Merge tag 'i2c-for-6.4-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
e66f6481
IM
9#include <linux/highmem.h>
10#include <linux/hrtimer_api.h>
11#include <linux/ktime_api.h>
12#include <linux/sched/signal.h>
13#include <linux/syscalls_api.h>
14#include <linux/debug_locks.h>
15#include <linux/prefetch.h>
16#include <linux/capability.h>
17#include <linux/pgtable_api.h>
18#include <linux/wait_bit.h>
19#include <linux/jiffies.h>
20#include <linux/spinlock_api.h>
21#include <linux/cpumask_api.h>
22#include <linux/lockdep_api.h>
23#include <linux/hardirq.h>
24#include <linux/softirq.h>
25#include <linux/refcount_api.h>
26#include <linux/topology.h>
27#include <linux/sched/clock.h>
28#include <linux/sched/cond_resched.h>
d664e399 29#include <linux/sched/cputime.h>
e66f6481 30#include <linux/sched/debug.h>
d664e399
TG
31#include <linux/sched/hotplug.h>
32#include <linux/sched/init.h>
e66f6481
IM
33#include <linux/sched/isolation.h>
34#include <linux/sched/loadavg.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/nohz.h>
37#include <linux/sched/rseq_api.h>
38#include <linux/sched/rt.h>
1da177e4 39
6a5850d1 40#include <linux/blkdev.h>
e66f6481
IM
41#include <linux/context_tracking.h>
42#include <linux/cpuset.h>
43#include <linux/delayacct.h>
44#include <linux/init_task.h>
45#include <linux/interrupt.h>
46#include <linux/ioprio.h>
47#include <linux/kallsyms.h>
0ed557aa 48#include <linux/kcov.h>
e66f6481
IM
49#include <linux/kprobes.h>
50#include <linux/llist_api.h>
51#include <linux/mmu_context.h>
52#include <linux/mmzone.h>
53#include <linux/mutex_api.h>
54#include <linux/nmi.h>
55#include <linux/nospec.h>
56#include <linux/perf_event_api.h>
57#include <linux/profile.h>
58#include <linux/psi.h>
59#include <linux/rcuwait_api.h>
60#include <linux/sched/wake_q.h>
d08b9f0c 61#include <linux/scs.h>
e66f6481
IM
62#include <linux/slab.h>
63#include <linux/syscalls.h>
64#include <linux/vtime.h>
65#include <linux/wait_api.h>
66#include <linux/workqueue_api.h>
67
68#ifdef CONFIG_PREEMPT_DYNAMIC
a7b2553b
IM
69# ifdef CONFIG_GENERIC_ENTRY
70# include <linux/entry-common.h>
71# endif
e66f6481
IM
72#endif
73
74#include <uapi/linux/sched/types.h>
0ed557aa 75
bc1cca97 76#include <asm/irq_regs.h>
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
1da177e4 79
9d246053 80#define CREATE_TRACE_POINTS
e66f6481 81#include <linux/sched/rseq_api.h>
9d246053 82#include <trace/events/sched.h>
cc9cb0a7 83#include <trace/events/ipi.h>
9d246053
PA
84#undef CREATE_TRACE_POINTS
85
325ea10c 86#include "sched.h"
b9e9c6ca
IM
87#include "stats.h"
88#include "autogroup.h"
6e0534f2 89
e66f6481 90#include "autogroup.h"
91c27493 91#include "pelt.h"
1f8db415 92#include "smp.h"
e66f6481 93#include "stats.h"
1da177e4 94
ea138446 95#include "../workqueue_internal.h"
ed29b0b4 96#include "../../io_uring/io-wq.h"
29d5e047 97#include "../smpboot.h"
91c27493 98
68e2d17c 99EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
cc9cb0a7
VS
100EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
a056a5be
QY
102/*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
77cf151b 111EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
51cf18c9 112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 117
029632fb 118DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 119
a73f863a 120#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
121/*
122 * Debugging: various feature bits
765cc3a4
PB
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
bf5c91ba 127 */
f00b45c1
PZ
128#define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 130const_debug unsigned int sysctl_sched_features =
391e43da 131#include "features.h"
f00b45c1 132 0;
f00b45c1 133#undef SCHED_FEAT
c006fac5
PT
134
135/*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142__read_mostly int sysctl_resched_latency_warn_ms = 100;
143__read_mostly int sysctl_resched_latency_warn_once = 1;
144#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 145
b82d9fdd
PZ
146/*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
c59862f8 150const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
b82d9fdd 151
029632fb 152__read_mostly int scheduler_running;
6892b75e 153
9edeaea1
PZ
154#ifdef CONFIG_SCHED_CORE
155
156DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
8a311c74 158/* kernel prio, less is more */
904cbab7 159static inline int __task_prio(const struct task_struct *p)
8a311c74
PZ
160{
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171}
172
173/*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180/* real prio, less is less */
904cbab7
MWO
181static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
8a311c74
PZ
183{
184
185 int pa = __task_prio(a), pb = __task_prio(b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
195
c6047c2e
JFG
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
198
199 return false;
200}
201
904cbab7
MWO
202static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
8a311c74
PZ
204{
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
4feee7d1 212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
8a311c74
PZ
213 return true;
214
215 return false;
216}
217
218#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
220static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221{
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223}
224
225static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226{
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237}
238
6e33cad0 239void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
240{
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247}
248
4feee7d1 249void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
8a311c74
PZ
250{
251 rq->core->core_task_seq++;
252
4feee7d1
JD
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
8a311c74 257
4feee7d1
JD
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
8a311c74
PZ
266}
267
530bfad1 268static int sched_task_is_throttled(struct task_struct *p, int cpu)
8a311c74 269{
530bfad1
HJ
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
8a311c74 272
530bfad1 273 return 0;
8a311c74
PZ
274}
275
d2dfa17b
PZ
276static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277{
278 struct rb_node *node = &p->core_node;
530bfad1 279 int cpu = task_cpu(p);
d2dfa17b 280
530bfad1
HJ
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
d2dfa17b 285
530bfad1
HJ
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293}
294
295/*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
299static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300{
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
d2dfa17b
PZ
305 if (!node)
306 return NULL;
307
530bfad1
HJ
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
310 return p;
d2dfa17b 311
530bfad1 312 return sched_core_next(p, cookie);
d2dfa17b
PZ
313}
314
9edeaea1
PZ
315/*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328static DEFINE_MUTEX(sched_core_mutex);
875feb41 329static atomic_t sched_core_count;
9edeaea1
PZ
330static struct cpumask sched_core_mask;
331
3c474b32
PZ
332static void sched_core_lock(int cpu, unsigned long *flags)
333{
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340}
341
342static void sched_core_unlock(int cpu, unsigned long *flags)
343{
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350}
351
9edeaea1
PZ
352static void __sched_core_flip(bool enabled)
353{
3c474b32
PZ
354 unsigned long flags;
355 int cpu, t;
9edeaea1
PZ
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
3c474b32 366 sched_core_lock(cpu, &flags);
9edeaea1
PZ
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
4feee7d1
JD
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
3c474b32 373 sched_core_unlock(cpu, &flags);
9edeaea1
PZ
374
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
585463f0 381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
9edeaea1
PZ
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385}
386
8a311c74 387static void sched_core_assert_empty(void)
9edeaea1 388{
8a311c74 389 int cpu;
9edeaea1 390
8a311c74
PZ
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393}
394
395static void __sched_core_enable(void)
396{
9edeaea1
PZ
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(true);
8a311c74 404 sched_core_assert_empty();
9edeaea1
PZ
405}
406
407static void __sched_core_disable(void)
408{
8a311c74 409 sched_core_assert_empty();
9edeaea1
PZ
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
412}
413
414void sched_core_get(void)
415{
875feb41
PZ
416 if (atomic_inc_not_zero(&sched_core_count))
417 return;
418
9edeaea1 419 mutex_lock(&sched_core_mutex);
875feb41 420 if (!atomic_read(&sched_core_count))
9edeaea1 421 __sched_core_enable();
875feb41
PZ
422
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
9edeaea1
PZ
425 mutex_unlock(&sched_core_mutex);
426}
427
875feb41 428static void __sched_core_put(struct work_struct *work)
9edeaea1 429{
875feb41 430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 431 __sched_core_disable();
875feb41
PZ
432 mutex_unlock(&sched_core_mutex);
433 }
434}
435
436void sched_core_put(void)
437{
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
9edeaea1
PZ
449}
450
8a311c74
PZ
451#else /* !CONFIG_SCHED_CORE */
452
453static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
4feee7d1
JD
454static inline void
455sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
8a311c74 456
9edeaea1
PZ
457#endif /* CONFIG_SCHED_CORE */
458
58877d34
PZ
459/*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 475 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
39c42611 499 * - sched_move_task(): p->sched_task_group
58877d34
PZ
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
39d371b7
PZ
551void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552{
d66f1b06
PZ
553 raw_spinlock_t *lock;
554
9edeaea1
PZ
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
d66f1b06
PZ
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
d66f1b06
PZ
561 return;
562 }
563
564 for (;;) {
9ef7e7e3 565 lock = __rq_lockp(rq);
d66f1b06 566 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 567 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
d66f1b06 570 return;
9edeaea1 571 }
d66f1b06
PZ
572 raw_spin_unlock(lock);
573 }
39d371b7
PZ
574}
575
576bool raw_spin_rq_trylock(struct rq *rq)
577{
d66f1b06
PZ
578 raw_spinlock_t *lock;
579 bool ret;
580
9edeaea1
PZ
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
d66f1b06
PZ
588
589 for (;;) {
9ef7e7e3 590 lock = __rq_lockp(rq);
d66f1b06 591 ret = raw_spin_trylock(lock);
9ef7e7e3 592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 593 preempt_enable();
d66f1b06 594 return ret;
9edeaea1 595 }
d66f1b06
PZ
596 raw_spin_unlock(lock);
597 }
39d371b7
PZ
598}
599
600void raw_spin_rq_unlock(struct rq *rq)
601{
602 raw_spin_unlock(rq_lockp(rq));
603}
604
d66f1b06
PZ
605#ifdef CONFIG_SMP
606/*
607 * double_rq_lock - safely lock two runqueues
608 */
609void double_rq_lock(struct rq *rq1, struct rq *rq2)
610{
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq2, rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq1);
2679a837
HJ
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
d66f1b06 619
2679a837 620 double_rq_clock_clear_update(rq1, rq2);
d66f1b06
PZ
621}
622#endif
623
3e71a462
PZ
624/*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
eb580751 627struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
628 __acquires(rq->lock)
629{
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
5cb9eaa3 636 raw_spin_rq_lock(rq);
3e71a462 637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 638 rq_pin_lock(rq, rf);
3e71a462
PZ
639 return rq;
640 }
5cb9eaa3 641 raw_spin_rq_unlock(rq);
3e71a462
PZ
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646}
647
648/*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
eb580751 651struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654{
655 struct rq *rq;
656
657 for (;;) {
eb580751 658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 659 rq = task_rq(p);
5cb9eaa3 660 raw_spin_rq_lock(rq);
3e71a462
PZ
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
c546951d 671 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
672 * the old rq->lock will fully serialize against the stores.
673 *
c546951d
AP
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 679 rq_pin_lock(rq, rf);
3e71a462
PZ
680 return rq;
681 }
5cb9eaa3 682 raw_spin_rq_unlock(rq);
eb580751 683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688}
689
535b9552
IM
690/*
691 * RQ-clock updating methods:
692 */
693
694static void update_rq_clock_task(struct rq *rq, s64 delta)
695{
696/*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
11d4afd4
VG
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
535b9552
IM
702#ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
52b1364b 725 psi_account_irqtime(rq->curr, irq_delta);
a3b2aeac 726 delayacct_irq(rq->curr, irq_delta);
535b9552
IM
727#endif
728#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 if (static_key_false((&paravirt_steal_rq_enabled))) {
730 steal = paravirt_steal_clock(cpu_of(rq));
731 steal -= rq->prev_steal_time_rq;
732
733 if (unlikely(steal > delta))
734 steal = delta;
735
736 rq->prev_steal_time_rq += steal;
737 delta -= steal;
738 }
739#endif
740
741 rq->clock_task += delta;
742
11d4afd4 743#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 745 update_irq_load_avg(rq, irq_delta + steal);
535b9552 746#endif
23127296 747 update_rq_clock_pelt(rq, delta);
535b9552
IM
748}
749
750void update_rq_clock(struct rq *rq)
751{
752 s64 delta;
753
5cb9eaa3 754 lockdep_assert_rq_held(rq);
535b9552
IM
755
756 if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 return;
758
759#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
760 if (sched_feat(WARN_DOUBLE_CLOCK))
761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
762 rq->clock_update_flags |= RQCF_UPDATED;
763#endif
26ae58d2 764
535b9552
IM
765 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 if (delta < 0)
767 return;
768 rq->clock += delta;
769 update_rq_clock_task(rq, delta);
770}
771
8f4d37ec
PZ
772#ifdef CONFIG_SCHED_HRTICK
773/*
774 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 775 */
8f4d37ec 776
8f4d37ec
PZ
777static void hrtick_clear(struct rq *rq)
778{
779 if (hrtimer_active(&rq->hrtick_timer))
780 hrtimer_cancel(&rq->hrtick_timer);
781}
782
8f4d37ec
PZ
783/*
784 * High-resolution timer tick.
785 * Runs from hardirq context with interrupts disabled.
786 */
787static enum hrtimer_restart hrtick(struct hrtimer *timer)
788{
789 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 790 struct rq_flags rf;
8f4d37ec
PZ
791
792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793
8a8c69c3 794 rq_lock(rq, &rf);
3e51f33f 795 update_rq_clock(rq);
8f4d37ec 796 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 797 rq_unlock(rq, &rf);
8f4d37ec
PZ
798
799 return HRTIMER_NORESTART;
800}
801
95e904c7 802#ifdef CONFIG_SMP
971ee28c 803
4961b6e1 804static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
805{
806 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 807 ktime_t time = rq->hrtick_time;
971ee28c 808
156ec6f4 809 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
810}
811
31656519
PZ
812/*
813 * called from hardirq (IPI) context
814 */
815static void __hrtick_start(void *arg)
b328ca18 816{
31656519 817 struct rq *rq = arg;
8a8c69c3 818 struct rq_flags rf;
b328ca18 819
8a8c69c3 820 rq_lock(rq, &rf);
971ee28c 821 __hrtick_restart(rq);
8a8c69c3 822 rq_unlock(rq, &rf);
b328ca18
PZ
823}
824
31656519
PZ
825/*
826 * Called to set the hrtick timer state.
827 *
828 * called with rq->lock held and irqs disabled
829 */
029632fb 830void hrtick_start(struct rq *rq, u64 delay)
b328ca18 831{
31656519 832 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 833 s64 delta;
834
835 /*
836 * Don't schedule slices shorter than 10000ns, that just
837 * doesn't make sense and can cause timer DoS.
838 */
839 delta = max_t(s64, delay, 10000LL);
156ec6f4 840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 841
fd3eafda 842 if (rq == this_rq())
971ee28c 843 __hrtick_restart(rq);
fd3eafda 844 else
c46fff2a 845 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
846}
847
31656519
PZ
848#else
849/*
850 * Called to set the hrtick timer state.
851 *
852 * called with rq->lock held and irqs disabled
853 */
029632fb 854void hrtick_start(struct rq *rq, u64 delay)
31656519 855{
86893335
WL
856 /*
857 * Don't schedule slices shorter than 10000ns, that just
858 * doesn't make sense. Rely on vruntime for fairness.
859 */
860 delay = max_t(u64, delay, 10000LL);
4961b6e1 861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 862 HRTIMER_MODE_REL_PINNED_HARD);
31656519 863}
90b5363a 864
31656519 865#endif /* CONFIG_SMP */
8f4d37ec 866
77a021be 867static void hrtick_rq_init(struct rq *rq)
8f4d37ec 868{
31656519 869#ifdef CONFIG_SMP
545b8c8d 870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 871#endif
d5096aa6 872 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 873 rq->hrtick_timer.function = hrtick;
8f4d37ec 874}
006c75f1 875#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
876static inline void hrtick_clear(struct rq *rq)
877{
878}
879
77a021be 880static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
881{
882}
006c75f1 883#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 884
5529578a
FW
885/*
886 * cmpxchg based fetch_or, macro so it works for different integer types
887 */
888#define fetch_or(ptr, mask) \
889 ({ \
890 typeof(ptr) _ptr = (ptr); \
891 typeof(mask) _mask = (mask); \
c02d5546 892 typeof(*_ptr) _val = *_ptr; \
5529578a 893 \
c02d5546
UB
894 do { \
895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
896 _val; \
5529578a
FW
897})
898
e3baac47 899#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
900/*
901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902 * this avoids any races wrt polling state changes and thereby avoids
903 * spurious IPIs.
904 */
c02d5546 905static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
906{
907 struct thread_info *ti = task_thread_info(p);
908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909}
e3baac47
PZ
910
911/*
912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913 *
914 * If this returns true, then the idle task promises to call
915 * sched_ttwu_pending() and reschedule soon.
916 */
917static bool set_nr_if_polling(struct task_struct *p)
918{
919 struct thread_info *ti = task_thread_info(p);
c02d5546 920 typeof(ti->flags) val = READ_ONCE(ti->flags);
e3baac47
PZ
921
922 for (;;) {
923 if (!(val & _TIF_POLLING_NRFLAG))
924 return false;
925 if (val & _TIF_NEED_RESCHED)
926 return true;
c02d5546 927 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
e3baac47 928 break;
e3baac47
PZ
929 }
930 return true;
931}
932
fd99f91a 933#else
c02d5546 934static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
935{
936 set_tsk_need_resched(p);
937 return true;
938}
e3baac47
PZ
939
940#ifdef CONFIG_SMP
c02d5546 941static inline bool set_nr_if_polling(struct task_struct *p)
e3baac47
PZ
942{
943 return false;
944}
945#endif
fd99f91a
PZ
946#endif
947
07879c6a 948static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
949{
950 struct wake_q_node *node = &task->wake_q;
951
952 /*
953 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 954 * it's already queued (either by us or someone else) and will get the
76751049
PZ
955 * wakeup due to that.
956 *
4c4e3731
PZ
957 * In order to ensure that a pending wakeup will observe our pending
958 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 959 */
4c4e3731 960 smp_mb__before_atomic();
87ff19cb 961 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 962 return false;
76751049
PZ
963
964 /*
965 * The head is context local, there can be no concurrency.
966 */
967 *head->lastp = node;
968 head->lastp = &node->next;
07879c6a
DB
969 return true;
970}
971
972/**
973 * wake_q_add() - queue a wakeup for 'later' waking.
974 * @head: the wake_q_head to add @task to
975 * @task: the task to queue for 'later' wakeup
976 *
977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979 * instantly.
980 *
981 * This function must be used as-if it were wake_up_process(); IOW the task
982 * must be ready to be woken at this location.
983 */
984void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985{
986 if (__wake_q_add(head, task))
987 get_task_struct(task);
988}
989
990/**
991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992 * @head: the wake_q_head to add @task to
993 * @task: the task to queue for 'later' wakeup
994 *
995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997 * instantly.
998 *
999 * This function must be used as-if it were wake_up_process(); IOW the task
1000 * must be ready to be woken at this location.
1001 *
1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003 * that already hold reference to @task can call the 'safe' version and trust
1004 * wake_q to do the right thing depending whether or not the @task is already
1005 * queued for wakeup.
1006 */
1007void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008{
1009 if (!__wake_q_add(head, task))
1010 put_task_struct(task);
76751049
PZ
1011}
1012
1013void wake_up_q(struct wake_q_head *head)
1014{
1015 struct wake_q_node *node = head->first;
1016
1017 while (node != WAKE_Q_TAIL) {
1018 struct task_struct *task;
1019
1020 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 1021 /* Task can safely be re-inserted now: */
76751049
PZ
1022 node = node->next;
1023 task->wake_q.next = NULL;
1024
1025 /*
7696f991
AP
1026 * wake_up_process() executes a full barrier, which pairs with
1027 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
1028 */
1029 wake_up_process(task);
1030 put_task_struct(task);
1031 }
1032}
1033
c24d20db 1034/*
8875125e 1035 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
1036 *
1037 * On UP this means the setting of the need_resched flag, on SMP it
1038 * might also involve a cross-CPU call to trigger the scheduler on
1039 * the target CPU.
1040 */
8875125e 1041void resched_curr(struct rq *rq)
c24d20db 1042{
8875125e 1043 struct task_struct *curr = rq->curr;
c24d20db
IM
1044 int cpu;
1045
5cb9eaa3 1046 lockdep_assert_rq_held(rq);
c24d20db 1047
8875125e 1048 if (test_tsk_need_resched(curr))
c24d20db
IM
1049 return;
1050
8875125e 1051 cpu = cpu_of(rq);
fd99f91a 1052
f27dde8d 1053 if (cpu == smp_processor_id()) {
8875125e 1054 set_tsk_need_resched(curr);
f27dde8d 1055 set_preempt_need_resched();
c24d20db 1056 return;
f27dde8d 1057 }
c24d20db 1058
8875125e 1059 if (set_nr_and_not_polling(curr))
c24d20db 1060 smp_send_reschedule(cpu);
dfc68f29
AL
1061 else
1062 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
1063}
1064
029632fb 1065void resched_cpu(int cpu)
c24d20db
IM
1066{
1067 struct rq *rq = cpu_rq(cpu);
1068 unsigned long flags;
1069
5cb9eaa3 1070 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
1071 if (cpu_online(cpu) || cpu == smp_processor_id())
1072 resched_curr(rq);
5cb9eaa3 1073 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 1074}
06d8308c 1075
b021fe3e 1076#ifdef CONFIG_SMP
3451d024 1077#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 1078/*
d1ccc66d
IM
1079 * In the semi idle case, use the nearest busy CPU for migrating timers
1080 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
1081 *
1082 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
1083 * selecting an idle CPU will add more delays to the timers than intended
1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 1085 */
bc7a34b8 1086int get_nohz_timer_target(void)
83cd4fe2 1087{
e938b9c9 1088 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 1089 struct sched_domain *sd;
031e3bd8 1090 const struct cpumask *hk_mask;
83cd4fe2 1091
04d4e665 1092 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
e938b9c9
WL
1093 if (!idle_cpu(cpu))
1094 return cpu;
1095 default_cpu = cpu;
1096 }
6201b4d6 1097
04d4e665 1098 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
031e3bd8 1099
057f3fad 1100 rcu_read_lock();
83cd4fe2 1101 for_each_domain(cpu, sd) {
031e3bd8 1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1103 if (cpu == i)
1104 continue;
1105
e938b9c9 1106 if (!idle_cpu(i)) {
057f3fad
PZ
1107 cpu = i;
1108 goto unlock;
1109 }
1110 }
83cd4fe2 1111 }
9642d18e 1112
e938b9c9 1113 if (default_cpu == -1)
04d4e665 1114 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
e938b9c9 1115 cpu = default_cpu;
057f3fad
PZ
1116unlock:
1117 rcu_read_unlock();
83cd4fe2
VP
1118 return cpu;
1119}
d1ccc66d 1120
06d8308c
TG
1121/*
1122 * When add_timer_on() enqueues a timer into the timer wheel of an
1123 * idle CPU then this timer might expire before the next timer event
1124 * which is scheduled to wake up that CPU. In case of a completely
1125 * idle system the next event might even be infinite time into the
1126 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1127 * leaves the inner idle loop so the newly added timer is taken into
1128 * account when the CPU goes back to idle and evaluates the timer
1129 * wheel for the next timer event.
1130 */
1c20091e 1131static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1132{
1133 struct rq *rq = cpu_rq(cpu);
1134
1135 if (cpu == smp_processor_id())
1136 return;
1137
67b9ca70 1138 if (set_nr_and_not_polling(rq->idle))
06d8308c 1139 smp_send_reschedule(cpu);
dfc68f29
AL
1140 else
1141 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1142}
1143
c5bfece2 1144static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1145{
53c5fa16
FW
1146 /*
1147 * We just need the target to call irq_exit() and re-evaluate
1148 * the next tick. The nohz full kick at least implies that.
1149 * If needed we can still optimize that later with an
1150 * empty IRQ.
1151 */
379d9ecb
PM
1152 if (cpu_is_offline(cpu))
1153 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1154 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1155 if (cpu != smp_processor_id() ||
1156 tick_nohz_tick_stopped())
53c5fa16 1157 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1158 return true;
1159 }
1160
1161 return false;
1162}
1163
379d9ecb
PM
1164/*
1165 * Wake up the specified CPU. If the CPU is going offline, it is the
1166 * caller's responsibility to deal with the lost wakeup, for example,
1167 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1168 */
1c20091e
FW
1169void wake_up_nohz_cpu(int cpu)
1170{
c5bfece2 1171 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1172 wake_up_idle_cpu(cpu);
1173}
1174
19a1f5ec 1175static void nohz_csd_func(void *info)
45bf76df 1176{
19a1f5ec
PZ
1177 struct rq *rq = info;
1178 int cpu = cpu_of(rq);
1179 unsigned int flags;
873b4c65
VG
1180
1181 /*
19a1f5ec 1182 * Release the rq::nohz_csd.
873b4c65 1183 */
c6f88654 1184 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1185 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1186
19a1f5ec
PZ
1187 rq->idle_balance = idle_cpu(cpu);
1188 if (rq->idle_balance && !need_resched()) {
1189 rq->nohz_idle_balance = flags;
90b5363a
PZI
1190 raise_softirq_irqoff(SCHED_SOFTIRQ);
1191 }
2069dd75
PZ
1192}
1193
3451d024 1194#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1195
ce831b38 1196#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1197bool sched_can_stop_tick(struct rq *rq)
ce831b38 1198{
76d92ac3
FW
1199 int fifo_nr_running;
1200
1201 /* Deadline tasks, even if single, need the tick */
1202 if (rq->dl.dl_nr_running)
1203 return false;
1204
1e78cdbd 1205 /*
b19a888c 1206 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1207 * actual RR behaviour.
1e78cdbd 1208 */
76d92ac3
FW
1209 if (rq->rt.rr_nr_running) {
1210 if (rq->rt.rr_nr_running == 1)
1211 return true;
1212 else
1213 return false;
1e78cdbd
RR
1214 }
1215
2548d546
PZ
1216 /*
1217 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1218 * forced preemption between FIFO tasks.
1219 */
1220 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1221 if (fifo_nr_running)
1222 return true;
1223
1224 /*
1225 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1226 * if there's more than one we need the tick for involuntary
1227 * preemption.
1228 */
1229 if (rq->nr_running > 1)
541b8264 1230 return false;
ce831b38 1231
541b8264 1232 return true;
ce831b38
FW
1233}
1234#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1235#endif /* CONFIG_SMP */
18d95a28 1236
a790de99
PT
1237#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1238 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1239/*
8277434e
PT
1240 * Iterate task_group tree rooted at *from, calling @down when first entering a
1241 * node and @up when leaving it for the final time.
1242 *
1243 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1244 */
029632fb 1245int walk_tg_tree_from(struct task_group *from,
8277434e 1246 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1247{
1248 struct task_group *parent, *child;
eb755805 1249 int ret;
c09595f6 1250
8277434e
PT
1251 parent = from;
1252
c09595f6 1253down:
eb755805
PZ
1254 ret = (*down)(parent, data);
1255 if (ret)
8277434e 1256 goto out;
c09595f6
PZ
1257 list_for_each_entry_rcu(child, &parent->children, siblings) {
1258 parent = child;
1259 goto down;
1260
1261up:
1262 continue;
1263 }
eb755805 1264 ret = (*up)(parent, data);
8277434e
PT
1265 if (ret || parent == from)
1266 goto out;
c09595f6
PZ
1267
1268 child = parent;
1269 parent = parent->parent;
1270 if (parent)
1271 goto up;
8277434e 1272out:
eb755805 1273 return ret;
c09595f6
PZ
1274}
1275
029632fb 1276int tg_nop(struct task_group *tg, void *data)
eb755805 1277{
e2b245f8 1278 return 0;
eb755805 1279}
18d95a28
PZ
1280#endif
1281
b1e82065 1282static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1283{
f05998d4
NR
1284 int prio = p->static_prio - MAX_RT_PRIO;
1285 struct load_weight *load = &p->se.load;
1286
dd41f596
IM
1287 /*
1288 * SCHED_IDLE tasks get minimal weight:
1289 */
1da1843f 1290 if (task_has_idle_policy(p)) {
c8b28116 1291 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1292 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1293 return;
1294 }
71f8bd46 1295
9059393e
VG
1296 /*
1297 * SCHED_OTHER tasks have to update their load when changing their
1298 * weight
1299 */
1300 if (update_load && p->sched_class == &fair_sched_class) {
1301 reweight_task(p, prio);
1302 } else {
1303 load->weight = scale_load(sched_prio_to_weight[prio]);
1304 load->inv_weight = sched_prio_to_wmult[prio];
1305 }
71f8bd46
IM
1306}
1307
69842cba 1308#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1309/*
1310 * Serializes updates of utilization clamp values
1311 *
1312 * The (slow-path) user-space triggers utilization clamp value updates which
1313 * can require updates on (fast-path) scheduler's data structures used to
1314 * support enqueue/dequeue operations.
1315 * While the per-CPU rq lock protects fast-path update operations, user-space
1316 * requests are serialized using a mutex to reduce the risk of conflicting
1317 * updates or API abuses.
1318 */
1319static DEFINE_MUTEX(uclamp_mutex);
1320
e8f14172 1321/* Max allowed minimum utilization */
494dcdf4 1322static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
e8f14172
PB
1323
1324/* Max allowed maximum utilization */
494dcdf4 1325static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
e8f14172 1326
13685c4a
QY
1327/*
1328 * By default RT tasks run at the maximum performance point/capacity of the
1329 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1330 * SCHED_CAPACITY_SCALE.
1331 *
1332 * This knob allows admins to change the default behavior when uclamp is being
1333 * used. In battery powered devices, particularly, running at the maximum
1334 * capacity and frequency will increase energy consumption and shorten the
1335 * battery life.
1336 *
1337 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1338 *
1339 * This knob will not override the system default sched_util_clamp_min defined
1340 * above.
1341 */
3267e015 1342static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
13685c4a 1343
e8f14172
PB
1344/* All clamps are required to be less or equal than these values */
1345static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1346
46609ce2
QY
1347/*
1348 * This static key is used to reduce the uclamp overhead in the fast path. It
1349 * primarily disables the call to uclamp_rq_{inc, dec}() in
1350 * enqueue/dequeue_task().
1351 *
1352 * This allows users to continue to enable uclamp in their kernel config with
1353 * minimum uclamp overhead in the fast path.
1354 *
1355 * As soon as userspace modifies any of the uclamp knobs, the static key is
1356 * enabled, since we have an actual users that make use of uclamp
1357 * functionality.
1358 *
1359 * The knobs that would enable this static key are:
1360 *
1361 * * A task modifying its uclamp value with sched_setattr().
1362 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1363 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1364 */
1365DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1366
69842cba
PB
1367/* Integer rounded range for each bucket */
1368#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1369
1370#define for_each_clamp_id(clamp_id) \
1371 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1372
1373static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1374{
6d2f8909 1375 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1376}
1377
7763baac 1378static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1379{
1380 if (clamp_id == UCLAMP_MIN)
1381 return 0;
1382 return SCHED_CAPACITY_SCALE;
1383}
1384
a509a7cd
PB
1385static inline void uclamp_se_set(struct uclamp_se *uc_se,
1386 unsigned int value, bool user_defined)
69842cba
PB
1387{
1388 uc_se->value = value;
1389 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1390 uc_se->user_defined = user_defined;
69842cba
PB
1391}
1392
e496187d 1393static inline unsigned int
0413d7f3 1394uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1395 unsigned int clamp_value)
1396{
1397 /*
1398 * Avoid blocked utilization pushing up the frequency when we go
1399 * idle (which drops the max-clamp) by retaining the last known
1400 * max-clamp.
1401 */
1402 if (clamp_id == UCLAMP_MAX) {
1403 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1404 return clamp_value;
1405 }
1406
1407 return uclamp_none(UCLAMP_MIN);
1408}
1409
0413d7f3 1410static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1411 unsigned int clamp_value)
1412{
1413 /* Reset max-clamp retention only on idle exit */
1414 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1415 return;
1416
24422603 1417 uclamp_rq_set(rq, clamp_id, clamp_value);
e496187d
PB
1418}
1419
69842cba 1420static inline
7763baac 1421unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1422 unsigned int clamp_value)
69842cba
PB
1423{
1424 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1425 int bucket_id = UCLAMP_BUCKETS - 1;
1426
1427 /*
1428 * Since both min and max clamps are max aggregated, find the
1429 * top most bucket with tasks in.
1430 */
1431 for ( ; bucket_id >= 0; bucket_id--) {
1432 if (!bucket[bucket_id].tasks)
1433 continue;
1434 return bucket[bucket_id].value;
1435 }
1436
1437 /* No tasks -- default clamp values */
e496187d 1438 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1439}
1440
13685c4a
QY
1441static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1442{
1443 unsigned int default_util_min;
1444 struct uclamp_se *uc_se;
1445
1446 lockdep_assert_held(&p->pi_lock);
1447
1448 uc_se = &p->uclamp_req[UCLAMP_MIN];
1449
1450 /* Only sync if user didn't override the default */
1451 if (uc_se->user_defined)
1452 return;
1453
1454 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1455 uclamp_se_set(uc_se, default_util_min, false);
1456}
1457
1458static void uclamp_update_util_min_rt_default(struct task_struct *p)
1459{
1460 struct rq_flags rf;
1461 struct rq *rq;
1462
1463 if (!rt_task(p))
1464 return;
1465
1466 /* Protect updates to p->uclamp_* */
1467 rq = task_rq_lock(p, &rf);
1468 __uclamp_update_util_min_rt_default(p);
1469 task_rq_unlock(rq, p, &rf);
1470}
1471
3eac870a 1472static inline struct uclamp_se
0413d7f3 1473uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1474{
0213b708 1475 /* Copy by value as we could modify it */
3eac870a
PB
1476 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1477#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1478 unsigned int tg_min, tg_max, value;
3eac870a
PB
1479
1480 /*
1481 * Tasks in autogroups or root task group will be
1482 * restricted by system defaults.
1483 */
1484 if (task_group_is_autogroup(task_group(p)))
1485 return uc_req;
1486 if (task_group(p) == &root_task_group)
1487 return uc_req;
1488
0213b708
QY
1489 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1490 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1491 value = uc_req.value;
1492 value = clamp(value, tg_min, tg_max);
1493 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1494#endif
1495
1496 return uc_req;
1497}
1498
e8f14172
PB
1499/*
1500 * The effective clamp bucket index of a task depends on, by increasing
1501 * priority:
1502 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1503 * - the task group effective clamp value, for tasks not either in the root
1504 * group or in an autogroup
e8f14172
PB
1505 * - the system default clamp value, defined by the sysadmin
1506 */
1507static inline struct uclamp_se
0413d7f3 1508uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1509{
3eac870a 1510 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1511 struct uclamp_se uc_max = uclamp_default[clamp_id];
1512
1513 /* System default restrictions always apply */
1514 if (unlikely(uc_req.value > uc_max.value))
1515 return uc_max;
1516
1517 return uc_req;
1518}
1519
686516b5 1520unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1521{
1522 struct uclamp_se uc_eff;
1523
1524 /* Task currently refcounted: use back-annotated (effective) value */
1525 if (p->uclamp[clamp_id].active)
686516b5 1526 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1527
1528 uc_eff = uclamp_eff_get(p, clamp_id);
1529
686516b5 1530 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1531}
1532
69842cba
PB
1533/*
1534 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1535 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1536 * updates the rq's clamp value if required.
60daf9c1
PB
1537 *
1538 * Tasks can have a task-specific value requested from user-space, track
1539 * within each bucket the maximum value for tasks refcounted in it.
1540 * This "local max aggregation" allows to track the exact "requested" value
1541 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1542 */
1543static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1544 enum uclamp_id clamp_id)
69842cba
PB
1545{
1546 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1547 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1548 struct uclamp_bucket *bucket;
1549
5cb9eaa3 1550 lockdep_assert_rq_held(rq);
69842cba 1551
e8f14172
PB
1552 /* Update task effective clamp */
1553 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1554
69842cba
PB
1555 bucket = &uc_rq->bucket[uc_se->bucket_id];
1556 bucket->tasks++;
e8f14172 1557 uc_se->active = true;
69842cba 1558
e496187d
PB
1559 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1560
60daf9c1
PB
1561 /*
1562 * Local max aggregation: rq buckets always track the max
1563 * "requested" clamp value of its RUNNABLE tasks.
1564 */
1565 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1566 bucket->value = uc_se->value;
1567
24422603
QY
1568 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1569 uclamp_rq_set(rq, clamp_id, uc_se->value);
69842cba
PB
1570}
1571
1572/*
1573 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1574 * is released. If this is the last task reference counting the rq's max
1575 * active clamp value, then the rq's clamp value is updated.
1576 *
1577 * Both refcounted tasks and rq's cached clamp values are expected to be
1578 * always valid. If it's detected they are not, as defensive programming,
1579 * enforce the expected state and warn.
1580 */
1581static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1582 enum uclamp_id clamp_id)
69842cba
PB
1583{
1584 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1585 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1586 struct uclamp_bucket *bucket;
e496187d 1587 unsigned int bkt_clamp;
69842cba
PB
1588 unsigned int rq_clamp;
1589
5cb9eaa3 1590 lockdep_assert_rq_held(rq);
69842cba 1591
46609ce2
QY
1592 /*
1593 * If sched_uclamp_used was enabled after task @p was enqueued,
1594 * we could end up with unbalanced call to uclamp_rq_dec_id().
1595 *
1596 * In this case the uc_se->active flag should be false since no uclamp
1597 * accounting was performed at enqueue time and we can just return
1598 * here.
