return ERR_PTR(-ENOMEM);
7903
68318b8e
SV
7904 return &tg->css;
7905}
7906
eb95419b 7907static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7908{
eb95419b 7909 struct task_group *tg = css_tg(css);
5c9d535b 7910 struct task_group *parent = css_tg(css->parent);
ace783b9 7911
63876986
TH
7912 if (parent)
7913 sched_online_group(tg, parent);
ace783b9
LZ
7914 return 0;
7915}
7916
eb95419b 7917static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7918{
eb95419b 7919 struct task_group *tg = css_tg(css);
68318b8e
SV
7920
7921 sched_destroy_group(tg);
7922}
7923
eb95419b 7924static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7925{
eb95419b 7926 struct task_group *tg = css_tg(css);
ace783b9
LZ
7927
7928 sched_offline_group(tg);
7929}
7930
eeb61e53
KT
7931static void cpu_cgroup_fork(struct task_struct *task)
7932{
7933 sched_move_task(task);
7934}
7935
eb95419b 7936static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7937 struct cgroup_taskset *tset)
68318b8e 7938{
bb9d97b6
TH
7939 struct task_struct *task;
7940
924f0d9a 7941 cgroup_taskset_for_each(task, tset) {
b68aa230 7942#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7943 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7944 return -EINVAL;
b68aa230 7945#else
bb9d97b6
TH
7946 /* We don't support RT-tasks being in separate groups */
7947 if (task->sched_class != &fair_sched_class)
7948 return -EINVAL;
b68aa230 7949#endif
bb9d97b6 7950 }
be367d09
BB
7951 return 0;
7952}
68318b8e 7953
eb95419b 7954static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7955 struct cgroup_taskset *tset)
68318b8e 7956{
bb9d97b6
TH
7957 struct task_struct *task;
7958
924f0d9a 7959 cgroup_taskset_for_each(task, tset)
bb9d97b6 7960 sched_move_task(task);
68318b8e
SV
7961}
7962
eb95419b
TH
7963static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7964 struct cgroup_subsys_state *old_css,
7965 struct task_struct *task)
068c5cc5
PZ
7966{
7967 /*
7968 * cgroup_exit() is called in the copy_process() failure path.
7969 * Ignore this case since the task hasn't ran yet, this avoids
7970 * trying to poke a half freed task state from generic code.
7971 */
7972 if (!(task->flags & PF_EXITING))
7973 return;
7974
7975 sched_move_task(task);
7976}
7977
052f1dc7 7978#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7979static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7980 struct cftype *cftype, u64 shareval)
68318b8e 7981{
182446d0 7982 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7983}
7984
182446d0
TH
7985static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7986 struct cftype *cft)
68318b8e 7987{
182446d0 7988 struct task_group *tg = css_tg(css);
68318b8e 7989
c8b28116 7990 return (u64) scale_load_down(tg->shares);
68318b8e 7991}
ab84d31e
PT
7992
7993#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7994static DEFINE_MUTEX(cfs_constraints_mutex);
7995
ab84d31e
PT
7996const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7997const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7998
a790de99
PT
7999static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8000
ab84d31e
PT
8001static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8002{
56f570e5 8003 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8004 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8005
8006 if (tg == &root_task_group)
8007 return -EINVAL;
8008
8009 /*
8010 * Ensure we have at some amount of bandwidth every period. This is
8011 * to prevent reaching a state of large arrears when throttled via
8012 * entity_tick() resulting in prolonged exit starvation.
8013 */
8014 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8015 return -EINVAL;
8016
8017 /*
8018 * Likewise, bound things on the otherside by preventing insane quota
8019 * periods. This also allows us to normalize in computing quota
8020 * feasibility.
8021 */
8022 if (period > max_cfs_quota_period)
8023 return -EINVAL;
8024
0e59bdae
KT
8025 /*
8026 * Prevent race between setting of cfs_rq->runtime_enabled and
8027 * unthrottle_offline_cfs_rqs().
