sched: Move numa_balancing sysctls to its own file
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
e66f6481
IM
9#include <linux/highmem.h>
10#include <linux/hrtimer_api.h>
11#include <linux/ktime_api.h>
12#include <linux/sched/signal.h>
13#include <linux/syscalls_api.h>
14#include <linux/debug_locks.h>
15#include <linux/prefetch.h>
16#include <linux/capability.h>
17#include <linux/pgtable_api.h>
18#include <linux/wait_bit.h>
19#include <linux/jiffies.h>
20#include <linux/spinlock_api.h>
21#include <linux/cpumask_api.h>
22#include <linux/lockdep_api.h>
23#include <linux/hardirq.h>
24#include <linux/softirq.h>
25#include <linux/refcount_api.h>
26#include <linux/topology.h>
27#include <linux/sched/clock.h>
28#include <linux/sched/cond_resched.h>
d664e399 29#include <linux/sched/cputime.h>
e66f6481 30#include <linux/sched/debug.h>
d664e399
TG
31#include <linux/sched/hotplug.h>
32#include <linux/sched/init.h>
e66f6481
IM
33#include <linux/sched/isolation.h>
34#include <linux/sched/loadavg.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/nohz.h>
37#include <linux/sched/rseq_api.h>
38#include <linux/sched/rt.h>
1da177e4 39
6a5850d1 40#include <linux/blkdev.h>
e66f6481
IM
41#include <linux/context_tracking.h>
42#include <linux/cpuset.h>
43#include <linux/delayacct.h>
44#include <linux/init_task.h>
45#include <linux/interrupt.h>
46#include <linux/ioprio.h>
47#include <linux/kallsyms.h>
0ed557aa 48#include <linux/kcov.h>
e66f6481
IM
49#include <linux/kprobes.h>
50#include <linux/llist_api.h>
51#include <linux/mmu_context.h>
52#include <linux/mmzone.h>
53#include <linux/mutex_api.h>
54#include <linux/nmi.h>
55#include <linux/nospec.h>
56#include <linux/perf_event_api.h>
57#include <linux/profile.h>
58#include <linux/psi.h>
59#include <linux/rcuwait_api.h>
60#include <linux/sched/wake_q.h>
d08b9f0c 61#include <linux/scs.h>
e66f6481
IM
62#include <linux/slab.h>
63#include <linux/syscalls.h>
64#include <linux/vtime.h>
65#include <linux/wait_api.h>
66#include <linux/workqueue_api.h>
67
68#ifdef CONFIG_PREEMPT_DYNAMIC
a7b2553b
IM
69# ifdef CONFIG_GENERIC_ENTRY
70# include <linux/entry-common.h>
71# endif
e66f6481
IM
72#endif
73
74#include <uapi/linux/sched/types.h>
0ed557aa 75
bc1cca97 76#include <asm/irq_regs.h>
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
1da177e4 79
9d246053 80#define CREATE_TRACE_POINTS
e66f6481 81#include <linux/sched/rseq_api.h>
9d246053
PA
82#include <trace/events/sched.h>
83#undef CREATE_TRACE_POINTS
84
325ea10c 85#include "sched.h"
b9e9c6ca
IM
86#include "stats.h"
87#include "autogroup.h"
6e0534f2 88
e66f6481 89#include "autogroup.h"
91c27493 90#include "pelt.h"
1f8db415 91#include "smp.h"
e66f6481 92#include "stats.h"
1da177e4 93
ea138446 94#include "../workqueue_internal.h"
ed29b0b4 95#include "../../io_uring/io-wq.h"
29d5e047 96#include "../smpboot.h"
91c27493 97
a056a5be
QY
98/*
99 * Export tracepoints that act as a bare tracehook (ie: have no trace event
100 * associated with them) to allow external modules to probe them.
101 */
102EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
77cf151b 107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
51cf18c9 108EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 109EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
110EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 113
029632fb 114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
a73f863a 116#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
117/*
118 * Debugging: various feature bits
765cc3a4
PB
119 *
120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121 * sysctl_sched_features, defined in sched.h, to allow constants propagation
122 * at compile time and compiler optimization based on features default.
bf5c91ba 123 */
f00b45c1
PZ
124#define SCHED_FEAT(name, enabled) \
125 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 126const_debug unsigned int sysctl_sched_features =
391e43da 127#include "features.h"
f00b45c1 128 0;
f00b45c1 129#undef SCHED_FEAT
c006fac5
PT
130
131/*
132 * Print a warning if need_resched is set for the given duration (if
133 * LATENCY_WARN is enabled).
134 *
135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136 * per boot.
137 */
138__read_mostly int sysctl_resched_latency_warn_ms = 100;
139__read_mostly int sysctl_resched_latency_warn_once = 1;
140#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 141
b82d9fdd
PZ
142/*
143 * Number of tasks to iterate in a single balance run.
144 * Limited because this is done with IRQs disabled.
145 */
c59862f8 146const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
b82d9fdd 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9edeaea1
PZ
150#ifdef CONFIG_SCHED_CORE
151
152DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153
8a311c74
PZ
154/* kernel prio, less is more */
155static inline int __task_prio(struct task_struct *p)
156{
157 if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 return -2;
159
160 if (rt_prio(p->prio)) /* includes deadline */
161 return p->prio; /* [-1, 99] */
162
163 if (p->sched_class == &idle_sched_class)
164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165
166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167}
168
169/*
170 * l(a,b)
171 * le(a,b) := !l(b,a)
172 * g(a,b) := l(b,a)
173 * ge(a,b) := !l(a,b)
174 */
175
176/* real prio, less is less */
c6047c2e 177static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
178{
179
180 int pa = __task_prio(a), pb = __task_prio(b);
181
182 if (-pa < -pb)
183 return true;
184
185 if (-pb < -pa)
186 return false;
187
188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 return !dl_time_before(a->dl.deadline, b->dl.deadline);
190
c6047c2e
JFG
191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
192 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
193
194 return false;
195}
196
197static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198{
199 if (a->core_cookie < b->core_cookie)
200 return true;
201
202 if (a->core_cookie > b->core_cookie)
203 return false;
204
205 /* flip prio, so high prio is leftmost */
4feee7d1 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
8a311c74
PZ
207 return true;
208
209 return false;
210}
211
212#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213
214static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215{
216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217}
218
219static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220{
221 const struct task_struct *p = __node_2_sc(node);
222 unsigned long cookie = (unsigned long)key;
223
224 if (cookie < p->core_cookie)
225 return -1;
226
227 if (cookie > p->core_cookie)
228 return 1;
229
230 return 0;
231}
232
6e33cad0 233void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
234{
235 rq->core->core_task_seq++;
236
237 if (!p->core_cookie)
238 return;
239
240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241}
242
4feee7d1 243void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
8a311c74
PZ
244{
245 rq->core->core_task_seq++;
246
4feee7d1
JD
247 if (sched_core_enqueued(p)) {
248 rb_erase(&p->core_node, &rq->core_tree);
249 RB_CLEAR_NODE(&p->core_node);
250 }
8a311c74 251
4feee7d1
JD
252 /*
253 * Migrating the last task off the cpu, with the cpu in forced idle
254 * state. Reschedule to create an accounting edge for forced idle,
255 * and re-examine whether the core is still in forced idle state.
256 */
257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 rq->core->core_forceidle_count && rq->curr == rq->idle)
259 resched_curr(rq);
8a311c74
PZ
260}
261
262/*
263 * Find left-most (aka, highest priority) task matching @cookie.
264 */
265static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266{
267 struct rb_node *node;
268
269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 /*
271 * The idle task always matches any cookie!
272 */
273 if (!node)
274 return idle_sched_class.pick_task(rq);
275
276 return __node_2_sc(node);
277}
278
d2dfa17b
PZ
279static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280{
281 struct rb_node *node = &p->core_node;
282
283 node = rb_next(node);
284 if (!node)
285 return NULL;
286
287 p = container_of(node, struct task_struct, core_node);
288 if (p->core_cookie != cookie)
289 return NULL;
290
291 return p;
292}
293
9edeaea1
PZ
294/*
295 * Magic required such that:
296 *
297 * raw_spin_rq_lock(rq);
298 * ...
299 * raw_spin_rq_unlock(rq);
300 *
301 * ends up locking and unlocking the _same_ lock, and all CPUs
302 * always agree on what rq has what lock.
303 *
304 * XXX entirely possible to selectively enable cores, don't bother for now.
305 */
306
307static DEFINE_MUTEX(sched_core_mutex);
875feb41 308static atomic_t sched_core_count;
9edeaea1
PZ
309static struct cpumask sched_core_mask;
310
3c474b32
PZ
311static void sched_core_lock(int cpu, unsigned long *flags)
312{
313 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 int t, i = 0;
315
316 local_irq_save(*flags);
317 for_each_cpu(t, smt_mask)
318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319}
320
321static void sched_core_unlock(int cpu, unsigned long *flags)
322{
323 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 int t;
325
326 for_each_cpu(t, smt_mask)
327 raw_spin_unlock(&cpu_rq(t)->__lock);
328 local_irq_restore(*flags);
329}
330
9edeaea1
PZ
331static void __sched_core_flip(bool enabled)
332{
3c474b32
PZ
333 unsigned long flags;
334 int cpu, t;
9edeaea1
PZ
335
336 cpus_read_lock();
337
338 /*
339 * Toggle the online cores, one by one.
340 */
341 cpumask_copy(&sched_core_mask, cpu_online_mask);
342 for_each_cpu(cpu, &sched_core_mask) {
343 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344
3c474b32 345 sched_core_lock(cpu, &flags);
9edeaea1
PZ
346
347 for_each_cpu(t, smt_mask)
348 cpu_rq(t)->core_enabled = enabled;
349
4feee7d1
JD
350 cpu_rq(cpu)->core->core_forceidle_start = 0;
351
3c474b32 352 sched_core_unlock(cpu, &flags);
9edeaea1
PZ
353
354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 }
356
357 /*
358 * Toggle the offline CPUs.
359 */
585463f0 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
9edeaea1
PZ
361 cpu_rq(cpu)->core_enabled = enabled;
362
363 cpus_read_unlock();
364}
365
8a311c74 366static void sched_core_assert_empty(void)
9edeaea1 367{
8a311c74 368 int cpu;
9edeaea1 369
8a311c74
PZ
370 for_each_possible_cpu(cpu)
371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372}
373
374static void __sched_core_enable(void)
375{
9edeaea1
PZ
376 static_branch_enable(&__sched_core_enabled);
377 /*
378 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 * and future ones will observe !sched_core_disabled().
380 */
381 synchronize_rcu();
382 __sched_core_flip(true);
8a311c74 383 sched_core_assert_empty();
9edeaea1
PZ
384}
385
386static void __sched_core_disable(void)
387{
8a311c74 388 sched_core_assert_empty();
9edeaea1
PZ
389 __sched_core_flip(false);
390 static_branch_disable(&__sched_core_enabled);
391}
392
393void sched_core_get(void)
394{
875feb41
PZ
395 if (atomic_inc_not_zero(&sched_core_count))
396 return;
397
9edeaea1 398 mutex_lock(&sched_core_mutex);
875feb41 399 if (!atomic_read(&sched_core_count))
9edeaea1 400 __sched_core_enable();
875feb41
PZ
401
402 smp_mb__before_atomic();
403 atomic_inc(&sched_core_count);
9edeaea1
PZ
404 mutex_unlock(&sched_core_mutex);
405}
406
875feb41 407static void __sched_core_put(struct work_struct *work)
9edeaea1 408{
875feb41 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 410 __sched_core_disable();
875feb41
PZ
411 mutex_unlock(&sched_core_mutex);
412 }
413}
414
415void sched_core_put(void)
416{
417 static DECLARE_WORK(_work, __sched_core_put);
418
419 /*
420 * "There can be only one"
421 *
422 * Either this is the last one, or we don't actually need to do any
423 * 'work'. If it is the last *again*, we rely on
424 * WORK_STRUCT_PENDING_BIT.
425 */
426 if (!atomic_add_unless(&sched_core_count, -1, 1))
427 schedule_work(&_work);
9edeaea1
PZ
428}
429
8a311c74
PZ
430#else /* !CONFIG_SCHED_CORE */
431
432static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
4feee7d1
JD
433static inline void
434sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
8a311c74 435
9edeaea1
PZ
436#endif /* CONFIG_SCHED_CORE */
437
58877d34
PZ
438/*
439 * Serialization rules:
440 *
441 * Lock order:
442 *
443 * p->pi_lock
444 * rq->lock
445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446 *
447 * rq1->lock
448 * rq2->lock where: rq1 < rq2
449 *
450 * Regular state:
451 *
452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 454 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
455 * to run next.
456 *
457 * Task enqueue is also under rq->lock, possibly taken from another CPU.
458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459 * the local CPU to avoid bouncing the runqueue state around [ see
460 * ttwu_queue_wakelist() ]
461 *
462 * Task wakeup, specifically wakeups that involve migration, are horribly
463 * complicated to avoid having to take two rq->locks.
464 *
465 * Special state:
466 *
467 * System-calls and anything external will use task_rq_lock() which acquires
468 * both p->pi_lock and rq->lock. As a consequence the state they change is
469 * stable while holding either lock:
470 *
471 * - sched_setaffinity()/
472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
473 * - set_user_nice(): p->se.load, p->*prio
474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
475 * p->se.load, p->rt_priority,
476 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
477 * - sched_setnuma(): p->numa_preferred_nid
39c42611 478 * - sched_move_task(): p->sched_task_group
58877d34
PZ
479 * - uclamp_update_active() p->uclamp*
480 *
481 * p->state <- TASK_*:
482 *
483 * is changed locklessly using set_current_state(), __set_current_state() or
484 * set_special_state(), see their respective comments, or by
485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
486 * concurrent self.
487 *
488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489 *
490 * is set by activate_task() and cleared by deactivate_task(), under
491 * rq->lock. Non-zero indicates the task is runnable, the special
492 * ON_RQ_MIGRATING state is used for migration without holding both
493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494 *
495 * p->on_cpu <- { 0, 1 }:
496 *
497 * is set by prepare_task() and cleared by finish_task() such that it will be
498 * set before p is scheduled-in and cleared after p is scheduled-out, both
499 * under rq->lock. Non-zero indicates the task is running on its CPU.
500 *
501 * [ The astute reader will observe that it is possible for two tasks on one
502 * CPU to have ->on_cpu = 1 at the same time. ]
503 *
504 * task_cpu(p): is changed by set_task_cpu(), the rules are:
505 *
506 * - Don't call set_task_cpu() on a blocked task:
507 *
508 * We don't care what CPU we're not running on, this simplifies hotplug,
509 * the CPU assignment of blocked tasks isn't required to be valid.
510 *
511 * - for try_to_wake_up(), called under p->pi_lock:
512 *
513 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
514 *
515 * - for migration called under rq->lock:
516 * [ see task_on_rq_migrating() in task_rq_lock() ]
517 *
518 * o move_queued_task()
519 * o detach_task()
520 *
521 * - for migration called under double_rq_lock():
522 *
523 * o __migrate_swap_task()
524 * o push_rt_task() / pull_rt_task()
525 * o push_dl_task() / pull_dl_task()
526 * o dl_task_offline_migration()
527 *
528 */
529
39d371b7
PZ
530void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531{
d66f1b06
PZ
532 raw_spinlock_t *lock;
533
9edeaea1
PZ
534 /* Matches synchronize_rcu() in __sched_core_enable() */
535 preempt_disable();
d66f1b06
PZ
536 if (sched_core_disabled()) {
537 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
538 /* preempt_count *MUST* be > 1 */
539 preempt_enable_no_resched();
d66f1b06
PZ
540 return;
541 }
542
543 for (;;) {
9ef7e7e3 544 lock = __rq_lockp(rq);
d66f1b06 545 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 546 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
547 /* preempt_count *MUST* be > 1 */
548 preempt_enable_no_resched();
d66f1b06 549 return;
9edeaea1 550 }
d66f1b06
PZ
551 raw_spin_unlock(lock);
552 }
39d371b7
PZ
553}
554
555bool raw_spin_rq_trylock(struct rq *rq)
556{
d66f1b06
PZ
557 raw_spinlock_t *lock;
558 bool ret;
559
9edeaea1
PZ
560 /* Matches synchronize_rcu() in __sched_core_enable() */
561 preempt_disable();
562 if (sched_core_disabled()) {
563 ret = raw_spin_trylock(&rq->__lock);
564 preempt_enable();
565 return ret;
566 }
d66f1b06
PZ
567
568 for (;;) {
9ef7e7e3 569 lock = __rq_lockp(rq);
d66f1b06 570 ret = raw_spin_trylock(lock);
9ef7e7e3 571 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 572 preempt_enable();
d66f1b06 573 return ret;
9edeaea1 574 }
d66f1b06
PZ
575 raw_spin_unlock(lock);
576 }
39d371b7
PZ
577}
578
579void raw_spin_rq_unlock(struct rq *rq)
580{
581 raw_spin_unlock(rq_lockp(rq));
582}
583
d66f1b06
PZ
584#ifdef CONFIG_SMP
585/*
586 * double_rq_lock - safely lock two runqueues
587 */
588void double_rq_lock(struct rq *rq1, struct rq *rq2)
589{
590 lockdep_assert_irqs_disabled();
591
592 if (rq_order_less(rq2, rq1))
593 swap(rq1, rq2);
594
595 raw_spin_rq_lock(rq1);
2679a837
HJ
596 if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
d66f1b06 598
2679a837 599 double_rq_clock_clear_update(rq1, rq2);
d66f1b06
PZ
600}
601#endif
602
3e71a462
PZ
603/*
604 * __task_rq_lock - lock the rq @p resides on.
605 */
eb580751 606struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
607 __acquires(rq->lock)
608{
609 struct rq *rq;
610
611 lockdep_assert_held(&p->pi_lock);
612
613 for (;;) {
614 rq = task_rq(p);
5cb9eaa3 615 raw_spin_rq_lock(rq);
3e71a462 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 617 rq_pin_lock(rq, rf);
3e71a462
PZ
618 return rq;
619 }
5cb9eaa3 620 raw_spin_rq_unlock(rq);
3e71a462
PZ
621
622 while (unlikely(task_on_rq_migrating(p)))
623 cpu_relax();
624 }
625}
626
627/*
628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629 */
eb580751 630struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
631 __acquires(p->pi_lock)
632 __acquires(rq->lock)
633{
634 struct rq *rq;
635
636 for (;;) {
eb580751 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 638 rq = task_rq(p);
5cb9eaa3 639 raw_spin_rq_lock(rq);
3e71a462
PZ
640 /*
641 * move_queued_task() task_rq_lock()
642 *
643 * ACQUIRE (rq->lock)
644 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
646 * [S] ->cpu = new_cpu [L] task_rq()
647 * [L] ->on_rq
648 * RELEASE (rq->lock)
649 *
c546951d 650 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
651 * the old rq->lock will fully serialize against the stores.
652 *
c546951d
AP
653 * If we observe the new CPU in task_rq_lock(), the address
654 * dependency headed by '[L] rq = task_rq()' and the acquire
655 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
656 */
657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 658 rq_pin_lock(rq, rf);
3e71a462
PZ
659 return rq;
660 }
5cb9eaa3 661 raw_spin_rq_unlock(rq);
eb580751 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
663
664 while (unlikely(task_on_rq_migrating(p)))
665 cpu_relax();
666 }
667}
668
535b9552
IM
669/*
670 * RQ-clock updating methods:
671 */
672
673static void update_rq_clock_task(struct rq *rq, s64 delta)
674{
675/*
676 * In theory, the compile should just see 0 here, and optimize out the call
677 * to sched_rt_avg_update. But I don't trust it...
678 */
11d4afd4
VG
679 s64 __maybe_unused steal = 0, irq_delta = 0;
680
535b9552
IM
681#ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683
684 /*
685 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 * this case when a previous update_rq_clock() happened inside a
687 * {soft,}irq region.
688 *
689 * When this happens, we stop ->clock_task and only update the
690 * prev_irq_time stamp to account for the part that fit, so that a next
691 * update will consume the rest. This ensures ->clock_task is
692 * monotonic.
693 *
694 * It does however cause some slight miss-attribution of {soft,}irq
695 * time, a more accurate solution would be to update the irq_time using
696 * the current rq->clock timestamp, except that would require using
697 * atomic ops.
698 */
699 if (irq_delta > delta)
700 irq_delta = delta;
701
702 rq->prev_irq_time += irq_delta;
703 delta -= irq_delta;
52b1364b 704 psi_account_irqtime(rq->curr, irq_delta);
535b9552
IM
705#endif
706#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 if (static_key_false((&paravirt_steal_rq_enabled))) {
708 steal = paravirt_steal_clock(cpu_of(rq));
709 steal -= rq->prev_steal_time_rq;
710
711 if (unlikely(steal > delta))
712 steal = delta;
713
714 rq->prev_steal_time_rq += steal;
715 delta -= steal;
716 }
717#endif
718
719 rq->clock_task += delta;
720
11d4afd4 721#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 723 update_irq_load_avg(rq, irq_delta + steal);
535b9552 724#endif
23127296 725 update_rq_clock_pelt(rq, delta);
535b9552
IM
726}
727
728void update_rq_clock(struct rq *rq)
729{
730 s64 delta;
731
5cb9eaa3 732 lockdep_assert_rq_held(rq);
535b9552
IM
733
734 if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 return;
736
737#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
738 if (sched_feat(WARN_DOUBLE_CLOCK))
739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
740 rq->clock_update_flags |= RQCF_UPDATED;
741#endif
26ae58d2 742
535b9552
IM
743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 if (delta < 0)
745 return;
746 rq->clock += delta;
747 update_rq_clock_task(rq, delta);
748}
749
8f4d37ec
PZ
750#ifdef CONFIG_SCHED_HRTICK
751/*
752 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 753 */
8f4d37ec 754
8f4d37ec
PZ
755static void hrtick_clear(struct rq *rq)
756{
757 if (hrtimer_active(&rq->hrtick_timer))
758 hrtimer_cancel(&rq->hrtick_timer);
759}
760
8f4d37ec
PZ
761/*
762 * High-resolution timer tick.
763 * Runs from hardirq context with interrupts disabled.
764 */
765static enum hrtimer_restart hrtick(struct hrtimer *timer)
766{
767 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 768 struct rq_flags rf;
8f4d37ec
PZ
769
770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771
8a8c69c3 772 rq_lock(rq, &rf);
3e51f33f 773 update_rq_clock(rq);
8f4d37ec 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 775 rq_unlock(rq, &rf);
8f4d37ec
PZ
776
777 return HRTIMER_NORESTART;
778}
779
95e904c7 780#ifdef CONFIG_SMP
971ee28c 781
4961b6e1 782static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
783{
784 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 785 ktime_t time = rq->hrtick_time;
971ee28c 786
156ec6f4 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
788}
789
31656519
PZ
790/*
791 * called from hardirq (IPI) context
792 */
793static void __hrtick_start(void *arg)
b328ca18 794{
31656519 795 struct rq *rq = arg;
8a8c69c3 796 struct rq_flags rf;
b328ca18 797
8a8c69c3 798 rq_lock(rq, &rf);
971ee28c 799 __hrtick_restart(rq);
8a8c69c3 800 rq_unlock(rq, &rf);
b328ca18
PZ
801}
802
31656519
PZ
803/*
804 * Called to set the hrtick timer state.
805 *
806 * called with rq->lock held and irqs disabled
807 */
029632fb 808void hrtick_start(struct rq *rq, u64 delay)
b328ca18 809{
31656519 810 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 811 s64 delta;
812
813 /*
814 * Don't schedule slices shorter than 10000ns, that just
815 * doesn't make sense and can cause timer DoS.
816 */
817 delta = max_t(s64, delay, 10000LL);
156ec6f4 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 819
fd3eafda 820 if (rq == this_rq())
971ee28c 821 __hrtick_restart(rq);
fd3eafda 822 else
c46fff2a 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
824}
825
31656519
PZ
826#else
827/*
828 * Called to set the hrtick timer state.
829 *
830 * called with rq->lock held and irqs disabled
831 */
029632fb 832void hrtick_start(struct rq *rq, u64 delay)
31656519 833{
86893335
WL
834 /*
835 * Don't schedule slices shorter than 10000ns, that just
836 * doesn't make sense. Rely on vruntime for fairness.
837 */
838 delay = max_t(u64, delay, 10000LL);
4961b6e1 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 840 HRTIMER_MODE_REL_PINNED_HARD);
31656519 841}
90b5363a 842
31656519 843#endif /* CONFIG_SMP */
8f4d37ec 844
77a021be 845static void hrtick_rq_init(struct rq *rq)
8f4d37ec 846{
31656519 847#ifdef CONFIG_SMP
545b8c8d 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 849#endif
d5096aa6 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 851 rq->hrtick_timer.function = hrtick;
8f4d37ec 852}
006c75f1 853#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
854static inline void hrtick_clear(struct rq *rq)
855{
856}
857
77a021be 858static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
859{
860}
006c75f1 861#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 862
5529578a
FW
863/*
864 * cmpxchg based fetch_or, macro so it works for different integer types
865 */
866#define fetch_or(ptr, mask) \
867 ({ \
868 typeof(ptr) _ptr = (ptr); \
869 typeof(mask) _mask = (mask); \
c02d5546 870 typeof(*_ptr) _val = *_ptr; \
5529578a 871 \
c02d5546
UB
872 do { \
873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
874 _val; \
5529578a
FW
875})
876
e3baac47 877#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
878/*
879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880 * this avoids any races wrt polling state changes and thereby avoids
881 * spurious IPIs.
882 */
c02d5546 883static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
884{
885 struct thread_info *ti = task_thread_info(p);
886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887}
e3baac47
PZ
888
889/*
890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891 *
892 * If this returns true, then the idle task promises to call
893 * sched_ttwu_pending() and reschedule soon.
894 */
895static bool set_nr_if_polling(struct task_struct *p)
896{
897 struct thread_info *ti = task_thread_info(p);
c02d5546 898 typeof(ti->flags) val = READ_ONCE(ti->flags);
e3baac47
PZ
899
900 for (;;) {
901 if (!(val & _TIF_POLLING_NRFLAG))
902 return false;
903 if (val & _TIF_NEED_RESCHED)
904 return true;
c02d5546 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
e3baac47 906 break;
e3baac47
PZ
907 }
908 return true;
909}
910
fd99f91a 911#else
c02d5546 912static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
913{
914 set_tsk_need_resched(p);
915 return true;
916}
e3baac47
PZ
917
918#ifdef CONFIG_SMP
c02d5546 919static inline bool set_nr_if_polling(struct task_struct *p)
e3baac47
PZ
920{
921 return false;
922}
923#endif
fd99f91a
PZ
924#endif
925
07879c6a 926static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
927{
928 struct wake_q_node *node = &task->wake_q;
929
930 /*
931 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 932 * it's already queued (either by us or someone else) and will get the
76751049
PZ
933 * wakeup due to that.
934 *
4c4e3731
PZ
935 * In order to ensure that a pending wakeup will observe our pending
936 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 937 */
4c4e3731 938 smp_mb__before_atomic();
87ff19cb 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 940 return false;
76751049
PZ
941
942 /*
943 * The head is context local, there can be no concurrency.
944 */
945 *head->lastp = node;
946 head->lastp = &node->next;
07879c6a
DB
947 return true;
948}
949
950/**
951 * wake_q_add() - queue a wakeup for 'later' waking.
952 * @head: the wake_q_head to add @task to
953 * @task: the task to queue for 'later' wakeup
954 *
955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957 * instantly.
958 *
959 * This function must be used as-if it were wake_up_process(); IOW the task
960 * must be ready to be woken at this location.
961 */
962void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963{
964 if (__wake_q_add(head, task))
965 get_task_struct(task);
966}
967
968/**
969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970 * @head: the wake_q_head to add @task to
971 * @task: the task to queue for 'later' wakeup
972 *
973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975 * instantly.
976 *
977 * This function must be used as-if it were wake_up_process(); IOW the task
978 * must be ready to be woken at this location.
979 *
980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981 * that already hold reference to @task can call the 'safe' version and trust
982 * wake_q to do the right thing depending whether or not the @task is already
983 * queued for wakeup.
984 */
985void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986{
987 if (!__wake_q_add(head, task))
988 put_task_struct(task);
76751049
PZ
989}
990
991void wake_up_q(struct wake_q_head *head)
992{
993 struct wake_q_node *node = head->first;
994
995 while (node != WAKE_Q_TAIL) {
996 struct task_struct *task;
997
998 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 999 /* Task can safely be re-inserted now: */
76751049
PZ
1000 node = node->next;
1001 task->wake_q.next = NULL;
1002
1003 /*
7696f991
AP
1004 * wake_up_process() executes a full barrier, which pairs with
1005 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
1006 */
1007 wake_up_process(task);
1008 put_task_struct(task);
1009 }
1010}
1011
c24d20db 1012/*
8875125e 1013 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
1014 *
1015 * On UP this means the setting of the need_resched flag, on SMP it
1016 * might also involve a cross-CPU call to trigger the scheduler on
1017 * the target CPU.
1018 */
8875125e 1019void resched_curr(struct rq *rq)
c24d20db 1020{
8875125e 1021 struct task_struct *curr = rq->curr;
c24d20db
IM
1022 int cpu;
1023
5cb9eaa3 1024 lockdep_assert_rq_held(rq);
c24d20db 1025
8875125e 1026 if (test_tsk_need_resched(curr))
c24d20db
IM
1027 return;
1028
8875125e 1029 cpu = cpu_of(rq);
fd99f91a 1030
f27dde8d 1031 if (cpu == smp_processor_id()) {
8875125e 1032 set_tsk_need_resched(curr);
f27dde8d 1033 set_preempt_need_resched();
c24d20db 1034 return;
f27dde8d 1035 }
c24d20db 1036
8875125e 1037 if (set_nr_and_not_polling(curr))
c24d20db 1038 smp_send_reschedule(cpu);
dfc68f29
AL
1039 else
1040 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
1041}
1042
029632fb 1043void resched_cpu(int cpu)
c24d20db
IM
1044{
1045 struct rq *rq = cpu_rq(cpu);
1046 unsigned long flags;
1047
5cb9eaa3 1048 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
1049 if (cpu_online(cpu) || cpu == smp_processor_id())
1050 resched_curr(rq);
5cb9eaa3 1051 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 1052}
06d8308c 1053
b021fe3e 1054#ifdef CONFIG_SMP
3451d024 1055#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 1056/*
d1ccc66d
IM
1057 * In the semi idle case, use the nearest busy CPU for migrating timers
1058 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
1059 *
1060 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
1061 * selecting an idle CPU will add more delays to the timers than intended
1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 1063 */
bc7a34b8 1064int get_nohz_timer_target(void)
83cd4fe2 1065{
e938b9c9 1066 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 1067 struct sched_domain *sd;
031e3bd8 1068 const struct cpumask *hk_mask;
83cd4fe2 1069
04d4e665 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
e938b9c9
WL
1071 if (!idle_cpu(cpu))
1072 return cpu;
1073 default_cpu = cpu;
1074 }
6201b4d6 1075
04d4e665 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
031e3bd8 1077
057f3fad 1078 rcu_read_lock();
83cd4fe2 1079 for_each_domain(cpu, sd) {
031e3bd8 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1081 if (cpu == i)
1082 continue;
1083
e938b9c9 1084 if (!idle_cpu(i)) {
057f3fad
PZ
1085 cpu = i;
1086 goto unlock;
1087 }
1088 }
83cd4fe2 1089 }
9642d18e 1090
e938b9c9 1091 if (default_cpu == -1)
04d4e665 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
e938b9c9 1093 cpu = default_cpu;
057f3fad
PZ
1094unlock:
1095 rcu_read_unlock();
83cd4fe2
VP
1096 return cpu;
1097}
d1ccc66d 1098
06d8308c
TG
1099/*
1100 * When add_timer_on() enqueues a timer into the timer wheel of an
1101 * idle CPU then this timer might expire before the next timer event
1102 * which is scheduled to wake up that CPU. In case of a completely
1103 * idle system the next event might even be infinite time into the
1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105 * leaves the inner idle loop so the newly added timer is taken into
1106 * account when the CPU goes back to idle and evaluates the timer
1107 * wheel for the next timer event.
1108 */
1c20091e 1109static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1110{
1111 struct rq *rq = cpu_rq(cpu);
1112
1113 if (cpu == smp_processor_id())
1114 return;
1115
67b9ca70 1116 if (set_nr_and_not_polling(rq->idle))
06d8308c 1117 smp_send_reschedule(cpu);
dfc68f29
AL
1118 else
1119 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1120}
1121
c5bfece2 1122static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1123{
53c5fa16
FW
1124 /*
1125 * We just need the target to call irq_exit() and re-evaluate
1126 * the next tick. The nohz full kick at least implies that.
1127 * If needed we can still optimize that later with an
1128 * empty IRQ.
1129 */
379d9ecb
PM
1130 if (cpu_is_offline(cpu))
1131 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1132 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1133 if (cpu != smp_processor_id() ||
1134 tick_nohz_tick_stopped())
53c5fa16 1135 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1136 return true;
1137 }
1138
1139 return false;
1140}
1141
379d9ecb
PM
1142/*
1143 * Wake up the specified CPU. If the CPU is going offline, it is the
1144 * caller's responsibility to deal with the lost wakeup, for example,
1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146 */
1c20091e
FW
1147void wake_up_nohz_cpu(int cpu)
1148{
c5bfece2 1149 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1150 wake_up_idle_cpu(cpu);
1151}
1152
19a1f5ec 1153static void nohz_csd_func(void *info)
45bf76df 1154{
19a1f5ec
PZ
1155 struct rq *rq = info;
1156 int cpu = cpu_of(rq);
1157 unsigned int flags;
873b4c65
VG
1158
1159 /*
19a1f5ec 1160 * Release the rq::nohz_csd.
873b4c65 1161 */
c6f88654 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1163 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1164
19a1f5ec
PZ
1165 rq->idle_balance = idle_cpu(cpu);
1166 if (rq->idle_balance && !need_resched()) {
1167 rq->nohz_idle_balance = flags;
90b5363a
PZI
1168 raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 }
2069dd75
PZ
1170}
1171
3451d024 1172#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1173
ce831b38 1174#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1175bool sched_can_stop_tick(struct rq *rq)
ce831b38 1176{
76d92ac3
FW
1177 int fifo_nr_running;
1178
1179 /* Deadline tasks, even if single, need the tick */
1180 if (rq->dl.dl_nr_running)
1181 return false;
1182
1e78cdbd 1183 /*
b19a888c 1184 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1185 * actual RR behaviour.
1e78cdbd 1186 */
76d92ac3
FW
1187 if (rq->rt.rr_nr_running) {
1188 if (rq->rt.rr_nr_running == 1)
1189 return true;
1190 else
1191 return false;
1e78cdbd
RR
1192 }
1193
2548d546
PZ
1194 /*
1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 * forced preemption between FIFO tasks.
1197 */
1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 if (fifo_nr_running)
1200 return true;
1201
1202 /*
1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 * if there's more than one we need the tick for involuntary
1205 * preemption.
1206 */
1207 if (rq->nr_running > 1)
541b8264 1208 return false;
ce831b38 1209
541b8264 1210 return true;
ce831b38
FW
1211}
1212#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1213#endif /* CONFIG_SMP */
18d95a28 1214
a790de99
PT
1215#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1217/*
8277434e
PT
1218 * Iterate task_group tree rooted at *from, calling @down when first entering a
1219 * node and @up when leaving it for the final time.
1220 *
1221 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1222 */
029632fb 1223int walk_tg_tree_from(struct task_group *from,
8277434e 1224 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1225{
1226 struct task_group *parent, *child;
eb755805 1227 int ret;
c09595f6 1228
8277434e
PT
1229 parent = from;
1230
c09595f6 1231down:
eb755805
PZ
1232 ret = (*down)(parent, data);
1233 if (ret)
8277434e 1234 goto out;
c09595f6
PZ
1235 list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 parent = child;
1237 goto down;
1238
1239up:
1240 continue;
1241 }
eb755805 1242 ret = (*up)(parent, data);
8277434e
PT
1243 if (ret || parent == from)
1244 goto out;
c09595f6
PZ
1245
1246 child = parent;
1247 parent = parent->parent;
1248 if (parent)
1249 goto up;
8277434e 1250out:
eb755805 1251 return ret;
c09595f6
PZ
1252}
1253
029632fb 1254int tg_nop(struct task_group *tg, void *data)
eb755805 1255{
e2b245f8 1256 return 0;
eb755805 1257}
18d95a28
PZ
1258#endif
1259
b1e82065 1260static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1261{
f05998d4
NR
1262 int prio = p->static_prio - MAX_RT_PRIO;
1263 struct load_weight *load = &p->se.load;
1264
dd41f596
IM
1265 /*
1266 * SCHED_IDLE tasks get minimal weight:
1267 */
1da1843f 1268 if (task_has_idle_policy(p)) {
c8b28116 1269 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1270 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1271 return;
1272 }
71f8bd46 1273
9059393e
VG
1274 /*
1275 * SCHED_OTHER tasks have to update their load when changing their
1276 * weight
1277 */
1278 if (update_load && p->sched_class == &fair_sched_class) {
1279 reweight_task(p, prio);
1280 } else {
1281 load->weight = scale_load(sched_prio_to_weight[prio]);
1282 load->inv_weight = sched_prio_to_wmult[prio];
1283 }
71f8bd46
IM
1284}
1285
69842cba 1286#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1287/*
1288 * Serializes updates of utilization clamp values
1289 *
1290 * The (slow-path) user-space triggers utilization clamp value updates which
1291 * can require updates on (fast-path) scheduler's data structures used to
1292 * support enqueue/dequeue operations.
1293 * While the per-CPU rq lock protects fast-path update operations, user-space
1294 * requests are serialized using a mutex to reduce the risk of conflicting
1295 * updates or API abuses.
1296 */
1297static DEFINE_MUTEX(uclamp_mutex);
1298
e8f14172 1299/* Max allowed minimum utilization */
494dcdf4 1300static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
e8f14172
PB
1301
1302/* Max allowed maximum utilization */
494dcdf4 1303static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
e8f14172 1304
13685c4a
QY
1305/*
1306 * By default RT tasks run at the maximum performance point/capacity of the
1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308 * SCHED_CAPACITY_SCALE.
1309 *
1310 * This knob allows admins to change the default behavior when uclamp is being
1311 * used. In battery powered devices, particularly, running at the maximum
1312 * capacity and frequency will increase energy consumption and shorten the
1313 * battery life.
1314 *
1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316 *
1317 * This knob will not override the system default sched_util_clamp_min defined
1318 * above.
1319 */
3267e015 1320static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
13685c4a 1321
e8f14172
PB
1322/* All clamps are required to be less or equal than these values */
1323static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1324
46609ce2
QY
1325/*
1326 * This static key is used to reduce the uclamp overhead in the fast path. It
1327 * primarily disables the call to uclamp_rq_{inc, dec}() in
1328 * enqueue/dequeue_task().
1329 *
1330 * This allows users to continue to enable uclamp in their kernel config with
1331 * minimum uclamp overhead in the fast path.
1332 *
1333 * As soon as userspace modifies any of the uclamp knobs, the static key is
1334 * enabled, since we have an actual users that make use of uclamp
1335 * functionality.
1336 *
1337 * The knobs that would enable this static key are:
1338 *
1339 * * A task modifying its uclamp value with sched_setattr().
1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1342 */
1343DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344
69842cba
PB
1345/* Integer rounded range for each bucket */
1346#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347
1348#define for_each_clamp_id(clamp_id) \
1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350
1351static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352{
6d2f8909 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1354}
1355
7763baac 1356static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1357{
1358 if (clamp_id == UCLAMP_MIN)
1359 return 0;
1360 return SCHED_CAPACITY_SCALE;
1361}
1362
a509a7cd
PB
1363static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 unsigned int value, bool user_defined)
69842cba
PB
1365{
1366 uc_se->value = value;
1367 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1368 uc_se->user_defined = user_defined;
69842cba
PB
1369}
1370
e496187d 1371static inline unsigned int
0413d7f3 1372uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1373 unsigned int clamp_value)
1374{
1375 /*
1376 * Avoid blocked utilization pushing up the frequency when we go
1377 * idle (which drops the max-clamp) by retaining the last known
1378 * max-clamp.
1379 */
1380 if (clamp_id == UCLAMP_MAX) {
1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 return clamp_value;
1383 }
1384
1385 return uclamp_none(UCLAMP_MIN);
1386}
1387
0413d7f3 1388static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1389 unsigned int clamp_value)
1390{
1391 /* Reset max-clamp retention only on idle exit */
1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 return;
1394
1395 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1396}
1397
69842cba 1398static inline
7763baac 1399unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1400 unsigned int clamp_value)
69842cba
PB
1401{
1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 int bucket_id = UCLAMP_BUCKETS - 1;
1404
1405 /*
1406 * Since both min and max clamps are max aggregated, find the
1407 * top most bucket with tasks in.
1408 */
1409 for ( ; bucket_id >= 0; bucket_id--) {
1410 if (!bucket[bucket_id].tasks)
1411 continue;
1412 return bucket[bucket_id].value;
1413 }
1414
1415 /* No tasks -- default clamp values */
e496187d 1416 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1417}
1418
13685c4a
QY
1419static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420{
1421 unsigned int default_util_min;
1422 struct uclamp_se *uc_se;
1423
1424 lockdep_assert_held(&p->pi_lock);
1425
1426 uc_se = &p->uclamp_req[UCLAMP_MIN];
1427
1428 /* Only sync if user didn't override the default */
1429 if (uc_se->user_defined)
1430 return;
1431
1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 uclamp_se_set(uc_se, default_util_min, false);
1434}
1435
1436static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437{
1438 struct rq_flags rf;
1439 struct rq *rq;
1440
1441 if (!rt_task(p))
1442 return;
1443
1444 /* Protect updates to p->uclamp_* */
1445 rq = task_rq_lock(p, &rf);
1446 __uclamp_update_util_min_rt_default(p);
1447 task_rq_unlock(rq, p, &rf);
1448}
1449
3eac870a 1450static inline struct uclamp_se
0413d7f3 1451uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1452{
0213b708 1453 /* Copy by value as we could modify it */
3eac870a
PB
1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1456 unsigned int tg_min, tg_max, value;
3eac870a
PB
1457
1458 /*
1459 * Tasks in autogroups or root task group will be
1460 * restricted by system defaults.
1461 */
1462 if (task_group_is_autogroup(task_group(p)))
1463 return uc_req;
1464 if (task_group(p) == &root_task_group)
1465 return uc_req;
1466
0213b708
QY
1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 value = uc_req.value;
1470 value = clamp(value, tg_min, tg_max);
1471 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1472#endif
1473
1474 return uc_req;
1475}
1476
e8f14172
PB
1477/*
1478 * The effective clamp bucket index of a task depends on, by increasing
1479 * priority:
1480 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1481 * - the task group effective clamp value, for tasks not either in the root
1482 * group or in an autogroup
e8f14172
PB
1483 * - the system default clamp value, defined by the sysadmin
1484 */
1485static inline struct uclamp_se
0413d7f3 1486uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1487{
3eac870a 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1489 struct uclamp_se uc_max = uclamp_default[clamp_id];
1490
1491 /* System default restrictions always apply */
1492 if (unlikely(uc_req.value > uc_max.value))
1493 return uc_max;
1494
1495 return uc_req;
1496}
1497
686516b5 1498unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1499{
1500 struct uclamp_se uc_eff;
1501
1502 /* Task currently refcounted: use back-annotated (effective) value */
1503 if (p->uclamp[clamp_id].active)
686516b5 1504 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1505
1506 uc_eff = uclamp_eff_get(p, clamp_id);
1507
686516b5 1508 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1509}
1510
69842cba
PB
1511/*
1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514 * updates the rq's clamp value if required.
60daf9c1
PB
1515 *
1516 * Tasks can have a task-specific value requested from user-space, track
1517 * within each bucket the maximum value for tasks refcounted in it.
1518 * This "local max aggregation" allows to track the exact "requested" value
1519 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1520 */
1521static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1522 enum uclamp_id clamp_id)
69842cba
PB
1523{
1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 struct uclamp_bucket *bucket;
1527
5cb9eaa3 1528 lockdep_assert_rq_held(rq);
69842cba 1529
e8f14172
PB
1530 /* Update task effective clamp */
1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532
69842cba
PB
1533 bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 bucket->tasks++;
e8f14172 1535 uc_se->active = true;
69842cba 1536
e496187d
PB
1537 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538
60daf9c1
PB
1539 /*
1540 * Local max aggregation: rq buckets always track the max
1541 * "requested" clamp value of its RUNNABLE tasks.
1542 */
1543 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 bucket->value = uc_se->value;
1545
69842cba 1546 if (uc_se->value > READ_ONCE(uc_rq->value))
60daf9c1 1547 WRITE_ONCE(uc_rq->value, uc_se->value);
69842cba
PB
1548}
1549
1550/*
1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552 * is released. If this is the last task reference counting the rq's max
1553 * active clamp value, then the rq's clamp value is updated.
1554 *
1555 * Both refcounted tasks and rq's cached clamp values are expected to be
1556 * always valid. If it's detected they are not, as defensive programming,
1557 * enforce the expected state and warn.