1599 *
b19a888c 1600 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1601 * problem too
1602 *
1603 * enqueue(taskA)
1604 * // sched_uclamp_used gets enabled
1605 * enqueue(taskB)
1606 * dequeue(taskA)
b19a888c 1607 * // Must not decrement bucket->tasks here
46609ce2
QY
1608 * dequeue(taskB)
1609 *
1610 * where we could end up with stale data in uc_se and
1611 * bucket[uc_se->bucket_id].
1612 *
1613 * The following check here eliminates the possibility of such race.
1614 */
1615 if (unlikely(!uc_se->active))
1616 return;
1617
69842cba 1618 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1619
69842cba
PB
1620 SCHED_WARN_ON(!bucket->tasks);
1621 if (likely(bucket->tasks))
1622 bucket->tasks--;
46609ce2 1623
e8f14172 1624 uc_se->active = false;
69842cba 1625
60daf9c1
PB
1626 /*
1627 * Keep "local max aggregation" simple and accept to (possibly)
1628 * overboost some RUNNABLE tasks in the same bucket.
1629 * The rq clamp bucket value is reset to its base value whenever
1630 * there are no more RUNNABLE tasks refcounting it.
1631 */
69842cba
PB
1632 if (likely(bucket->tasks))
1633 return;
1634
24422603 1635 rq_clamp = uclamp_rq_get(rq, clamp_id);
69842cba
PB
1636 /*
1637 * Defensive programming: this should never happen. If it happens,
1638 * e.g. due to future modification, warn and fixup the expected value.
1639 */
1640 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1641 if (bucket->value >= rq_clamp) {
1642 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
24422603 1643 uclamp_rq_set(rq, clamp_id, bkt_clamp);
e496187d 1644 }
69842cba
PB
1645}
1646
1647static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1648{
0413d7f3 1649 enum uclamp_id clamp_id;
69842cba 1650
46609ce2
QY
1651 /*
1652 * Avoid any overhead until uclamp is actually used by the userspace.
1653 *
1654 * The condition is constructed such that a NOP is generated when
1655 * sched_uclamp_used is disabled.
1656 */
1657 if (!static_branch_unlikely(&sched_uclamp_used))
1658 return;
1659
69842cba
PB
1660 if (unlikely(!p->sched_class->uclamp_enabled))
1661 return;
1662
1663 for_each_clamp_id(clamp_id)
1664 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1665
1666 /* Reset clamp idle holding when there is one RUNNABLE task */
1667 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1668 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1669}
1670
1671static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1672{
0413d7f3 1673 enum uclamp_id clamp_id;
69842cba 1674
46609ce2
QY
1675 /*
1676 * Avoid any overhead until uclamp is actually used by the userspace.
1677 *
1678 * The condition is constructed such that a NOP is generated when
1679 * sched_uclamp_used is disabled.
1680 */
1681 if (!static_branch_unlikely(&sched_uclamp_used))
1682 return;
1683
69842cba
PB
1684 if (unlikely(!p->sched_class->uclamp_enabled))
1685 return;
1686
1687 for_each_clamp_id(clamp_id)
1688 uclamp_rq_dec_id(rq, p, clamp_id);
1689}
1690
ca4984a7
QP
1691static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1692 enum uclamp_id clamp_id)
1693{
1694 if (!p->uclamp[clamp_id].active)
1695 return;
1696
1697 uclamp_rq_dec_id(rq, p, clamp_id);
1698 uclamp_rq_inc_id(rq, p, clamp_id);
1699
1700 /*
1701 * Make sure to clear the idle flag if we've transiently reached 0
1702 * active tasks on rq.
1703 */
1704 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1705 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1706}
1707
babbe170 1708static inline void
0213b708 1709uclamp_update_active(struct task_struct *p)
babbe170 1710{
0213b708 1711 enum uclamp_id clamp_id;
babbe170
PB
1712 struct rq_flags rf;
1713 struct rq *rq;
1714
1715 /*
1716 * Lock the task and the rq where the task is (or was) queued.
1717 *
1718 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1719 * price to pay to safely serialize util_{min,max} updates with
1720 * enqueues, dequeues and migration operations.
1721 * This is the same locking schema used by __set_cpus_allowed_ptr().
1722 */
1723 rq = task_rq_lock(p, &rf);
1724
1725 /*
1726 * Setting the clamp bucket is serialized by task_rq_lock().
1727 * If the task is not yet RUNNABLE and its task_struct is not
1728 * affecting a valid clamp bucket, the next time it's enqueued,
1729 * it will already see the updated clamp bucket value.
1730 */
ca4984a7
QP
1731 for_each_clamp_id(clamp_id)
1732 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1733
1734 task_rq_unlock(rq, p, &rf);
1735}
1736
e3b8b6a0 1737#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1738static inline void
0213b708 1739uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1740{
1741 struct css_task_iter it;
1742 struct task_struct *p;
babbe170
PB
1743
1744 css_task_iter_start(css, 0, &it);
0213b708
QY
1745 while ((p = css_task_iter_next(&it)))
1746 uclamp_update_active(p);
babbe170
PB
1747 css_task_iter_end(&it);
1748}
1749
7274a5c1 1750static void cpu_util_update_eff(struct cgroup_subsys_state *css);
494dcdf4
Y
1751#endif
1752
1753#ifdef CONFIG_SYSCTL
1754#ifdef CONFIG_UCLAMP_TASK
1755#ifdef CONFIG_UCLAMP_TASK_GROUP
7274a5c1
PB
1756static void uclamp_update_root_tg(void)
1757{
1758 struct task_group *tg = &root_task_group;
1759
1760 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1761 sysctl_sched_uclamp_util_min, false);
1762 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1763 sysctl_sched_uclamp_util_max, false);
1764
1765 rcu_read_lock();
1766 cpu_util_update_eff(&root_task_group.css);
1767 rcu_read_unlock();
1768}
1769#else
1770static void uclamp_update_root_tg(void) { }
1771#endif
1772
494dcdf4
Y
1773static void uclamp_sync_util_min_rt_default(void)
1774{
1775 struct task_struct *g, *p;
1776
1777 /*
1778 * copy_process() sysctl_uclamp
1779 * uclamp_min_rt = X;
1780 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1781 * // link thread smp_mb__after_spinlock()
1782 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1783 * sched_post_fork() for_each_process_thread()
1784 * __uclamp_sync_rt() __uclamp_sync_rt()
1785 *
1786 * Ensures that either sched_post_fork() will observe the new
1787 * uclamp_min_rt or for_each_process_thread() will observe the new
1788 * task.
1789 */
1790 read_lock(&tasklist_lock);
1791 smp_mb__after_spinlock();
1792 read_unlock(&tasklist_lock);
1793
1794 rcu_read_lock();
1795 for_each_process_thread(g, p)
1796 uclamp_update_util_min_rt_default(p);
1797 rcu_read_unlock();
1798}
1799
3267e015 1800static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1801 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1802{
7274a5c1 1803 bool update_root_tg = false;
13685c4a 1804 int old_min, old_max, old_min_rt;
e8f14172
PB
1805 int result;
1806
2480c093 1807 mutex_lock(&uclamp_mutex);
e8f14172
PB
1808 old_min = sysctl_sched_uclamp_util_min;
1809 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1810 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1811
1812 result = proc_dointvec(table, write, buffer, lenp, ppos);
1813 if (result)
1814 goto undo;
1815 if (!write)
1816 goto done;
1817
1818 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1819 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1820 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1821
e8f14172
PB
1822 result = -EINVAL;
1823 goto undo;
1824 }
1825
1826 if (old_min != sysctl_sched_uclamp_util_min) {
1827 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1828 sysctl_sched_uclamp_util_min, false);
7274a5c1 1829 update_root_tg = true;
e8f14172
PB
1830 }
1831 if (old_max != sysctl_sched_uclamp_util_max) {
1832 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1833 sysctl_sched_uclamp_util_max, false);
7274a5c1 1834 update_root_tg = true;
e8f14172
PB
1835 }
1836
46609ce2
QY
1837 if (update_root_tg) {
1838 static_branch_enable(&sched_uclamp_used);
7274a5c1 1839 uclamp_update_root_tg();
46609ce2 1840 }
7274a5c1 1841
13685c4a
QY
1842 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1843 static_branch_enable(&sched_uclamp_used);
1844 uclamp_sync_util_min_rt_default();
1845 }
7274a5c1 1846
e8f14172 1847 /*
7274a5c1
PB
1848 * We update all RUNNABLE tasks only when task groups are in use.
1849 * Otherwise, keep it simple and do just a lazy update at each next
1850 * task enqueue time.
e8f14172 1851 */
7274a5c1 1852
e8f14172
PB
1853 goto done;
1854
1855undo:
1856 sysctl_sched_uclamp_util_min = old_min;
1857 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1858 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1859done:
2480c093 1860 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1861
1862 return result;
1863}
494dcdf4
Y
1864#endif
1865#endif
e8f14172 1866
a509a7cd
PB
1867static int uclamp_validate(struct task_struct *p,
1868 const struct sched_attr *attr)
1869{
480a6ca2
DE
1870 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1871 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1872
480a6ca2
DE
1873 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1874 util_min = attr->sched_util_min;
a509a7cd 1875
480a6ca2
DE
1876 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1877 return -EINVAL;
1878 }
1879
1880 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1881 util_max = attr->sched_util_max;
1882
1883 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1884 return -EINVAL;
1885 }
1886
1887 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1888 return -EINVAL;
1889
e65855a5
QY
1890 /*
1891 * We have valid uclamp attributes; make sure uclamp is enabled.
1892 *
1893 * We need to do that here, because enabling static branches is a
1894 * blocking operation which obviously cannot be done while holding
1895 * scheduler locks.
1896 */
1897 static_branch_enable(&sched_uclamp_used);
1898
a509a7cd
PB
1899 return 0;
1900}
1901
480a6ca2
DE
1902static bool uclamp_reset(const struct sched_attr *attr,
1903 enum uclamp_id clamp_id,
1904 struct uclamp_se *uc_se)
1905{
1906 /* Reset on sched class change for a non user-defined clamp value. */
1907 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1908 !uc_se->user_defined)
1909 return true;
1910
1911 /* Reset on sched_util_{min,max} == -1. */
1912 if (clamp_id == UCLAMP_MIN &&
1913 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1914 attr->sched_util_min == -1) {
1915 return true;
1916 }
1917
1918 if (clamp_id == UCLAMP_MAX &&
1919 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1920 attr->sched_util_max == -1) {
1921 return true;
1922 }
1923
1924 return false;
1925}
1926
a509a7cd
PB
1927static void __setscheduler_uclamp(struct task_struct *p,
1928 const struct sched_attr *attr)
1929{
0413d7f3 1930 enum uclamp_id clamp_id;
1a00d999 1931
1a00d999
PB
1932 for_each_clamp_id(clamp_id) {
1933 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1934 unsigned int value;
1a00d999 1935
480a6ca2 1936 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1937 continue;
1938
13685c4a
QY
1939 /*
1940 * RT by default have a 100% boost value that could be modified
1941 * at runtime.
1942 */
1a00d999 1943 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1944 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1945 else
480a6ca2
DE
1946 value = uclamp_none(clamp_id);
1947
1948 uclamp_se_set(uc_se, value, false);
1a00d999 1949
1a00d999
PB
1950 }
1951
a509a7cd
PB
1952 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1953 return;
1954
480a6ca2
DE
1955 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1956 attr->sched_util_min != -1) {
a509a7cd
PB
1957 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1958 attr->sched_util_min, true);
1959 }
1960
480a6ca2
DE
1961 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1962 attr->sched_util_max != -1) {
a509a7cd
PB
1963 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1964 attr->sched_util_max, true);
1965 }
1966}
1967
e8f14172
PB
1968static void uclamp_fork(struct task_struct *p)
1969{
0413d7f3 1970 enum uclamp_id clamp_id;
e8f14172 1971
13685c4a
QY
1972 /*
1973 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1974 * as the task is still at its early fork stages.
1975 */
e8f14172
PB
1976 for_each_clamp_id(clamp_id)
1977 p->uclamp[clamp_id].active = false;
a87498ac
PB
1978
1979 if (likely(!p->sched_reset_on_fork))
1980 return;
1981
1982 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1983 uclamp_se_set(&p->uclamp_req[clamp_id],
1984 uclamp_none(clamp_id), false);
a87498ac 1985 }
e8f14172
PB
1986}
1987
13685c4a
QY
1988static void uclamp_post_fork(struct task_struct *p)
1989{
1990 uclamp_update_util_min_rt_default(p);
1991}
1992
d81ae8aa
QY
1993static void __init init_uclamp_rq(struct rq *rq)
1994{
1995 enum uclamp_id clamp_id;
1996 struct uclamp_rq *uc_rq = rq->uclamp;
1997
1998 for_each_clamp_id(clamp_id) {
1999 uc_rq[clamp_id] = (struct uclamp_rq) {
2000 .value = uclamp_none(clamp_id)
2001 };
2002 }
2003
315c4f88 2004 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
d81ae8aa
QY
2005}
2006
69842cba
PB
2007static void __init init_uclamp(void)
2008{
e8f14172 2009 struct uclamp_se uc_max = {};
0413d7f3 2010 enum uclamp_id clamp_id;
69842cba
PB
2011 int cpu;
2012
d81ae8aa
QY
2013 for_each_possible_cpu(cpu)
2014 init_uclamp_rq(cpu_rq(cpu));
69842cba 2015
69842cba 2016 for_each_clamp_id(clamp_id) {
e8f14172 2017 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 2018 uclamp_none(clamp_id), false);
69842cba 2019 }
e8f14172
PB
2020
2021 /* System defaults allow max clamp values for both indexes */
a509a7cd 2022 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 2023 for_each_clamp_id(clamp_id) {
e8f14172 2024 uclamp_default[clamp_id] = uc_max;
2480c093
PB
2025#ifdef CONFIG_UCLAMP_TASK_GROUP
2026 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 2027 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
2028#endif
2029 }
69842cba
PB
2030}
2031
2032#else /* CONFIG_UCLAMP_TASK */
2033static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2034static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
2035static inline int uclamp_validate(struct task_struct *p,
2036 const struct sched_attr *attr)
2037{
2038 return -EOPNOTSUPP;
2039}
2040static void __setscheduler_uclamp(struct task_struct *p,
2041 const struct sched_attr *attr) { }
e8f14172 2042static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 2043static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
2044static inline void init_uclamp(void) { }
2045#endif /* CONFIG_UCLAMP_TASK */
2046
a1dfb631
MT
2047bool sched_task_on_rq(struct task_struct *p)
2048{
2049 return task_on_rq_queued(p);
2050}
2051
42a20f86
KC
2052unsigned long get_wchan(struct task_struct *p)
2053{
2054 unsigned long ip = 0;
2055 unsigned int state;
2056
2057 if (!p || p == current)
2058 return 0;
2059
2060 /* Only get wchan if task is blocked and we can keep it that way. */
2061 raw_spin_lock_irq(&p->pi_lock);
2062 state = READ_ONCE(p->__state);
2063 smp_rmb(); /* see try_to_wake_up() */
2064 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2065 ip = __get_wchan(p);
2066 raw_spin_unlock_irq(&p->pi_lock);
2067
2068 return ip;
2069}
2070
1de64443 2071static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 2072{
0a67d1ee
PZ
2073 if (!(flags & ENQUEUE_NOCLOCK))
2074 update_rq_clock(rq);
2075
eb414681 2076 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 2077 sched_info_enqueue(rq, p);
52b33d87 2078 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
eb414681 2079 }
0a67d1ee 2080
69842cba 2081 uclamp_rq_inc(rq, p);
371fd7e7 2082 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
2083
2084 if (sched_core_enabled(rq))
2085 sched_core_enqueue(rq, p);
71f8bd46
IM
2086}
2087
1de64443 2088static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 2089{
8a311c74 2090 if (sched_core_enabled(rq))
4feee7d1 2091 sched_core_dequeue(rq, p, flags);
8a311c74 2092
0a67d1ee
PZ
2093 if (!(flags & DEQUEUE_NOCLOCK))
2094 update_rq_clock(rq);
2095
eb414681 2096 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 2097 sched_info_dequeue(rq, p);
eb414681
JW
2098 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2099 }
0a67d1ee 2100
69842cba 2101 uclamp_rq_dec(rq, p);
371fd7e7 2102 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
2103}
2104
029632fb 2105void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2106{
a53ce18c
VG
2107 if (task_on_rq_migrating(p))
2108 flags |= ENQUEUE_MIGRATED;
223baf9d
MD
2109 if (flags & ENQUEUE_MIGRATED)
2110 sched_mm_cid_migrate_to(rq, p);
a53ce18c 2111
371fd7e7 2112 enqueue_task(rq, p, flags);
7dd77884
PZ
2113
2114 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
2115}
2116
029632fb 2117void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2118{
7dd77884
PZ
2119 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2120
371fd7e7 2121 dequeue_task(rq, p, flags);
1e3c88bd
PZ
2122}
2123
f558c2b8 2124static inline int __normal_prio(int policy, int rt_prio, int nice)
14531189 2125{
f558c2b8
PZ
2126 int prio;
2127
2128 if (dl_policy(policy))
2129 prio = MAX_DL_PRIO - 1;
2130 else if (rt_policy(policy))
2131 prio = MAX_RT_PRIO - 1 - rt_prio;
2132 else
2133 prio = NICE_TO_PRIO(nice);
2134
2135 return prio;
14531189
IM
2136}
2137
b29739f9
IM
2138/*
2139 * Calculate the expected normal priority: i.e. priority
2140 * without taking RT-inheritance into account. Might be
2141 * boosted by interactivity modifiers. Changes upon fork,
2142 * setprio syscalls, and whenever the interactivity
2143 * estimator recalculates.
2144 */
36c8b586 2145static inline int normal_prio(struct task_struct *p)
b29739f9 2146{
f558c2b8 2147 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
b29739f9
IM
2148}
2149
2150/*
2151 * Calculate the current priority, i.e. the priority
2152 * taken into account by the scheduler. This value might
2153 * be boosted by RT tasks, or might be boosted by
2154 * interactivity modifiers. Will be RT if the task got
2155 * RT-boosted. If not then it returns p->normal_prio.
2156 */
36c8b586 2157static int effective_prio(struct task_struct *p)
b29739f9
IM
2158{
2159 p->normal_prio = normal_prio(p);
2160 /*
2161 * If we are RT tasks or we were boosted to RT priority,
2162 * keep the priority unchanged. Otherwise, update priority
2163 * to the normal priority:
2164 */
2165 if (!rt_prio(p->prio))
2166 return p->normal_prio;
2167 return p->prio;
2168}
2169
1da177e4
LT
2170/**
2171 * task_curr - is this task currently executing on a CPU?
2172 * @p: the task in question.
e69f6186
YB
2173 *
2174 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2175 */
36c8b586 2176inline int task_curr(const struct task_struct *p)
1da177e4
LT
2177{
2178 return cpu_curr(task_cpu(p)) == p;
2179}
2180
67dfa1b7 2181/*
4c9a4bc8
PZ
2182 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2183 * use the balance_callback list if you want balancing.
2184 *
2185 * this means any call to check_class_changed() must be followed by a call to
2186 * balance_callback().
67dfa1b7 2187 */
cb469845
SR
2188static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2189 const struct sched_class *prev_class,
da7a735e 2190 int oldprio)
cb469845
SR
2191{
2192 if (prev_class != p->sched_class) {
2193 if (prev_class->switched_from)
da7a735e 2194 prev_class->switched_from(rq, p);
4c9a4bc8 2195
da7a735e 2196 p->sched_class->switched_to(rq, p);
2d3d891d 2197 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2198 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2199}
2200
029632fb 2201void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2202{
aa93cd53 2203 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2204 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
546a3fee 2205 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
aa93cd53 2206 resched_curr(rq);
1e5a7405
PZ
2207
2208 /*
2209 * A queue event has occurred, and we're going to schedule. In
2210 * this case, we can save a useless back to back clock update.
2211 */
da0c1e65 2212 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2213 rq_clock_skip_update(rq);
1e5a7405
PZ
2214}
2215
1da177e4 2216#ifdef CONFIG_SMP
175f0e25 2217
af449901 2218static void
713a2e21 2219__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
af449901
PZ
2220
2221static int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 2222 struct affinity_context *ctx);
af449901
PZ
2223
2224static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2225{
713a2e21
WL
2226 struct affinity_context ac = {
2227 .new_mask = cpumask_of(rq->cpu),
2228 .flags = SCA_MIGRATE_DISABLE,
2229 };
2230
af449901
PZ
2231 if (likely(!p->migration_disabled))
2232 return;
2233
2234 if (p->cpus_ptr != &p->cpus_mask)
2235 return;
2236
2237 /*
2238 * Violates locking rules! see comment in __do_set_cpus_allowed().
2239 */
713a2e21 2240 __do_set_cpus_allowed(p, &ac);
af449901
PZ
2241}
2242
2243void migrate_disable(void)
2244{
3015ef4b
TG
2245 struct task_struct *p = current;
2246
2247 if (p->migration_disabled) {
2248 p->migration_disabled++;
af449901 2249 return;
3015ef4b 2250 }
af449901 2251
3015ef4b
TG
2252 preempt_disable();
2253 this_rq()->nr_pinned++;
2254 p->migration_disabled = 1;
2255 preempt_enable();
af449901
PZ
2256}
2257EXPORT_SYMBOL_GPL(migrate_disable);
2258
2259void migrate_enable(void)
2260{
2261 struct task_struct *p = current;
713a2e21
WL
2262 struct affinity_context ac = {
2263 .new_mask = &p->cpus_mask,
2264 .flags = SCA_MIGRATE_ENABLE,
2265 };
af449901 2266
6d337eab
PZ
2267 if (p->migration_disabled > 1) {
2268 p->migration_disabled--;
af449901 2269 return;
6d337eab 2270 }
af449901 2271
9d0df377
SAS
2272 if (WARN_ON_ONCE(!p->migration_disabled))
2273 return;
2274
6d337eab
PZ
2275 /*
2276 * Ensure stop_task runs either before or after this, and that
2277 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2278 */
2279 preempt_disable();
2280 if (p->cpus_ptr != &p->cpus_mask)
713a2e21 2281 __set_cpus_allowed_ptr(p, &ac);
6d337eab
PZ
2282 /*
2283 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2284 * regular cpus_mask, otherwise things that race (eg.
2285 * select_fallback_rq) get confused.
2286 */
af449901 2287 barrier();
6d337eab 2288 p->migration_disabled = 0;
3015ef4b 2289 this_rq()->nr_pinned--;
6d337eab 2290 preempt_enable();
af449901
PZ
2291}
2292EXPORT_SYMBOL_GPL(migrate_enable);
2293
3015ef4b
TG
2294static inline bool rq_has_pinned_tasks(struct rq *rq)
2295{
2296 return rq->nr_pinned;
2297}
2298
175f0e25 2299/*
bee98539 2300 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2301 * __set_cpus_allowed_ptr() and select_fallback_rq().
2302 */
2303static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2304{
5ba2ffba 2305 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2306 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2307 return false;
2308
5ba2ffba
PZ
2309 /* migrate_disabled() must be allowed to finish. */
2310 if (is_migration_disabled(p))
175f0e25
PZ
2311 return cpu_online(cpu);
2312
5ba2ffba
PZ
2313 /* Non kernel threads are not allowed during either online or offline. */
2314 if (!(p->flags & PF_KTHREAD))
9ae606bc 2315 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2316
2317 /* KTHREAD_IS_PER_CPU is always allowed. */
2318 if (kthread_is_per_cpu(p))
2319 return cpu_online(cpu);
2320
2321 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2322 if (cpu_dying(cpu))
5ba2ffba
PZ
2323 return false;
2324
2325 /* But are allowed during online. */
2326 return cpu_online(cpu);
175f0e25
PZ
2327}
2328
5cc389bc
PZ
2329/*
2330 * This is how migration works:
2331 *
2332 * 1) we invoke migration_cpu_stop() on the target CPU using
2333 * stop_one_cpu().
2334 * 2) stopper starts to run (implicitly forcing the migrated thread
2335 * off the CPU)
2336 * 3) it checks whether the migrated task is still in the wrong runqueue.
2337 * 4) if it's in the wrong runqueue then the migration thread removes
2338 * it and puts it into the right queue.
2339 * 5) stopper completes and stop_one_cpu() returns and the migration
2340 * is done.
2341 */
2342
2343/*
2344 * move_queued_task - move a queued task to new rq.
2345 *
2346 * Returns (locked) new rq. Old rq's lock is released.
2347 */
8a8c69c3
PZ
2348static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2349 struct task_struct *p, int new_cpu)
5cc389bc 2350{
5cb9eaa3 2351 lockdep_assert_rq_held(rq);
5cc389bc 2352
58877d34 2353 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2354 set_task_cpu(p, new_cpu);
8a8c69c3 2355 rq_unlock(rq, rf);
5cc389bc
PZ
2356
2357 rq = cpu_rq(new_cpu);
2358
8a8c69c3 2359 rq_lock(rq, rf);
09348d75 2360 WARN_ON_ONCE(task_cpu(p) != new_cpu);
58877d34 2361 activate_task(rq, p, 0);
5cc389bc
PZ
2362 check_preempt_curr(rq, p, 0);
2363
2364 return rq;
2365}
2366
2367struct migration_arg {
6d337eab
PZ
2368 struct task_struct *task;
2369 int dest_cpu;
2370 struct set_affinity_pending *pending;
2371};
2372
50caf9c1
PZ
2373/*
2374 * @refs: number of wait_for_completion()
2375 * @stop_pending: is @stop_work in use
2376 */
6d337eab
PZ
2377struct set_affinity_pending {
2378 refcount_t refs;
9e81889c 2379 unsigned int stop_pending;
6d337eab
PZ
2380 struct completion done;
2381 struct cpu_stop_work stop_work;
2382 struct migration_arg arg;
5cc389bc
PZ
2383};
2384
2385/*
d1ccc66d 2386 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2387 * this because either it can't run here any more (set_cpus_allowed()
2388 * away from this CPU, or CPU going down), or because we're
2389 * attempting to rebalance this task on exec (sched_exec).
2390 *
2391 * So we race with normal scheduler movements, but that's OK, as long
2392 * as the task is no longer on this CPU.
5cc389bc 2393 */
8a8c69c3
PZ
2394static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2395 struct task_struct *p, int dest_cpu)
5cc389bc 2396{
5cc389bc 2397 /* Affinity changed (again). */
175f0e25 2398 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2399 return rq;
5cc389bc 2400
15ff991e 2401 update_rq_clock(rq);
8a8c69c3 2402 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2403
2404 return rq;
5cc389bc
PZ
2405}
2406
2407/*
2408 * migration_cpu_stop - this will be executed by a highprio stopper thread
2409 * and performs thread migration by bumping thread off CPU then
2410 * 'pushing' onto another runqueue.
2411 */
2412static int migration_cpu_stop(void *data)
2413{
2414 struct migration_arg *arg = data;
c20cf065 2415 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2416 struct task_struct *p = arg->task;
2417 struct rq *rq = this_rq();
6d337eab 2418 bool complete = false;
8a8c69c3 2419 struct rq_flags rf;
5cc389bc
PZ
2420
2421 /*
d1ccc66d
IM
2422 * The original target CPU might have gone down and we might
2423 * be on another CPU but it doesn't matter.
5cc389bc 2424 */
6d337eab 2425 local_irq_save(rf.flags);
5cc389bc
PZ
2426 /*
2427 * We need to explicitly wake pending tasks before running
3bd37062 2428 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2429 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2430 */
16bf5a5e 2431 flush_smp_call_function_queue();
5e16bbc2
PZ
2432
2433 raw_spin_lock(&p->pi_lock);
8a8c69c3 2434 rq_lock(rq, &rf);
6d337eab 2435
e140749c
VS
2436 /*
2437 * If we were passed a pending, then ->stop_pending was set, thus
2438 * p->migration_pending must have remained stable.
2439 */
2440 WARN_ON_ONCE(pending && pending != p->migration_pending);
2441
5e16bbc2
PZ
2442 /*
2443 * If task_rq(p) != rq, it cannot be migrated here, because we're
2444 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2445 * we're holding p->pi_lock.
2446 */
bf89a304 2447 if (task_rq(p) == rq) {
6d337eab
PZ
2448 if (is_migration_disabled(p))
2449 goto out;
2450
2451 if (pending) {
e140749c 2452 p->migration_pending = NULL;
6d337eab 2453 complete = true;
6d337eab 2454
3f1bc119
PZ
2455 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2456 goto out;
3f1bc119 2457 }
6d337eab 2458
bf89a304 2459 if (task_on_rq_queued(p))
475ea6c6 2460 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2461 else
475ea6c6 2462 p->wake_cpu = arg->dest_cpu;
6d337eab 2463
3f1bc119
PZ
2464 /*
2465 * XXX __migrate_task() can fail, at which point we might end
2466 * up running on a dodgy CPU, AFAICT this can only happen
2467 * during CPU hotplug, at which point we'll get pushed out
2468 * anyway, so it's probably not a big deal.
2469 */
2470
c20cf065 2471 } else if (pending) {
6d337eab
PZ
2472 /*
2473 * This happens when we get migrated between migrate_enable()'s
2474 * preempt_enable() and scheduling the stopper task. At that
2475 * point we're a regular task again and not current anymore.
2476 *
2477 * A !PREEMPT kernel has a giant hole here, which makes it far
2478 * more likely.
2479 */
2480
d707faa6
VS
2481 /*
2482 * The task moved before the stopper got to run. We're holding
2483 * ->pi_lock, so the allowed mask is stable - if it got
2484 * somewhere allowed, we're done.
2485 */
c20cf065 2486 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2487 p->migration_pending = NULL;
d707faa6
VS
2488 complete = true;
2489 goto out;
2490 }
2491
6d337eab
PZ
2492 /*
2493 * When migrate_enable() hits a rq mis-match we can't reliably
2494 * determine is_migration_disabled() and so have to chase after
2495 * it.
2496 */
9e81889c 2497 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2498 task_rq_unlock(rq, p, &rf);
2499 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2500 &pending->arg, &pending->stop_work);
2501 return 0;
bf89a304 2502 }
6d337eab 2503out:
9e81889c
PZ
2504 if (pending)
2505 pending->stop_pending = false;
6d337eab
PZ
2506 task_rq_unlock(rq, p, &rf);
2507
2508 if (complete)
2509 complete_all(&pending->done);
2510
5cc389bc
PZ
2511 return 0;
2512}
2513
a7c81556
PZ
2514int push_cpu_stop(void *arg)
2515{
2516 struct rq *lowest_rq = NULL, *rq = this_rq();
2517 struct task_struct *p = arg;
2518
2519 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2520 raw_spin_rq_lock(rq);
a7c81556
PZ
2521
2522 if (task_rq(p) != rq)
2523 goto out_unlock;
2524
2525 if (is_migration_disabled(p)) {
2526 p->migration_flags |= MDF_PUSH;
2527 goto out_unlock;
2528 }
2529
2530 p->migration_flags &= ~MDF_PUSH;
2531
2532 if (p->sched_class->find_lock_rq)
2533 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2534
a7c81556
PZ
2535 if (!lowest_rq)
2536 goto out_unlock;
2537
2538 // XXX validate p is still the highest prio task
2539 if (task_rq(p) == rq) {
2540 deactivate_task(rq, p, 0);
2541 set_task_cpu(p, lowest_rq->cpu);
2542 activate_task(lowest_rq, p, 0);
2543 resched_curr(lowest_rq);
2544 }
2545
2546 double_unlock_balance(rq, lowest_rq);
2547
2548out_unlock:
2549 rq->push_busy = false;
5cb9eaa3 2550 raw_spin_rq_unlock(rq);
a7c81556
PZ
2551 raw_spin_unlock_irq(&p->pi_lock);
2552
2553 put_task_struct(p);
5cc389bc
PZ
2554 return 0;
2555}
2556
c5b28038
PZ
2557/*
2558 * sched_class::set_cpus_allowed must do the below, but is not required to
2559 * actually call this function.
2560 */
713a2e21 2561void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
5cc389bc 2562{
713a2e21
WL
2563 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2564 p->cpus_ptr = ctx->new_mask;
af449901
PZ
2565 return;
2566 }
2567
713a2e21
WL
2568 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2569 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
8f9ea86f
WL
2570
2571 /*
2572 * Swap in a new user_cpus_ptr if SCA_USER flag set
2573 */
2574 if (ctx->flags & SCA_USER)
2575 swap(p->user_cpus_ptr, ctx->user_mask);
5cc389bc
PZ
2576}
2577
9cfc3e18 2578static void
713a2e21 2579__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
c5b28038 2580{
6c37067e
PZ
2581 struct rq *rq = task_rq(p);
2582 bool queued, running;
2583
af449901
PZ
2584 /*
2585 * This here violates the locking rules for affinity, since we're only
2586 * supposed to change these variables while holding both rq->lock and
2587 * p->pi_lock.
2588 *
2589 * HOWEVER, it magically works, because ttwu() is the only code that
2590 * accesses these variables under p->pi_lock and only does so after
2591 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2592 * before finish_task().
2593 *
2594 * XXX do further audits, this smells like something putrid.
2595 */
713a2e21 2596 if (ctx->flags & SCA_MIGRATE_DISABLE)
af449901
PZ
2597 SCHED_WARN_ON(!p->on_cpu);
2598 else
2599 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2600
2601 queued = task_on_rq_queued(p);
2602 running = task_current(rq, p);
2603
2604 if (queued) {
2605 /*
2606 * Because __kthread_bind() calls this on blocked tasks without
2607 * holding rq->lock.
2608 */
5cb9eaa3 2609 lockdep_assert_rq_held(rq);
7a57f32a 2610 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2611 }
2612 if (running)
2613 put_prev_task(rq, p);
2614
713a2e21 2615 p->sched_class->set_cpus_allowed(p, ctx);
6c37067e 2616
6c37067e 2617 if (queued)
7134b3e9 2618 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2619 if (running)
03b7fad1 2620 set_next_task(rq, p);
c5b28038
PZ
2621}
2622
851a723e
WL
2623/*
2624 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2625 * affinity (if any) should be destroyed too.
2626 */
9cfc3e18
PZ
2627void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2628{
713a2e21
WL
2629 struct affinity_context ac = {
2630 .new_mask = new_mask,
851a723e
WL
2631 .user_mask = NULL,
2632 .flags = SCA_USER, /* clear the user requested mask */
713a2e21 2633 };
9a5418bc
WL
2634 union cpumask_rcuhead {
2635 cpumask_t cpumask;
2636 struct rcu_head rcu;
2637 };
713a2e21
WL
2638
2639 __do_set_cpus_allowed(p, &ac);
9a5418bc
WL
2640
2641 /*
2642 * Because this is called with p->pi_lock held, it is not possible
2643 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2644 * kfree_rcu().
2645 */
2646 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2647}
2648
2649static cpumask_t *alloc_user_cpus_ptr(int node)
2650{
2651 /*
2652 * See do_set_cpus_allowed() above for the rcu_head usage.
2653 */
2654 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2655
2656 return kmalloc_node(size, GFP_KERNEL, node);
9cfc3e18
PZ
2657}
2658
b90ca8ba
WD
2659int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2660 int node)
2661{
87ca4f9e 2662 cpumask_t *user_mask;
8f9ea86f
WL
2663 unsigned long flags;
2664
87ca4f9e
WL
2665 /*
2666 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2667 * may differ by now due to racing.
2668 */
2669 dst->user_cpus_ptr = NULL;
2670
2671 /*
2672 * This check is racy and losing the race is a valid situation.
2673 * It is not worth the extra overhead of taking the pi_lock on
2674 * every fork/clone.
2675 */
2676 if (data_race(!src->user_cpus_ptr))
b90ca8ba
WD
2677 return 0;
2678
9a5418bc 2679 user_mask = alloc_user_cpus_ptr(node);
87ca4f9e 2680 if (!user_mask)
b90ca8ba
WD
2681 return -ENOMEM;
2682
87ca4f9e
WL
2683 /*
2684 * Use pi_lock to protect content of user_cpus_ptr
2685 *
2686 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2687 * do_set_cpus_allowed().
2688 */
8f9ea86f 2689 raw_spin_lock_irqsave(&src->pi_lock, flags);
87ca4f9e
WL
2690 if (src->user_cpus_ptr) {
2691 swap(dst->user_cpus_ptr, user_mask);
2692 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2693 }
8f9ea86f 2694 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
87ca4f9e
WL
2695
2696 if (unlikely(user_mask))
2697 kfree(user_mask);
2698
b90ca8ba
WD
2699 return 0;
2700}
2701
07ec77a1
WD
2702static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2703{
2704 struct cpumask *user_mask = NULL;
2705
2706 swap(p->user_cpus_ptr, user_mask);
2707
2708 return user_mask;
2709}
2710
b90ca8ba
WD
2711void release_user_cpus_ptr(struct task_struct *p)
2712{
07ec77a1 2713 kfree(clear_user_cpus_ptr(p));
b90ca8ba
WD
2714}
2715
6d337eab 2716/*
c777d847
VS
2717 * This function is wildly self concurrent; here be dragons.
2718 *
2719 *
2720 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2721 * designated task is enqueued on an allowed CPU. If that task is currently
2722 * running, we have to kick it out using the CPU stopper.
2723 *
2724 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2725 * Consider:
2726 *
2727 * Initial conditions: P0->cpus_mask = [0, 1]
2728 *
2729 * P0@CPU0 P1
2730 *
2731 * migrate_disable();
2732 * <preempted>
2733 * set_cpus_allowed_ptr(P0, [1]);
2734 *
2735 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2736 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2737 * This means we need the following scheme:
2738 *
2739 * P0@CPU0 P1
2740 *
2741 * migrate_disable();
2742 * <preempted>
2743 * set_cpus_allowed_ptr(P0, [1]);
2744 * <blocks>
2745 * <resumes>
2746 * migrate_enable();
2747 * __set_cpus_allowed_ptr();
2748 * <wakes local stopper>
2749 * `--> <woken on migration completion>
2750 *
2751 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2752 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2753 * task p are serialized by p->pi_lock, which we can leverage: the one that
2754 * should come into effect at the end of the Migrate-Disable region is the last
2755 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2756 * but we still need to properly signal those waiting tasks at the appropriate
2757 * moment.