8028 */
8029 get_online_cpus();
a790de99
PT
8030 mutex_lock(&cfs_constraints_mutex);
8031 ret = __cfs_schedulable(tg, period, quota);
8032 if (ret)
8033 goto out_unlock;
8034
58088ad0 8035 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8036 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8037 /*
8038 * If we need to toggle cfs_bandwidth_used, off->on must occur
8039 * before making related changes, and on->off must occur afterwards
8040 */
8041 if (runtime_enabled && !runtime_was_enabled)
8042 cfs_bandwidth_usage_inc();
ab84d31e
PT
8043 raw_spin_lock_irq(&cfs_b->lock);
8044 cfs_b->period = ns_to_ktime(period);
8045 cfs_b->quota = quota;
58088ad0 8046
a9cf55b2 8047 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8048 /* restart the period timer (if active) to handle new period expiry */
8049 if (runtime_enabled && cfs_b->timer_active) {
8050 /* force a reprogram */
09dc4ab0 8051 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8052 }
ab84d31e
PT
8053 raw_spin_unlock_irq(&cfs_b->lock);
8054
0e59bdae 8055 for_each_online_cpu(i) {
ab84d31e 8056 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8057 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8058
8059 raw_spin_lock_irq(&rq->lock);
58088ad0 8060 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8061 cfs_rq->runtime_remaining = 0;
671fd9da 8062
029632fb 8063 if (cfs_rq->throttled)
671fd9da 8064 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8065 raw_spin_unlock_irq(&rq->lock);
8066 }
1ee14e6c
BS
8067 if (runtime_was_enabled && !runtime_enabled)
8068 cfs_bandwidth_usage_dec();
a790de99
PT
8069out_unlock:
8070 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8071 put_online_cpus();
ab84d31e 8072
a790de99 8073 return ret;
ab84d31e
PT
8074}
8075
8076int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8077{
8078 u64 quota, period;
8079
029632fb 8080 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8081 if (cfs_quota_us < 0)
8082 quota = RUNTIME_INF;
8083 else
8084 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8085
8086 return tg_set_cfs_bandwidth(tg, period, quota);
8087}
8088
8089long tg_get_cfs_quota(struct task_group *tg)
8090{
8091 u64 quota_us;
8092
029632fb 8093 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8094 return -1;
8095
029632fb 8096 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8097 do_div(quota_us, NSEC_PER_USEC);
8098
8099 return quota_us;
8100}
8101
8102int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8103{
8104 u64 quota, period;
8105
8106 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8107 quota = tg->cfs_bandwidth.quota;
ab84d31e 8108
ab84d31e
PT
8109 return tg_set_cfs_bandwidth(tg, period, quota);
8110}
8111
8112long tg_get_cfs_period(struct task_group *tg)
8113{
8114 u64 cfs_period_us;
8115
029632fb 8116 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8117 do_div(cfs_period_us, NSEC_PER_USEC);
8118
8119 return cfs_period_us;
8120}
8121
182446d0
TH
8122static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8123 struct cftype *cft)
ab84d31e 8124{
182446d0 8125 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8126}
8127
182446d0
TH
8128static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8129 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8130{
182446d0 8131 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8132}
8133
182446d0
TH
8134static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8135 struct cftype *cft)
ab84d31e 8136{
182446d0 8137 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8138}
8139
182446d0
TH
8140static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8141 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8142{
182446d0 8143 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8144}
8145
a790de99
PT
8146struct cfs_schedulable_data {
8147 struct task_group *tg;
8148 u64 period, quota;
8149};
8150
8151/*
8152 * normalize group quota/period to be quota/max_period
8153 * note: units are usecs
8154 */
8155static u64 normalize_cfs_quota(struct task_group *tg,
8156 struct cfs_schedulable_data *d)
8157{
8158 u64 quota, period;
8159
8160 if (tg == d->tg) {
8161 period = d->period;
8162 quota = d->quota;
8163 } else {
8164 period = tg_get_cfs_period(tg);
8165 quota = tg_get_cfs_quota(tg);
8166 }
8167
8168 /* note: these should typically be equivalent */
8169 if (quota == RUNTIME_INF || quota == -1)
8170 return RUNTIME_INF;
8171
8172 return to_ratio(period, quota);
8173}
8174
8175static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8176{
8177 struct cfs_schedulable_data *d = data;