1558 */
1559static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1560 enum uclamp_id clamp_id)
69842cba
PB
1561{
1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 struct uclamp_bucket *bucket;
e496187d 1565 unsigned int bkt_clamp;
69842cba
PB
1566 unsigned int rq_clamp;
1567
5cb9eaa3 1568 lockdep_assert_rq_held(rq);
69842cba 1569
46609ce2
QY
1570 /*
1571 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 *
1574 * In this case the uc_se->active flag should be false since no uclamp
1575 * accounting was performed at enqueue time and we can just return
1576 * here.
1577 *
b19a888c 1578 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1579 * problem too
1580 *
1581 * enqueue(taskA)
1582 * // sched_uclamp_used gets enabled
1583 * enqueue(taskB)
1584 * dequeue(taskA)
b19a888c 1585 * // Must not decrement bucket->tasks here
46609ce2
QY
1586 * dequeue(taskB)
1587 *
1588 * where we could end up with stale data in uc_se and
1589 * bucket[uc_se->bucket_id].
1590 *
1591 * The following check here eliminates the possibility of such race.
1592 */
1593 if (unlikely(!uc_se->active))
1594 return;
1595
69842cba 1596 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1597
69842cba
PB
1598 SCHED_WARN_ON(!bucket->tasks);
1599 if (likely(bucket->tasks))
1600 bucket->tasks--;
46609ce2 1601
e8f14172 1602 uc_se->active = false;
69842cba 1603
60daf9c1
PB
1604 /*
1605 * Keep "local max aggregation" simple and accept to (possibly)
1606 * overboost some RUNNABLE tasks in the same bucket.
1607 * The rq clamp bucket value is reset to its base value whenever
1608 * there are no more RUNNABLE tasks refcounting it.
1609 */
69842cba
PB
1610 if (likely(bucket->tasks))
1611 return;
1612
1613 rq_clamp = READ_ONCE(uc_rq->value);
1614 /*
1615 * Defensive programming: this should never happen. If it happens,
1616 * e.g. due to future modification, warn and fixup the expected value.
1617 */
1618 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1619 if (bucket->value >= rq_clamp) {
1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1621 WRITE_ONCE(uc_rq->value, bkt_clamp);
1622 }
69842cba
PB
1623}
1624
1625static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626{
0413d7f3 1627 enum uclamp_id clamp_id;
69842cba 1628
46609ce2
QY
1629 /*
1630 * Avoid any overhead until uclamp is actually used by the userspace.
1631 *
1632 * The condition is constructed such that a NOP is generated when
1633 * sched_uclamp_used is disabled.
1634 */
1635 if (!static_branch_unlikely(&sched_uclamp_used))
1636 return;
1637
69842cba
PB
1638 if (unlikely(!p->sched_class->uclamp_enabled))
1639 return;
1640
1641 for_each_clamp_id(clamp_id)
1642 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1643
1644 /* Reset clamp idle holding when there is one RUNNABLE task */
1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1647}
1648
1649static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650{
0413d7f3 1651 enum uclamp_id clamp_id;
69842cba 1652
46609ce2
QY
1653 /*
1654 * Avoid any overhead until uclamp is actually used by the userspace.
1655 *
1656 * The condition is constructed such that a NOP is generated when
1657 * sched_uclamp_used is disabled.
1658 */
1659 if (!static_branch_unlikely(&sched_uclamp_used))
1660 return;
1661
69842cba
PB
1662 if (unlikely(!p->sched_class->uclamp_enabled))
1663 return;
1664
1665 for_each_clamp_id(clamp_id)
1666 uclamp_rq_dec_id(rq, p, clamp_id);
1667}
1668
ca4984a7
QP
1669static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 enum uclamp_id clamp_id)
1671{
1672 if (!p->uclamp[clamp_id].active)
1673 return;
1674
1675 uclamp_rq_dec_id(rq, p, clamp_id);
1676 uclamp_rq_inc_id(rq, p, clamp_id);
1677
1678 /*
1679 * Make sure to clear the idle flag if we've transiently reached 0
1680 * active tasks on rq.
1681 */
1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684}
1685
babbe170 1686static inline void
0213b708 1687uclamp_update_active(struct task_struct *p)
babbe170 1688{
0213b708 1689 enum uclamp_id clamp_id;
babbe170
PB
1690 struct rq_flags rf;
1691 struct rq *rq;
1692
1693 /*
1694 * Lock the task and the rq where the task is (or was) queued.
1695 *
1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 * price to pay to safely serialize util_{min,max} updates with
1698 * enqueues, dequeues and migration operations.
1699 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 */
1701 rq = task_rq_lock(p, &rf);
1702
1703 /*
1704 * Setting the clamp bucket is serialized by task_rq_lock().
1705 * If the task is not yet RUNNABLE and its task_struct is not
1706 * affecting a valid clamp bucket, the next time it's enqueued,
1707 * it will already see the updated clamp bucket value.
1708 */
ca4984a7
QP
1709 for_each_clamp_id(clamp_id)
1710 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1711
1712 task_rq_unlock(rq, p, &rf);
1713}
1714
e3b8b6a0 1715#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1716static inline void
0213b708 1717uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1718{
1719 struct css_task_iter it;
1720 struct task_struct *p;
babbe170
PB
1721
1722 css_task_iter_start(css, 0, &it);
0213b708
QY
1723 while ((p = css_task_iter_next(&it)))
1724 uclamp_update_active(p);
babbe170
PB
1725 css_task_iter_end(&it);
1726}
1727
7274a5c1 1728static void cpu_util_update_eff(struct cgroup_subsys_state *css);
494dcdf4
Y
1729#endif
1730
1731#ifdef CONFIG_SYSCTL
1732#ifdef CONFIG_UCLAMP_TASK
1733#ifdef CONFIG_UCLAMP_TASK_GROUP
7274a5c1
PB
1734static void uclamp_update_root_tg(void)
1735{
1736 struct task_group *tg = &root_task_group;
1737
1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 sysctl_sched_uclamp_util_min, false);
1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 sysctl_sched_uclamp_util_max, false);
1742
1743 rcu_read_lock();
1744 cpu_util_update_eff(&root_task_group.css);
1745 rcu_read_unlock();
1746}
1747#else
1748static void uclamp_update_root_tg(void) { }
1749#endif
1750
494dcdf4
Y
1751static void uclamp_sync_util_min_rt_default(void)
1752{
1753 struct task_struct *g, *p;
1754
1755 /*
1756 * copy_process() sysctl_uclamp
1757 * uclamp_min_rt = X;
1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1759 * // link thread smp_mb__after_spinlock()
1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1761 * sched_post_fork() for_each_process_thread()
1762 * __uclamp_sync_rt() __uclamp_sync_rt()
1763 *
1764 * Ensures that either sched_post_fork() will observe the new
1765 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 * task.
1767 */
1768 read_lock(&tasklist_lock);
1769 smp_mb__after_spinlock();
1770 read_unlock(&tasklist_lock);
1771
1772 rcu_read_lock();
1773 for_each_process_thread(g, p)
1774 uclamp_update_util_min_rt_default(p);
1775 rcu_read_unlock();
1776}
1777
3267e015 1778static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1779 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1780{
7274a5c1 1781 bool update_root_tg = false;
13685c4a 1782 int old_min, old_max, old_min_rt;
e8f14172
PB
1783 int result;
1784
2480c093 1785 mutex_lock(&uclamp_mutex);
e8f14172
PB
1786 old_min = sysctl_sched_uclamp_util_min;
1787 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1789
1790 result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 if (result)
1792 goto undo;
1793 if (!write)
1794 goto done;
1795
1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799
e8f14172
PB
1800 result = -EINVAL;
1801 goto undo;
1802 }
1803
1804 if (old_min != sysctl_sched_uclamp_util_min) {
1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1806 sysctl_sched_uclamp_util_min, false);
7274a5c1 1807 update_root_tg = true;
e8f14172
PB
1808 }
1809 if (old_max != sysctl_sched_uclamp_util_max) {
1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1811 sysctl_sched_uclamp_util_max, false);
7274a5c1 1812 update_root_tg = true;
e8f14172
PB
1813 }
1814
46609ce2
QY
1815 if (update_root_tg) {
1816 static_branch_enable(&sched_uclamp_used);
7274a5c1 1817 uclamp_update_root_tg();
46609ce2 1818 }
7274a5c1 1819
13685c4a
QY
1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 static_branch_enable(&sched_uclamp_used);
1822 uclamp_sync_util_min_rt_default();
1823 }
7274a5c1 1824
e8f14172 1825 /*
7274a5c1
PB
1826 * We update all RUNNABLE tasks only when task groups are in use.
1827 * Otherwise, keep it simple and do just a lazy update at each next
1828 * task enqueue time.
e8f14172 1829 */
7274a5c1 1830
e8f14172
PB
1831 goto done;
1832
1833undo:
1834 sysctl_sched_uclamp_util_min = old_min;
1835 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1837done:
2480c093 1838 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1839
1840 return result;
1841}
494dcdf4
Y
1842#endif
1843#endif
e8f14172 1844
a509a7cd
PB
1845static int uclamp_validate(struct task_struct *p,
1846 const struct sched_attr *attr)
1847{
480a6ca2
DE
1848 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1850
480a6ca2
DE
1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 util_min = attr->sched_util_min;
a509a7cd 1853
480a6ca2
DE
1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 return -EINVAL;
1856 }
1857
1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 util_max = attr->sched_util_max;
1860
1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 return -EINVAL;
1863 }
1864
1865 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1866 return -EINVAL;
1867
e65855a5
QY
1868 /*
1869 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 *
1871 * We need to do that here, because enabling static branches is a
1872 * blocking operation which obviously cannot be done while holding
1873 * scheduler locks.
1874 */
1875 static_branch_enable(&sched_uclamp_used);
1876
a509a7cd
PB
1877 return 0;
1878}
1879
480a6ca2
DE
1880static bool uclamp_reset(const struct sched_attr *attr,
1881 enum uclamp_id clamp_id,
1882 struct uclamp_se *uc_se)
1883{
1884 /* Reset on sched class change for a non user-defined clamp value. */
1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 !uc_se->user_defined)
1887 return true;
1888
1889 /* Reset on sched_util_{min,max} == -1. */
1890 if (clamp_id == UCLAMP_MIN &&
1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 attr->sched_util_min == -1) {
1893 return true;
1894 }
1895
1896 if (clamp_id == UCLAMP_MAX &&
1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 attr->sched_util_max == -1) {
1899 return true;
1900 }
1901
1902 return false;
1903}
1904
a509a7cd
PB
1905static void __setscheduler_uclamp(struct task_struct *p,
1906 const struct sched_attr *attr)
1907{
0413d7f3 1908 enum uclamp_id clamp_id;
1a00d999 1909
1a00d999
PB
1910 for_each_clamp_id(clamp_id) {
1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1912 unsigned int value;
1a00d999 1913
480a6ca2 1914 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1915 continue;
1916
13685c4a
QY
1917 /*
1918 * RT by default have a 100% boost value that could be modified
1919 * at runtime.
1920 */
1a00d999 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1922 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1923 else
480a6ca2
DE
1924 value = uclamp_none(clamp_id);
1925
1926 uclamp_se_set(uc_se, value, false);
1a00d999 1927
1a00d999
PB
1928 }
1929
a509a7cd
PB
1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 return;
1932
480a6ca2
DE
1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 attr->sched_util_min != -1) {
a509a7cd
PB
1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 attr->sched_util_min, true);
1937 }
1938
480a6ca2
DE
1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 attr->sched_util_max != -1) {
a509a7cd
PB
1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 attr->sched_util_max, true);
1943 }
1944}
1945
e8f14172
PB
1946static void uclamp_fork(struct task_struct *p)
1947{
0413d7f3 1948 enum uclamp_id clamp_id;
e8f14172 1949
13685c4a
QY
1950 /*
1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 * as the task is still at its early fork stages.
1953 */
e8f14172
PB
1954 for_each_clamp_id(clamp_id)
1955 p->uclamp[clamp_id].active = false;
a87498ac
PB
1956
1957 if (likely(!p->sched_reset_on_fork))
1958 return;
1959
1960 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1961 uclamp_se_set(&p->uclamp_req[clamp_id],
1962 uclamp_none(clamp_id), false);
a87498ac 1963 }
e8f14172
PB
1964}
1965
13685c4a
QY
1966static void uclamp_post_fork(struct task_struct *p)
1967{
1968 uclamp_update_util_min_rt_default(p);
1969}
1970
d81ae8aa
QY
1971static void __init init_uclamp_rq(struct rq *rq)
1972{
1973 enum uclamp_id clamp_id;
1974 struct uclamp_rq *uc_rq = rq->uclamp;
1975
1976 for_each_clamp_id(clamp_id) {
1977 uc_rq[clamp_id] = (struct uclamp_rq) {
1978 .value = uclamp_none(clamp_id)
1979 };
1980 }
1981
315c4f88 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
d81ae8aa
QY
1983}
1984
69842cba
PB
1985static void __init init_uclamp(void)
1986{
e8f14172 1987 struct uclamp_se uc_max = {};
0413d7f3 1988 enum uclamp_id clamp_id;
69842cba
PB
1989 int cpu;
1990
d81ae8aa
QY
1991 for_each_possible_cpu(cpu)
1992 init_uclamp_rq(cpu_rq(cpu));
69842cba 1993
69842cba 1994 for_each_clamp_id(clamp_id) {
e8f14172 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1996 uclamp_none(clamp_id), false);
69842cba 1997 }
e8f14172
PB
1998
1999 /* System defaults allow max clamp values for both indexes */
a509a7cd 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 2001 for_each_clamp_id(clamp_id) {
e8f14172 2002 uclamp_default[clamp_id] = uc_max;
2480c093
PB
2003#ifdef CONFIG_UCLAMP_TASK_GROUP
2004 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 2005 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
2006#endif
2007 }
69842cba
PB
2008}
2009
2010#else /* CONFIG_UCLAMP_TASK */
2011static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2012static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
2013static inline int uclamp_validate(struct task_struct *p,
2014 const struct sched_attr *attr)
2015{
2016 return -EOPNOTSUPP;
2017}
2018static void __setscheduler_uclamp(struct task_struct *p,
2019 const struct sched_attr *attr) { }
e8f14172 2020static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 2021static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
2022static inline void init_uclamp(void) { }
2023#endif /* CONFIG_UCLAMP_TASK */
2024
a1dfb631
MT
2025bool sched_task_on_rq(struct task_struct *p)
2026{
2027 return task_on_rq_queued(p);
2028}
2029
42a20f86
KC
2030unsigned long get_wchan(struct task_struct *p)
2031{
2032 unsigned long ip = 0;
2033 unsigned int state;
2034
2035 if (!p || p == current)
2036 return 0;
2037
2038 /* Only get wchan if task is blocked and we can keep it that way. */
2039 raw_spin_lock_irq(&p->pi_lock);
2040 state = READ_ONCE(p->__state);
2041 smp_rmb(); /* see try_to_wake_up() */
2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 ip = __get_wchan(p);
2044 raw_spin_unlock_irq(&p->pi_lock);
2045
2046 return ip;
2047}
2048
1de64443 2049static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 2050{
0a67d1ee
PZ
2051 if (!(flags & ENQUEUE_NOCLOCK))
2052 update_rq_clock(rq);
2053
eb414681 2054 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 2055 sched_info_enqueue(rq, p);
eb414681
JW
2056 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2057 }
0a67d1ee 2058
69842cba 2059 uclamp_rq_inc(rq, p);
371fd7e7 2060 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
2061
2062 if (sched_core_enabled(rq))
2063 sched_core_enqueue(rq, p);
71f8bd46
IM
2064}
2065
1de64443 2066static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 2067{
8a311c74 2068 if (sched_core_enabled(rq))
4feee7d1 2069 sched_core_dequeue(rq, p, flags);
8a311c74 2070
0a67d1ee
PZ
2071 if (!(flags & DEQUEUE_NOCLOCK))
2072 update_rq_clock(rq);
2073
eb414681 2074 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 2075 sched_info_dequeue(rq, p);
eb414681
JW
2076 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 }
0a67d1ee 2078
69842cba 2079 uclamp_rq_dec(rq, p);
371fd7e7 2080 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
2081}
2082
029632fb 2083void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2084{
371fd7e7 2085 enqueue_task(rq, p, flags);
7dd77884
PZ
2086
2087 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
2088}
2089
029632fb 2090void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2091{
7dd77884
PZ
2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093
371fd7e7 2094 dequeue_task(rq, p, flags);
1e3c88bd
PZ
2095}
2096
f558c2b8 2097static inline int __normal_prio(int policy, int rt_prio, int nice)
14531189 2098{
f558c2b8
PZ
2099 int prio;
2100
2101 if (dl_policy(policy))
2102 prio = MAX_DL_PRIO - 1;
2103 else if (rt_policy(policy))
2104 prio = MAX_RT_PRIO - 1 - rt_prio;
2105 else
2106 prio = NICE_TO_PRIO(nice);
2107
2108 return prio;
14531189
IM
2109}
2110
b29739f9
IM
2111/*
2112 * Calculate the expected normal priority: i.e. priority
2113 * without taking RT-inheritance into account. Might be
2114 * boosted by interactivity modifiers. Changes upon fork,
2115 * setprio syscalls, and whenever the interactivity
2116 * estimator recalculates.
2117 */
36c8b586 2118static inline int normal_prio(struct task_struct *p)
b29739f9 2119{
f558c2b8 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
b29739f9
IM
2121}
2122
2123/*
2124 * Calculate the current priority, i.e. the priority
2125 * taken into account by the scheduler. This value might
2126 * be boosted by RT tasks, or might be boosted by
2127 * interactivity modifiers. Will be RT if the task got
2128 * RT-boosted. If not then it returns p->normal_prio.
2129 */
36c8b586 2130static int effective_prio(struct task_struct *p)
b29739f9
IM
2131{
2132 p->normal_prio = normal_prio(p);
2133 /*
2134 * If we are RT tasks or we were boosted to RT priority,
2135 * keep the priority unchanged. Otherwise, update priority
2136 * to the normal priority:
2137 */
2138 if (!rt_prio(p->prio))
2139 return p->normal_prio;
2140 return p->prio;
2141}
2142
1da177e4
LT
2143/**
2144 * task_curr - is this task currently executing on a CPU?
2145 * @p: the task in question.
e69f6186
YB
2146 *
2147 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2148 */
36c8b586 2149inline int task_curr(const struct task_struct *p)
1da177e4
LT
2150{
2151 return cpu_curr(task_cpu(p)) == p;
2152}
2153
67dfa1b7 2154/*
4c9a4bc8
PZ
2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156 * use the balance_callback list if you want balancing.
2157 *
2158 * this means any call to check_class_changed() must be followed by a call to
2159 * balance_callback().
67dfa1b7 2160 */
cb469845
SR
2161static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 const struct sched_class *prev_class,
da7a735e 2163 int oldprio)
cb469845
SR
2164{
2165 if (prev_class != p->sched_class) {
2166 if (prev_class->switched_from)
da7a735e 2167 prev_class->switched_from(rq, p);
4c9a4bc8 2168
da7a735e 2169 p->sched_class->switched_to(rq, p);
2d3d891d 2170 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2171 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2172}
2173
029632fb 2174void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2175{
aa93cd53 2176 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
546a3fee 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
aa93cd53 2179 resched_curr(rq);
1e5a7405
PZ
2180
2181 /*
2182 * A queue event has occurred, and we're going to schedule. In
2183 * this case, we can save a useless back to back clock update.
2184 */
da0c1e65 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2186 rq_clock_skip_update(rq);
1e5a7405
PZ
2187}
2188
1da177e4 2189#ifdef CONFIG_SMP
175f0e25 2190
af449901
PZ
2191static void
2192__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2193
2194static int __set_cpus_allowed_ptr(struct task_struct *p,
2195 const struct cpumask *new_mask,
2196 u32 flags);
2197
2198static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2199{
2200 if (likely(!p->migration_disabled))
2201 return;
2202
2203 if (p->cpus_ptr != &p->cpus_mask)
2204 return;
2205
2206 /*
2207 * Violates locking rules! see comment in __do_set_cpus_allowed().
2208 */
2209 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2210}
2211
2212void migrate_disable(void)
2213{
3015ef4b
TG
2214 struct task_struct *p = current;
2215
2216 if (p->migration_disabled) {
2217 p->migration_disabled++;
af449901 2218 return;
3015ef4b 2219 }
af449901 2220
3015ef4b
TG
2221 preempt_disable();
2222 this_rq()->nr_pinned++;
2223 p->migration_disabled = 1;
2224 preempt_enable();
af449901
PZ
2225}
2226EXPORT_SYMBOL_GPL(migrate_disable);
2227
2228void migrate_enable(void)
2229{
2230 struct task_struct *p = current;
2231
6d337eab
PZ
2232 if (p->migration_disabled > 1) {
2233 p->migration_disabled--;
af449901 2234 return;
6d337eab 2235 }
af449901 2236
9d0df377
SAS
2237 if (WARN_ON_ONCE(!p->migration_disabled))
2238 return;
2239
6d337eab
PZ
2240 /*
2241 * Ensure stop_task runs either before or after this, and that
2242 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2243 */
2244 preempt_disable();
2245 if (p->cpus_ptr != &p->cpus_mask)
2246 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2247 /*
2248 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2249 * regular cpus_mask, otherwise things that race (eg.
2250 * select_fallback_rq) get confused.
2251 */
af449901 2252 barrier();
6d337eab 2253 p->migration_disabled = 0;
3015ef4b 2254 this_rq()->nr_pinned--;
6d337eab 2255 preempt_enable();
af449901
PZ
2256}
2257EXPORT_SYMBOL_GPL(migrate_enable);
2258
3015ef4b
TG
2259static inline bool rq_has_pinned_tasks(struct rq *rq)
2260{
2261 return rq->nr_pinned;
2262}
2263
175f0e25 2264/*
bee98539 2265 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2266 * __set_cpus_allowed_ptr() and select_fallback_rq().
2267 */
2268static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2269{
5ba2ffba 2270 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2271 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2272 return false;
2273
5ba2ffba
PZ
2274 /* migrate_disabled() must be allowed to finish. */
2275 if (is_migration_disabled(p))
175f0e25
PZ
2276 return cpu_online(cpu);
2277
5ba2ffba
PZ
2278 /* Non kernel threads are not allowed during either online or offline. */
2279 if (!(p->flags & PF_KTHREAD))
9ae606bc 2280 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2281
2282 /* KTHREAD_IS_PER_CPU is always allowed. */
2283 if (kthread_is_per_cpu(p))
2284 return cpu_online(cpu);
2285
2286 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2287 if (cpu_dying(cpu))
5ba2ffba
PZ
2288 return false;
2289
2290 /* But are allowed during online. */
2291 return cpu_online(cpu);
175f0e25
PZ
2292}
2293
5cc389bc
PZ
2294/*
2295 * This is how migration works:
2296 *
2297 * 1) we invoke migration_cpu_stop() on the target CPU using
2298 * stop_one_cpu().
2299 * 2) stopper starts to run (implicitly forcing the migrated thread
2300 * off the CPU)
2301 * 3) it checks whether the migrated task is still in the wrong runqueue.
2302 * 4) if it's in the wrong runqueue then the migration thread removes
2303 * it and puts it into the right queue.
2304 * 5) stopper completes and stop_one_cpu() returns and the migration
2305 * is done.
2306 */
2307
2308/*
2309 * move_queued_task - move a queued task to new rq.
2310 *
2311 * Returns (locked) new rq. Old rq's lock is released.
2312 */
8a8c69c3
PZ
2313static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2314 struct task_struct *p, int new_cpu)
5cc389bc 2315{
5cb9eaa3 2316 lockdep_assert_rq_held(rq);
5cc389bc 2317
58877d34 2318 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2319 set_task_cpu(p, new_cpu);
8a8c69c3 2320 rq_unlock(rq, rf);
5cc389bc
PZ
2321
2322 rq = cpu_rq(new_cpu);
2323
8a8c69c3 2324 rq_lock(rq, rf);
09348d75 2325 WARN_ON_ONCE(task_cpu(p) != new_cpu);
58877d34 2326 activate_task(rq, p, 0);
5cc389bc
PZ
2327 check_preempt_curr(rq, p, 0);
2328
2329 return rq;
2330}
2331
2332struct migration_arg {
6d337eab
PZ
2333 struct task_struct *task;
2334 int dest_cpu;
2335 struct set_affinity_pending *pending;
2336};
2337
50caf9c1
PZ
2338/*
2339 * @refs: number of wait_for_completion()
2340 * @stop_pending: is @stop_work in use
2341 */
6d337eab
PZ
2342struct set_affinity_pending {
2343 refcount_t refs;
9e81889c 2344 unsigned int stop_pending;
6d337eab
PZ
2345 struct completion done;
2346 struct cpu_stop_work stop_work;
2347 struct migration_arg arg;
5cc389bc
PZ
2348};
2349
2350/*
d1ccc66d 2351 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2352 * this because either it can't run here any more (set_cpus_allowed()
2353 * away from this CPU, or CPU going down), or because we're
2354 * attempting to rebalance this task on exec (sched_exec).
2355 *
2356 * So we race with normal scheduler movements, but that's OK, as long
2357 * as the task is no longer on this CPU.
5cc389bc 2358 */
8a8c69c3
PZ
2359static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2360 struct task_struct *p, int dest_cpu)
5cc389bc 2361{
5cc389bc 2362 /* Affinity changed (again). */
175f0e25 2363 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2364 return rq;
5cc389bc 2365
15ff991e 2366 update_rq_clock(rq);
8a8c69c3 2367 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2368
2369 return rq;
5cc389bc
PZ
2370}
2371
2372/*
2373 * migration_cpu_stop - this will be executed by a highprio stopper thread
2374 * and performs thread migration by bumping thread off CPU then
2375 * 'pushing' onto another runqueue.
2376 */
2377static int migration_cpu_stop(void *data)
2378{
2379 struct migration_arg *arg = data;
c20cf065 2380 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2381 struct task_struct *p = arg->task;
2382 struct rq *rq = this_rq();
6d337eab 2383 bool complete = false;
8a8c69c3 2384 struct rq_flags rf;
5cc389bc
PZ
2385
2386 /*
d1ccc66d
IM
2387 * The original target CPU might have gone down and we might
2388 * be on another CPU but it doesn't matter.
5cc389bc 2389 */
6d337eab 2390 local_irq_save(rf.flags);
5cc389bc
PZ
2391 /*
2392 * We need to explicitly wake pending tasks before running
3bd37062 2393 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2394 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2395 */
16bf5a5e 2396 flush_smp_call_function_queue();
5e16bbc2
PZ
2397
2398 raw_spin_lock(&p->pi_lock);
8a8c69c3 2399 rq_lock(rq, &rf);
6d337eab 2400
e140749c
VS
2401 /*
2402 * If we were passed a pending, then ->stop_pending was set, thus
2403 * p->migration_pending must have remained stable.
2404 */
2405 WARN_ON_ONCE(pending && pending != p->migration_pending);
2406
5e16bbc2
PZ
2407 /*
2408 * If task_rq(p) != rq, it cannot be migrated here, because we're
2409 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2410 * we're holding p->pi_lock.
2411 */
bf89a304 2412 if (task_rq(p) == rq) {
6d337eab
PZ
2413 if (is_migration_disabled(p))
2414 goto out;
2415
2416 if (pending) {
e140749c 2417 p->migration_pending = NULL;
6d337eab 2418 complete = true;
6d337eab 2419
3f1bc119
PZ
2420 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2421 goto out;
3f1bc119 2422 }
6d337eab 2423
bf89a304 2424 if (task_on_rq_queued(p))
475ea6c6 2425 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2426 else
475ea6c6 2427 p->wake_cpu = arg->dest_cpu;
6d337eab 2428
3f1bc119
PZ
2429 /*
2430 * XXX __migrate_task() can fail, at which point we might end
2431 * up running on a dodgy CPU, AFAICT this can only happen
2432 * during CPU hotplug, at which point we'll get pushed out
2433 * anyway, so it's probably not a big deal.
2434 */
2435
c20cf065 2436 } else if (pending) {
6d337eab
PZ
2437 /*
2438 * This happens when we get migrated between migrate_enable()'s
2439 * preempt_enable() and scheduling the stopper task. At that
2440 * point we're a regular task again and not current anymore.
2441 *
2442 * A !PREEMPT kernel has a giant hole here, which makes it far
2443 * more likely.
2444 */
2445
d707faa6
VS
2446 /*
2447 * The task moved before the stopper got to run. We're holding
2448 * ->pi_lock, so the allowed mask is stable - if it got
2449 * somewhere allowed, we're done.
2450 */
c20cf065 2451 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2452 p->migration_pending = NULL;
d707faa6
VS
2453 complete = true;
2454 goto out;
2455 }
2456
6d337eab
PZ
2457 /*
2458 * When migrate_enable() hits a rq mis-match we can't reliably
2459 * determine is_migration_disabled() and so have to chase after
2460 * it.
2461 */
9e81889c 2462 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2463 task_rq_unlock(rq, p, &rf);
2464 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2465 &pending->arg, &pending->stop_work);
2466 return 0;
bf89a304 2467 }
6d337eab 2468out:
9e81889c
PZ
2469 if (pending)
2470 pending->stop_pending = false;
6d337eab
PZ
2471 task_rq_unlock(rq, p, &rf);
2472
2473 if (complete)
2474 complete_all(&pending->done);
2475
5cc389bc
PZ
2476 return 0;
2477}
2478
a7c81556
PZ
2479int push_cpu_stop(void *arg)
2480{
2481 struct rq *lowest_rq = NULL, *rq = this_rq();
2482 struct task_struct *p = arg;
2483
2484 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2485 raw_spin_rq_lock(rq);
a7c81556
PZ
2486
2487 if (task_rq(p) != rq)
2488 goto out_unlock;
2489
2490 if (is_migration_disabled(p)) {
2491 p->migration_flags |= MDF_PUSH;
2492 goto out_unlock;
2493 }
2494
2495 p->migration_flags &= ~MDF_PUSH;
2496
2497 if (p->sched_class->find_lock_rq)
2498 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2499
a7c81556
PZ
2500 if (!lowest_rq)
2501 goto out_unlock;
2502
2503 // XXX validate p is still the highest prio task
2504 if (task_rq(p) == rq) {
2505 deactivate_task(rq, p, 0);
2506 set_task_cpu(p, lowest_rq->cpu);
2507 activate_task(lowest_rq, p, 0);
2508 resched_curr(lowest_rq);
2509 }
2510
2511 double_unlock_balance(rq, lowest_rq);
2512
2513out_unlock:
2514 rq->push_busy = false;
5cb9eaa3 2515 raw_spin_rq_unlock(rq);
a7c81556
PZ
2516 raw_spin_unlock_irq(&p->pi_lock);
2517
2518 put_task_struct(p);
5cc389bc
PZ
2519 return 0;
2520}
2521
c5b28038
PZ
2522/*
2523 * sched_class::set_cpus_allowed must do the below, but is not required to
2524 * actually call this function.
2525 */
9cfc3e18 2526void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
5cc389bc 2527{
af449901
PZ
2528 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2529 p->cpus_ptr = new_mask;
2530 return;
2531 }
2532
3bd37062 2533 cpumask_copy(&p->cpus_mask, new_mask);
5cc389bc
PZ
2534 p->nr_cpus_allowed = cpumask_weight(new_mask);
2535}
2536
9cfc3e18
PZ
2537static void
2538__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
c5b28038 2539{
6c37067e
PZ
2540 struct rq *rq = task_rq(p);
2541 bool queued, running;
2542
af449901
PZ
2543 /*
2544 * This here violates the locking rules for affinity, since we're only
2545 * supposed to change these variables while holding both rq->lock and
2546 * p->pi_lock.
2547 *
2548 * HOWEVER, it magically works, because ttwu() is the only code that
2549 * accesses these variables under p->pi_lock and only does so after
2550 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2551 * before finish_task().
2552 *
2553 * XXX do further audits, this smells like something putrid.
2554 */
2555 if (flags & SCA_MIGRATE_DISABLE)
2556 SCHED_WARN_ON(!p->on_cpu);
2557 else
2558 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2559
2560 queued = task_on_rq_queued(p);
2561 running = task_current(rq, p);
2562
2563 if (queued) {
2564 /*
2565 * Because __kthread_bind() calls this on blocked tasks without
2566 * holding rq->lock.
2567 */
5cb9eaa3 2568 lockdep_assert_rq_held(rq);
7a57f32a 2569 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2570 }
2571 if (running)
2572 put_prev_task(rq, p);
2573
9cfc3e18 2574 p->sched_class->set_cpus_allowed(p, new_mask, flags);
6c37067e 2575
6c37067e 2576 if (queued)
7134b3e9 2577 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2578 if (running)
03b7fad1 2579 set_next_task(rq, p);
c5b28038
PZ
2580}
2581
9cfc3e18
PZ
2582void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2583{
2584 __do_set_cpus_allowed(p, new_mask, 0);
2585}
2586
b90ca8ba
WD
2587int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2588 int node)
2589{
2590 if (!src->user_cpus_ptr)
2591 return 0;
2592
2593 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2594 if (!dst->user_cpus_ptr)
2595 return -ENOMEM;
2596
2597 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2598 return 0;
2599}
2600
07ec77a1
WD
2601static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2602{
2603 struct cpumask *user_mask = NULL;
2604
2605 swap(p->user_cpus_ptr, user_mask);
2606
2607 return user_mask;
2608}
2609
b90ca8ba
WD
2610void release_user_cpus_ptr(struct task_struct *p)
2611{
07ec77a1 2612 kfree(clear_user_cpus_ptr(p));
b90ca8ba
WD
2613}
2614
6d337eab 2615/*
c777d847
VS
2616 * This function is wildly self concurrent; here be dragons.
2617 *
2618 *
2619 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2620 * designated task is enqueued on an allowed CPU. If that task is currently
2621 * running, we have to kick it out using the CPU stopper.
2622 *
2623 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2624 * Consider:
2625 *
2626 * Initial conditions: P0->cpus_mask = [0, 1]
2627 *
2628 * P0@CPU0 P1
2629 *
2630 * migrate_disable();
2631 * <preempted>
2632 * set_cpus_allowed_ptr(P0, [1]);
2633 *
2634 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2635 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2636 * This means we need the following scheme:
2637 *
2638 * P0@CPU0 P1
2639 *
2640 * migrate_disable();
2641 * <preempted>
2642 * set_cpus_allowed_ptr(P0, [1]);
2643 * <blocks>
2644 * <resumes>
2645 * migrate_enable();
2646 * __set_cpus_allowed_ptr();
2647 * <wakes local stopper>
2648 * `--> <woken on migration completion>
2649 *
2650 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2651 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2652 * task p are serialized by p->pi_lock, which we can leverage: the one that
2653 * should come into effect at the end of the Migrate-Disable region is the last
2654 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2655 * but we still need to properly signal those waiting tasks at the appropriate
2656 * moment.
2657 *
2658 * This is implemented using struct set_affinity_pending. The first
2659 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2660 * setup an instance of that struct and install it on the targeted task_struct.
2661 * Any and all further callers will reuse that instance. Those then wait for
2662 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2663 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2664 *
2665 *
2666 * (1) In the cases covered above. There is one more where the completion is
2667 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2668 * occurs after the stopper bailed out due to the targeted task still being
2669 * Migrate-Disable. Consider:
c777d847
VS
2670 *
2671 * Initial conditions: P0->cpus_mask = [0, 1]
2672 *
e140749c
VS
2673 * CPU0 P1 P2
2674 * <P0>
2675 * migrate_disable();
2676 * <preempted>
c777d847
VS
2677 * set_cpus_allowed_ptr(P0, [1]);
2678 * <blocks>
e140749c
VS
2679 * <migration/0>
2680 * migration_cpu_stop()
2681 * is_migration_disabled()
2682 * <bails>
c777d847
VS
2683 * set_cpus_allowed_ptr(P0, [0, 1]);
2684 * <signal completion>
2685 * <awakes>
2686 *
2687 * Note that the above is safe vs a concurrent migrate_enable(), as any
2688 * pending affinity completion is preceded by an uninstallation of
2689 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2690 */
2691static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2692 int dest_cpu, unsigned int flags)
2693{
2694 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2695 bool stop_pending, complete = false;
6d337eab
PZ
2696
2697 /* Can the task run on the task's current CPU? If so, we're done */
2698 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2699 struct task_struct *push_task = NULL;
2700
2701 if ((flags & SCA_MIGRATE_ENABLE) &&
2702 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2703 rq->push_busy = true;
2704 push_task = get_task_struct(p);
2705 }
2706
50caf9c1
PZ
2707 /*
2708 * If there are pending waiters, but no pending stop_work,
2709 * then complete now.
2710 */
6d337eab 2711 pending = p->migration_pending;
50caf9c1 2712 if (pending && !pending->stop_pending) {
6d337eab
PZ
2713 p->migration_pending = NULL;
2714 complete = true;
2715 }
50caf9c1 2716
6d337eab
PZ
2717 task_rq_unlock(rq, p, rf);
2718
a7c81556
PZ
2719 if (push_task) {
2720 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2721 p, &rq->push_work);
2722 }
2723
6d337eab 2724 if (complete)
50caf9c1 2725 complete_all(&pending->done);
6d337eab
PZ
2726
2727 return 0;
2728 }
2729
2730 if (!(flags & SCA_MIGRATE_ENABLE)) {
2731 /* serialized by p->pi_lock */
2732 if (!p->migration_pending) {
c777d847 2733 /* Install the request */
6d337eab
PZ
2734 refcount_set(&my_pending.refs, 1);
2735 init_completion(&my_pending.done);
8a6edb52
PZ
2736 my_pending.arg = (struct migration_arg) {
2737 .task = p,
475ea6c6 2738 .dest_cpu = dest_cpu,
8a6edb52
PZ
2739 .pending = &my_pending,
2740 };
2741
6d337eab
PZ
2742 p->migration_pending = &my_pending;
2743 } else {
2744 pending = p->migration_pending;
2745 refcount_inc(&pending->refs);
475ea6c6
VS
2746 /*
2747 * Affinity has changed, but we've already installed a
2748 * pending. migration_cpu_stop() *must* see this, else
2749 * we risk a completion of the pending despite having a
2750 * task on a disallowed CPU.
2751 *
2752 * Serialized by p->pi_lock, so this is safe.
2753 */
2754 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2755 }
2756 }
2757 pending = p->migration_pending;
2758 /*
2759 * - !MIGRATE_ENABLE:
2760 * we'll have installed a pending if there wasn't one already.
2761 *
2762 * - MIGRATE_ENABLE:
2763 * we're here because the current CPU isn't matching anymore,
2764 * the only way that can happen is because of a concurrent
2765 * set_cpus_allowed_ptr() call, which should then still be
2766 * pending completion.
2767 *
2768 * Either way, we really should have a @pending here.
2769 */
2770 if (WARN_ON_ONCE(!pending)) {
2771 task_rq_unlock(rq, p, rf);
2772 return -EINVAL;
2773 }
2774
0b9d46fc 2775 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2776 /*
58b1a450
PZ
2777 * MIGRATE_ENABLE gets here because 'p == current', but for
2778 * anything else we cannot do is_migration_disabled(), punt
2779 * and have the stopper function handle it all race-free.
c777d847 2780 */
9e81889c
PZ
2781 stop_pending = pending->stop_pending;
2782 if (!stop_pending)
2783 pending->stop_pending = true;
58b1a450 2784
58b1a450
PZ
2785 if (flags & SCA_MIGRATE_ENABLE)
2786 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2787
6d337eab 2788 task_rq_unlock(rq, p, rf);
8a6edb52 2789
9e81889c
PZ
2790 if (!stop_pending) {
2791 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2792 &pending->arg, &pending->stop_work);
2793 }
6d337eab 2794
58b1a450
PZ
2795 if (flags & SCA_MIGRATE_ENABLE)
2796 return 0;
6d337eab
PZ
2797 } else {
2798
2799 if (!is_migration_disabled(p)) {
2800 if (task_on_rq_queued(p))
2801 rq = move_queued_task(rq, rf, p, dest_cpu);
2802
50caf9c1
PZ
2803 if (!pending->stop_pending) {
2804 p->migration_pending = NULL;
2805 complete = true;
2806 }
6d337eab
PZ
2807 }
2808 task_rq_unlock(rq, p, rf);
2809
6d337eab
PZ
2810 if (complete)
2811 complete_all(&pending->done);
2812 }
2813
2814 wait_for_completion(&pending->done);
2815
2816 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2817 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2818
c777d847
VS
2819 /*
2820 * Block the original owner of &pending until all subsequent callers
2821 * have seen the completion and decremented the refcount
2822 */
6d337eab
PZ
2823 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2824
50caf9c1
PZ
2825 /* ARGH */
2826 WARN_ON_ONCE(my_pending.stop_pending);
2827
6d337eab
PZ
2828 return 0;
2829}
2830
5cc389bc 2831/*
07ec77a1 2832 * Called with both p->pi_lock and rq->lock held; drops both before returning.
5cc389bc 2833 */
07ec77a1
WD
2834static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2835 const struct cpumask *new_mask,
2836 u32 flags,
2837 struct rq *rq,
2838 struct rq_flags *rf)
2839 __releases(rq->lock)
2840 __releases(p->pi_lock)
5cc389bc 2841{
234a503e 2842 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
e9d867a6 2843 const struct cpumask *cpu_valid_mask = cpu_active_mask;
234a503e 2844 bool kthread = p->flags & PF_KTHREAD;
07ec77a1 2845 struct cpumask *user_mask = NULL;
5cc389bc
PZ
2846 unsigned int dest_cpu;
2847 int ret = 0;
2848
a499c3ea 2849 update_rq_clock(rq);
5cc389bc 2850
234a503e 2851 if (kthread || is_migration_disabled(p)) {
e9d867a6 2852 /*
741ba80f
PZ
2853 * Kernel threads are allowed on online && !active CPUs,
2854 * however, during cpu-hot-unplug, even these might get pushed
2855 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2856 *
2857 * Specifically, migration_disabled() tasks must not fail the
2858 * cpumask_any_and_distribute() pick below, esp. so on
2859 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2860 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2861 */
2862 cpu_valid_mask = cpu_online_mask;
2863 }
2864
234a503e
WD
2865 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2866 ret = -EINVAL;
2867 goto out;
2868 }
2869
25834c73
PZ
2870 /*
2871 * Must re-check here, to close a race against __kthread_bind(),
2872 * sched_setaffinity() is not guaranteed to observe the flag.
2873 */
9cfc3e18 2874 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2875 ret = -EINVAL;
2876 goto out;
2877 }
2878
885b3ba4
VS
2879 if (!(flags & SCA_MIGRATE_ENABLE)) {
2880 if (cpumask_equal(&p->cpus_mask, new_mask))
2881 goto out;
2882
2883 if (WARN_ON_ONCE(p == current &&
2884 is_migration_disabled(p) &&
2885 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2886 ret = -EBUSY;
2887 goto out;
2888 }
2889 }
5cc389bc 2890
46a87b38
PT
2891 /*
2892 * Picking a ~random cpu helps in cases where we are changing affinity
2893 * for groups of tasks (ie. cpuset), so that load balancing is not
2894 * immediately required to distribute the tasks within their new mask.
2895 */
2896 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
714e501e 2897 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2898 ret = -EINVAL;
2899 goto out;
2900 }
2901
9cfc3e18 2902 __do_set_cpus_allowed(p, new_mask, flags);
5cc389bc 2903
07ec77a1
WD
2904 if (flags & SCA_USER)
2905 user_mask = clear_user_cpus_ptr(p);
2906
2907 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2908
2909 kfree(user_mask);
2910
2911 return ret;
5cc389bc 2912
5cc389bc 2913out:
07ec77a1 2914 task_rq_unlock(rq, p, rf);
5cc389bc
PZ
2915
2916 return ret;
2917}
25834c73 2918
07ec77a1
WD
2919/*
2920 * Change a given task's CPU affinity. Migrate the thread to a
2921 * proper CPU and schedule it away if the CPU it's executing on
2922 * is removed from the allowed bitmask.
2923 *
2924 * NOTE: the caller must have a valid reference to the task, the
2925 * task must not exit() & deallocate itself prematurely. The
2926 * call is not atomic; no spinlocks may be held.
2927 */
2928static int __set_cpus_allowed_ptr(struct task_struct *p,
2929 const struct cpumask *new_mask, u32 flags)
2930{
2931 struct rq_flags rf;
2932 struct rq *rq;
2933
2934 rq = task_rq_lock(p, &rf);
2935 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2936}
2937
25834c73
PZ
2938int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2939{
9cfc3e18 2940 return __set_cpus_allowed_ptr(p, new_mask, 0);
25834c73 2941}
5cc389bc
PZ
2942EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2943
07ec77a1
WD
2944/*
2945 * Change a given task's CPU affinity to the intersection of its current
2946 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2947 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2948 * If the resulting mask is empty, leave the affinity unchanged and return
2949 * -EINVAL.
2950 */
2951static int restrict_cpus_allowed_ptr(struct task_struct *p,
2952 struct cpumask *new_mask,
2953 const struct cpumask *subset_mask)
2954{
2955 struct cpumask *user_mask = NULL;
2956 struct rq_flags rf;
2957 struct rq *rq;
2958 int err;
2959
2960 if (!p->user_cpus_ptr) {
2961 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2962 if (!user_mask)
2963 return -ENOMEM;
2964 }
2965
2966 rq = task_rq_lock(p, &rf);
2967
2968 /*
2969 * Forcefully restricting the affinity of a deadline task is
2970 * likely to cause problems, so fail and noisily override the
2971 * mask entirely.