2758 *
2759 * This is implemented using struct set_affinity_pending. The first
2760 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2761 * setup an instance of that struct and install it on the targeted task_struct.
2762 * Any and all further callers will reuse that instance. Those then wait for
2763 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2764 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2765 *
2766 *
2767 * (1) In the cases covered above. There is one more where the completion is
2768 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2769 * occurs after the stopper bailed out due to the targeted task still being
2770 * Migrate-Disable. Consider:
c777d847
VS
2771 *
2772 * Initial conditions: P0->cpus_mask = [0, 1]
2773 *
e140749c
VS
2774 * CPU0 P1 P2
2775 * <P0>
2776 * migrate_disable();
2777 * <preempted>
c777d847
VS
2778 * set_cpus_allowed_ptr(P0, [1]);
2779 * <blocks>
e140749c
VS
2780 * <migration/0>
2781 * migration_cpu_stop()
2782 * is_migration_disabled()
2783 * <bails>
c777d847
VS
2784 * set_cpus_allowed_ptr(P0, [0, 1]);
2785 * <signal completion>
2786 * <awakes>
2787 *
2788 * Note that the above is safe vs a concurrent migrate_enable(), as any
2789 * pending affinity completion is preceded by an uninstallation of
2790 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2791 */
2792static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2793 int dest_cpu, unsigned int flags)
5584e8ac
WL
2794 __releases(rq->lock)
2795 __releases(p->pi_lock)
6d337eab
PZ
2796{
2797 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2798 bool stop_pending, complete = false;
6d337eab
PZ
2799
2800 /* Can the task run on the task's current CPU? If so, we're done */
2801 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2802 struct task_struct *push_task = NULL;
2803
2804 if ((flags & SCA_MIGRATE_ENABLE) &&
2805 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2806 rq->push_busy = true;
2807 push_task = get_task_struct(p);
2808 }
2809
50caf9c1
PZ
2810 /*
2811 * If there are pending waiters, but no pending stop_work,
2812 * then complete now.
2813 */
6d337eab 2814 pending = p->migration_pending;
50caf9c1 2815 if (pending && !pending->stop_pending) {
6d337eab
PZ
2816 p->migration_pending = NULL;
2817 complete = true;
2818 }
50caf9c1 2819
6d337eab
PZ
2820 task_rq_unlock(rq, p, rf);
2821
a7c81556
PZ
2822 if (push_task) {
2823 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2824 p, &rq->push_work);
2825 }
2826
6d337eab 2827 if (complete)
50caf9c1 2828 complete_all(&pending->done);
6d337eab
PZ
2829
2830 return 0;
2831 }
2832
2833 if (!(flags & SCA_MIGRATE_ENABLE)) {
2834 /* serialized by p->pi_lock */
2835 if (!p->migration_pending) {
c777d847 2836 /* Install the request */
6d337eab
PZ
2837 refcount_set(&my_pending.refs, 1);
2838 init_completion(&my_pending.done);
8a6edb52
PZ
2839 my_pending.arg = (struct migration_arg) {
2840 .task = p,
475ea6c6 2841 .dest_cpu = dest_cpu,
8a6edb52
PZ
2842 .pending = &my_pending,
2843 };
2844
6d337eab
PZ
2845 p->migration_pending = &my_pending;
2846 } else {
2847 pending = p->migration_pending;
2848 refcount_inc(&pending->refs);
475ea6c6
VS
2849 /*
2850 * Affinity has changed, but we've already installed a
2851 * pending. migration_cpu_stop() *must* see this, else
2852 * we risk a completion of the pending despite having a
2853 * task on a disallowed CPU.
2854 *
2855 * Serialized by p->pi_lock, so this is safe.
2856 */
2857 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2858 }
2859 }
2860 pending = p->migration_pending;
2861 /*
2862 * - !MIGRATE_ENABLE:
2863 * we'll have installed a pending if there wasn't one already.
2864 *
2865 * - MIGRATE_ENABLE:
2866 * we're here because the current CPU isn't matching anymore,
2867 * the only way that can happen is because of a concurrent
2868 * set_cpus_allowed_ptr() call, which should then still be
2869 * pending completion.
2870 *
2871 * Either way, we really should have a @pending here.
2872 */
2873 if (WARN_ON_ONCE(!pending)) {
2874 task_rq_unlock(rq, p, rf);
2875 return -EINVAL;
2876 }
2877
0b9d46fc 2878 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2879 /*
58b1a450
PZ
2880 * MIGRATE_ENABLE gets here because 'p == current', but for
2881 * anything else we cannot do is_migration_disabled(), punt
2882 * and have the stopper function handle it all race-free.
c777d847 2883 */
9e81889c
PZ
2884 stop_pending = pending->stop_pending;
2885 if (!stop_pending)
2886 pending->stop_pending = true;
58b1a450 2887
58b1a450
PZ
2888 if (flags & SCA_MIGRATE_ENABLE)
2889 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2890
6d337eab 2891 task_rq_unlock(rq, p, rf);
8a6edb52 2892
9e81889c
PZ
2893 if (!stop_pending) {
2894 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2895 &pending->arg, &pending->stop_work);
2896 }
6d337eab 2897
58b1a450
PZ
2898 if (flags & SCA_MIGRATE_ENABLE)
2899 return 0;
6d337eab
PZ
2900 } else {
2901
2902 if (!is_migration_disabled(p)) {
2903 if (task_on_rq_queued(p))
2904 rq = move_queued_task(rq, rf, p, dest_cpu);
2905
50caf9c1
PZ
2906 if (!pending->stop_pending) {
2907 p->migration_pending = NULL;
2908 complete = true;
2909 }
6d337eab
PZ
2910 }
2911 task_rq_unlock(rq, p, rf);
2912
6d337eab
PZ
2913 if (complete)
2914 complete_all(&pending->done);
2915 }
2916
2917 wait_for_completion(&pending->done);
2918
2919 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2920 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2921
c777d847
VS
2922 /*
2923 * Block the original owner of &pending until all subsequent callers
2924 * have seen the completion and decremented the refcount
2925 */
6d337eab
PZ
2926 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2927
50caf9c1
PZ
2928 /* ARGH */
2929 WARN_ON_ONCE(my_pending.stop_pending);
2930
6d337eab
PZ
2931 return 0;
2932}
2933
5cc389bc 2934/*
07ec77a1 2935 * Called with both p->pi_lock and rq->lock held; drops both before returning.
5cc389bc 2936 */
07ec77a1 2937static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
713a2e21 2938 struct affinity_context *ctx,
07ec77a1
WD
2939 struct rq *rq,
2940 struct rq_flags *rf)
2941 __releases(rq->lock)
2942 __releases(p->pi_lock)
5cc389bc 2943{
234a503e 2944 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
e9d867a6 2945 const struct cpumask *cpu_valid_mask = cpu_active_mask;
234a503e 2946 bool kthread = p->flags & PF_KTHREAD;
5cc389bc
PZ
2947 unsigned int dest_cpu;
2948 int ret = 0;
2949
a499c3ea 2950 update_rq_clock(rq);
5cc389bc 2951
234a503e 2952 if (kthread || is_migration_disabled(p)) {
e9d867a6 2953 /*
741ba80f
PZ
2954 * Kernel threads are allowed on online && !active CPUs,
2955 * however, during cpu-hot-unplug, even these might get pushed
2956 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2957 *
2958 * Specifically, migration_disabled() tasks must not fail the
2959 * cpumask_any_and_distribute() pick below, esp. so on
2960 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2961 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2962 */
2963 cpu_valid_mask = cpu_online_mask;
2964 }
2965
713a2e21 2966 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
234a503e
WD
2967 ret = -EINVAL;
2968 goto out;
2969 }
2970
25834c73
PZ
2971 /*
2972 * Must re-check here, to close a race against __kthread_bind(),
2973 * sched_setaffinity() is not guaranteed to observe the flag.
2974 */
713a2e21 2975 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2976 ret = -EINVAL;
2977 goto out;
2978 }
2979
713a2e21 2980 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
df14b7f9
WL
2981 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
2982 if (ctx->flags & SCA_USER)
2983 swap(p->user_cpus_ptr, ctx->user_mask);
885b3ba4 2984 goto out;
df14b7f9 2985 }
885b3ba4
VS
2986
2987 if (WARN_ON_ONCE(p == current &&
2988 is_migration_disabled(p) &&
713a2e21 2989 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
885b3ba4
VS
2990 ret = -EBUSY;
2991 goto out;
2992 }
2993 }
5cc389bc 2994
46a87b38
PT
2995 /*
2996 * Picking a ~random cpu helps in cases where we are changing affinity
2997 * for groups of tasks (ie. cpuset), so that load balancing is not
2998 * immediately required to distribute the tasks within their new mask.
2999 */
713a2e21 3000 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
714e501e 3001 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
3002 ret = -EINVAL;
3003 goto out;
3004 }
3005
713a2e21 3006 __do_set_cpus_allowed(p, ctx);
07ec77a1 3007
8f9ea86f 3008 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
5cc389bc 3009
5cc389bc 3010out:
07ec77a1 3011 task_rq_unlock(rq, p, rf);
5cc389bc
PZ
3012
3013 return ret;
3014}
25834c73 3015
07ec77a1
WD
3016/*
3017 * Change a given task's CPU affinity. Migrate the thread to a
3018 * proper CPU and schedule it away if the CPU it's executing on
3019 * is removed from the allowed bitmask.
3020 *
3021 * NOTE: the caller must have a valid reference to the task, the
3022 * task must not exit() & deallocate itself prematurely. The
3023 * call is not atomic; no spinlocks may be held.
3024 */
3025static int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 3026 struct affinity_context *ctx)
07ec77a1
WD
3027{
3028 struct rq_flags rf;
3029 struct rq *rq;
3030
3031 rq = task_rq_lock(p, &rf);
da019032
WL
3032 /*
3033 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3034 * flags are set.
3035 */
3036 if (p->user_cpus_ptr &&
3037 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3038 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3039 ctx->new_mask = rq->scratch_mask;
3040
713a2e21 3041 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
07ec77a1
WD
3042}
3043
25834c73
PZ
3044int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3045{
713a2e21
WL
3046 struct affinity_context ac = {
3047 .new_mask = new_mask,
3048 .flags = 0,
3049 };
3050
3051 return __set_cpus_allowed_ptr(p, &ac);
25834c73 3052}
5cc389bc
PZ
3053EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3054
07ec77a1
WD
3055/*
3056 * Change a given task's CPU affinity to the intersection of its current
8f9ea86f
WL
3057 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3058 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3059 * affinity or use cpu_online_mask instead.
3060 *
07ec77a1
WD
3061 * If the resulting mask is empty, leave the affinity unchanged and return
3062 * -EINVAL.
3063 */
3064static int restrict_cpus_allowed_ptr(struct task_struct *p,
3065 struct cpumask *new_mask,
3066 const struct cpumask *subset_mask)
3067{
8f9ea86f
WL
3068 struct affinity_context ac = {
3069 .new_mask = new_mask,
3070 .flags = 0,
3071 };
07ec77a1
WD
3072 struct rq_flags rf;
3073 struct rq *rq;
3074 int err;
3075
07ec77a1
WD
3076 rq = task_rq_lock(p, &rf);
3077
3078 /*
3079 * Forcefully restricting the affinity of a deadline task is
3080 * likely to cause problems, so fail and noisily override the
3081 * mask entirely.
3082 */
3083 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3084 err = -EPERM;
3085 goto err_unlock;
3086 }
3087
8f9ea86f 3088 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
07ec77a1
WD
3089 err = -EINVAL;
3090 goto err_unlock;
3091 }
3092
713a2e21 3093 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
07ec77a1
WD
3094
3095err_unlock:
3096 task_rq_unlock(rq, p, &rf);
07ec77a1
WD
3097 return err;
3098}
3099
3100/*
3101 * Restrict the CPU affinity of task @p so that it is a subset of
5584e8ac 3102 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
07ec77a1
WD
3103 * old affinity mask. If the resulting mask is empty, we warn and walk
3104 * up the cpuset hierarchy until we find a suitable mask.
3105 */
3106void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3107{
3108 cpumask_var_t new_mask;
3109 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3110
3111 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3112
3113 /*
3114 * __migrate_task() can fail silently in the face of concurrent
3115 * offlining of the chosen destination CPU, so take the hotplug
3116 * lock to ensure that the migration succeeds.
3117 */
3118 cpus_read_lock();
3119 if (!cpumask_available(new_mask))
3120 goto out_set_mask;
3121
3122 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3123 goto out_free_mask;
3124
3125 /*
3126 * We failed to find a valid subset of the affinity mask for the
3127 * task, so override it based on its cpuset hierarchy.
3128 */
3129 cpuset_cpus_allowed(p, new_mask);
3130 override_mask = new_mask;
3131
3132out_set_mask:
3133 if (printk_ratelimit()) {
3134 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3135 task_pid_nr(p), p->comm,
3136 cpumask_pr_args(override_mask));
3137 }
3138
3139 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3140out_free_mask:
3141 cpus_read_unlock();
3142 free_cpumask_var(new_mask);
3143}
3144
3145static int
713a2e21 3146__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
07ec77a1
WD
3147
3148/*
3149 * Restore the affinity of a task @p which was previously restricted by a
8f9ea86f 3150 * call to force_compatible_cpus_allowed_ptr().
07ec77a1
WD
3151 *
3152 * It is the caller's responsibility to serialise this with any calls to
3153 * force_compatible_cpus_allowed_ptr(@p).
3154 */
3155void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3156{
713a2e21 3157 struct affinity_context ac = {
8f9ea86f
WL
3158 .new_mask = task_user_cpus(p),
3159 .flags = 0,
713a2e21 3160 };
8f9ea86f 3161 int ret;
07ec77a1
WD
3162
3163 /*
8f9ea86f
WL
3164 * Try to restore the old affinity mask with __sched_setaffinity().
3165 * Cpuset masking will be done there too.
07ec77a1 3166 */
8f9ea86f
WL
3167 ret = __sched_setaffinity(p, &ac);
3168 WARN_ON_ONCE(ret);
07ec77a1
WD
3169}
3170
dd41f596 3171void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 3172{
e2912009 3173#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
3174 unsigned int state = READ_ONCE(p->__state);
3175
e2912009
PZ
3176 /*
3177 * We should never call set_task_cpu() on a blocked task,
3178 * ttwu() will sort out the placement.
3179 */
2f064a59 3180 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 3181
3ea94de1
JP
3182 /*
3183 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3184 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3185 * time relying on p->on_rq.
3186 */
2f064a59 3187 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
3188 p->sched_class == &fair_sched_class &&
3189 (p->on_rq && !task_on_rq_migrating(p)));
3190
0122ec5b 3191#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
3192 /*
3193 * The caller should hold either p->pi_lock or rq->lock, when changing
3194 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3195 *
3196 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 3197 * see task_group().
6c6c54e1
PZ
3198 *
3199 * Furthermore, all task_rq users should acquire both locks, see
3200 * task_rq_lock().
3201 */
0122ec5b 3202 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 3203 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 3204#endif
4ff9083b
PZ
3205 /*
3206 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3207 */
3208 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
3209
3210 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
3211#endif
3212
de1d7286 3213 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 3214
0c69774e 3215 if (task_cpu(p) != new_cpu) {
0a74bef8 3216 if (p->sched_class->migrate_task_rq)
1327237a 3217 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 3218 p->se.nr_migrations++;
d7822b1e 3219 rseq_migrate(p);
223baf9d 3220 sched_mm_cid_migrate_from(p);
ff303e66 3221 perf_event_task_migrate(p);
0c69774e 3222 }
dd41f596
IM
3223
3224 __set_task_cpu(p, new_cpu);
c65cc870
IM
3225}
3226
0ad4e3df 3227#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
3228static void __migrate_swap_task(struct task_struct *p, int cpu)
3229{
da0c1e65 3230 if (task_on_rq_queued(p)) {
ac66f547 3231 struct rq *src_rq, *dst_rq;
8a8c69c3 3232 struct rq_flags srf, drf;
ac66f547
PZ
3233
3234 src_rq = task_rq(p);
3235 dst_rq = cpu_rq(cpu);
3236
8a8c69c3
PZ
3237 rq_pin_lock(src_rq, &srf);
3238 rq_pin_lock(dst_rq, &drf);
3239
ac66f547
PZ
3240 deactivate_task(src_rq, p, 0);
3241 set_task_cpu(p, cpu);
3242 activate_task(dst_rq, p, 0);
3243 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
3244
3245 rq_unpin_lock(dst_rq, &drf);
3246 rq_unpin_lock(src_rq, &srf);
3247
ac66f547
PZ
3248 } else {
3249 /*
3250 * Task isn't running anymore; make it appear like we migrated
3251 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 3252 * previous CPU our target instead of where it really is.
ac66f547
PZ
3253 */
3254 p->wake_cpu = cpu;
3255 }
3256}
3257
3258struct migration_swap_arg {
3259 struct task_struct *src_task, *dst_task;
3260 int src_cpu, dst_cpu;
3261};
3262
3263static int migrate_swap_stop(void *data)
3264{
3265 struct migration_swap_arg *arg = data;
3266 struct rq *src_rq, *dst_rq;
3267 int ret = -EAGAIN;
3268
62694cd5
PZ
3269 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3270 return -EAGAIN;
3271
ac66f547
PZ
3272 src_rq = cpu_rq(arg->src_cpu);
3273 dst_rq = cpu_rq(arg->dst_cpu);
3274
74602315
PZ
3275 double_raw_lock(&arg->src_task->pi_lock,
3276 &arg->dst_task->pi_lock);
ac66f547 3277 double_rq_lock(src_rq, dst_rq);
62694cd5 3278
ac66f547
PZ
3279 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3280 goto unlock;
3281
3282 if (task_cpu(arg->src_task) != arg->src_cpu)
3283 goto unlock;
3284
3bd37062 3285 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
3286 goto unlock;
3287
3bd37062 3288 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
3289 goto unlock;
3290
3291 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3292 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3293
3294 ret = 0;
3295
3296unlock:
3297 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
3298 raw_spin_unlock(&arg->dst_task->pi_lock);
3299 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
3300
3301 return ret;
3302}
3303
3304/*
3305 * Cross migrate two tasks
3306 */
0ad4e3df
SD
3307int migrate_swap(struct task_struct *cur, struct task_struct *p,
3308 int target_cpu, int curr_cpu)
ac66f547
PZ
3309{
3310 struct migration_swap_arg arg;
3311 int ret = -EINVAL;
3312
ac66f547
PZ
3313 arg = (struct migration_swap_arg){
3314 .src_task = cur,
0ad4e3df 3315 .src_cpu = curr_cpu,
ac66f547 3316 .dst_task = p,
0ad4e3df 3317 .dst_cpu = target_cpu,
ac66f547
PZ
3318 };
3319
3320 if (arg.src_cpu == arg.dst_cpu)
3321 goto out;
3322
6acce3ef
PZ
3323 /*
3324 * These three tests are all lockless; this is OK since all of them
3325 * will be re-checked with proper locks held further down the line.
3326 */
ac66f547
PZ
3327 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3328 goto out;
3329
3bd37062 3330 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
3331 goto out;
3332
3bd37062 3333 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
3334 goto out;
3335
286549dc 3336 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
3337 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3338
3339out:
ac66f547
PZ
3340 return ret;
3341}
0ad4e3df 3342#endif /* CONFIG_NUMA_BALANCING */
ac66f547 3343
1da177e4
LT
3344/*
3345 * wait_task_inactive - wait for a thread to unschedule.
3346 *
f9fc8cad
PZ
3347 * Wait for the thread to block in any of the states set in @match_state.
3348 * If it changes, i.e. @p might have woken up, then return zero. When we
3349 * succeed in waiting for @p to be off its CPU, we return a positive number
3350 * (its total switch count). If a second call a short while later returns the
3351 * same number, the caller can be sure that @p has remained unscheduled the
3352 * whole time.
85ba2d86 3353 *
1da177e4
LT
3354 * The caller must ensure that the task *will* unschedule sometime soon,
3355 * else this function might spin for a *long* time. This function can't
3356 * be called with interrupts off, or it may introduce deadlock with
3357 * smp_call_function() if an IPI is sent by the same process we are
3358 * waiting to become inactive.
3359 */
2f064a59 3360unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 3361{
da0c1e65 3362 int running, queued;
eb580751 3363 struct rq_flags rf;
85ba2d86 3364 unsigned long ncsw;
70b97a7f 3365 struct rq *rq;
1da177e4 3366
3a5c359a
AK
3367 for (;;) {
3368 /*
3369 * We do the initial early heuristics without holding
3370 * any task-queue locks at all. We'll only try to get
3371 * the runqueue lock when things look like they will
3372 * work out!
3373 */
3374 rq = task_rq(p);
fa490cfd 3375
3a5c359a
AK
3376 /*
3377 * If the task is actively running on another CPU
3378 * still, just relax and busy-wait without holding
3379 * any locks.
3380 *
3381 * NOTE! Since we don't hold any locks, it's not
3382 * even sure that "rq" stays as the right runqueue!
0b9d46fc 3383 * But we don't care, since "task_on_cpu()" will
3a5c359a
AK
3384 * return false if the runqueue has changed and p
3385 * is actually now running somewhere else!
3386 */
0b9d46fc 3387 while (task_on_cpu(rq, p)) {
f9fc8cad 3388 if (!(READ_ONCE(p->__state) & match_state))
85ba2d86 3389 return 0;
3a5c359a 3390 cpu_relax();
85ba2d86 3391 }
fa490cfd 3392
3a5c359a
AK
3393 /*
3394 * Ok, time to look more closely! We need the rq
3395 * lock now, to be *sure*. If we're wrong, we'll
3396 * just go back and repeat.
3397 */
eb580751 3398 rq = task_rq_lock(p, &rf);
27a9da65 3399 trace_sched_wait_task(p);
0b9d46fc 3400 running = task_on_cpu(rq, p);
da0c1e65 3401 queued = task_on_rq_queued(p);
85ba2d86 3402 ncsw = 0;
f9fc8cad 3403 if (READ_ONCE(p->__state) & match_state)
93dcf55f 3404 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3405 task_rq_unlock(rq, p, &rf);
fa490cfd 3406
85ba2d86
RM
3407 /*
3408 * If it changed from the expected state, bail out now.
3409 */
3410 if (unlikely(!ncsw))
3411 break;
3412
3a5c359a
AK
3413 /*
3414 * Was it really running after all now that we
3415 * checked with the proper locks actually held?
3416 *
3417 * Oops. Go back and try again..
3418 */
3419 if (unlikely(running)) {
3420 cpu_relax();
3421 continue;
3422 }
fa490cfd 3423
3a5c359a
AK
3424 /*
3425 * It's not enough that it's not actively running,
3426 * it must be off the runqueue _entirely_, and not
3427 * preempted!
3428 *
80dd99b3 3429 * So if it was still runnable (but just not actively
3a5c359a
AK
3430 * running right now), it's preempted, and we should
3431 * yield - it could be a while.
3432 */
da0c1e65 3433 if (unlikely(queued)) {
8b0e1953 3434 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3435
3436 set_current_state(TASK_UNINTERRUPTIBLE);
c33627e9 3437 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3a5c359a
AK
3438 continue;
3439 }
fa490cfd 3440
3a5c359a
AK
3441 /*
3442 * Ahh, all good. It wasn't running, and it wasn't
3443 * runnable, which means that it will never become
3444 * running in the future either. We're all done!
3445 */
3446 break;
3447 }
85ba2d86
RM
3448
3449 return ncsw;
1da177e4
LT
3450}
3451
3452/***
3453 * kick_process - kick a running thread to enter/exit the kernel
3454 * @p: the to-be-kicked thread
3455 *
3456 * Cause a process which is running on another CPU to enter
3457 * kernel-mode, without any delay. (to get signals handled.)
3458 *
25985edc 3459 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3460 * because all it wants to ensure is that the remote task enters
3461 * the kernel. If the IPI races and the task has been migrated
3462 * to another CPU then no harm is done and the purpose has been
3463 * achieved as well.
3464 */
36c8b586 3465void kick_process(struct task_struct *p)
1da177e4
LT
3466{
3467 int cpu;
3468
3469 preempt_disable();
3470 cpu = task_cpu(p);
3471 if ((cpu != smp_processor_id()) && task_curr(p))
3472 smp_send_reschedule(cpu);
3473 preempt_enable();
3474}
b43e3521 3475EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3476
30da688e 3477/*
3bd37062 3478 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3479 *
3480 * A few notes on cpu_active vs cpu_online:
3481 *
3482 * - cpu_active must be a subset of cpu_online
3483 *
97fb7a0a 3484 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3485 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3486 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3487 * see it.
3488 *
d1ccc66d 3489 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3490 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3491 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3492 * off.
3493 *
3494 * This means that fallback selection must not select !active CPUs.
3495 * And can assume that any active CPU must be online. Conversely
3496 * select_task_rq() below may allow selection of !active CPUs in order
3497 * to satisfy the above rules.
30da688e 3498 */
5da9a0fb
PZ
3499static int select_fallback_rq(int cpu, struct task_struct *p)
3500{
aa00d89c
TC
3501 int nid = cpu_to_node(cpu);
3502 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3503 enum { cpuset, possible, fail } state = cpuset;
3504 int dest_cpu;
5da9a0fb 3505
aa00d89c 3506 /*
d1ccc66d
IM
3507 * If the node that the CPU is on has been offlined, cpu_to_node()
3508 * will return -1. There is no CPU on the node, and we should
3509 * select the CPU on the other node.
aa00d89c
TC
3510 */
3511 if (nid != -1) {
3512 nodemask = cpumask_of_node(nid);
3513
3514 /* Look for allowed, online CPU in same node. */
3515 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3516 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3517 return dest_cpu;
3518 }
2baab4e9 3519 }
5da9a0fb 3520
2baab4e9
PZ
3521 for (;;) {
3522 /* Any allowed, online CPU? */
3bd37062 3523 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3524 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3525 continue;
175f0e25 3526
2baab4e9
PZ
3527 goto out;
3528 }
5da9a0fb 3529
e73e85f0 3530 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3531 switch (state) {
3532 case cpuset:
97c0054d 3533 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3534 state = possible;
3535 break;
3536 }
df561f66 3537 fallthrough;
2baab4e9 3538 case possible:
af449901
PZ
3539 /*
3540 * XXX When called from select_task_rq() we only
3541 * hold p->pi_lock and again violate locking order.
3542 *
3543 * More yuck to audit.
3544 */
9ae606bc 3545 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3546 state = fail;
3547 break;
2baab4e9
PZ
3548 case fail:
3549 BUG();
3550 break;
3551 }
3552 }
3553
3554out:
3555 if (state != cpuset) {
3556 /*
3557 * Don't tell them about moving exiting tasks or
3558 * kernel threads (both mm NULL), since they never
3559 * leave kernel.
3560 */
3561 if (p->mm && printk_ratelimit()) {
aac74dc4 3562 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3563 task_pid_nr(p), p->comm, cpu);
3564 }
5da9a0fb
PZ
3565 }
3566
3567 return dest_cpu;
3568}
3569
e2912009 3570/*
3bd37062 3571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3572 */
970b13ba 3573static inline
3aef1551 3574int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3575{
cbce1a68
PZ
3576 lockdep_assert_held(&p->pi_lock);
3577
af449901 3578 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3579 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3580 else
3bd37062 3581 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3582
3583 /*
3584 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3585 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3586 * CPU.
e2912009
PZ
3587 *
3588 * Since this is common to all placement strategies, this lives here.
3589 *
3590 * [ this allows ->select_task() to simply return task_cpu(p) and
3591 * not worry about this generic constraint ]
3592 */
7af443ee 3593 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3594 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3595
3596 return cpu;
970b13ba 3597}
09a40af5 3598
f5832c19
NP
3599void sched_set_stop_task(int cpu, struct task_struct *stop)
3600{
ded467dc 3601 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3602 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3603 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3604
3605 if (stop) {
3606 /*
3607 * Make it appear like a SCHED_FIFO task, its something
3608 * userspace knows about and won't get confused about.
3609 *
3610 * Also, it will make PI more or less work without too
3611 * much confusion -- but then, stop work should not
3612 * rely on PI working anyway.
3613 */
3614 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3615
3616 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3617
3618 /*
3619 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3620 * adjust the effective priority of a task. As a result,
3621 * rt_mutex_setprio() can trigger (RT) balancing operations,
3622 * which can then trigger wakeups of the stop thread to push
3623 * around the current task.
3624 *
3625 * The stop task itself will never be part of the PI-chain, it
3626 * never blocks, therefore that ->pi_lock recursion is safe.
3627 * Tell lockdep about this by placing the stop->pi_lock in its
3628 * own class.
3629 */
3630 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3631 }
3632
3633 cpu_rq(cpu)->stop = stop;
3634
3635 if (old_stop) {
3636 /*
3637 * Reset it back to a normal scheduling class so that
3638 * it can die in pieces.
3639 */
3640 old_stop->sched_class = &rt_sched_class;
3641 }
3642}
3643
74d862b6 3644#else /* CONFIG_SMP */
25834c73
PZ
3645
3646static inline int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 3647 struct affinity_context *ctx)
25834c73 3648{
713a2e21 3649 return set_cpus_allowed_ptr(p, ctx->new_mask);
25834c73
PZ
3650}
3651
af449901
PZ
3652static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3653
3015ef4b
TG
3654static inline bool rq_has_pinned_tasks(struct rq *rq)
3655{
3656 return false;
3657}
3658
9a5418bc
WL
3659static inline cpumask_t *alloc_user_cpus_ptr(int node)
3660{
3661 return NULL;
3662}
3663
74d862b6 3664#endif /* !CONFIG_SMP */
970b13ba 3665
d7c01d27 3666static void
b84cb5df 3667ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3668{
4fa8d299 3669 struct rq *rq;
b84cb5df 3670
4fa8d299
JP
3671 if (!schedstat_enabled())
3672 return;
3673
3674 rq = this_rq();
d7c01d27 3675
4fa8d299
JP
3676#ifdef CONFIG_SMP
3677 if (cpu == rq->cpu) {
b85c8b71 3678 __schedstat_inc(rq->ttwu_local);
ceeadb83 3679 __schedstat_inc(p->stats.nr_wakeups_local);
d7c01d27
PZ
3680 } else {
3681 struct sched_domain *sd;
3682
ceeadb83 3683 __schedstat_inc(p->stats.nr_wakeups_remote);
057f3fad 3684 rcu_read_lock();
4fa8d299 3685 for_each_domain(rq->cpu, sd) {
d7c01d27 3686 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3687 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3688 break;
3689 }
3690 }
057f3fad 3691 rcu_read_unlock();
d7c01d27 3692 }
f339b9dc
PZ
3693
3694 if (wake_flags & WF_MIGRATED)
ceeadb83 3695 __schedstat_inc(p->stats.nr_wakeups_migrate);
d7c01d27
PZ
3696#endif /* CONFIG_SMP */
3697
b85c8b71 3698 __schedstat_inc(rq->ttwu_count);
ceeadb83 3699 __schedstat_inc(p->stats.nr_wakeups);
d7c01d27
PZ
3700
3701 if (wake_flags & WF_SYNC)
ceeadb83 3702 __schedstat_inc(p->stats.nr_wakeups_sync);
d7c01d27
PZ
3703}
3704
23f41eeb 3705/*
160fb0d8 3706 * Mark the task runnable.
23f41eeb 3707 */
160fb0d8 3708static inline void ttwu_do_wakeup(struct task_struct *p)
9ed3811a 3709{
2f064a59 3710 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0 3711 trace_sched_wakeup(p);
160fb0d8
CZ
3712}
3713
3714static void
3715ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3716 struct rq_flags *rf)
3717{
3718 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3719
3720 lockdep_assert_rq_held(rq);
3721
3722 if (p->sched_contributes_to_load)
3723 rq->nr_uninterruptible--;
3724
3725#ifdef CONFIG_SMP
3726 if (wake_flags & WF_MIGRATED)
3727 en_flags |= ENQUEUE_MIGRATED;
3728 else
3729#endif
3730 if (p->in_iowait) {
3731 delayacct_blkio_end(p);
3732 atomic_dec(&task_rq(p)->nr_iowait);
3733 }
3734
3735 activate_task(rq, p, en_flags);
3736 check_preempt_curr(rq, p, wake_flags);
3737
3738 ttwu_do_wakeup(p);
fbd705a0 3739
9ed3811a 3740#ifdef CONFIG_SMP
4c9a4bc8
PZ
3741 if (p->sched_class->task_woken) {
3742 /*
b19a888c 3743 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3744 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3745 */
d8ac8971 3746 rq_unpin_lock(rq, rf);
9ed3811a 3747 p->sched_class->task_woken(rq, p);
d8ac8971 3748 rq_repin_lock(rq, rf);
4c9a4bc8 3749 }
9ed3811a 3750
e69c6341 3751 if (rq->idle_stamp) {
78becc27 3752 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3753 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3754
abfafa54
JL
3755 update_avg(&rq->avg_idle, delta);
3756
3757 if (rq->avg_idle > max)
9ed3811a 3758 rq->avg_idle = max;
abfafa54 3759
94aafc3e
PZ
3760 rq->wake_stamp = jiffies;
3761 rq->wake_avg_idle = rq->avg_idle / 2;
3762
9ed3811a
TH
3763 rq->idle_stamp = 0;
3764 }
3765#endif
3766}
3767
c05fbafb 3768/*
58877d34
PZ
3769 * Consider @p being inside a wait loop:
3770 *
3771 * for (;;) {
3772 * set_current_state(TASK_UNINTERRUPTIBLE);
3773 *
3774 * if (CONDITION)
3775 * break;
3776 *
3777 * schedule();
3778 * }
3779 * __set_current_state(TASK_RUNNING);
3780 *
3781 * between set_current_state() and schedule(). In this case @p is still
3782 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3783 * an atomic manner.
3784 *
3785 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3786 * then schedule() must still happen and p->state can be changed to
3787 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3788 * need to do a full wakeup with enqueue.
3789 *
3790 * Returns: %true when the wakeup is done,
3791 * %false otherwise.
c05fbafb 3792 */
58877d34 3793static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3794{
eb580751 3795 struct rq_flags rf;
c05fbafb
PZ
3796 struct rq *rq;
3797 int ret = 0;
3798
eb580751 3799 rq = __task_rq_lock(p, &rf);
da0c1e65 3800 if (task_on_rq_queued(p)) {
efe09385
CZ
3801 if (!task_on_cpu(rq, p)) {
3802 /*
3803 * When on_rq && !on_cpu the task is preempted, see if
3804 * it should preempt the task that is current now.
3805 */
3806 update_rq_clock(rq);
3807 check_preempt_curr(rq, p, wake_flags);
3808 }
160fb0d8 3809 ttwu_do_wakeup(p);
c05fbafb
PZ
3810 ret = 1;
3811 }
eb580751 3812 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3813
3814 return ret;
3815}
3816
317f3941 3817#ifdef CONFIG_SMP
a1488664 3818void sched_ttwu_pending(void *arg)
317f3941 3819{
a1488664 3820 struct llist_node *llist = arg;
317f3941 3821 struct rq *rq = this_rq();
73215849 3822 struct task_struct *p, *t;
d8ac8971 3823 struct rq_flags rf;
317f3941 3824
e3baac47
PZ
3825 if (!llist)
3826 return;
3827
8a8c69c3 3828 rq_lock_irqsave(rq, &rf);
77558e4d 3829 update_rq_clock(rq);
317f3941 3830
8c4890d1 3831 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3832 if (WARN_ON_ONCE(p->on_cpu))
3833 smp_cond_load_acquire(&p->on_cpu, !VAL);
3834
3835 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3836 set_task_cpu(p, cpu_of(rq));
3837
73215849 3838 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3839 }
317f3941 3840
d6962c4f
TD
3841 /*
3842 * Must be after enqueueing at least once task such that
3843 * idle_cpu() does not observe a false-negative -- if it does,
3844 * it is possible for select_idle_siblings() to stack a number
3845 * of tasks on this CPU during that window.
3846 *
3847 * It is ok to clear ttwu_pending when another task pending.
3848 * We will receive IPI after local irq enabled and then enqueue it.
3849 * Since now nr_running > 0, idle_cpu() will always get correct result.
3850 */
3851 WRITE_ONCE(rq->ttwu_pending, 0);
8a8c69c3 3852 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3853}
3854
68f4ff04
VS
3855/*
3856 * Prepare the scene for sending an IPI for a remote smp_call
3857 *
3858 * Returns true if the caller can proceed with sending the IPI.
3859 * Returns false otherwise.
3860 */
3861bool call_function_single_prep_ipi(int cpu)
317f3941 3862{
68f4ff04 3863 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
b2a02fc4 3864 trace_sched_wake_idle_without_ipi(cpu);
68f4ff04 3865 return false;
cc9cb0a7 3866 }
68f4ff04
VS
3867
3868 return true;
317f3941
PZ
3869}
3870
2ebb1771
MG
3871/*
3872 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3873 * necessary. The wakee CPU on receipt of the IPI will queue the task
3874 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3875 * of the wakeup instead of the waker.