029632fb 8178 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8179 s64 quota = 0, parent_quota = -1;
8180
8181 if (!tg->parent) {
8182 quota = RUNTIME_INF;
8183 } else {
029632fb 8184 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8185
8186 quota = normalize_cfs_quota(tg, d);
9c58c79a 8187 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8188
8189 /*
8190 * ensure max(child_quota) <= parent_quota, inherit when no
8191 * limit is set
8192 */
8193 if (quota == RUNTIME_INF)
8194 quota = parent_quota;
8195 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8196 return -EINVAL;
8197 }
9c58c79a 8198 cfs_b->hierarchical_quota = quota;
a790de99
PT
8199
8200 return 0;
8201}
8202
8203static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8204{
8277434e 8205 int ret;
a790de99
PT
8206 struct cfs_schedulable_data data = {
8207 .tg = tg,
8208 .period = period,
8209 .quota = quota,
8210 };
8211
8212 if (quota != RUNTIME_INF) {
8213 do_div(data.period, NSEC_PER_USEC);
8214 do_div(data.quota, NSEC_PER_USEC);
8215 }
8216
8277434e
PT
8217 rcu_read_lock();
8218 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8219 rcu_read_unlock();
8220
8221 return ret;
a790de99 8222}
e8da1b18 8223
2da8ca82 8224static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8225{
2da8ca82 8226 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8227 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8228
44ffc75b
TH
8229 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8230 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8231 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8232
8233 return 0;
8234}
ab84d31e 8235#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8236#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8237
052f1dc7 8238#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8239static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8240 struct cftype *cft, s64 val)
6f505b16 8241{
182446d0 8242 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8243}
8244
182446d0
TH
8245static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8246 struct cftype *cft)
6f505b16 8247{
182446d0 8248 return sched_group_rt_runtime(css_tg(css));
6f505b16 8249}
d0b27fa7 8250
182446d0
TH
8251static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8252 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8253{
182446d0 8254 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8255}
8256
182446d0
TH
8257static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8258 struct cftype *cft)
d0b27fa7 8259{
182446d0 8260 return sched_group_rt_period(css_tg(css));
d0b27fa7 8261}
6d6bc0ad 8262#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8263
fe5c7cc2 8264static struct cftype cpu_files[] = {
052f1dc7 8265#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8266 {
8267 .name = "shares",
f4c753b7
PM
8268 .read_u64 = cpu_shares_read_u64,
8269 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8270 },
052f1dc7 8271#endif
ab84d31e
PT
8272#ifdef CONFIG_CFS_BANDWIDTH
8273 {
8274 .name = "cfs_quota_us",
8275 .read_s64 = cpu_cfs_quota_read_s64,
8276 .write_s64 = cpu_cfs_quota_write_s64,
8277 },
8278 {
8279 .name = "cfs_period_us",
8280 .read_u64 = cpu_cfs_period_read_u64,
8281 .write_u64 = cpu_cfs_period_write_u64,
8282 },
e8da1b18
NR
8283 {
8284 .name = "stat",
2da8ca82 8285 .seq_show = cpu_stats_show,
e8da1b18 8286 },
ab84d31e 8287#endif
052f1dc7 8288#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8289 {
9f0c1e56 8290 .name = "rt_runtime_us",
06ecb27c
PM
8291 .read_s64 = cpu_rt_runtime_read,
8292 .write_s64 = cpu_rt_runtime_write,
6f505b16 8293 },
d0b27fa7
PZ
8294 {
8295 .name = "rt_period_us",
f4c753b7
PM
8296 .read_u64 = cpu_rt_period_read_uint,
8297 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8298 },
052f1dc7 8299#endif
4baf6e33 8300 { } /* terminate */
68318b8e
SV
8301};
8302
073219e9 8303struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8304 .css_alloc = cpu_cgroup_css_alloc,
8305 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8306 .css_online = cpu_cgroup_css_online,
8307 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8308 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8309 .can_attach = cpu_cgroup_can_attach,
8310 .attach = cpu_cgroup_attach,
068c5cc5 8311 .exit = cpu_cgroup_exit,
5577964e 8312 .legacy_cftypes = cpu_files,
68318b8e
SV
8313 .early_init = 1,
8314};
8315
052f1dc7 8316#endif /* CONFIG_CGROUP_SCHED */
d842de87 8317
b637a328
PM
8318void dump_cpu_task(int cpu)
8319{
8320 pr_info("Task dump for CPU %d:\n", cpu);
8321 sched_show_task(cpu_curr(cpu));
8322}