2972 */
2973 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2974 err = -EPERM;
2975 goto err_unlock;
2976 }
2977
2978 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2979 err = -EINVAL;
2980 goto err_unlock;
2981 }
2982
2983 /*
2984 * We're about to butcher the task affinity, so keep track of what
2985 * the user asked for in case we're able to restore it later on.
2986 */
2987 if (user_mask) {
2988 cpumask_copy(user_mask, p->cpus_ptr);
2989 p->user_cpus_ptr = user_mask;
2990 }
2991
2992 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2993
2994err_unlock:
2995 task_rq_unlock(rq, p, &rf);
2996 kfree(user_mask);
2997 return err;
2998}
2999
3000/*
3001 * Restrict the CPU affinity of task @p so that it is a subset of
3002 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3003 * old affinity mask. If the resulting mask is empty, we warn and walk
3004 * up the cpuset hierarchy until we find a suitable mask.
3005 */
3006void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3007{
3008 cpumask_var_t new_mask;
3009 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3010
3011 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3012
3013 /*
3014 * __migrate_task() can fail silently in the face of concurrent
3015 * offlining of the chosen destination CPU, so take the hotplug
3016 * lock to ensure that the migration succeeds.
3017 */
3018 cpus_read_lock();
3019 if (!cpumask_available(new_mask))
3020 goto out_set_mask;
3021
3022 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3023 goto out_free_mask;
3024
3025 /*
3026 * We failed to find a valid subset of the affinity mask for the
3027 * task, so override it based on its cpuset hierarchy.
3028 */
3029 cpuset_cpus_allowed(p, new_mask);
3030 override_mask = new_mask;
3031
3032out_set_mask:
3033 if (printk_ratelimit()) {
3034 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3035 task_pid_nr(p), p->comm,
3036 cpumask_pr_args(override_mask));
3037 }
3038
3039 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3040out_free_mask:
3041 cpus_read_unlock();
3042 free_cpumask_var(new_mask);
3043}
3044
3045static int
3046__sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3047
3048/*
3049 * Restore the affinity of a task @p which was previously restricted by a
3050 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3051 * @p->user_cpus_ptr.
3052 *
3053 * It is the caller's responsibility to serialise this with any calls to
3054 * force_compatible_cpus_allowed_ptr(@p).
3055 */
3056void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3057{
3058 struct cpumask *user_mask = p->user_cpus_ptr;
3059 unsigned long flags;
3060
3061 /*
3062 * Try to restore the old affinity mask. If this fails, then
3063 * we free the mask explicitly to avoid it being inherited across
3064 * a subsequent fork().
3065 */
3066 if (!user_mask || !__sched_setaffinity(p, user_mask))
3067 return;
3068
3069 raw_spin_lock_irqsave(&p->pi_lock, flags);
3070 user_mask = clear_user_cpus_ptr(p);
3071 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3072
3073 kfree(user_mask);
3074}
3075
dd41f596 3076void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 3077{
e2912009 3078#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
3079 unsigned int state = READ_ONCE(p->__state);
3080
e2912009
PZ
3081 /*
3082 * We should never call set_task_cpu() on a blocked task,
3083 * ttwu() will sort out the placement.
3084 */
2f064a59 3085 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 3086
3ea94de1
JP
3087 /*
3088 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3089 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3090 * time relying on p->on_rq.
3091 */
2f064a59 3092 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
3093 p->sched_class == &fair_sched_class &&
3094 (p->on_rq && !task_on_rq_migrating(p)));
3095
0122ec5b 3096#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
3097 /*
3098 * The caller should hold either p->pi_lock or rq->lock, when changing
3099 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3100 *
3101 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 3102 * see task_group().
6c6c54e1
PZ
3103 *
3104 * Furthermore, all task_rq users should acquire both locks, see
3105 * task_rq_lock().
3106 */
0122ec5b 3107 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 3108 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 3109#endif
4ff9083b
PZ
3110 /*
3111 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3112 */
3113 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
3114
3115 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
3116#endif
3117
de1d7286 3118 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 3119
0c69774e 3120 if (task_cpu(p) != new_cpu) {
0a74bef8 3121 if (p->sched_class->migrate_task_rq)
1327237a 3122 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 3123 p->se.nr_migrations++;
d7822b1e 3124 rseq_migrate(p);
ff303e66 3125 perf_event_task_migrate(p);
0c69774e 3126 }
dd41f596
IM
3127
3128 __set_task_cpu(p, new_cpu);
c65cc870
IM
3129}
3130
0ad4e3df 3131#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
3132static void __migrate_swap_task(struct task_struct *p, int cpu)
3133{
da0c1e65 3134 if (task_on_rq_queued(p)) {
ac66f547 3135 struct rq *src_rq, *dst_rq;
8a8c69c3 3136 struct rq_flags srf, drf;
ac66f547
PZ
3137
3138 src_rq = task_rq(p);
3139 dst_rq = cpu_rq(cpu);
3140
8a8c69c3
PZ
3141 rq_pin_lock(src_rq, &srf);
3142 rq_pin_lock(dst_rq, &drf);
3143
ac66f547
PZ
3144 deactivate_task(src_rq, p, 0);
3145 set_task_cpu(p, cpu);
3146 activate_task(dst_rq, p, 0);
3147 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
3148
3149 rq_unpin_lock(dst_rq, &drf);
3150 rq_unpin_lock(src_rq, &srf);
3151
ac66f547
PZ
3152 } else {
3153 /*
3154 * Task isn't running anymore; make it appear like we migrated
3155 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 3156 * previous CPU our target instead of where it really is.
ac66f547
PZ
3157 */
3158 p->wake_cpu = cpu;
3159 }
3160}
3161
3162struct migration_swap_arg {
3163 struct task_struct *src_task, *dst_task;
3164 int src_cpu, dst_cpu;
3165};
3166
3167static int migrate_swap_stop(void *data)
3168{
3169 struct migration_swap_arg *arg = data;
3170 struct rq *src_rq, *dst_rq;
3171 int ret = -EAGAIN;
3172
62694cd5
PZ
3173 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3174 return -EAGAIN;
3175
ac66f547
PZ
3176 src_rq = cpu_rq(arg->src_cpu);
3177 dst_rq = cpu_rq(arg->dst_cpu);
3178
74602315
PZ
3179 double_raw_lock(&arg->src_task->pi_lock,
3180 &arg->dst_task->pi_lock);
ac66f547 3181 double_rq_lock(src_rq, dst_rq);
62694cd5 3182
ac66f547
PZ
3183 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3184 goto unlock;
3185
3186 if (task_cpu(arg->src_task) != arg->src_cpu)
3187 goto unlock;
3188
3bd37062 3189 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
3190 goto unlock;
3191
3bd37062 3192 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
3193 goto unlock;
3194
3195 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3196 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3197
3198 ret = 0;
3199
3200unlock:
3201 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
3202 raw_spin_unlock(&arg->dst_task->pi_lock);
3203 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
3204
3205 return ret;
3206}
3207
3208/*
3209 * Cross migrate two tasks
3210 */
0ad4e3df
SD
3211int migrate_swap(struct task_struct *cur, struct task_struct *p,
3212 int target_cpu, int curr_cpu)
ac66f547
PZ
3213{
3214 struct migration_swap_arg arg;
3215 int ret = -EINVAL;
3216
ac66f547
PZ
3217 arg = (struct migration_swap_arg){
3218 .src_task = cur,
0ad4e3df 3219 .src_cpu = curr_cpu,
ac66f547 3220 .dst_task = p,
0ad4e3df 3221 .dst_cpu = target_cpu,
ac66f547
PZ
3222 };
3223
3224 if (arg.src_cpu == arg.dst_cpu)
3225 goto out;
3226
6acce3ef
PZ
3227 /*
3228 * These three tests are all lockless; this is OK since all of them
3229 * will be re-checked with proper locks held further down the line.
3230 */
ac66f547
PZ
3231 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3232 goto out;
3233
3bd37062 3234 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
3235 goto out;
3236
3bd37062 3237 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
3238 goto out;
3239
286549dc 3240 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
3241 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3242
3243out:
ac66f547
PZ
3244 return ret;
3245}
0ad4e3df 3246#endif /* CONFIG_NUMA_BALANCING */
ac66f547 3247
1da177e4
LT
3248/*
3249 * wait_task_inactive - wait for a thread to unschedule.
3250 *
f9fc8cad
PZ
3251 * Wait for the thread to block in any of the states set in @match_state.
3252 * If it changes, i.e. @p might have woken up, then return zero. When we
3253 * succeed in waiting for @p to be off its CPU, we return a positive number
3254 * (its total switch count). If a second call a short while later returns the
3255 * same number, the caller can be sure that @p has remained unscheduled the
3256 * whole time.
85ba2d86 3257 *
1da177e4
LT
3258 * The caller must ensure that the task *will* unschedule sometime soon,
3259 * else this function might spin for a *long* time. This function can't
3260 * be called with interrupts off, or it may introduce deadlock with
3261 * smp_call_function() if an IPI is sent by the same process we are
3262 * waiting to become inactive.
3263 */
2f064a59 3264unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 3265{
da0c1e65 3266 int running, queued;
eb580751 3267 struct rq_flags rf;
85ba2d86 3268 unsigned long ncsw;
70b97a7f 3269 struct rq *rq;
1da177e4 3270
3a5c359a
AK
3271 for (;;) {
3272 /*
3273 * We do the initial early heuristics without holding
3274 * any task-queue locks at all. We'll only try to get
3275 * the runqueue lock when things look like they will
3276 * work out!
3277 */
3278 rq = task_rq(p);
fa490cfd 3279
3a5c359a
AK
3280 /*
3281 * If the task is actively running on another CPU
3282 * still, just relax and busy-wait without holding
3283 * any locks.
3284 *
3285 * NOTE! Since we don't hold any locks, it's not
3286 * even sure that "rq" stays as the right runqueue!
0b9d46fc 3287 * But we don't care, since "task_on_cpu()" will
3a5c359a
AK
3288 * return false if the runqueue has changed and p
3289 * is actually now running somewhere else!
3290 */
0b9d46fc 3291 while (task_on_cpu(rq, p)) {
f9fc8cad 3292 if (!(READ_ONCE(p->__state) & match_state))
85ba2d86 3293 return 0;
3a5c359a 3294 cpu_relax();
85ba2d86 3295 }
fa490cfd 3296
3a5c359a
AK
3297 /*
3298 * Ok, time to look more closely! We need the rq
3299 * lock now, to be *sure*. If we're wrong, we'll
3300 * just go back and repeat.
3301 */
eb580751 3302 rq = task_rq_lock(p, &rf);
27a9da65 3303 trace_sched_wait_task(p);
0b9d46fc 3304 running = task_on_cpu(rq, p);
da0c1e65 3305 queued = task_on_rq_queued(p);
85ba2d86 3306 ncsw = 0;
f9fc8cad 3307 if (READ_ONCE(p->__state) & match_state)
93dcf55f 3308 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3309 task_rq_unlock(rq, p, &rf);
fa490cfd 3310
85ba2d86
RM
3311 /*
3312 * If it changed from the expected state, bail out now.
3313 */
3314 if (unlikely(!ncsw))
3315 break;
3316
3a5c359a
AK
3317 /*
3318 * Was it really running after all now that we
3319 * checked with the proper locks actually held?
3320 *
3321 * Oops. Go back and try again..
3322 */
3323 if (unlikely(running)) {
3324 cpu_relax();
3325 continue;
3326 }
fa490cfd 3327
3a5c359a
AK
3328 /*
3329 * It's not enough that it's not actively running,
3330 * it must be off the runqueue _entirely_, and not
3331 * preempted!
3332 *
80dd99b3 3333 * So if it was still runnable (but just not actively
3a5c359a
AK
3334 * running right now), it's preempted, and we should
3335 * yield - it could be a while.
3336 */
da0c1e65 3337 if (unlikely(queued)) {
8b0e1953 3338 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3339
3340 set_current_state(TASK_UNINTERRUPTIBLE);
c33627e9 3341 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3a5c359a
AK
3342 continue;
3343 }
fa490cfd 3344
3a5c359a
AK
3345 /*
3346 * Ahh, all good. It wasn't running, and it wasn't
3347 * runnable, which means that it will never become
3348 * running in the future either. We're all done!
3349 */
3350 break;
3351 }
85ba2d86
RM
3352
3353 return ncsw;
1da177e4
LT
3354}
3355
3356/***
3357 * kick_process - kick a running thread to enter/exit the kernel
3358 * @p: the to-be-kicked thread
3359 *
3360 * Cause a process which is running on another CPU to enter
3361 * kernel-mode, without any delay. (to get signals handled.)
3362 *
25985edc 3363 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3364 * because all it wants to ensure is that the remote task enters
3365 * the kernel. If the IPI races and the task has been migrated
3366 * to another CPU then no harm is done and the purpose has been
3367 * achieved as well.
3368 */
36c8b586 3369void kick_process(struct task_struct *p)
1da177e4
LT
3370{
3371 int cpu;
3372
3373 preempt_disable();
3374 cpu = task_cpu(p);
3375 if ((cpu != smp_processor_id()) && task_curr(p))
3376 smp_send_reschedule(cpu);
3377 preempt_enable();
3378}
b43e3521 3379EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3380
30da688e 3381/*
3bd37062 3382 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3383 *
3384 * A few notes on cpu_active vs cpu_online:
3385 *
3386 * - cpu_active must be a subset of cpu_online
3387 *
97fb7a0a 3388 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3389 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3390 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3391 * see it.
3392 *
d1ccc66d 3393 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3394 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3395 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3396 * off.
3397 *
3398 * This means that fallback selection must not select !active CPUs.
3399 * And can assume that any active CPU must be online. Conversely
3400 * select_task_rq() below may allow selection of !active CPUs in order
3401 * to satisfy the above rules.
30da688e 3402 */
5da9a0fb
PZ
3403static int select_fallback_rq(int cpu, struct task_struct *p)
3404{
aa00d89c
TC
3405 int nid = cpu_to_node(cpu);
3406 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3407 enum { cpuset, possible, fail } state = cpuset;
3408 int dest_cpu;
5da9a0fb 3409
aa00d89c 3410 /*
d1ccc66d
IM
3411 * If the node that the CPU is on has been offlined, cpu_to_node()
3412 * will return -1. There is no CPU on the node, and we should
3413 * select the CPU on the other node.
aa00d89c
TC
3414 */
3415 if (nid != -1) {
3416 nodemask = cpumask_of_node(nid);
3417
3418 /* Look for allowed, online CPU in same node. */
3419 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3420 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3421 return dest_cpu;
3422 }
2baab4e9 3423 }
5da9a0fb 3424
2baab4e9
PZ
3425 for (;;) {
3426 /* Any allowed, online CPU? */
3bd37062 3427 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3428 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3429 continue;
175f0e25 3430
2baab4e9
PZ
3431 goto out;
3432 }
5da9a0fb 3433
e73e85f0 3434 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3435 switch (state) {
3436 case cpuset:
97c0054d 3437 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3438 state = possible;
3439 break;
3440 }
df561f66 3441 fallthrough;
2baab4e9 3442 case possible:
af449901
PZ
3443 /*
3444 * XXX When called from select_task_rq() we only
3445 * hold p->pi_lock and again violate locking order.
3446 *
3447 * More yuck to audit.
3448 */
9ae606bc 3449 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3450 state = fail;
3451 break;
2baab4e9
PZ
3452 case fail:
3453 BUG();
3454 break;
3455 }
3456 }
3457
3458out:
3459 if (state != cpuset) {
3460 /*
3461 * Don't tell them about moving exiting tasks or
3462 * kernel threads (both mm NULL), since they never
3463 * leave kernel.
3464 */
3465 if (p->mm && printk_ratelimit()) {
aac74dc4 3466 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3467 task_pid_nr(p), p->comm, cpu);
3468 }
5da9a0fb
PZ
3469 }
3470
3471 return dest_cpu;
3472}
3473
e2912009 3474/*
3bd37062 3475 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3476 */
970b13ba 3477static inline
3aef1551 3478int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3479{
cbce1a68
PZ
3480 lockdep_assert_held(&p->pi_lock);
3481
af449901 3482 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3483 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3484 else
3bd37062 3485 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3486
3487 /*
3488 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3489 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3490 * CPU.
e2912009
PZ
3491 *
3492 * Since this is common to all placement strategies, this lives here.
3493 *
3494 * [ this allows ->select_task() to simply return task_cpu(p) and
3495 * not worry about this generic constraint ]
3496 */
7af443ee 3497 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3498 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3499
3500 return cpu;
970b13ba 3501}
09a40af5 3502
f5832c19
NP
3503void sched_set_stop_task(int cpu, struct task_struct *stop)
3504{
ded467dc 3505 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3506 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3507 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3508
3509 if (stop) {
3510 /*
3511 * Make it appear like a SCHED_FIFO task, its something
3512 * userspace knows about and won't get confused about.
3513 *
3514 * Also, it will make PI more or less work without too
3515 * much confusion -- but then, stop work should not
3516 * rely on PI working anyway.
3517 */
3518 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3519
3520 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3521
3522 /*
3523 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3524 * adjust the effective priority of a task. As a result,
3525 * rt_mutex_setprio() can trigger (RT) balancing operations,
3526 * which can then trigger wakeups of the stop thread to push
3527 * around the current task.
3528 *
3529 * The stop task itself will never be part of the PI-chain, it
3530 * never blocks, therefore that ->pi_lock recursion is safe.
3531 * Tell lockdep about this by placing the stop->pi_lock in its
3532 * own class.
3533 */
3534 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3535 }
3536
3537 cpu_rq(cpu)->stop = stop;
3538
3539 if (old_stop) {
3540 /*
3541 * Reset it back to a normal scheduling class so that
3542 * it can die in pieces.
3543 */
3544 old_stop->sched_class = &rt_sched_class;
3545 }
3546}
3547
74d862b6 3548#else /* CONFIG_SMP */
25834c73
PZ
3549
3550static inline int __set_cpus_allowed_ptr(struct task_struct *p,
9cfc3e18
PZ
3551 const struct cpumask *new_mask,
3552 u32 flags)
25834c73
PZ
3553{
3554 return set_cpus_allowed_ptr(p, new_mask);
3555}
3556
af449901
PZ
3557static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3558
3015ef4b
TG
3559static inline bool rq_has_pinned_tasks(struct rq *rq)
3560{
3561 return false;
3562}
3563
74d862b6 3564#endif /* !CONFIG_SMP */
970b13ba 3565
d7c01d27 3566static void
b84cb5df 3567ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3568{
4fa8d299 3569 struct rq *rq;
b84cb5df 3570
4fa8d299
JP
3571 if (!schedstat_enabled())
3572 return;
3573
3574 rq = this_rq();
d7c01d27 3575
4fa8d299
JP
3576#ifdef CONFIG_SMP
3577 if (cpu == rq->cpu) {
b85c8b71 3578 __schedstat_inc(rq->ttwu_local);
ceeadb83 3579 __schedstat_inc(p->stats.nr_wakeups_local);
d7c01d27
PZ
3580 } else {
3581 struct sched_domain *sd;
3582
ceeadb83 3583 __schedstat_inc(p->stats.nr_wakeups_remote);
057f3fad 3584 rcu_read_lock();
4fa8d299 3585 for_each_domain(rq->cpu, sd) {
d7c01d27 3586 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3587 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3588 break;
3589 }
3590 }
057f3fad 3591 rcu_read_unlock();
d7c01d27 3592 }
f339b9dc
PZ
3593
3594 if (wake_flags & WF_MIGRATED)
ceeadb83 3595 __schedstat_inc(p->stats.nr_wakeups_migrate);
d7c01d27
PZ
3596#endif /* CONFIG_SMP */
3597
b85c8b71 3598 __schedstat_inc(rq->ttwu_count);
ceeadb83 3599 __schedstat_inc(p->stats.nr_wakeups);
d7c01d27
PZ
3600
3601 if (wake_flags & WF_SYNC)
ceeadb83 3602 __schedstat_inc(p->stats.nr_wakeups_sync);
d7c01d27
PZ
3603}
3604
23f41eeb
PZ
3605/*
3606 * Mark the task runnable and perform wakeup-preemption.
3607 */
e7904a28 3608static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3609 struct rq_flags *rf)
9ed3811a 3610{
9ed3811a 3611 check_preempt_curr(rq, p, wake_flags);
2f064a59 3612 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0
PZ
3613 trace_sched_wakeup(p);
3614
9ed3811a 3615#ifdef CONFIG_SMP
4c9a4bc8
PZ
3616 if (p->sched_class->task_woken) {
3617 /*
b19a888c 3618 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3619 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3620 */
d8ac8971 3621 rq_unpin_lock(rq, rf);
9ed3811a 3622 p->sched_class->task_woken(rq, p);
d8ac8971 3623 rq_repin_lock(rq, rf);
4c9a4bc8 3624 }
9ed3811a 3625
e69c6341 3626 if (rq->idle_stamp) {
78becc27 3627 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3628 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3629
abfafa54
JL
3630 update_avg(&rq->avg_idle, delta);
3631
3632 if (rq->avg_idle > max)
9ed3811a 3633 rq->avg_idle = max;
abfafa54 3634
94aafc3e
PZ
3635 rq->wake_stamp = jiffies;
3636 rq->wake_avg_idle = rq->avg_idle / 2;
3637
9ed3811a
TH
3638 rq->idle_stamp = 0;
3639 }
3640#endif
3641}
3642
c05fbafb 3643static void
e7904a28 3644ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3645 struct rq_flags *rf)
c05fbafb 3646{
77558e4d 3647 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3648
5cb9eaa3 3649 lockdep_assert_rq_held(rq);
cbce1a68 3650
c05fbafb
PZ
3651 if (p->sched_contributes_to_load)
3652 rq->nr_uninterruptible--;
b5179ac7 3653
dbfb089d 3654#ifdef CONFIG_SMP
b5179ac7 3655 if (wake_flags & WF_MIGRATED)
59efa0ba 3656 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3657 else
c05fbafb 3658#endif
ec618b84
PZ
3659 if (p->in_iowait) {
3660 delayacct_blkio_end(p);
3661 atomic_dec(&task_rq(p)->nr_iowait);
3662 }
c05fbafb 3663
1b174a2c 3664 activate_task(rq, p, en_flags);
d8ac8971 3665 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3666}
3667
3668/*
58877d34
PZ
3669 * Consider @p being inside a wait loop:
3670 *
3671 * for (;;) {
3672 * set_current_state(TASK_UNINTERRUPTIBLE);
3673 *
3674 * if (CONDITION)
3675 * break;
3676 *
3677 * schedule();
3678 * }
3679 * __set_current_state(TASK_RUNNING);
3680 *
3681 * between set_current_state() and schedule(). In this case @p is still
3682 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3683 * an atomic manner.
3684 *
3685 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3686 * then schedule() must still happen and p->state can be changed to
3687 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3688 * need to do a full wakeup with enqueue.
3689 *
3690 * Returns: %true when the wakeup is done,
3691 * %false otherwise.
c05fbafb 3692 */
58877d34 3693static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3694{
eb580751 3695 struct rq_flags rf;
c05fbafb
PZ
3696 struct rq *rq;
3697 int ret = 0;
3698
eb580751 3699 rq = __task_rq_lock(p, &rf);
da0c1e65 3700 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3701 /* check_preempt_curr() may use rq clock */
3702 update_rq_clock(rq);
d8ac8971 3703 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3704 ret = 1;
3705 }
eb580751 3706 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3707
3708 return ret;
3709}
3710
317f3941 3711#ifdef CONFIG_SMP
a1488664 3712void sched_ttwu_pending(void *arg)
317f3941 3713{
a1488664 3714 struct llist_node *llist = arg;
317f3941 3715 struct rq *rq = this_rq();
73215849 3716 struct task_struct *p, *t;
d8ac8971 3717 struct rq_flags rf;
317f3941 3718
e3baac47
PZ
3719 if (!llist)
3720 return;
3721
126c2092
PZ
3722 /*
3723 * rq::ttwu_pending racy indication of out-standing wakeups.
3724 * Races such that false-negatives are possible, since they
3725 * are shorter lived that false-positives would be.
3726 */
3727 WRITE_ONCE(rq->ttwu_pending, 0);
3728
8a8c69c3 3729 rq_lock_irqsave(rq, &rf);
77558e4d 3730 update_rq_clock(rq);
317f3941 3731
8c4890d1 3732 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3733 if (WARN_ON_ONCE(p->on_cpu))
3734 smp_cond_load_acquire(&p->on_cpu, !VAL);
3735
3736 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3737 set_task_cpu(p, cpu_of(rq));
3738
73215849 3739 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3740 }
317f3941 3741
8a8c69c3 3742 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3743}
3744
b2a02fc4 3745void send_call_function_single_ipi(int cpu)
317f3941 3746{
b2a02fc4 3747 struct rq *rq = cpu_rq(cpu);
ca38062e 3748
b2a02fc4
PZ
3749 if (!set_nr_if_polling(rq->idle))
3750 arch_send_call_function_single_ipi(cpu);
3751 else
3752 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3753}
3754
2ebb1771
MG
3755/*
3756 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3757 * necessary. The wakee CPU on receipt of the IPI will queue the task
3758 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3759 * of the wakeup instead of the waker.
3760 */
3761static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3762{
e3baac47
PZ
3763 struct rq *rq = cpu_rq(cpu);
3764
b7e7ade3
PZ
3765 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3766
126c2092 3767 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3768 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3769}
d6aa8f85 3770
f6be8af1
CL
3771void wake_up_if_idle(int cpu)
3772{
3773 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3774 struct rq_flags rf;
f6be8af1 3775
fd7de1e8
AL
3776 rcu_read_lock();
3777
3778 if (!is_idle_task(rcu_dereference(rq->curr)))
3779 goto out;
f6be8af1 3780
8850cb66
PZ
3781 rq_lock_irqsave(rq, &rf);
3782 if (is_idle_task(rq->curr))
3783 resched_curr(rq);
3784 /* Else CPU is not idle, do nothing here: */
3785 rq_unlock_irqrestore(rq, &rf);
fd7de1e8
AL
3786
3787out:
3788 rcu_read_unlock();
f6be8af1
CL
3789}
3790
39be3501 3791bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623 3792{
42dc938a
VD
3793 if (this_cpu == that_cpu)
3794 return true;
3795
518cd623
PZ
3796 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3797}
c6e7bd7a 3798
751d4cbc 3799static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
2ebb1771 3800{
5ba2ffba
PZ
3801 /*
3802 * Do not complicate things with the async wake_list while the CPU is
3803 * in hotplug state.
3804 */
3805 if (!cpu_active(cpu))
3806 return false;
3807
751d4cbc
MG
3808 /* Ensure the task will still be allowed to run on the CPU. */
3809 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3810 return false;
3811
2ebb1771
MG
3812 /*
3813 * If the CPU does not share cache, then queue the task on the
3814 * remote rqs wakelist to avoid accessing remote data.
3815 */
3816 if (!cpus_share_cache(smp_processor_id(), cpu))
3817 return true;
3818
f3dd3f67
TD
3819 if (cpu == smp_processor_id())
3820 return false;
3821
2ebb1771 3822 /*
f3dd3f67
TD
3823 * If the wakee cpu is idle, or the task is descheduling and the
3824 * only running task on the CPU, then use the wakelist to offload
3825 * the task activation to the idle (or soon-to-be-idle) CPU as
3826 * the current CPU is likely busy. nr_running is checked to
3827 * avoid unnecessary task stacking.
28156108
TD
3828 *
3829 * Note that we can only get here with (wakee) p->on_rq=0,
3830 * p->on_cpu can be whatever, we've done the dequeue, so
3831 * the wakee has been accounted out of ->nr_running.
2ebb1771 3832 */
f3dd3f67 3833 if (!cpu_rq(cpu)->nr_running)
2ebb1771
MG
3834 return true;
3835
3836 return false;
3837}
3838
3839static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3840{
751d4cbc 3841 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
c6e7bd7a 3842 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3843 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3844 return true;
3845 }
3846
3847 return false;
3848}
58877d34
PZ
3849
3850#else /* !CONFIG_SMP */
3851
3852static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3853{
3854 return false;
3855}
3856
d6aa8f85 3857#endif /* CONFIG_SMP */
317f3941 3858
b5179ac7 3859static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3860{
3861 struct rq *rq = cpu_rq(cpu);
d8ac8971 3862 struct rq_flags rf;
c05fbafb 3863
2ebb1771 3864 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3865 return;
317f3941 3866
8a8c69c3 3867 rq_lock(rq, &rf);
77558e4d 3868 update_rq_clock(rq);
d8ac8971 3869 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3870 rq_unlock(rq, &rf);
9ed3811a
TH
3871}
3872
43295d73
TG
3873/*
3874 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3875 *
3876 * The caller holds p::pi_lock if p != current or has preemption
3877 * disabled when p == current.
5f220be2
TG
3878 *
3879 * The rules of PREEMPT_RT saved_state:
3880 *
3881 * The related locking code always holds p::pi_lock when updating
3882 * p::saved_state, which means the code is fully serialized in both cases.
3883 *
3884 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3885 * bits set. This allows to distinguish all wakeup scenarios.
43295d73
TG
3886 */
3887static __always_inline
3888bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3889{
5f220be2
TG
3890 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3891 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3892 state != TASK_RTLOCK_WAIT);
3893 }
3894
43295d73
TG
3895 if (READ_ONCE(p->__state) & state) {
3896 *success = 1;
3897 return true;
3898 }
5f220be2
TG
3899
3900#ifdef CONFIG_PREEMPT_RT
3901 /*
3902 * Saved state preserves the task state across blocking on
3903 * an RT lock. If the state matches, set p::saved_state to
3904 * TASK_RUNNING, but do not wake the task because it waits
3905 * for a lock wakeup. Also indicate success because from
3906 * the regular waker's point of view this has succeeded.
3907 *
3908 * After acquiring the lock the task will restore p::__state
3909 * from p::saved_state which ensures that the regular
3910 * wakeup is not lost. The restore will also set
3911 * p::saved_state to TASK_RUNNING so any further tests will
3912 * not result in false positives vs. @success
3913 */
3914 if (p->saved_state & state) {
3915 p->saved_state = TASK_RUNNING;
3916 *success = 1;
3917 }
3918#endif
43295d73
TG
3919 return false;
3920}
3921
8643cda5
PZ
3922/*
3923 * Notes on Program-Order guarantees on SMP systems.
3924 *
3925 * MIGRATION
3926 *
3927 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3928 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3929 * execution on its new CPU [c1].
8643cda5
PZ
3930 *
3931 * For migration (of runnable tasks) this is provided by the following means:
3932 *
3933 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3934 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3935 * rq(c1)->lock (if not at the same time, then in that order).
3936 * C) LOCK of the rq(c1)->lock scheduling in task
3937 *
7696f991 3938 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3939 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3940 *
3941 * Example:
3942 *
3943 * CPU0 CPU1 CPU2
3944 *
3945 * LOCK rq(0)->lock
3946 * sched-out X
3947 * sched-in Y
3948 * UNLOCK rq(0)->lock
3949 *
3950 * LOCK rq(0)->lock // orders against CPU0
3951 * dequeue X
3952 * UNLOCK rq(0)->lock
3953 *
3954 * LOCK rq(1)->lock
3955 * enqueue X
3956 * UNLOCK rq(1)->lock
3957 *
3958 * LOCK rq(1)->lock // orders against CPU2
3959 * sched-out Z
3960 * sched-in X
3961 * UNLOCK rq(1)->lock
3962 *
3963 *
3964 * BLOCKING -- aka. SLEEP + WAKEUP
3965 *
3966 * For blocking we (obviously) need to provide the same guarantee as for
3967 * migration. However the means are completely different as there is no lock
3968 * chain to provide order. Instead we do:
3969 *
58877d34
PZ
3970 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3971 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3972 *
3973 * Example:
3974 *
3975 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3976 *
3977 * LOCK rq(0)->lock LOCK X->pi_lock
3978 * dequeue X
3979 * sched-out X
3980 * smp_store_release(X->on_cpu, 0);
3981 *
1f03e8d2 3982 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
3983 * X->state = WAKING
3984 * set_task_cpu(X,2)
3985 *
3986 * LOCK rq(2)->lock
3987 * enqueue X
3988 * X->state = RUNNING
3989 * UNLOCK rq(2)->lock
3990 *
3991 * LOCK rq(2)->lock // orders against CPU1
3992 * sched-out Z
3993 * sched-in X
3994 * UNLOCK rq(2)->lock
3995 *
3996 * UNLOCK X->pi_lock
3997 * UNLOCK rq(0)->lock
3998 *
3999 *
7696f991
AP
4000 * However, for wakeups there is a second guarantee we must provide, namely we
4001 * must ensure that CONDITION=1 done by the caller can not be reordered with
4002 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
4003 */
4004
9ed3811a 4005/**
1da177e4 4006 * try_to_wake_up - wake up a thread
9ed3811a 4007 * @p: the thread to be awakened
1da177e4 4008 * @state: the mask of task states that can be woken
9ed3811a 4009 * @wake_flags: wake modifier flags (WF_*)
1da177e4 4010 *
58877d34
PZ
4011 * Conceptually does:
4012 *
4013 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 4014 *
a2250238
PZ
4015 * If the task was not queued/runnable, also place it back on a runqueue.
4016 *
58877d34
PZ
4017 * This function is atomic against schedule() which would dequeue the task.
4018 *
4019 * It issues a full memory barrier before accessing @p->state, see the comment
4020 * with set_current_state().
a2250238 4021 *
58877d34 4022 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 4023 *
58877d34
PZ
4024 * Relies on p->pi_lock stabilizing:
4025 * - p->sched_class
4026 * - p->cpus_ptr
4027 * - p->sched_task_group
4028 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4029 *
4030 * Tries really hard to only take one task_rq(p)->lock for performance.
4031 * Takes rq->lock in:
4032 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4033 * - ttwu_queue() -- new rq, for enqueue of the task;
4034 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4035 *
4036 * As a consequence we race really badly with just about everything. See the
4037 * many memory barriers and their comments for details.
7696f991 4038 *
a2250238
PZ
4039 * Return: %true if @p->state changes (an actual wakeup was done),
4040 * %false otherwise.
1da177e4 4041 */
e4a52bcb
PZ
4042static int
4043try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 4044{
1da177e4 4045 unsigned long flags;
c05fbafb 4046 int cpu, success = 0;
2398f2c6 4047
e3d85487 4048 preempt_disable();
aacedf26
PZ
4049 if (p == current) {
4050 /*
4051 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4052 * == smp_processor_id()'. Together this means we can special
58877d34 4053 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
4054 * without taking any locks.
4055 *
4056 * In particular:
4057 * - we rely on Program-Order guarantees for all the ordering,
4058 * - we're serialized against set_special_state() by virtue of
4059 * it disabling IRQs (this allows not taking ->pi_lock).
4060 */
43295d73 4061 if (!ttwu_state_match(p, state, &success))
e3d85487 4062 goto out;
aacedf26 4063
aacedf26 4064 trace_sched_waking(p);
2f064a59 4065 WRITE_ONCE(p->__state, TASK_RUNNING);
aacedf26
PZ
4066 trace_sched_wakeup(p);
4067 goto out;
4068 }
4069
e0acd0a6
ON
4070 /*
4071 * If we are going to wake up a thread waiting for CONDITION we
4072 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
4073 * reordered with p->state check below. This pairs with smp_store_mb()
4074 * in set_current_state() that the waiting thread does.
e0acd0a6 4075 */
013fdb80 4076 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 4077 smp_mb__after_spinlock();
43295d73 4078 if (!ttwu_state_match(p, state, &success))
aacedf26 4079 goto unlock;
1da177e4 4080
fbd705a0
PZ
4081 trace_sched_waking(p);
4082
135e8c92
BS
4083 /*
4084 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4085 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4086 * in smp_cond_load_acquire() below.
4087 *
3d85b270
AP
4088 * sched_ttwu_pending() try_to_wake_up()
4089 * STORE p->on_rq = 1 LOAD p->state
4090 * UNLOCK rq->lock
4091 *
4092 * __schedule() (switch to task 'p')
4093 * LOCK rq->lock smp_rmb();
4094 * smp_mb__after_spinlock();
4095 * UNLOCK rq->lock
135e8c92
BS
4096 *
4097 * [task p]
3d85b270 4098 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 4099 *
3d85b270
AP
4100 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4101 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
4102 *
4103 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
4104 */
4105 smp_rmb();
58877d34 4106 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 4107 goto unlock;
1da177e4 4108
1da177e4 4109#ifdef CONFIG_SMP
ecf7d01c
PZ
4110 /*
4111 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4112 * possible to, falsely, observe p->on_cpu == 0.
4113 *
4114 * One must be running (->on_cpu == 1) in order to remove oneself
4115 * from the runqueue.
4116 *
3d85b270
AP
4117 * __schedule() (switch to task 'p') try_to_wake_up()
4118 * STORE p->on_cpu = 1 LOAD p->on_rq
4119 * UNLOCK rq->lock
4120 *
4121 * __schedule() (put 'p' to sleep)
4122 * LOCK rq->lock smp_rmb();
4123 * smp_mb__after_spinlock();
4124 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 4125 *
3d85b270
AP
4126 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4127 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
4128 *
4129 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4130 * schedule()'s deactivate_task() has 'happened' and p will no longer
4131 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 4132 */
dbfb089d
PZ
4133 smp_acquire__after_ctrl_dep();
4134
4135 /*
4136 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4137 * == 0), which means we need to do an enqueue, change p->state to
4138 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4139 * enqueue, such as ttwu_queue_wakelist().
4140 */
2f064a59 4141 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 4142
c6e7bd7a
PZ
4143 /*
4144 * If the owning (remote) CPU is still in the middle of schedule() with
4145 * this task as prev, considering queueing p on the remote CPUs wake_list
4146 * which potentially sends an IPI instead of spinning on p->on_cpu to
4147 * let the waker make forward progress. This is safe because IRQs are
4148 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
4149 *
4150 * Ensure we load task_cpu(p) after p->on_cpu:
4151 *
4152 * set_task_cpu(p, cpu);
4153 * STORE p->cpu = @cpu
4154 * __schedule() (switch to task 'p')
4155 * LOCK rq->lock
4156 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4157 * STORE p->on_cpu = 1 LOAD p->cpu
4158 *
4159 * to ensure we observe the correct CPU on which the task is currently
4160 * scheduling.
c6e7bd7a 4161 */
b6e13e85 4162 if (smp_load_acquire(&p->on_cpu) &&
f3dd3f67 4163 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
c6e7bd7a
PZ
4164 goto unlock;
4165
e9c84311 4166 /*
d1ccc66d 4167 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 4168 * this task as prev, wait until it's done referencing the task.
b75a2253 4169 *
31cb1bc0 4170 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
4171 *
4172 * This ensures that tasks getting woken will be fully ordered against
4173 * their previous state and preserve Program Order.
0970d299 4174 */
1f03e8d2 4175 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 4176
3aef1551 4177 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 4178 if (task_cpu(p) != cpu) {
ec618b84
PZ
4179 if (p->in_iowait) {
4180 delayacct_blkio_end(p);
4181 atomic_dec(&task_rq(p)->nr_iowait);
4182 }
4183
f339b9dc 4184 wake_flags |= WF_MIGRATED;
eb414681 4185 psi_ttwu_dequeue(p);
e4a52bcb 4186 set_task_cpu(p, cpu);
f339b9dc 4187 }
b6e13e85
PZ
4188#else
4189 cpu = task_cpu(p);
1da177e4 4190#endif /* CONFIG_SMP */
1da177e4 4191
b5179ac7 4192 ttwu_queue(p, cpu, wake_flags);
aacedf26 4193unlock:
013fdb80 4194 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
4195out:
4196 if (success)
b6e13e85 4197 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 4198 preempt_enable();
1da177e4
LT
4199
4200 return success;
4201}
4202
2beaf328 4203/**
9b3c4ab3 4204 * task_call_func - Invoke a function on task in fixed state
1b7af295 4205 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
4206 * @func: Function to invoke.
4207 * @arg: Argument to function.
4208 *
f6ac18fa
PZ
4209 * Fix the task in it's current state by avoiding wakeups and or rq operations
4210 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4211 * to work out what the state is, if required. Given that @func can be invoked
4212 * with a runqueue lock held, it had better be quite lightweight.
2beaf328
PM
4213 *
4214 * Returns:
f6ac18fa 4215 * Whatever @func returns
2beaf328 4216 */
9b3c4ab3 4217int task_call_func(struct task_struct *p, task_call_f func, void *arg)
2beaf328 4218{
f6ac18fa
PZ
4219 struct rq *rq = NULL;
4220 unsigned int state;
2beaf328 4221 struct rq_flags rf;
9b3c4ab3 4222 int ret;
2beaf328 4223
1b7af295 4224 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
f6ac18fa
PZ
4225
4226 state = READ_ONCE(p->__state);
4227
4228 /*
4229 * Ensure we load p->on_rq after p->__state, otherwise it would be
4230 * possible to, falsely, observe p->on_rq == 0.
4231 *
4232 * See try_to_wake_up() for a longer comment.
4233 */
4234 smp_rmb();
4235
4236 /*
4237 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4238 * the task is blocked. Make sure to check @state since ttwu() can drop
4239 * locks at the end, see ttwu_queue_wakelist().
4240 */
4241 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
2beaf328 4242 rq = __task_rq_lock(p, &rf);
f6ac18fa
PZ
4243
4244 /*
4245 * At this point the task is pinned; either:
4246 * - blocked and we're holding off wakeups (pi->lock)
4247 * - woken, and we're holding off enqueue (rq->lock)
4248 * - queued, and we're holding off schedule (rq->lock)
4249 * - running, and we're holding off de-schedule (rq->lock)
4250 *
4251 * The called function (@func) can use: task_curr(), p->on_rq and
4252 * p->__state to differentiate between these states.
4253 */
4254 ret = func(p, arg);
4255
4256 if (rq)
2beaf328 4257 rq_unlock(rq, &rf);
f6ac18fa 4258
1b7af295 4259 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
4260 return ret;
4261}
4262
e386b672
PM
4263/**
4264 * cpu_curr_snapshot - Return a snapshot of the currently running task
4265 * @cpu: The CPU on which to snapshot the task.
4266 *
4267 * Returns the task_struct pointer of the task "currently" running on
4268 * the specified CPU. If the same task is running on that CPU throughout,
4269 * the return value will be a pointer to that task's task_struct structure.
4270 * If the CPU did any context switches even vaguely concurrently with the
4271 * execution of this function, the return value will be a pointer to the
4272 * task_struct structure of a randomly chosen task that was running on
4273 * that CPU somewhere around the time that this function was executing.
4274 *
4275 * If the specified CPU was offline, the return value is whatever it
4276 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4277 * task, but there is no guarantee. Callers wishing a useful return
4278 * value must take some action to ensure that the specified CPU remains
4279 * online throughout.
4280 *
4281 * This function executes full memory barriers before and after fetching
4282 * the pointer, which permits the caller to confine this function's fetch
4283 * with respect to the caller's accesses to other shared variables.
4284 */
4285struct task_struct *cpu_curr_snapshot(int cpu)
4286{
4287 struct task_struct *t;
4288
4289 smp_mb(); /* Pairing determined by caller's synchronization design. */
4290 t = rcu_dereference(cpu_curr(cpu));
4291 smp_mb(); /* Pairing determined by caller's synchronization design. */
4292 return t;
4293}
4294
50fa610a
DH
4295/**
4296 * wake_up_process - Wake up a specific process
4297 * @p: The process to be woken up.
4298 *
4299 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
4300 * processes.
4301 *
4302 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 4303 *
7696f991 4304 * This function executes a full memory barrier before accessing the task state.
50fa610a 4305 */
7ad5b3a5 4306int wake_up_process(struct task_struct *p)
1da177e4 4307{
9067ac85 4308 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 4309}
1da177e4
LT
4310EXPORT_SYMBOL(wake_up_process);
4311
7ad5b3a5 4312int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
4313{
4314 return try_to_wake_up(p, state, 0);
4315}
4316
1da177e4
LT
4317/*
4318 * Perform scheduler related setup for a newly forked process p.