3876 */
3877static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3878{
e3baac47
PZ
3879 struct rq *rq = cpu_rq(cpu);
3880
b7e7ade3
PZ
3881 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3882
126c2092 3883 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3884 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3885}
d6aa8f85 3886
f6be8af1
CL
3887void wake_up_if_idle(int cpu)
3888{
3889 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3890 struct rq_flags rf;
f6be8af1 3891
fd7de1e8
AL
3892 rcu_read_lock();
3893
3894 if (!is_idle_task(rcu_dereference(rq->curr)))
3895 goto out;
f6be8af1 3896
8850cb66
PZ
3897 rq_lock_irqsave(rq, &rf);
3898 if (is_idle_task(rq->curr))
3899 resched_curr(rq);
3900 /* Else CPU is not idle, do nothing here: */
3901 rq_unlock_irqrestore(rq, &rf);
fd7de1e8
AL
3902
3903out:
3904 rcu_read_unlock();
f6be8af1
CL
3905}
3906
39be3501 3907bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623 3908{
42dc938a
VD
3909 if (this_cpu == that_cpu)
3910 return true;
3911
518cd623
PZ
3912 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3913}
c6e7bd7a 3914
751d4cbc 3915static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
2ebb1771 3916{
5ba2ffba
PZ
3917 /*
3918 * Do not complicate things with the async wake_list while the CPU is
3919 * in hotplug state.
3920 */
3921 if (!cpu_active(cpu))
3922 return false;
3923
751d4cbc
MG
3924 /* Ensure the task will still be allowed to run on the CPU. */
3925 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3926 return false;
3927
2ebb1771
MG
3928 /*
3929 * If the CPU does not share cache, then queue the task on the
3930 * remote rqs wakelist to avoid accessing remote data.
3931 */
3932 if (!cpus_share_cache(smp_processor_id(), cpu))
3933 return true;
3934
f3dd3f67
TD
3935 if (cpu == smp_processor_id())
3936 return false;
3937
2ebb1771 3938 /*
f3dd3f67
TD
3939 * If the wakee cpu is idle, or the task is descheduling and the
3940 * only running task on the CPU, then use the wakelist to offload
3941 * the task activation to the idle (or soon-to-be-idle) CPU as
3942 * the current CPU is likely busy. nr_running is checked to
3943 * avoid unnecessary task stacking.
28156108
TD
3944 *
3945 * Note that we can only get here with (wakee) p->on_rq=0,
3946 * p->on_cpu can be whatever, we've done the dequeue, so
3947 * the wakee has been accounted out of ->nr_running.
2ebb1771 3948 */
f3dd3f67 3949 if (!cpu_rq(cpu)->nr_running)
2ebb1771
MG
3950 return true;
3951
3952 return false;
3953}
3954
3955static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3956{
751d4cbc 3957 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
c6e7bd7a 3958 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3959 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3960 return true;
3961 }
3962
3963 return false;
3964}
58877d34
PZ
3965
3966#else /* !CONFIG_SMP */
3967
3968static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3969{
3970 return false;
3971}
3972
d6aa8f85 3973#endif /* CONFIG_SMP */
317f3941 3974
b5179ac7 3975static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3976{
3977 struct rq *rq = cpu_rq(cpu);
d8ac8971 3978 struct rq_flags rf;
c05fbafb 3979
2ebb1771 3980 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3981 return;
317f3941 3982
8a8c69c3 3983 rq_lock(rq, &rf);
77558e4d 3984 update_rq_clock(rq);
d8ac8971 3985 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3986 rq_unlock(rq, &rf);
9ed3811a
TH
3987}
3988
43295d73
TG
3989/*
3990 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3991 *
3992 * The caller holds p::pi_lock if p != current or has preemption
3993 * disabled when p == current.
5f220be2
TG
3994 *
3995 * The rules of PREEMPT_RT saved_state:
3996 *
3997 * The related locking code always holds p::pi_lock when updating
3998 * p::saved_state, which means the code is fully serialized in both cases.
3999 *
4000 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4001 * bits set. This allows to distinguish all wakeup scenarios.
43295d73
TG
4002 */
4003static __always_inline
4004bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4005{
5f220be2
TG
4006 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4007 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4008 state != TASK_RTLOCK_WAIT);
4009 }
4010
43295d73
TG
4011 if (READ_ONCE(p->__state) & state) {
4012 *success = 1;
4013 return true;
4014 }
5f220be2
TG
4015
4016#ifdef CONFIG_PREEMPT_RT
4017 /*
4018 * Saved state preserves the task state across blocking on
4019 * an RT lock. If the state matches, set p::saved_state to
4020 * TASK_RUNNING, but do not wake the task because it waits
4021 * for a lock wakeup. Also indicate success because from
4022 * the regular waker's point of view this has succeeded.
4023 *
4024 * After acquiring the lock the task will restore p::__state
4025 * from p::saved_state which ensures that the regular
4026 * wakeup is not lost. The restore will also set
4027 * p::saved_state to TASK_RUNNING so any further tests will
4028 * not result in false positives vs. @success
4029 */
4030 if (p->saved_state & state) {
4031 p->saved_state = TASK_RUNNING;
4032 *success = 1;
4033 }
4034#endif
43295d73
TG
4035 return false;
4036}
4037
8643cda5
PZ
4038/*
4039 * Notes on Program-Order guarantees on SMP systems.
4040 *
4041 * MIGRATION
4042 *
4043 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
4044 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4045 * execution on its new CPU [c1].
8643cda5
PZ
4046 *
4047 * For migration (of runnable tasks) this is provided by the following means:
4048 *
4049 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4050 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4051 * rq(c1)->lock (if not at the same time, then in that order).
4052 * C) LOCK of the rq(c1)->lock scheduling in task
4053 *
7696f991 4054 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 4055 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
4056 *
4057 * Example:
4058 *
4059 * CPU0 CPU1 CPU2
4060 *
4061 * LOCK rq(0)->lock
4062 * sched-out X
4063 * sched-in Y
4064 * UNLOCK rq(0)->lock
4065 *
4066 * LOCK rq(0)->lock // orders against CPU0
4067 * dequeue X
4068 * UNLOCK rq(0)->lock
4069 *
4070 * LOCK rq(1)->lock
4071 * enqueue X
4072 * UNLOCK rq(1)->lock
4073 *
4074 * LOCK rq(1)->lock // orders against CPU2
4075 * sched-out Z
4076 * sched-in X
4077 * UNLOCK rq(1)->lock
4078 *
4079 *
4080 * BLOCKING -- aka. SLEEP + WAKEUP
4081 *
4082 * For blocking we (obviously) need to provide the same guarantee as for
4083 * migration. However the means are completely different as there is no lock
4084 * chain to provide order. Instead we do:
4085 *
58877d34
PZ
4086 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4087 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
4088 *
4089 * Example:
4090 *
4091 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4092 *
4093 * LOCK rq(0)->lock LOCK X->pi_lock
4094 * dequeue X
4095 * sched-out X
4096 * smp_store_release(X->on_cpu, 0);
4097 *
1f03e8d2 4098 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
4099 * X->state = WAKING
4100 * set_task_cpu(X,2)
4101 *
4102 * LOCK rq(2)->lock
4103 * enqueue X
4104 * X->state = RUNNING
4105 * UNLOCK rq(2)->lock
4106 *
4107 * LOCK rq(2)->lock // orders against CPU1
4108 * sched-out Z
4109 * sched-in X
4110 * UNLOCK rq(2)->lock
4111 *
4112 * UNLOCK X->pi_lock
4113 * UNLOCK rq(0)->lock
4114 *
4115 *
7696f991
AP
4116 * However, for wakeups there is a second guarantee we must provide, namely we
4117 * must ensure that CONDITION=1 done by the caller can not be reordered with
4118 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
4119 */
4120
9ed3811a 4121/**
1da177e4 4122 * try_to_wake_up - wake up a thread
9ed3811a 4123 * @p: the thread to be awakened
1da177e4 4124 * @state: the mask of task states that can be woken
9ed3811a 4125 * @wake_flags: wake modifier flags (WF_*)
1da177e4 4126 *
58877d34
PZ
4127 * Conceptually does:
4128 *
4129 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 4130 *
a2250238
PZ
4131 * If the task was not queued/runnable, also place it back on a runqueue.
4132 *
58877d34
PZ
4133 * This function is atomic against schedule() which would dequeue the task.
4134 *
4135 * It issues a full memory barrier before accessing @p->state, see the comment
4136 * with set_current_state().
a2250238 4137 *
58877d34 4138 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 4139 *
58877d34
PZ
4140 * Relies on p->pi_lock stabilizing:
4141 * - p->sched_class
4142 * - p->cpus_ptr
4143 * - p->sched_task_group
4144 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4145 *
4146 * Tries really hard to only take one task_rq(p)->lock for performance.
4147 * Takes rq->lock in:
4148 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4149 * - ttwu_queue() -- new rq, for enqueue of the task;
4150 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4151 *
4152 * As a consequence we race really badly with just about everything. See the
4153 * many memory barriers and their comments for details.
7696f991 4154 *
a2250238
PZ
4155 * Return: %true if @p->state changes (an actual wakeup was done),
4156 * %false otherwise.
1da177e4 4157 */
e4a52bcb
PZ
4158static int
4159try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 4160{
1da177e4 4161 unsigned long flags;
c05fbafb 4162 int cpu, success = 0;
2398f2c6 4163
e3d85487 4164 preempt_disable();
aacedf26
PZ
4165 if (p == current) {
4166 /*
4167 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4168 * == smp_processor_id()'. Together this means we can special
58877d34 4169 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
4170 * without taking any locks.
4171 *
4172 * In particular:
4173 * - we rely on Program-Order guarantees for all the ordering,
4174 * - we're serialized against set_special_state() by virtue of
4175 * it disabling IRQs (this allows not taking ->pi_lock).
4176 */
43295d73 4177 if (!ttwu_state_match(p, state, &success))
e3d85487 4178 goto out;
aacedf26 4179
aacedf26 4180 trace_sched_waking(p);
160fb0d8 4181 ttwu_do_wakeup(p);
aacedf26
PZ
4182 goto out;
4183 }
4184
e0acd0a6
ON
4185 /*
4186 * If we are going to wake up a thread waiting for CONDITION we
4187 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
4188 * reordered with p->state check below. This pairs with smp_store_mb()
4189 * in set_current_state() that the waiting thread does.
e0acd0a6 4190 */
013fdb80 4191 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 4192 smp_mb__after_spinlock();
43295d73 4193 if (!ttwu_state_match(p, state, &success))
aacedf26 4194 goto unlock;
1da177e4 4195
fbd705a0
PZ
4196 trace_sched_waking(p);
4197
135e8c92
BS
4198 /*
4199 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4200 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4201 * in smp_cond_load_acquire() below.
4202 *
3d85b270
AP
4203 * sched_ttwu_pending() try_to_wake_up()
4204 * STORE p->on_rq = 1 LOAD p->state
4205 * UNLOCK rq->lock
4206 *
4207 * __schedule() (switch to task 'p')
4208 * LOCK rq->lock smp_rmb();
4209 * smp_mb__after_spinlock();
4210 * UNLOCK rq->lock
135e8c92
BS
4211 *
4212 * [task p]
3d85b270 4213 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 4214 *
3d85b270
AP
4215 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4216 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
4217 *
4218 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
4219 */
4220 smp_rmb();
58877d34 4221 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 4222 goto unlock;
1da177e4 4223
1da177e4 4224#ifdef CONFIG_SMP
ecf7d01c
PZ
4225 /*
4226 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4227 * possible to, falsely, observe p->on_cpu == 0.
4228 *
4229 * One must be running (->on_cpu == 1) in order to remove oneself
4230 * from the runqueue.
4231 *
3d85b270
AP
4232 * __schedule() (switch to task 'p') try_to_wake_up()
4233 * STORE p->on_cpu = 1 LOAD p->on_rq
4234 * UNLOCK rq->lock
4235 *
4236 * __schedule() (put 'p' to sleep)
4237 * LOCK rq->lock smp_rmb();
4238 * smp_mb__after_spinlock();
4239 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 4240 *
3d85b270
AP
4241 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4242 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
4243 *
4244 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4245 * schedule()'s deactivate_task() has 'happened' and p will no longer
4246 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 4247 */
dbfb089d
PZ
4248 smp_acquire__after_ctrl_dep();
4249
4250 /*
4251 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4252 * == 0), which means we need to do an enqueue, change p->state to
4253 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4254 * enqueue, such as ttwu_queue_wakelist().
4255 */
2f064a59 4256 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 4257
c6e7bd7a
PZ
4258 /*
4259 * If the owning (remote) CPU is still in the middle of schedule() with
4260 * this task as prev, considering queueing p on the remote CPUs wake_list
4261 * which potentially sends an IPI instead of spinning on p->on_cpu to
4262 * let the waker make forward progress. This is safe because IRQs are
4263 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
4264 *
4265 * Ensure we load task_cpu(p) after p->on_cpu:
4266 *
4267 * set_task_cpu(p, cpu);
4268 * STORE p->cpu = @cpu
4269 * __schedule() (switch to task 'p')
4270 * LOCK rq->lock
4271 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4272 * STORE p->on_cpu = 1 LOAD p->cpu
4273 *
4274 * to ensure we observe the correct CPU on which the task is currently
4275 * scheduling.
c6e7bd7a 4276 */
b6e13e85 4277 if (smp_load_acquire(&p->on_cpu) &&
f3dd3f67 4278 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
c6e7bd7a
PZ
4279 goto unlock;
4280
e9c84311 4281 /*
d1ccc66d 4282 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 4283 * this task as prev, wait until it's done referencing the task.
b75a2253 4284 *
31cb1bc0 4285 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
4286 *
4287 * This ensures that tasks getting woken will be fully ordered against
4288 * their previous state and preserve Program Order.
0970d299 4289 */
1f03e8d2 4290 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 4291
3aef1551 4292 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 4293 if (task_cpu(p) != cpu) {
ec618b84
PZ
4294 if (p->in_iowait) {
4295 delayacct_blkio_end(p);
4296 atomic_dec(&task_rq(p)->nr_iowait);
4297 }
4298
f339b9dc 4299 wake_flags |= WF_MIGRATED;
eb414681 4300 psi_ttwu_dequeue(p);
e4a52bcb 4301 set_task_cpu(p, cpu);
f339b9dc 4302 }
b6e13e85
PZ
4303#else
4304 cpu = task_cpu(p);
1da177e4 4305#endif /* CONFIG_SMP */
1da177e4 4306
b5179ac7 4307 ttwu_queue(p, cpu, wake_flags);
aacedf26 4308unlock:
013fdb80 4309 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
4310out:
4311 if (success)
b6e13e85 4312 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 4313 preempt_enable();
1da177e4
LT
4314
4315 return success;
4316}
4317
91dabf33
PZ
4318static bool __task_needs_rq_lock(struct task_struct *p)
4319{
4320 unsigned int state = READ_ONCE(p->__state);
4321
4322 /*
4323 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4324 * the task is blocked. Make sure to check @state since ttwu() can drop
4325 * locks at the end, see ttwu_queue_wakelist().
4326 */
4327 if (state == TASK_RUNNING || state == TASK_WAKING)
4328 return true;
4329
4330 /*
4331 * Ensure we load p->on_rq after p->__state, otherwise it would be
4332 * possible to, falsely, observe p->on_rq == 0.
4333 *
4334 * See try_to_wake_up() for a longer comment.
4335 */
4336 smp_rmb();
4337 if (p->on_rq)
4338 return true;
4339
4340#ifdef CONFIG_SMP
4341 /*
4342 * Ensure the task has finished __schedule() and will not be referenced
4343 * anymore. Again, see try_to_wake_up() for a longer comment.
4344 */
4345 smp_rmb();
4346 smp_cond_load_acquire(&p->on_cpu, !VAL);
4347#endif
4348
4349 return false;
4350}
4351
2beaf328 4352/**
9b3c4ab3 4353 * task_call_func - Invoke a function on task in fixed state
1b7af295 4354 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
4355 * @func: Function to invoke.
4356 * @arg: Argument to function.
4357 *
f6ac18fa
PZ
4358 * Fix the task in it's current state by avoiding wakeups and or rq operations
4359 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4360 * to work out what the state is, if required. Given that @func can be invoked
4361 * with a runqueue lock held, it had better be quite lightweight.
2beaf328
PM
4362 *
4363 * Returns:
f6ac18fa 4364 * Whatever @func returns
2beaf328 4365 */
9b3c4ab3 4366int task_call_func(struct task_struct *p, task_call_f func, void *arg)
2beaf328 4367{
f6ac18fa 4368 struct rq *rq = NULL;
2beaf328 4369 struct rq_flags rf;
9b3c4ab3 4370 int ret;
2beaf328 4371
1b7af295 4372 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
f6ac18fa 4373
91dabf33 4374 if (__task_needs_rq_lock(p))
2beaf328 4375 rq = __task_rq_lock(p, &rf);
f6ac18fa
PZ
4376
4377 /*
4378 * At this point the task is pinned; either:
4379 * - blocked and we're holding off wakeups (pi->lock)
4380 * - woken, and we're holding off enqueue (rq->lock)
4381 * - queued, and we're holding off schedule (rq->lock)
4382 * - running, and we're holding off de-schedule (rq->lock)
4383 *
4384 * The called function (@func) can use: task_curr(), p->on_rq and
4385 * p->__state to differentiate between these states.
4386 */
4387 ret = func(p, arg);
4388
4389 if (rq)
2beaf328 4390 rq_unlock(rq, &rf);
f6ac18fa 4391
1b7af295 4392 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
4393 return ret;
4394}
4395
e386b672
PM
4396/**
4397 * cpu_curr_snapshot - Return a snapshot of the currently running task
4398 * @cpu: The CPU on which to snapshot the task.
4399 *
4400 * Returns the task_struct pointer of the task "currently" running on
4401 * the specified CPU. If the same task is running on that CPU throughout,
4402 * the return value will be a pointer to that task's task_struct structure.
4403 * If the CPU did any context switches even vaguely concurrently with the
4404 * execution of this function, the return value will be a pointer to the
4405 * task_struct structure of a randomly chosen task that was running on
4406 * that CPU somewhere around the time that this function was executing.
4407 *
4408 * If the specified CPU was offline, the return value is whatever it
4409 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4410 * task, but there is no guarantee. Callers wishing a useful return
4411 * value must take some action to ensure that the specified CPU remains
4412 * online throughout.
4413 *
4414 * This function executes full memory barriers before and after fetching
4415 * the pointer, which permits the caller to confine this function's fetch
4416 * with respect to the caller's accesses to other shared variables.
4417 */
4418struct task_struct *cpu_curr_snapshot(int cpu)
4419{
4420 struct task_struct *t;
4421
4422 smp_mb(); /* Pairing determined by caller's synchronization design. */
4423 t = rcu_dereference(cpu_curr(cpu));
4424 smp_mb(); /* Pairing determined by caller's synchronization design. */
4425 return t;
4426}
4427
50fa610a
DH
4428/**
4429 * wake_up_process - Wake up a specific process
4430 * @p: The process to be woken up.
4431 *
4432 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
4433 * processes.
4434 *
4435 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 4436 *
7696f991 4437 * This function executes a full memory barrier before accessing the task state.
50fa610a 4438 */
7ad5b3a5 4439int wake_up_process(struct task_struct *p)
1da177e4 4440{
9067ac85 4441 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 4442}
1da177e4
LT
4443EXPORT_SYMBOL(wake_up_process);
4444
7ad5b3a5 4445int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
4446{
4447 return try_to_wake_up(p, state, 0);
4448}
4449
1da177e4
LT
4450/*
4451 * Perform scheduler related setup for a newly forked process p.
4452 * p is forked by current.
dd41f596
IM
4453 *
4454 * __sched_fork() is basic setup used by init_idle() too:
4455 */
5e1576ed 4456static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4457{
fd2f4419
PZ
4458 p->on_rq = 0;
4459
4460 p->se.on_rq = 0;
dd41f596
IM
4461 p->se.exec_start = 0;
4462 p->se.sum_exec_runtime = 0;
f6cf891c 4463 p->se.prev_sum_exec_runtime = 0;
6c594c21 4464 p->se.nr_migrations = 0;
da7a735e 4465 p->se.vruntime = 0;
fd2f4419 4466 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 4467
ad936d86
BP
4468#ifdef CONFIG_FAIR_GROUP_SCHED
4469 p->se.cfs_rq = NULL;
4470#endif
4471
6cfb0d5d 4472#ifdef CONFIG_SCHEDSTATS
cb251765 4473 /* Even if schedstat is disabled, there should not be garbage */
ceeadb83 4474 memset(&p->stats, 0, sizeof(p->stats));
6cfb0d5d 4475#endif
476d139c 4476
aab03e05 4477 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 4478 init_dl_task_timer(&p->dl);
209a0cbd 4479 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 4480 __dl_clear_params(p);
aab03e05 4481
fa717060 4482 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
4483 p->rt.timeout = 0;
4484 p->rt.time_slice = sched_rr_timeslice;
4485 p->rt.on_rq = 0;
4486 p->rt.on_list = 0;
476d139c 4487
e107be36
AK
4488#ifdef CONFIG_PREEMPT_NOTIFIERS
4489 INIT_HLIST_HEAD(&p->preempt_notifiers);
4490#endif
cbee9f88 4491
5e1f0f09
MG
4492#ifdef CONFIG_COMPACTION
4493 p->capture_control = NULL;
4494#endif
13784475 4495 init_numa_balancing(clone_flags, p);
a1488664 4496#ifdef CONFIG_SMP
8c4890d1 4497 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 4498 p->migration_pending = NULL;
a1488664 4499#endif
223baf9d 4500 init_sched_mm_cid(p);
dd41f596
IM
4501}
4502
2a595721
SD
4503DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4504
1a687c2e 4505#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 4506
c574bbe9
HY
4507int sysctl_numa_balancing_mode;
4508
4509static void __set_numabalancing_state(bool enabled)
1a687c2e
MG
4510{
4511 if (enabled)
2a595721 4512 static_branch_enable(&sched_numa_balancing);
1a687c2e 4513 else
2a595721 4514 static_branch_disable(&sched_numa_balancing);
1a687c2e 4515}
54a43d54 4516
c574bbe9
HY
4517void set_numabalancing_state(bool enabled)
4518{
4519 if (enabled)
4520 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4521 else
4522 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4523 __set_numabalancing_state(enabled);
4524}
4525
54a43d54 4526#ifdef CONFIG_PROC_SYSCTL
c959924b
HY
4527static void reset_memory_tiering(void)
4528{
4529 struct pglist_data *pgdat;
4530
4531 for_each_online_pgdat(pgdat) {
4532 pgdat->nbp_threshold = 0;
4533 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4534 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4535 }
4536}
4537
0dff89c4 4538static int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 4539 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
4540{
4541 struct ctl_table t;
4542 int err;
c574bbe9 4543 int state = sysctl_numa_balancing_mode;
54a43d54
AK
4544
4545 if (write && !capable(CAP_SYS_ADMIN))
4546 return -EPERM;
4547
4548 t = *table;
4549 t.data = &state;
4550 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4551 if (err < 0)
4552 return err;
c574bbe9 4553 if (write) {
c959924b
HY
4554 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4555 (state & NUMA_BALANCING_MEMORY_TIERING))
4556 reset_memory_tiering();
c574bbe9
HY
4557 sysctl_numa_balancing_mode = state;
4558 __set_numabalancing_state(state);
4559 }
54a43d54
AK
4560 return err;
4561}
4562#endif
4563#endif
dd41f596 4564
4698f88c
JP
4565#ifdef CONFIG_SCHEDSTATS
4566
cb251765
MG
4567DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4568
cb251765
MG
4569static void set_schedstats(bool enabled)
4570{
4571 if (enabled)
4572 static_branch_enable(&sched_schedstats);
4573 else
4574 static_branch_disable(&sched_schedstats);
4575}
4576
4577void force_schedstat_enabled(void)
4578{
4579 if (!schedstat_enabled()) {
4580 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4581 static_branch_enable(&sched_schedstats);
4582 }
4583}
4584
4585static int __init setup_schedstats(char *str)
4586{
4587 int ret = 0;
4588 if (!str)
4589 goto out;
4590
4591 if (!strcmp(str, "enable")) {
1faa491a 4592 set_schedstats(true);
cb251765
MG
4593 ret = 1;
4594 } else if (!strcmp(str, "disable")) {
1faa491a 4595 set_schedstats(false);
cb251765
MG
4596 ret = 1;
4597 }
4598out:
4599 if (!ret)
4600 pr_warn("Unable to parse schedstats=\n");
4601
4602 return ret;
4603}
4604__setup("schedstats=", setup_schedstats);
4605
4606#ifdef CONFIG_PROC_SYSCTL
f5ef06d5 4607static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
32927393 4608 size_t *lenp, loff_t *ppos)
cb251765
MG
4609{
4610 struct ctl_table t;
4611 int err;
4612 int state = static_branch_likely(&sched_schedstats);
4613
4614 if (write && !capable(CAP_SYS_ADMIN))
4615 return -EPERM;
4616
4617 t = *table;
4618 t.data = &state;
4619 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4620 if (err < 0)
4621 return err;
4622 if (write)
4623 set_schedstats(state);
4624 return err;
4625}
4698f88c 4626#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4627#endif /* CONFIG_SCHEDSTATS */
dd41f596 4628
3267e015
ZN
4629#ifdef CONFIG_SYSCTL
4630static struct ctl_table sched_core_sysctls[] = {
4631#ifdef CONFIG_SCHEDSTATS
f5ef06d5
ZN
4632 {
4633 .procname = "sched_schedstats",
4634 .data = NULL,
4635 .maxlen = sizeof(unsigned int),
4636 .mode = 0644,
4637 .proc_handler = sysctl_schedstats,
4638 .extra1 = SYSCTL_ZERO,
4639 .extra2 = SYSCTL_ONE,
4640 },
3267e015
ZN
4641#endif /* CONFIG_SCHEDSTATS */
4642#ifdef CONFIG_UCLAMP_TASK
4643 {
4644 .procname = "sched_util_clamp_min",
4645 .data = &sysctl_sched_uclamp_util_min,
4646 .maxlen = sizeof(unsigned int),
4647 .mode = 0644,
4648 .proc_handler = sysctl_sched_uclamp_handler,
4649 },
4650 {
4651 .procname = "sched_util_clamp_max",
4652 .data = &sysctl_sched_uclamp_util_max,
4653 .maxlen = sizeof(unsigned int),
4654 .mode = 0644,
4655 .proc_handler = sysctl_sched_uclamp_handler,
4656 },
4657 {
4658 .procname = "sched_util_clamp_min_rt_default",
4659 .data = &sysctl_sched_uclamp_util_min_rt_default,
4660 .maxlen = sizeof(unsigned int),
4661 .mode = 0644,
4662 .proc_handler = sysctl_sched_uclamp_handler,
4663 },
4664#endif /* CONFIG_UCLAMP_TASK */
0dff89c4
KW
4665#ifdef CONFIG_NUMA_BALANCING
4666 {
4667 .procname = "numa_balancing",
4668 .data = NULL, /* filled in by handler */
4669 .maxlen = sizeof(unsigned int),
4670 .mode = 0644,
4671 .proc_handler = sysctl_numa_balancing,
4672 .extra1 = SYSCTL_ZERO,
4673 .extra2 = SYSCTL_FOUR,
4674 },
4675#endif /* CONFIG_NUMA_BALANCING */
f5ef06d5
ZN
4676 {}
4677};
3267e015 4678static int __init sched_core_sysctl_init(void)
f5ef06d5 4679{
3267e015 4680 register_sysctl_init("kernel", sched_core_sysctls);
f5ef06d5
ZN
4681 return 0;
4682}
3267e015
ZN
4683late_initcall(sched_core_sysctl_init);
4684#endif /* CONFIG_SYSCTL */
dd41f596
IM
4685
4686/*
4687 * fork()/clone()-time setup:
4688 */
aab03e05 4689int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4690{
5e1576ed 4691 __sched_fork(clone_flags, p);
06b83b5f 4692 /*
7dc603c9 4693 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4694 * nobody will actually run it, and a signal or other external
4695 * event cannot wake it up and insert it on the runqueue either.
4696 */
2f064a59 4697 p->__state = TASK_NEW;
dd41f596 4698
c350a04e
MG
4699 /*
4700 * Make sure we do not leak PI boosting priority to the child.
4701 */
4702 p->prio = current->normal_prio;
4703
e8f14172
PB
4704 uclamp_fork(p);
4705
b9dc29e7
MG
4706 /*
4707 * Revert to default priority/policy on fork if requested.
4708 */
4709 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4710 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4711 p->policy = SCHED_NORMAL;
6c697bdf 4712 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4713 p->rt_priority = 0;
4714 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4715 p->static_prio = NICE_TO_PRIO(0);
4716
f558c2b8 4717 p->prio = p->normal_prio = p->static_prio;
b1e82065 4718 set_load_weight(p, false);
6c697bdf 4719
b9dc29e7
MG
4720 /*
4721 * We don't need the reset flag anymore after the fork. It has
4722 * fulfilled its duty:
4723 */
4724 p->sched_reset_on_fork = 0;
4725 }
ca94c442 4726
af0fffd9 4727 if (dl_prio(p->prio))
aab03e05 4728 return -EAGAIN;
af0fffd9 4729 else if (rt_prio(p->prio))
aab03e05 4730 p->sched_class = &rt_sched_class;
af0fffd9 4731 else
2ddbf952 4732 p->sched_class = &fair_sched_class;
b29739f9 4733
7dc603c9 4734 init_entity_runnable_average(&p->se);
cd29fe6f 4735
b1e82065 4736
f6db8347 4737#ifdef CONFIG_SCHED_INFO
dd41f596 4738 if (likely(sched_info_on()))
52f17b6c 4739 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4740#endif
3ca7a440
PZ
4741#if defined(CONFIG_SMP)
4742 p->on_cpu = 0;
4866cde0 4743#endif
01028747 4744 init_task_preempt_count(p);
806c09a7 4745#ifdef CONFIG_SMP
917b627d 4746 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4747 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4748#endif
aab03e05 4749 return 0;
1da177e4
LT
4750}
4751
b1e82065 4752void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
13685c4a 4753{
4ef0c5c6 4754 unsigned long flags;
4ef0c5c6 4755
b1e82065
PZ
4756 /*
4757 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4758 * required yet, but lockdep gets upset if rules are violated.
4759 */
4ef0c5c6
ZQ
4760 raw_spin_lock_irqsave(&p->pi_lock, flags);
4761#ifdef CONFIG_CGROUP_SCHED
b1e82065
PZ
4762 if (1) {
4763 struct task_group *tg;
4764 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4765 struct task_group, css);
4766 tg = autogroup_task_group(p, tg);
4767 p->sched_task_group = tg;
4768 }
4ef0c5c6
ZQ
4769#endif
4770 rseq_migrate(p);
4771 /*
4772 * We're setting the CPU for the first time, we don't migrate,
4773 * so use __set_task_cpu().
4774 */
4775 __set_task_cpu(p, smp_processor_id());
4776 if (p->sched_class->task_fork)
4777 p->sched_class->task_fork(p);
4778 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b1e82065 4779}
4ef0c5c6 4780
b1e82065
PZ
4781void sched_post_fork(struct task_struct *p)
4782{
13685c4a
QY
4783 uclamp_post_fork(p);
4784}
4785
332ac17e
DF
4786unsigned long to_ratio(u64 period, u64 runtime)
4787{
4788 if (runtime == RUNTIME_INF)
c52f14d3 4789 return BW_UNIT;
332ac17e
DF
4790
4791 /*
4792 * Doing this here saves a lot of checks in all
4793 * the calling paths, and returning zero seems
4794 * safe for them anyway.
4795 */
4796 if (period == 0)
4797 return 0;
4798
c52f14d3 4799 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4800}
4801
1da177e4
LT
4802/*
4803 * wake_up_new_task - wake up a newly created task for the first time.
4804 *
4805 * This function will do some initial scheduler statistics housekeeping
4806 * that must be done for every newly created context, then puts the task
4807 * on the runqueue and wakes it.
4808 */
3e51e3ed 4809void wake_up_new_task(struct task_struct *p)
1da177e4 4810{
eb580751 4811 struct rq_flags rf;
dd41f596 4812 struct rq *rq;
fabf318e 4813
eb580751 4814 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4815 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4816#ifdef CONFIG_SMP
4817 /*
4818 * Fork balancing, do it here and not earlier because:
3bd37062 4819 * - cpus_ptr can change in the fork path
d1ccc66d 4820 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4821 *
4822 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4823 * as we're not fully set-up yet.
fabf318e 4824 */
32e839dd 4825 p->recent_used_cpu = task_cpu(p);
ce3614da 4826 rseq_migrate(p);
3aef1551 4827 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4828#endif
b7fa30c9 4829 rq = __task_rq_lock(p, &rf);
4126bad6 4830 update_rq_clock(rq);
d0fe0b9c 4831 post_init_entity_util_avg(p);
0017d735 4832
7a57f32a 4833 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4834 trace_sched_wakeup_new(p);
a7558e01 4835 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4836#ifdef CONFIG_SMP
0aaafaab
PZ
4837 if (p->sched_class->task_woken) {
4838 /*
b19a888c 4839 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4840 * drop it.
4841 */
d8ac8971 4842 rq_unpin_lock(rq, &rf);
efbbd05a 4843 p->sched_class->task_woken(rq, p);
d8ac8971 4844 rq_repin_lock(rq, &rf);
0aaafaab 4845 }
9a897c5a 4846#endif
eb580751 4847 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4848}
4849
e107be36
AK
4850#ifdef CONFIG_PREEMPT_NOTIFIERS
4851
b7203428 4852static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4853
2ecd9d29
PZ
4854void preempt_notifier_inc(void)
4855{
b7203428 4856 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4857}
4858EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4859
4860void preempt_notifier_dec(void)
4861{
b7203428 4862 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4863}
4864EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4865
e107be36 4866/**
80dd99b3 4867 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4868 * @notifier: notifier struct to register
e107be36
AK
4869 */
4870void preempt_notifier_register(struct preempt_notifier *notifier)
4871{
b7203428 4872 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4873 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4874
e107be36
AK
4875 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4876}
4877EXPORT_SYMBOL_GPL(preempt_notifier_register);
4878
4879/**
4880 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4881 * @notifier: notifier struct to unregister
e107be36 4882 *
d84525a8 4883 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4884 */
4885void preempt_notifier_unregister(struct preempt_notifier *notifier)
4886{
4887 hlist_del(&notifier->link);
4888}
4889EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4890
1cde2930 4891static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4892{
4893 struct preempt_notifier *notifier;
e107be36 4894
b67bfe0d 4895 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4896 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4897}
4898
1cde2930
PZ
4899static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4900{
b7203428 4901 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4902 __fire_sched_in_preempt_notifiers(curr);
4903}
4904
e107be36 4905static void
1cde2930
PZ
4906__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4907 struct task_struct *next)
e107be36
AK
4908{
4909 struct preempt_notifier *notifier;
e107be36 4910
b67bfe0d 4911 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4912 notifier->ops->sched_out(notifier, next);
4913}
4914
1cde2930
PZ
4915static __always_inline void
4916fire_sched_out_preempt_notifiers(struct task_struct *curr,
4917 struct task_struct *next)
4918{
b7203428 4919 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4920 __fire_sched_out_preempt_notifiers(curr, next);
4921}
4922
6d6bc0ad 4923#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4924
1cde2930 4925static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4926{
4927}
4928
1cde2930 4929static inline void
e107be36
AK
4930fire_sched_out_preempt_notifiers(struct task_struct *curr,
4931 struct task_struct *next)
4932{
4933}
4934
6d6bc0ad 4935#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4936
31cb1bc0 4937static inline void prepare_task(struct task_struct *next)
4938{
4939#ifdef CONFIG_SMP
4940 /*
4941 * Claim the task as running, we do this before switching to it
4942 * such that any running task will have this set.
58877d34 4943 *
f3dd3f67
TD
4944 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4945 * its ordering comment.
31cb1bc0 4946 */
58877d34 4947 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4948#endif
4949}
4950
4951static inline void finish_task(struct task_struct *prev)
4952{
4953#ifdef CONFIG_SMP
4954 /*
58877d34
PZ
4955 * This must be the very last reference to @prev from this CPU. After
4956 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4957 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4958 * finished.
4959 *
4960 * In particular, the load of prev->state in finish_task_switch() must
4961 * happen before this.
4962 *
4963 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4964 */
4965 smp_store_release(&prev->on_cpu, 0);
4966#endif
4967}
4968
565790d2
PZ
4969#ifdef CONFIG_SMP
4970
8e5bad7d 4971static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4972{
4973 void (*func)(struct rq *rq);
8e5bad7d 4974 struct balance_callback *next;
565790d2 4975
5cb9eaa3 4976 lockdep_assert_rq_held(rq);
565790d2
PZ
4977
4978 while (head) {
4979 func = (void (*)(struct rq *))head->func;
4980 next = head->next;
4981 head->next = NULL;
4982 head = next;
4983
4984 func(rq);
4985 }
4986}
4987
ae792702
PZ
4988static void balance_push(struct rq *rq);
4989
04193d59
PZ
4990/*
4991 * balance_push_callback is a right abuse of the callback interface and plays
4992 * by significantly different rules.
4993 *
4994 * Where the normal balance_callback's purpose is to be ran in the same context
4995 * that queued it (only later, when it's safe to drop rq->lock again),
4996 * balance_push_callback is specifically targeted at __schedule().
4997 *
4998 * This abuse is tolerated because it places all the unlikely/odd cases behind
4999 * a single test, namely: rq->balance_callback == NULL.
5000 */
8e5bad7d 5001struct balance_callback balance_push_callback = {
ae792702 5002 .next = NULL,
8e5bad7d 5003 .func = balance_push,
ae792702
PZ
5004};
5005
8e5bad7d 5006static inline struct balance_callback *
04193d59 5007__splice_balance_callbacks(struct rq *rq, bool split)
565790d2 5008{
8e5bad7d 5009 struct balance_callback *head = rq->balance_callback;
565790d2 5010
04193d59
PZ
5011 if (likely(!head))
5012 return NULL;
5013
5cb9eaa3 5014 lockdep_assert_rq_held(rq);
04193d59
PZ
5015 /*
5016 * Must not take balance_push_callback off the list when
5017 * splice_balance_callbacks() and balance_callbacks() are not
5018 * in the same rq->lock section.
5019 *
5020 * In that case it would be possible for __schedule() to interleave
5021 * and observe the list empty.
5022 */
5023 if (split && head == &balance_push_callback)
5024 head = NULL;
5025 else
565790d2
PZ
5026 rq->balance_callback = NULL;
5027
5028 return head;
5029}
5030
8e5bad7d 5031static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
04193d59
PZ
5032{
5033 return __splice_balance_callbacks(rq, true);
5034}
5035
565790d2
PZ
5036static void __balance_callbacks(struct rq *rq)
5037{
04193d59 5038 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
565790d2
PZ
5039}
5040
8e5bad7d 5041static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
5042{
5043 unsigned long flags;
5044
5045 if (unlikely(head)) {
5cb9eaa3 5046 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 5047 do_balance_callbacks(rq, head);
5cb9eaa3 5048 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
5049 }
5050}
5051
5052#else
5053
5054static inline void __balance_callbacks(struct rq *rq)
5055{
5056}
5057
8e5bad7d 5058static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
565790d2
PZ
5059{
5060 return NULL;
5061}
5062
8e5bad7d 5063static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
5064{
5065}
5066
5067#endif
5068
269d5992
PZ
5069static inline void
5070prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 5071{
269d5992
PZ
5072 /*
5073 * Since the runqueue lock will be released by the next
5074 * task (which is an invalid locking op but in the case
5075 * of the scheduler it's an obvious special-case), so we
5076 * do an early lockdep release here:
5077 */
5078 rq_unpin_lock(rq, rf);
9ef7e7e3 5079 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 5080#ifdef CONFIG_DEBUG_SPINLOCK
5081 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 5082 rq_lockp(rq)->owner = next;
31cb1bc0 5083#endif
269d5992
PZ
5084}
5085
5086static inline void finish_lock_switch(struct rq *rq)
5087{
31cb1bc0 5088 /*
5089 * If we are tracking spinlock dependencies then we have to
5090 * fix up the runqueue lock - which gets 'carried over' from
5091 * prev into current:
5092 */
9ef7e7e3 5093 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 5094 __balance_callbacks(rq);
5cb9eaa3 5095 raw_spin_rq_unlock_irq(rq);
31cb1bc0 5096}
5097
325ea10c
IM
5098/*
5099 * NOP if the arch has not defined these:
5100 */
5101
5102#ifndef prepare_arch_switch
5103# define prepare_arch_switch(next) do { } while (0)
5104#endif
5105
5106#ifndef finish_arch_post_lock_switch
5107# define finish_arch_post_lock_switch() do { } while (0)
5108#endif
5109
5fbda3ec
TG
5110static inline void kmap_local_sched_out(void)
5111{
5112#ifdef CONFIG_KMAP_LOCAL
5113 if (unlikely(current->kmap_ctrl.idx))
5114 __kmap_local_sched_out();
5115#endif
5116}
5117
5118static inline void kmap_local_sched_in(void)
5119{
5120#ifdef CONFIG_KMAP_LOCAL
5121 if (unlikely(current->kmap_ctrl.idx))
5122 __kmap_local_sched_in();
5123#endif
5124}
5125
4866cde0
NP
5126/**
5127 * prepare_task_switch - prepare to switch tasks
5128 * @rq: the runqueue preparing to switch
421cee29 5129 * @prev: the current task that is being switched out
4866cde0
NP
5130 * @next: the task we are going to switch to.
5131 *
5132 * This is called with the rq lock held and interrupts off. It must
5133 * be paired with a subsequent finish_task_switch after the context
5134 * switch.
5135 *
5136 * prepare_task_switch sets up locking and calls architecture specific
5137 * hooks.
5138 */
e107be36
AK
5139static inline void
5140prepare_task_switch(struct rq *rq, struct task_struct *prev,
5141 struct task_struct *next)
4866cde0 5142{
0ed557aa 5143 kcov_prepare_switch(prev);
43148951 5144 sched_info_switch(rq, prev, next);
fe4b04fa 5145 perf_event_task_sched_out(prev, next);
d7822b1e 5146 rseq_preempt(prev);
e107be36 5147 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 5148 kmap_local_sched_out();
31cb1bc0 5149 prepare_task(next);
4866cde0
NP
5150 prepare_arch_switch(next);
5151}
5152
1da177e4
LT
5153/**
5154 * finish_task_switch - clean up after a task-switch
5155 * @prev: the thread we just switched away from.
5156 *
4866cde0
NP
5157 * finish_task_switch must be called after the context switch, paired
5158 * with a prepare_task_switch call before the context switch.
5159 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5160 * and do any other architecture-specific cleanup actions.
1da177e4
LT
5161 *
5162 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 5163 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
5164 * with the lock held can cause deadlocks; see schedule() for
5165 * details.)
dfa50b60
ON
5166 *
5167 * The context switch have flipped the stack from under us and restored the
5168 * local variables which were saved when this task called schedule() in the
5169 * past. prev == current is still correct but we need to recalculate this_rq
5170 * because prev may have moved to another CPU.
1da177e4 5171 */
dfa50b60 5172static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
5173 __releases(rq->lock)
5174{
dfa50b60 5175 struct rq *rq = this_rq();
1da177e4 5176 struct mm_struct *mm = rq->prev_mm;
fa2c3254 5177 unsigned int prev_state;
1da177e4 5178
609ca066
PZ
5179 /*
5180 * The previous task will have left us with a preempt_count of 2
5181 * because it left us after:
5182 *
5183 * schedule()
5184 * preempt_disable(); // 1
5185 * __schedule()
5186 * raw_spin_lock_irq(&rq->lock) // 2
5187 *
5188 * Also, see FORK_PREEMPT_COUNT.
5189 */
e2bf1c4b
PZ
5190 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5191 "corrupted preempt_count: %s/%d/0x%x\n",
5192 current->comm, current->pid, preempt_count()))
5193 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 5194
1da177e4
LT
5195 rq->prev_mm = NULL;
5196
5197 /*
5198 * A task struct has one reference for the use as "current".
c394cc9f 5199 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
5200 * schedule one last time. The schedule call will never return, and
5201 * the scheduled task must drop that reference.
95913d97
PZ
5202 *
5203 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 5204 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
5205 * running on another CPU and we could rave with its RUNNING -> DEAD
5206 * transition, resulting in a double drop.
1da177e4 5207 */
2f064a59 5208 prev_state = READ_ONCE(prev->__state);
bf9fae9f 5209 vtime_task_switch(prev);
a8d757ef 5210 perf_event_task_sched_in(prev, current);
31cb1bc0 5211 finish_task(prev);
0fdcccfa 5212 tick_nohz_task_switch();
31cb1bc0 5213 finish_lock_switch(rq);
01f23e16 5214 finish_arch_post_lock_switch();
0ed557aa 5215 kcov_finish_switch(current);
5fbda3ec
TG
5216 /*
5217 * kmap_local_sched_out() is invoked with rq::lock held and
5218 * interrupts disabled. There is no requirement for that, but the
5219 * sched out code does not have an interrupt enabled section.
5220 * Restoring the maps on sched in does not require interrupts being
5221 * disabled either.
5222 */
5223 kmap_local_sched_in();
e8fa1362 5224
e107be36 5225 fire_sched_in_preempt_notifiers(current);
306e0604 5226 /*
70216e18
MD
5227 * When switching through a kernel thread, the loop in
5228 * membarrier_{private,global}_expedited() may have observed that
5229 * kernel thread and not issued an IPI. It is therefore possible to
5230 * schedule between user->kernel->user threads without passing though
5231 * switch_mm(). Membarrier requires a barrier after storing to
5232 * rq->curr, before returning to userspace, so provide them here:
5233 *
5234 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
aa464ba9 5235 * provided by mmdrop_lazy_tlb(),
70216e18 5236 * - a sync_core for SYNC_CORE.
306e0604 5237 */
70216e18
MD
5238 if (mm) {
5239 membarrier_mm_sync_core_before_usermode(mm);
aa464ba9 5240 mmdrop_lazy_tlb_sched(mm);
70216e18 5241 }
aa464ba9 5242
1cef1150
PZ
5243 if (unlikely(prev_state == TASK_DEAD)) {
5244 if (prev->sched_class->task_dead)
5245 prev->sched_class->task_dead(prev);
68f24b08 5246
1cef1150
PZ
5247 /* Task is done with its stack. */
5248 put_task_stack(prev);
5249
0ff7b2cf 5250 put_task_struct_rcu_user(prev);
c6fd91f0 5251 }
99e5ada9 5252
dfa50b60 5253 return rq;
1da177e4
LT
5254}
5255
5256/**
5257 * schedule_tail - first thing a freshly forked thread must call.
5258 * @prev: the thread we just switched away from.
5259 */
722a9f92 5260asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
5261 __releases(rq->lock)
5262{
609ca066
PZ
5263 /*
5264 * New tasks start with FORK_PREEMPT_COUNT, see there and
5265 * finish_task_switch() for details.
5266 *
5267 * finish_task_switch() will drop rq->lock() and lower preempt_count
5268 * and the preempt_enable() will end up enabling preemption (on
5269 * PREEMPT_COUNT kernels).
5270 */
5271
13c2235b 5272 finish_task_switch(prev);
1a43a14a 5273 preempt_enable();
70b97a7f 5274
1da177e4 5275 if (current->set_child_tid)
b488893a 5276 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
5277
5278 calculate_sigpending();
1da177e4
LT
5279}
5280
5281/*
dfa50b60 5282 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 5283 */
04936948 5284static __always_inline struct rq *
70b97a7f 5285context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 5286 struct task_struct *next, struct rq_flags *rf)
1da177e4 5287{
e107be36 5288 prepare_task_switch(rq, prev, next);
fe4b04fa 5289
9226d125
ZA
5290 /*
5291 * For paravirt, this is coupled with an exit in switch_to to
5292 * combine the page table reload and the switch backend into
5293 * one hypercall.
5294 */
224101ed 5295 arch_start_context_switch(prev);
9226d125 5296
306e0604 5297 /*
139d025c 5298 * kernel -> kernel lazy + transfer active
aa464ba9 5299 * user -> kernel lazy + mmgrab_lazy_tlb() active
139d025c 5300 *
aa464ba9 5301 * kernel -> user switch + mmdrop_lazy_tlb() active
139d025c 5302 * user -> user switch
223baf9d
MD
5303 *
5304 * switch_mm_cid() needs to be updated if the barriers provided
5305 * by context_switch() are modified.
306e0604 5306 */
139d025c
PZ
5307 if (!next->mm) { // to kernel
5308 enter_lazy_tlb(prev->active_mm, next);
5309
5310 next->active_mm = prev->active_mm;
5311 if (prev->mm) // from user
aa464ba9 5312 mmgrab_lazy_tlb(prev->active_mm);
139d025c
PZ
5313 else
5314 prev->active_mm = NULL;
5315 } else { // to user
227a4aad 5316 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
5317 /*
5318 * sys_membarrier() requires an smp_mb() between setting
227a4aad 5319 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
5320 *
5321 * The below provides this either through switch_mm(), or in
5322 * case 'prev->active_mm == next->mm' through
5323 * finish_task_switch()'s mmdrop().
5324 */
139d025c 5325 switch_mm_irqs_off(prev->active_mm, next->mm, next);
bd74fdae 5326 lru_gen_use_mm(next->mm);
1da177e4 5327
139d025c 5328 if (!prev->mm) { // from kernel
aa464ba9 5329 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
139d025c
PZ
5330 rq->prev_mm = prev->active_mm;
5331 prev->active_mm = NULL;
5332 }
1da177e4 5333 }
92509b73 5334
223baf9d
MD
5335 /* switch_mm_cid() requires the memory barriers above. */
5336 switch_mm_cid(rq, prev, next);
5337
cb42c9a3 5338 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 5339
269d5992 5340 prepare_lock_switch(rq, next, rf);
1da177e4
LT
5341
5342 /* Here we just switch the register state and the stack. */
5343 switch_to(prev, next, prev);
dd41f596 5344 barrier();
dfa50b60
ON
5345
5346 return finish_task_switch(prev);
1da177e4
LT
5347}
5348
5349/*
1c3e8264 5350 * nr_running and nr_context_switches:
1da177e4
LT
5351 *
5352 * externally visible scheduler statistics: current number of runnable
1c3e8264 5353 * threads, total number of context switches performed since bootup.
1da177e4 5354 */
01aee8fd 5355unsigned int nr_running(void)
1da177e4 5356{
01aee8fd 5357 unsigned int i, sum = 0;
1da177e4
LT
5358
5359 for_each_online_cpu(i)
5360 sum += cpu_rq(i)->nr_running;
5361
5362 return sum;
f711f609 5363}
1da177e4 5364
2ee507c4 5365/*
d1ccc66d 5366 * Check if only the current task is running on the CPU.
00cc1633
DD
5367 *
5368 * Caution: this function does not check that the caller has disabled
5369 * preemption, thus the result might have a time-of-check-to-time-of-use
5370 * race. The caller is responsible to use it correctly, for example:
5371 *
dfcb245e 5372 * - from a non-preemptible section (of course)
00cc1633
DD
5373 *
5374 * - from a thread that is bound to a single CPU
5375 *
5376 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
5377 */
5378bool single_task_running(void)
5379{
00cc1633 5380 return raw_rq()->nr_running == 1;
2ee507c4
TC
5381}
5382EXPORT_SYMBOL(single_task_running);
5383
7c182722
ZL
5384unsigned long long nr_context_switches_cpu(int cpu)
5385{
5386 return cpu_rq(cpu)->nr_switches;
5387}
5388
1da177e4 5389unsigned long long nr_context_switches(void)
46cb4b7c 5390{
cc94abfc
SR
5391 int i;
5392 unsigned long long sum = 0;
46cb4b7c 5393
0a945022 5394 for_each_possible_cpu(i)
1da177e4 5395 sum += cpu_rq(i)->nr_switches;
46cb4b7c 5396
1da177e4
LT
5397 return sum;
5398}
483b4ee6 5399
145d952a
DL
5400/*
5401 * Consumers of these two interfaces, like for example the cpuidle menu
5402 * governor, are using nonsensical data. Preferring shallow idle state selection
5403 * for a CPU that has IO-wait which might not even end up running the task when
5404 * it does become runnable.
5405 */
5406
8fc2858e 5407unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
5408{
5409 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5410}
5411
e33a9bba 5412/*
b19a888c 5413 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
5414 *
5415 * The idea behind IO-wait account is to account the idle time that we could
5416 * have spend running if it were not for IO. That is, if we were to improve the
5417 * storage performance, we'd have a proportional reduction in IO-wait time.
5418 *
5419 * This all works nicely on UP, where, when a task blocks on IO, we account
5420 * idle time as IO-wait, because if the storage were faster, it could've been
5421 * running and we'd not be idle.
5422 *
5423 * This has been extended to SMP, by doing the same for each CPU. This however
5424 * is broken.
5425 *
5426 * Imagine for instance the case where two tasks block on one CPU, only the one
5427 * CPU will have IO-wait accounted, while the other has regular idle. Even
5428 * though, if the storage were faster, both could've ran at the same time,
5429 * utilising both CPUs.
5430 *
5431 * This means, that when looking globally, the current IO-wait accounting on
5432 * SMP is a lower bound, by reason of under accounting.
5433 *
5434 * Worse, since the numbers are provided per CPU, they are sometimes
5435 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5436 * associated with any one particular CPU, it can wake to another CPU than it
5437 * blocked on. This means the per CPU IO-wait number is meaningless.
5438 *
5439 * Task CPU affinities can make all that even more 'interesting'.
5440 */
5441
97455168 5442unsigned int nr_iowait(void)
1da177e4 5443{
97455168 5444 unsigned int i, sum = 0;
483b4ee6 5445
0a945022 5446 for_each_possible_cpu(i)
145d952a 5447 sum += nr_iowait_cpu(i);
46cb4b7c 5448
1da177e4
LT
5449 return sum;
5450}
483b4ee6 5451
dd41f596 5452#ifdef CONFIG_SMP
8a0be9ef 5453
46cb4b7c 5454/*
38022906
PZ
5455 * sched_exec - execve() is a valuable balancing opportunity, because at
5456 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 5457 */
38022906 5458void sched_exec(void)
46cb4b7c 5459{
38022906 5460 struct task_struct *p = current;
1da177e4 5461 unsigned long flags;
0017d735 5462 int dest_cpu;
46cb4b7c 5463
8f42ced9 5464 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 5465 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
5466 if (dest_cpu == smp_processor_id())
5467 goto unlock;
38022906 5468
8f42ced9 5469 if (likely(cpu_active(dest_cpu))) {
969c7921 5470 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 5471
8f42ced9
PZ
5472 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5473 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
5474 return;
5475 }
0017d735 5476unlock:
8f42ced9 5477 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 5478}
dd41f596 5479
1da177e4
LT
5480#endif
5481
1da177e4 5482DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 5483DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
5484
5485EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 5486EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 5487
6075620b
GG
5488/*
5489 * The function fair_sched_class.update_curr accesses the struct curr
5490 * and its field curr->exec_start; when called from task_sched_runtime(),
5491 * we observe a high rate of cache misses in practice.
5492 * Prefetching this data results in improved performance.
5493 */
5494static inline void prefetch_curr_exec_start(struct task_struct *p)
5495{
5496#ifdef CONFIG_FAIR_GROUP_SCHED
5497 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5498#else
5499 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5500#endif
5501 prefetch(curr);
5502 prefetch(&curr->exec_start);
5503}
5504
c5f8d995
HS
5505/*
5506 * Return accounted runtime for the task.
5507 * In case the task is currently running, return the runtime plus current's
5508 * pending runtime that have not been accounted yet.
5509 */
5510unsigned long long task_sched_runtime(struct task_struct *p)
5511{
eb580751 5512 struct rq_flags rf;
c5f8d995 5513 struct rq *rq;
6e998916 5514 u64 ns;
c5f8d995 5515
911b2898
PZ
5516#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5517 /*
97fb7a0a 5518 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
5519 * So we have a optimization chance when the task's delta_exec is 0.
5520 * Reading ->on_cpu is racy, but this is ok.
5521 *
d1ccc66d
IM
5522 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5523 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 5524 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
5525 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5526 * been accounted, so we're correct here as well.
911b2898 5527 */
da0c1e65 5528 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
5529 return p->se.sum_exec_runtime;
5530#endif
5531
eb580751 5532 rq = task_rq_lock(p, &rf);
6e998916
SG
5533 /*
5534 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5535 * project cycles that may never be accounted to this
5536 * thread, breaking clock_gettime().
5537 */
5538 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 5539 prefetch_curr_exec_start(p);
6e998916
SG
5540 update_rq_clock(rq);
5541 p->sched_class->update_curr(rq);
5542 }
5543 ns = p->se.sum_exec_runtime;
eb580751 5544 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
5545
5546 return ns;
5547}
48f24c4d 5548
c006fac5
PT
5549#ifdef CONFIG_SCHED_DEBUG
5550static u64 cpu_resched_latency(struct rq *rq)
5551{
5552 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5553 u64 resched_latency, now = rq_clock(rq);
5554 static bool warned_once;
5555
5556 if (sysctl_resched_latency_warn_once && warned_once)
5557 return 0;
5558
5559 if (!need_resched() || !latency_warn_ms)
5560 return 0;
5561
5562 if (system_state == SYSTEM_BOOTING)
5563 return 0;
5564
5565 if (!rq->last_seen_need_resched_ns) {
5566 rq->last_seen_need_resched_ns = now;
5567 rq->ticks_without_resched = 0;
5568 return 0;
5569 }
5570
5571 rq->ticks_without_resched++;
5572 resched_latency = now - rq->last_seen_need_resched_ns;
5573 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5574 return 0;
5575
5576 warned_once = true;
5577
5578 return resched_latency;
5579}
5580
5581static int __init setup_resched_latency_warn_ms(char *str)
5582{
5583 long val;
5584
5585 if ((kstrtol(str, 0, &val))) {
5586 pr_warn("Unable to set resched_latency_warn_ms\n");
5587 return 1;
5588 }
5589
5590 sysctl_resched_latency_warn_ms = val;
5591 return 1;
5592}
5593__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5594#else
5595static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5596#endif /* CONFIG_SCHED_DEBUG */
5597
7835b98b
CL
5598/*
5599 * This function gets called by the timer code, with HZ frequency.
5600 * We call it with interrupts disabled.
7835b98b
CL
5601 */
5602void scheduler_tick(void)
5603{
7835b98b
CL
5604 int cpu = smp_processor_id();
5605 struct rq *rq = cpu_rq(cpu);
dd41f596 5606 struct task_struct *curr = rq->curr;
8a8c69c3 5607 struct rq_flags rf;
b4eccf5f 5608 unsigned long thermal_pressure;
c006fac5 5609 u64 resched_latency;
3e51f33f 5610
7fb3ff22
YP
5611 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5612 arch_scale_freq_tick();
5613
3e51f33f 5614 sched_clock_tick();
dd41f596 5615
8a8c69c3
PZ
5616 rq_lock(rq, &rf);
5617
3e51f33f 5618 update_rq_clock(rq);
b4eccf5f 5619 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 5620 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 5621 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
5622 if (sched_feat(LATENCY_WARN))
5623 resched_latency = cpu_resched_latency(rq);
3289bdb4 5624 calc_global_load_tick(rq);
4feee7d1 5625 sched_core_tick(rq);
223baf9d 5626 task_tick_mm_cid(rq, curr);
8a8c69c3
PZ
5627
5628 rq_unlock(rq, &rf);
7835b98b 5629
c006fac5
PT
5630 if (sched_feat(LATENCY_WARN) && resched_latency)
5631 resched_latency_warn(cpu, resched_latency);
5632
e9d2b064 5633 perf_event_task_tick();
e220d2dc 5634
e418e1c2 5635#ifdef CONFIG_SMP
6eb57e0d 5636 rq->idle_balance = idle_cpu(cpu);
7caff66f 5637 trigger_load_balance(rq);
e418e1c2 5638#endif
1da177e4
LT
5639}
5640
265f22a9 5641#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
5642
5643struct tick_work {
5644 int cpu;
b55bd585 5645 atomic_t state;
d84b3131
FW
5646 struct delayed_work work;
5647};
b55bd585
PM
5648/* Values for ->state, see diagram below. */
5649#define TICK_SCHED_REMOTE_OFFLINE 0
5650#define TICK_SCHED_REMOTE_OFFLINING 1
5651#define TICK_SCHED_REMOTE_RUNNING 2
5652
5653/*
5654 * State diagram for ->state:
5655 *
5656 *
5657 * TICK_SCHED_REMOTE_OFFLINE
5658 * | ^
5659 * | |
5660 * | | sched_tick_remote()
5661 * | |
5662 * | |
5663 * +--TICK_SCHED_REMOTE_OFFLINING
5664 * | ^
5665 * | |
5666 * sched_tick_start() | | sched_tick_stop()
5667 * | |
5668 * V |
5669 * TICK_SCHED_REMOTE_RUNNING
5670 *
5671 *
5672 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5673 * and sched_tick_start() are happy to leave the state in RUNNING.
5674 */
d84b3131
FW
5675
5676static struct tick_work __percpu *tick_work_cpu;
5677
5678static void sched_tick_remote(struct work_struct *work)
5679{
5680 struct delayed_work *dwork = to_delayed_work(work);
5681 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5682 int cpu = twork->cpu;
5683 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5684 struct task_struct *curr;
d84b3131 5685 struct rq_flags rf;
d9c0ffca 5686 u64 delta;
b55bd585 5687 int os;
d84b3131
FW
5688
5689 /*
5690 * Handle the tick only if it appears the remote CPU is running in full
5691 * dynticks mode. The check is racy by nature, but missing a tick or
5692 * having one too much is no big deal because the scheduler tick updates
5693 * statistics and checks timeslices in a time-independent way, regardless
5694 * of when exactly it is running.
5695 */
488603b8 5696 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5697 goto out_requeue;
d84b3131 5698
d9c0ffca
FW
5699 rq_lock_irq(rq, &rf);
5700 curr = rq->curr;
488603b8 5701 if (cpu_is_offline(cpu))
d9c0ffca 5702 goto out_unlock;
d84b3131 5703
d9c0ffca 5704 update_rq_clock(rq);
d9c0ffca 5705
488603b8
SW
5706 if (!is_idle_task(curr)) {
5707 /*
5708 * Make sure the next tick runs within a reasonable
5709 * amount of time.
5710 */
5711 delta = rq_clock_task(rq) - curr->se.exec_start;
5712 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5713 }
d9c0ffca
FW
5714 curr->sched_class->task_tick(rq, curr, 0);
5715
ebc0f83c 5716 calc_load_nohz_remote(rq);
d9c0ffca
FW
5717out_unlock:
5718 rq_unlock_irq(rq, &rf);
d9c0ffca 5719out_requeue:
ebc0f83c 5720
d84b3131
FW
5721 /*
5722 * Run the remote tick once per second (1Hz). This arbitrary
5723 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5724 * to keep scheduler internal stats reasonably up to date. But
5725 * first update state to reflect hotplug activity if required.
d84b3131 5726 */
b55bd585
PM
5727 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5728 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5729 if (os == TICK_SCHED_REMOTE_RUNNING)
5730 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5731}
5732
5733static void sched_tick_start(int cpu)
5734{
b55bd585 5735 int os;
d84b3131
FW
5736 struct tick_work *twork;
5737
04d4e665 5738 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5739 return;
5740
5741 WARN_ON_ONCE(!tick_work_cpu);
5742
5743 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5744 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5745 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5746 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5747 twork->cpu = cpu;
5748 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5749 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5750 }
d84b3131
FW
5751}
5752
5753#ifdef CONFIG_HOTPLUG_CPU
5754static void sched_tick_stop(int cpu)
5755{
5756 struct tick_work *twork;
b55bd585 5757 int os;
d84b3131 5758
04d4e665 5759 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5760 return;
5761
5762 WARN_ON_ONCE(!tick_work_cpu);
5763
5764 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5765 /* There cannot be competing actions, but don't rely on stop-machine. */
5766 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5767 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5768 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5769}
5770#endif /* CONFIG_HOTPLUG_CPU */
5771
5772int __init sched_tick_offload_init(void)
5773{
5774 tick_work_cpu = alloc_percpu(struct tick_work);
5775 BUG_ON(!tick_work_cpu);
d84b3131
FW
5776 return 0;
5777}
5778
5779#else /* !CONFIG_NO_HZ_FULL */
5780static inline void sched_tick_start(int cpu) { }
5781static inline void sched_tick_stop(int cpu) { }
265f22a9 5782#endif
1da177e4 5783
c1a280b6 5784#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5785 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5786/*
5787 * If the value passed in is equal to the current preempt count
5788 * then we just disabled preemption. Start timing the latency.
5789 */
5790static inline void preempt_latency_start(int val)
5791{
5792 if (preempt_count() == val) {
5793 unsigned long ip = get_lock_parent_ip();
5794#ifdef CONFIG_DEBUG_PREEMPT
5795 current->preempt_disable_ip = ip;
5796#endif
5797 trace_preempt_off(CALLER_ADDR0, ip);
5798 }
5799}
7e49fcce 5800
edafe3a5 5801void preempt_count_add(int val)
1da177e4 5802{
6cd8a4bb 5803#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5804 /*
5805 * Underflow?
5806 */
9a11b49a
IM
5807 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5808 return;
6cd8a4bb 5809#endif
bdb43806 5810 __preempt_count_add(val);
6cd8a4bb 5811#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5812 /*
5813 * Spinlock count overflowing soon?
5814 */
33859f7f
MOS
5815 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5816 PREEMPT_MASK - 10);
6cd8a4bb 5817#endif
47252cfb 5818 preempt_latency_start(val);
1da177e4 5819}
bdb43806 5820EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5821NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5822
47252cfb
SR
5823/*
5824 * If the value passed in equals to the current preempt count
5825 * then we just enabled preemption. Stop timing the latency.
5826 */
5827static inline void preempt_latency_stop(int val)
5828{
5829 if (preempt_count() == val)
5830 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5831}
5832
edafe3a5 5833void preempt_count_sub(int val)
1da177e4 5834{
6cd8a4bb 5835#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5836 /*
5837 * Underflow?
5838 */
01e3eb82 5839 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5840 return;
1da177e4
LT
5841 /*
5842 * Is the spinlock portion underflowing?
5843 */
9a11b49a
IM
5844 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5845 !(preempt_count() & PREEMPT_MASK)))
5846 return;
6cd8a4bb 5847#endif
9a11b49a 5848
47252cfb 5849 preempt_latency_stop(val);
bdb43806 5850 __preempt_count_sub(val);
1da177e4 5851}
bdb43806 5852EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5853NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5854
47252cfb
SR
5855#else
5856static inline void preempt_latency_start(int val) { }
5857static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5858#endif
5859
59ddbcb2
IM
5860static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5861{
5862#ifdef CONFIG_DEBUG_PREEMPT
5863 return p->preempt_disable_ip;
5864#else
5865 return 0;
5866#endif
5867}
5868
1da177e4 5869/*
dd41f596 5870 * Print scheduling while atomic bug:
1da177e4 5871 */
dd41f596 5872static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5873{
d1c6d149
VN
5874 /* Save this before calling printk(), since that will clobber it */
5875 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5876
664dfa65
DJ
5877 if (oops_in_progress)
5878 return;
5879
3df0fc5b
PZ
5880 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5881 prev->comm, prev->pid, preempt_count());
838225b4 5882
dd41f596 5883 debug_show_held_locks(prev);
e21f5b15 5884 print_modules();
dd41f596
IM
5885 if (irqs_disabled())
5886 print_irqtrace_events(prev);
d1c6d149
VN
5887 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5888 && in_atomic_preempt_off()) {
8f47b187 5889 pr_err("Preemption disabled at:");
2062a4e8 5890 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5891 }
79cc1ba7 5892 check_panic_on_warn("scheduling while atomic");
748c7201 5893
6135fc1e 5894 dump_stack();
373d4d09 5895 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5896}
1da177e4 5897
dd41f596
IM
5898/*
5899 * Various schedule()-time debugging checks and statistics:
5900 */
312364f3 5901static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5902{
0d9e2632 5903#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5904 if (task_stack_end_corrupted(prev))
5905 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5906
5907 if (task_scs_end_corrupted(prev))
5908 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5909#endif
b99def8b 5910
312364f3 5911#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5912 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5913 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5914 prev->comm, prev->pid, prev->non_block_count);
5915 dump_stack();
5916 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5917 }
5918#endif
5919
1dc0fffc 5920 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5921 __schedule_bug(prev);
1dc0fffc
PZ
5922 preempt_count_set(PREEMPT_DISABLED);
5923 }
b3fbab05 5924 rcu_sleep_check();
9f68b5b7 5925 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5926
1da177e4
LT
5927 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5928
ae92882e 5929 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5930}
5931
457d1f46
CY
5932static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5933 struct rq_flags *rf)
5934{
5935#ifdef CONFIG_SMP
5936 const struct sched_class *class;
5937 /*
5938 * We must do the balancing pass before put_prev_task(), such
5939 * that when we release the rq->lock the task is in the same
5940 * state as before we took rq->lock.
5941 *
5942 * We can terminate the balance pass as soon as we know there is
5943 * a runnable task of @class priority or higher.
5944 */
5945 for_class_range(class, prev->sched_class, &idle_sched_class) {
5946 if (class->balance(rq, prev, rf))
5947 break;
5948 }
5949#endif
5950
5951 put_prev_task(rq, prev);
5952}
5953
dd41f596
IM
5954/*
5955 * Pick up the highest-prio task:
5956 */
5957static inline struct task_struct *
539f6512 5958__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5959{
49ee5768 5960 const struct sched_class *class;
dd41f596 5961 struct task_struct *p;
1da177e4
LT
5962
5963 /*
0ba87bb2
PZ
5964 * Optimization: we know that if all tasks are in the fair class we can
5965 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5966 * higher scheduling class, because otherwise those lose the
0ba87bb2 5967 * opportunity to pull in more work from other CPUs.
1da177e4 5968 */
546a3fee 5969 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
0ba87bb2
PZ
5970 rq->nr_running == rq->cfs.h_nr_running)) {
5971
5d7d6056 5972 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5973 if (unlikely(p == RETRY_TASK))
67692435 5974 goto restart;
6ccdc84b 5975
1699949d 5976 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5977 if (!p) {
f488e105 5978 put_prev_task(rq, prev);
98c2f700 5979 p = pick_next_task_idle(rq);
f488e105 5980 }
6ccdc84b
PZ
5981
5982 return p;
1da177e4
LT
5983 }
5984
67692435 5985restart:
457d1f46 5986 put_prev_task_balance(rq, prev, rf);
67692435 5987
34f971f6 5988 for_each_class(class) {
98c2f700 5989 p = class->pick_next_task(rq);
67692435 5990 if (p)
dd41f596 5991 return p;
dd41f596 5992 }
34f971f6 5993
bc9ffef3 5994 BUG(); /* The idle class should always have a runnable task. */
dd41f596 5995}
1da177e4 5996
9edeaea1 5997#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5998static inline bool is_task_rq_idle(struct task_struct *t)
5999{
6000 return (task_rq(t)->idle == t);
6001}
6002
6003static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6004{
6005 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6006}
6007
6008static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6009{
6010 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6011 return true;
6012
6013 return a->core_cookie == b->core_cookie;
6014}
6015
bc9ffef3 6016static inline struct task_struct *pick_task(struct rq *rq)
539f6512 6017{
bc9ffef3
PZ
6018 const struct sched_class *class;
6019 struct task_struct *p;
539f6512 6020
bc9ffef3
PZ
6021 for_each_class(class) {
6022 p = class->pick_task(rq);
6023 if (p)
6024 return p;
539f6512
PZ
6025 }
6026
bc9ffef3 6027 BUG(); /* The idle class should always have a runnable task. */
539f6512
PZ
6028}
6029
c6047c2e
JFG
6030extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6031
5b6547ed
PZ
6032static void queue_core_balance(struct rq *rq);
6033
539f6512
PZ
6034static struct task_struct *
6035pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6036{
bc9ffef3 6037 struct task_struct *next, *p, *max = NULL;
539f6512 6038 const struct cpumask *smt_mask;
c6047c2e 6039 bool fi_before = false;
4feee7d1 6040 bool core_clock_updated = (rq == rq->core);
bc9ffef3
PZ
6041 unsigned long cookie;
6042 int i, cpu, occ = 0;
6043 struct rq *rq_i;
539f6512 6044 bool need_sync;
539f6512
PZ
6045
6046 if (!sched_core_enabled(rq))
6047 return __pick_next_task(rq, prev, rf);
6048
6049 cpu = cpu_of(rq);
6050
6051 /* Stopper task is switching into idle, no need core-wide selection. */
6052 if (cpu_is_offline(cpu)) {
6053 /*
6054 * Reset core_pick so that we don't enter the fastpath when
6055 * coming online. core_pick would already be migrated to
6056 * another cpu during offline.
6057 */
6058 rq->core_pick = NULL;
6059 return __pick_next_task(rq, prev, rf);
6060 }
6061
6062 /*
6063 * If there were no {en,de}queues since we picked (IOW, the task
6064 * pointers are all still valid), and we haven't scheduled the last
6065 * pick yet, do so now.
6066 *
6067 * rq->core_pick can be NULL if no selection was made for a CPU because
6068 * it was either offline or went offline during a sibling's core-wide
6069 * selection. In this case, do a core-wide selection.
6070 */
6071 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6072 rq->core->core_pick_seq != rq->core_sched_seq &&
6073 rq->core_pick) {
6074 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6075
6076 next = rq->core_pick;
6077 if (next != prev) {
6078 put_prev_task(rq, prev);
6079 set_next_task(rq, next);
6080 }
6081
6082 rq->core_pick = NULL;
5b6547ed 6083 goto out;
539f6512
PZ
6084 }
6085
6086 put_prev_task_balance(rq, prev, rf);
6087
6088 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
6089 need_sync = !!rq->core->core_cookie;
6090
6091 /* reset state */
6092 rq->core->core_cookie = 0UL;
4feee7d1
JD
6093 if (rq->core->core_forceidle_count) {
6094 if (!core_clock_updated) {
6095 update_rq_clock(rq->core);
6096 core_clock_updated = true;
6097 }
6098 sched_core_account_forceidle(rq);
6099 /* reset after accounting force idle */
6100 rq->core->core_forceidle_start = 0;
6101 rq->core->core_forceidle_count = 0;
6102 rq->core->core_forceidle_occupation = 0;
7afbba11
JFG
6103 need_sync = true;
6104 fi_before = true;
7afbba11 6105 }
539f6512
PZ
6106
6107 /*
6108 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6109 *
6110 * @task_seq guards the task state ({en,de}queues)
6111 * @pick_seq is the @task_seq we did a selection on
6112 * @sched_seq is the @pick_seq we scheduled
6113 *
6114 * However, preemptions can cause multiple picks on the same task set.
6115 * 'Fix' this by also increasing @task_seq for every pick.
6116 */
6117 rq->core->core_task_seq++;
539f6512 6118
7afbba11
JFG
6119 /*
6120 * Optimize for common case where this CPU has no cookies
6121 * and there are no cookied tasks running on siblings.
6122 */
6123 if (!need_sync) {
bc9ffef3 6124 next = pick_task(rq);
7afbba11
JFG
6125 if (!next->core_cookie) {
6126 rq->core_pick = NULL;
c6047c2e
JFG
6127 /*
6128 * For robustness, update the min_vruntime_fi for
6129 * unconstrained picks as well.