4319 * p is forked by current.
dd41f596
IM
4320 *
4321 * __sched_fork() is basic setup used by init_idle() too:
4322 */
5e1576ed 4323static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4324{
fd2f4419
PZ
4325 p->on_rq = 0;
4326
4327 p->se.on_rq = 0;
dd41f596
IM
4328 p->se.exec_start = 0;
4329 p->se.sum_exec_runtime = 0;
f6cf891c 4330 p->se.prev_sum_exec_runtime = 0;
6c594c21 4331 p->se.nr_migrations = 0;
da7a735e 4332 p->se.vruntime = 0;
fd2f4419 4333 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 4334
ad936d86
BP
4335#ifdef CONFIG_FAIR_GROUP_SCHED
4336 p->se.cfs_rq = NULL;
4337#endif
4338
6cfb0d5d 4339#ifdef CONFIG_SCHEDSTATS
cb251765 4340 /* Even if schedstat is disabled, there should not be garbage */
ceeadb83 4341 memset(&p->stats, 0, sizeof(p->stats));
6cfb0d5d 4342#endif
476d139c 4343
aab03e05 4344 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 4345 init_dl_task_timer(&p->dl);
209a0cbd 4346 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 4347 __dl_clear_params(p);
aab03e05 4348
fa717060 4349 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
4350 p->rt.timeout = 0;
4351 p->rt.time_slice = sched_rr_timeslice;
4352 p->rt.on_rq = 0;
4353 p->rt.on_list = 0;
476d139c 4354
e107be36
AK
4355#ifdef CONFIG_PREEMPT_NOTIFIERS
4356 INIT_HLIST_HEAD(&p->preempt_notifiers);
4357#endif
cbee9f88 4358
5e1f0f09
MG
4359#ifdef CONFIG_COMPACTION
4360 p->capture_control = NULL;
4361#endif
13784475 4362 init_numa_balancing(clone_flags, p);
a1488664 4363#ifdef CONFIG_SMP
8c4890d1 4364 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 4365 p->migration_pending = NULL;
a1488664 4366#endif
dd41f596
IM
4367}
4368
2a595721
SD
4369DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4370
1a687c2e 4371#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 4372
c574bbe9
HY
4373int sysctl_numa_balancing_mode;
4374
4375static void __set_numabalancing_state(bool enabled)
1a687c2e
MG
4376{
4377 if (enabled)
2a595721 4378 static_branch_enable(&sched_numa_balancing);
1a687c2e 4379 else
2a595721 4380 static_branch_disable(&sched_numa_balancing);
1a687c2e 4381}
54a43d54 4382
c574bbe9
HY
4383void set_numabalancing_state(bool enabled)
4384{
4385 if (enabled)
4386 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4387 else
4388 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4389 __set_numabalancing_state(enabled);
4390}
4391
54a43d54 4392#ifdef CONFIG_PROC_SYSCTL
c959924b
HY
4393static void reset_memory_tiering(void)
4394{
4395 struct pglist_data *pgdat;
4396
4397 for_each_online_pgdat(pgdat) {
4398 pgdat->nbp_threshold = 0;
4399 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4400 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4401 }
4402}
4403
0dff89c4 4404static int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 4405 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
4406{
4407 struct ctl_table t;
4408 int err;
c574bbe9 4409 int state = sysctl_numa_balancing_mode;
54a43d54
AK
4410
4411 if (write && !capable(CAP_SYS_ADMIN))
4412 return -EPERM;
4413
4414 t = *table;
4415 t.data = &state;
4416 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4417 if (err < 0)
4418 return err;
c574bbe9 4419 if (write) {
c959924b
HY
4420 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4421 (state & NUMA_BALANCING_MEMORY_TIERING))
4422 reset_memory_tiering();
c574bbe9
HY
4423 sysctl_numa_balancing_mode = state;
4424 __set_numabalancing_state(state);
4425 }
54a43d54
AK
4426 return err;
4427}
4428#endif
4429#endif
dd41f596 4430
4698f88c
JP
4431#ifdef CONFIG_SCHEDSTATS
4432
cb251765
MG
4433DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4434
cb251765
MG
4435static void set_schedstats(bool enabled)
4436{
4437 if (enabled)
4438 static_branch_enable(&sched_schedstats);
4439 else
4440 static_branch_disable(&sched_schedstats);
4441}
4442
4443void force_schedstat_enabled(void)
4444{
4445 if (!schedstat_enabled()) {
4446 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4447 static_branch_enable(&sched_schedstats);
4448 }
4449}
4450
4451static int __init setup_schedstats(char *str)
4452{
4453 int ret = 0;
4454 if (!str)
4455 goto out;
4456
4457 if (!strcmp(str, "enable")) {
1faa491a 4458 set_schedstats(true);
cb251765
MG
4459 ret = 1;
4460 } else if (!strcmp(str, "disable")) {
1faa491a 4461 set_schedstats(false);
cb251765
MG
4462 ret = 1;
4463 }
4464out:
4465 if (!ret)
4466 pr_warn("Unable to parse schedstats=\n");
4467
4468 return ret;
4469}
4470__setup("schedstats=", setup_schedstats);
4471
4472#ifdef CONFIG_PROC_SYSCTL
f5ef06d5 4473static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
32927393 4474 size_t *lenp, loff_t *ppos)
cb251765
MG
4475{
4476 struct ctl_table t;
4477 int err;
4478 int state = static_branch_likely(&sched_schedstats);
4479
4480 if (write && !capable(CAP_SYS_ADMIN))
4481 return -EPERM;
4482
4483 t = *table;
4484 t.data = &state;
4485 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4486 if (err < 0)
4487 return err;
4488 if (write)
4489 set_schedstats(state);
4490 return err;
4491}
4698f88c 4492#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4493#endif /* CONFIG_SCHEDSTATS */
dd41f596 4494
3267e015
ZN
4495#ifdef CONFIG_SYSCTL
4496static struct ctl_table sched_core_sysctls[] = {
4497#ifdef CONFIG_SCHEDSTATS
f5ef06d5
ZN
4498 {
4499 .procname = "sched_schedstats",
4500 .data = NULL,
4501 .maxlen = sizeof(unsigned int),
4502 .mode = 0644,
4503 .proc_handler = sysctl_schedstats,
4504 .extra1 = SYSCTL_ZERO,
4505 .extra2 = SYSCTL_ONE,
4506 },
3267e015
ZN
4507#endif /* CONFIG_SCHEDSTATS */
4508#ifdef CONFIG_UCLAMP_TASK
4509 {
4510 .procname = "sched_util_clamp_min",
4511 .data = &sysctl_sched_uclamp_util_min,
4512 .maxlen = sizeof(unsigned int),
4513 .mode = 0644,
4514 .proc_handler = sysctl_sched_uclamp_handler,
4515 },
4516 {
4517 .procname = "sched_util_clamp_max",
4518 .data = &sysctl_sched_uclamp_util_max,
4519 .maxlen = sizeof(unsigned int),
4520 .mode = 0644,
4521 .proc_handler = sysctl_sched_uclamp_handler,
4522 },
4523 {
4524 .procname = "sched_util_clamp_min_rt_default",
4525 .data = &sysctl_sched_uclamp_util_min_rt_default,
4526 .maxlen = sizeof(unsigned int),
4527 .mode = 0644,
4528 .proc_handler = sysctl_sched_uclamp_handler,
4529 },
4530#endif /* CONFIG_UCLAMP_TASK */
0dff89c4
KW
4531#ifdef CONFIG_NUMA_BALANCING
4532 {
4533 .procname = "numa_balancing",
4534 .data = NULL, /* filled in by handler */
4535 .maxlen = sizeof(unsigned int),
4536 .mode = 0644,
4537 .proc_handler = sysctl_numa_balancing,
4538 .extra1 = SYSCTL_ZERO,
4539 .extra2 = SYSCTL_FOUR,
4540 },
4541#endif /* CONFIG_NUMA_BALANCING */
f5ef06d5
ZN
4542 {}
4543};
3267e015 4544static int __init sched_core_sysctl_init(void)
f5ef06d5 4545{
3267e015 4546 register_sysctl_init("kernel", sched_core_sysctls);
f5ef06d5
ZN
4547 return 0;
4548}
3267e015
ZN
4549late_initcall(sched_core_sysctl_init);
4550#endif /* CONFIG_SYSCTL */
dd41f596
IM
4551
4552/*
4553 * fork()/clone()-time setup:
4554 */
aab03e05 4555int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4556{
5e1576ed 4557 __sched_fork(clone_flags, p);
06b83b5f 4558 /*
7dc603c9 4559 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4560 * nobody will actually run it, and a signal or other external
4561 * event cannot wake it up and insert it on the runqueue either.
4562 */
2f064a59 4563 p->__state = TASK_NEW;
dd41f596 4564
c350a04e
MG
4565 /*
4566 * Make sure we do not leak PI boosting priority to the child.
4567 */
4568 p->prio = current->normal_prio;
4569
e8f14172
PB
4570 uclamp_fork(p);
4571
b9dc29e7
MG
4572 /*
4573 * Revert to default priority/policy on fork if requested.
4574 */
4575 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4576 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4577 p->policy = SCHED_NORMAL;
6c697bdf 4578 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4579 p->rt_priority = 0;
4580 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4581 p->static_prio = NICE_TO_PRIO(0);
4582
f558c2b8 4583 p->prio = p->normal_prio = p->static_prio;
b1e82065 4584 set_load_weight(p, false);
6c697bdf 4585
b9dc29e7
MG
4586 /*
4587 * We don't need the reset flag anymore after the fork. It has
4588 * fulfilled its duty:
4589 */
4590 p->sched_reset_on_fork = 0;
4591 }
ca94c442 4592
af0fffd9 4593 if (dl_prio(p->prio))
aab03e05 4594 return -EAGAIN;
af0fffd9 4595 else if (rt_prio(p->prio))
aab03e05 4596 p->sched_class = &rt_sched_class;
af0fffd9 4597 else
2ddbf952 4598 p->sched_class = &fair_sched_class;
b29739f9 4599
7dc603c9 4600 init_entity_runnable_average(&p->se);
cd29fe6f 4601
b1e82065 4602
f6db8347 4603#ifdef CONFIG_SCHED_INFO
dd41f596 4604 if (likely(sched_info_on()))
52f17b6c 4605 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4606#endif
3ca7a440
PZ
4607#if defined(CONFIG_SMP)
4608 p->on_cpu = 0;
4866cde0 4609#endif
01028747 4610 init_task_preempt_count(p);
806c09a7 4611#ifdef CONFIG_SMP
917b627d 4612 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4613 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4614#endif
aab03e05 4615 return 0;
1da177e4
LT
4616}
4617
b1e82065 4618void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
13685c4a 4619{
4ef0c5c6 4620 unsigned long flags;
4ef0c5c6 4621
b1e82065
PZ
4622 /*
4623 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4624 * required yet, but lockdep gets upset if rules are violated.
4625 */
4ef0c5c6
ZQ
4626 raw_spin_lock_irqsave(&p->pi_lock, flags);
4627#ifdef CONFIG_CGROUP_SCHED
b1e82065
PZ
4628 if (1) {
4629 struct task_group *tg;
4630 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4631 struct task_group, css);
4632 tg = autogroup_task_group(p, tg);
4633 p->sched_task_group = tg;
4634 }
4ef0c5c6
ZQ
4635#endif
4636 rseq_migrate(p);
4637 /*
4638 * We're setting the CPU for the first time, we don't migrate,
4639 * so use __set_task_cpu().
4640 */
4641 __set_task_cpu(p, smp_processor_id());
4642 if (p->sched_class->task_fork)
4643 p->sched_class->task_fork(p);
4644 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b1e82065 4645}
4ef0c5c6 4646
b1e82065
PZ
4647void sched_post_fork(struct task_struct *p)
4648{
13685c4a
QY
4649 uclamp_post_fork(p);
4650}
4651
332ac17e
DF
4652unsigned long to_ratio(u64 period, u64 runtime)
4653{
4654 if (runtime == RUNTIME_INF)
c52f14d3 4655 return BW_UNIT;
332ac17e
DF
4656
4657 /*
4658 * Doing this here saves a lot of checks in all
4659 * the calling paths, and returning zero seems
4660 * safe for them anyway.
4661 */
4662 if (period == 0)
4663 return 0;
4664
c52f14d3 4665 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4666}
4667
1da177e4
LT
4668/*
4669 * wake_up_new_task - wake up a newly created task for the first time.
4670 *
4671 * This function will do some initial scheduler statistics housekeeping
4672 * that must be done for every newly created context, then puts the task
4673 * on the runqueue and wakes it.
4674 */
3e51e3ed 4675void wake_up_new_task(struct task_struct *p)
1da177e4 4676{
eb580751 4677 struct rq_flags rf;
dd41f596 4678 struct rq *rq;
fabf318e 4679
eb580751 4680 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4681 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4682#ifdef CONFIG_SMP
4683 /*
4684 * Fork balancing, do it here and not earlier because:
3bd37062 4685 * - cpus_ptr can change in the fork path
d1ccc66d 4686 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4687 *
4688 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4689 * as we're not fully set-up yet.
fabf318e 4690 */
32e839dd 4691 p->recent_used_cpu = task_cpu(p);
ce3614da 4692 rseq_migrate(p);
3aef1551 4693 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4694#endif
b7fa30c9 4695 rq = __task_rq_lock(p, &rf);
4126bad6 4696 update_rq_clock(rq);
d0fe0b9c 4697 post_init_entity_util_avg(p);
0017d735 4698
7a57f32a 4699 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4700 trace_sched_wakeup_new(p);
a7558e01 4701 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4702#ifdef CONFIG_SMP
0aaafaab
PZ
4703 if (p->sched_class->task_woken) {
4704 /*
b19a888c 4705 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4706 * drop it.
4707 */
d8ac8971 4708 rq_unpin_lock(rq, &rf);
efbbd05a 4709 p->sched_class->task_woken(rq, p);
d8ac8971 4710 rq_repin_lock(rq, &rf);
0aaafaab 4711 }
9a897c5a 4712#endif
eb580751 4713 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4714}
4715
e107be36
AK
4716#ifdef CONFIG_PREEMPT_NOTIFIERS
4717
b7203428 4718static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4719
2ecd9d29
PZ
4720void preempt_notifier_inc(void)
4721{
b7203428 4722 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4723}
4724EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4725
4726void preempt_notifier_dec(void)
4727{
b7203428 4728 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4729}
4730EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4731
e107be36 4732/**
80dd99b3 4733 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4734 * @notifier: notifier struct to register
e107be36
AK
4735 */
4736void preempt_notifier_register(struct preempt_notifier *notifier)
4737{
b7203428 4738 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4739 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4740
e107be36
AK
4741 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4742}
4743EXPORT_SYMBOL_GPL(preempt_notifier_register);
4744
4745/**
4746 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4747 * @notifier: notifier struct to unregister
e107be36 4748 *
d84525a8 4749 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4750 */
4751void preempt_notifier_unregister(struct preempt_notifier *notifier)
4752{
4753 hlist_del(&notifier->link);
4754}
4755EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4756
1cde2930 4757static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4758{
4759 struct preempt_notifier *notifier;
e107be36 4760
b67bfe0d 4761 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4762 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4763}
4764
1cde2930
PZ
4765static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4766{
b7203428 4767 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4768 __fire_sched_in_preempt_notifiers(curr);
4769}
4770
e107be36 4771static void
1cde2930
PZ
4772__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4773 struct task_struct *next)
e107be36
AK
4774{
4775 struct preempt_notifier *notifier;
e107be36 4776
b67bfe0d 4777 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4778 notifier->ops->sched_out(notifier, next);
4779}
4780
1cde2930
PZ
4781static __always_inline void
4782fire_sched_out_preempt_notifiers(struct task_struct *curr,
4783 struct task_struct *next)
4784{
b7203428 4785 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4786 __fire_sched_out_preempt_notifiers(curr, next);
4787}
4788
6d6bc0ad 4789#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4790
1cde2930 4791static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4792{
4793}
4794
1cde2930 4795static inline void
e107be36
AK
4796fire_sched_out_preempt_notifiers(struct task_struct *curr,
4797 struct task_struct *next)
4798{
4799}
4800
6d6bc0ad 4801#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4802
31cb1bc0 4803static inline void prepare_task(struct task_struct *next)
4804{
4805#ifdef CONFIG_SMP
4806 /*
4807 * Claim the task as running, we do this before switching to it
4808 * such that any running task will have this set.
58877d34 4809 *
f3dd3f67
TD
4810 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4811 * its ordering comment.
31cb1bc0 4812 */
58877d34 4813 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4814#endif
4815}
4816
4817static inline void finish_task(struct task_struct *prev)
4818{
4819#ifdef CONFIG_SMP
4820 /*
58877d34
PZ
4821 * This must be the very last reference to @prev from this CPU. After
4822 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4823 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4824 * finished.
4825 *
4826 * In particular, the load of prev->state in finish_task_switch() must
4827 * happen before this.
4828 *
4829 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4830 */
4831 smp_store_release(&prev->on_cpu, 0);
4832#endif
4833}
4834
565790d2
PZ
4835#ifdef CONFIG_SMP
4836
8e5bad7d 4837static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4838{
4839 void (*func)(struct rq *rq);
8e5bad7d 4840 struct balance_callback *next;
565790d2 4841
5cb9eaa3 4842 lockdep_assert_rq_held(rq);
565790d2
PZ
4843
4844 while (head) {
4845 func = (void (*)(struct rq *))head->func;
4846 next = head->next;
4847 head->next = NULL;
4848 head = next;
4849
4850 func(rq);
4851 }
4852}
4853
ae792702
PZ
4854static void balance_push(struct rq *rq);
4855
04193d59
PZ
4856/*
4857 * balance_push_callback is a right abuse of the callback interface and plays
4858 * by significantly different rules.
4859 *
4860 * Where the normal balance_callback's purpose is to be ran in the same context
4861 * that queued it (only later, when it's safe to drop rq->lock again),
4862 * balance_push_callback is specifically targeted at __schedule().
4863 *
4864 * This abuse is tolerated because it places all the unlikely/odd cases behind
4865 * a single test, namely: rq->balance_callback == NULL.
4866 */
8e5bad7d 4867struct balance_callback balance_push_callback = {
ae792702 4868 .next = NULL,
8e5bad7d 4869 .func = balance_push,
ae792702
PZ
4870};
4871
8e5bad7d 4872static inline struct balance_callback *
04193d59 4873__splice_balance_callbacks(struct rq *rq, bool split)
565790d2 4874{
8e5bad7d 4875 struct balance_callback *head = rq->balance_callback;
565790d2 4876
04193d59
PZ
4877 if (likely(!head))
4878 return NULL;
4879
5cb9eaa3 4880 lockdep_assert_rq_held(rq);
04193d59
PZ
4881 /*
4882 * Must not take balance_push_callback off the list when
4883 * splice_balance_callbacks() and balance_callbacks() are not
4884 * in the same rq->lock section.
4885 *
4886 * In that case it would be possible for __schedule() to interleave
4887 * and observe the list empty.
4888 */
4889 if (split && head == &balance_push_callback)
4890 head = NULL;
4891 else
565790d2
PZ
4892 rq->balance_callback = NULL;
4893
4894 return head;
4895}
4896
8e5bad7d 4897static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
04193d59
PZ
4898{
4899 return __splice_balance_callbacks(rq, true);
4900}
4901
565790d2
PZ
4902static void __balance_callbacks(struct rq *rq)
4903{
04193d59 4904 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
565790d2
PZ
4905}
4906
8e5bad7d 4907static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4908{
4909 unsigned long flags;
4910
4911 if (unlikely(head)) {
5cb9eaa3 4912 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4913 do_balance_callbacks(rq, head);
5cb9eaa3 4914 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4915 }
4916}
4917
4918#else
4919
4920static inline void __balance_callbacks(struct rq *rq)
4921{
4922}
4923
8e5bad7d 4924static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
565790d2
PZ
4925{
4926 return NULL;
4927}
4928
8e5bad7d 4929static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4930{
4931}
4932
4933#endif
4934
269d5992
PZ
4935static inline void
4936prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4937{
269d5992
PZ
4938 /*
4939 * Since the runqueue lock will be released by the next
4940 * task (which is an invalid locking op but in the case
4941 * of the scheduler it's an obvious special-case), so we
4942 * do an early lockdep release here:
4943 */
4944 rq_unpin_lock(rq, rf);
9ef7e7e3 4945 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4946#ifdef CONFIG_DEBUG_SPINLOCK
4947 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4948 rq_lockp(rq)->owner = next;
31cb1bc0 4949#endif
269d5992
PZ
4950}
4951
4952static inline void finish_lock_switch(struct rq *rq)
4953{
31cb1bc0 4954 /*
4955 * If we are tracking spinlock dependencies then we have to
4956 * fix up the runqueue lock - which gets 'carried over' from
4957 * prev into current:
4958 */
9ef7e7e3 4959 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 4960 __balance_callbacks(rq);
5cb9eaa3 4961 raw_spin_rq_unlock_irq(rq);
31cb1bc0 4962}
4963
325ea10c
IM
4964/*
4965 * NOP if the arch has not defined these:
4966 */
4967
4968#ifndef prepare_arch_switch
4969# define prepare_arch_switch(next) do { } while (0)
4970#endif
4971
4972#ifndef finish_arch_post_lock_switch
4973# define finish_arch_post_lock_switch() do { } while (0)
4974#endif
4975
5fbda3ec
TG
4976static inline void kmap_local_sched_out(void)
4977{
4978#ifdef CONFIG_KMAP_LOCAL
4979 if (unlikely(current->kmap_ctrl.idx))
4980 __kmap_local_sched_out();
4981#endif
4982}
4983
4984static inline void kmap_local_sched_in(void)
4985{
4986#ifdef CONFIG_KMAP_LOCAL
4987 if (unlikely(current->kmap_ctrl.idx))
4988 __kmap_local_sched_in();
4989#endif
4990}
4991
4866cde0
NP
4992/**
4993 * prepare_task_switch - prepare to switch tasks
4994 * @rq: the runqueue preparing to switch
421cee29 4995 * @prev: the current task that is being switched out
4866cde0
NP
4996 * @next: the task we are going to switch to.
4997 *
4998 * This is called with the rq lock held and interrupts off. It must
4999 * be paired with a subsequent finish_task_switch after the context
5000 * switch.
5001 *
5002 * prepare_task_switch sets up locking and calls architecture specific
5003 * hooks.
5004 */
e107be36
AK
5005static inline void
5006prepare_task_switch(struct rq *rq, struct task_struct *prev,
5007 struct task_struct *next)
4866cde0 5008{
0ed557aa 5009 kcov_prepare_switch(prev);
43148951 5010 sched_info_switch(rq, prev, next);
fe4b04fa 5011 perf_event_task_sched_out(prev, next);
d7822b1e 5012 rseq_preempt(prev);
e107be36 5013 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 5014 kmap_local_sched_out();
31cb1bc0 5015 prepare_task(next);
4866cde0
NP
5016 prepare_arch_switch(next);
5017}
5018
1da177e4
LT
5019/**
5020 * finish_task_switch - clean up after a task-switch
5021 * @prev: the thread we just switched away from.
5022 *
4866cde0
NP
5023 * finish_task_switch must be called after the context switch, paired
5024 * with a prepare_task_switch call before the context switch.
5025 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5026 * and do any other architecture-specific cleanup actions.
1da177e4
LT
5027 *
5028 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 5029 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
5030 * with the lock held can cause deadlocks; see schedule() for
5031 * details.)
dfa50b60
ON
5032 *
5033 * The context switch have flipped the stack from under us and restored the
5034 * local variables which were saved when this task called schedule() in the
5035 * past. prev == current is still correct but we need to recalculate this_rq
5036 * because prev may have moved to another CPU.
1da177e4 5037 */
dfa50b60 5038static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
5039 __releases(rq->lock)
5040{
dfa50b60 5041 struct rq *rq = this_rq();
1da177e4 5042 struct mm_struct *mm = rq->prev_mm;
fa2c3254 5043 unsigned int prev_state;
1da177e4 5044
609ca066
PZ
5045 /*
5046 * The previous task will have left us with a preempt_count of 2
5047 * because it left us after:
5048 *
5049 * schedule()
5050 * preempt_disable(); // 1
5051 * __schedule()
5052 * raw_spin_lock_irq(&rq->lock) // 2
5053 *
5054 * Also, see FORK_PREEMPT_COUNT.
5055 */
e2bf1c4b
PZ
5056 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5057 "corrupted preempt_count: %s/%d/0x%x\n",
5058 current->comm, current->pid, preempt_count()))
5059 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 5060
1da177e4
LT
5061 rq->prev_mm = NULL;
5062
5063 /*
5064 * A task struct has one reference for the use as "current".
c394cc9f 5065 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
5066 * schedule one last time. The schedule call will never return, and
5067 * the scheduled task must drop that reference.
95913d97
PZ
5068 *
5069 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 5070 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
5071 * running on another CPU and we could rave with its RUNNING -> DEAD
5072 * transition, resulting in a double drop.
1da177e4 5073 */
2f064a59 5074 prev_state = READ_ONCE(prev->__state);
bf9fae9f 5075 vtime_task_switch(prev);
a8d757ef 5076 perf_event_task_sched_in(prev, current);
31cb1bc0 5077 finish_task(prev);
0fdcccfa 5078 tick_nohz_task_switch();
31cb1bc0 5079 finish_lock_switch(rq);
01f23e16 5080 finish_arch_post_lock_switch();
0ed557aa 5081 kcov_finish_switch(current);
5fbda3ec
TG
5082 /*
5083 * kmap_local_sched_out() is invoked with rq::lock held and
5084 * interrupts disabled. There is no requirement for that, but the
5085 * sched out code does not have an interrupt enabled section.
5086 * Restoring the maps on sched in does not require interrupts being
5087 * disabled either.
5088 */
5089 kmap_local_sched_in();
e8fa1362 5090
e107be36 5091 fire_sched_in_preempt_notifiers(current);
306e0604 5092 /*
70216e18
MD
5093 * When switching through a kernel thread, the loop in
5094 * membarrier_{private,global}_expedited() may have observed that
5095 * kernel thread and not issued an IPI. It is therefore possible to
5096 * schedule between user->kernel->user threads without passing though
5097 * switch_mm(). Membarrier requires a barrier after storing to
5098 * rq->curr, before returning to userspace, so provide them here:
5099 *
5100 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5101 * provided by mmdrop(),
5102 * - a sync_core for SYNC_CORE.
306e0604 5103 */
70216e18
MD
5104 if (mm) {
5105 membarrier_mm_sync_core_before_usermode(mm);
8d491de6 5106 mmdrop_sched(mm);
70216e18 5107 }
1cef1150
PZ
5108 if (unlikely(prev_state == TASK_DEAD)) {
5109 if (prev->sched_class->task_dead)
5110 prev->sched_class->task_dead(prev);
68f24b08 5111
1cef1150
PZ
5112 /* Task is done with its stack. */
5113 put_task_stack(prev);
5114
0ff7b2cf 5115 put_task_struct_rcu_user(prev);
c6fd91f0 5116 }
99e5ada9 5117
dfa50b60 5118 return rq;
1da177e4
LT
5119}
5120
5121/**
5122 * schedule_tail - first thing a freshly forked thread must call.
5123 * @prev: the thread we just switched away from.
5124 */
722a9f92 5125asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
5126 __releases(rq->lock)
5127{
609ca066
PZ
5128 /*
5129 * New tasks start with FORK_PREEMPT_COUNT, see there and
5130 * finish_task_switch() for details.
5131 *
5132 * finish_task_switch() will drop rq->lock() and lower preempt_count
5133 * and the preempt_enable() will end up enabling preemption (on
5134 * PREEMPT_COUNT kernels).
5135 */
5136
13c2235b 5137 finish_task_switch(prev);
1a43a14a 5138 preempt_enable();
70b97a7f 5139
1da177e4 5140 if (current->set_child_tid)
b488893a 5141 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
5142
5143 calculate_sigpending();
1da177e4
LT
5144}
5145
5146/*
dfa50b60 5147 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 5148 */
04936948 5149static __always_inline struct rq *
70b97a7f 5150context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 5151 struct task_struct *next, struct rq_flags *rf)
1da177e4 5152{
e107be36 5153 prepare_task_switch(rq, prev, next);
fe4b04fa 5154
9226d125
ZA
5155 /*
5156 * For paravirt, this is coupled with an exit in switch_to to
5157 * combine the page table reload and the switch backend into
5158 * one hypercall.
5159 */
224101ed 5160 arch_start_context_switch(prev);
9226d125 5161
306e0604 5162 /*
139d025c
PZ
5163 * kernel -> kernel lazy + transfer active
5164 * user -> kernel lazy + mmgrab() active
5165 *
5166 * kernel -> user switch + mmdrop() active
5167 * user -> user switch
306e0604 5168 */
139d025c
PZ
5169 if (!next->mm) { // to kernel
5170 enter_lazy_tlb(prev->active_mm, next);
5171
5172 next->active_mm = prev->active_mm;
5173 if (prev->mm) // from user
5174 mmgrab(prev->active_mm);
5175 else
5176 prev->active_mm = NULL;
5177 } else { // to user
227a4aad 5178 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
5179 /*
5180 * sys_membarrier() requires an smp_mb() between setting
227a4aad 5181 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
5182 *
5183 * The below provides this either through switch_mm(), or in
5184 * case 'prev->active_mm == next->mm' through
5185 * finish_task_switch()'s mmdrop().
5186 */
139d025c 5187 switch_mm_irqs_off(prev->active_mm, next->mm, next);
bd74fdae 5188 lru_gen_use_mm(next->mm);
1da177e4 5189
139d025c
PZ
5190 if (!prev->mm) { // from kernel
5191 /* will mmdrop() in finish_task_switch(). */
5192 rq->prev_mm = prev->active_mm;
5193 prev->active_mm = NULL;
5194 }
1da177e4 5195 }
92509b73 5196
cb42c9a3 5197 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 5198
269d5992 5199 prepare_lock_switch(rq, next, rf);
1da177e4
LT
5200
5201 /* Here we just switch the register state and the stack. */
5202 switch_to(prev, next, prev);
dd41f596 5203 barrier();
dfa50b60
ON
5204
5205 return finish_task_switch(prev);
1da177e4
LT
5206}
5207
5208/*
1c3e8264 5209 * nr_running and nr_context_switches:
1da177e4
LT
5210 *
5211 * externally visible scheduler statistics: current number of runnable
1c3e8264 5212 * threads, total number of context switches performed since bootup.
1da177e4 5213 */
01aee8fd 5214unsigned int nr_running(void)
1da177e4 5215{
01aee8fd 5216 unsigned int i, sum = 0;
1da177e4
LT
5217
5218 for_each_online_cpu(i)
5219 sum += cpu_rq(i)->nr_running;
5220
5221 return sum;
f711f609 5222}
1da177e4 5223
2ee507c4 5224/*
d1ccc66d 5225 * Check if only the current task is running on the CPU.
00cc1633
DD
5226 *
5227 * Caution: this function does not check that the caller has disabled
5228 * preemption, thus the result might have a time-of-check-to-time-of-use
5229 * race. The caller is responsible to use it correctly, for example:
5230 *
dfcb245e 5231 * - from a non-preemptible section (of course)
00cc1633
DD
5232 *
5233 * - from a thread that is bound to a single CPU
5234 *
5235 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
5236 */
5237bool single_task_running(void)
5238{
00cc1633 5239 return raw_rq()->nr_running == 1;
2ee507c4
TC
5240}
5241EXPORT_SYMBOL(single_task_running);
5242
1da177e4 5243unsigned long long nr_context_switches(void)
46cb4b7c 5244{
cc94abfc
SR
5245 int i;
5246 unsigned long long sum = 0;
46cb4b7c 5247
0a945022 5248 for_each_possible_cpu(i)
1da177e4 5249 sum += cpu_rq(i)->nr_switches;
46cb4b7c 5250
1da177e4
LT
5251 return sum;
5252}
483b4ee6 5253
145d952a
DL
5254/*
5255 * Consumers of these two interfaces, like for example the cpuidle menu
5256 * governor, are using nonsensical data. Preferring shallow idle state selection
5257 * for a CPU that has IO-wait which might not even end up running the task when
5258 * it does become runnable.
5259 */
5260
8fc2858e 5261unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
5262{
5263 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5264}
5265
e33a9bba 5266/*
b19a888c 5267 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
5268 *
5269 * The idea behind IO-wait account is to account the idle time that we could
5270 * have spend running if it were not for IO. That is, if we were to improve the
5271 * storage performance, we'd have a proportional reduction in IO-wait time.
5272 *
5273 * This all works nicely on UP, where, when a task blocks on IO, we account
5274 * idle time as IO-wait, because if the storage were faster, it could've been
5275 * running and we'd not be idle.
5276 *
5277 * This has been extended to SMP, by doing the same for each CPU. This however
5278 * is broken.
5279 *
5280 * Imagine for instance the case where two tasks block on one CPU, only the one
5281 * CPU will have IO-wait accounted, while the other has regular idle. Even
5282 * though, if the storage were faster, both could've ran at the same time,
5283 * utilising both CPUs.
5284 *
5285 * This means, that when looking globally, the current IO-wait accounting on
5286 * SMP is a lower bound, by reason of under accounting.
5287 *
5288 * Worse, since the numbers are provided per CPU, they are sometimes
5289 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5290 * associated with any one particular CPU, it can wake to another CPU than it
5291 * blocked on. This means the per CPU IO-wait number is meaningless.
5292 *
5293 * Task CPU affinities can make all that even more 'interesting'.
5294 */
5295
97455168 5296unsigned int nr_iowait(void)
1da177e4 5297{
97455168 5298 unsigned int i, sum = 0;
483b4ee6 5299
0a945022 5300 for_each_possible_cpu(i)
145d952a 5301 sum += nr_iowait_cpu(i);
46cb4b7c 5302
1da177e4
LT
5303 return sum;
5304}
483b4ee6 5305
dd41f596 5306#ifdef CONFIG_SMP
8a0be9ef 5307
46cb4b7c 5308/*
38022906
PZ
5309 * sched_exec - execve() is a valuable balancing opportunity, because at
5310 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 5311 */
38022906 5312void sched_exec(void)
46cb4b7c 5313{
38022906 5314 struct task_struct *p = current;
1da177e4 5315 unsigned long flags;
0017d735 5316 int dest_cpu;
46cb4b7c 5317
8f42ced9 5318 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 5319 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
5320 if (dest_cpu == smp_processor_id())
5321 goto unlock;
38022906 5322
8f42ced9 5323 if (likely(cpu_active(dest_cpu))) {
969c7921 5324 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 5325
8f42ced9
PZ
5326 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5327 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
5328 return;
5329 }
0017d735 5330unlock:
8f42ced9 5331 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 5332}
dd41f596 5333
1da177e4
LT
5334#endif
5335
1da177e4 5336DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 5337DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
5338
5339EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 5340EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 5341
6075620b
GG
5342/*
5343 * The function fair_sched_class.update_curr accesses the struct curr
5344 * and its field curr->exec_start; when called from task_sched_runtime(),
5345 * we observe a high rate of cache misses in practice.
5346 * Prefetching this data results in improved performance.
5347 */
5348static inline void prefetch_curr_exec_start(struct task_struct *p)
5349{
5350#ifdef CONFIG_FAIR_GROUP_SCHED
5351 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5352#else
5353 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5354#endif
5355 prefetch(curr);
5356 prefetch(&curr->exec_start);
5357}
5358
c5f8d995
HS
5359/*
5360 * Return accounted runtime for the task.
5361 * In case the task is currently running, return the runtime plus current's
5362 * pending runtime that have not been accounted yet.
5363 */
5364unsigned long long task_sched_runtime(struct task_struct *p)
5365{
eb580751 5366 struct rq_flags rf;
c5f8d995 5367 struct rq *rq;
6e998916 5368 u64 ns;
c5f8d995 5369
911b2898
PZ
5370#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5371 /*
97fb7a0a 5372 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
5373 * So we have a optimization chance when the task's delta_exec is 0.
5374 * Reading ->on_cpu is racy, but this is ok.
5375 *
d1ccc66d
IM
5376 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5377 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 5378 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
5379 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5380 * been accounted, so we're correct here as well.
911b2898 5381 */
da0c1e65 5382 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
5383 return p->se.sum_exec_runtime;
5384#endif
5385
eb580751 5386 rq = task_rq_lock(p, &rf);
6e998916
SG
5387 /*
5388 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5389 * project cycles that may never be accounted to this
5390 * thread, breaking clock_gettime().
5391 */
5392 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 5393 prefetch_curr_exec_start(p);
6e998916
SG
5394 update_rq_clock(rq);
5395 p->sched_class->update_curr(rq);
5396 }
5397 ns = p->se.sum_exec_runtime;
eb580751 5398 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
5399
5400 return ns;
5401}
48f24c4d 5402
c006fac5
PT
5403#ifdef CONFIG_SCHED_DEBUG
5404static u64 cpu_resched_latency(struct rq *rq)
5405{
5406 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5407 u64 resched_latency, now = rq_clock(rq);
5408 static bool warned_once;
5409
5410 if (sysctl_resched_latency_warn_once && warned_once)
5411 return 0;
5412
5413 if (!need_resched() || !latency_warn_ms)
5414 return 0;
5415
5416 if (system_state == SYSTEM_BOOTING)
5417 return 0;
5418
5419 if (!rq->last_seen_need_resched_ns) {
5420 rq->last_seen_need_resched_ns = now;
5421 rq->ticks_without_resched = 0;
5422 return 0;
5423 }
5424
5425 rq->ticks_without_resched++;
5426 resched_latency = now - rq->last_seen_need_resched_ns;
5427 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5428 return 0;
5429
5430 warned_once = true;
5431
5432 return resched_latency;
5433}
5434
5435static int __init setup_resched_latency_warn_ms(char *str)
5436{
5437 long val;
5438
5439 if ((kstrtol(str, 0, &val))) {
5440 pr_warn("Unable to set resched_latency_warn_ms\n");
5441 return 1;
5442 }
5443
5444 sysctl_resched_latency_warn_ms = val;
5445 return 1;
5446}
5447__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5448#else
5449static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5450#endif /* CONFIG_SCHED_DEBUG */
5451
7835b98b
CL
5452/*
5453 * This function gets called by the timer code, with HZ frequency.
5454 * We call it with interrupts disabled.
7835b98b
CL
5455 */
5456void scheduler_tick(void)
5457{
7835b98b
CL
5458 int cpu = smp_processor_id();
5459 struct rq *rq = cpu_rq(cpu);
dd41f596 5460 struct task_struct *curr = rq->curr;
8a8c69c3 5461 struct rq_flags rf;
b4eccf5f 5462 unsigned long thermal_pressure;
c006fac5 5463 u64 resched_latency;
3e51f33f 5464
1567c3e3 5465 arch_scale_freq_tick();
3e51f33f 5466 sched_clock_tick();
dd41f596 5467
8a8c69c3
PZ
5468 rq_lock(rq, &rf);
5469
3e51f33f 5470 update_rq_clock(rq);
b4eccf5f 5471 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 5472 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 5473 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
5474 if (sched_feat(LATENCY_WARN))
5475 resched_latency = cpu_resched_latency(rq);
3289bdb4 5476 calc_global_load_tick(rq);
4feee7d1 5477 sched_core_tick(rq);
8a8c69c3
PZ
5478
5479 rq_unlock(rq, &rf);
7835b98b 5480
c006fac5
PT
5481 if (sched_feat(LATENCY_WARN) && resched_latency)
5482 resched_latency_warn(cpu, resched_latency);
5483
e9d2b064 5484 perf_event_task_tick();
e220d2dc 5485
e418e1c2 5486#ifdef CONFIG_SMP
6eb57e0d 5487 rq->idle_balance = idle_cpu(cpu);
7caff66f 5488 trigger_load_balance(rq);
e418e1c2 5489#endif
1da177e4
LT
5490}
5491
265f22a9 5492#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
5493
5494struct tick_work {
5495 int cpu;
b55bd585 5496 atomic_t state;
d84b3131
FW
5497 struct delayed_work work;
5498};
b55bd585
PM
5499/* Values for ->state, see diagram below. */
5500#define TICK_SCHED_REMOTE_OFFLINE 0
5501#define TICK_SCHED_REMOTE_OFFLINING 1
5502#define TICK_SCHED_REMOTE_RUNNING 2
5503
5504/*
5505 * State diagram for ->state:
5506 *
5507 *
5508 * TICK_SCHED_REMOTE_OFFLINE
5509 * | ^
5510 * | |
5511 * | | sched_tick_remote()
5512 * | |
5513 * | |
5514 * +--TICK_SCHED_REMOTE_OFFLINING
5515 * | ^
5516 * | |
5517 * sched_tick_start() | | sched_tick_stop()
5518 * | |
5519 * V |
5520 * TICK_SCHED_REMOTE_RUNNING
5521 *
5522 *
5523 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5524 * and sched_tick_start() are happy to leave the state in RUNNING.
5525 */
d84b3131
FW
5526
5527static struct tick_work __percpu *tick_work_cpu;
5528
5529static void sched_tick_remote(struct work_struct *work)
5530{
5531 struct delayed_work *dwork = to_delayed_work(work);
5532 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5533 int cpu = twork->cpu;
5534 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5535 struct task_struct *curr;
d84b3131 5536 struct rq_flags rf;
d9c0ffca 5537 u64 delta;
b55bd585 5538 int os;
d84b3131
FW
5539
5540 /*
5541 * Handle the tick only if it appears the remote CPU is running in full
5542 * dynticks mode. The check is racy by nature, but missing a tick or
5543 * having one too much is no big deal because the scheduler tick updates
5544 * statistics and checks timeslices in a time-independent way, regardless
5545 * of when exactly it is running.
5546 */
488603b8 5547 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5548 goto out_requeue;
d84b3131 5549
d9c0ffca
FW
5550 rq_lock_irq(rq, &rf);
5551 curr = rq->curr;
488603b8 5552 if (cpu_is_offline(cpu))
d9c0ffca 5553 goto out_unlock;
d84b3131 5554
d9c0ffca 5555 update_rq_clock(rq);
d9c0ffca 5556
488603b8
SW
5557 if (!is_idle_task(curr)) {
5558 /*
5559 * Make sure the next tick runs within a reasonable
5560 * amount of time.
5561 */
5562 delta = rq_clock_task(rq) - curr->se.exec_start;
5563 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5564 }
d9c0ffca
FW
5565 curr->sched_class->task_tick(rq, curr, 0);
5566
ebc0f83c 5567 calc_load_nohz_remote(rq);
d9c0ffca
FW
5568out_unlock:
5569 rq_unlock_irq(rq, &rf);
d9c0ffca 5570out_requeue:
ebc0f83c 5571
d84b3131
FW
5572 /*
5573 * Run the remote tick once per second (1Hz). This arbitrary
5574 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5575 * to keep scheduler internal stats reasonably up to date. But
5576 * first update state to reflect hotplug activity if required.
d84b3131 5577 */
b55bd585
PM
5578 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5579 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5580 if (os == TICK_SCHED_REMOTE_RUNNING)
5581 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5582}
5583
5584static void sched_tick_start(int cpu)
5585{
b55bd585 5586 int os;
d84b3131
FW
5587 struct tick_work *twork;
5588
04d4e665 5589 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5590 return;
5591
5592 WARN_ON_ONCE(!tick_work_cpu);
5593
5594 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5595 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5596 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5597 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5598 twork->cpu = cpu;
5599 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5600 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5601 }
d84b3131
FW
5602}
5603
5604#ifdef CONFIG_HOTPLUG_CPU
5605static void sched_tick_stop(int cpu)
5606{
5607 struct tick_work *twork;
b55bd585 5608 int os;
d84b3131 5609
04d4e665 5610 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5611 return;
5612
5613 WARN_ON_ONCE(!tick_work_cpu);
5614
5615 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5616 /* There cannot be competing actions, but don't rely on stop-machine. */
5617 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5618 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5619 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5620}
5621#endif /* CONFIG_HOTPLUG_CPU */
5622
5623int __init sched_tick_offload_init(void)
5624{
5625 tick_work_cpu = alloc_percpu(struct tick_work);
5626 BUG_ON(!tick_work_cpu);
d84b3131
FW
5627 return 0;
5628}
5629
5630#else /* !CONFIG_NO_HZ_FULL */
5631static inline void sched_tick_start(int cpu) { }
5632static inline void sched_tick_stop(int cpu) { }
265f22a9 5633#endif
1da177e4 5634
c1a280b6 5635#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5636 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5637/*
5638 * If the value passed in is equal to the current preempt count
5639 * then we just disabled preemption. Start timing the latency.
5640 */
5641static inline void preempt_latency_start(int val)
5642{
5643 if (preempt_count() == val) {
5644 unsigned long ip = get_lock_parent_ip();
5645#ifdef CONFIG_DEBUG_PREEMPT
5646 current->preempt_disable_ip = ip;
5647#endif
5648 trace_preempt_off(CALLER_ADDR0, ip);
5649 }
5650}
7e49fcce 5651
edafe3a5 5652void preempt_count_add(int val)
1da177e4 5653{
6cd8a4bb 5654#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5655 /*
5656 * Underflow?
5657 */
9a11b49a
IM
5658 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5659 return;
6cd8a4bb 5660#endif
bdb43806 5661 __preempt_count_add(val);
6cd8a4bb 5662#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5663 /*
5664 * Spinlock count overflowing soon?
5665 */
33859f7f
MOS
5666 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5667 PREEMPT_MASK - 10);
6cd8a4bb 5668#endif
47252cfb 5669 preempt_latency_start(val);
1da177e4 5670}
bdb43806 5671EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5672NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5673
47252cfb
SR
5674/*
5675 * If the value passed in equals to the current preempt count
5676 * then we just enabled preemption. Stop timing the latency.
5677 */
5678static inline void preempt_latency_stop(int val)
5679{
5680 if (preempt_count() == val)
5681 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5682}
5683
edafe3a5 5684void preempt_count_sub(int val)
1da177e4 5685{
6cd8a4bb 5686#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5687 /*
5688 * Underflow?
5689 */
01e3eb82 5690 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5691 return;
1da177e4
LT
5692 /*
5693 * Is the spinlock portion underflowing?