6130 */
6131 WARN_ON_ONCE(fi_before);
6132 task_vruntime_update(rq, next, false);
5b6547ed 6133 goto out_set_next;
7afbba11 6134 }
8039e96f 6135 }
7afbba11 6136
bc9ffef3
PZ
6137 /*
6138 * For each thread: do the regular task pick and find the max prio task
6139 * amongst them.
6140 *
6141 * Tie-break prio towards the current CPU
6142 */
6143 for_each_cpu_wrap(i, smt_mask, cpu) {
6144 rq_i = cpu_rq(i);
539f6512 6145
4feee7d1
JD
6146 /*
6147 * Current cpu always has its clock updated on entrance to
6148 * pick_next_task(). If the current cpu is not the core,
6149 * the core may also have been updated above.
6150 */
6151 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
539f6512 6152 update_rq_clock(rq_i);
bc9ffef3
PZ
6153
6154 p = rq_i->core_pick = pick_task(rq_i);
6155 if (!max || prio_less(max, p, fi_before))
6156 max = p;
539f6512
PZ
6157 }
6158
bc9ffef3
PZ
6159 cookie = rq->core->core_cookie = max->core_cookie;
6160
539f6512 6161 /*
bc9ffef3
PZ
6162 * For each thread: try and find a runnable task that matches @max or
6163 * force idle.
539f6512 6164 */
bc9ffef3
PZ
6165 for_each_cpu(i, smt_mask) {
6166 rq_i = cpu_rq(i);
6167 p = rq_i->core_pick;
539f6512 6168
bc9ffef3
PZ
6169 if (!cookie_equals(p, cookie)) {
6170 p = NULL;
6171 if (cookie)
6172 p = sched_core_find(rq_i, cookie);
7afbba11 6173 if (!p)
bc9ffef3
PZ
6174 p = idle_sched_class.pick_task(rq_i);
6175 }
539f6512 6176
bc9ffef3 6177 rq_i->core_pick = p;
d2dfa17b 6178
bc9ffef3
PZ
6179 if (p == rq_i->idle) {
6180 if (rq_i->nr_running) {
4feee7d1 6181 rq->core->core_forceidle_count++;
c6047c2e
JFG
6182 if (!fi_before)
6183 rq->core->core_forceidle_seq++;
6184 }
bc9ffef3
PZ
6185 } else {
6186 occ++;
539f6512 6187 }
539f6512
PZ
6188 }
6189
4feee7d1 6190 if (schedstat_enabled() && rq->core->core_forceidle_count) {
b171501f 6191 rq->core->core_forceidle_start = rq_clock(rq->core);
4feee7d1
JD
6192 rq->core->core_forceidle_occupation = occ;
6193 }
6194
539f6512
PZ
6195 rq->core->core_pick_seq = rq->core->core_task_seq;
6196 next = rq->core_pick;
6197 rq->core_sched_seq = rq->core->core_pick_seq;
6198
6199 /* Something should have been selected for current CPU */
6200 WARN_ON_ONCE(!next);
6201
6202 /*
6203 * Reschedule siblings
6204 *
6205 * NOTE: L1TF -- at this point we're no longer running the old task and
6206 * sending an IPI (below) ensures the sibling will no longer be running
6207 * their task. This ensures there is no inter-sibling overlap between
6208 * non-matching user state.
6209 */
6210 for_each_cpu(i, smt_mask) {
bc9ffef3 6211 rq_i = cpu_rq(i);
539f6512
PZ
6212
6213 /*
6214 * An online sibling might have gone offline before a task
6215 * could be picked for it, or it might be offline but later
6216 * happen to come online, but its too late and nothing was
6217 * picked for it. That's Ok - it will pick tasks for itself,
6218 * so ignore it.
6219 */
6220 if (!rq_i->core_pick)
6221 continue;
6222
c6047c2e
JFG
6223 /*
6224 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6225 * fi_before fi update?
6226 * 0 0 1
6227 * 0 1 1
6228 * 1 0 1
6229 * 1 1 0
6230 */
4feee7d1
JD
6231 if (!(fi_before && rq->core->core_forceidle_count))
6232 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
539f6512 6233
d2dfa17b
PZ
6234 rq_i->core_pick->core_occupation = occ;
6235
539f6512
PZ
6236 if (i == cpu) {
6237 rq_i->core_pick = NULL;
6238 continue;
6239 }
6240
6241 /* Did we break L1TF mitigation requirements? */
6242 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6243
6244 if (rq_i->curr == rq_i->core_pick) {
6245 rq_i->core_pick = NULL;
6246 continue;
6247 }
6248
6249 resched_curr(rq_i);
6250 }
6251
5b6547ed 6252out_set_next:
539f6512 6253 set_next_task(rq, next);
5b6547ed
PZ
6254out:
6255 if (rq->core->core_forceidle_count && next == rq->idle)
6256 queue_core_balance(rq);
6257
539f6512
PZ
6258 return next;
6259}
9edeaea1 6260
d2dfa17b
PZ
6261static bool try_steal_cookie(int this, int that)
6262{
6263 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6264 struct task_struct *p;
6265 unsigned long cookie;
6266 bool success = false;
6267
6268 local_irq_disable();
6269 double_rq_lock(dst, src);
6270
6271 cookie = dst->core->core_cookie;
6272 if (!cookie)
6273 goto unlock;
6274
6275 if (dst->curr != dst->idle)
6276 goto unlock;
6277
6278 p = sched_core_find(src, cookie);
530bfad1 6279 if (!p)
d2dfa17b
PZ
6280 goto unlock;
6281
6282 do {
6283 if (p == src->core_pick || p == src->curr)
6284 goto next;
6285
386ef214 6286 if (!is_cpu_allowed(p, this))
d2dfa17b
PZ
6287 goto next;
6288
6289 if (p->core_occupation > dst->idle->core_occupation)
6290 goto next;
530bfad1
HJ
6291 /*
6292 * sched_core_find() and sched_core_next() will ensure that task @p
6293 * is not throttled now, we also need to check whether the runqueue
6294 * of the destination CPU is being throttled.
6295 */
6296 if (sched_task_is_throttled(p, this))
6297 goto next;
d2dfa17b 6298
d2dfa17b
PZ
6299 deactivate_task(src, p, 0);
6300 set_task_cpu(p, this);
6301 activate_task(dst, p, 0);
d2dfa17b
PZ
6302
6303 resched_curr(dst);
6304
6305 success = true;
6306 break;
6307
6308next:
6309 p = sched_core_next(p, cookie);
6310 } while (p);
6311
6312unlock:
6313 double_rq_unlock(dst, src);
6314 local_irq_enable();
6315
6316 return success;
6317}
6318
6319static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6320{
6321 int i;
6322
8589018a 6323 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
d2dfa17b
PZ
6324 if (i == cpu)
6325 continue;
6326
6327 if (need_resched())
6328 break;
6329
6330 if (try_steal_cookie(cpu, i))
6331 return true;
6332 }
6333
6334 return false;
6335}
6336
6337static void sched_core_balance(struct rq *rq)
6338{
6339 struct sched_domain *sd;
6340 int cpu = cpu_of(rq);
6341
6342 preempt_disable();
6343 rcu_read_lock();
6344 raw_spin_rq_unlock_irq(rq);
6345 for_each_domain(cpu, sd) {
6346 if (need_resched())
6347 break;
6348
6349 if (steal_cookie_task(cpu, sd))
6350 break;
6351 }
6352 raw_spin_rq_lock_irq(rq);
6353 rcu_read_unlock();
6354 preempt_enable();
6355}
6356
8e5bad7d 6357static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
d2dfa17b 6358
5b6547ed 6359static void queue_core_balance(struct rq *rq)
d2dfa17b
PZ
6360{
6361 if (!sched_core_enabled(rq))
6362 return;
6363
6364 if (!rq->core->core_cookie)
6365 return;
6366
6367 if (!rq->nr_running) /* not forced idle */
6368 return;
6369
6370 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6371}
6372
3c474b32 6373static void sched_core_cpu_starting(unsigned int cpu)
9edeaea1
PZ
6374{
6375 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
3c474b32
PZ
6376 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6377 unsigned long flags;
6378 int t;
9edeaea1 6379
3c474b32 6380 sched_core_lock(cpu, &flags);
9edeaea1 6381
3c474b32
PZ
6382 WARN_ON_ONCE(rq->core != rq);
6383
6384 /* if we're the first, we'll be our own leader */
6385 if (cpumask_weight(smt_mask) == 1)
6386 goto unlock;
6387
6388 /* find the leader */
6389 for_each_cpu(t, smt_mask) {
6390 if (t == cpu)
6391 continue;
6392 rq = cpu_rq(t);
6393 if (rq->core == rq) {
6394 core_rq = rq;
6395 break;
9edeaea1 6396 }
3c474b32 6397 }
9edeaea1 6398
3c474b32
PZ
6399 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6400 goto unlock;
9edeaea1 6401
3c474b32
PZ
6402 /* install and validate core_rq */
6403 for_each_cpu(t, smt_mask) {
6404 rq = cpu_rq(t);
9edeaea1 6405
3c474b32 6406 if (t == cpu)
9edeaea1 6407 rq->core = core_rq;
3c474b32
PZ
6408
6409 WARN_ON_ONCE(rq->core != core_rq);
9edeaea1 6410 }
3c474b32
PZ
6411
6412unlock:
6413 sched_core_unlock(cpu, &flags);
9edeaea1 6414}
3c474b32
PZ
6415
6416static void sched_core_cpu_deactivate(unsigned int cpu)
6417{
6418 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6419 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6420 unsigned long flags;
6421 int t;
6422
6423 sched_core_lock(cpu, &flags);
6424
6425 /* if we're the last man standing, nothing to do */
6426 if (cpumask_weight(smt_mask) == 1) {
6427 WARN_ON_ONCE(rq->core != rq);
6428 goto unlock;
6429 }
6430
6431 /* if we're not the leader, nothing to do */
6432 if (rq->core != rq)
6433 goto unlock;
6434
6435 /* find a new leader */
6436 for_each_cpu(t, smt_mask) {
6437 if (t == cpu)
6438 continue;
6439 core_rq = cpu_rq(t);
6440 break;
6441 }
6442
6443 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6444 goto unlock;
6445
6446 /* copy the shared state to the new leader */
4feee7d1
JD
6447 core_rq->core_task_seq = rq->core_task_seq;
6448 core_rq->core_pick_seq = rq->core_pick_seq;
6449 core_rq->core_cookie = rq->core_cookie;
6450 core_rq->core_forceidle_count = rq->core_forceidle_count;
6451 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6452 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6453
6454 /*
6455 * Accounting edge for forced idle is handled in pick_next_task().
6456 * Don't need another one here, since the hotplug thread shouldn't
6457 * have a cookie.
6458 */
6459 core_rq->core_forceidle_start = 0;
3c474b32
PZ
6460
6461 /* install new leader */
6462 for_each_cpu(t, smt_mask) {
6463 rq = cpu_rq(t);
6464 rq->core = core_rq;
6465 }
6466
6467unlock:
6468 sched_core_unlock(cpu, &flags);
6469}
6470
6471static inline void sched_core_cpu_dying(unsigned int cpu)
6472{
6473 struct rq *rq = cpu_rq(cpu);
6474
6475 if (rq->core != rq)
6476 rq->core = rq;
6477}
6478
9edeaea1
PZ
6479#else /* !CONFIG_SCHED_CORE */
6480
6481static inline void sched_core_cpu_starting(unsigned int cpu) {}
3c474b32
PZ
6482static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6483static inline void sched_core_cpu_dying(unsigned int cpu) {}
9edeaea1 6484
539f6512
PZ
6485static struct task_struct *
6486pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6487{
6488 return __pick_next_task(rq, prev, rf);
6489}
6490
9edeaea1
PZ
6491#endif /* CONFIG_SCHED_CORE */
6492
b4bfa3fc
TG
6493/*
6494 * Constants for the sched_mode argument of __schedule().
6495 *
6496 * The mode argument allows RT enabled kernels to differentiate a
6497 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6498 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6499 * optimize the AND operation out and just check for zero.
6500 */
6501#define SM_NONE 0x0
6502#define SM_PREEMPT 0x1
6991436c
TG
6503#define SM_RTLOCK_WAIT 0x2
6504
6505#ifndef CONFIG_PREEMPT_RT
6506# define SM_MASK_PREEMPT (~0U)
6507#else
6508# define SM_MASK_PREEMPT SM_PREEMPT
6509#endif
b4bfa3fc 6510
dd41f596 6511/*
c259e01a 6512 * __schedule() is the main scheduler function.
edde96ea
PE
6513 *
6514 * The main means of driving the scheduler and thus entering this function are:
6515 *
6516 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6517 *
6518 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6519 * paths. For example, see arch/x86/entry_64.S.
6520 *
6521 * To drive preemption between tasks, the scheduler sets the flag in timer
6522 * interrupt handler scheduler_tick().
6523 *
6524 * 3. Wakeups don't really cause entry into schedule(). They add a
6525 * task to the run-queue and that's it.
6526 *
6527 * Now, if the new task added to the run-queue preempts the current
6528 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6529 * called on the nearest possible occasion:
6530 *
c1a280b6 6531 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
6532 *
6533 * - in syscall or exception context, at the next outmost
6534 * preempt_enable(). (this might be as soon as the wake_up()'s
6535 * spin_unlock()!)
6536 *
6537 * - in IRQ context, return from interrupt-handler to
6538 * preemptible context
6539 *
c1a280b6 6540 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
6541 * then at the next:
6542 *
6543 * - cond_resched() call
6544 * - explicit schedule() call
6545 * - return from syscall or exception to user-space
6546 * - return from interrupt-handler to user-space
bfd9b2b5 6547 *
b30f0e3f 6548 * WARNING: must be called with preemption disabled!
dd41f596 6549 */
b4bfa3fc 6550static void __sched notrace __schedule(unsigned int sched_mode)
dd41f596
IM
6551{
6552 struct task_struct *prev, *next;
67ca7bde 6553 unsigned long *switch_count;
dbfb089d 6554 unsigned long prev_state;
d8ac8971 6555 struct rq_flags rf;
dd41f596 6556 struct rq *rq;
31656519 6557 int cpu;
dd41f596 6558
dd41f596
IM
6559 cpu = smp_processor_id();
6560 rq = cpu_rq(cpu);
dd41f596 6561 prev = rq->curr;
dd41f596 6562
b4bfa3fc 6563 schedule_debug(prev, !!sched_mode);
1da177e4 6564
e0ee463c 6565 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 6566 hrtick_clear(rq);
8f4d37ec 6567
46a5d164 6568 local_irq_disable();
b4bfa3fc 6569 rcu_note_context_switch(!!sched_mode);
46a5d164 6570
e0acd0a6
ON
6571 /*
6572 * Make sure that signal_pending_state()->signal_pending() below
6573 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
6574 * done by the caller to avoid the race with signal_wake_up():
6575 *
6576 * __set_current_state(@state) signal_wake_up()
6577 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6578 * wake_up_state(p, state)
6579 * LOCK rq->lock LOCK p->pi_state
6580 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6581 * if (signal_pending_state()) if (p->state & @state)
306e0604 6582 *
dbfb089d 6583 * Also, the membarrier system call requires a full memory barrier
306e0604 6584 * after coming from user-space, before storing to rq->curr.
e0acd0a6 6585 */
8a8c69c3 6586 rq_lock(rq, &rf);
d89e588c 6587 smp_mb__after_spinlock();
1da177e4 6588
d1ccc66d
IM
6589 /* Promote REQ to ACT */
6590 rq->clock_update_flags <<= 1;
bce4dc80 6591 update_rq_clock(rq);
9edfbfed 6592
246d86b5 6593 switch_count = &prev->nivcsw;
d136122f 6594
dbfb089d 6595 /*
d136122f 6596 * We must load prev->state once (task_struct::state is volatile), such
2500ad1c 6597 * that we form a control dependency vs deactivate_task() below.
dbfb089d 6598 */
2f064a59 6599 prev_state = READ_ONCE(prev->__state);
b4bfa3fc 6600 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
dbfb089d 6601 if (signal_pending_state(prev_state, prev)) {
2f064a59 6602 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 6603 } else {
dbfb089d
PZ
6604 prev->sched_contributes_to_load =
6605 (prev_state & TASK_UNINTERRUPTIBLE) &&
6606 !(prev_state & TASK_NOLOAD) &&
f5d39b02 6607 !(prev_state & TASK_FROZEN);
dbfb089d
PZ
6608
6609 if (prev->sched_contributes_to_load)
6610 rq->nr_uninterruptible++;
6611
6612 /*
6613 * __schedule() ttwu()
d136122f
PZ
6614 * prev_state = prev->state; if (p->on_rq && ...)
6615 * if (prev_state) goto out;
6616 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6617 * p->state = TASK_WAKING
6618 *
6619 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
6620 *
6621 * After this, schedule() must not care about p->state any more.
6622 */
bce4dc80 6623 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 6624
e33a9bba
TH
6625 if (prev->in_iowait) {
6626 atomic_inc(&rq->nr_iowait);
6627 delayacct_blkio_start();
6628 }
21aa9af0 6629 }
dd41f596 6630 switch_count = &prev->nvcsw;
1da177e4
LT
6631 }
6632
d8ac8971 6633 next = pick_next_task(rq, prev, &rf);
f26f9aff 6634 clear_tsk_need_resched(prev);
f27dde8d 6635 clear_preempt_need_resched();
c006fac5
PT
6636#ifdef CONFIG_SCHED_DEBUG
6637 rq->last_seen_need_resched_ns = 0;
6638#endif
1da177e4 6639
1da177e4 6640 if (likely(prev != next)) {
1da177e4 6641 rq->nr_switches++;
5311a98f
EB
6642 /*
6643 * RCU users of rcu_dereference(rq->curr) may not see
6644 * changes to task_struct made by pick_next_task().
6645 */
6646 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
6647 /*
6648 * The membarrier system call requires each architecture
6649 * to have a full memory barrier after updating
306e0604
MD
6650 * rq->curr, before returning to user-space.
6651 *
6652 * Here are the schemes providing that barrier on the
6653 * various architectures:
6654 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6655 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6656 * - finish_lock_switch() for weakly-ordered
6657 * architectures where spin_unlock is a full barrier,
6658 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6659 * is a RELEASE barrier),
22e4ebb9 6660 */
1da177e4
LT
6661 ++*switch_count;
6662
af449901 6663 migrate_disable_switch(rq, prev);
b05e75d6
JW
6664 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6665
9c2136be 6666 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
d1ccc66d
IM
6667
6668 /* Also unlocks the rq: */
6669 rq = context_switch(rq, prev, next, &rf);
cbce1a68 6670 } else {
cb42c9a3 6671 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 6672
565790d2
PZ
6673 rq_unpin_lock(rq, &rf);
6674 __balance_callbacks(rq);
5cb9eaa3 6675 raw_spin_rq_unlock_irq(rq);
565790d2 6676 }
1da177e4 6677}
c259e01a 6678
9af6528e
PZ
6679void __noreturn do_task_dead(void)
6680{
d1ccc66d 6681 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 6682 set_special_state(TASK_DEAD);
d1ccc66d
IM
6683
6684 /* Tell freezer to ignore us: */
6685 current->flags |= PF_NOFREEZE;
6686
b4bfa3fc 6687 __schedule(SM_NONE);
9af6528e 6688 BUG();
d1ccc66d
IM
6689
6690 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 6691 for (;;)
d1ccc66d 6692 cpu_relax();
9af6528e
PZ
6693}
6694
9c40cef2
TG
6695static inline void sched_submit_work(struct task_struct *tsk)
6696{
c1cecf88
SAS
6697 unsigned int task_flags;
6698
b03fbd4f 6699 if (task_is_running(tsk))
9c40cef2 6700 return;
6d25be57 6701
c1cecf88 6702 task_flags = tsk->flags;
6d25be57 6703 /*
b945efcd
TG
6704 * If a worker goes to sleep, notify and ask workqueue whether it
6705 * wants to wake up a task to maintain concurrency.
6d25be57 6706 */
c1cecf88 6707 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
c1cecf88 6708 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
6709 wq_worker_sleeping(tsk);
6710 else
6711 io_wq_worker_sleeping(tsk);
6d25be57
TG
6712 }
6713
401e4963
JK
6714 /*
6715 * spinlock and rwlock must not flush block requests. This will
6716 * deadlock if the callback attempts to acquire a lock which is
6717 * already acquired.
6718 */
6719 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
b0fdc013 6720
9c40cef2
TG
6721 /*
6722 * If we are going to sleep and we have plugged IO queued,
6723 * make sure to submit it to avoid deadlocks.
6724 */
aa8dccca 6725 blk_flush_plug(tsk->plug, true);
9c40cef2
TG
6726}
6727
6d25be57
TG
6728static void sched_update_worker(struct task_struct *tsk)
6729{
771b53d0
JA
6730 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6731 if (tsk->flags & PF_WQ_WORKER)
6732 wq_worker_running(tsk);
6733 else
6734 io_wq_worker_running(tsk);
6735 }
6d25be57
TG
6736}
6737
722a9f92 6738asmlinkage __visible void __sched schedule(void)
c259e01a 6739{
9c40cef2
TG
6740 struct task_struct *tsk = current;
6741
6742 sched_submit_work(tsk);
bfd9b2b5 6743 do {
b30f0e3f 6744 preempt_disable();
b4bfa3fc 6745 __schedule(SM_NONE);
b30f0e3f 6746 sched_preempt_enable_no_resched();
bfd9b2b5 6747 } while (need_resched());
6d25be57 6748 sched_update_worker(tsk);
c259e01a 6749}
1da177e4
LT
6750EXPORT_SYMBOL(schedule);
6751
8663effb
SRV
6752/*
6753 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6754 * state (have scheduled out non-voluntarily) by making sure that all
6755 * tasks have either left the run queue or have gone into user space.
6756 * As idle tasks do not do either, they must not ever be preempted
6757 * (schedule out non-voluntarily).
6758 *
6759 * schedule_idle() is similar to schedule_preempt_disable() except that it
6760 * never enables preemption because it does not call sched_submit_work().
6761 */
6762void __sched schedule_idle(void)
6763{
6764 /*
6765 * As this skips calling sched_submit_work(), which the idle task does
6766 * regardless because that function is a nop when the task is in a
6767 * TASK_RUNNING state, make sure this isn't used someplace that the
6768 * current task can be in any other state. Note, idle is always in the
6769 * TASK_RUNNING state.
6770 */
2f064a59 6771 WARN_ON_ONCE(current->__state);
8663effb 6772 do {
b4bfa3fc 6773 __schedule(SM_NONE);
8663effb
SRV
6774 } while (need_resched());
6775}
6776
24a9c541 6777#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
722a9f92 6778asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6779{
6780 /*
6781 * If we come here after a random call to set_need_resched(),
6782 * or we have been woken up remotely but the IPI has not yet arrived,
6783 * we haven't yet exited the RCU idle mode. Do it here manually until
6784 * we find a better solution.
7cc78f8f
AL
6785 *
6786 * NB: There are buggy callers of this function. Ideally we
c467ea76 6787 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6788 * too frequently to make sense yet.
20ab65e3 6789 */
7cc78f8f 6790 enum ctx_state prev_state = exception_enter();
20ab65e3 6791 schedule();
7cc78f8f 6792 exception_exit(prev_state);
20ab65e3
FW
6793}
6794#endif
6795
c5491ea7
TG
6796/**
6797 * schedule_preempt_disabled - called with preemption disabled
6798 *
6799 * Returns with preemption disabled. Note: preempt_count must be 1
6800 */
6801void __sched schedule_preempt_disabled(void)
6802{
ba74c144 6803 sched_preempt_enable_no_resched();
c5491ea7
TG
6804 schedule();
6805 preempt_disable();
6806}
6807
6991436c
TG
6808#ifdef CONFIG_PREEMPT_RT
6809void __sched notrace schedule_rtlock(void)
6810{
6811 do {
6812 preempt_disable();
6813 __schedule(SM_RTLOCK_WAIT);
6814 sched_preempt_enable_no_resched();
6815 } while (need_resched());
6816}
6817NOKPROBE_SYMBOL(schedule_rtlock);
6818#endif
6819
06b1f808 6820static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6821{
6822 do {
47252cfb
SR
6823 /*
6824 * Because the function tracer can trace preempt_count_sub()
6825 * and it also uses preempt_enable/disable_notrace(), if
6826 * NEED_RESCHED is set, the preempt_enable_notrace() called
6827 * by the function tracer will call this function again and
6828 * cause infinite recursion.
6829 *
6830 * Preemption must be disabled here before the function
6831 * tracer can trace. Break up preempt_disable() into two
6832 * calls. One to disable preemption without fear of being
6833 * traced. The other to still record the preemption latency,
6834 * which can also be traced by the function tracer.
6835 */
499d7955 6836 preempt_disable_notrace();
47252cfb 6837 preempt_latency_start(1);
b4bfa3fc 6838 __schedule(SM_PREEMPT);
47252cfb 6839 preempt_latency_stop(1);
499d7955 6840 preempt_enable_no_resched_notrace();
a18b5d01
FW
6841
6842 /*
6843 * Check again in case we missed a preemption opportunity
6844 * between schedule and now.
6845 */
a18b5d01
FW
6846 } while (need_resched());
6847}
6848
c1a280b6 6849#ifdef CONFIG_PREEMPTION
1da177e4 6850/*
a49b4f40
VS
6851 * This is the entry point to schedule() from in-kernel preemption
6852 * off of preempt_enable.
1da177e4 6853 */
722a9f92 6854asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6855{
1da177e4
LT
6856 /*
6857 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6858 * we do not want to preempt the current task. Just return..
1da177e4 6859 */
fbb00b56 6860 if (likely(!preemptible()))
1da177e4 6861 return;
a18b5d01 6862 preempt_schedule_common();
1da177e4 6863}
376e2424 6864NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6865EXPORT_SYMBOL(preempt_schedule);
009f60e2 6866
2c9a98d3 6867#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6868#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6869#ifndef preempt_schedule_dynamic_enabled
6870#define preempt_schedule_dynamic_enabled preempt_schedule
6871#define preempt_schedule_dynamic_disabled NULL
6872#endif
6873DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
ef72661e 6874EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
99cf983c
MR
6875#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6876static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6877void __sched notrace dynamic_preempt_schedule(void)
6878{
6879 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6880 return;
6881 preempt_schedule();
6882}
6883NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6884EXPORT_SYMBOL(dynamic_preempt_schedule);
6885#endif
2c9a98d3 6886#endif
2c9a98d3 6887
009f60e2 6888/**
4eaca0a8 6889 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6890 *
6891 * The tracing infrastructure uses preempt_enable_notrace to prevent
6892 * recursion and tracing preempt enabling caused by the tracing
6893 * infrastructure itself. But as tracing can happen in areas coming
6894 * from userspace or just about to enter userspace, a preempt enable
6895 * can occur before user_exit() is called. This will cause the scheduler
6896 * to be called when the system is still in usermode.
6897 *
6898 * To prevent this, the preempt_enable_notrace will use this function
6899 * instead of preempt_schedule() to exit user context if needed before
6900 * calling the scheduler.
6901 */
4eaca0a8 6902asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6903{
6904 enum ctx_state prev_ctx;
6905
6906 if (likely(!preemptible()))
6907 return;
6908
6909 do {
47252cfb
SR
6910 /*
6911 * Because the function tracer can trace preempt_count_sub()
6912 * and it also uses preempt_enable/disable_notrace(), if
6913 * NEED_RESCHED is set, the preempt_enable_notrace() called
6914 * by the function tracer will call this function again and
6915 * cause infinite recursion.
6916 *
6917 * Preemption must be disabled here before the function
6918 * tracer can trace. Break up preempt_disable() into two
6919 * calls. One to disable preemption without fear of being
6920 * traced. The other to still record the preemption latency,
6921 * which can also be traced by the function tracer.
6922 */
3d8f74dd 6923 preempt_disable_notrace();
47252cfb 6924 preempt_latency_start(1);
009f60e2
ON
6925 /*
6926 * Needs preempt disabled in case user_exit() is traced
6927 * and the tracer calls preempt_enable_notrace() causing
6928 * an infinite recursion.
6929 */
6930 prev_ctx = exception_enter();
b4bfa3fc 6931 __schedule(SM_PREEMPT);
009f60e2
ON
6932 exception_exit(prev_ctx);
6933
47252cfb 6934 preempt_latency_stop(1);
3d8f74dd 6935 preempt_enable_no_resched_notrace();
009f60e2
ON
6936 } while (need_resched());
6937}
4eaca0a8 6938EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6939
2c9a98d3 6940#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6941#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6942#ifndef preempt_schedule_notrace_dynamic_enabled
6943#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6944#define preempt_schedule_notrace_dynamic_disabled NULL
2c9a98d3 6945#endif
8a69fe0b 6946DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
ef72661e 6947EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
99cf983c
MR
6948#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6949static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6950void __sched notrace dynamic_preempt_schedule_notrace(void)
c597bfdd 6951{
99cf983c
MR
6952 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6953 return;
6954 preempt_schedule_notrace();
c597bfdd 6955}
99cf983c
MR
6956NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6957EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6958#endif
2c9a98d3 6959#endif
c597bfdd 6960
c1a280b6 6961#endif /* CONFIG_PREEMPTION */
826bfeb3 6962
1da177e4 6963/*
a49b4f40 6964 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6965 * off of irq context.
6966 * Note, that this is called and return with irqs disabled. This will
6967 * protect us against recursive calling from irq.
6968 */
722a9f92 6969asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6970{
b22366cd 6971 enum ctx_state prev_state;
6478d880 6972
2ed6e34f 6973 /* Catch callers which need to be fixed */
f27dde8d 6974 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6975
b22366cd
FW
6976 prev_state = exception_enter();
6977
3a5c359a 6978 do {
3d8f74dd 6979 preempt_disable();
3a5c359a 6980 local_irq_enable();
b4bfa3fc 6981 __schedule(SM_PREEMPT);
3a5c359a 6982 local_irq_disable();
3d8f74dd 6983 sched_preempt_enable_no_resched();
5ed0cec0 6984 } while (need_resched());
b22366cd
FW
6985
6986 exception_exit(prev_state);
1da177e4
LT
6987}
6988
ac6424b9 6989int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6990 void *key)
1da177e4 6991{
062d3f95 6992 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6993 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6994}
1da177e4
LT
6995EXPORT_SYMBOL(default_wake_function);
6996
f558c2b8
PZ
6997static void __setscheduler_prio(struct task_struct *p, int prio)
6998{
6999 if (dl_prio(prio))
7000 p->sched_class = &dl_sched_class;
7001 else if (rt_prio(prio))
7002 p->sched_class = &rt_sched_class;
7003 else
7004 p->sched_class = &fair_sched_class;
7005
7006 p->prio = prio;
7007}
7008
b29739f9
IM
7009#ifdef CONFIG_RT_MUTEXES
7010
acd58620
PZ
7011static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7012{
7013 if (pi_task)
7014 prio = min(prio, pi_task->prio);
7015
7016 return prio;
7017}
7018
7019static inline int rt_effective_prio(struct task_struct *p, int prio)
7020{
7021 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7022
7023 return __rt_effective_prio(pi_task, prio);
7024}
7025
b29739f9
IM
7026/*
7027 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
7028 * @p: task to boost
7029 * @pi_task: donor task
b29739f9
IM
7030 *
7031 * This function changes the 'effective' priority of a task. It does
7032 * not touch ->normal_prio like __setscheduler().
7033 *
c365c292
TG
7034 * Used by the rt_mutex code to implement priority inheritance
7035 * logic. Call site only calls if the priority of the task changed.
b29739f9 7036 */
acd58620 7037void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 7038{
acd58620 7039 int prio, oldprio, queued, running, queue_flag =
7a57f32a 7040 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 7041 const struct sched_class *prev_class;
eb580751
PZ
7042 struct rq_flags rf;
7043 struct rq *rq;
b29739f9 7044
acd58620
PZ
7045 /* XXX used to be waiter->prio, not waiter->task->prio */
7046 prio = __rt_effective_prio(pi_task, p->normal_prio);
7047
7048 /*
7049 * If nothing changed; bail early.
7050 */
7051 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7052 return;
b29739f9 7053
eb580751 7054 rq = __task_rq_lock(p, &rf);
80f5c1b8 7055 update_rq_clock(rq);
acd58620
PZ
7056 /*
7057 * Set under pi_lock && rq->lock, such that the value can be used under
7058 * either lock.
7059 *
7060 * Note that there is loads of tricky to make this pointer cache work
7061 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7062 * ensure a task is de-boosted (pi_task is set to NULL) before the
7063 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 7064 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
7065 */
7066 p->pi_top_task = pi_task;
7067
7068 /*
7069 * For FIFO/RR we only need to set prio, if that matches we're done.
7070 */
7071 if (prio == p->prio && !dl_prio(prio))
7072 goto out_unlock;
b29739f9 7073
1c4dd99b
TG
7074 /*
7075 * Idle task boosting is a nono in general. There is one
7076 * exception, when PREEMPT_RT and NOHZ is active:
7077 *
7078 * The idle task calls get_next_timer_interrupt() and holds
7079 * the timer wheel base->lock on the CPU and another CPU wants
7080 * to access the timer (probably to cancel it). We can safely
7081 * ignore the boosting request, as the idle CPU runs this code
7082 * with interrupts disabled and will complete the lock
7083 * protected section without being interrupted. So there is no
7084 * real need to boost.
7085 */
7086 if (unlikely(p == rq->idle)) {
7087 WARN_ON(p != rq->curr);
7088 WARN_ON(p->pi_blocked_on);
7089 goto out_unlock;
7090 }
7091
b91473ff 7092 trace_sched_pi_setprio(p, pi_task);
d5f9f942 7093 oldprio = p->prio;
ff77e468
PZ
7094
7095 if (oldprio == prio)
7096 queue_flag &= ~DEQUEUE_MOVE;
7097
83ab0aa0 7098 prev_class = p->sched_class;
da0c1e65 7099 queued = task_on_rq_queued(p);
051a1d1a 7100 running = task_current(rq, p);
da0c1e65 7101 if (queued)
ff77e468 7102 dequeue_task(rq, p, queue_flag);
0e1f3483 7103 if (running)
f3cd1c4e 7104 put_prev_task(rq, p);
dd41f596 7105
2d3d891d
DF
7106 /*
7107 * Boosting condition are:
7108 * 1. -rt task is running and holds mutex A
7109 * --> -dl task blocks on mutex A
7110 *
7111 * 2. -dl task is running and holds mutex A
7112 * --> -dl task blocks on mutex A and could preempt the
7113 * running task
7114 */
7115 if (dl_prio(prio)) {
466af29b 7116 if (!dl_prio(p->normal_prio) ||
740797ce
JL
7117 (pi_task && dl_prio(pi_task->prio) &&
7118 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 7119 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 7120 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
7121 } else {
7122 p->dl.pi_se = &p->dl;
7123 }
2d3d891d
DF
7124 } else if (rt_prio(prio)) {
7125 if (dl_prio(oldprio))
2279f540 7126 p->dl.pi_se = &p->dl;
2d3d891d 7127 if (oldprio < prio)
ff77e468 7128 queue_flag |= ENQUEUE_HEAD;
2d3d891d
DF
7129 } else {
7130 if (dl_prio(oldprio))
2279f540 7131 p->dl.pi_se = &p->dl;
746db944
BS
7132 if (rt_prio(oldprio))
7133 p->rt.timeout = 0;
2d3d891d 7134 }
dd41f596 7135
f558c2b8 7136 __setscheduler_prio(p, prio);
b29739f9 7137
da0c1e65 7138 if (queued)
ff77e468 7139 enqueue_task(rq, p, queue_flag);
a399d233 7140 if (running)
03b7fad1 7141 set_next_task(rq, p);
cb469845 7142
da7a735e 7143 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 7144out_unlock:
d1ccc66d
IM
7145 /* Avoid rq from going away on us: */
7146 preempt_disable();
4c9a4bc8 7147
565790d2
PZ
7148 rq_unpin_lock(rq, &rf);
7149 __balance_callbacks(rq);
5cb9eaa3 7150 raw_spin_rq_unlock(rq);
565790d2 7151
4c9a4bc8 7152 preempt_enable();
b29739f9 7153}
acd58620
PZ
7154#else
7155static inline int rt_effective_prio(struct task_struct *p, int prio)
7156{
7157 return prio;
7158}
b29739f9 7159#endif
d50dde5a 7160
36c8b586 7161void set_user_nice(struct task_struct *p, long nice)
1da177e4 7162{
49bd21ef 7163 bool queued, running;
53a23364 7164 int old_prio;
eb580751 7165 struct rq_flags rf;
70b97a7f 7166 struct rq *rq;
1da177e4 7167
75e45d51 7168 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
7169 return;
7170 /*
7171 * We have to be careful, if called from sys_setpriority(),
7172 * the task might be in the middle of scheduling on another CPU.
7173 */
eb580751 7174 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
7175 update_rq_clock(rq);
7176
1da177e4
LT
7177 /*
7178 * The RT priorities are set via sched_setscheduler(), but we still
7179 * allow the 'normal' nice value to be set - but as expected
b19a888c 7180 * it won't have any effect on scheduling until the task is
aab03e05 7181 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 7182 */
aab03e05 7183 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
7184 p->static_prio = NICE_TO_PRIO(nice);
7185 goto out_unlock;
7186 }
da0c1e65 7187 queued = task_on_rq_queued(p);
49bd21ef 7188 running = task_current(rq, p);
da0c1e65 7189 if (queued)
7a57f32a 7190 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
7191 if (running)
7192 put_prev_task(rq, p);
1da177e4 7193
1da177e4 7194 p->static_prio = NICE_TO_PRIO(nice);
b1e82065 7195 set_load_weight(p, true);
b29739f9
IM
7196 old_prio = p->prio;
7197 p->prio = effective_prio(p);
1da177e4 7198
5443a0be 7199 if (queued)
7134b3e9 7200 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 7201 if (running)
03b7fad1 7202 set_next_task(rq, p);
5443a0be
FW
7203
7204 /*
7205 * If the task increased its priority or is running and
7206 * lowered its priority, then reschedule its CPU:
7207 */
7208 p->sched_class->prio_changed(rq, p, old_prio);
7209
1da177e4 7210out_unlock:
eb580751 7211 task_rq_unlock(rq, p, &rf);
1da177e4 7212}
1da177e4
LT
7213EXPORT_SYMBOL(set_user_nice);
7214
e43379f1 7215/*
700a7833
CG
7216 * is_nice_reduction - check if nice value is an actual reduction
7217 *
7218 * Similar to can_nice() but does not perform a capability check.