5694 */
9a11b49a
IM
5695 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5696 !(preempt_count() & PREEMPT_MASK)))
5697 return;
6cd8a4bb 5698#endif
9a11b49a 5699
47252cfb 5700 preempt_latency_stop(val);
bdb43806 5701 __preempt_count_sub(val);
1da177e4 5702}
bdb43806 5703EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5704NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5705
47252cfb
SR
5706#else
5707static inline void preempt_latency_start(int val) { }
5708static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5709#endif
5710
59ddbcb2
IM
5711static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5712{
5713#ifdef CONFIG_DEBUG_PREEMPT
5714 return p->preempt_disable_ip;
5715#else
5716 return 0;
5717#endif
5718}
5719
1da177e4 5720/*
dd41f596 5721 * Print scheduling while atomic bug:
1da177e4 5722 */
dd41f596 5723static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5724{
d1c6d149
VN
5725 /* Save this before calling printk(), since that will clobber it */
5726 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5727
664dfa65
DJ
5728 if (oops_in_progress)
5729 return;
5730
3df0fc5b
PZ
5731 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5732 prev->comm, prev->pid, preempt_count());
838225b4 5733
dd41f596 5734 debug_show_held_locks(prev);
e21f5b15 5735 print_modules();
dd41f596
IM
5736 if (irqs_disabled())
5737 print_irqtrace_events(prev);
d1c6d149
VN
5738 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5739 && in_atomic_preempt_off()) {
8f47b187 5740 pr_err("Preemption disabled at:");
2062a4e8 5741 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5742 }
748c7201
DBO
5743 if (panic_on_warn)
5744 panic("scheduling while atomic\n");
5745
6135fc1e 5746 dump_stack();
373d4d09 5747 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5748}
1da177e4 5749
dd41f596
IM
5750/*
5751 * Various schedule()-time debugging checks and statistics:
5752 */
312364f3 5753static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5754{
0d9e2632 5755#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5756 if (task_stack_end_corrupted(prev))
5757 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5758
5759 if (task_scs_end_corrupted(prev))
5760 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5761#endif
b99def8b 5762
312364f3 5763#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5764 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5765 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5766 prev->comm, prev->pid, prev->non_block_count);
5767 dump_stack();
5768 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5769 }
5770#endif
5771
1dc0fffc 5772 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5773 __schedule_bug(prev);
1dc0fffc
PZ
5774 preempt_count_set(PREEMPT_DISABLED);
5775 }
b3fbab05 5776 rcu_sleep_check();
9f68b5b7 5777 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5778
1da177e4
LT
5779 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5780
ae92882e 5781 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5782}
5783
457d1f46
CY
5784static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5785 struct rq_flags *rf)
5786{
5787#ifdef CONFIG_SMP
5788 const struct sched_class *class;
5789 /*
5790 * We must do the balancing pass before put_prev_task(), such
5791 * that when we release the rq->lock the task is in the same
5792 * state as before we took rq->lock.
5793 *
5794 * We can terminate the balance pass as soon as we know there is
5795 * a runnable task of @class priority or higher.
5796 */
5797 for_class_range(class, prev->sched_class, &idle_sched_class) {
5798 if (class->balance(rq, prev, rf))
5799 break;
5800 }
5801#endif
5802
5803 put_prev_task(rq, prev);
5804}
5805
dd41f596
IM
5806/*
5807 * Pick up the highest-prio task:
5808 */
5809static inline struct task_struct *
539f6512 5810__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5811{
49ee5768 5812 const struct sched_class *class;
dd41f596 5813 struct task_struct *p;
1da177e4
LT
5814
5815 /*
0ba87bb2
PZ
5816 * Optimization: we know that if all tasks are in the fair class we can
5817 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5818 * higher scheduling class, because otherwise those lose the
0ba87bb2 5819 * opportunity to pull in more work from other CPUs.
1da177e4 5820 */
546a3fee 5821 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
0ba87bb2
PZ
5822 rq->nr_running == rq->cfs.h_nr_running)) {
5823
5d7d6056 5824 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5825 if (unlikely(p == RETRY_TASK))
67692435 5826 goto restart;
6ccdc84b 5827
1699949d 5828 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5829 if (!p) {
f488e105 5830 put_prev_task(rq, prev);
98c2f700 5831 p = pick_next_task_idle(rq);
f488e105 5832 }
6ccdc84b
PZ
5833
5834 return p;
1da177e4
LT
5835 }
5836
67692435 5837restart:
457d1f46 5838 put_prev_task_balance(rq, prev, rf);
67692435 5839
34f971f6 5840 for_each_class(class) {
98c2f700 5841 p = class->pick_next_task(rq);
67692435 5842 if (p)
dd41f596 5843 return p;
dd41f596 5844 }
34f971f6 5845
bc9ffef3 5846 BUG(); /* The idle class should always have a runnable task. */
dd41f596 5847}
1da177e4 5848
9edeaea1 5849#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5850static inline bool is_task_rq_idle(struct task_struct *t)
5851{
5852 return (task_rq(t)->idle == t);
5853}
5854
5855static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5856{
5857 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5858}
5859
5860static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5861{
5862 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5863 return true;
5864
5865 return a->core_cookie == b->core_cookie;
5866}
5867
bc9ffef3 5868static inline struct task_struct *pick_task(struct rq *rq)
539f6512 5869{
bc9ffef3
PZ
5870 const struct sched_class *class;
5871 struct task_struct *p;
539f6512 5872
bc9ffef3
PZ
5873 for_each_class(class) {
5874 p = class->pick_task(rq);
5875 if (p)
5876 return p;
539f6512
PZ
5877 }
5878
bc9ffef3 5879 BUG(); /* The idle class should always have a runnable task. */
539f6512
PZ
5880}
5881
c6047c2e
JFG
5882extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5883
5b6547ed
PZ
5884static void queue_core_balance(struct rq *rq);
5885
539f6512
PZ
5886static struct task_struct *
5887pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5888{
bc9ffef3 5889 struct task_struct *next, *p, *max = NULL;
539f6512 5890 const struct cpumask *smt_mask;
c6047c2e 5891 bool fi_before = false;
4feee7d1 5892 bool core_clock_updated = (rq == rq->core);
bc9ffef3
PZ
5893 unsigned long cookie;
5894 int i, cpu, occ = 0;
5895 struct rq *rq_i;
539f6512 5896 bool need_sync;
539f6512
PZ
5897
5898 if (!sched_core_enabled(rq))
5899 return __pick_next_task(rq, prev, rf);
5900
5901 cpu = cpu_of(rq);
5902
5903 /* Stopper task is switching into idle, no need core-wide selection. */
5904 if (cpu_is_offline(cpu)) {
5905 /*
5906 * Reset core_pick so that we don't enter the fastpath when
5907 * coming online. core_pick would already be migrated to
5908 * another cpu during offline.
5909 */
5910 rq->core_pick = NULL;
5911 return __pick_next_task(rq, prev, rf);
5912 }
5913
5914 /*
5915 * If there were no {en,de}queues since we picked (IOW, the task
5916 * pointers are all still valid), and we haven't scheduled the last
5917 * pick yet, do so now.
5918 *
5919 * rq->core_pick can be NULL if no selection was made for a CPU because
5920 * it was either offline or went offline during a sibling's core-wide
5921 * selection. In this case, do a core-wide selection.
5922 */
5923 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5924 rq->core->core_pick_seq != rq->core_sched_seq &&
5925 rq->core_pick) {
5926 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5927
5928 next = rq->core_pick;
5929 if (next != prev) {
5930 put_prev_task(rq, prev);
5931 set_next_task(rq, next);
5932 }
5933
5934 rq->core_pick = NULL;
5b6547ed 5935 goto out;
539f6512
PZ
5936 }
5937
5938 put_prev_task_balance(rq, prev, rf);
5939
5940 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5941 need_sync = !!rq->core->core_cookie;
5942
5943 /* reset state */
5944 rq->core->core_cookie = 0UL;
4feee7d1
JD
5945 if (rq->core->core_forceidle_count) {
5946 if (!core_clock_updated) {
5947 update_rq_clock(rq->core);
5948 core_clock_updated = true;
5949 }
5950 sched_core_account_forceidle(rq);
5951 /* reset after accounting force idle */
5952 rq->core->core_forceidle_start = 0;
5953 rq->core->core_forceidle_count = 0;
5954 rq->core->core_forceidle_occupation = 0;
7afbba11
JFG
5955 need_sync = true;
5956 fi_before = true;
7afbba11 5957 }
539f6512
PZ
5958
5959 /*
5960 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5961 *
5962 * @task_seq guards the task state ({en,de}queues)
5963 * @pick_seq is the @task_seq we did a selection on
5964 * @sched_seq is the @pick_seq we scheduled
5965 *
5966 * However, preemptions can cause multiple picks on the same task set.
5967 * 'Fix' this by also increasing @task_seq for every pick.
5968 */
5969 rq->core->core_task_seq++;
539f6512 5970
7afbba11
JFG
5971 /*
5972 * Optimize for common case where this CPU has no cookies
5973 * and there are no cookied tasks running on siblings.
5974 */
5975 if (!need_sync) {
bc9ffef3 5976 next = pick_task(rq);
7afbba11
JFG
5977 if (!next->core_cookie) {
5978 rq->core_pick = NULL;
c6047c2e
JFG
5979 /*
5980 * For robustness, update the min_vruntime_fi for
5981 * unconstrained picks as well.
5982 */
5983 WARN_ON_ONCE(fi_before);
5984 task_vruntime_update(rq, next, false);
5b6547ed 5985 goto out_set_next;
7afbba11 5986 }
8039e96f 5987 }
7afbba11 5988
bc9ffef3
PZ
5989 /*
5990 * For each thread: do the regular task pick and find the max prio task
5991 * amongst them.
5992 *
5993 * Tie-break prio towards the current CPU
5994 */
5995 for_each_cpu_wrap(i, smt_mask, cpu) {
5996 rq_i = cpu_rq(i);
539f6512 5997
4feee7d1
JD
5998 /*
5999 * Current cpu always has its clock updated on entrance to
6000 * pick_next_task(). If the current cpu is not the core,
6001 * the core may also have been updated above.
6002 */
6003 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
539f6512 6004 update_rq_clock(rq_i);
bc9ffef3
PZ
6005
6006 p = rq_i->core_pick = pick_task(rq_i);
6007 if (!max || prio_less(max, p, fi_before))
6008 max = p;
539f6512
PZ
6009 }
6010
bc9ffef3
PZ
6011 cookie = rq->core->core_cookie = max->core_cookie;
6012
539f6512 6013 /*
bc9ffef3
PZ
6014 * For each thread: try and find a runnable task that matches @max or
6015 * force idle.
539f6512 6016 */
bc9ffef3
PZ
6017 for_each_cpu(i, smt_mask) {
6018 rq_i = cpu_rq(i);
6019 p = rq_i->core_pick;
539f6512 6020
bc9ffef3
PZ
6021 if (!cookie_equals(p, cookie)) {
6022 p = NULL;
6023 if (cookie)
6024 p = sched_core_find(rq_i, cookie);
7afbba11 6025 if (!p)
bc9ffef3
PZ
6026 p = idle_sched_class.pick_task(rq_i);
6027 }
539f6512 6028
bc9ffef3 6029 rq_i->core_pick = p;
d2dfa17b 6030
bc9ffef3
PZ
6031 if (p == rq_i->idle) {
6032 if (rq_i->nr_running) {
4feee7d1 6033 rq->core->core_forceidle_count++;
c6047c2e
JFG
6034 if (!fi_before)
6035 rq->core->core_forceidle_seq++;
6036 }
bc9ffef3
PZ
6037 } else {
6038 occ++;
539f6512 6039 }
539f6512
PZ
6040 }
6041
4feee7d1 6042 if (schedstat_enabled() && rq->core->core_forceidle_count) {
b171501f 6043 rq->core->core_forceidle_start = rq_clock(rq->core);
4feee7d1
JD
6044 rq->core->core_forceidle_occupation = occ;
6045 }
6046
539f6512
PZ
6047 rq->core->core_pick_seq = rq->core->core_task_seq;
6048 next = rq->core_pick;
6049 rq->core_sched_seq = rq->core->core_pick_seq;
6050
6051 /* Something should have been selected for current CPU */
6052 WARN_ON_ONCE(!next);
6053
6054 /*
6055 * Reschedule siblings
6056 *
6057 * NOTE: L1TF -- at this point we're no longer running the old task and
6058 * sending an IPI (below) ensures the sibling will no longer be running
6059 * their task. This ensures there is no inter-sibling overlap between
6060 * non-matching user state.
6061 */
6062 for_each_cpu(i, smt_mask) {
bc9ffef3 6063 rq_i = cpu_rq(i);
539f6512
PZ
6064
6065 /*
6066 * An online sibling might have gone offline before a task
6067 * could be picked for it, or it might be offline but later
6068 * happen to come online, but its too late and nothing was
6069 * picked for it. That's Ok - it will pick tasks for itself,
6070 * so ignore it.
6071 */
6072 if (!rq_i->core_pick)
6073 continue;
6074
c6047c2e
JFG
6075 /*
6076 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6077 * fi_before fi update?
6078 * 0 0 1
6079 * 0 1 1
6080 * 1 0 1
6081 * 1 1 0
6082 */
4feee7d1
JD
6083 if (!(fi_before && rq->core->core_forceidle_count))
6084 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
539f6512 6085
d2dfa17b
PZ
6086 rq_i->core_pick->core_occupation = occ;
6087
539f6512
PZ
6088 if (i == cpu) {
6089 rq_i->core_pick = NULL;
6090 continue;
6091 }
6092
6093 /* Did we break L1TF mitigation requirements? */
6094 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6095
6096 if (rq_i->curr == rq_i->core_pick) {
6097 rq_i->core_pick = NULL;
6098 continue;
6099 }
6100
6101 resched_curr(rq_i);
6102 }
6103
5b6547ed 6104out_set_next:
539f6512 6105 set_next_task(rq, next);
5b6547ed
PZ
6106out:
6107 if (rq->core->core_forceidle_count && next == rq->idle)
6108 queue_core_balance(rq);
6109
539f6512
PZ
6110 return next;
6111}
9edeaea1 6112
d2dfa17b
PZ
6113static bool try_steal_cookie(int this, int that)
6114{
6115 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6116 struct task_struct *p;
6117 unsigned long cookie;
6118 bool success = false;
6119
6120 local_irq_disable();
6121 double_rq_lock(dst, src);
6122
6123 cookie = dst->core->core_cookie;
6124 if (!cookie)
6125 goto unlock;
6126
6127 if (dst->curr != dst->idle)
6128 goto unlock;
6129
6130 p = sched_core_find(src, cookie);
6131 if (p == src->idle)
6132 goto unlock;
6133
6134 do {
6135 if (p == src->core_pick || p == src->curr)
6136 goto next;
6137
386ef214 6138 if (!is_cpu_allowed(p, this))
d2dfa17b
PZ
6139 goto next;
6140
6141 if (p->core_occupation > dst->idle->core_occupation)
6142 goto next;
6143
d2dfa17b
PZ
6144 deactivate_task(src, p, 0);
6145 set_task_cpu(p, this);
6146 activate_task(dst, p, 0);
d2dfa17b
PZ
6147
6148 resched_curr(dst);
6149
6150 success = true;
6151 break;
6152
6153next:
6154 p = sched_core_next(p, cookie);
6155 } while (p);
6156
6157unlock:
6158 double_rq_unlock(dst, src);
6159 local_irq_enable();
6160
6161 return success;
6162}
6163
6164static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6165{
6166 int i;
6167
6168 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6169 if (i == cpu)
6170 continue;
6171
6172 if (need_resched())
6173 break;
6174
6175 if (try_steal_cookie(cpu, i))
6176 return true;
6177 }
6178
6179 return false;
6180}
6181
6182static void sched_core_balance(struct rq *rq)
6183{
6184 struct sched_domain *sd;
6185 int cpu = cpu_of(rq);
6186
6187 preempt_disable();
6188 rcu_read_lock();
6189 raw_spin_rq_unlock_irq(rq);
6190 for_each_domain(cpu, sd) {
6191 if (need_resched())
6192 break;
6193
6194 if (steal_cookie_task(cpu, sd))
6195 break;
6196 }
6197 raw_spin_rq_lock_irq(rq);
6198 rcu_read_unlock();
6199 preempt_enable();
6200}
6201
8e5bad7d 6202static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
d2dfa17b 6203
5b6547ed 6204static void queue_core_balance(struct rq *rq)
d2dfa17b
PZ
6205{
6206 if (!sched_core_enabled(rq))
6207 return;
6208
6209 if (!rq->core->core_cookie)
6210 return;
6211
6212 if (!rq->nr_running) /* not forced idle */
6213 return;
6214
6215 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6216}
6217
3c474b32 6218static void sched_core_cpu_starting(unsigned int cpu)
9edeaea1
PZ
6219{
6220 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
3c474b32
PZ
6221 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6222 unsigned long flags;
6223 int t;
9edeaea1 6224
3c474b32 6225 sched_core_lock(cpu, &flags);
9edeaea1 6226
3c474b32
PZ
6227 WARN_ON_ONCE(rq->core != rq);
6228
6229 /* if we're the first, we'll be our own leader */
6230 if (cpumask_weight(smt_mask) == 1)
6231 goto unlock;
6232
6233 /* find the leader */
6234 for_each_cpu(t, smt_mask) {
6235 if (t == cpu)
6236 continue;
6237 rq = cpu_rq(t);
6238 if (rq->core == rq) {
6239 core_rq = rq;
6240 break;
9edeaea1 6241 }
3c474b32 6242 }
9edeaea1 6243
3c474b32
PZ
6244 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6245 goto unlock;
9edeaea1 6246
3c474b32
PZ
6247 /* install and validate core_rq */
6248 for_each_cpu(t, smt_mask) {
6249 rq = cpu_rq(t);
9edeaea1 6250
3c474b32 6251 if (t == cpu)
9edeaea1 6252 rq->core = core_rq;
3c474b32
PZ
6253
6254 WARN_ON_ONCE(rq->core != core_rq);
9edeaea1 6255 }
3c474b32
PZ
6256
6257unlock:
6258 sched_core_unlock(cpu, &flags);
9edeaea1 6259}
3c474b32
PZ
6260
6261static void sched_core_cpu_deactivate(unsigned int cpu)
6262{
6263 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6264 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6265 unsigned long flags;
6266 int t;
6267
6268 sched_core_lock(cpu, &flags);
6269
6270 /* if we're the last man standing, nothing to do */
6271 if (cpumask_weight(smt_mask) == 1) {
6272 WARN_ON_ONCE(rq->core != rq);
6273 goto unlock;
6274 }
6275
6276 /* if we're not the leader, nothing to do */
6277 if (rq->core != rq)
6278 goto unlock;
6279
6280 /* find a new leader */
6281 for_each_cpu(t, smt_mask) {
6282 if (t == cpu)
6283 continue;
6284 core_rq = cpu_rq(t);
6285 break;
6286 }
6287
6288 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6289 goto unlock;
6290
6291 /* copy the shared state to the new leader */
4feee7d1
JD
6292 core_rq->core_task_seq = rq->core_task_seq;
6293 core_rq->core_pick_seq = rq->core_pick_seq;
6294 core_rq->core_cookie = rq->core_cookie;
6295 core_rq->core_forceidle_count = rq->core_forceidle_count;
6296 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6297 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6298
6299 /*
6300 * Accounting edge for forced idle is handled in pick_next_task().
6301 * Don't need another one here, since the hotplug thread shouldn't
6302 * have a cookie.
6303 */
6304 core_rq->core_forceidle_start = 0;
3c474b32
PZ
6305
6306 /* install new leader */
6307 for_each_cpu(t, smt_mask) {
6308 rq = cpu_rq(t);
6309 rq->core = core_rq;
6310 }
6311
6312unlock:
6313 sched_core_unlock(cpu, &flags);
6314}
6315
6316static inline void sched_core_cpu_dying(unsigned int cpu)
6317{
6318 struct rq *rq = cpu_rq(cpu);
6319
6320 if (rq->core != rq)
6321 rq->core = rq;
6322}
6323
9edeaea1
PZ
6324#else /* !CONFIG_SCHED_CORE */
6325
6326static inline void sched_core_cpu_starting(unsigned int cpu) {}
3c474b32
PZ
6327static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6328static inline void sched_core_cpu_dying(unsigned int cpu) {}
9edeaea1 6329
539f6512
PZ
6330static struct task_struct *
6331pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6332{
6333 return __pick_next_task(rq, prev, rf);
6334}
6335
9edeaea1
PZ
6336#endif /* CONFIG_SCHED_CORE */
6337
b4bfa3fc
TG
6338/*
6339 * Constants for the sched_mode argument of __schedule().
6340 *
6341 * The mode argument allows RT enabled kernels to differentiate a
6342 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6343 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6344 * optimize the AND operation out and just check for zero.
6345 */
6346#define SM_NONE 0x0
6347#define SM_PREEMPT 0x1
6991436c
TG
6348#define SM_RTLOCK_WAIT 0x2
6349
6350#ifndef CONFIG_PREEMPT_RT
6351# define SM_MASK_PREEMPT (~0U)
6352#else
6353# define SM_MASK_PREEMPT SM_PREEMPT
6354#endif
b4bfa3fc 6355
dd41f596 6356/*
c259e01a 6357 * __schedule() is the main scheduler function.
edde96ea
PE
6358 *
6359 * The main means of driving the scheduler and thus entering this function are:
6360 *
6361 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6362 *
6363 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6364 * paths. For example, see arch/x86/entry_64.S.
6365 *
6366 * To drive preemption between tasks, the scheduler sets the flag in timer
6367 * interrupt handler scheduler_tick().
6368 *
6369 * 3. Wakeups don't really cause entry into schedule(). They add a
6370 * task to the run-queue and that's it.
6371 *
6372 * Now, if the new task added to the run-queue preempts the current
6373 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6374 * called on the nearest possible occasion:
6375 *
c1a280b6 6376 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
6377 *
6378 * - in syscall or exception context, at the next outmost
6379 * preempt_enable(). (this might be as soon as the wake_up()'s
6380 * spin_unlock()!)
6381 *
6382 * - in IRQ context, return from interrupt-handler to
6383 * preemptible context
6384 *
c1a280b6 6385 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
6386 * then at the next:
6387 *
6388 * - cond_resched() call
6389 * - explicit schedule() call
6390 * - return from syscall or exception to user-space
6391 * - return from interrupt-handler to user-space
bfd9b2b5 6392 *
b30f0e3f 6393 * WARNING: must be called with preemption disabled!
dd41f596 6394 */
b4bfa3fc 6395static void __sched notrace __schedule(unsigned int sched_mode)
dd41f596
IM
6396{
6397 struct task_struct *prev, *next;
67ca7bde 6398 unsigned long *switch_count;
dbfb089d 6399 unsigned long prev_state;
d8ac8971 6400 struct rq_flags rf;
dd41f596 6401 struct rq *rq;
31656519 6402 int cpu;
dd41f596 6403
dd41f596
IM
6404 cpu = smp_processor_id();
6405 rq = cpu_rq(cpu);
dd41f596 6406 prev = rq->curr;
dd41f596 6407
b4bfa3fc 6408 schedule_debug(prev, !!sched_mode);
1da177e4 6409
e0ee463c 6410 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 6411 hrtick_clear(rq);
8f4d37ec 6412
46a5d164 6413 local_irq_disable();
b4bfa3fc 6414 rcu_note_context_switch(!!sched_mode);
46a5d164 6415
e0acd0a6
ON
6416 /*
6417 * Make sure that signal_pending_state()->signal_pending() below
6418 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
6419 * done by the caller to avoid the race with signal_wake_up():
6420 *
6421 * __set_current_state(@state) signal_wake_up()
6422 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6423 * wake_up_state(p, state)
6424 * LOCK rq->lock LOCK p->pi_state
6425 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6426 * if (signal_pending_state()) if (p->state & @state)
306e0604 6427 *
dbfb089d 6428 * Also, the membarrier system call requires a full memory barrier
306e0604 6429 * after coming from user-space, before storing to rq->curr.
e0acd0a6 6430 */
8a8c69c3 6431 rq_lock(rq, &rf);
d89e588c 6432 smp_mb__after_spinlock();
1da177e4 6433
d1ccc66d
IM
6434 /* Promote REQ to ACT */
6435 rq->clock_update_flags <<= 1;
bce4dc80 6436 update_rq_clock(rq);
9edfbfed 6437
246d86b5 6438 switch_count = &prev->nivcsw;
d136122f 6439
dbfb089d 6440 /*
d136122f 6441 * We must load prev->state once (task_struct::state is volatile), such
2500ad1c 6442 * that we form a control dependency vs deactivate_task() below.
dbfb089d 6443 */
2f064a59 6444 prev_state = READ_ONCE(prev->__state);
b4bfa3fc 6445 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
dbfb089d 6446 if (signal_pending_state(prev_state, prev)) {
2f064a59 6447 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 6448 } else {
dbfb089d
PZ
6449 prev->sched_contributes_to_load =
6450 (prev_state & TASK_UNINTERRUPTIBLE) &&
6451 !(prev_state & TASK_NOLOAD) &&
f5d39b02 6452 !(prev_state & TASK_FROZEN);
dbfb089d
PZ
6453
6454 if (prev->sched_contributes_to_load)
6455 rq->nr_uninterruptible++;
6456
6457 /*
6458 * __schedule() ttwu()
d136122f
PZ
6459 * prev_state = prev->state; if (p->on_rq && ...)
6460 * if (prev_state) goto out;
6461 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6462 * p->state = TASK_WAKING
6463 *
6464 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
6465 *
6466 * After this, schedule() must not care about p->state any more.
6467 */
bce4dc80 6468 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 6469
e33a9bba
TH
6470 if (prev->in_iowait) {
6471 atomic_inc(&rq->nr_iowait);
6472 delayacct_blkio_start();
6473 }
21aa9af0 6474 }
dd41f596 6475 switch_count = &prev->nvcsw;
1da177e4
LT
6476 }
6477
d8ac8971 6478 next = pick_next_task(rq, prev, &rf);
f26f9aff 6479 clear_tsk_need_resched(prev);
f27dde8d 6480 clear_preempt_need_resched();
c006fac5
PT
6481#ifdef CONFIG_SCHED_DEBUG
6482 rq->last_seen_need_resched_ns = 0;
6483#endif
1da177e4 6484
1da177e4 6485 if (likely(prev != next)) {
1da177e4 6486 rq->nr_switches++;
5311a98f
EB
6487 /*
6488 * RCU users of rcu_dereference(rq->curr) may not see
6489 * changes to task_struct made by pick_next_task().
6490 */
6491 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
6492 /*
6493 * The membarrier system call requires each architecture
6494 * to have a full memory barrier after updating
306e0604
MD
6495 * rq->curr, before returning to user-space.
6496 *
6497 * Here are the schemes providing that barrier on the
6498 * various architectures:
6499 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6500 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6501 * - finish_lock_switch() for weakly-ordered
6502 * architectures where spin_unlock is a full barrier,
6503 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6504 * is a RELEASE barrier),
22e4ebb9 6505 */
1da177e4
LT
6506 ++*switch_count;
6507
af449901 6508 migrate_disable_switch(rq, prev);
b05e75d6
JW
6509 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6510
9c2136be 6511 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
d1ccc66d
IM
6512
6513 /* Also unlocks the rq: */
6514 rq = context_switch(rq, prev, next, &rf);
cbce1a68 6515 } else {
cb42c9a3 6516 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 6517
565790d2
PZ
6518 rq_unpin_lock(rq, &rf);
6519 __balance_callbacks(rq);
5cb9eaa3 6520 raw_spin_rq_unlock_irq(rq);
565790d2 6521 }
1da177e4 6522}
c259e01a 6523
9af6528e
PZ
6524void __noreturn do_task_dead(void)
6525{
d1ccc66d 6526 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 6527 set_special_state(TASK_DEAD);
d1ccc66d
IM
6528
6529 /* Tell freezer to ignore us: */
6530 current->flags |= PF_NOFREEZE;
6531
b4bfa3fc 6532 __schedule(SM_NONE);
9af6528e 6533 BUG();
d1ccc66d
IM
6534
6535 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 6536 for (;;)
d1ccc66d 6537 cpu_relax();
9af6528e
PZ
6538}
6539
9c40cef2
TG
6540static inline void sched_submit_work(struct task_struct *tsk)
6541{
c1cecf88
SAS
6542 unsigned int task_flags;
6543
b03fbd4f 6544 if (task_is_running(tsk))
9c40cef2 6545 return;
6d25be57 6546
c1cecf88 6547 task_flags = tsk->flags;
6d25be57 6548 /*
b945efcd
TG
6549 * If a worker goes to sleep, notify and ask workqueue whether it
6550 * wants to wake up a task to maintain concurrency.
6d25be57 6551 */
c1cecf88 6552 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
c1cecf88 6553 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
6554 wq_worker_sleeping(tsk);
6555 else
6556 io_wq_worker_sleeping(tsk);
6d25be57
TG
6557 }
6558
401e4963
JK
6559 /*
6560 * spinlock and rwlock must not flush block requests. This will
6561 * deadlock if the callback attempts to acquire a lock which is
6562 * already acquired.
6563 */
6564 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
b0fdc013 6565
9c40cef2
TG
6566 /*
6567 * If we are going to sleep and we have plugged IO queued,
6568 * make sure to submit it to avoid deadlocks.
6569 */
aa8dccca 6570 blk_flush_plug(tsk->plug, true);
9c40cef2
TG
6571}
6572
6d25be57
TG
6573static void sched_update_worker(struct task_struct *tsk)
6574{
771b53d0
JA
6575 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6576 if (tsk->flags & PF_WQ_WORKER)
6577 wq_worker_running(tsk);
6578 else
6579 io_wq_worker_running(tsk);
6580 }
6d25be57
TG
6581}
6582
722a9f92 6583asmlinkage __visible void __sched schedule(void)
c259e01a 6584{
9c40cef2
TG
6585 struct task_struct *tsk = current;
6586
6587 sched_submit_work(tsk);
bfd9b2b5 6588 do {
b30f0e3f 6589 preempt_disable();
b4bfa3fc 6590 __schedule(SM_NONE);
b30f0e3f 6591 sched_preempt_enable_no_resched();
bfd9b2b5 6592 } while (need_resched());
6d25be57 6593 sched_update_worker(tsk);
c259e01a 6594}
1da177e4
LT
6595EXPORT_SYMBOL(schedule);
6596
8663effb
SRV
6597/*
6598 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6599 * state (have scheduled out non-voluntarily) by making sure that all
6600 * tasks have either left the run queue or have gone into user space.
6601 * As idle tasks do not do either, they must not ever be preempted
6602 * (schedule out non-voluntarily).
6603 *
6604 * schedule_idle() is similar to schedule_preempt_disable() except that it
6605 * never enables preemption because it does not call sched_submit_work().
6606 */
6607void __sched schedule_idle(void)
6608{
6609 /*
6610 * As this skips calling sched_submit_work(), which the idle task does
6611 * regardless because that function is a nop when the task is in a
6612 * TASK_RUNNING state, make sure this isn't used someplace that the
6613 * current task can be in any other state. Note, idle is always in the
6614 * TASK_RUNNING state.
6615 */
2f064a59 6616 WARN_ON_ONCE(current->__state);
8663effb 6617 do {
b4bfa3fc 6618 __schedule(SM_NONE);
8663effb
SRV
6619 } while (need_resched());
6620}
6621
24a9c541 6622#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
722a9f92 6623asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6624{
6625 /*
6626 * If we come here after a random call to set_need_resched(),
6627 * or we have been woken up remotely but the IPI has not yet arrived,
6628 * we haven't yet exited the RCU idle mode. Do it here manually until
6629 * we find a better solution.
7cc78f8f
AL
6630 *
6631 * NB: There are buggy callers of this function. Ideally we
c467ea76 6632 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6633 * too frequently to make sense yet.
20ab65e3 6634 */
7cc78f8f 6635 enum ctx_state prev_state = exception_enter();
20ab65e3 6636 schedule();
7cc78f8f 6637 exception_exit(prev_state);
20ab65e3
FW
6638}
6639#endif
6640
c5491ea7
TG
6641/**
6642 * schedule_preempt_disabled - called with preemption disabled
6643 *
6644 * Returns with preemption disabled. Note: preempt_count must be 1
6645 */
6646void __sched schedule_preempt_disabled(void)
6647{
ba74c144 6648 sched_preempt_enable_no_resched();
c5491ea7
TG
6649 schedule();
6650 preempt_disable();
6651}
6652
6991436c
TG
6653#ifdef CONFIG_PREEMPT_RT
6654void __sched notrace schedule_rtlock(void)
6655{
6656 do {
6657 preempt_disable();
6658 __schedule(SM_RTLOCK_WAIT);
6659 sched_preempt_enable_no_resched();
6660 } while (need_resched());
6661}
6662NOKPROBE_SYMBOL(schedule_rtlock);
6663#endif
6664
06b1f808 6665static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6666{
6667 do {
47252cfb
SR
6668 /*
6669 * Because the function tracer can trace preempt_count_sub()
6670 * and it also uses preempt_enable/disable_notrace(), if
6671 * NEED_RESCHED is set, the preempt_enable_notrace() called
6672 * by the function tracer will call this function again and
6673 * cause infinite recursion.
6674 *
6675 * Preemption must be disabled here before the function
6676 * tracer can trace. Break up preempt_disable() into two
6677 * calls. One to disable preemption without fear of being
6678 * traced. The other to still record the preemption latency,
6679 * which can also be traced by the function tracer.
6680 */
499d7955 6681 preempt_disable_notrace();
47252cfb 6682 preempt_latency_start(1);
b4bfa3fc 6683 __schedule(SM_PREEMPT);
47252cfb 6684 preempt_latency_stop(1);
499d7955 6685 preempt_enable_no_resched_notrace();
a18b5d01
FW
6686
6687 /*
6688 * Check again in case we missed a preemption opportunity
6689 * between schedule and now.
6690 */
a18b5d01
FW
6691 } while (need_resched());
6692}
6693
c1a280b6 6694#ifdef CONFIG_PREEMPTION
1da177e4 6695/*
a49b4f40
VS
6696 * This is the entry point to schedule() from in-kernel preemption
6697 * off of preempt_enable.
1da177e4 6698 */
722a9f92 6699asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6700{
1da177e4
LT
6701 /*
6702 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6703 * we do not want to preempt the current task. Just return..
1da177e4 6704 */
fbb00b56 6705 if (likely(!preemptible()))
1da177e4 6706 return;
a18b5d01 6707 preempt_schedule_common();
1da177e4 6708}
376e2424 6709NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6710EXPORT_SYMBOL(preempt_schedule);
009f60e2 6711
2c9a98d3 6712#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6713#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6714#ifndef preempt_schedule_dynamic_enabled
6715#define preempt_schedule_dynamic_enabled preempt_schedule
6716#define preempt_schedule_dynamic_disabled NULL
6717#endif
6718DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
ef72661e 6719EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
99cf983c
MR
6720#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6721static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6722void __sched notrace dynamic_preempt_schedule(void)
6723{
6724 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6725 return;
6726 preempt_schedule();
6727}
6728NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6729EXPORT_SYMBOL(dynamic_preempt_schedule);
6730#endif
2c9a98d3 6731#endif
2c9a98d3 6732
009f60e2 6733/**
4eaca0a8 6734 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6735 *
6736 * The tracing infrastructure uses preempt_enable_notrace to prevent
6737 * recursion and tracing preempt enabling caused by the tracing
6738 * infrastructure itself. But as tracing can happen in areas coming
6739 * from userspace or just about to enter userspace, a preempt enable
6740 * can occur before user_exit() is called. This will cause the scheduler
6741 * to be called when the system is still in usermode.
6742 *
6743 * To prevent this, the preempt_enable_notrace will use this function
6744 * instead of preempt_schedule() to exit user context if needed before
6745 * calling the scheduler.
6746 */
4eaca0a8 6747asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6748{
6749 enum ctx_state prev_ctx;
6750
6751 if (likely(!preemptible()))
6752 return;
6753
6754 do {
47252cfb
SR
6755 /*
6756 * Because the function tracer can trace preempt_count_sub()
6757 * and it also uses preempt_enable/disable_notrace(), if
6758 * NEED_RESCHED is set, the preempt_enable_notrace() called
6759 * by the function tracer will call this function again and
6760 * cause infinite recursion.
6761 *
6762 * Preemption must be disabled here before the function
6763 * tracer can trace. Break up preempt_disable() into two
6764 * calls. One to disable preemption without fear of being
6765 * traced. The other to still record the preemption latency,
6766 * which can also be traced by the function tracer.
6767 */
3d8f74dd 6768 preempt_disable_notrace();
47252cfb 6769 preempt_latency_start(1);
009f60e2
ON
6770 /*
6771 * Needs preempt disabled in case user_exit() is traced
6772 * and the tracer calls preempt_enable_notrace() causing
6773 * an infinite recursion.
6774 */
6775 prev_ctx = exception_enter();
b4bfa3fc 6776 __schedule(SM_PREEMPT);
009f60e2
ON
6777 exception_exit(prev_ctx);
6778
47252cfb 6779 preempt_latency_stop(1);
3d8f74dd 6780 preempt_enable_no_resched_notrace();
009f60e2
ON
6781 } while (need_resched());
6782}
4eaca0a8 6783EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6784
2c9a98d3 6785#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6786#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6787#ifndef preempt_schedule_notrace_dynamic_enabled
6788#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6789#define preempt_schedule_notrace_dynamic_disabled NULL
2c9a98d3 6790#endif
8a69fe0b 6791DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
ef72661e 6792EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
99cf983c
MR
6793#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6794static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6795void __sched notrace dynamic_preempt_schedule_notrace(void)
c597bfdd 6796{
99cf983c
MR
6797 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6798 return;
6799 preempt_schedule_notrace();
c597bfdd 6800}
99cf983c
MR
6801NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6802EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6803#endif
2c9a98d3 6804#endif
c597bfdd 6805
c1a280b6 6806#endif /* CONFIG_PREEMPTION */
826bfeb3 6807
1da177e4 6808/*
a49b4f40 6809 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6810 * off of irq context.
6811 * Note, that this is called and return with irqs disabled. This will
6812 * protect us against recursive calling from irq.
6813 */
722a9f92 6814asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6815{
b22366cd 6816 enum ctx_state prev_state;
6478d880 6817
2ed6e34f 6818 /* Catch callers which need to be fixed */
f27dde8d 6819 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6820
b22366cd
FW
6821 prev_state = exception_enter();
6822
3a5c359a 6823 do {
3d8f74dd 6824 preempt_disable();
3a5c359a 6825 local_irq_enable();
b4bfa3fc 6826 __schedule(SM_PREEMPT);
3a5c359a 6827 local_irq_disable();
3d8f74dd 6828 sched_preempt_enable_no_resched();
5ed0cec0 6829 } while (need_resched());
b22366cd
FW
6830
6831 exception_exit(prev_state);
1da177e4
LT
6832}
6833
ac6424b9 6834int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6835 void *key)
1da177e4 6836{
062d3f95 6837 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6838 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6839}
1da177e4
LT
6840EXPORT_SYMBOL(default_wake_function);
6841
f558c2b8
PZ
6842static void __setscheduler_prio(struct task_struct *p, int prio)
6843{
6844 if (dl_prio(prio))
6845 p->sched_class = &dl_sched_class;
6846 else if (rt_prio(prio))
6847 p->sched_class = &rt_sched_class;
6848 else
6849 p->sched_class = &fair_sched_class;
6850
6851 p->prio = prio;
6852}
6853
b29739f9
IM
6854#ifdef CONFIG_RT_MUTEXES
6855
acd58620
PZ
6856static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6857{
6858 if (pi_task)
6859 prio = min(prio, pi_task->prio);
6860
6861 return prio;
6862}
6863
6864static inline int rt_effective_prio(struct task_struct *p, int prio)
6865{
6866 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6867
6868 return __rt_effective_prio(pi_task, prio);
6869}
6870
b29739f9
IM
6871/*
6872 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6873 * @p: task to boost
6874 * @pi_task: donor task
b29739f9
IM
6875 *
6876 * This function changes the 'effective' priority of a task. It does
6877 * not touch ->normal_prio like __setscheduler().
6878 *
c365c292
TG
6879 * Used by the rt_mutex code to implement priority inheritance
6880 * logic. Call site only calls if the priority of the task changed.
b29739f9 6881 */
acd58620 6882void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6883{
acd58620 6884 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6885 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6886 const struct sched_class *prev_class;
eb580751
PZ
6887 struct rq_flags rf;
6888 struct rq *rq;
b29739f9 6889
acd58620
PZ
6890 /* XXX used to be waiter->prio, not waiter->task->prio */
6891 prio = __rt_effective_prio(pi_task, p->normal_prio);
6892
6893 /*
6894 * If nothing changed; bail early.
6895 */
6896 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6897 return;
b29739f9 6898
eb580751 6899 rq = __task_rq_lock(p, &rf);
80f5c1b8 6900 update_rq_clock(rq);
acd58620
PZ
6901 /*
6902 * Set under pi_lock && rq->lock, such that the value can be used under
6903 * either lock.
6904 *
6905 * Note that there is loads of tricky to make this pointer cache work
6906 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6907 * ensure a task is de-boosted (pi_task is set to NULL) before the
6908 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6909 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6910 */
6911 p->pi_top_task = pi_task;
6912
6913 /*
6914 * For FIFO/RR we only need to set prio, if that matches we're done.
6915 */
6916 if (prio == p->prio && !dl_prio(prio))
6917 goto out_unlock;
b29739f9 6918
1c4dd99b
TG
6919 /*
6920 * Idle task boosting is a nono in general. There is one
6921 * exception, when PREEMPT_RT and NOHZ is active:
6922 *
6923 * The idle task calls get_next_timer_interrupt() and holds
6924 * the timer wheel base->lock on the CPU and another CPU wants
6925 * to access the timer (probably to cancel it). We can safely
6926 * ignore the boosting request, as the idle CPU runs this code
6927 * with interrupts disabled and will complete the lock
6928 * protected section without being interrupted. So there is no
6929 * real need to boost.
6930 */
6931 if (unlikely(p == rq->idle)) {
6932 WARN_ON(p != rq->curr);
6933 WARN_ON(p->pi_blocked_on);
6934 goto out_unlock;
6935 }
6936
b91473ff 6937 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6938 oldprio = p->prio;
ff77e468
PZ
6939
6940 if (oldprio == prio)
6941 queue_flag &= ~DEQUEUE_MOVE;
6942
83ab0aa0 6943 prev_class = p->sched_class;
da0c1e65 6944 queued = task_on_rq_queued(p);
051a1d1a 6945 running = task_current(rq, p);
da0c1e65 6946 if (queued)
ff77e468 6947 dequeue_task(rq, p, queue_flag);
0e1f3483 6948 if (running)
f3cd1c4e 6949 put_prev_task(rq, p);
dd41f596 6950
2d3d891d
DF
6951 /*
6952 * Boosting condition are:
6953 * 1. -rt task is running and holds mutex A
6954 * --> -dl task blocks on mutex A
6955 *
6956 * 2. -dl task is running and holds mutex A
6957 * --> -dl task blocks on mutex A and could preempt the
6958 * running task
6959 */
6960 if (dl_prio(prio)) {
466af29b 6961 if (!dl_prio(p->normal_prio) ||
740797ce
JL
6962 (pi_task && dl_prio(pi_task->prio) &&
6963 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 6964 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 6965 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
6966 } else {
6967 p->dl.pi_se = &p->dl;
6968 }
2d3d891d
DF
6969 } else if (rt_prio(prio)) {
6970 if (dl_prio(oldprio))
2279f540 6971 p->dl.pi_se = &p->dl;
2d3d891d 6972 if (oldprio < prio)
ff77e468 6973 queue_flag |= ENQUEUE_HEAD;
2d3d891d
DF
6974 } else {
6975 if (dl_prio(oldprio))
2279f540 6976 p->dl.pi_se = &p->dl;
746db944
BS
6977 if (rt_prio(oldprio))
6978 p->rt.timeout = 0;
2d3d891d 6979 }
dd41f596 6980
f558c2b8 6981 __setscheduler_prio(p, prio);
b29739f9 6982
da0c1e65 6983 if (queued)
ff77e468 6984 enqueue_task(rq, p, queue_flag);
a399d233 6985 if (running)
03b7fad1 6986 set_next_task(rq, p);
cb469845 6987
da7a735e 6988 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 6989out_unlock:
d1ccc66d
IM
6990 /* Avoid rq from going away on us: */
6991 preempt_disable();
4c9a4bc8 6992
565790d2
PZ
6993 rq_unpin_lock(rq, &rf);
6994 __balance_callbacks(rq);
5cb9eaa3 6995 raw_spin_rq_unlock(rq);
565790d2 6996
4c9a4bc8 6997 preempt_enable();
b29739f9 6998}
acd58620
PZ
6999#else
7000static inline int rt_effective_prio(struct task_struct *p, int prio)
7001{
7002 return prio;
7003}
b29739f9 7004#endif
d50dde5a 7005
36c8b586 7006void set_user_nice(struct task_struct *p, long nice)
1da177e4 7007{
49bd21ef 7008 bool queued, running;
53a23364 7009 int old_prio;
eb580751 7010 struct rq_flags rf;
70b97a7f 7011 struct rq *rq;
1da177e4 7012
75e45d51 7013 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
7014 return;
7015 /*
7016 * We have to be careful, if called from sys_setpriority(),
7017 * the task might be in the middle of scheduling on another CPU.
7018 */
eb580751 7019 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
7020 update_rq_clock(rq);
7021
1da177e4
LT
7022 /*
7023 * The RT priorities are set via sched_setscheduler(), but we still
7024 * allow the 'normal' nice value to be set - but as expected
b19a888c 7025 * it won't have any effect on scheduling until the task is
aab03e05 7026 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 7027 */
aab03e05 7028 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
7029 p->static_prio = NICE_TO_PRIO(nice);
7030 goto out_unlock;
7031 }
da0c1e65 7032 queued = task_on_rq_queued(p);
49bd21ef 7033 running = task_current(rq, p);
da0c1e65 7034 if (queued)
7a57f32a 7035 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
7036 if (running)
7037 put_prev_task(rq, p);
1da177e4 7038
1da177e4 7039 p->static_prio = NICE_TO_PRIO(nice);
b1e82065 7040 set_load_weight(p, true);
b29739f9
IM
7041 old_prio = p->prio;
7042 p->prio = effective_prio(p);
1da177e4 7043
5443a0be 7044 if (queued)
7134b3e9 7045 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 7046 if (running)
03b7fad1 7047 set_next_task(rq, p);
5443a0be
FW
7048
7049 /*
7050 * If the task increased its priority or is running and
7051 * lowered its priority, then reschedule its CPU:
7052 */
7053 p->sched_class->prio_changed(rq, p, old_prio);
7054
1da177e4 7055out_unlock:
eb580751 7056 task_rq_unlock(rq, p, &rf);
1da177e4 7057}
1da177e4
LT
7058EXPORT_SYMBOL(set_user_nice);
7059
e43379f1 7060/*
700a7833
CG
7061 * is_nice_reduction - check if nice value is an actual reduction
7062 *
7063 * Similar to can_nice() but does not perform a capability check.
7064 *
e43379f1
MM
7065 * @p: task
7066 * @nice: nice value
7067 */
700a7833 7068static bool is_nice_reduction(const struct task_struct *p, const int nice)
e43379f1 7069{
d1ccc66d 7070 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 7071 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 7072
700a7833
CG
7073 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7074}
7075
7076/*
7077 * can_nice - check if a task can reduce its nice value
7078 * @p: task
7079 * @nice: nice value
7080 */
7081int can_nice(const struct task_struct *p, const int nice)
7082{
7083 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
e43379f1
MM
7084}
7085
1da177e4
LT
7086#ifdef __ARCH_WANT_SYS_NICE
7087
7088/*
7089 * sys_nice - change the priority of the current process.
7090 * @increment: priority increment
7091 *
7092 * sys_setpriority is a more generic, but much slower function that
7093 * does similar things.
7094 */
5add95d4 7095SYSCALL_DEFINE1(nice, int, increment)
1da177e4 7096{
48f24c4d 7097 long nice, retval;
1da177e4
LT
7098
7099 /*
7100 * Setpriority might change our priority at the same moment.
7101 * We don't have to worry. Conceptually one call occurs first
7102 * and we have a single winner.
7103 */
a9467fa3 7104 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 7105 nice = task_nice(current) + increment;
1da177e4 7106
a9467fa3 7107 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
7108 if (increment < 0 && !can_nice(current, nice))
7109 return -EPERM;
7110
1da177e4
LT
7111 retval = security_task_setnice(current, nice);
7112 if (retval)
7113 return retval;
7114
7115 set_user_nice(current, nice);
7116 return 0;
7117}
7118
7119#endif
7120
7121/**
7122 * task_prio - return the priority value of a given task.
7123 * @p: the task in question.
7124 *
e69f6186 7125 * Return: The priority value as seen by users in /proc.
c541bb78
DE
7126 *
7127 * sched policy return value kernel prio user prio/nice
7128 *
7129 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7130 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7131 * deadline -101 -1 0
1da177e4 7132 */
36c8b586 7133int task_prio(const struct task_struct *p)
1da177e4
LT
7134{
7135 return p->prio - MAX_RT_PRIO;
7136}
7137
1da177e4 7138/**
d1ccc66d 7139 * idle_cpu - is a given CPU idle currently?
1da177e4 7140 * @cpu: the processor in question.
e69f6186
YB
7141 *
7142 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
7143 */
7144int idle_cpu(int cpu)
7145{
908a3283
TG
7146 struct rq *rq = cpu_rq(cpu);
7147
7148 if (rq->curr != rq->idle)
7149 return 0;
7150
7151 if (rq->nr_running)
7152 return 0;
7153
7154#ifdef CONFIG_SMP
126c2092 7155 if (rq->ttwu_pending)
908a3283
TG
7156 return 0;
7157#endif
7158
7159 return 1;
1da177e4
LT
7160}
7161
943d355d
RJ
7162/**
7163 * available_idle_cpu - is a given CPU idle for enqueuing work.
7164 * @cpu: the CPU in question.
7165 *
7166 * Return: 1 if the CPU is currently idle. 0 otherwise.
7167 */
7168int available_idle_cpu(int cpu)
7169{
7170 if (!idle_cpu(cpu))
7171 return 0;
7172
247f2f6f
RJ
7173 if (vcpu_is_preempted(cpu))
7174 return 0;
7175
908a3283 7176 return 1;
1da177e4
LT
7177}
7178
1da177e4 7179/**
d1ccc66d 7180 * idle_task - return the idle task for a given CPU.
1da177e4 7181 * @cpu: the processor in question.
e69f6186 7182 *
d1ccc66d 7183 * Return: The idle task for the CPU @cpu.
1da177e4 7184 */
36c8b586 7185struct task_struct *idle_task(int cpu)
1da177e4
LT
7186{
7187 return cpu_rq(cpu)->idle;
7188}
7189
7d6a905f
VK
7190#ifdef CONFIG_SMP
7191/*
7192 * This function computes an effective utilization for the given CPU, to be
7193 * used for frequency selection given the linear relation: f = u * f_max.
7194 *
7195 * The scheduler tracks the following metrics:
7196 *
7197 * cpu_util_{cfs,rt,dl,irq}()
7198 * cpu_bw_dl()
7199 *
7200 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7201 * synchronized windows and are thus directly comparable.
7202 *
7203 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7204 * which excludes things like IRQ and steal-time. These latter are then accrued
7205 * in the irq utilization.
7206 *
7207 * The DL bandwidth number otoh is not a measured metric but a value computed
7208 * based on the task model parameters and gives the minimal utilization
7209 * required to meet deadlines.
7210 */
a5418be9 7211unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
bb447999 7212 enum cpu_util_type type,
7d6a905f
VK
7213 struct task_struct *p)
7214{
bb447999 7215 unsigned long dl_util, util, irq, max;
7d6a905f
VK
7216 struct rq *rq = cpu_rq(cpu);
7217
bb447999
DE
7218 max = arch_scale_cpu_capacity(cpu);
7219
7d6a905f
VK
7220 if (!uclamp_is_used() &&
7221 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7222 return max;
7223 }
7224
7225 /*
7226 * Early check to see if IRQ/steal time saturates the CPU, can be
7227 * because of inaccuracies in how we track these -- see
7228 * update_irq_load_avg().
7229 */
7230 irq = cpu_util_irq(rq);
7231 if (unlikely(irq >= max))
7232 return max;
7233
7234 /*
7235 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7236 * CFS tasks and we use the same metric to track the effective
7237 * utilization (PELT windows are synchronized) we can directly add them
7238 * to obtain the CPU's actual utilization.
7239 *
7240 * CFS and RT utilization can be boosted or capped, depending on
7241 * utilization clamp constraints requested by currently RUNNABLE
7242 * tasks.
7243 * When there are no CFS RUNNABLE tasks, clamps are released and
7244 * frequency will be gracefully reduced with the utilization decay.
7245 */
7246 util = util_cfs + cpu_util_rt(rq);
7247 if (type == FREQUENCY_UTIL)
7248 util = uclamp_rq_util_with(rq, util, p);
7249
7250 dl_util = cpu_util_dl(rq);
7251
7252 /*
7253 * For frequency selection we do not make cpu_util_dl() a permanent part
7254 * of this sum because we want to use cpu_bw_dl() later on, but we need
7255 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7256 * that we select f_max when there is no idle time.
7257 *
7258 * NOTE: numerical errors or stop class might cause us to not quite hit
7259 * saturation when we should -- something for later.
7260 */
7261 if (util + dl_util >= max)
7262 return max;
7263
7264 /*
7265 * OTOH, for energy computation we need the estimated running time, so
7266 * include util_dl and ignore dl_bw.
7267 */
7268 if (type == ENERGY_UTIL)
7269 util += dl_util;
7270
7271 /*
7272 * There is still idle time; further improve the number by using the
7273 * irq metric. Because IRQ/steal time is hidden from the task clock we
7274 * need to scale the task numbers:
7275 *
7276 * max - irq
7277 * U' = irq + --------- * U
7278 * max
7279 */
7280 util = scale_irq_capacity(util, irq, max);
7281 util += irq;
7282
7283 /*
7284 * Bandwidth required by DEADLINE must always be granted while, for
7285 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7286 * to gracefully reduce the frequency when no tasks show up for longer
7287 * periods of time.
7288 *
7289 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7290 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7291 * an interface. So, we only do the latter for now.
7292 */
7293 if (type == FREQUENCY_UTIL)
7294 util += cpu_bw_dl(rq);
7295
7296 return min(max, util);
7297}
a5418be9 7298
bb447999 7299unsigned long sched_cpu_util(int cpu)
a5418be9 7300{
bb447999 7301 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
a5418be9 7302}
7d6a905f
VK
7303#endif /* CONFIG_SMP */
7304
1da177e4
LT
7305/**
7306 * find_process_by_pid - find a process with a matching PID value.
7307 * @pid: the pid in question.
e69f6186
YB
7308 *
7309 * The task of @pid, if found. %NULL otherwise.
1da177e4 7310 */
a9957449 7311static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 7312{
228ebcbe 7313 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
7314}
7315
c13db6b1
SR
7316/*
7317 * sched_setparam() passes in -1 for its policy, to let the functions
7318 * it calls know not to change it.
7319 */
7320#define SETPARAM_POLICY -1
7321
c365c292
TG
7322static void __setscheduler_params(struct task_struct *p,
7323 const struct sched_attr *attr)
1da177e4 7324{
d50dde5a
DF
7325 int policy = attr->sched_policy;
7326
c13db6b1 7327 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
7328 policy = p->policy;
7329
1da177e4 7330 p->policy = policy;
d50dde5a 7331
aab03e05
DF
7332 if (dl_policy(policy))
7333 __setparam_dl(p, attr);
39fd8fd2 7334 else if (fair_policy(policy))
d50dde5a
DF
7335 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7336
39fd8fd2
PZ
7337 /*
7338 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7339 * !rt_policy. Always setting this ensures that things like
7340 * getparam()/getattr() don't report silly values for !rt tasks.
7341 */
7342 p->rt_priority = attr->sched_priority;
383afd09 7343 p->normal_prio = normal_prio(p);
b1e82065 7344 set_load_weight(p, true);
c365c292 7345}
39fd8fd2 7346
c69e8d9c 7347/*
d1ccc66d 7348 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
7349 */
7350static bool check_same_owner(struct task_struct *p)
7351{
7352 const struct cred *cred = current_cred(), *pcred;
7353 bool match;
7354
7355 rcu_read_lock();
7356 pcred = __task_cred(p);
9c806aa0
EB
7357 match = (uid_eq(cred->euid, pcred->euid) ||
7358 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
7359 rcu_read_unlock();
7360 return match;
7361}
7362
700a7833
CG
7363/*
7364 * Allow unprivileged RT tasks to decrease priority.
7365 * Only issue a capable test if needed and only once to avoid an audit
7366 * event on permitted non-privileged operations:
7367 */
7368static int user_check_sched_setscheduler(struct task_struct *p,
7369 const struct sched_attr *attr,
7370 int policy, int reset_on_fork)
7371{
7372 if (fair_policy(policy)) {
7373 if (attr->sched_nice < task_nice(p) &&
7374 !is_nice_reduction(p, attr->sched_nice))
7375 goto req_priv;
7376 }
7377
7378 if (rt_policy(policy)) {
7379 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7380
7381 /* Can't set/change the rt policy: */
7382 if (policy != p->policy && !rlim_rtprio)
7383 goto req_priv;
7384
7385 /* Can't increase priority: */
7386 if (attr->sched_priority > p->rt_priority &&
7387 attr->sched_priority > rlim_rtprio)
7388 goto req_priv;
7389 }
7390
7391 /*
7392 * Can't set/change SCHED_DEADLINE policy at all for now
7393 * (safest behavior); in the future we would like to allow
7394 * unprivileged DL tasks to increase their relative deadline
7395 * or reduce their runtime (both ways reducing utilization)
7396 */
7397 if (dl_policy(policy))
7398 goto req_priv;
7399
7400 /*
7401 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7402 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7403 */
7404 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7405 if (!is_nice_reduction(p, task_nice(p)))
7406 goto req_priv;
7407 }
7408
7409 /* Can't change other user's priorities: */
7410 if (!check_same_owner(p))
7411 goto req_priv;
7412
7413 /* Normal users shall not reset the sched_reset_on_fork flag: */
7414 if (p->sched_reset_on_fork && !reset_on_fork)
7415 goto req_priv;
7416
7417 return 0;
7418
7419req_priv:
7420 if (!capable(CAP_SYS_NICE))
7421 return -EPERM;
7422
7423 return 0;
7424}
7425
d50dde5a
DF
7426static int __sched_setscheduler(struct task_struct *p,
7427 const struct sched_attr *attr,
dbc7f069 7428 bool user, bool pi)
1da177e4 7429{
f558c2b8
PZ
7430 int oldpolicy = -1, policy = attr->sched_policy;
7431 int retval, oldprio, newprio, queued, running;
83ab0aa0 7432 const struct sched_class *prev_class;
8e5bad7d 7433 struct balance_callback *head;
eb580751 7434 struct rq_flags rf;
ca94c442 7435 int reset_on_fork;
7a57f32a 7436 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 7437 struct rq *rq;
1da177e4 7438
896bbb25
SRV
7439 /* The pi code expects interrupts enabled */
7440 BUG_ON(pi && in_interrupt());
1da177e4 7441recheck:
d1ccc66d 7442 /* Double check policy once rq lock held: */
ca94c442
LP
7443 if (policy < 0) {
7444 reset_on_fork = p->sched_reset_on_fork;
1da177e4 7445 policy = oldpolicy = p->policy;
ca94c442 7446 } else {
7479f3c9 7447 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 7448
20f9cd2a 7449 if (!valid_policy(policy))
ca94c442
LP
7450 return -EINVAL;
7451 }
7452
794a56eb 7453 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
7454 return -EINVAL;
7455
1da177e4
LT
7456 /*
7457 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 7458 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 7459 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 7460 */
ae18ad28 7461 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 7462 return -EINVAL;
aab03e05
DF
7463 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7464 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
7465 return -EINVAL;
7466
725aad24 7467 if (user) {
700a7833
CG
7468 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7469 if (retval)
7470 return retval;
7471
794a56eb
JL
7472 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7473 return -EINVAL;
7474
b0ae1981 7475 retval = security_task_setscheduler(p);
725aad24
JF
7476 if (retval)
7477 return retval;
7478 }
7479
a509a7cd
PB
7480 /* Update task specific "requested" clamps */
7481 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7482 retval = uclamp_validate(p, attr);
7483 if (retval)
7484 return retval;
7485 }
7486
710da3c8
JL
7487 if (pi)
7488 cpuset_read_lock();
7489
b29739f9 7490 /*
d1ccc66d 7491 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 7492 * changing the priority of the task:
0122ec5b 7493 *
25985edc 7494 * To be able to change p->policy safely, the appropriate
1da177e4
LT
7495 * runqueue lock must be held.
7496 */
eb580751 7497 rq = task_rq_lock(p, &rf);
80f5c1b8 7498 update_rq_clock(rq);
dc61b1d6 7499
34f971f6 7500 /*
d1ccc66d 7501 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7502 */
7503 if (p == rq->stop) {
4b211f2b
MP
7504 retval = -EINVAL;
7505 goto unlock;
34f971f6
PZ
7506 }
7507
a51e9198 7508 /*
d6b1e911
TG
7509 * If not changing anything there's no need to proceed further,
7510 * but store a possible modification of reset_on_fork.
a51e9198 7511 */
d50dde5a 7512 if (unlikely(policy == p->policy)) {
d0ea0268 7513 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7514 goto change;
7515 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7516 goto change;
75381608 7517 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7518 goto change;
a509a7cd
PB
7519 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7520 goto change;
d50dde5a 7521
d6b1e911 7522 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7523 retval = 0;
7524 goto unlock;
a51e9198 7525 }
d50dde5a 7526change:
a51e9198 7527
dc61b1d6 7528 if (user) {
332ac17e 7529#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7530 /*
7531 * Do not allow realtime tasks into groups that have no runtime
7532 * assigned.
7533 */
7534 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7535 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7536 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7537 retval = -EPERM;
7538 goto unlock;
dc61b1d6 7539 }
dc61b1d6 7540#endif
332ac17e 7541#ifdef CONFIG_SMP
794a56eb
JL
7542 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7543 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7544 cpumask_t *span = rq->rd->span;
332ac17e
DF
7545
7546 /*
7547 * Don't allow tasks with an affinity mask smaller than
7548 * the entire root_domain to become SCHED_DEADLINE. We
7549 * will also fail if there's no bandwidth available.
7550 */
3bd37062 7551 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7552 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7553 retval = -EPERM;
7554 goto unlock;
332ac17e
DF
7555 }
7556 }
7557#endif
7558 }
dc61b1d6 7559
d1ccc66d 7560 /* Re-check policy now with rq lock held: */
1da177e4
LT
7561 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7562 policy = oldpolicy = -1;
eb580751 7563 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7564 if (pi)
7565 cpuset_read_unlock();
1da177e4
LT
7566 goto recheck;
7567 }
332ac17e
DF
7568
7569 /*
7570 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7571 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7572 * is available.
7573 */
06a76fe0 7574 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7575 retval = -EBUSY;
7576 goto unlock;
332ac17e
DF
7577 }
7578
c365c292
TG
7579 p->sched_reset_on_fork = reset_on_fork;
7580 oldprio = p->prio;
7581
f558c2b8 7582 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
dbc7f069
PZ
7583 if (pi) {
7584 /*
7585 * Take priority boosted tasks into account. If the new
7586 * effective priority is unchanged, we just store the new
7587 * normal parameters and do not touch the scheduler class and
7588 * the runqueue. This will be done when the task deboost
7589 * itself.
7590 */
f558c2b8
PZ
7591 newprio = rt_effective_prio(p, newprio);
7592 if (newprio == oldprio)
ff77e468 7593 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7594 }
7595
da0c1e65 7596 queued = task_on_rq_queued(p);
051a1d1a 7597 running = task_current(rq, p);
da0c1e65 7598 if (queued)
ff77e468 7599 dequeue_task(rq, p, queue_flags);
0e1f3483 7600 if (running)
f3cd1c4e 7601 put_prev_task(rq, p);
f6b53205 7602
83ab0aa0 7603 prev_class = p->sched_class;
a509a7cd 7604
f558c2b8
PZ
7605 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7606 __setscheduler_params(p, attr);
7607 __setscheduler_prio(p, newprio);
7608 }
a509a7cd 7609 __setscheduler_uclamp(p, attr);
f6b53205 7610
da0c1e65 7611 if (queued) {
81a44c54
TG
7612 /*
7613 * We enqueue to tail when the priority of a task is
7614 * increased (user space view).
7615 */
ff77e468
PZ
7616 if (oldprio < p->prio)
7617 queue_flags |= ENQUEUE_HEAD;
1de64443 7618
ff77e468 7619 enqueue_task(rq, p, queue_flags);
81a44c54 7620 }
a399d233 7621 if (running)
03b7fad1 7622 set_next_task(rq, p);
cb469845 7623
da7a735e 7624 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7625
7626 /* Avoid rq from going away on us: */
7627 preempt_disable();
565790d2 7628 head = splice_balance_callbacks(rq);
eb580751 7629 task_rq_unlock(rq, p, &rf);
b29739f9 7630
710da3c8
JL
7631 if (pi) {
7632 cpuset_read_unlock();
dbc7f069 7633 rt_mutex_adjust_pi(p);
710da3c8 7634 }
95e02ca9 7635
d1ccc66d 7636 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7637 balance_callbacks(rq, head);
4c9a4bc8 7638 preempt_enable();
95e02ca9 7639
1da177e4 7640 return 0;
4b211f2b
MP
7641
7642unlock:
7643 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7644 if (pi)
7645 cpuset_read_unlock();
4b211f2b 7646 return retval;
1da177e4 7647}
961ccddd 7648
7479f3c9
PZ
7649static int _sched_setscheduler(struct task_struct *p, int policy,
7650 const struct sched_param *param, bool check)
7651{
7652 struct sched_attr attr = {
7653 .sched_policy = policy,
7654 .sched_priority = param->sched_priority,
7655 .sched_nice = PRIO_TO_NICE(p->static_prio),
7656 };
7657
c13db6b1
SR
7658 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7659 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7660 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7661 policy &= ~SCHED_RESET_ON_FORK;
7662 attr.sched_policy = policy;
7663 }
7664
dbc7f069 7665 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7666}
961ccddd
RR
7667/**
7668 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7669 * @p: the task in question.
7670 * @policy: new policy.
7671 * @param: structure containing the new RT priority.
7672 *
7318d4cc
PZ
7673 * Use sched_set_fifo(), read its comment.
7674 *
e69f6186
YB
7675 * Return: 0 on success. An error code otherwise.
7676 *
961ccddd
RR
7677 * NOTE that the task may be already dead.
7678 */
7679int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7680 const struct sched_param *param)
961ccddd 7681{
7479f3c9 7682 return _sched_setscheduler(p, policy, param, true);
961ccddd 7683}
1da177e4 7684
d50dde5a
DF
7685int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7686{
dbc7f069 7687 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7688}
d50dde5a 7689
794a56eb
JL
7690int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7691{
7692 return __sched_setscheduler(p, attr, false, true);
7693}
1eb5dde6 7694EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7695
961ccddd
RR
7696/**
7697 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7698 * @p: the task in question.
7699 * @policy: new policy.
7700 * @param: structure containing the new RT priority.
7701 *
7702 * Just like sched_setscheduler, only don't bother checking if the
7703 * current context has permission. For example, this is needed in
7704 * stop_machine(): we create temporary high priority worker threads,
7705 * but our caller might not have that capability.
e69f6186
YB
7706 *
7707 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7708 */
7709int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7710 const struct sched_param *param)
961ccddd 7711{
7479f3c9 7712 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7713}
7714
7318d4cc
PZ
7715/*
7716 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7717 * incapable of resource management, which is the one thing an OS really should
7718 * be doing.
7719 *
7720 * This is of course the reason it is limited to privileged users only.
7721 *
7722 * Worse still; it is fundamentally impossible to compose static priority
7723 * workloads. You cannot take two correctly working static prio workloads
7724 * and smash them together and still expect them to work.
7725 *
7726 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7727 *
7728 * MAX_RT_PRIO / 2
7729 *
7730 * The administrator _MUST_ configure the system, the kernel simply doesn't
7731 * know enough information to make a sensible choice.
7732 */
8b700983 7733void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7734{
7735 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7736 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7737}
7738EXPORT_SYMBOL_GPL(sched_set_fifo);
7739
7740/*
7741 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7742 */
8b700983 7743void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7744{
7745 struct sched_param sp = { .sched_priority = 1 };
8b700983 7746 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7747}
7748EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7749
8b700983 7750void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7751{
7752 struct sched_attr attr = {
7753 .sched_policy = SCHED_NORMAL,
7754 .sched_nice = nice,
7755 };
8b700983 7756 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7757}
7758EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7759
95cdf3b7
IM
7760static int
7761do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7762{
1da177e4
LT
7763 struct sched_param lparam;
7764 struct task_struct *p;
36c8b586 7765 int retval;
1da177e4
LT
7766
7767 if (!param || pid < 0)
7768 return -EINVAL;
7769 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7770 return -EFAULT;
5fe1d75f
ON
7771
7772 rcu_read_lock();
7773 retval = -ESRCH;
1da177e4 7774 p = find_process_by_pid(pid);
710da3c8
JL
7775 if (likely(p))
7776 get_task_struct(p);
5fe1d75f 7777 rcu_read_unlock();
36c8b586 7778
710da3c8
JL
7779 if (likely(p)) {
7780 retval = sched_setscheduler(p, policy, &lparam);
7781 put_task_struct(p);
7782 }
7783
1da177e4
LT
7784 return retval;
7785}
7786
d50dde5a
DF
7787/*
7788 * Mimics kernel/events/core.c perf_copy_attr().
7789 */
d1ccc66d 7790static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7791{
7792 u32 size;
7793 int ret;
7794
d1ccc66d 7795 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7796 memset(attr, 0, sizeof(*attr));
7797
7798 ret = get_user(size, &uattr->size);
7799 if (ret)
7800 return ret;
7801
d1ccc66d
IM
7802 /* ABI compatibility quirk: */
7803 if (!size)
d50dde5a 7804 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7805 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7806 goto err_size;
7807
dff3a85f
AS
7808 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7809 if (ret) {
7810 if (ret == -E2BIG)
7811 goto err_size;
7812 return ret;
d50dde5a
DF
7813 }
7814
a509a7cd
PB
7815 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7816 size < SCHED_ATTR_SIZE_VER1)
7817 return -EINVAL;
7818
d50dde5a 7819 /*
d1ccc66d 7820 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7821 * to be strict and return an error on out-of-bounds values?
7822 */
75e45d51 7823 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7824
e78c7bca 7825 return 0;
d50dde5a
DF
7826
7827err_size:
7828 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7829 return -E2BIG;
d50dde5a
DF
7830}
7831
f4dddf90
QP
7832static void get_params(struct task_struct *p, struct sched_attr *attr)
7833{
7834 if (task_has_dl_policy(p))
7835 __getparam_dl(p, attr);
7836 else if (task_has_rt_policy(p))
7837 attr->sched_priority = p->rt_priority;
7838 else
7839 attr->sched_nice = task_nice(p);
7840}
7841
1da177e4
LT
7842/**
7843 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7844 * @pid: the pid in question.
7845 * @policy: new policy.
7846 * @param: structure containing the new RT priority.
e69f6186
YB
7847 *
7848 * Return: 0 on success. An error code otherwise.
1da177e4 7849 */
d1ccc66d 7850SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7851{
c21761f1
JB
7852 if (policy < 0)
7853 return -EINVAL;
7854
1da177e4
LT
7855 return do_sched_setscheduler(pid, policy, param);
7856}
7857
7858/**
7859 * sys_sched_setparam - set/change the RT priority of a thread
7860 * @pid: the pid in question.
7861 * @param: structure containing the new RT priority.
e69f6186
YB
7862 *
7863 * Return: 0 on success. An error code otherwise.
1da177e4 7864 */
5add95d4 7865SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7866{
c13db6b1 7867 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7868}
7869
d50dde5a
DF
7870/**
7871 * sys_sched_setattr - same as above, but with extended sched_attr
7872 * @pid: the pid in question.
5778fccf 7873 * @uattr: structure containing the extended parameters.
db66d756 7874 * @flags: for future extension.
d50dde5a 7875 */
6d35ab48
PZ
7876SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7877 unsigned int, flags)
d50dde5a
DF
7878{
7879 struct sched_attr attr;
7880 struct task_struct *p;
7881 int retval;
7882
6d35ab48 7883 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7884 return -EINVAL;
7885
143cf23d
MK
7886 retval = sched_copy_attr(uattr, &attr);
7887 if (retval)
7888 return retval;
d50dde5a 7889
b14ed2c2 7890 if ((int)attr.sched_policy < 0)
dbdb2275 7891 return -EINVAL;
1d6362fa
PB
7892 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7893 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7894
7895 rcu_read_lock();
7896 retval = -ESRCH;
7897 p = find_process_by_pid(pid);
a509a7cd
PB
7898 if (likely(p))
7899 get_task_struct(p);
d50dde5a
DF
7900 rcu_read_unlock();
7901
a509a7cd 7902 if (likely(p)) {
f4dddf90
QP
7903 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7904 get_params(p, &attr);
a509a7cd
PB
7905 retval = sched_setattr(p, &attr);
7906 put_task_struct(p);
7907 }
7908
d50dde5a
DF
7909 return retval;
7910}
7911
1da177e4
LT
7912/**
7913 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7914 * @pid: the pid in question.
e69f6186
YB
7915 *
7916 * Return: On success, the policy of the thread. Otherwise, a negative error
7917 * code.
1da177e4 7918 */
5add95d4 7919SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7920{
36c8b586 7921 struct task_struct *p;
3a5c359a 7922 int retval;
1da177e4
LT
7923
7924 if (pid < 0)
3a5c359a 7925 return -EINVAL;
1da177e4
LT
7926
7927 retval = -ESRCH;
5fe85be0 7928 rcu_read_lock();
1da177e4
LT
7929 p = find_process_by_pid(pid);
7930 if (p) {
7931 retval = security_task_getscheduler(p);
7932 if (!retval)
ca94c442
LP
7933 retval = p->policy
7934 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7935 }
5fe85be0 7936 rcu_read_unlock();
1da177e4
LT
7937 return retval;
7938}
7939
7940/**
ca94c442 7941 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7942 * @pid: the pid in question.
7943 * @param: structure containing the RT priority.
e69f6186
YB
7944 *
7945 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7946 * code.
1da177e4 7947 */
5add95d4 7948SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7949{
ce5f7f82 7950 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7951 struct task_struct *p;
3a5c359a 7952 int retval;
1da177e4
LT
7953
7954 if (!param || pid < 0)
3a5c359a 7955 return -EINVAL;
1da177e4 7956
5fe85be0 7957 rcu_read_lock();
1da177e4
LT
7958 p = find_process_by_pid(pid);
7959 retval = -ESRCH;
7960 if (!p)
7961 goto out_unlock;
7962
7963 retval = security_task_getscheduler(p);
7964 if (retval)
7965 goto out_unlock;
7966
ce5f7f82
PZ
7967 if (task_has_rt_policy(p))
7968 lp.sched_priority = p->rt_priority;
5fe85be0 7969 rcu_read_unlock();
1da177e4
LT
7970
7971 /*
7972 * This one might sleep, we cannot do it with a spinlock held ...
7973 */
7974 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7975
1da177e4
LT
7976 return retval;
7977
7978out_unlock:
5fe85be0 7979 rcu_read_unlock();
1da177e4
LT
7980 return retval;
7981}
7982
1251201c
IM
7983/*
7984 * Copy the kernel size attribute structure (which might be larger
7985 * than what user-space knows about) to user-space.
7986 *
7987 * Note that all cases are valid: user-space buffer can be larger or
7988 * smaller than the kernel-space buffer. The usual case is that both
7989 * have the same size.
7990 */
7991static int
7992sched_attr_copy_to_user(struct sched_attr __user *uattr,
7993 struct sched_attr *kattr,
7994 unsigned int usize)
d50dde5a 7995{
1251201c 7996 unsigned int ksize = sizeof(*kattr);
d50dde5a 7997
96d4f267 7998 if (!access_ok(uattr, usize))
d50dde5a
DF
7999 return -EFAULT;
8000
8001 /*
1251201c
IM
8002 * sched_getattr() ABI forwards and backwards compatibility:
8003 *
8004 * If usize == ksize then we just copy everything to user-space and all is good.
8005 *
8006 * If usize < ksize then we only copy as much as user-space has space for,
8007 * this keeps ABI compatibility as well. We skip the rest.
8008 *
8009 * If usize > ksize then user-space is using a newer version of the ABI,
8010 * which part the kernel doesn't know about. Just ignore it - tooling can
8011 * detect the kernel's knowledge of attributes from the attr->size value
8012 * which is set to ksize in this case.
d50dde5a 8013 */
1251201c 8014 kattr->size = min(usize, ksize);
d50dde5a 8015
1251201c 8016 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
8017 return -EFAULT;
8018
22400674 8019 return 0;
d50dde5a
DF
8020}
8021
8022/**
aab03e05 8023 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 8024 * @pid: the pid in question.
5778fccf 8025 * @uattr: structure containing the extended parameters.
dff3a85f 8026 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 8027 * @flags: for future extension.
d50dde5a 8028 */
6d35ab48 8029SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 8030 unsigned int, usize, unsigned int, flags)
d50dde5a 8031{
1251201c 8032 struct sched_attr kattr = { };
d50dde5a
DF
8033 struct task_struct *p;
8034 int retval;
8035
1251201c
IM
8036 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8037 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
8038 return -EINVAL;
8039
8040 rcu_read_lock();
8041 p = find_process_by_pid(pid);
8042 retval = -ESRCH;
8043 if (!p)
8044 goto out_unlock;
8045
8046 retval = security_task_getscheduler(p);
8047 if (retval)
8048 goto out_unlock;
8049
1251201c 8050 kattr.sched_policy = p->policy;
7479f3c9 8051 if (p->sched_reset_on_fork)
1251201c 8052 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 8053 get_params(p, &kattr);
7ad721bf 8054 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 8055
a509a7cd 8056#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
8057 /*
8058 * This could race with another potential updater, but this is fine
8059 * because it'll correctly read the old or the new value. We don't need
8060 * to guarantee who wins the race as long as it doesn't return garbage.
8061 */
1251201c
IM
8062 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8063 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
8064#endif
8065
d50dde5a
DF
8066 rcu_read_unlock();
8067
1251201c 8068 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
8069
8070out_unlock:
8071 rcu_read_unlock();
8072 return retval;
8073}
8074
234b8ab6
WD
8075#ifdef CONFIG_SMP
8076int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 8077{
234b8ab6
WD
8078 int ret = 0;
8079
8080 /*
8081 * If the task isn't a deadline task or admission control is
8082 * disabled then we don't care about affinity changes.
8083 */
8084 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8085 return 0;
8086
8087 /*
8088 * Since bandwidth control happens on root_domain basis,
8089 * if admission test is enabled, we only admit -deadline
8090 * tasks allowed to run on all the CPUs in the task's
8091 * root_domain.
8092 */
8093 rcu_read_lock();
8094 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8095 ret = -EBUSY;
8096 rcu_read_unlock();
8097 return ret;
8098}
8099#endif
8100
db3b02ae
WD
8101static int
8102__sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 8103{
36c8b586 8104 int retval;
5a16f3d3 8105 cpumask_var_t cpus_allowed, new_mask;
1da177e4 8106
db3b02ae
WD
8107 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8108 return -ENOMEM;
1da177e4 8109
5a16f3d3
RR
8110 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8111 retval = -ENOMEM;
8112 goto out_free_cpus_allowed;
8113 }
e4099a5e
PZ
8114
8115 cpuset_cpus_allowed(p, cpus_allowed);
db3b02ae 8116 cpumask_and(new_mask, mask, cpus_allowed);
e4099a5e 8117
234b8ab6
WD
8118 retval = dl_task_check_affinity(p, new_mask);
8119 if (retval)
8120 goto out_free_new_mask;
49246274 8121again:
07ec77a1 8122 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
db3b02ae
WD
8123 if (retval)
8124 goto out_free_new_mask;
1da177e4 8125
db3b02ae
WD
8126 cpuset_cpus_allowed(p, cpus_allowed);
8127 if (!cpumask_subset(new_mask, cpus_allowed)) {
8128 /*
8129 * We must have raced with a concurrent cpuset update.
8130 * Just reset the cpumask to the cpuset's cpus_allowed.
8131 */
8132 cpumask_copy(new_mask, cpus_allowed);
8133 goto again;
8707d8b8 8134 }
db3b02ae 8135
16303ab2 8136out_free_new_mask:
5a16f3d3
RR
8137 free_cpumask_var(new_mask);
8138out_free_cpus_allowed:
8139 free_cpumask_var(cpus_allowed);
db3b02ae
WD
8140 return retval;
8141}
8142
8143long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8144{
36c8b586
IM
8145 struct task_struct *p;
8146 int retval;
1da177e4 8147
23f5d142 8148 rcu_read_lock();
1da177e4
LT
8149
8150 p = find_process_by_pid(pid);
8151 if (!p) {
23f5d142 8152 rcu_read_unlock();
1da177e4
LT
8153 return -ESRCH;
8154 }
8155
23f5d142 8156 /* Prevent p going away */
1da177e4 8157 get_task_struct(p);
23f5d142 8158 rcu_read_unlock();
1da177e4 8159
14a40ffc
TH
8160 if (p->flags & PF_NO_SETAFFINITY) {
8161 retval = -EINVAL;
8162 goto out_put_task;
8163 }
db3b02ae 8164
4c44aaaf
EB
8165 if (!check_same_owner(p)) {
8166 rcu_read_lock();
8167 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8168 rcu_read_unlock();
db3b02ae
WD
8169 retval = -EPERM;
8170 goto out_put_task;
4c44aaaf
EB
8171 }
8172 rcu_read_unlock();
8173 }
1da177e4 8174
b0ae1981 8175 retval = security_task_setscheduler(p);
e7834f8f 8176 if (retval)
db3b02ae 8177 goto out_put_task;
1da177e4 8178
db3b02ae 8179 retval = __sched_setaffinity(p, in_mask);
5a16f3d3 8180out_put_task:
1da177e4 8181 put_task_struct(p);
1da177e4
LT
8182 return retval;
8183}
8184
8185static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 8186 struct cpumask *new_mask)
1da177e4 8187{
96f874e2
RR
8188 if (len < cpumask_size())
8189 cpumask_clear(new_mask);
8190 else if (len > cpumask_size())
8191 len = cpumask_size();
8192
1da177e4
LT
8193 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8194}
8195
8196/**
d1ccc66d 8197 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
8198 * @pid: pid of the process
8199 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8200 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
8201 *
8202 * Return: 0 on success. An error code otherwise.
1da177e4 8203 */
5add95d4
HC
8204SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8205 unsigned long __user *, user_mask_ptr)
1da177e4 8206{
5a16f3d3 8207 cpumask_var_t new_mask;
1da177e4
LT
8208 int retval;
8209
5a16f3d3
RR
8210 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8211 return -ENOMEM;
1da177e4 8212
5a16f3d3
RR
8213 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8214 if (retval == 0)
8215 retval = sched_setaffinity(pid, new_mask);
8216 free_cpumask_var(new_mask);
8217 return retval;
1da177e4
LT
8218}
8219
96f874e2 8220long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 8221{
36c8b586 8222 struct task_struct *p;
31605683 8223 unsigned long flags;
1da177e4 8224 int retval;
1da177e4 8225
23f5d142 8226 rcu_read_lock();
1da177e4
LT
8227
8228 retval = -ESRCH;
8229 p = find_process_by_pid(pid);
8230 if (!p)
8231 goto out_unlock;
8232
e7834f8f
DQ
8233 retval = security_task_getscheduler(p);
8234 if (retval)
8235 goto out_unlock;
8236
013fdb80 8237 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 8238 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 8239 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
8240
8241out_unlock:
23f5d142 8242 rcu_read_unlock();
1da177e4 8243
9531b62f 8244 return retval;
1da177e4
LT
8245}
8246
8247/**
d1ccc66d 8248 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
8249 * @pid: pid of the process
8250 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8251 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 8252 *
599b4840
ZW
8253 * Return: size of CPU mask copied to user_mask_ptr on success. An
8254 * error code otherwise.
1da177e4 8255 */
5add95d4
HC
8256SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8257 unsigned long __user *, user_mask_ptr)
1da177e4
LT
8258{
8259 int ret;
f17c8607 8260 cpumask_var_t mask;
1da177e4 8261
84fba5ec 8262 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
8263 return -EINVAL;
8264 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
8265 return -EINVAL;
8266
f17c8607
RR
8267 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8268 return -ENOMEM;
1da177e4 8269
f17c8607
RR
8270 ret = sched_getaffinity(pid, mask);
8271 if (ret == 0) {
4de373a1 8272 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
8273
8274 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
8275 ret = -EFAULT;
8276 else
cd3d8031 8277 ret = retlen;
f17c8607
RR
8278 }
8279 free_cpumask_var(mask);
1da177e4 8280
f17c8607 8281 return ret;
1da177e4
LT
8282}
8283
7d4dd4f1 8284static void do_sched_yield(void)
1da177e4 8285{
8a8c69c3
PZ
8286 struct rq_flags rf;
8287 struct rq *rq;
8288
246b3b33 8289 rq = this_rq_lock_irq(&rf);
1da177e4 8290
ae92882e 8291 schedstat_inc(rq->yld_count);
4530d7ab 8292 current->sched_class->yield_task(rq);
1da177e4 8293
8a8c69c3 8294 preempt_disable();
345a957f 8295 rq_unlock_irq(rq, &rf);
ba74c144 8296 sched_preempt_enable_no_resched();
1da177e4
LT
8297
8298 schedule();
7d4dd4f1 8299}
1da177e4 8300
59a74b15
MCC
8301/**
8302 * sys_sched_yield - yield the current processor to other threads.
8303 *
8304 * This function yields the current CPU to other tasks. If there are no
8305 * other threads running on this CPU then this function will return.
8306 *
8307 * Return: 0.
8308 */
7d4dd4f1
DB
8309SYSCALL_DEFINE0(sched_yield)
8310{
8311 do_sched_yield();
1da177e4
LT
8312 return 0;
8313}
8314
b965f1dd
PZI
8315#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8316int __sched __cond_resched(void)
1da177e4 8317{
fe32d3cd 8318 if (should_resched(0)) {
a18b5d01 8319 preempt_schedule_common();
1da177e4
LT
8320 return 1;
8321 }
50895825
FW
8322 /*
8323 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8324 * whether the current CPU is in an RCU read-side critical section,
8325 * so the tick can report quiescent states even for CPUs looping
8326 * in kernel context. In contrast, in non-preemptible kernels,
8327 * RCU readers leave no in-memory hints, which means that CPU-bound
8328 * processes executing in kernel context might never report an
8329 * RCU quiescent state. Therefore, the following code causes
8330 * cond_resched() to report a quiescent state, but only when RCU
8331 * is in urgent need of one.
8332 */
b965f1dd 8333#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 8334 rcu_all_qs();
b965f1dd 8335#endif
1da177e4
LT
8336 return 0;
8337}
b965f1dd
PZI
8338EXPORT_SYMBOL(__cond_resched);
8339#endif
8340
8341#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 8342#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8343#define cond_resched_dynamic_enabled __cond_resched
8344#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8345DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 8346EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd 8347
8a69fe0b
MR
8348#define might_resched_dynamic_enabled __cond_resched
8349#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8350DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 8351EXPORT_STATIC_CALL_TRAMP(might_resched);
99cf983c
MR
8352#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8353static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8354int __sched dynamic_cond_resched(void)
8355{
8356 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8357 return 0;
8358 return __cond_resched();
8359}
8360EXPORT_SYMBOL(dynamic_cond_resched);
8361
8362static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8363int __sched dynamic_might_resched(void)
8364{
8365 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8366 return 0;
8367 return __cond_resched();
8368}
8369EXPORT_SYMBOL(dynamic_might_resched);
8370#endif
35a773a0 8371#endif
1da177e4
LT
8372
8373/*
613afbf8 8374 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
8375 * call schedule, and on return reacquire the lock.
8376 *
c1a280b6 8377 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
8378 * operations here to prevent schedule() from being called twice (once via
8379 * spin_unlock(), once by hand).
8380 */
613afbf8 8381int __cond_resched_lock(spinlock_t *lock)
1da177e4 8382{
fe32d3cd 8383 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
8384 int ret = 0;
8385
f607c668
PZ
8386 lockdep_assert_held(lock);
8387
4a81e832 8388 if (spin_needbreak(lock) || resched) {
1da177e4 8389 spin_unlock(lock);
7e406d1f 8390 if (!_cond_resched())
95c354fe 8391 cpu_relax();
6df3cecb 8392 ret = 1;
1da177e4 8393 spin_lock(lock);
1da177e4 8394 }
6df3cecb 8395 return ret;
1da177e4 8396}
613afbf8 8397EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 8398
f3d4b4b1
BG
8399int __cond_resched_rwlock_read(rwlock_t *lock)
8400{
8401 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8402 int ret = 0;
8403
8404 lockdep_assert_held_read(lock);
8405
8406 if (rwlock_needbreak(lock) || resched) {
8407 read_unlock(lock);
7e406d1f 8408 if (!_cond_resched())
f3d4b4b1
BG
8409 cpu_relax();
8410 ret = 1;
8411 read_lock(lock);
8412 }
8413 return ret;
8414}
8415EXPORT_SYMBOL(__cond_resched_rwlock_read);
8416
8417int __cond_resched_rwlock_write(rwlock_t *lock)
8418{
8419 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8420 int ret = 0;
8421
8422 lockdep_assert_held_write(lock);
8423
8424 if (rwlock_needbreak(lock) || resched) {
8425 write_unlock(lock);
7e406d1f 8426 if (!_cond_resched())
f3d4b4b1
BG
8427 cpu_relax();
8428 ret = 1;
8429 write_lock(lock);
8430 }
8431 return ret;
8432}
8433EXPORT_SYMBOL(__cond_resched_rwlock_write);
8434
4c748558
MR
8435#ifdef CONFIG_PREEMPT_DYNAMIC
8436
33c64734 8437#ifdef CONFIG_GENERIC_ENTRY
4c748558 8438#include <linux/entry-common.h>
33c64734 8439#endif
4c748558
MR
8440
8441/*
8442 * SC:cond_resched
8443 * SC:might_resched
8444 * SC:preempt_schedule
8445 * SC:preempt_schedule_notrace
8446 * SC:irqentry_exit_cond_resched
8447 *
8448 *
8449 * NONE:
8450 * cond_resched <- __cond_resched
8451 * might_resched <- RET0
8452 * preempt_schedule <- NOP
8453 * preempt_schedule_notrace <- NOP
8454 * irqentry_exit_cond_resched <- NOP
8455 *
8456 * VOLUNTARY:
8457 * cond_resched <- __cond_resched
8458 * might_resched <- __cond_resched
8459 * preempt_schedule <- NOP
8460 * preempt_schedule_notrace <- NOP
8461 * irqentry_exit_cond_resched <- NOP
8462 *
8463 * FULL:
8464 * cond_resched <- RET0
8465 * might_resched <- RET0
8466 * preempt_schedule <- preempt_schedule
8467 * preempt_schedule_notrace <- preempt_schedule_notrace
8468 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8469 */
8470
8471enum {
8472 preempt_dynamic_undefined = -1,
8473 preempt_dynamic_none,
8474 preempt_dynamic_voluntary,
8475 preempt_dynamic_full,
8476};
8477
8478int preempt_dynamic_mode = preempt_dynamic_undefined;
8479
8480int sched_dynamic_mode(const char *str)
8481{
8482 if (!strcmp(str, "none"))
8483 return preempt_dynamic_none;
8484
8485 if (!strcmp(str, "voluntary"))
8486 return preempt_dynamic_voluntary;
8487
8488 if (!strcmp(str, "full"))
8489 return preempt_dynamic_full;
8490
8491 return -EINVAL;
8492}
8493
99cf983c 8494#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8495#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8496#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
99cf983c
MR
8497#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8498#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8499#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8500#else
8501#error "Unsupported PREEMPT_DYNAMIC mechanism"
8502#endif
8a69fe0b 8503
4c748558
MR
8504void sched_dynamic_update(int mode)
8505{
8506 /*
8507 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8508 * the ZERO state, which is invalid.