7219 *
e43379f1
MM
7220 * @p: task
7221 * @nice: nice value
7222 */
700a7833 7223static bool is_nice_reduction(const struct task_struct *p, const int nice)
e43379f1 7224{
d1ccc66d 7225 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 7226 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 7227
700a7833
CG
7228 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7229}
7230
7231/*
7232 * can_nice - check if a task can reduce its nice value
7233 * @p: task
7234 * @nice: nice value
7235 */
7236int can_nice(const struct task_struct *p, const int nice)
7237{
7238 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
e43379f1
MM
7239}
7240
1da177e4
LT
7241#ifdef __ARCH_WANT_SYS_NICE
7242
7243/*
7244 * sys_nice - change the priority of the current process.
7245 * @increment: priority increment
7246 *
7247 * sys_setpriority is a more generic, but much slower function that
7248 * does similar things.
7249 */
5add95d4 7250SYSCALL_DEFINE1(nice, int, increment)
1da177e4 7251{
48f24c4d 7252 long nice, retval;
1da177e4
LT
7253
7254 /*
7255 * Setpriority might change our priority at the same moment.
7256 * We don't have to worry. Conceptually one call occurs first
7257 * and we have a single winner.
7258 */
a9467fa3 7259 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 7260 nice = task_nice(current) + increment;
1da177e4 7261
a9467fa3 7262 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
7263 if (increment < 0 && !can_nice(current, nice))
7264 return -EPERM;
7265
1da177e4
LT
7266 retval = security_task_setnice(current, nice);
7267 if (retval)
7268 return retval;
7269
7270 set_user_nice(current, nice);
7271 return 0;
7272}
7273
7274#endif
7275
7276/**
7277 * task_prio - return the priority value of a given task.
7278 * @p: the task in question.
7279 *
e69f6186 7280 * Return: The priority value as seen by users in /proc.
c541bb78
DE
7281 *
7282 * sched policy return value kernel prio user prio/nice
7283 *
7284 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7285 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7286 * deadline -101 -1 0
1da177e4 7287 */
36c8b586 7288int task_prio(const struct task_struct *p)
1da177e4
LT
7289{
7290 return p->prio - MAX_RT_PRIO;
7291}
7292
1da177e4 7293/**
d1ccc66d 7294 * idle_cpu - is a given CPU idle currently?
1da177e4 7295 * @cpu: the processor in question.
e69f6186
YB
7296 *
7297 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
7298 */
7299int idle_cpu(int cpu)
7300{
908a3283
TG
7301 struct rq *rq = cpu_rq(cpu);
7302
7303 if (rq->curr != rq->idle)
7304 return 0;
7305
7306 if (rq->nr_running)
7307 return 0;
7308
7309#ifdef CONFIG_SMP
126c2092 7310 if (rq->ttwu_pending)
908a3283
TG
7311 return 0;
7312#endif
7313
7314 return 1;
1da177e4
LT
7315}
7316
943d355d
RJ
7317/**
7318 * available_idle_cpu - is a given CPU idle for enqueuing work.
7319 * @cpu: the CPU in question.
7320 *
7321 * Return: 1 if the CPU is currently idle. 0 otherwise.
7322 */
7323int available_idle_cpu(int cpu)
7324{
7325 if (!idle_cpu(cpu))
7326 return 0;
7327
247f2f6f
RJ
7328 if (vcpu_is_preempted(cpu))
7329 return 0;
7330
908a3283 7331 return 1;
1da177e4
LT
7332}
7333
1da177e4 7334/**
d1ccc66d 7335 * idle_task - return the idle task for a given CPU.
1da177e4 7336 * @cpu: the processor in question.
e69f6186 7337 *
d1ccc66d 7338 * Return: The idle task for the CPU @cpu.
1da177e4 7339 */
36c8b586 7340struct task_struct *idle_task(int cpu)
1da177e4
LT
7341{
7342 return cpu_rq(cpu)->idle;
7343}
7344
7d6a905f
VK
7345#ifdef CONFIG_SMP
7346/*
7347 * This function computes an effective utilization for the given CPU, to be
7348 * used for frequency selection given the linear relation: f = u * f_max.
7349 *
7350 * The scheduler tracks the following metrics:
7351 *
7352 * cpu_util_{cfs,rt,dl,irq}()
7353 * cpu_bw_dl()
7354 *
7355 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7356 * synchronized windows and are thus directly comparable.
7357 *
7358 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7359 * which excludes things like IRQ and steal-time. These latter are then accrued
7360 * in the irq utilization.
7361 *
7362 * The DL bandwidth number otoh is not a measured metric but a value computed
7363 * based on the task model parameters and gives the minimal utilization
7364 * required to meet deadlines.
7365 */
a5418be9 7366unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
bb447999 7367 enum cpu_util_type type,
7d6a905f
VK
7368 struct task_struct *p)
7369{
bb447999 7370 unsigned long dl_util, util, irq, max;
7d6a905f
VK
7371 struct rq *rq = cpu_rq(cpu);
7372
bb447999
DE
7373 max = arch_scale_cpu_capacity(cpu);
7374
7d6a905f
VK
7375 if (!uclamp_is_used() &&
7376 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7377 return max;
7378 }
7379
7380 /*
7381 * Early check to see if IRQ/steal time saturates the CPU, can be
7382 * because of inaccuracies in how we track these -- see
7383 * update_irq_load_avg().
7384 */
7385 irq = cpu_util_irq(rq);
7386 if (unlikely(irq >= max))
7387 return max;
7388
7389 /*
7390 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7391 * CFS tasks and we use the same metric to track the effective
7392 * utilization (PELT windows are synchronized) we can directly add them
7393 * to obtain the CPU's actual utilization.
7394 *
7395 * CFS and RT utilization can be boosted or capped, depending on
7396 * utilization clamp constraints requested by currently RUNNABLE
7397 * tasks.
7398 * When there are no CFS RUNNABLE tasks, clamps are released and
7399 * frequency will be gracefully reduced with the utilization decay.
7400 */
7401 util = util_cfs + cpu_util_rt(rq);
7402 if (type == FREQUENCY_UTIL)
7403 util = uclamp_rq_util_with(rq, util, p);
7404
7405 dl_util = cpu_util_dl(rq);
7406
7407 /*
7408 * For frequency selection we do not make cpu_util_dl() a permanent part
7409 * of this sum because we want to use cpu_bw_dl() later on, but we need
7410 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7411 * that we select f_max when there is no idle time.
7412 *
7413 * NOTE: numerical errors or stop class might cause us to not quite hit
7414 * saturation when we should -- something for later.
7415 */
7416 if (util + dl_util >= max)
7417 return max;
7418
7419 /*
7420 * OTOH, for energy computation we need the estimated running time, so
7421 * include util_dl and ignore dl_bw.
7422 */
7423 if (type == ENERGY_UTIL)
7424 util += dl_util;
7425
7426 /*
7427 * There is still idle time; further improve the number by using the
7428 * irq metric. Because IRQ/steal time is hidden from the task clock we
7429 * need to scale the task numbers:
7430 *
7431 * max - irq
7432 * U' = irq + --------- * U
7433 * max
7434 */
7435 util = scale_irq_capacity(util, irq, max);
7436 util += irq;
7437
7438 /*
7439 * Bandwidth required by DEADLINE must always be granted while, for
7440 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7441 * to gracefully reduce the frequency when no tasks show up for longer
7442 * periods of time.
7443 *
7444 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7445 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7446 * an interface. So, we only do the latter for now.
7447 */
7448 if (type == FREQUENCY_UTIL)
7449 util += cpu_bw_dl(rq);
7450
7451 return min(max, util);
7452}
a5418be9 7453
bb447999 7454unsigned long sched_cpu_util(int cpu)
a5418be9 7455{
bb447999 7456 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
a5418be9 7457}
7d6a905f
VK
7458#endif /* CONFIG_SMP */
7459
1da177e4
LT
7460/**
7461 * find_process_by_pid - find a process with a matching PID value.
7462 * @pid: the pid in question.
e69f6186
YB
7463 *
7464 * The task of @pid, if found. %NULL otherwise.
1da177e4 7465 */
a9957449 7466static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 7467{
228ebcbe 7468 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
7469}
7470
c13db6b1
SR
7471/*
7472 * sched_setparam() passes in -1 for its policy, to let the functions
7473 * it calls know not to change it.
7474 */
7475#define SETPARAM_POLICY -1
7476
c365c292
TG
7477static void __setscheduler_params(struct task_struct *p,
7478 const struct sched_attr *attr)
1da177e4 7479{
d50dde5a
DF
7480 int policy = attr->sched_policy;
7481
c13db6b1 7482 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
7483 policy = p->policy;
7484
1da177e4 7485 p->policy = policy;
d50dde5a 7486
aab03e05
DF
7487 if (dl_policy(policy))
7488 __setparam_dl(p, attr);
39fd8fd2 7489 else if (fair_policy(policy))
d50dde5a
DF
7490 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7491
39fd8fd2
PZ
7492 /*
7493 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7494 * !rt_policy. Always setting this ensures that things like
7495 * getparam()/getattr() don't report silly values for !rt tasks.
7496 */
7497 p->rt_priority = attr->sched_priority;
383afd09 7498 p->normal_prio = normal_prio(p);
b1e82065 7499 set_load_weight(p, true);
c365c292 7500}
39fd8fd2 7501
c69e8d9c 7502/*
d1ccc66d 7503 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
7504 */
7505static bool check_same_owner(struct task_struct *p)
7506{
7507 const struct cred *cred = current_cred(), *pcred;
7508 bool match;
7509
7510 rcu_read_lock();
7511 pcred = __task_cred(p);
9c806aa0
EB
7512 match = (uid_eq(cred->euid, pcred->euid) ||
7513 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
7514 rcu_read_unlock();
7515 return match;
7516}
7517
700a7833
CG
7518/*
7519 * Allow unprivileged RT tasks to decrease priority.
7520 * Only issue a capable test if needed and only once to avoid an audit
7521 * event on permitted non-privileged operations:
7522 */
7523static int user_check_sched_setscheduler(struct task_struct *p,
7524 const struct sched_attr *attr,
7525 int policy, int reset_on_fork)
7526{
7527 if (fair_policy(policy)) {
7528 if (attr->sched_nice < task_nice(p) &&
7529 !is_nice_reduction(p, attr->sched_nice))
7530 goto req_priv;
7531 }
7532
7533 if (rt_policy(policy)) {
7534 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7535
7536 /* Can't set/change the rt policy: */
7537 if (policy != p->policy && !rlim_rtprio)
7538 goto req_priv;
7539
7540 /* Can't increase priority: */
7541 if (attr->sched_priority > p->rt_priority &&
7542 attr->sched_priority > rlim_rtprio)
7543 goto req_priv;
7544 }
7545
7546 /*
7547 * Can't set/change SCHED_DEADLINE policy at all for now
7548 * (safest behavior); in the future we would like to allow
7549 * unprivileged DL tasks to increase their relative deadline
7550 * or reduce their runtime (both ways reducing utilization)
7551 */
7552 if (dl_policy(policy))
7553 goto req_priv;
7554
7555 /*
7556 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7557 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7558 */
7559 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7560 if (!is_nice_reduction(p, task_nice(p)))
7561 goto req_priv;
7562 }
7563
7564 /* Can't change other user's priorities: */
7565 if (!check_same_owner(p))
7566 goto req_priv;
7567
7568 /* Normal users shall not reset the sched_reset_on_fork flag: */
7569 if (p->sched_reset_on_fork && !reset_on_fork)
7570 goto req_priv;
7571
7572 return 0;
7573
7574req_priv:
7575 if (!capable(CAP_SYS_NICE))
7576 return -EPERM;
7577
7578 return 0;
7579}
7580
d50dde5a
DF
7581static int __sched_setscheduler(struct task_struct *p,
7582 const struct sched_attr *attr,
dbc7f069 7583 bool user, bool pi)
1da177e4 7584{
f558c2b8
PZ
7585 int oldpolicy = -1, policy = attr->sched_policy;
7586 int retval, oldprio, newprio, queued, running;
83ab0aa0 7587 const struct sched_class *prev_class;
8e5bad7d 7588 struct balance_callback *head;
eb580751 7589 struct rq_flags rf;
ca94c442 7590 int reset_on_fork;
7a57f32a 7591 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 7592 struct rq *rq;
1da177e4 7593
896bbb25
SRV
7594 /* The pi code expects interrupts enabled */
7595 BUG_ON(pi && in_interrupt());
1da177e4 7596recheck:
d1ccc66d 7597 /* Double check policy once rq lock held: */
ca94c442
LP
7598 if (policy < 0) {
7599 reset_on_fork = p->sched_reset_on_fork;
1da177e4 7600 policy = oldpolicy = p->policy;
ca94c442 7601 } else {
7479f3c9 7602 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 7603
20f9cd2a 7604 if (!valid_policy(policy))
ca94c442
LP
7605 return -EINVAL;
7606 }
7607
794a56eb 7608 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
7609 return -EINVAL;
7610
1da177e4
LT
7611 /*
7612 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 7613 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 7614 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 7615 */
ae18ad28 7616 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 7617 return -EINVAL;
aab03e05
DF
7618 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7619 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
7620 return -EINVAL;
7621
725aad24 7622 if (user) {
700a7833
CG
7623 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7624 if (retval)
7625 return retval;
7626
794a56eb
JL
7627 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7628 return -EINVAL;
7629
b0ae1981 7630 retval = security_task_setscheduler(p);
725aad24
JF
7631 if (retval)
7632 return retval;
7633 }
7634
a509a7cd
PB
7635 /* Update task specific "requested" clamps */
7636 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7637 retval = uclamp_validate(p, attr);
7638 if (retval)
7639 return retval;
7640 }
7641
710da3c8
JL
7642 if (pi)
7643 cpuset_read_lock();
7644
b29739f9 7645 /*
d1ccc66d 7646 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 7647 * changing the priority of the task:
0122ec5b 7648 *
25985edc 7649 * To be able to change p->policy safely, the appropriate
1da177e4
LT
7650 * runqueue lock must be held.
7651 */
eb580751 7652 rq = task_rq_lock(p, &rf);
80f5c1b8 7653 update_rq_clock(rq);
dc61b1d6 7654
34f971f6 7655 /*
d1ccc66d 7656 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7657 */
7658 if (p == rq->stop) {
4b211f2b
MP
7659 retval = -EINVAL;
7660 goto unlock;
34f971f6
PZ
7661 }
7662
a51e9198 7663 /*
d6b1e911
TG
7664 * If not changing anything there's no need to proceed further,
7665 * but store a possible modification of reset_on_fork.
a51e9198 7666 */
d50dde5a 7667 if (unlikely(policy == p->policy)) {
d0ea0268 7668 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7669 goto change;
7670 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7671 goto change;
75381608 7672 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7673 goto change;
a509a7cd
PB
7674 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7675 goto change;
d50dde5a 7676
d6b1e911 7677 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7678 retval = 0;
7679 goto unlock;
a51e9198 7680 }
d50dde5a 7681change:
a51e9198 7682
dc61b1d6 7683 if (user) {
332ac17e 7684#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7685 /*
7686 * Do not allow realtime tasks into groups that have no runtime
7687 * assigned.
7688 */
7689 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7690 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7691 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7692 retval = -EPERM;
7693 goto unlock;
dc61b1d6 7694 }
dc61b1d6 7695#endif
332ac17e 7696#ifdef CONFIG_SMP
794a56eb
JL
7697 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7698 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7699 cpumask_t *span = rq->rd->span;
332ac17e
DF
7700
7701 /*
7702 * Don't allow tasks with an affinity mask smaller than
7703 * the entire root_domain to become SCHED_DEADLINE. We
7704 * will also fail if there's no bandwidth available.
7705 */
3bd37062 7706 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7707 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7708 retval = -EPERM;
7709 goto unlock;
332ac17e
DF
7710 }
7711 }
7712#endif
7713 }
dc61b1d6 7714
d1ccc66d 7715 /* Re-check policy now with rq lock held: */
1da177e4
LT
7716 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7717 policy = oldpolicy = -1;
eb580751 7718 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7719 if (pi)
7720 cpuset_read_unlock();
1da177e4
LT
7721 goto recheck;
7722 }
332ac17e
DF
7723
7724 /*
7725 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7726 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7727 * is available.
7728 */
06a76fe0 7729 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7730 retval = -EBUSY;
7731 goto unlock;
332ac17e
DF
7732 }
7733
c365c292
TG
7734 p->sched_reset_on_fork = reset_on_fork;
7735 oldprio = p->prio;
7736
f558c2b8 7737 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
dbc7f069
PZ
7738 if (pi) {
7739 /*
7740 * Take priority boosted tasks into account. If the new
7741 * effective priority is unchanged, we just store the new
7742 * normal parameters and do not touch the scheduler class and
7743 * the runqueue. This will be done when the task deboost
7744 * itself.
7745 */
f558c2b8
PZ
7746 newprio = rt_effective_prio(p, newprio);
7747 if (newprio == oldprio)
ff77e468 7748 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7749 }
7750
da0c1e65 7751 queued = task_on_rq_queued(p);
051a1d1a 7752 running = task_current(rq, p);
da0c1e65 7753 if (queued)
ff77e468 7754 dequeue_task(rq, p, queue_flags);
0e1f3483 7755 if (running)
f3cd1c4e 7756 put_prev_task(rq, p);
f6b53205 7757
83ab0aa0 7758 prev_class = p->sched_class;
a509a7cd 7759
f558c2b8
PZ
7760 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7761 __setscheduler_params(p, attr);
7762 __setscheduler_prio(p, newprio);
7763 }
a509a7cd 7764 __setscheduler_uclamp(p, attr);
f6b53205 7765
da0c1e65 7766 if (queued) {
81a44c54
TG
7767 /*
7768 * We enqueue to tail when the priority of a task is
7769 * increased (user space view).
7770 */
ff77e468
PZ
7771 if (oldprio < p->prio)
7772 queue_flags |= ENQUEUE_HEAD;
1de64443 7773
ff77e468 7774 enqueue_task(rq, p, queue_flags);
81a44c54 7775 }
a399d233 7776 if (running)
03b7fad1 7777 set_next_task(rq, p);
cb469845 7778
da7a735e 7779 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7780
7781 /* Avoid rq from going away on us: */
7782 preempt_disable();
565790d2 7783 head = splice_balance_callbacks(rq);
eb580751 7784 task_rq_unlock(rq, p, &rf);
b29739f9 7785
710da3c8
JL
7786 if (pi) {
7787 cpuset_read_unlock();
dbc7f069 7788 rt_mutex_adjust_pi(p);
710da3c8 7789 }
95e02ca9 7790
d1ccc66d 7791 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7792 balance_callbacks(rq, head);
4c9a4bc8 7793 preempt_enable();
95e02ca9 7794
1da177e4 7795 return 0;
4b211f2b
MP
7796
7797unlock:
7798 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7799 if (pi)
7800 cpuset_read_unlock();
4b211f2b 7801 return retval;
1da177e4 7802}
961ccddd 7803
7479f3c9
PZ
7804static int _sched_setscheduler(struct task_struct *p, int policy,
7805 const struct sched_param *param, bool check)
7806{
7807 struct sched_attr attr = {
7808 .sched_policy = policy,
7809 .sched_priority = param->sched_priority,
7810 .sched_nice = PRIO_TO_NICE(p->static_prio),
7811 };
7812
c13db6b1
SR
7813 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7814 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7815 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7816 policy &= ~SCHED_RESET_ON_FORK;
7817 attr.sched_policy = policy;
7818 }
7819
dbc7f069 7820 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7821}
961ccddd
RR
7822/**
7823 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7824 * @p: the task in question.
7825 * @policy: new policy.
7826 * @param: structure containing the new RT priority.
7827 *
7318d4cc
PZ
7828 * Use sched_set_fifo(), read its comment.
7829 *
e69f6186
YB
7830 * Return: 0 on success. An error code otherwise.
7831 *
961ccddd
RR
7832 * NOTE that the task may be already dead.
7833 */
7834int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7835 const struct sched_param *param)
961ccddd 7836{
7479f3c9 7837 return _sched_setscheduler(p, policy, param, true);
961ccddd 7838}
1da177e4 7839
d50dde5a
DF
7840int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7841{
dbc7f069 7842 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7843}
d50dde5a 7844
794a56eb
JL
7845int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7846{
7847 return __sched_setscheduler(p, attr, false, true);
7848}
1eb5dde6 7849EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7850
961ccddd
RR
7851/**
7852 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7853 * @p: the task in question.
7854 * @policy: new policy.
7855 * @param: structure containing the new RT priority.
7856 *
7857 * Just like sched_setscheduler, only don't bother checking if the
7858 * current context has permission. For example, this is needed in
7859 * stop_machine(): we create temporary high priority worker threads,
7860 * but our caller might not have that capability.
e69f6186
YB
7861 *
7862 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7863 */
7864int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7865 const struct sched_param *param)
961ccddd 7866{
7479f3c9 7867 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7868}
7869
7318d4cc
PZ
7870/*
7871 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7872 * incapable of resource management, which is the one thing an OS really should
7873 * be doing.
7874 *
7875 * This is of course the reason it is limited to privileged users only.
7876 *
7877 * Worse still; it is fundamentally impossible to compose static priority
7878 * workloads. You cannot take two correctly working static prio workloads
7879 * and smash them together and still expect them to work.
7880 *
7881 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7882 *
7883 * MAX_RT_PRIO / 2
7884 *
7885 * The administrator _MUST_ configure the system, the kernel simply doesn't
7886 * know enough information to make a sensible choice.
7887 */
8b700983 7888void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7889{
7890 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7891 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7892}
7893EXPORT_SYMBOL_GPL(sched_set_fifo);
7894
7895/*
7896 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7897 */
8b700983 7898void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7899{
7900 struct sched_param sp = { .sched_priority = 1 };
8b700983 7901 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7902}
7903EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7904
8b700983 7905void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7906{
7907 struct sched_attr attr = {
7908 .sched_policy = SCHED_NORMAL,
7909 .sched_nice = nice,
7910 };
8b700983 7911 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7912}
7913EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7914
95cdf3b7
IM
7915static int
7916do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7917{
1da177e4
LT
7918 struct sched_param lparam;
7919 struct task_struct *p;
36c8b586 7920 int retval;
1da177e4
LT
7921
7922 if (!param || pid < 0)
7923 return -EINVAL;
7924 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7925 return -EFAULT;
5fe1d75f
ON
7926
7927 rcu_read_lock();
7928 retval = -ESRCH;
1da177e4 7929 p = find_process_by_pid(pid);
710da3c8
JL
7930 if (likely(p))
7931 get_task_struct(p);
5fe1d75f 7932 rcu_read_unlock();
36c8b586 7933
710da3c8
JL
7934 if (likely(p)) {
7935 retval = sched_setscheduler(p, policy, &lparam);
7936 put_task_struct(p);
7937 }
7938
1da177e4
LT
7939 return retval;
7940}
7941
d50dde5a
DF
7942/*
7943 * Mimics kernel/events/core.c perf_copy_attr().
7944 */
d1ccc66d 7945static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7946{
7947 u32 size;
7948 int ret;
7949
d1ccc66d 7950 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7951 memset(attr, 0, sizeof(*attr));
7952
7953 ret = get_user(size, &uattr->size);
7954 if (ret)
7955 return ret;
7956
d1ccc66d
IM
7957 /* ABI compatibility quirk: */
7958 if (!size)
d50dde5a 7959 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7960 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7961 goto err_size;
7962
dff3a85f
AS
7963 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7964 if (ret) {
7965 if (ret == -E2BIG)
7966 goto err_size;
7967 return ret;
d50dde5a
DF
7968 }
7969
a509a7cd
PB
7970 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7971 size < SCHED_ATTR_SIZE_VER1)
7972 return -EINVAL;
7973
d50dde5a 7974 /*
d1ccc66d 7975 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7976 * to be strict and return an error on out-of-bounds values?
7977 */
75e45d51 7978 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7979
e78c7bca 7980 return 0;
d50dde5a
DF
7981
7982err_size:
7983 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7984 return -E2BIG;
d50dde5a
DF
7985}
7986
f4dddf90
QP
7987static void get_params(struct task_struct *p, struct sched_attr *attr)
7988{
7989 if (task_has_dl_policy(p))
7990 __getparam_dl(p, attr);
7991 else if (task_has_rt_policy(p))
7992 attr->sched_priority = p->rt_priority;
7993 else
7994 attr->sched_nice = task_nice(p);
7995}
7996
1da177e4
LT
7997/**
7998 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7999 * @pid: the pid in question.
8000 * @policy: new policy.
8001 * @param: structure containing the new RT priority.
e69f6186
YB
8002 *
8003 * Return: 0 on success. An error code otherwise.
1da177e4 8004 */
d1ccc66d 8005SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 8006{
c21761f1
JB
8007 if (policy < 0)
8008 return -EINVAL;
8009
1da177e4
LT
8010 return do_sched_setscheduler(pid, policy, param);
8011}
8012
8013/**
8014 * sys_sched_setparam - set/change the RT priority of a thread
8015 * @pid: the pid in question.
8016 * @param: structure containing the new RT priority.
e69f6186
YB
8017 *
8018 * Return: 0 on success. An error code otherwise.
1da177e4 8019 */
5add95d4 8020SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 8021{
c13db6b1 8022 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
8023}
8024
d50dde5a
DF
8025/**
8026 * sys_sched_setattr - same as above, but with extended sched_attr
8027 * @pid: the pid in question.
5778fccf 8028 * @uattr: structure containing the extended parameters.
db66d756 8029 * @flags: for future extension.
d50dde5a 8030 */
6d35ab48
PZ
8031SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8032 unsigned int, flags)
d50dde5a
DF
8033{
8034 struct sched_attr attr;
8035 struct task_struct *p;
8036 int retval;
8037
6d35ab48 8038 if (!uattr || pid < 0 || flags)
d50dde5a
DF
8039 return -EINVAL;
8040
143cf23d
MK
8041 retval = sched_copy_attr(uattr, &attr);
8042 if (retval)
8043 return retval;
d50dde5a 8044
b14ed2c2 8045 if ((int)attr.sched_policy < 0)
dbdb2275 8046 return -EINVAL;
1d6362fa
PB
8047 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8048 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
8049
8050 rcu_read_lock();
8051 retval = -ESRCH;
8052 p = find_process_by_pid(pid);
a509a7cd
PB
8053 if (likely(p))
8054 get_task_struct(p);
d50dde5a
DF
8055 rcu_read_unlock();
8056
a509a7cd 8057 if (likely(p)) {
f4dddf90
QP
8058 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8059 get_params(p, &attr);
a509a7cd
PB
8060 retval = sched_setattr(p, &attr);
8061 put_task_struct(p);
8062 }
8063
d50dde5a
DF
8064 return retval;
8065}
8066
1da177e4
LT
8067/**
8068 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8069 * @pid: the pid in question.
e69f6186
YB
8070 *
8071 * Return: On success, the policy of the thread. Otherwise, a negative error
8072 * code.
1da177e4 8073 */
5add95d4 8074SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 8075{
36c8b586 8076 struct task_struct *p;
3a5c359a 8077 int retval;
1da177e4
LT
8078
8079 if (pid < 0)
3a5c359a 8080 return -EINVAL;
1da177e4
LT
8081
8082 retval = -ESRCH;
5fe85be0 8083 rcu_read_lock();
1da177e4
LT
8084 p = find_process_by_pid(pid);
8085 if (p) {
8086 retval = security_task_getscheduler(p);
8087 if (!retval)
ca94c442
LP
8088 retval = p->policy
8089 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 8090 }
5fe85be0 8091 rcu_read_unlock();
1da177e4
LT
8092 return retval;
8093}
8094
8095/**
ca94c442 8096 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
8097 * @pid: the pid in question.
8098 * @param: structure containing the RT priority.
e69f6186
YB
8099 *
8100 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8101 * code.
1da177e4 8102 */
5add95d4 8103SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 8104{
ce5f7f82 8105 struct sched_param lp = { .sched_priority = 0 };
36c8b586 8106 struct task_struct *p;
3a5c359a 8107 int retval;
1da177e4
LT
8108
8109 if (!param || pid < 0)
3a5c359a 8110 return -EINVAL;
1da177e4 8111
5fe85be0 8112 rcu_read_lock();
1da177e4
LT
8113 p = find_process_by_pid(pid);
8114 retval = -ESRCH;
8115 if (!p)
8116 goto out_unlock;
8117
8118 retval = security_task_getscheduler(p);
8119 if (retval)
8120 goto out_unlock;
8121
ce5f7f82
PZ
8122 if (task_has_rt_policy(p))
8123 lp.sched_priority = p->rt_priority;
5fe85be0 8124 rcu_read_unlock();
1da177e4
LT
8125
8126 /*
8127 * This one might sleep, we cannot do it with a spinlock held ...
8128 */
8129 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8130
1da177e4
LT
8131 return retval;
8132
8133out_unlock:
5fe85be0 8134 rcu_read_unlock();
1da177e4
LT
8135 return retval;
8136}
8137
1251201c
IM
8138/*
8139 * Copy the kernel size attribute structure (which might be larger
8140 * than what user-space knows about) to user-space.
8141 *
8142 * Note that all cases are valid: user-space buffer can be larger or
8143 * smaller than the kernel-space buffer. The usual case is that both
8144 * have the same size.
8145 */
8146static int
8147sched_attr_copy_to_user(struct sched_attr __user *uattr,
8148 struct sched_attr *kattr,
8149 unsigned int usize)
d50dde5a 8150{
1251201c 8151 unsigned int ksize = sizeof(*kattr);
d50dde5a 8152
96d4f267 8153 if (!access_ok(uattr, usize))
d50dde5a
DF
8154 return -EFAULT;
8155
8156 /*
1251201c
IM
8157 * sched_getattr() ABI forwards and backwards compatibility:
8158 *
8159 * If usize == ksize then we just copy everything to user-space and all is good.
8160 *
8161 * If usize < ksize then we only copy as much as user-space has space for,
8162 * this keeps ABI compatibility as well. We skip the rest.
8163 *
8164 * If usize > ksize then user-space is using a newer version of the ABI,
8165 * which part the kernel doesn't know about. Just ignore it - tooling can
8166 * detect the kernel's knowledge of attributes from the attr->size value
8167 * which is set to ksize in this case.
d50dde5a 8168 */
1251201c 8169 kattr->size = min(usize, ksize);
d50dde5a 8170
1251201c 8171 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
8172 return -EFAULT;
8173
22400674 8174 return 0;
d50dde5a
DF
8175}
8176
8177/**
aab03e05 8178 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 8179 * @pid: the pid in question.
5778fccf 8180 * @uattr: structure containing the extended parameters.
dff3a85f 8181 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 8182 * @flags: for future extension.
d50dde5a 8183 */
6d35ab48 8184SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 8185 unsigned int, usize, unsigned int, flags)
d50dde5a 8186{
1251201c 8187 struct sched_attr kattr = { };
d50dde5a
DF
8188 struct task_struct *p;
8189 int retval;
8190
1251201c
IM
8191 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8192 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
8193 return -EINVAL;
8194
8195 rcu_read_lock();
8196 p = find_process_by_pid(pid);
8197 retval = -ESRCH;
8198 if (!p)
8199 goto out_unlock;
8200
8201 retval = security_task_getscheduler(p);
8202 if (retval)
8203 goto out_unlock;
8204
1251201c 8205 kattr.sched_policy = p->policy;
7479f3c9 8206 if (p->sched_reset_on_fork)
1251201c 8207 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 8208 get_params(p, &kattr);
7ad721bf 8209 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 8210
a509a7cd 8211#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
8212 /*
8213 * This could race with another potential updater, but this is fine
8214 * because it'll correctly read the old or the new value. We don't need
8215 * to guarantee who wins the race as long as it doesn't return garbage.
8216 */
1251201c
IM
8217 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8218 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
8219#endif
8220
d50dde5a
DF
8221 rcu_read_unlock();
8222
1251201c 8223 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
8224
8225out_unlock:
8226 rcu_read_unlock();
8227 return retval;
8228}
8229
234b8ab6
WD
8230#ifdef CONFIG_SMP
8231int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 8232{
234b8ab6
WD
8233 int ret = 0;
8234
8235 /*
8236 * If the task isn't a deadline task or admission control is
8237 * disabled then we don't care about affinity changes.
8238 */
8239 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8240 return 0;
8241
8242 /*
8243 * Since bandwidth control happens on root_domain basis,
8244 * if admission test is enabled, we only admit -deadline
8245 * tasks allowed to run on all the CPUs in the task's
8246 * root_domain.
8247 */
8248 rcu_read_lock();
8249 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8250 ret = -EBUSY;
8251 rcu_read_unlock();
8252 return ret;
8253}
8254#endif
8255
db3b02ae 8256static int
713a2e21 8257__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1da177e4 8258{
36c8b586 8259 int retval;
5a16f3d3 8260 cpumask_var_t cpus_allowed, new_mask;
1da177e4 8261
db3b02ae
WD
8262 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8263 return -ENOMEM;
1da177e4 8264
5a16f3d3
RR
8265 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8266 retval = -ENOMEM;
8267 goto out_free_cpus_allowed;
8268 }
e4099a5e
PZ
8269
8270 cpuset_cpus_allowed(p, cpus_allowed);
713a2e21
WL
8271 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8272
8273 ctx->new_mask = new_mask;
8274 ctx->flags |= SCA_CHECK;
e4099a5e 8275
234b8ab6
WD
8276 retval = dl_task_check_affinity(p, new_mask);
8277 if (retval)
8278 goto out_free_new_mask;
8f9ea86f 8279
713a2e21 8280 retval = __set_cpus_allowed_ptr(p, ctx);
db3b02ae
WD
8281 if (retval)
8282 goto out_free_new_mask;
1da177e4 8283
db3b02ae
WD
8284 cpuset_cpus_allowed(p, cpus_allowed);
8285 if (!cpumask_subset(new_mask, cpus_allowed)) {
8286 /*
8287 * We must have raced with a concurrent cpuset update.
8288 * Just reset the cpumask to the cpuset's cpus_allowed.
8289 */
8290 cpumask_copy(new_mask, cpus_allowed);
8f9ea86f
WL
8291
8292 /*
8293 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8294 * will restore the previous user_cpus_ptr value.
8295 *
8296 * In the unlikely event a previous user_cpus_ptr exists,
8297 * we need to further restrict the mask to what is allowed
8298 * by that old user_cpus_ptr.
8299 */
8300 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8301 bool empty = !cpumask_and(new_mask, new_mask,
8302 ctx->user_mask);
8303
8304 if (WARN_ON_ONCE(empty))
8305 cpumask_copy(new_mask, cpus_allowed);
8306 }
8307 __set_cpus_allowed_ptr(p, ctx);
8308 retval = -EINVAL;
8707d8b8 8309 }
db3b02ae 8310
16303ab2 8311out_free_new_mask:
5a16f3d3
RR
8312 free_cpumask_var(new_mask);
8313out_free_cpus_allowed:
8314 free_cpumask_var(cpus_allowed);
db3b02ae
WD
8315 return retval;
8316}
8317
8318long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8319{
8f9ea86f
WL
8320 struct affinity_context ac;
8321 struct cpumask *user_mask;
36c8b586
IM
8322 struct task_struct *p;
8323 int retval;
1da177e4 8324
23f5d142 8325 rcu_read_lock();
1da177e4
LT
8326
8327 p = find_process_by_pid(pid);
8328 if (!p) {
23f5d142 8329 rcu_read_unlock();
1da177e4
LT
8330 return -ESRCH;
8331 }
8332
23f5d142 8333 /* Prevent p going away */
1da177e4 8334 get_task_struct(p);
23f5d142 8335 rcu_read_unlock();
1da177e4 8336
14a40ffc
TH
8337 if (p->flags & PF_NO_SETAFFINITY) {
8338 retval = -EINVAL;
8339 goto out_put_task;
8340 }
db3b02ae 8341
4c44aaaf
EB
8342 if (!check_same_owner(p)) {
8343 rcu_read_lock();
8344 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8345 rcu_read_unlock();
db3b02ae
WD
8346 retval = -EPERM;
8347 goto out_put_task;
4c44aaaf
EB
8348 }
8349 rcu_read_unlock();
8350 }
1da177e4 8351
b0ae1981 8352 retval = security_task_setscheduler(p);
e7834f8f 8353 if (retval)
db3b02ae 8354 goto out_put_task;
1da177e4 8355
5657c116
WL
8356 /*
8357 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8358 * alloc_user_cpus_ptr() returns NULL.
8359 */
9a5418bc 8360 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
5657c116
WL
8361 if (user_mask) {
8362 cpumask_copy(user_mask, in_mask);
8363 } else if (IS_ENABLED(CONFIG_SMP)) {
8f9ea86f
WL
8364 retval = -ENOMEM;
8365 goto out_put_task;
8366 }
5657c116 8367
8f9ea86f
WL
8368 ac = (struct affinity_context){
8369 .new_mask = in_mask,
8370 .user_mask = user_mask,
8371 .flags = SCA_USER,
8372 };
8373
713a2e21 8374 retval = __sched_setaffinity(p, &ac);
8f9ea86f
WL
8375 kfree(ac.user_mask);
8376
5a16f3d3 8377out_put_task:
1da177e4 8378 put_task_struct(p);
1da177e4
LT
8379 return retval;
8380}
8381
8382static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 8383 struct cpumask *new_mask)
1da177e4 8384{
96f874e2
RR
8385 if (len < cpumask_size())
8386 cpumask_clear(new_mask);
8387 else if (len > cpumask_size())
8388 len = cpumask_size();
8389
1da177e4
LT
8390 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8391}
8392
8393/**
d1ccc66d 8394 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
8395 * @pid: pid of the process
8396 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8397 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
8398 *
8399 * Return: 0 on success. An error code otherwise.