8509 */
8a69fe0b
MR
8510 preempt_dynamic_enable(cond_resched);
8511 preempt_dynamic_enable(might_resched);
8512 preempt_dynamic_enable(preempt_schedule);
8513 preempt_dynamic_enable(preempt_schedule_notrace);
8514 preempt_dynamic_enable(irqentry_exit_cond_resched);
4c748558
MR
8515
8516 switch (mode) {
8517 case preempt_dynamic_none:
8a69fe0b
MR
8518 preempt_dynamic_enable(cond_resched);
8519 preempt_dynamic_disable(might_resched);
8520 preempt_dynamic_disable(preempt_schedule);
8521 preempt_dynamic_disable(preempt_schedule_notrace);
8522 preempt_dynamic_disable(irqentry_exit_cond_resched);
4c748558
MR
8523 pr_info("Dynamic Preempt: none\n");
8524 break;
8525
8526 case preempt_dynamic_voluntary:
8a69fe0b
MR
8527 preempt_dynamic_enable(cond_resched);
8528 preempt_dynamic_enable(might_resched);
8529 preempt_dynamic_disable(preempt_schedule);
8530 preempt_dynamic_disable(preempt_schedule_notrace);
8531 preempt_dynamic_disable(irqentry_exit_cond_resched);
4c748558
MR
8532 pr_info("Dynamic Preempt: voluntary\n");
8533 break;
8534
8535 case preempt_dynamic_full:
8a69fe0b
MR
8536 preempt_dynamic_disable(cond_resched);
8537 preempt_dynamic_disable(might_resched);
8538 preempt_dynamic_enable(preempt_schedule);
8539 preempt_dynamic_enable(preempt_schedule_notrace);
8540 preempt_dynamic_enable(irqentry_exit_cond_resched);
4c748558
MR
8541 pr_info("Dynamic Preempt: full\n");
8542 break;
8543 }
8544
8545 preempt_dynamic_mode = mode;
8546}
8547
8548static int __init setup_preempt_mode(char *str)
8549{
8550 int mode = sched_dynamic_mode(str);
8551 if (mode < 0) {
8552 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8553 return 0;
8554 }
8555
8556 sched_dynamic_update(mode);
8557 return 1;
8558}
8559__setup("preempt=", setup_preempt_mode);
8560
8561static void __init preempt_dynamic_init(void)
8562{
8563 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8564 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8565 sched_dynamic_update(preempt_dynamic_none);
8566 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8567 sched_dynamic_update(preempt_dynamic_voluntary);
8568 } else {
8569 /* Default static call setting, nothing to do */
8570 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8571 preempt_dynamic_mode = preempt_dynamic_full;
8572 pr_info("Dynamic Preempt: full\n");
8573 }
8574 }
8575}
8576
cfe43f47
VS
8577#define PREEMPT_MODEL_ACCESSOR(mode) \
8578 bool preempt_model_##mode(void) \
8579 { \
8580 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8581 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8582 } \
8583 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8584
8585PREEMPT_MODEL_ACCESSOR(none);
8586PREEMPT_MODEL_ACCESSOR(voluntary);
8587PREEMPT_MODEL_ACCESSOR(full);
8588
4c748558
MR
8589#else /* !CONFIG_PREEMPT_DYNAMIC */
8590
8591static inline void preempt_dynamic_init(void) { }
8592
8593#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8594
1da177e4
LT
8595/**
8596 * yield - yield the current processor to other threads.
8597 *
8e3fabfd
PZ
8598 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8599 *
8600 * The scheduler is at all times free to pick the calling task as the most
8601 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 8602 * it, it's already broken.
8e3fabfd
PZ
8603 *
8604 * Typical broken usage is:
8605 *
8606 * while (!event)
d1ccc66d 8607 * yield();
8e3fabfd
PZ
8608 *
8609 * where one assumes that yield() will let 'the other' process run that will
8610 * make event true. If the current task is a SCHED_FIFO task that will never
8611 * happen. Never use yield() as a progress guarantee!!
8612 *
8613 * If you want to use yield() to wait for something, use wait_event().
8614 * If you want to use yield() to be 'nice' for others, use cond_resched().
8615 * If you still want to use yield(), do not!
1da177e4
LT
8616 */
8617void __sched yield(void)
8618{
8619 set_current_state(TASK_RUNNING);
7d4dd4f1 8620 do_sched_yield();
1da177e4 8621}
1da177e4
LT
8622EXPORT_SYMBOL(yield);
8623
d95f4122
MG
8624/**
8625 * yield_to - yield the current processor to another thread in
8626 * your thread group, or accelerate that thread toward the
8627 * processor it's on.
16addf95
RD
8628 * @p: target task
8629 * @preempt: whether task preemption is allowed or not
d95f4122
MG
8630 *
8631 * It's the caller's job to ensure that the target task struct
8632 * can't go away on us before we can do any checks.
8633 *
e69f6186 8634 * Return:
7b270f60
PZ
8635 * true (>0) if we indeed boosted the target task.
8636 * false (0) if we failed to boost the target.
8637 * -ESRCH if there's no task to yield to.
d95f4122 8638 */
fa93384f 8639int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
8640{
8641 struct task_struct *curr = current;
8642 struct rq *rq, *p_rq;
8643 unsigned long flags;
c3c18640 8644 int yielded = 0;
d95f4122
MG
8645
8646 local_irq_save(flags);
8647 rq = this_rq();
8648
8649again:
8650 p_rq = task_rq(p);
7b270f60
PZ
8651 /*
8652 * If we're the only runnable task on the rq and target rq also
8653 * has only one task, there's absolutely no point in yielding.
8654 */
8655 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8656 yielded = -ESRCH;
8657 goto out_irq;
8658 }
8659
d95f4122 8660 double_rq_lock(rq, p_rq);
39e24d8f 8661 if (task_rq(p) != p_rq) {
d95f4122
MG
8662 double_rq_unlock(rq, p_rq);
8663 goto again;
8664 }
8665
8666 if (!curr->sched_class->yield_to_task)
7b270f60 8667 goto out_unlock;
d95f4122
MG
8668
8669 if (curr->sched_class != p->sched_class)
7b270f60 8670 goto out_unlock;
d95f4122 8671
0b9d46fc 8672 if (task_on_cpu(p_rq, p) || !task_is_running(p))
7b270f60 8673 goto out_unlock;
d95f4122 8674
0900acf2 8675 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 8676 if (yielded) {
ae92882e 8677 schedstat_inc(rq->yld_count);
6d1cafd8
VP
8678 /*
8679 * Make p's CPU reschedule; pick_next_entity takes care of
8680 * fairness.
8681 */
8682 if (preempt && rq != p_rq)
8875125e 8683 resched_curr(p_rq);
6d1cafd8 8684 }
d95f4122 8685
7b270f60 8686out_unlock:
d95f4122 8687 double_rq_unlock(rq, p_rq);
7b270f60 8688out_irq:
d95f4122
MG
8689 local_irq_restore(flags);
8690
7b270f60 8691 if (yielded > 0)
d95f4122
MG
8692 schedule();
8693
8694 return yielded;
8695}
8696EXPORT_SYMBOL_GPL(yield_to);
8697
10ab5643
TH
8698int io_schedule_prepare(void)
8699{
8700 int old_iowait = current->in_iowait;
8701
8702 current->in_iowait = 1;
aa8dccca 8703 blk_flush_plug(current->plug, true);
10ab5643
TH
8704 return old_iowait;
8705}
8706
8707void io_schedule_finish(int token)
8708{
8709 current->in_iowait = token;
8710}
8711
1da177e4 8712/*
41a2d6cf 8713 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8714 * that process accounting knows that this is a task in IO wait state.
1da177e4 8715 */
1da177e4
LT
8716long __sched io_schedule_timeout(long timeout)
8717{
10ab5643 8718 int token;
1da177e4
LT
8719 long ret;
8720
10ab5643 8721 token = io_schedule_prepare();
1da177e4 8722 ret = schedule_timeout(timeout);
10ab5643 8723 io_schedule_finish(token);
9cff8ade 8724
1da177e4
LT
8725 return ret;
8726}
9cff8ade 8727EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8728
e3b929b0 8729void __sched io_schedule(void)
10ab5643
TH
8730{
8731 int token;
8732
8733 token = io_schedule_prepare();
8734 schedule();
8735 io_schedule_finish(token);
8736}
8737EXPORT_SYMBOL(io_schedule);
8738
1da177e4
LT
8739/**
8740 * sys_sched_get_priority_max - return maximum RT priority.
8741 * @policy: scheduling class.
8742 *
e69f6186
YB
8743 * Return: On success, this syscall returns the maximum
8744 * rt_priority that can be used by a given scheduling class.
8745 * On failure, a negative error code is returned.
1da177e4 8746 */
5add95d4 8747SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8748{
8749 int ret = -EINVAL;
8750
8751 switch (policy) {
8752 case SCHED_FIFO:
8753 case SCHED_RR:
ae18ad28 8754 ret = MAX_RT_PRIO-1;
1da177e4 8755 break;
aab03e05 8756 case SCHED_DEADLINE:
1da177e4 8757 case SCHED_NORMAL:
b0a9499c 8758 case SCHED_BATCH:
dd41f596 8759 case SCHED_IDLE:
1da177e4
LT
8760 ret = 0;
8761 break;
8762 }
8763 return ret;
8764}
8765
8766/**
8767 * sys_sched_get_priority_min - return minimum RT priority.
8768 * @policy: scheduling class.
8769 *
e69f6186
YB
8770 * Return: On success, this syscall returns the minimum
8771 * rt_priority that can be used by a given scheduling class.
8772 * On failure, a negative error code is returned.
1da177e4 8773 */
5add95d4 8774SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8775{
8776 int ret = -EINVAL;
8777
8778 switch (policy) {
8779 case SCHED_FIFO:
8780 case SCHED_RR:
8781 ret = 1;
8782 break;
aab03e05 8783 case SCHED_DEADLINE:
1da177e4 8784 case SCHED_NORMAL:
b0a9499c 8785 case SCHED_BATCH:
dd41f596 8786 case SCHED_IDLE:
1da177e4
LT
8787 ret = 0;
8788 }
8789 return ret;
8790}
8791
abca5fc5 8792static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8793{
36c8b586 8794 struct task_struct *p;
a4ec24b4 8795 unsigned int time_slice;
eb580751 8796 struct rq_flags rf;
dba091b9 8797 struct rq *rq;
3a5c359a 8798 int retval;
1da177e4
LT
8799
8800 if (pid < 0)
3a5c359a 8801 return -EINVAL;
1da177e4
LT
8802
8803 retval = -ESRCH;
1a551ae7 8804 rcu_read_lock();
1da177e4
LT
8805 p = find_process_by_pid(pid);
8806 if (!p)
8807 goto out_unlock;
8808
8809 retval = security_task_getscheduler(p);
8810 if (retval)
8811 goto out_unlock;
8812
eb580751 8813 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8814 time_slice = 0;
8815 if (p->sched_class->get_rr_interval)
8816 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8817 task_rq_unlock(rq, p, &rf);
a4ec24b4 8818
1a551ae7 8819 rcu_read_unlock();
abca5fc5
AV
8820 jiffies_to_timespec64(time_slice, t);
8821 return 0;
3a5c359a 8822
1da177e4 8823out_unlock:
1a551ae7 8824 rcu_read_unlock();
1da177e4
LT
8825 return retval;
8826}
8827
2064a5ab
RD
8828/**
8829 * sys_sched_rr_get_interval - return the default timeslice of a process.
8830 * @pid: pid of the process.
8831 * @interval: userspace pointer to the timeslice value.
8832 *
8833 * this syscall writes the default timeslice value of a given process
8834 * into the user-space timespec buffer. A value of '0' means infinity.
8835 *
8836 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8837 * an error code.
8838 */
abca5fc5 8839SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8840 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8841{
8842 struct timespec64 t;
8843 int retval = sched_rr_get_interval(pid, &t);
8844
8845 if (retval == 0)
8846 retval = put_timespec64(&t, interval);
8847
8848 return retval;
8849}
8850
474b9c77 8851#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8852SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8853 struct old_timespec32 __user *, interval)
abca5fc5
AV
8854{
8855 struct timespec64 t;
8856 int retval = sched_rr_get_interval(pid, &t);
8857
8858 if (retval == 0)
9afc5eee 8859 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8860 return retval;
8861}
8862#endif
8863
82a1fcb9 8864void sched_show_task(struct task_struct *p)
1da177e4 8865{
1da177e4 8866 unsigned long free = 0;
4e79752c 8867 int ppid;
c930b2c0 8868
38200502
TH
8869 if (!try_get_task_stack(p))
8870 return;
20435d84 8871
cc172ff3 8872 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8873
b03fbd4f 8874 if (task_is_running(p))
cc172ff3 8875 pr_cont(" running task ");
1da177e4 8876#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8877 free = stack_not_used(p);
1da177e4 8878#endif
a90e984c 8879 ppid = 0;
4e79752c 8880 rcu_read_lock();
a90e984c
ON
8881 if (pid_alive(p))
8882 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8883 rcu_read_unlock();
0f03d680 8884 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
cc172ff3 8885 free, task_pid_nr(p), ppid,
0569b245 8886 read_task_thread_flags(p));
1da177e4 8887
3d1cb205 8888 print_worker_info(KERN_INFO, p);
a8b62fd0 8889 print_stop_info(KERN_INFO, p);
9cb8f069 8890 show_stack(p, NULL, KERN_INFO);
38200502 8891 put_task_stack(p);
1da177e4 8892}
0032f4e8 8893EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8894
5d68cc95
PZ
8895static inline bool
8896state_filter_match(unsigned long state_filter, struct task_struct *p)
8897{
2f064a59
PZ
8898 unsigned int state = READ_ONCE(p->__state);
8899
5d68cc95
PZ
8900 /* no filter, everything matches */
8901 if (!state_filter)
8902 return true;
8903
8904 /* filter, but doesn't match */
2f064a59 8905 if (!(state & state_filter))
5d68cc95
PZ
8906 return false;
8907
8908 /*
8909 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8910 * TASK_KILLABLE).
8911 */
5aec788a 8912 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
5d68cc95
PZ
8913 return false;
8914
8915 return true;
8916}
8917
8918
2f064a59 8919void show_state_filter(unsigned int state_filter)
1da177e4 8920{
36c8b586 8921 struct task_struct *g, *p;
1da177e4 8922
510f5acc 8923 rcu_read_lock();
5d07f420 8924 for_each_process_thread(g, p) {
1da177e4
LT
8925 /*
8926 * reset the NMI-timeout, listing all files on a slow
25985edc 8927 * console might take a lot of time:
57675cb9
AR
8928 * Also, reset softlockup watchdogs on all CPUs, because
8929 * another CPU might be blocked waiting for us to process
8930 * an IPI.
1da177e4
LT
8931 */
8932 touch_nmi_watchdog();
57675cb9 8933 touch_all_softlockup_watchdogs();
5d68cc95 8934 if (state_filter_match(state_filter, p))
82a1fcb9 8935 sched_show_task(p);
5d07f420 8936 }
1da177e4 8937
dd41f596 8938#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
8939 if (!state_filter)
8940 sysrq_sched_debug_show();
dd41f596 8941#endif
510f5acc 8942 rcu_read_unlock();
e59e2ae2
IM
8943 /*
8944 * Only show locks if all tasks are dumped:
8945 */
93335a21 8946 if (!state_filter)
e59e2ae2 8947 debug_show_all_locks();
1da177e4
LT
8948}
8949
f340c0d1
IM
8950/**
8951 * init_idle - set up an idle thread for a given CPU
8952 * @idle: task in question
d1ccc66d 8953 * @cpu: CPU the idle task belongs to
f340c0d1
IM
8954 *
8955 * NOTE: this function does not set the idle thread's NEED_RESCHED
8956 * flag, to make booting more robust.
8957 */
f1a0a376 8958void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 8959{
70b97a7f 8960 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
8961 unsigned long flags;
8962
ff51ff84
PZ
8963 __sched_fork(0, idle);
8964
25834c73 8965 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 8966 raw_spin_rq_lock(rq);
5cbd54ef 8967
2f064a59 8968 idle->__state = TASK_RUNNING;
dd41f596 8969 idle->se.exec_start = sched_clock();
00b89fe0
VS
8970 /*
8971 * PF_KTHREAD should already be set at this point; regardless, make it
8972 * look like a proper per-CPU kthread.
8973 */
8974 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8975 kthread_set_per_cpu(idle, cpu);
dd41f596 8976
de9b8f5d
PZ
8977#ifdef CONFIG_SMP
8978 /*
b19a888c 8979 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
8980 * in that case do_set_cpus_allowed() will not do the right thing.
8981 *
8982 * And since this is boot we can forgo the serialization.
8983 */
9cfc3e18 8984 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
de9b8f5d 8985#endif
6506cf6c
PZ
8986 /*
8987 * We're having a chicken and egg problem, even though we are
d1ccc66d 8988 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
8989 * lockdep check in task_group() will fail.
8990 *
8991 * Similar case to sched_fork(). / Alternatively we could
8992 * use task_rq_lock() here and obtain the other rq->lock.
8993 *
8994 * Silence PROVE_RCU
8995 */
8996 rcu_read_lock();
dd41f596 8997 __set_task_cpu(idle, cpu);
6506cf6c 8998 rcu_read_unlock();
1da177e4 8999
5311a98f
EB
9000 rq->idle = idle;
9001 rcu_assign_pointer(rq->curr, idle);
da0c1e65 9002 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 9003#ifdef CONFIG_SMP
3ca7a440 9004 idle->on_cpu = 1;
4866cde0 9005#endif
5cb9eaa3 9006 raw_spin_rq_unlock(rq);
25834c73 9007 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
9008
9009 /* Set the preempt count _outside_ the spinlocks! */
01028747 9010 init_idle_preempt_count(idle, cpu);
55cd5340 9011
dd41f596
IM
9012 /*
9013 * The idle tasks have their own, simple scheduling class:
9014 */
9015 idle->sched_class = &idle_sched_class;
868baf07 9016 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 9017 vtime_init_idle(idle, cpu);
de9b8f5d 9018#ifdef CONFIG_SMP
f1c6f1a7
CE
9019 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9020#endif
19978ca6
IM
9021}
9022
e1d4eeec
NP
9023#ifdef CONFIG_SMP
9024
f82f8042
JL
9025int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9026 const struct cpumask *trial)
9027{
06a76fe0 9028 int ret = 1;
f82f8042 9029
1087ad4e 9030 if (cpumask_empty(cur))
bb2bc55a
MG
9031 return ret;
9032
06a76fe0 9033 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
9034
9035 return ret;
9036}
9037
7f51412a 9038int task_can_attach(struct task_struct *p,
b6e8d40d 9039 const struct cpumask *cs_effective_cpus)
7f51412a
JL
9040{
9041 int ret = 0;
9042
9043 /*
9044 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 9045 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
9046 * affinity and isolating such threads by their set of
9047 * allowed nodes is unnecessary. Thus, cpusets are not
9048 * applicable for such threads. This prevents checking for
9049 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 9050 * before cpus_mask may be changed.
7f51412a
JL
9051 */
9052 if (p->flags & PF_NO_SETAFFINITY) {
9053 ret = -EINVAL;
9054 goto out;
9055 }
9056
7f51412a 9057 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
b6e8d40d
WL
9058 cs_effective_cpus)) {
9059 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
772b6539 9060
b6e8d40d
WL
9061 if (unlikely(cpu >= nr_cpu_ids))
9062 return -EINVAL;
772b6539
DE
9063 ret = dl_cpu_busy(cpu, p);
9064 }
7f51412a 9065
7f51412a
JL
9066out:
9067 return ret;
9068}
9069
f2cb1360 9070bool sched_smp_initialized __read_mostly;
e26fbffd 9071
e6628d5b
MG
9072#ifdef CONFIG_NUMA_BALANCING
9073/* Migrate current task p to target_cpu */
9074int migrate_task_to(struct task_struct *p, int target_cpu)
9075{
9076 struct migration_arg arg = { p, target_cpu };
9077 int curr_cpu = task_cpu(p);
9078
9079 if (curr_cpu == target_cpu)
9080 return 0;
9081
3bd37062 9082 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
9083 return -EINVAL;
9084
9085 /* TODO: This is not properly updating schedstats */
9086
286549dc 9087 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
9088 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9089}
0ec8aa00
PZ
9090
9091/*
9092 * Requeue a task on a given node and accurately track the number of NUMA
9093 * tasks on the runqueues
9094 */
9095void sched_setnuma(struct task_struct *p, int nid)
9096{
da0c1e65 9097 bool queued, running;
eb580751
PZ
9098 struct rq_flags rf;
9099 struct rq *rq;
0ec8aa00 9100
eb580751 9101 rq = task_rq_lock(p, &rf);
da0c1e65 9102 queued = task_on_rq_queued(p);
0ec8aa00
PZ
9103 running = task_current(rq, p);
9104
da0c1e65 9105 if (queued)
1de64443 9106 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 9107 if (running)
f3cd1c4e 9108 put_prev_task(rq, p);
0ec8aa00
PZ
9109
9110 p->numa_preferred_nid = nid;
0ec8aa00 9111
da0c1e65 9112 if (queued)
7134b3e9 9113 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 9114 if (running)
03b7fad1 9115 set_next_task(rq, p);
eb580751 9116 task_rq_unlock(rq, p, &rf);
0ec8aa00 9117}
5cc389bc 9118#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 9119
1da177e4 9120#ifdef CONFIG_HOTPLUG_CPU
054b9108 9121/*
d1ccc66d 9122 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 9123 * offline.
054b9108 9124 */
48c5ccae 9125void idle_task_exit(void)
1da177e4 9126{
48c5ccae 9127 struct mm_struct *mm = current->active_mm;
e76bd8d9 9128
48c5ccae 9129 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 9130 BUG_ON(current != this_rq()->idle);
e76bd8d9 9131
a53efe5f 9132 if (mm != &init_mm) {
252d2a41 9133 switch_mm(mm, &init_mm, current);
a53efe5f
MS
9134 finish_arch_post_lock_switch();
9135 }
bf2c59fc
PZ
9136
9137 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
9138}
9139
2558aacf 9140static int __balance_push_cpu_stop(void *arg)
1da177e4 9141{
2558aacf
PZ
9142 struct task_struct *p = arg;
9143 struct rq *rq = this_rq();
9144 struct rq_flags rf;
9145 int cpu;
1da177e4 9146
2558aacf
PZ
9147 raw_spin_lock_irq(&p->pi_lock);
9148 rq_lock(rq, &rf);
3f1d2a31 9149
2558aacf
PZ
9150 update_rq_clock(rq);
9151
9152 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9153 cpu = select_fallback_rq(rq->cpu, p);
9154 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 9155 }
3f1d2a31 9156
2558aacf
PZ
9157 rq_unlock(rq, &rf);
9158 raw_spin_unlock_irq(&p->pi_lock);
9159
9160 put_task_struct(p);
9161
9162 return 0;
10e7071b 9163}
3f1d2a31 9164
2558aacf
PZ
9165static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9166
48f24c4d 9167/*
2558aacf 9168 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
9169 *
9170 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9171 * effective when the hotplug motion is down.
1da177e4 9172 */
2558aacf 9173static void balance_push(struct rq *rq)
1da177e4 9174{
2558aacf
PZ
9175 struct task_struct *push_task = rq->curr;
9176
5cb9eaa3 9177 lockdep_assert_rq_held(rq);
b5c44773 9178
ae792702
PZ
9179 /*
9180 * Ensure the thing is persistent until balance_push_set(.on = false);
9181 */
9182 rq->balance_callback = &balance_push_callback;
1da177e4 9183
b5c44773 9184 /*
868ad33b
TG
9185 * Only active while going offline and when invoked on the outgoing
9186 * CPU.
b5c44773 9187 */
868ad33b 9188 if (!cpu_dying(rq->cpu) || rq != this_rq())
b5c44773
PZ
9189 return;
9190
1da177e4 9191 /*
2558aacf
PZ
9192 * Both the cpu-hotplug and stop task are in this case and are
9193 * required to complete the hotplug process.
1da177e4 9194 */
00b89fe0 9195 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
9196 is_migration_disabled(push_task)) {
9197
f2469a1f
TG
9198 /*
9199 * If this is the idle task on the outgoing CPU try to wake
9200 * up the hotplug control thread which might wait for the
9201 * last task to vanish. The rcuwait_active() check is
9202 * accurate here because the waiter is pinned on this CPU
9203 * and can't obviously be running in parallel.
3015ef4b
TG
9204 *
9205 * On RT kernels this also has to check whether there are
9206 * pinned and scheduled out tasks on the runqueue. They
9207 * need to leave the migrate disabled section first.
f2469a1f 9208 */
3015ef4b
TG
9209 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9210 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 9211 raw_spin_rq_unlock(rq);
f2469a1f 9212 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 9213 raw_spin_rq_lock(rq);
f2469a1f 9214 }
2558aacf 9215 return;
f2469a1f 9216 }
48f24c4d 9217
2558aacf 9218 get_task_struct(push_task);
77bd3970 9219 /*
2558aacf
PZ
9220 * Temporarily drop rq->lock such that we can wake-up the stop task.
9221 * Both preemption and IRQs are still disabled.
77bd3970 9222 */
5cb9eaa3 9223 raw_spin_rq_unlock(rq);
2558aacf
PZ
9224 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9225 this_cpu_ptr(&push_work));
9226 /*
9227 * At this point need_resched() is true and we'll take the loop in
9228 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 9229 * which kthread_is_per_cpu() and will push this task away.
2558aacf 9230 */
5cb9eaa3 9231 raw_spin_rq_lock(rq);
2558aacf 9232}
77bd3970 9233
2558aacf
PZ
9234static void balance_push_set(int cpu, bool on)
9235{
9236 struct rq *rq = cpu_rq(cpu);
9237 struct rq_flags rf;
48c5ccae 9238
2558aacf 9239 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
9240 if (on) {
9241 WARN_ON_ONCE(rq->balance_callback);
ae792702 9242 rq->balance_callback = &balance_push_callback;
22f667c9 9243 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 9244 rq->balance_callback = NULL;
22f667c9 9245 }
2558aacf
PZ
9246 rq_unlock_irqrestore(rq, &rf);
9247}
e692ab53 9248
f2469a1f
TG
9249/*
9250 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9251 * inactive. All tasks which are not per CPU kernel threads are either
9252 * pushed off this CPU now via balance_push() or placed on a different CPU
9253 * during wakeup. Wait until the CPU is quiescent.
9254 */
9255static void balance_hotplug_wait(void)
9256{
9257 struct rq *rq = this_rq();
5473e0cc 9258
3015ef4b
TG
9259 rcuwait_wait_event(&rq->hotplug_wait,
9260 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
9261 TASK_UNINTERRUPTIBLE);
9262}
5473e0cc 9263
2558aacf 9264#else
dce48a84 9265
2558aacf
PZ
9266static inline void balance_push(struct rq *rq)
9267{
dce48a84 9268}
dce48a84 9269
2558aacf
PZ
9270static inline void balance_push_set(int cpu, bool on)
9271{
9272}
9273
f2469a1f
TG
9274static inline void balance_hotplug_wait(void)
9275{
dce48a84 9276}
f2469a1f 9277
1da177e4
LT
9278#endif /* CONFIG_HOTPLUG_CPU */
9279
f2cb1360 9280void set_rq_online(struct rq *rq)
1f11eb6a
GH
9281{
9282 if (!rq->online) {
9283 const struct sched_class *class;
9284
c6c4927b 9285 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9286 rq->online = 1;
9287
9288 for_each_class(class) {
9289 if (class->rq_online)
9290 class->rq_online(rq);
9291 }
9292 }
9293}
9294
f2cb1360 9295void set_rq_offline(struct rq *rq)
1f11eb6a
GH
9296{
9297 if (rq->online) {
9298 const struct sched_class *class;
9299
9300 for_each_class(class) {
9301 if (class->rq_offline)
9302 class->rq_offline(rq);
9303 }
9304
c6c4927b 9305 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9306 rq->online = 0;
9307 }
9308}
9309
d1ccc66d
IM
9310/*
9311 * used to mark begin/end of suspend/resume:
9312 */
9313static int num_cpus_frozen;
d35be8ba 9314
1da177e4 9315/*
3a101d05
TH
9316 * Update cpusets according to cpu_active mask. If cpusets are
9317 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9318 * around partition_sched_domains().
d35be8ba
SB
9319 *
9320 * If we come here as part of a suspend/resume, don't touch cpusets because we
9321 * want to restore it back to its original state upon resume anyway.
1da177e4 9322 */
40190a78 9323static void cpuset_cpu_active(void)
e761b772 9324{
40190a78 9325 if (cpuhp_tasks_frozen) {
d35be8ba
SB
9326 /*
9327 * num_cpus_frozen tracks how many CPUs are involved in suspend
9328 * resume sequence. As long as this is not the last online
9329 * operation in the resume sequence, just build a single sched
9330 * domain, ignoring cpusets.
9331 */
50e76632
PZ
9332 partition_sched_domains(1, NULL, NULL);
9333 if (--num_cpus_frozen)
135fb3e1 9334 return;
d35be8ba
SB
9335 /*
9336 * This is the last CPU online operation. So fall through and
9337 * restore the original sched domains by considering the
9338 * cpuset configurations.
9339 */
50e76632 9340 cpuset_force_rebuild();
3a101d05 9341 }
30e03acd 9342 cpuset_update_active_cpus();
3a101d05 9343}
e761b772 9344
40190a78 9345static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 9346{
40190a78 9347 if (!cpuhp_tasks_frozen) {
772b6539
DE
9348 int ret = dl_cpu_busy(cpu, NULL);
9349
9350 if (ret)
9351 return ret;
30e03acd 9352 cpuset_update_active_cpus();
135fb3e1 9353 } else {
d35be8ba
SB
9354 num_cpus_frozen++;
9355 partition_sched_domains(1, NULL, NULL);
e761b772 9356 }
135fb3e1 9357 return 0;
e761b772 9358}
e761b772 9359
40190a78 9360int sched_cpu_activate(unsigned int cpu)
135fb3e1 9361{
7d976699 9362 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9363 struct rq_flags rf;
7d976699 9364
22f667c9 9365 /*
b5c44773
PZ
9366 * Clear the balance_push callback and prepare to schedule
9367 * regular tasks.
22f667c9 9368 */
2558aacf
PZ
9369 balance_push_set(cpu, false);
9370
ba2591a5
PZ
9371#ifdef CONFIG_SCHED_SMT
9372 /*
c5511d03 9373 * When going up, increment the number of cores with SMT present.
ba2591a5 9374 */
c5511d03
PZI
9375 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9376 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 9377#endif
40190a78 9378 set_cpu_active(cpu, true);
135fb3e1 9379
40190a78 9380 if (sched_smp_initialized) {
0fb3978b 9381 sched_update_numa(cpu, true);
135fb3e1 9382 sched_domains_numa_masks_set(cpu);
40190a78 9383 cpuset_cpu_active();
e761b772 9384 }
7d976699
TG
9385
9386 /*
9387 * Put the rq online, if not already. This happens:
9388 *
9389 * 1) In the early boot process, because we build the real domains
d1ccc66d 9390 * after all CPUs have been brought up.
7d976699
TG
9391 *
9392 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9393 * domains.
9394 */
8a8c69c3 9395 rq_lock_irqsave(rq, &rf);
7d976699
TG
9396 if (rq->rd) {
9397 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9398 set_rq_online(rq);
9399 }
8a8c69c3 9400 rq_unlock_irqrestore(rq, &rf);
7d976699 9401
40190a78 9402 return 0;
135fb3e1
TG
9403}
9404
40190a78 9405int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 9406{
120455c5
PZ
9407 struct rq *rq = cpu_rq(cpu);
9408 struct rq_flags rf;
135fb3e1
TG
9409 int ret;
9410
e0b257c3
AMB
9411 /*
9412 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9413 * load balancing when not active
9414 */
9415 nohz_balance_exit_idle(rq);
9416
40190a78 9417 set_cpu_active(cpu, false);
741ba80f
PZ
9418
9419 /*
9420 * From this point forward, this CPU will refuse to run any task that
9421 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9422 * push those tasks away until this gets cleared, see
9423 * sched_cpu_dying().
9424 */
975707f2
PZ
9425 balance_push_set(cpu, true);
9426
b2454caa 9427 /*
975707f2
PZ
9428 * We've cleared cpu_active_mask / set balance_push, wait for all
9429 * preempt-disabled and RCU users of this state to go away such that
9430 * all new such users will observe it.
b2454caa 9431 *
5ba2ffba
PZ
9432 * Specifically, we rely on ttwu to no longer target this CPU, see
9433 * ttwu_queue_cond() and is_cpu_allowed().
9434 *
b2454caa
PZ
9435 * Do sync before park smpboot threads to take care the rcu boost case.
9436 */
309ba859 9437 synchronize_rcu();
40190a78 9438
120455c5
PZ
9439 rq_lock_irqsave(rq, &rf);
9440 if (rq->rd) {
9441 update_rq_clock(rq);
9442 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9443 set_rq_offline(rq);
9444 }
9445 rq_unlock_irqrestore(rq, &rf);
9446
c5511d03
PZI
9447#ifdef CONFIG_SCHED_SMT
9448 /*
9449 * When going down, decrement the number of cores with SMT present.
9450 */
9451 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9452 static_branch_dec_cpuslocked(&sched_smt_present);
3c474b32
PZ
9453
9454 sched_core_cpu_deactivate(cpu);
c5511d03
PZI
9455#endif
9456
40190a78
TG
9457 if (!sched_smp_initialized)
9458 return 0;
9459
0fb3978b 9460 sched_update_numa(cpu, false);
40190a78
TG
9461 ret = cpuset_cpu_inactive(cpu);
9462 if (ret) {
2558aacf 9463 balance_push_set(cpu, false);
40190a78 9464 set_cpu_active(cpu, true);
0fb3978b 9465 sched_update_numa(cpu, true);
40190a78 9466 return ret;
135fb3e1 9467 }
40190a78
TG
9468 sched_domains_numa_masks_clear(cpu);
9469 return 0;
135fb3e1
TG
9470}
9471
94baf7a5
TG
9472static void sched_rq_cpu_starting(unsigned int cpu)
9473{
9474 struct rq *rq = cpu_rq(cpu);
9475
9476 rq->calc_load_update = calc_load_update;
94baf7a5
TG
9477 update_max_interval();
9478}
9479
135fb3e1
TG
9480int sched_cpu_starting(unsigned int cpu)
9481{
9edeaea1 9482 sched_core_cpu_starting(cpu);
94baf7a5 9483 sched_rq_cpu_starting(cpu);
d84b3131 9484 sched_tick_start(cpu);
135fb3e1 9485 return 0;
e761b772 9486}
e761b772 9487
f2785ddb 9488#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
9489
9490/*
9491 * Invoked immediately before the stopper thread is invoked to bring the
9492 * CPU down completely. At this point all per CPU kthreads except the
9493 * hotplug thread (current) and the stopper thread (inactive) have been
9494 * either parked or have been unbound from the outgoing CPU. Ensure that
9495 * any of those which might be on the way out are gone.
9496 *
9497 * If after this point a bound task is being woken on this CPU then the
9498 * responsible hotplug callback has failed to do it's job.
9499 * sched_cpu_dying() will catch it with the appropriate fireworks.
9500 */
9501int sched_cpu_wait_empty(unsigned int cpu)
9502{
9503 balance_hotplug_wait();
9504 return 0;
9505}
9506
9507/*
9508 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9509 * might have. Called from the CPU stopper task after ensuring that the
9510 * stopper is the last running task on the CPU, so nr_active count is
9511 * stable. We need to take the teardown thread which is calling this into
9512 * account, so we hand in adjust = 1 to the load calculation.
9513 *
9514 * Also see the comment "Global load-average calculations".
9515 */
9516static void calc_load_migrate(struct rq *rq)
9517{
9518 long delta = calc_load_fold_active(rq, 1);
9519
9520 if (delta)
9521 atomic_long_add(delta, &calc_load_tasks);
9522}
9523
36c6e17b
VS
9524static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9525{
9526 struct task_struct *g, *p;
9527 int cpu = cpu_of(rq);
9528
5cb9eaa3 9529 lockdep_assert_rq_held(rq);
36c6e17b
VS
9530
9531 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9532 for_each_process_thread(g, p) {
9533 if (task_cpu(p) != cpu)
9534 continue;
9535
9536 if (!task_on_rq_queued(p))
9537 continue;
9538
9539 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9540 }
9541}
9542
f2785ddb
TG
9543int sched_cpu_dying(unsigned int cpu)
9544{
9545 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9546 struct rq_flags rf;
f2785ddb
TG
9547
9548 /* Handle pending wakeups and then migrate everything off */
d84b3131 9549 sched_tick_stop(cpu);
8a8c69c3
PZ
9550
9551 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
9552 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9553 WARN(true, "Dying CPU not properly vacated!");
9554 dump_rq_tasks(rq, KERN_WARNING);
9555 }
8a8c69c3
PZ
9556 rq_unlock_irqrestore(rq, &rf);
9557
f2785ddb
TG
9558 calc_load_migrate(rq);
9559 update_max_interval();
e5ef27d0 9560 hrtick_clear(rq);
3c474b32 9561 sched_core_cpu_dying(cpu);
f2785ddb
TG
9562 return 0;
9563}
9564#endif
9565
1da177e4
LT
9566void __init sched_init_smp(void)
9567{
0fb3978b 9568 sched_init_numa(NUMA_NO_NODE);
cb83b629 9569
6acce3ef
PZ
9570 /*
9571 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 9572 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 9573 * happen.
6acce3ef 9574 */
712555ee 9575 mutex_lock(&sched_domains_mutex);
8d5dc512 9576 sched_init_domains(cpu_active_mask);
712555ee 9577 mutex_unlock(&sched_domains_mutex);
e761b772 9578
5c1e1767 9579 /* Move init over to a non-isolated CPU */
04d4e665 9580 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
5c1e1767 9581 BUG();
15faafc6 9582 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 9583 sched_init_granularity();
4212823f 9584
0e3900e6 9585 init_sched_rt_class();
1baca4ce 9586 init_sched_dl_class();
1b568f0a 9587
e26fbffd 9588 sched_smp_initialized = true;
1da177e4 9589}
e26fbffd
TG
9590
9591static int __init migration_init(void)
9592{
77a5352b 9593 sched_cpu_starting(smp_processor_id());
e26fbffd 9594 return 0;
1da177e4 9595}
e26fbffd
TG
9596early_initcall(migration_init);
9597
1da177e4
LT
9598#else
9599void __init sched_init_smp(void)
9600{
19978ca6 9601 sched_init_granularity();
1da177e4
LT
9602}
9603#endif /* CONFIG_SMP */
9604
9605int in_sched_functions(unsigned long addr)
9606{
1da177e4
LT
9607 return in_lock_functions(addr) ||
9608 (addr >= (unsigned long)__sched_text_start
9609 && addr < (unsigned long)__sched_text_end);
9610}
9611
029632fb 9612#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
9613/*
9614 * Default task group.
9615 * Every task in system belongs to this group at bootup.
9616 */
029632fb 9617struct task_group root_task_group;
35cf4e50 9618LIST_HEAD(task_groups);
b0367629
WL
9619
9620/* Cacheline aligned slab cache for task_group */
9621static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 9622#endif
6f505b16 9623
1da177e4
LT
9624void __init sched_init(void)
9625{
a1dc0446 9626 unsigned long ptr = 0;
55627e3c 9627 int i;
434d53b0 9628
c3a340f7 9629 /* Make sure the linker didn't screw up */
546a3fee
PZ
9630 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9631 &fair_sched_class != &rt_sched_class + 1 ||
9632 &rt_sched_class != &dl_sched_class + 1);
c3a340f7 9633#ifdef CONFIG_SMP
546a3fee 9634 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
c3a340f7
SRV
9635#endif
9636
5822a454 9637 wait_bit_init();
9dcb8b68 9638
434d53b0 9639#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 9640 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
9641#endif
9642#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 9643 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 9644#endif
a1dc0446
QC
9645 if (ptr) {
9646 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
9647
9648#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 9649 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
9650 ptr += nr_cpu_ids * sizeof(void **);
9651
07e06b01 9652 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 9653 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 9654
b1d1779e
WY
9655 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9656 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 9657#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 9658#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9659 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
9660 ptr += nr_cpu_ids * sizeof(void **);
9661
07e06b01 9662 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9663 ptr += nr_cpu_ids * sizeof(void **);
9664
6d6bc0ad 9665#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 9666 }
dd41f596 9667
d1ccc66d 9668 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 9669
57d885fe
GH
9670#ifdef CONFIG_SMP
9671 init_defrootdomain();
9672#endif
9673
d0b27fa7 9674#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9675 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 9676 global_rt_period(), global_rt_runtime());
6d6bc0ad 9677#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9678
7c941438 9679#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
9680 task_group_cache = KMEM_CACHE(task_group, 0);
9681
07e06b01
YZ
9682 list_add(&root_task_group.list, &task_groups);
9683 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 9684 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 9685 autogroup_init(&init_task);
7c941438 9686#endif /* CONFIG_CGROUP_SCHED */
6f505b16 9687
0a945022 9688 for_each_possible_cpu(i) {
70b97a7f 9689 struct rq *rq;
1da177e4
LT
9690
9691 rq = cpu_rq(i);
5cb9eaa3 9692 raw_spin_lock_init(&rq->__lock);
7897986b 9693 rq->nr_running = 0;
dce48a84
TG
9694 rq->calc_load_active = 0;
9695 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 9696 init_cfs_rq(&rq->cfs);
07c54f7a
AV
9697 init_rt_rq(&rq->rt);
9698 init_dl_rq(&rq->dl);
dd41f596 9699#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9700 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9701 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9702 /*
d1ccc66d 9703 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9704 *
9705 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9706 * gets 100% of the CPU resources in the system. This overall
9707 * system CPU resource is divided among the tasks of
07e06b01 9708 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9709 * based on each entity's (task or task-group's) weight
9710 * (se->load.weight).
9711 *
07e06b01 9712 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9713 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9714 * then A0's share of the CPU resource is:
354d60c2 9715 *
0d905bca 9716 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9717 *
07e06b01
YZ
9718 * We achieve this by letting root_task_group's tasks sit
9719 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9720 */
07e06b01 9721 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9722#endif /* CONFIG_FAIR_GROUP_SCHED */
9723
9724 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9725#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9726 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9727#endif
1da177e4 9728#ifdef CONFIG_SMP
41c7ce9a 9729 rq->sd = NULL;
57d885fe 9730 rq->rd = NULL;
ca6d75e6 9731 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9732 rq->balance_callback = &balance_push_callback;
1da177e4 9733 rq->active_balance = 0;
dd41f596 9734 rq->next_balance = jiffies;
1da177e4 9735 rq->push_cpu = 0;
0a2966b4 9736 rq->cpu = i;
1f11eb6a 9737 rq->online = 0;
eae0c9df
MG
9738 rq->idle_stamp = 0;
9739 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9740 rq->wake_stamp = jiffies;
9741 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9742 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9743
9744 INIT_LIST_HEAD(&rq->cfs_tasks);
9745
dc938520 9746 rq_attach_root(rq, &def_root_domain);
3451d024 9747#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9748 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9749 atomic_set(&rq->nohz_flags, 0);
90b5363a 9750
545b8c8d 9751 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9752#endif
f2469a1f
TG
9753#ifdef CONFIG_HOTPLUG_CPU
9754 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9755#endif
9fd81dd5 9756#endif /* CONFIG_SMP */
77a021be 9757 hrtick_rq_init(rq);
1da177e4 9758 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9759
9760#ifdef CONFIG_SCHED_CORE
3c474b32 9761 rq->core = rq;
539f6512 9762 rq->core_pick = NULL;
9edeaea1 9763 rq->core_enabled = 0;
539f6512 9764 rq->core_tree = RB_ROOT;
4feee7d1
JD
9765 rq->core_forceidle_count = 0;
9766 rq->core_forceidle_occupation = 0;
9767 rq->core_forceidle_start = 0;
539f6512
PZ
9768
9769 rq->core_cookie = 0UL;
9edeaea1 9770#endif
1da177e4
LT
9771 }
9772
b1e82065 9773 set_load_weight(&init_task, false);
b50f60ce 9774
1da177e4
LT
9775 /*
9776 * The boot idle thread does lazy MMU switching as well:
9777 */
f1f10076 9778 mmgrab(&init_mm);
1da177e4
LT
9779 enter_lazy_tlb(&init_mm, current);
9780
40966e31
EB
9781 /*
9782 * The idle task doesn't need the kthread struct to function, but it
9783 * is dressed up as a per-CPU kthread and thus needs to play the part
9784 * if we want to avoid special-casing it in code that deals with per-CPU
9785 * kthreads.
9786 */
dd621ee0 9787 WARN_ON(!set_kthread_struct(current));
40966e31 9788
1da177e4
LT
9789 /*
9790 * Make us the idle thread. Technically, schedule() should not be
9791 * called from this thread, however somewhere below it might be,
9792 * but because we are the idle thread, we just pick up running again
9793 * when this runqueue becomes "idle".
9794 */
9795 init_idle(current, smp_processor_id());
dce48a84
TG
9796
9797 calc_load_update = jiffies + LOAD_FREQ;
9798
bf4d83f6 9799#ifdef CONFIG_SMP
29d5e047 9800 idle_thread_set_boot_cpu();
b5c44773 9801 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9802#endif
9803 init_sched_fair_class();
6a7b3dc3 9804
eb414681
JW
9805 psi_init();
9806
69842cba
PB
9807 init_uclamp();
9808
c597bfdd
FW
9809 preempt_dynamic_init();
9810
6892b75e 9811 scheduler_running = 1;
1da177e4
LT
9812}
9813
d902db1e 9814#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2 9815
42a38756 9816void __might_sleep(const char *file, int line)
1da177e4 9817{
d6c23bb3 9818 unsigned int state = get_current_state();
8eb23b9f
PZ
9819 /*
9820 * Blocking primitives will set (and therefore destroy) current->state,
9821 * since we will exit with TASK_RUNNING make sure we enter with it,
9822 * otherwise we will destroy state.
9823 */
d6c23bb3 9824 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 9825 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 9826 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 9827 (void *)current->task_state_change,
00845eb9 9828 (void *)current->task_state_change);
8eb23b9f 9829
42a38756 9830 __might_resched(file, line, 0);
3427445a
PZ
9831}
9832EXPORT_SYMBOL(__might_sleep);
9833
8d713b69
TG
9834static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9835{
9836 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9837 return;
9838
9839 if (preempt_count() == preempt_offset)
9840 return;
9841
9842 pr_err("Preemption disabled at:");
9843 print_ip_sym(KERN_ERR, ip);
9844}
9845
50e081b9
TG
9846static inline bool resched_offsets_ok(unsigned int offsets)
9847{
9848 unsigned int nested = preempt_count();
9849
9850 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9851
9852 return nested == offsets;
9853}
9854
9855void __might_resched(const char *file, int line, unsigned int offsets)
1da177e4 9856{
d1ccc66d
IM
9857 /* Ratelimiting timestamp: */
9858 static unsigned long prev_jiffy;
9859
d1c6d149 9860 unsigned long preempt_disable_ip;
1da177e4 9861
d1ccc66d
IM
9862 /* WARN_ON_ONCE() by default, no rate limit required: */
9863 rcu_sleep_check();
9864
50e081b9 9865 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
312364f3 9866 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9867 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9868 oops_in_progress)
aef745fc 9869 return;
1c3c5eab 9870
aef745fc
IM
9871 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9872 return;
9873 prev_jiffy = jiffies;
9874
d1ccc66d 9875 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9876 preempt_disable_ip = get_preempt_disable_ip(current);
9877
a45ed302
TG
9878 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9879 file, line);
9880 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9881 in_atomic(), irqs_disabled(), current->non_block_count,
9882 current->pid, current->comm);
8d713b69 9883 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
50e081b9 9884 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8d713b69
TG
9885
9886 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
50e081b9
TG
9887 pr_err("RCU nest depth: %d, expected: %u\n",
9888 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8d713b69 9889 }
aef745fc 9890
a8b686b3 9891 if (task_stack_end_corrupted(current))
a45ed302 9892 pr_emerg("Thread overran stack, or stack corrupted\n");
a8b686b3 9893
aef745fc
IM
9894 debug_show_held_locks(current);
9895 if (irqs_disabled())
9896 print_irqtrace_events(current);
8d713b69 9897
50e081b9
TG
9898 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9899 preempt_disable_ip);
8d713b69 9900
aef745fc 9901 dump_stack();
f0b22e39 9902 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9903}
874f670e 9904EXPORT_SYMBOL(__might_resched);
568f1967
PZ
9905
9906void __cant_sleep(const char *file, int line, int preempt_offset)
9907{
9908 static unsigned long prev_jiffy;
9909
9910 if (irqs_disabled())
9911 return;
9912
9913 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9914 return;
9915
9916 if (preempt_count() > preempt_offset)
9917 return;
9918
9919 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9920 return;
9921 prev_jiffy = jiffies;
9922
9923 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9924 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9925 in_atomic(), irqs_disabled(),
9926 current->pid, current->comm);
9927
9928 debug_show_held_locks(current);
9929 dump_stack();
9930 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9931}
9932EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
9933
9934#ifdef CONFIG_SMP
9935void __cant_migrate(const char *file, int line)
9936{
9937 static unsigned long prev_jiffy;
9938
9939 if (irqs_disabled())
9940 return;
9941
9942 if (is_migration_disabled(current))
9943 return;
9944
9945 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9946 return;
9947
9948 if (preempt_count() > 0)
9949 return;
9950
9951 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9952 return;
9953 prev_jiffy = jiffies;
9954
9955 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9956 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9957 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9958 current->pid, current->comm);
9959
9960 debug_show_held_locks(current);
9961 dump_stack();
9962 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9963}
9964EXPORT_SYMBOL_GPL(__cant_migrate);
9965#endif
1da177e4
LT
9966#endif
9967
9968#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 9969void normalize_rt_tasks(void)
3a5e4dc1 9970{
dbc7f069 9971 struct task_struct *g, *p;
d50dde5a
DF
9972 struct sched_attr attr = {
9973 .sched_policy = SCHED_NORMAL,
9974 };
1da177e4 9975
3472eaa1 9976 read_lock(&tasklist_lock);
5d07f420 9977 for_each_process_thread(g, p) {
178be793
IM
9978 /*
9979 * Only normalize user tasks:
9980 */
3472eaa1 9981 if (p->flags & PF_KTHREAD)
178be793
IM
9982 continue;
9983
4fa8d299 9984 p->se.exec_start = 0;
ceeadb83
YS
9985 schedstat_set(p->stats.wait_start, 0);
9986 schedstat_set(p->stats.sleep_start, 0);
9987 schedstat_set(p->stats.block_start, 0);
dd41f596 9988
aab03e05 9989 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
9990 /*
9991 * Renice negative nice level userspace
9992 * tasks back to 0:
9993 */
3472eaa1 9994 if (task_nice(p) < 0)
dd41f596 9995 set_user_nice(p, 0);
1da177e4 9996 continue;
dd41f596 9997 }
1da177e4 9998
dbc7f069 9999 __sched_setscheduler(p, &attr, false, false);
5d07f420 10000 }
3472eaa1 10001 read_unlock(&tasklist_lock);
1da177e4
LT
10002}
10003
10004#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 10005
67fc4e0c 10006#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 10007/*
67fc4e0c 10008 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
10009 *
10010 * They can only be called when the whole system has been
10011 * stopped - every CPU needs to be quiescent, and no scheduling
10012 * activity can take place. Using them for anything else would
10013 * be a serious bug, and as a result, they aren't even visible
10014 * under any other configuration.
10015 */
10016
10017/**
d1ccc66d 10018 * curr_task - return the current task for a given CPU.
1df5c10a
LT
10019 * @cpu: the processor in question.
10020 *
10021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
10022 *
10023 * Return: The current task for @cpu.
1df5c10a 10024 */
36c8b586 10025struct task_struct *curr_task(int cpu)
1df5c10a
LT
10026{
10027 return cpu_curr(cpu);
10028}
10029
67fc4e0c
JW
10030#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10031
10032#ifdef CONFIG_IA64
1df5c10a 10033/**
5feeb783 10034 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
10035 * @cpu: the processor in question.
10036 * @p: the task pointer to set.
10037 *
10038 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 10039 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 10040 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
10041 * must be called with all CPU's synchronized, and interrupts disabled, the
10042 * and caller must save the original value of the current task (see
10043 * curr_task() above) and restore that value before reenabling interrupts and
10044 * re-starting the system.
10045 *
10046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10047 */
a458ae2e 10048void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
10049{
10050 cpu_curr(cpu) = p;
10051}
10052
10053#endif
29f59db3 10054
7c941438 10055#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
10056/* task_group_lock serializes the addition/removal of task groups */
10057static DEFINE_SPINLOCK(task_group_lock);
10058
2480c093
PB
10059static inline void alloc_uclamp_sched_group(struct task_group *tg,
10060 struct task_group *parent)
10061{
10062#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 10063 enum uclamp_id clamp_id;
2480c093
PB
10064
10065 for_each_clamp_id(clamp_id) {
10066 uclamp_se_set(&tg->uclamp_req[clamp_id],
10067 uclamp_none(clamp_id), false);
0b60ba2d 10068 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
10069 }
10070#endif
10071}
10072
2f5177f0 10073static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
10074{
10075 free_fair_sched_group(tg);
10076 free_rt_sched_group(tg);
e9aa1dd1 10077 autogroup_free(tg);
b0367629 10078 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
10079}
10080
b027789e
MK
10081static void sched_free_group_rcu(struct rcu_head *rcu)
10082{
10083 sched_free_group(container_of(rcu, struct task_group, rcu));
10084}
10085
10086static void sched_unregister_group(struct task_group *tg)
10087{
10088 unregister_fair_sched_group(tg);
10089 unregister_rt_sched_group(tg);
10090 /*
10091 * We have to wait for yet another RCU grace period to expire, as
10092 * print_cfs_stats() might run concurrently.
10093 */
10094 call_rcu(&tg->rcu, sched_free_group_rcu);
10095}
10096
bccbe08a 10097/* allocate runqueue etc for a new task group */
ec7dc8ac 10098struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10099{
10100 struct task_group *tg;
bccbe08a 10101
b0367629 10102 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
10103 if (!tg)
10104 return ERR_PTR(-ENOMEM);
10105
ec7dc8ac 10106 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10107 goto err;
10108
ec7dc8ac 10109 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10110 goto err;
10111
2480c093
PB
10112 alloc_uclamp_sched_group(tg, parent);
10113
ace783b9
LZ
10114 return tg;
10115
10116err:
2f5177f0 10117 sched_free_group(tg);
ace783b9
LZ
10118 return ERR_PTR(-ENOMEM);
10119}
10120
10121void sched_online_group(struct task_group *tg, struct task_group *parent)
10122{
10123 unsigned long flags;
10124
8ed36996 10125 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10126 list_add_rcu(&tg->list, &task_groups);
f473aa5e 10127
d1ccc66d
IM
10128 /* Root should already exist: */
10129 WARN_ON(!parent);
f473aa5e
PZ
10130
10131 tg->parent = parent;
f473aa5e 10132 INIT_LIST_HEAD(&tg->children);
09f2724a 10133 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10134 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
10135
10136 online_fair_sched_group(tg);
29f59db3
SV
10137}
10138
9b5b7751 10139/* rcu callback to free various structures associated with a task group */
b027789e 10140static void sched_unregister_group_rcu(struct rcu_head *rhp)
29f59db3 10141{
d1ccc66d 10142 /* Now it should be safe to free those cfs_rqs: */
b027789e 10143 sched_unregister_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10144}
10145
4cf86d77 10146void sched_destroy_group(struct task_group *tg)
ace783b9 10147{
d1ccc66d 10148 /* Wait for possible concurrent references to cfs_rqs complete: */
b027789e 10149 call_rcu(&tg->rcu, sched_unregister_group_rcu);
ace783b9
LZ
10150}
10151
b027789e 10152void sched_release_group(struct task_group *tg)
29f59db3 10153{
8ed36996 10154 unsigned long flags;
29f59db3 10155
b027789e
MK
10156 /*
10157 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10158 * sched_cfs_period_timer()).
10159 *
10160 * For this to be effective, we have to wait for all pending users of
10161 * this task group to leave their RCU critical section to ensure no new
10162 * user will see our dying task group any more. Specifically ensure
10163 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10164 *
10165 * We therefore defer calling unregister_fair_sched_group() to
10166 * sched_unregister_group() which is guarantied to get called only after the
10167 * current RCU grace period has expired.
10168 */
3d4b47b4 10169 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10170 list_del_rcu(&tg->list);
f473aa5e 10171 list_del_rcu(&tg->siblings);
8ed36996 10172 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
10173}
10174
39c42611 10175static void sched_change_group(struct task_struct *tsk)
29f59db3 10176{
8323f26c 10177 struct task_group *tg;
29f59db3 10178
f7b8a47d
KT
10179 /*
10180 * All callers are synchronized by task_rq_lock(); we do not use RCU
10181 * which is pointless here. Thus, we pass "true" to task_css_check()
10182 * to prevent lockdep warnings.
10183 */
10184 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
10185 struct task_group, css);
10186 tg = autogroup_task_group(tsk, tg);
10187 tsk->sched_task_group = tg;
10188
810b3817 10189#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10190 if (tsk->sched_class->task_change_group)
39c42611 10191 tsk->sched_class->task_change_group(tsk);
b2b5ce02 10192 else
810b3817 10193#endif
b2b5ce02 10194 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
10195}
10196
10197/*
10198 * Change task's runqueue when it moves between groups.
10199 *
10200 * The caller of this function should have put the task in its new group by
10201 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10202 * its new group.
10203 */
10204void sched_move_task(struct task_struct *tsk)
10205{
7a57f32a
PZ
10206 int queued, running, queue_flags =
10207 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
10208 struct rq_flags rf;
10209 struct rq *rq;
10210
10211 rq = task_rq_lock(tsk, &rf);
1b1d6225 10212 update_rq_clock(rq);
ea86cb4b
VG
10213
10214 running = task_current(rq, tsk);
10215 queued = task_on_rq_queued(tsk);
10216
10217 if (queued)
7a57f32a 10218 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 10219 if (running)
ea86cb4b
VG
10220 put_prev_task(rq, tsk);
10221
39c42611 10222 sched_change_group(tsk);
810b3817 10223
da0c1e65 10224 if (queued)
7a57f32a 10225 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 10226 if (running) {
03b7fad1 10227 set_next_task(rq, tsk);
2a4b03ff
VG
10228 /*
10229 * After changing group, the running task may have joined a
10230 * throttled one but it's still the running task. Trigger a
10231 * resched to make sure that task can still run.
10232 */
10233 resched_curr(rq);
10234 }
29f59db3 10235
eb580751 10236 task_rq_unlock(rq, tsk, &rf);
29f59db3 10237}
68318b8e 10238
a7c6d554 10239static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 10240{
a7c6d554 10241 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
10242}
10243
eb95419b
TH
10244static struct cgroup_subsys_state *
10245cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 10246{
eb95419b
TH
10247 struct task_group *parent = css_tg(parent_css);
10248 struct task_group *tg;
68318b8e 10249
eb95419b 10250 if (!parent) {
68318b8e 10251 /* This is early initialization for the top cgroup */
07e06b01 10252 return &root_task_group.css;
68318b8e
SV
10253 }
10254
ec7dc8ac 10255 tg = sched_create_group(parent);
68318b8e
SV
10256 if (IS_ERR(tg))
10257 return ERR_PTR(-ENOMEM);
10258
68318b8e
SV
10259 return &tg->css;
10260}
10261
96b77745
KK
10262/* Expose task group only after completing cgroup initialization */
10263static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10264{
10265 struct task_group *tg = css_tg(css);
10266 struct task_group *parent = css_tg(css->parent);
10267
10268 if (parent)
10269 sched_online_group(tg, parent);
7226017a
QY
10270
10271#ifdef CONFIG_UCLAMP_TASK_GROUP
10272 /* Propagate the effective uclamp value for the new group */
93b73858
QY
10273 mutex_lock(&uclamp_mutex);
10274 rcu_read_lock();
7226017a 10275 cpu_util_update_eff(css);
93b73858
QY
10276 rcu_read_unlock();
10277 mutex_unlock(&uclamp_mutex);
7226017a
QY
10278#endif
10279
96b77745
KK
10280 return 0;
10281}
10282
2f5177f0 10283static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 10284{
eb95419b 10285 struct task_group *tg = css_tg(css);
ace783b9 10286
b027789e 10287 sched_release_group(tg);
ace783b9
LZ
10288}
10289
eb95419b 10290static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 10291{
eb95419b 10292 struct task_group *tg = css_tg(css);
68318b8e 10293
2f5177f0
PZ
10294 /*
10295 * Relies on the RCU grace period between css_released() and this.
10296 */
b027789e 10297 sched_unregister_group(tg);
ace783b9
LZ
10298}
10299
df16b71c 10300#ifdef CONFIG_RT_GROUP_SCHED
1f7dd3e5 10301static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 10302{
bb9d97b6 10303 struct task_struct *task;
1f7dd3e5 10304 struct cgroup_subsys_state *css;
bb9d97b6 10305
1f7dd3e5 10306 cgroup_taskset_for_each(task, css, tset) {
eb95419b 10307 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 10308 return -EINVAL;
bb9d97b6 10309 }
df16b71c 10310 return 0;
be367d09 10311}
df16b71c 10312#endif
68318b8e 10313
1f7dd3e5 10314static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 10315{
bb9d97b6 10316 struct task_struct *task;
1f7dd3e5 10317 struct cgroup_subsys_state *css;
bb9d97b6 10318
1f7dd3e5 10319 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10320 sched_move_task(task);
68318b8e
SV
10321}
10322
2480c093 10323#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
10324static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10325{
10326 struct cgroup_subsys_state *top_css = css;
10327 struct uclamp_se *uc_parent = NULL;
10328 struct uclamp_se *uc_se = NULL;
10329 unsigned int eff[UCLAMP_CNT];
0413d7f3 10330 enum uclamp_id clamp_id;
0b60ba2d
PB
10331 unsigned int clamps;
10332
93b73858
QY
10333 lockdep_assert_held(&uclamp_mutex);
10334 SCHED_WARN_ON(!rcu_read_lock_held());
10335
0b60ba2d
PB
10336 css_for_each_descendant_pre(css, top_css) {
10337 uc_parent = css_tg(css)->parent
10338 ? css_tg(css)->parent->uclamp : NULL;
10339
10340 for_each_clamp_id(clamp_id) {
10341 /* Assume effective clamps matches requested clamps */
10342 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10343 /* Cap effective clamps with parent's effective clamps */
10344 if (uc_parent &&
10345 eff[clamp_id] > uc_parent[clamp_id].value) {
10346 eff[clamp_id] = uc_parent[clamp_id].value;
10347 }
10348 }
10349 /* Ensure protection is always capped by limit */
10350 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10351
10352 /* Propagate most restrictive effective clamps */
10353 clamps = 0x0;
10354 uc_se = css_tg(css)->uclamp;
10355 for_each_clamp_id(clamp_id) {
10356 if (eff[clamp_id] == uc_se[clamp_id].value)
10357 continue;
10358 uc_se[clamp_id].value = eff[clamp_id];
10359 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10360 clamps |= (0x1 << clamp_id);
10361 }
babbe170 10362 if (!clamps) {
0b60ba2d 10363 css = css_rightmost_descendant(css);
babbe170
PB
10364 continue;
10365 }
10366
10367 /* Immediately update descendants RUNNABLE tasks */
0213b708 10368 uclamp_update_active_tasks(css);
0b60ba2d
PB
10369 }
10370}
2480c093
PB
10371
10372/*
10373 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10374 * C expression. Since there is no way to convert a macro argument (N) into a
10375 * character constant, use two levels of macros.
10376 */
10377#define _POW10(exp) ((unsigned int)1e##exp)
10378#define POW10(exp) _POW10(exp)
10379
10380struct uclamp_request {
10381#define UCLAMP_PERCENT_SHIFT 2
10382#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10383 s64 percent;
10384 u64 util;
10385 int ret;
10386};
10387
10388static inline struct uclamp_request
10389capacity_from_percent(char *buf)
10390{
10391 struct uclamp_request req = {
10392 .percent = UCLAMP_PERCENT_SCALE,
10393 .util = SCHED_CAPACITY_SCALE,
10394 .ret = 0,
10395 };
10396
10397 buf = strim(buf);
10398 if (strcmp(buf, "max")) {
10399 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10400 &req.percent);
10401 if (req.ret)
10402 return req;
b562d140 10403 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
10404 req.ret = -ERANGE;
10405 return req;
10406 }
10407
10408 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10409 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10410 }
10411
10412 return req;
10413}
10414
10415static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10416 size_t nbytes, loff_t off,
10417 enum uclamp_id clamp_id)
10418{
10419 struct uclamp_request req;
10420 struct task_group *tg;
10421
10422 req = capacity_from_percent(buf);
10423 if (req.ret)
10424 return req.ret;
10425
46609ce2
QY
10426 static_branch_enable(&sched_uclamp_used);
10427
2480c093
PB
10428 mutex_lock(&uclamp_mutex);
10429 rcu_read_lock();
10430
10431 tg = css_tg(of_css(of));
10432 if (tg->uclamp_req[clamp_id].value != req.util)
10433 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10434
10435 /*
10436 * Because of not recoverable conversion rounding we keep track of the
10437 * exact requested value
10438 */
10439 tg->uclamp_pct[clamp_id] = req.percent;
10440
0b60ba2d
PB
10441 /* Update effective clamps to track the most restrictive value */
10442 cpu_util_update_eff(of_css(of));
10443
2480c093
PB
10444 rcu_read_unlock();
10445 mutex_unlock(&uclamp_mutex);
10446
10447 return nbytes;
10448}
10449
10450static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10451 char *buf, size_t nbytes,
10452 loff_t off)
10453{
10454 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10455}
10456
10457static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10458 char *buf, size_t nbytes,
10459 loff_t off)
10460{
10461 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10462}
10463
10464static inline void cpu_uclamp_print(struct seq_file *sf,
10465 enum uclamp_id clamp_id)
10466{
10467 struct task_group *tg;
10468 u64 util_clamp;
10469 u64 percent;
10470 u32 rem;
10471
10472 rcu_read_lock();
10473 tg = css_tg(seq_css(sf));
10474 util_clamp = tg->uclamp_req[clamp_id].value;
10475 rcu_read_unlock();
10476
10477 if (util_clamp == SCHED_CAPACITY_SCALE) {
10478 seq_puts(sf, "max\n");
10479 return;
10480 }
10481
10482 percent = tg->uclamp_pct[clamp_id];
10483 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10484 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10485}
10486
10487static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10488{
10489 cpu_uclamp_print(sf, UCLAMP_MIN);
10490 return 0;
10491}
10492
10493static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10494{
10495 cpu_uclamp_print(sf, UCLAMP_MAX);
10496 return 0;
10497}
10498#endif /* CONFIG_UCLAMP_TASK_GROUP */
10499
052f1dc7 10500#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
10501static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10502 struct cftype *cftype, u64 shareval)
68318b8e 10503{
5b61d50a
KK
10504 if (shareval > scale_load_down(ULONG_MAX))
10505 shareval = MAX_SHARES;
182446d0 10506 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
10507}
10508
182446d0
TH
10509static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10510 struct cftype *cft)
68318b8e 10511{
182446d0 10512 struct task_group *tg = css_tg(css);
68318b8e 10513
c8b28116 10514 return (u64) scale_load_down(tg->shares);
68318b8e 10515}
ab84d31e
PT
10516
10517#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
10518static DEFINE_MUTEX(cfs_constraints_mutex);
10519
ab84d31e 10520const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 10521static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
10522/* More than 203 days if BW_SHIFT equals 20. */
10523static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 10524
a790de99
PT
10525static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10526
f4183717
HC
10527static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10528 u64 burst)
ab84d31e 10529{
56f570e5 10530 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 10531 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
10532
10533 if (tg == &root_task_group)
10534 return -EINVAL;
10535
10536 /*
10537 * Ensure we have at some amount of bandwidth every period. This is
10538 * to prevent reaching a state of large arrears when throttled via
10539 * entity_tick() resulting in prolonged exit starvation.
10540 */
10541 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10542 return -EINVAL;
10543
10544 /*
3b03706f 10545 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
10546 * periods. This also allows us to normalize in computing quota
10547 * feasibility.
10548 */
10549 if (period > max_cfs_quota_period)
10550 return -EINVAL;
10551
d505b8af
HC
10552 /*
10553 * Bound quota to defend quota against overflow during bandwidth shift.
10554 */
10555 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10556 return -EINVAL;
10557
f4183717
HC
10558 if (quota != RUNTIME_INF && (burst > quota ||
10559 burst + quota > max_cfs_runtime))
10560 return -EINVAL;
10561
0e59bdae
KT
10562 /*
10563 * Prevent race between setting of cfs_rq->runtime_enabled and
10564 * unthrottle_offline_cfs_rqs().
10565 */
746f5ea9 10566 cpus_read_lock();
a790de99
PT
10567 mutex_lock(&cfs_constraints_mutex);
10568 ret = __cfs_schedulable(tg, period, quota);
10569 if (ret)
10570 goto out_unlock;
10571
58088ad0 10572 runtime_enabled = quota != RUNTIME_INF;
56f570e5 10573 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
10574 /*
10575 * If we need to toggle cfs_bandwidth_used, off->on must occur
10576 * before making related changes, and on->off must occur afterwards
10577 */
10578 if (runtime_enabled && !runtime_was_enabled)
10579 cfs_bandwidth_usage_inc();
ab84d31e
PT
10580 raw_spin_lock_irq(&cfs_b->lock);
10581 cfs_b->period = ns_to_ktime(period);
10582 cfs_b->quota = quota;
f4183717 10583 cfs_b->burst = burst;
58088ad0 10584
a9cf55b2 10585 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
10586
10587 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
10588 if (runtime_enabled)
10589 start_cfs_bandwidth(cfs_b);
d1ccc66d 10590
ab84d31e
PT
10591 raw_spin_unlock_irq(&cfs_b->lock);
10592
0e59bdae 10593 for_each_online_cpu(i) {
ab84d31e 10594 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 10595 struct rq *rq = cfs_rq->rq;
8a8c69c3 10596 struct rq_flags rf;
ab84d31e 10597
8a8c69c3 10598 rq_lock_irq(rq, &rf);
58088ad0 10599 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 10600 cfs_rq->runtime_remaining = 0;
671fd9da 10601
029632fb 10602 if (cfs_rq->throttled)
671fd9da 10603 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 10604 rq_unlock_irq(rq, &rf);
ab84d31e 10605 }
1ee14e6c
BS
10606 if (runtime_was_enabled && !runtime_enabled)
10607 cfs_bandwidth_usage_dec();
a790de99
PT
10608out_unlock:
10609 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 10610 cpus_read_unlock();
ab84d31e 10611
a790de99 10612 return ret;
ab84d31e
PT
10613}
10614
b1546edc 10615static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 10616{
f4183717 10617 u64 quota, period, burst;
ab84d31e 10618
029632fb 10619 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 10620 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
10621 if (cfs_quota_us < 0)
10622 quota = RUNTIME_INF;
1a8b4540 10623 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 10624 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
10625 else
10626 return -EINVAL;
ab84d31e 10627
f4183717 10628 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10629}
10630
b1546edc 10631static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
10632{
10633 u64 quota_us;
10634
029632fb 10635 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
10636 return -1;
10637
029632fb 10638 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
10639 do_div(quota_us, NSEC_PER_USEC);
10640
10641 return quota_us;
10642}
10643
b1546edc 10644static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 10645{
f4183717 10646 u64 quota, period, burst;
ab84d31e 10647
1a8b4540
KK
10648 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10649 return -EINVAL;
10650
ab84d31e 10651 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 10652 quota = tg->cfs_bandwidth.quota;
f4183717 10653 burst = tg->cfs_bandwidth.burst;
ab84d31e 10654
f4183717 10655 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10656}
10657
b1546edc 10658static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
10659{
10660 u64 cfs_period_us;
10661
029632fb 10662 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
10663 do_div(cfs_period_us, NSEC_PER_USEC);
10664
10665 return cfs_period_us;
10666}
10667
f4183717
HC
10668static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10669{
10670 u64 quota, period, burst;
10671
10672 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10673 return -EINVAL;
10674
10675 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10676 period = ktime_to_ns(tg->cfs_bandwidth.period);
10677 quota = tg->cfs_bandwidth.quota;
10678
10679 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10680}
10681
10682static long tg_get_cfs_burst(struct task_group *tg)
10683{
10684 u64 burst_us;
10685
10686 burst_us = tg->cfs_bandwidth.burst;
10687 do_div(burst_us, NSEC_PER_USEC);
10688
10689 return burst_us;
10690}
10691
182446d0
TH
10692static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10693 struct cftype *cft)
ab84d31e 10694{
182446d0 10695 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
10696}
10697
182446d0
TH
10698static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10699 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 10700{
182446d0 10701 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
10702}
10703
182446d0
TH
10704static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10705 struct cftype *cft)
ab84d31e 10706{
182446d0 10707 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
10708}
10709
182446d0
TH
10710static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10711 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 10712{
182446d0 10713 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
10714}
10715
f4183717
HC
10716static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10717 struct cftype *cft)
10718{
10719 return tg_get_cfs_burst(css_tg(css));
10720}
10721
10722static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10723 struct cftype *cftype, u64 cfs_burst_us)
10724{
10725 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10726}
10727
a790de99
PT
10728struct cfs_schedulable_data {
10729 struct task_group *tg;
10730 u64 period, quota;
10731};
10732
10733/*
10734 * normalize group quota/period to be quota/max_period
10735 * note: units are usecs
10736 */
10737static u64 normalize_cfs_quota(struct task_group *tg,
10738 struct cfs_schedulable_data *d)
10739{
10740 u64 quota, period;
10741
10742 if (tg == d->tg) {
10743 period = d->period;
10744 quota = d->quota;
10745 } else {
10746 period = tg_get_cfs_period(tg);
10747 quota = tg_get_cfs_quota(tg);
10748 }
10749
10750 /* note: these should typically be equivalent */
10751 if (quota == RUNTIME_INF || quota == -1)
10752 return RUNTIME_INF;
10753
10754 return to_ratio(period, quota);
10755}
10756
10757static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10758{
10759 struct cfs_schedulable_data *d = data;
029632fb 10760 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10761 s64 quota = 0, parent_quota = -1;
10762
10763 if (!tg->parent) {
10764 quota = RUNTIME_INF;
10765 } else {
029632fb 10766 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10767
10768 quota = normalize_cfs_quota(tg, d);
9c58c79a 10769 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10770
10771 /*
c53593e5
TH
10772 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10773 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10774 * limit is set:
a790de99 10775 */
c53593e5
TH
10776 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10777 quota = min(quota, parent_quota);
10778 } else {
10779 if (quota == RUNTIME_INF)
10780 quota = parent_quota;
10781 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10782 return -EINVAL;
10783 }
a790de99 10784 }
9c58c79a 10785 cfs_b->hierarchical_quota = quota;
a790de99
PT
10786
10787 return 0;
10788}
10789
10790static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10791{
8277434e 10792 int ret;
a790de99
PT
10793 struct cfs_schedulable_data data = {
10794 .tg = tg,
10795 .period = period,
10796 .quota = quota,
10797 };
10798
10799 if (quota != RUNTIME_INF) {
10800 do_div(data.period, NSEC_PER_USEC);
10801 do_div(data.quota, NSEC_PER_USEC);
10802 }
10803
8277434e
PT
10804 rcu_read_lock();
10805 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10806 rcu_read_unlock();
10807
10808 return ret;
a790de99 10809}
e8da1b18 10810
a1f7164c 10811static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10812{
2da8ca82 10813 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10814 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10815
44ffc75b
TH
10816 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10817 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10818 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10819
3d6c50c2 10820 if (schedstat_enabled() && tg != &root_task_group) {
ceeadb83 10821 struct sched_statistics *stats;
3d6c50c2
YW
10822 u64 ws = 0;
10823 int i;
10824
ceeadb83
YS
10825 for_each_possible_cpu(i) {
10826 stats = __schedstats_from_se(tg->se[i]);
10827 ws += schedstat_val(stats->wait_sum);
10828 }
3d6c50c2
YW
10829
10830 seq_printf(sf, "wait_sum %llu\n", ws);
10831 }
10832
bcb1704a
HC
10833 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10834 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10835
e8da1b18
NR
10836 return 0;
10837}
ab84d31e 10838#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10839#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10840
052f1dc7 10841#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10842static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10843 struct cftype *cft, s64 val)
6f505b16 10844{
182446d0 10845 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10846}
10847
182446d0
TH
10848static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10849 struct cftype *cft)
6f505b16 10850{
182446d0 10851 return sched_group_rt_runtime(css_tg(css));
6f505b16 10852}
d0b27fa7 10853
182446d0
TH
10854static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10855 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10856{
182446d0 10857 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10858}
10859
182446d0
TH
10860static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10861 struct cftype *cft)
d0b27fa7 10862{
182446d0 10863 return sched_group_rt_period(css_tg(css));
d0b27fa7 10864}
6d6bc0ad 10865#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10866
30400039
JD
10867#ifdef CONFIG_FAIR_GROUP_SCHED
10868static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10869 struct cftype *cft)
10870{
10871 return css_tg(css)->idle;
10872}
10873
10874static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10875 struct cftype *cft, s64 idle)
10876{
10877 return sched_group_set_idle(css_tg(css), idle);
10878}
10879#endif
10880
a1f7164c 10881static struct cftype cpu_legacy_files[] = {
052f1dc7 10882#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10883 {
10884 .name = "shares",
f4c753b7
PM
10885 .read_u64 = cpu_shares_read_u64,
10886 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10887 },
30400039
JD
10888 {
10889 .name = "idle",
10890 .read_s64 = cpu_idle_read_s64,
10891 .write_s64 = cpu_idle_write_s64,
10892 },
052f1dc7 10893#endif
ab84d31e
PT
10894#ifdef CONFIG_CFS_BANDWIDTH
10895 {
10896 .name = "cfs_quota_us",
10897 .read_s64 = cpu_cfs_quota_read_s64,
10898 .write_s64 = cpu_cfs_quota_write_s64,
10899 },
10900 {
10901 .name = "cfs_period_us",
10902 .read_u64 = cpu_cfs_period_read_u64,
10903 .write_u64 = cpu_cfs_period_write_u64,
10904 },
f4183717
HC
10905 {
10906 .name = "cfs_burst_us",
10907 .read_u64 = cpu_cfs_burst_read_u64,
10908 .write_u64 = cpu_cfs_burst_write_u64,
10909 },
e8da1b18
NR
10910 {
10911 .name = "stat",
a1f7164c 10912 .seq_show = cpu_cfs_stat_show,
e8da1b18 10913 },
ab84d31e 10914#endif
052f1dc7 10915#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10916 {
9f0c1e56 10917 .name = "rt_runtime_us",
06ecb27c
PM
10918 .read_s64 = cpu_rt_runtime_read,
10919 .write_s64 = cpu_rt_runtime_write,
6f505b16 10920 },
d0b27fa7
PZ
10921 {
10922 .name = "rt_period_us",
f4c753b7
PM
10923 .read_u64 = cpu_rt_period_read_uint,
10924 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10925 },
2480c093
PB
10926#endif
10927#ifdef CONFIG_UCLAMP_TASK_GROUP
10928 {
10929 .name = "uclamp.min",
10930 .flags = CFTYPE_NOT_ON_ROOT,
10931 .seq_show = cpu_uclamp_min_show,
10932 .write = cpu_uclamp_min_write,
10933 },
10934 {
10935 .name = "uclamp.max",
10936 .flags = CFTYPE_NOT_ON_ROOT,
10937 .seq_show = cpu_uclamp_max_show,
10938 .write = cpu_uclamp_max_write,
10939 },
052f1dc7 10940#endif
d1ccc66d 10941 { } /* Terminate */
68318b8e
SV
10942};
10943
d41bf8c9
TH
10944static int cpu_extra_stat_show(struct seq_file *sf,
10945 struct cgroup_subsys_state *css)
0d593634 10946{
0d593634
TH
10947#ifdef CONFIG_CFS_BANDWIDTH
10948 {
d41bf8c9 10949 struct task_group *tg = css_tg(css);
0d593634 10950 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
bcb1704a 10951 u64 throttled_usec, burst_usec;
0d593634
TH
10952
10953 throttled_usec = cfs_b->throttled_time;
10954 do_div(throttled_usec, NSEC_PER_USEC);
bcb1704a
HC
10955 burst_usec = cfs_b->burst_time;
10956 do_div(burst_usec, NSEC_PER_USEC);
0d593634
TH
10957
10958 seq_printf(sf, "nr_periods %d\n"
10959 "nr_throttled %d\n"
bcb1704a
HC
10960 "throttled_usec %llu\n"
10961 "nr_bursts %d\n"
10962 "burst_usec %llu\n",
0d593634 10963 cfs_b->nr_periods, cfs_b->nr_throttled,
bcb1704a 10964 throttled_usec, cfs_b->nr_burst, burst_usec);
0d593634
TH
10965 }
10966#endif
10967 return 0;
10968}
10969
10970#ifdef CONFIG_FAIR_GROUP_SCHED
10971static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10972 struct cftype *cft)
10973{
10974 struct task_group *tg = css_tg(css);
10975 u64 weight = scale_load_down(tg->shares);
10976
10977 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10978}
10979
10980static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10981 struct cftype *cft, u64 weight)
10982{
10983 /*
10984 * cgroup weight knobs should use the common MIN, DFL and MAX
10985 * values which are 1, 100 and 10000 respectively. While it loses
10986 * a bit of range on both ends, it maps pretty well onto the shares
10987 * value used by scheduler and the round-trip conversions preserve
10988 * the original value over the entire range.
10989 */
10990 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10991 return -ERANGE;
10992
10993 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10994
10995 return sched_group_set_shares(css_tg(css), scale_load(weight));
10996}
10997
10998static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10999 struct cftype *cft)
11000{
11001 unsigned long weight = scale_load_down(css_tg(css)->shares);
11002 int last_delta = INT_MAX;
11003 int prio, delta;
11004
11005 /* find the closest nice value to the current weight */
11006 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11007 delta = abs(sched_prio_to_weight[prio] - weight);
11008 if (delta >= last_delta)
11009 break;
11010 last_delta = delta;
11011 }
11012
11013 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11014}
11015
11016static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11017 struct cftype *cft, s64 nice)
11018{
11019 unsigned long weight;
7281c8de 11020 int idx;
0d593634
TH
11021
11022 if (nice < MIN_NICE || nice > MAX_NICE)
11023 return -ERANGE;
11024
7281c8de
PZ
11025 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11026 idx = array_index_nospec(idx, 40);
11027 weight = sched_prio_to_weight[idx];
11028
0d593634
TH
11029 return sched_group_set_shares(css_tg(css), scale_load(weight));
11030}
11031#endif
11032
11033static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11034 long period, long quota)
11035{
11036 if (quota < 0)
11037 seq_puts(sf, "max");
11038 else
11039 seq_printf(sf, "%ld", quota);
11040
11041 seq_printf(sf, " %ld\n", period);
11042}
11043
11044/* caller should put the current value in *@periodp before calling */
11045static int __maybe_unused cpu_period_quota_parse(char *buf,
11046 u64 *periodp, u64 *quotap)
11047{
11048 char tok[21]; /* U64_MAX */
11049
4c47acd8 11050 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
11051 return -EINVAL;
11052
11053 *periodp *= NSEC_PER_USEC;
11054
11055 if (sscanf(tok, "%llu", quotap))
11056 *quotap *= NSEC_PER_USEC;
11057 else if (!strcmp(tok, "max"))
11058 *quotap = RUNTIME_INF;
11059 else
11060 return -EINVAL;
11061
11062 return 0;
11063}
11064
11065#ifdef CONFIG_CFS_BANDWIDTH
11066static int cpu_max_show(struct seq_file *sf, void *v)
11067{
11068 struct task_group *tg = css_tg(seq_css(sf));
11069
11070 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11071 return 0;
11072}
11073
11074static ssize_t cpu_max_write(struct kernfs_open_file *of,
11075 char *buf, size_t nbytes, loff_t off)
11076{
11077 struct task_group *tg = css_tg(of_css(of));
11078 u64 period = tg_get_cfs_period(tg);
f4183717 11079 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
11080 u64 quota;
11081 int ret;
11082
11083 ret = cpu_period_quota_parse(buf, &period, &quota);
11084 if (!ret)
f4183717 11085 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
11086 return ret ?: nbytes;
11087}
11088#endif
11089
11090static struct cftype cpu_files[] = {
0d593634
TH
11091#ifdef CONFIG_FAIR_GROUP_SCHED
11092 {
11093 .name = "weight",
11094 .flags = CFTYPE_NOT_ON_ROOT,
11095 .read_u64 = cpu_weight_read_u64,
11096 .write_u64 = cpu_weight_write_u64,
11097 },
11098 {
11099 .name = "weight.nice",
11100 .flags = CFTYPE_NOT_ON_ROOT,
11101 .read_s64 = cpu_weight_nice_read_s64,
11102 .write_s64 = cpu_weight_nice_write_s64,
11103 },
30400039
JD
11104 {
11105 .name = "idle",
11106 .flags = CFTYPE_NOT_ON_ROOT,
11107 .read_s64 = cpu_idle_read_s64,
11108 .write_s64 = cpu_idle_write_s64,
11109 },
0d593634
TH
11110#endif
11111#ifdef CONFIG_CFS_BANDWIDTH
11112 {
11113 .name = "max",
11114 .flags = CFTYPE_NOT_ON_ROOT,
11115 .seq_show = cpu_max_show,
11116 .write = cpu_max_write,
11117 },
f4183717
HC
11118 {
11119 .name = "max.burst",
11120 .flags = CFTYPE_NOT_ON_ROOT,
11121 .read_u64 = cpu_cfs_burst_read_u64,
11122 .write_u64 = cpu_cfs_burst_write_u64,
11123 },
2480c093
PB
11124#endif
11125#ifdef CONFIG_UCLAMP_TASK_GROUP
11126 {
11127 .name = "uclamp.min",
11128 .flags = CFTYPE_NOT_ON_ROOT,
11129 .seq_show = cpu_uclamp_min_show,
11130 .write = cpu_uclamp_min_write,
11131 },
11132 {
11133 .name = "uclamp.max",
11134 .flags = CFTYPE_NOT_ON_ROOT,
11135 .seq_show = cpu_uclamp_max_show,
11136 .write = cpu_uclamp_max_write,
11137 },
0d593634
TH
11138#endif
11139 { } /* terminate */
11140};
11141
073219e9 11142struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 11143 .css_alloc = cpu_cgroup_css_alloc,
96b77745 11144 .css_online = cpu_cgroup_css_online,
2f5177f0 11145 .css_released = cpu_cgroup_css_released,
92fb9748 11146 .css_free = cpu_cgroup_css_free,
d41bf8c9 11147 .css_extra_stat_show = cpu_extra_stat_show,
df16b71c 11148#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6 11149 .can_attach = cpu_cgroup_can_attach,
df16b71c 11150#endif
bb9d97b6 11151 .attach = cpu_cgroup_attach,
a1f7164c 11152 .legacy_cftypes = cpu_legacy_files,
0d593634 11153 .dfl_cftypes = cpu_files,
b38e42e9 11154 .early_init = true,
0d593634 11155 .threaded = true,
68318b8e
SV
11156};
11157
052f1dc7 11158#endif /* CONFIG_CGROUP_SCHED */
d842de87 11159
b637a328
PM
11160void dump_cpu_task(int cpu)
11161{
bc1cca97
ZL
11162 if (cpu == smp_processor_id() && in_hardirq()) {
11163 struct pt_regs *regs;
11164
11165 regs = get_irq_regs();
11166 if (regs) {
11167 show_regs(regs);
11168 return;
11169 }
11170 }
11171
e73dfe30
ZL
11172 if (trigger_single_cpu_backtrace(cpu))
11173 return;
11174
b637a328
PM
11175 pr_info("Task dump for CPU %d:\n", cpu);
11176 sched_show_task(cpu_curr(cpu));
11177}
ed82b8a1
AK
11178
11179/*
11180 * Nice levels are multiplicative, with a gentle 10% change for every
11181 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11182 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11183 * that remained on nice 0.
11184 *
11185 * The "10% effect" is relative and cumulative: from _any_ nice level,
11186 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11187 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11188 * If a task goes up by ~10% and another task goes down by ~10% then
11189 * the relative distance between them is ~25%.)
11190 */
11191const int sched_prio_to_weight[40] = {
11192 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11193 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11194 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11195 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11196 /* 0 */ 1024, 820, 655, 526, 423,
11197 /* 5 */ 335, 272, 215, 172, 137,
11198 /* 10 */ 110, 87, 70, 56, 45,
11199 /* 15 */ 36, 29, 23, 18, 15,
11200};
11201
11202/*
11203 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11204 *
11205 * In cases where the weight does not change often, we can use the
11206 * precalculated inverse to speed up arithmetics by turning divisions
11207 * into multiplications:
11208 */
11209const u32 sched_prio_to_wmult[40] = {
11210 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11211 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11212 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11213 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11214 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11215 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11216 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11217 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11218};
14a7405b 11219
9d246053
PA
11220void call_trace_sched_update_nr_running(struct rq *rq, int count)
11221{
11222 trace_sched_update_nr_running_tp(rq, count);
11223}