1da177e4 8400 */
5add95d4
HC
8401SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8402 unsigned long __user *, user_mask_ptr)
1da177e4 8403{
5a16f3d3 8404 cpumask_var_t new_mask;
1da177e4
LT
8405 int retval;
8406
5a16f3d3
RR
8407 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8408 return -ENOMEM;
1da177e4 8409
5a16f3d3
RR
8410 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8411 if (retval == 0)
8412 retval = sched_setaffinity(pid, new_mask);
8413 free_cpumask_var(new_mask);
8414 return retval;
1da177e4
LT
8415}
8416
96f874e2 8417long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 8418{
36c8b586 8419 struct task_struct *p;
31605683 8420 unsigned long flags;
1da177e4 8421 int retval;
1da177e4 8422
23f5d142 8423 rcu_read_lock();
1da177e4
LT
8424
8425 retval = -ESRCH;
8426 p = find_process_by_pid(pid);
8427 if (!p)
8428 goto out_unlock;
8429
e7834f8f
DQ
8430 retval = security_task_getscheduler(p);
8431 if (retval)
8432 goto out_unlock;
8433
013fdb80 8434 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 8435 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 8436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
8437
8438out_unlock:
23f5d142 8439 rcu_read_unlock();
1da177e4 8440
9531b62f 8441 return retval;
1da177e4
LT
8442}
8443
8444/**
d1ccc66d 8445 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
8446 * @pid: pid of the process
8447 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8448 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 8449 *
599b4840
ZW
8450 * Return: size of CPU mask copied to user_mask_ptr on success. An
8451 * error code otherwise.
1da177e4 8452 */
5add95d4
HC
8453SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8454 unsigned long __user *, user_mask_ptr)
1da177e4
LT
8455{
8456 int ret;
f17c8607 8457 cpumask_var_t mask;
1da177e4 8458
84fba5ec 8459 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
8460 return -EINVAL;
8461 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
8462 return -EINVAL;
8463
6015b1ac 8464 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
f17c8607 8465 return -ENOMEM;
1da177e4 8466
f17c8607
RR
8467 ret = sched_getaffinity(pid, mask);
8468 if (ret == 0) {
4de373a1 8469 unsigned int retlen = min(len, cpumask_size());
cd3d8031 8470
6015b1ac 8471 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
f17c8607
RR
8472 ret = -EFAULT;
8473 else
cd3d8031 8474 ret = retlen;
f17c8607
RR
8475 }
8476 free_cpumask_var(mask);
1da177e4 8477
f17c8607 8478 return ret;
1da177e4
LT
8479}
8480
7d4dd4f1 8481static void do_sched_yield(void)
1da177e4 8482{
8a8c69c3
PZ
8483 struct rq_flags rf;
8484 struct rq *rq;
8485
246b3b33 8486 rq = this_rq_lock_irq(&rf);
1da177e4 8487
ae92882e 8488 schedstat_inc(rq->yld_count);
4530d7ab 8489 current->sched_class->yield_task(rq);
1da177e4 8490
8a8c69c3 8491 preempt_disable();
345a957f 8492 rq_unlock_irq(rq, &rf);
ba74c144 8493 sched_preempt_enable_no_resched();
1da177e4
LT
8494
8495 schedule();
7d4dd4f1 8496}
1da177e4 8497
59a74b15
MCC
8498/**
8499 * sys_sched_yield - yield the current processor to other threads.
8500 *
8501 * This function yields the current CPU to other tasks. If there are no
8502 * other threads running on this CPU then this function will return.
8503 *
8504 * Return: 0.
8505 */
7d4dd4f1
DB
8506SYSCALL_DEFINE0(sched_yield)
8507{
8508 do_sched_yield();
1da177e4
LT
8509 return 0;
8510}
8511
b965f1dd
PZI
8512#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8513int __sched __cond_resched(void)
1da177e4 8514{
fe32d3cd 8515 if (should_resched(0)) {
a18b5d01 8516 preempt_schedule_common();
1da177e4
LT
8517 return 1;
8518 }
50895825
FW
8519 /*
8520 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8521 * whether the current CPU is in an RCU read-side critical section,
8522 * so the tick can report quiescent states even for CPUs looping
8523 * in kernel context. In contrast, in non-preemptible kernels,
8524 * RCU readers leave no in-memory hints, which means that CPU-bound
8525 * processes executing in kernel context might never report an
8526 * RCU quiescent state. Therefore, the following code causes
8527 * cond_resched() to report a quiescent state, but only when RCU
8528 * is in urgent need of one.
8529 */
b965f1dd 8530#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 8531 rcu_all_qs();
b965f1dd 8532#endif
1da177e4
LT
8533 return 0;
8534}
b965f1dd
PZI
8535EXPORT_SYMBOL(__cond_resched);
8536#endif
8537
8538#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 8539#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8540#define cond_resched_dynamic_enabled __cond_resched
8541#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8542DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 8543EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd 8544
8a69fe0b
MR
8545#define might_resched_dynamic_enabled __cond_resched
8546#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8547DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 8548EXPORT_STATIC_CALL_TRAMP(might_resched);
99cf983c
MR
8549#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8550static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8551int __sched dynamic_cond_resched(void)
8552{
e3ff7c60 8553 klp_sched_try_switch();
99cf983c
MR
8554 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8555 return 0;
8556 return __cond_resched();
8557}
8558EXPORT_SYMBOL(dynamic_cond_resched);
8559
8560static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8561int __sched dynamic_might_resched(void)
8562{
8563 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8564 return 0;
8565 return __cond_resched();
8566}
8567EXPORT_SYMBOL(dynamic_might_resched);
8568#endif
35a773a0 8569#endif
1da177e4
LT
8570
8571/*
613afbf8 8572 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
8573 * call schedule, and on return reacquire the lock.
8574 *
c1a280b6 8575 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
8576 * operations here to prevent schedule() from being called twice (once via
8577 * spin_unlock(), once by hand).
8578 */
613afbf8 8579int __cond_resched_lock(spinlock_t *lock)
1da177e4 8580{
fe32d3cd 8581 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
8582 int ret = 0;
8583
f607c668
PZ
8584 lockdep_assert_held(lock);
8585
4a81e832 8586 if (spin_needbreak(lock) || resched) {
1da177e4 8587 spin_unlock(lock);
7e406d1f 8588 if (!_cond_resched())
95c354fe 8589 cpu_relax();
6df3cecb 8590 ret = 1;
1da177e4 8591 spin_lock(lock);
1da177e4 8592 }
6df3cecb 8593 return ret;
1da177e4 8594}
613afbf8 8595EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 8596
f3d4b4b1
BG
8597int __cond_resched_rwlock_read(rwlock_t *lock)
8598{
8599 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8600 int ret = 0;
8601
8602 lockdep_assert_held_read(lock);
8603
8604 if (rwlock_needbreak(lock) || resched) {
8605 read_unlock(lock);
7e406d1f 8606 if (!_cond_resched())
f3d4b4b1
BG
8607 cpu_relax();
8608 ret = 1;
8609 read_lock(lock);
8610 }
8611 return ret;
8612}
8613EXPORT_SYMBOL(__cond_resched_rwlock_read);
8614
8615int __cond_resched_rwlock_write(rwlock_t *lock)
8616{
8617 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8618 int ret = 0;
8619
8620 lockdep_assert_held_write(lock);
8621
8622 if (rwlock_needbreak(lock) || resched) {
8623 write_unlock(lock);
7e406d1f 8624 if (!_cond_resched())
f3d4b4b1
BG
8625 cpu_relax();
8626 ret = 1;
8627 write_lock(lock);
8628 }
8629 return ret;
8630}
8631EXPORT_SYMBOL(__cond_resched_rwlock_write);
8632
4c748558
MR
8633#ifdef CONFIG_PREEMPT_DYNAMIC
8634
33c64734 8635#ifdef CONFIG_GENERIC_ENTRY
4c748558 8636#include <linux/entry-common.h>
33c64734 8637#endif
4c748558
MR
8638
8639/*
8640 * SC:cond_resched
8641 * SC:might_resched
8642 * SC:preempt_schedule
8643 * SC:preempt_schedule_notrace
8644 * SC:irqentry_exit_cond_resched
8645 *
8646 *
8647 * NONE:
8648 * cond_resched <- __cond_resched
8649 * might_resched <- RET0
8650 * preempt_schedule <- NOP
8651 * preempt_schedule_notrace <- NOP
8652 * irqentry_exit_cond_resched <- NOP
8653 *
8654 * VOLUNTARY:
8655 * cond_resched <- __cond_resched
8656 * might_resched <- __cond_resched
8657 * preempt_schedule <- NOP
8658 * preempt_schedule_notrace <- NOP
8659 * irqentry_exit_cond_resched <- NOP
8660 *
8661 * FULL:
8662 * cond_resched <- RET0
8663 * might_resched <- RET0
8664 * preempt_schedule <- preempt_schedule
8665 * preempt_schedule_notrace <- preempt_schedule_notrace
8666 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8667 */
8668
8669enum {
8670 preempt_dynamic_undefined = -1,
8671 preempt_dynamic_none,
8672 preempt_dynamic_voluntary,
8673 preempt_dynamic_full,
8674};
8675
8676int preempt_dynamic_mode = preempt_dynamic_undefined;
8677
8678int sched_dynamic_mode(const char *str)
8679{
8680 if (!strcmp(str, "none"))
8681 return preempt_dynamic_none;
8682
8683 if (!strcmp(str, "voluntary"))
8684 return preempt_dynamic_voluntary;
8685
8686 if (!strcmp(str, "full"))
8687 return preempt_dynamic_full;
8688
8689 return -EINVAL;
8690}
8691
99cf983c 8692#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8693#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8694#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
99cf983c
MR
8695#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8696#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8697#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8698#else
8699#error "Unsupported PREEMPT_DYNAMIC mechanism"
8700#endif
8a69fe0b 8701
9b8e1781 8702static DEFINE_MUTEX(sched_dynamic_mutex);
e3ff7c60
JP
8703static bool klp_override;
8704
8705static void __sched_dynamic_update(int mode)
4c748558
MR
8706{
8707 /*
8708 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8709 * the ZERO state, which is invalid.
8710 */
e3ff7c60
JP
8711 if (!klp_override)
8712 preempt_dynamic_enable(cond_resched);
8a69fe0b
MR
8713 preempt_dynamic_enable(might_resched);
8714 preempt_dynamic_enable(preempt_schedule);
8715 preempt_dynamic_enable(preempt_schedule_notrace);
8716 preempt_dynamic_enable(irqentry_exit_cond_resched);
4c748558
MR
8717
8718 switch (mode) {
8719 case preempt_dynamic_none:
e3ff7c60
JP
8720 if (!klp_override)
8721 preempt_dynamic_enable(cond_resched);
8a69fe0b
MR
8722 preempt_dynamic_disable(might_resched);
8723 preempt_dynamic_disable(preempt_schedule);
8724 preempt_dynamic_disable(preempt_schedule_notrace);
8725 preempt_dynamic_disable(irqentry_exit_cond_resched);
e3ff7c60
JP
8726 if (mode != preempt_dynamic_mode)
8727 pr_info("Dynamic Preempt: none\n");
4c748558
MR
8728 break;
8729
8730 case preempt_dynamic_voluntary:
e3ff7c60
JP
8731 if (!klp_override)
8732 preempt_dynamic_enable(cond_resched);
8a69fe0b
MR
8733 preempt_dynamic_enable(might_resched);
8734 preempt_dynamic_disable(preempt_schedule);
8735 preempt_dynamic_disable(preempt_schedule_notrace);
8736 preempt_dynamic_disable(irqentry_exit_cond_resched);
e3ff7c60
JP
8737 if (mode != preempt_dynamic_mode)
8738 pr_info("Dynamic Preempt: voluntary\n");
4c748558
MR
8739 break;
8740
8741 case preempt_dynamic_full:
e3ff7c60
JP
8742 if (!klp_override)
8743 preempt_dynamic_disable(cond_resched);
8a69fe0b
MR
8744 preempt_dynamic_disable(might_resched);
8745 preempt_dynamic_enable(preempt_schedule);
8746 preempt_dynamic_enable(preempt_schedule_notrace);
8747 preempt_dynamic_enable(irqentry_exit_cond_resched);
e3ff7c60
JP
8748 if (mode != preempt_dynamic_mode)
8749 pr_info("Dynamic Preempt: full\n");
4c748558
MR
8750 break;
8751 }
8752
8753 preempt_dynamic_mode = mode;
8754}
8755
e3ff7c60
JP
8756void sched_dynamic_update(int mode)
8757{
8758 mutex_lock(&sched_dynamic_mutex);
8759 __sched_dynamic_update(mode);
8760 mutex_unlock(&sched_dynamic_mutex);
8761}
8762
8763#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8764
8765static int klp_cond_resched(void)
8766{
8767 __klp_sched_try_switch();
8768 return __cond_resched();
8769}
8770
8771void sched_dynamic_klp_enable(void)
8772{
8773 mutex_lock(&sched_dynamic_mutex);
8774
8775 klp_override = true;
8776 static_call_update(cond_resched, klp_cond_resched);
8777
8778 mutex_unlock(&sched_dynamic_mutex);
8779}
8780
8781void sched_dynamic_klp_disable(void)
8782{
8783 mutex_lock(&sched_dynamic_mutex);
8784
8785 klp_override = false;
8786 __sched_dynamic_update(preempt_dynamic_mode);
8787
8788 mutex_unlock(&sched_dynamic_mutex);
8789}
8790
8791#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8792
4c748558
MR
8793static int __init setup_preempt_mode(char *str)
8794{
8795 int mode = sched_dynamic_mode(str);
8796 if (mode < 0) {
8797 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8798 return 0;
8799 }
8800
8801 sched_dynamic_update(mode);
8802 return 1;
8803}
8804__setup("preempt=", setup_preempt_mode);
8805
8806static void __init preempt_dynamic_init(void)
8807{
8808 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8809 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8810 sched_dynamic_update(preempt_dynamic_none);
8811 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8812 sched_dynamic_update(preempt_dynamic_voluntary);
8813 } else {
8814 /* Default static call setting, nothing to do */
8815 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8816 preempt_dynamic_mode = preempt_dynamic_full;
8817 pr_info("Dynamic Preempt: full\n");
8818 }
8819 }
8820}
8821
cfe43f47
VS
8822#define PREEMPT_MODEL_ACCESSOR(mode) \
8823 bool preempt_model_##mode(void) \
8824 { \
8825 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8826 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8827 } \
8828 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8829
8830PREEMPT_MODEL_ACCESSOR(none);
8831PREEMPT_MODEL_ACCESSOR(voluntary);
8832PREEMPT_MODEL_ACCESSOR(full);
8833
4c748558
MR
8834#else /* !CONFIG_PREEMPT_DYNAMIC */
8835
8836static inline void preempt_dynamic_init(void) { }
8837
8838#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8839
1da177e4
LT
8840/**
8841 * yield - yield the current processor to other threads.
8842 *
8e3fabfd
PZ
8843 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8844 *
8845 * The scheduler is at all times free to pick the calling task as the most
8846 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 8847 * it, it's already broken.
8e3fabfd
PZ
8848 *
8849 * Typical broken usage is:
8850 *
8851 * while (!event)
d1ccc66d 8852 * yield();
8e3fabfd
PZ
8853 *
8854 * where one assumes that yield() will let 'the other' process run that will
8855 * make event true. If the current task is a SCHED_FIFO task that will never
8856 * happen. Never use yield() as a progress guarantee!!
8857 *
8858 * If you want to use yield() to wait for something, use wait_event().
8859 * If you want to use yield() to be 'nice' for others, use cond_resched().
8860 * If you still want to use yield(), do not!
1da177e4
LT
8861 */
8862void __sched yield(void)
8863{
8864 set_current_state(TASK_RUNNING);
7d4dd4f1 8865 do_sched_yield();
1da177e4 8866}
1da177e4
LT
8867EXPORT_SYMBOL(yield);
8868
d95f4122
MG
8869/**
8870 * yield_to - yield the current processor to another thread in
8871 * your thread group, or accelerate that thread toward the
8872 * processor it's on.
16addf95
RD
8873 * @p: target task
8874 * @preempt: whether task preemption is allowed or not
d95f4122
MG
8875 *
8876 * It's the caller's job to ensure that the target task struct
8877 * can't go away on us before we can do any checks.
8878 *
e69f6186 8879 * Return:
7b270f60
PZ
8880 * true (>0) if we indeed boosted the target task.
8881 * false (0) if we failed to boost the target.
8882 * -ESRCH if there's no task to yield to.
d95f4122 8883 */
fa93384f 8884int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
8885{
8886 struct task_struct *curr = current;
8887 struct rq *rq, *p_rq;
8888 unsigned long flags;
c3c18640 8889 int yielded = 0;
d95f4122
MG
8890
8891 local_irq_save(flags);
8892 rq = this_rq();
8893
8894again:
8895 p_rq = task_rq(p);
7b270f60
PZ
8896 /*
8897 * If we're the only runnable task on the rq and target rq also
8898 * has only one task, there's absolutely no point in yielding.
8899 */
8900 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8901 yielded = -ESRCH;
8902 goto out_irq;
8903 }
8904
d95f4122 8905 double_rq_lock(rq, p_rq);
39e24d8f 8906 if (task_rq(p) != p_rq) {
d95f4122
MG
8907 double_rq_unlock(rq, p_rq);
8908 goto again;
8909 }
8910
8911 if (!curr->sched_class->yield_to_task)
7b270f60 8912 goto out_unlock;
d95f4122
MG
8913
8914 if (curr->sched_class != p->sched_class)
7b270f60 8915 goto out_unlock;
d95f4122 8916
0b9d46fc 8917 if (task_on_cpu(p_rq, p) || !task_is_running(p))
7b270f60 8918 goto out_unlock;
d95f4122 8919
0900acf2 8920 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 8921 if (yielded) {
ae92882e 8922 schedstat_inc(rq->yld_count);
6d1cafd8
VP
8923 /*
8924 * Make p's CPU reschedule; pick_next_entity takes care of
8925 * fairness.
8926 */
8927 if (preempt && rq != p_rq)
8875125e 8928 resched_curr(p_rq);
6d1cafd8 8929 }
d95f4122 8930
7b270f60 8931out_unlock:
d95f4122 8932 double_rq_unlock(rq, p_rq);
7b270f60 8933out_irq:
d95f4122
MG
8934 local_irq_restore(flags);
8935
7b270f60 8936 if (yielded > 0)
d95f4122
MG
8937 schedule();
8938
8939 return yielded;
8940}
8941EXPORT_SYMBOL_GPL(yield_to);
8942
10ab5643
TH
8943int io_schedule_prepare(void)
8944{
8945 int old_iowait = current->in_iowait;
8946
8947 current->in_iowait = 1;
aa8dccca 8948 blk_flush_plug(current->plug, true);
10ab5643
TH
8949 return old_iowait;
8950}
8951
8952void io_schedule_finish(int token)
8953{
8954 current->in_iowait = token;
8955}
8956
1da177e4 8957/*
41a2d6cf 8958 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8959 * that process accounting knows that this is a task in IO wait state.
1da177e4 8960 */
1da177e4
LT
8961long __sched io_schedule_timeout(long timeout)
8962{
10ab5643 8963 int token;
1da177e4
LT
8964 long ret;
8965
10ab5643 8966 token = io_schedule_prepare();
1da177e4 8967 ret = schedule_timeout(timeout);
10ab5643 8968 io_schedule_finish(token);
9cff8ade 8969
1da177e4
LT
8970 return ret;
8971}
9cff8ade 8972EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8973
e3b929b0 8974void __sched io_schedule(void)
10ab5643
TH
8975{
8976 int token;
8977
8978 token = io_schedule_prepare();
8979 schedule();
8980 io_schedule_finish(token);
8981}
8982EXPORT_SYMBOL(io_schedule);
8983
1da177e4
LT
8984/**
8985 * sys_sched_get_priority_max - return maximum RT priority.
8986 * @policy: scheduling class.
8987 *
e69f6186
YB
8988 * Return: On success, this syscall returns the maximum
8989 * rt_priority that can be used by a given scheduling class.
8990 * On failure, a negative error code is returned.
1da177e4 8991 */
5add95d4 8992SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8993{
8994 int ret = -EINVAL;
8995
8996 switch (policy) {
8997 case SCHED_FIFO:
8998 case SCHED_RR:
ae18ad28 8999 ret = MAX_RT_PRIO-1;
1da177e4 9000 break;
aab03e05 9001 case SCHED_DEADLINE:
1da177e4 9002 case SCHED_NORMAL:
b0a9499c 9003 case SCHED_BATCH:
dd41f596 9004 case SCHED_IDLE:
1da177e4
LT
9005 ret = 0;
9006 break;
9007 }
9008 return ret;
9009}
9010
9011/**
9012 * sys_sched_get_priority_min - return minimum RT priority.
9013 * @policy: scheduling class.
9014 *
e69f6186
YB
9015 * Return: On success, this syscall returns the minimum
9016 * rt_priority that can be used by a given scheduling class.
9017 * On failure, a negative error code is returned.
1da177e4 9018 */
5add95d4 9019SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
9020{
9021 int ret = -EINVAL;
9022
9023 switch (policy) {
9024 case SCHED_FIFO:
9025 case SCHED_RR:
9026 ret = 1;
9027 break;
aab03e05 9028 case SCHED_DEADLINE:
1da177e4 9029 case SCHED_NORMAL:
b0a9499c 9030 case SCHED_BATCH:
dd41f596 9031 case SCHED_IDLE:
1da177e4
LT
9032 ret = 0;
9033 }
9034 return ret;
9035}
9036
abca5fc5 9037static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 9038{
36c8b586 9039 struct task_struct *p;
a4ec24b4 9040 unsigned int time_slice;
eb580751 9041 struct rq_flags rf;
dba091b9 9042 struct rq *rq;
3a5c359a 9043 int retval;
1da177e4
LT
9044
9045 if (pid < 0)
3a5c359a 9046 return -EINVAL;
1da177e4
LT
9047
9048 retval = -ESRCH;
1a551ae7 9049 rcu_read_lock();
1da177e4
LT
9050 p = find_process_by_pid(pid);
9051 if (!p)
9052 goto out_unlock;
9053
9054 retval = security_task_getscheduler(p);
9055 if (retval)
9056 goto out_unlock;
9057
eb580751 9058 rq = task_rq_lock(p, &rf);
a57beec5
PZ
9059 time_slice = 0;
9060 if (p->sched_class->get_rr_interval)
9061 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 9062 task_rq_unlock(rq, p, &rf);
a4ec24b4 9063
1a551ae7 9064 rcu_read_unlock();
abca5fc5
AV
9065 jiffies_to_timespec64(time_slice, t);
9066 return 0;
3a5c359a 9067
1da177e4 9068out_unlock:
1a551ae7 9069 rcu_read_unlock();
1da177e4
LT
9070 return retval;
9071}
9072
2064a5ab
RD
9073/**
9074 * sys_sched_rr_get_interval - return the default timeslice of a process.
9075 * @pid: pid of the process.
9076 * @interval: userspace pointer to the timeslice value.
9077 *
9078 * this syscall writes the default timeslice value of a given process
9079 * into the user-space timespec buffer. A value of '0' means infinity.
9080 *
9081 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9082 * an error code.
9083 */
abca5fc5 9084SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 9085 struct __kernel_timespec __user *, interval)
abca5fc5
AV
9086{
9087 struct timespec64 t;
9088 int retval = sched_rr_get_interval(pid, &t);
9089
9090 if (retval == 0)
9091 retval = put_timespec64(&t, interval);
9092
9093 return retval;
9094}
9095
474b9c77 9096#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
9097SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9098 struct old_timespec32 __user *, interval)
abca5fc5
AV
9099{
9100 struct timespec64 t;
9101 int retval = sched_rr_get_interval(pid, &t);
9102
9103 if (retval == 0)
9afc5eee 9104 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
9105 return retval;
9106}
9107#endif
9108
82a1fcb9 9109void sched_show_task(struct task_struct *p)
1da177e4 9110{
1da177e4 9111 unsigned long free = 0;
4e79752c 9112 int ppid;
c930b2c0 9113
38200502
TH
9114 if (!try_get_task_stack(p))
9115 return;
20435d84 9116
cc172ff3 9117 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 9118
b03fbd4f 9119 if (task_is_running(p))
cc172ff3 9120 pr_cont(" running task ");
1da177e4 9121#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 9122 free = stack_not_used(p);
1da177e4 9123#endif
a90e984c 9124 ppid = 0;
4e79752c 9125 rcu_read_lock();
a90e984c
ON
9126 if (pid_alive(p))
9127 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 9128 rcu_read_unlock();
0f03d680 9129 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
cc172ff3 9130 free, task_pid_nr(p), ppid,
0569b245 9131 read_task_thread_flags(p));
1da177e4 9132
3d1cb205 9133 print_worker_info(KERN_INFO, p);
a8b62fd0 9134 print_stop_info(KERN_INFO, p);
9cb8f069 9135 show_stack(p, NULL, KERN_INFO);
38200502 9136 put_task_stack(p);
1da177e4 9137}
0032f4e8 9138EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 9139
5d68cc95
PZ
9140static inline bool
9141state_filter_match(unsigned long state_filter, struct task_struct *p)
9142{
2f064a59
PZ
9143 unsigned int state = READ_ONCE(p->__state);
9144
5d68cc95
PZ
9145 /* no filter, everything matches */
9146 if (!state_filter)
9147 return true;
9148
9149 /* filter, but doesn't match */
2f064a59 9150 if (!(state & state_filter))
5d68cc95
PZ
9151 return false;
9152
9153 /*
9154 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9155 * TASK_KILLABLE).
9156 */
5aec788a 9157 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
5d68cc95
PZ
9158 return false;
9159
9160 return true;
9161}
9162
9163
2f064a59 9164void show_state_filter(unsigned int state_filter)
1da177e4 9165{
36c8b586 9166 struct task_struct *g, *p;
1da177e4 9167
510f5acc 9168 rcu_read_lock();
5d07f420 9169 for_each_process_thread(g, p) {
1da177e4
LT
9170 /*
9171 * reset the NMI-timeout, listing all files on a slow
25985edc 9172 * console might take a lot of time:
57675cb9
AR
9173 * Also, reset softlockup watchdogs on all CPUs, because
9174 * another CPU might be blocked waiting for us to process
9175 * an IPI.
1da177e4
LT
9176 */
9177 touch_nmi_watchdog();
57675cb9 9178 touch_all_softlockup_watchdogs();
5d68cc95 9179 if (state_filter_match(state_filter, p))
82a1fcb9 9180 sched_show_task(p);
5d07f420 9181 }
1da177e4 9182
dd41f596 9183#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
9184 if (!state_filter)
9185 sysrq_sched_debug_show();
dd41f596 9186#endif
510f5acc 9187 rcu_read_unlock();
e59e2ae2
IM
9188 /*
9189 * Only show locks if all tasks are dumped:
9190 */
93335a21 9191 if (!state_filter)
e59e2ae2 9192 debug_show_all_locks();
1da177e4
LT
9193}
9194
f340c0d1
IM
9195/**
9196 * init_idle - set up an idle thread for a given CPU
9197 * @idle: task in question
d1ccc66d 9198 * @cpu: CPU the idle task belongs to
f340c0d1
IM
9199 *
9200 * NOTE: this function does not set the idle thread's NEED_RESCHED
9201 * flag, to make booting more robust.
9202 */
f1a0a376 9203void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 9204{
713a2e21
WL
9205#ifdef CONFIG_SMP
9206 struct affinity_context ac = (struct affinity_context) {
9207 .new_mask = cpumask_of(cpu),
9208 .flags = 0,
9209 };
9210#endif
70b97a7f 9211 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
9212 unsigned long flags;
9213
ff51ff84
PZ
9214 __sched_fork(0, idle);
9215
25834c73 9216 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 9217 raw_spin_rq_lock(rq);
5cbd54ef 9218
2f064a59 9219 idle->__state = TASK_RUNNING;
dd41f596 9220 idle->se.exec_start = sched_clock();
00b89fe0
VS
9221 /*
9222 * PF_KTHREAD should already be set at this point; regardless, make it
9223 * look like a proper per-CPU kthread.
9224 */
9225 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9226 kthread_set_per_cpu(idle, cpu);
dd41f596 9227
de9b8f5d
PZ
9228#ifdef CONFIG_SMP
9229 /*
b19a888c 9230 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
9231 * in that case do_set_cpus_allowed() will not do the right thing.
9232 *
9233 * And since this is boot we can forgo the serialization.
9234 */
713a2e21 9235 set_cpus_allowed_common(idle, &ac);
de9b8f5d 9236#endif
6506cf6c
PZ
9237 /*
9238 * We're having a chicken and egg problem, even though we are
d1ccc66d 9239 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
9240 * lockdep check in task_group() will fail.
9241 *
9242 * Similar case to sched_fork(). / Alternatively we could
9243 * use task_rq_lock() here and obtain the other rq->lock.
9244 *
9245 * Silence PROVE_RCU
9246 */
9247 rcu_read_lock();
dd41f596 9248 __set_task_cpu(idle, cpu);
6506cf6c 9249 rcu_read_unlock();
1da177e4 9250
5311a98f
EB
9251 rq->idle = idle;
9252 rcu_assign_pointer(rq->curr, idle);
da0c1e65 9253 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 9254#ifdef CONFIG_SMP
3ca7a440 9255 idle->on_cpu = 1;
4866cde0 9256#endif
5cb9eaa3 9257 raw_spin_rq_unlock(rq);
25834c73 9258 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
9259
9260 /* Set the preempt count _outside_ the spinlocks! */
01028747 9261 init_idle_preempt_count(idle, cpu);
55cd5340 9262
dd41f596
IM
9263 /*
9264 * The idle tasks have their own, simple scheduling class:
9265 */
9266 idle->sched_class = &idle_sched_class;
868baf07 9267 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 9268 vtime_init_idle(idle, cpu);
de9b8f5d 9269#ifdef CONFIG_SMP
f1c6f1a7
CE
9270 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9271#endif
19978ca6
IM
9272}
9273
e1d4eeec
NP
9274#ifdef CONFIG_SMP
9275
f82f8042
JL
9276int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9277 const struct cpumask *trial)
9278{
06a76fe0 9279 int ret = 1;
f82f8042 9280
1087ad4e 9281 if (cpumask_empty(cur))
bb2bc55a
MG
9282 return ret;
9283
06a76fe0 9284 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
9285
9286 return ret;
9287}
9288
7f51412a 9289int task_can_attach(struct task_struct *p,
b6e8d40d 9290 const struct cpumask *cs_effective_cpus)
7f51412a
JL
9291{
9292 int ret = 0;
9293
9294 /*
9295 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 9296 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
9297 * affinity and isolating such threads by their set of
9298 * allowed nodes is unnecessary. Thus, cpusets are not
9299 * applicable for such threads. This prevents checking for
9300 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 9301 * before cpus_mask may be changed.
7f51412a
JL
9302 */
9303 if (p->flags & PF_NO_SETAFFINITY) {
9304 ret = -EINVAL;
9305 goto out;
9306 }
9307
7f51412a 9308 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
b6e8d40d
WL
9309 cs_effective_cpus)) {
9310 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
772b6539 9311
b6e8d40d
WL
9312 if (unlikely(cpu >= nr_cpu_ids))
9313 return -EINVAL;
772b6539
DE
9314 ret = dl_cpu_busy(cpu, p);
9315 }
7f51412a 9316
7f51412a
JL
9317out:
9318 return ret;
9319}
9320
f2cb1360 9321bool sched_smp_initialized __read_mostly;
e26fbffd 9322
e6628d5b
MG
9323#ifdef CONFIG_NUMA_BALANCING
9324/* Migrate current task p to target_cpu */
9325int migrate_task_to(struct task_struct *p, int target_cpu)
9326{
9327 struct migration_arg arg = { p, target_cpu };
9328 int curr_cpu = task_cpu(p);
9329
9330 if (curr_cpu == target_cpu)
9331 return 0;
9332
3bd37062 9333 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
9334 return -EINVAL;
9335
9336 /* TODO: This is not properly updating schedstats */
9337
286549dc 9338 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
9339 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9340}
0ec8aa00
PZ
9341
9342/*
9343 * Requeue a task on a given node and accurately track the number of NUMA
9344 * tasks on the runqueues
9345 */
9346void sched_setnuma(struct task_struct *p, int nid)
9347{
da0c1e65 9348 bool queued, running;
eb580751
PZ
9349 struct rq_flags rf;
9350 struct rq *rq;
0ec8aa00 9351
eb580751 9352 rq = task_rq_lock(p, &rf);
da0c1e65 9353 queued = task_on_rq_queued(p);
0ec8aa00
PZ
9354 running = task_current(rq, p);
9355
da0c1e65 9356 if (queued)
1de64443 9357 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 9358 if (running)
f3cd1c4e 9359 put_prev_task(rq, p);
0ec8aa00
PZ
9360
9361 p->numa_preferred_nid = nid;
0ec8aa00 9362
da0c1e65 9363 if (queued)
7134b3e9 9364 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 9365 if (running)
03b7fad1 9366 set_next_task(rq, p);
eb580751 9367 task_rq_unlock(rq, p, &rf);
0ec8aa00 9368}
5cc389bc 9369#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 9370
1da177e4 9371#ifdef CONFIG_HOTPLUG_CPU
054b9108 9372/*
d1ccc66d 9373 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 9374 * offline.
054b9108 9375 */
48c5ccae 9376void idle_task_exit(void)
1da177e4 9377{
48c5ccae 9378 struct mm_struct *mm = current->active_mm;
e76bd8d9 9379
48c5ccae 9380 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 9381 BUG_ON(current != this_rq()->idle);
e76bd8d9 9382
a53efe5f 9383 if (mm != &init_mm) {
252d2a41 9384 switch_mm(mm, &init_mm, current);
a53efe5f
MS
9385 finish_arch_post_lock_switch();
9386 }
bf2c59fc
PZ
9387
9388 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
9389}
9390
2558aacf 9391static int __balance_push_cpu_stop(void *arg)
1da177e4 9392{
2558aacf
PZ
9393 struct task_struct *p = arg;
9394 struct rq *rq = this_rq();
9395 struct rq_flags rf;
9396 int cpu;
1da177e4 9397
2558aacf
PZ
9398 raw_spin_lock_irq(&p->pi_lock);
9399 rq_lock(rq, &rf);
3f1d2a31 9400
2558aacf
PZ
9401 update_rq_clock(rq);
9402
9403 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9404 cpu = select_fallback_rq(rq->cpu, p);
9405 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 9406 }
3f1d2a31 9407
2558aacf
PZ
9408 rq_unlock(rq, &rf);
9409 raw_spin_unlock_irq(&p->pi_lock);
9410
9411 put_task_struct(p);
9412
9413 return 0;
10e7071b 9414}
3f1d2a31 9415
2558aacf
PZ
9416static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9417
48f24c4d 9418/*
2558aacf 9419 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
9420 *
9421 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9422 * effective when the hotplug motion is down.
1da177e4 9423 */
2558aacf 9424static void balance_push(struct rq *rq)
1da177e4 9425{
2558aacf
PZ
9426 struct task_struct *push_task = rq->curr;
9427
5cb9eaa3 9428 lockdep_assert_rq_held(rq);
b5c44773 9429
ae792702
PZ
9430 /*
9431 * Ensure the thing is persistent until balance_push_set(.on = false);
9432 */
9433 rq->balance_callback = &balance_push_callback;
1da177e4 9434
b5c44773 9435 /*
868ad33b
TG
9436 * Only active while going offline and when invoked on the outgoing
9437 * CPU.
b5c44773 9438 */
868ad33b 9439 if (!cpu_dying(rq->cpu) || rq != this_rq())
b5c44773
PZ
9440 return;
9441
1da177e4 9442 /*
2558aacf
PZ
9443 * Both the cpu-hotplug and stop task are in this case and are
9444 * required to complete the hotplug process.
1da177e4 9445 */
00b89fe0 9446 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
9447 is_migration_disabled(push_task)) {
9448
f2469a1f
TG
9449 /*
9450 * If this is the idle task on the outgoing CPU try to wake
9451 * up the hotplug control thread which might wait for the
9452 * last task to vanish. The rcuwait_active() check is
9453 * accurate here because the waiter is pinned on this CPU
9454 * and can't obviously be running in parallel.
3015ef4b
TG
9455 *
9456 * On RT kernels this also has to check whether there are
9457 * pinned and scheduled out tasks on the runqueue. They
9458 * need to leave the migrate disabled section first.
f2469a1f 9459 */
3015ef4b
TG
9460 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9461 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 9462 raw_spin_rq_unlock(rq);
f2469a1f 9463 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 9464 raw_spin_rq_lock(rq);
f2469a1f 9465 }
2558aacf 9466 return;
f2469a1f 9467 }
48f24c4d 9468
2558aacf 9469 get_task_struct(push_task);
77bd3970 9470 /*
2558aacf
PZ
9471 * Temporarily drop rq->lock such that we can wake-up the stop task.
9472 * Both preemption and IRQs are still disabled.
77bd3970 9473 */
5cb9eaa3 9474 raw_spin_rq_unlock(rq);
2558aacf
PZ
9475 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9476 this_cpu_ptr(&push_work));
9477 /*
9478 * At this point need_resched() is true and we'll take the loop in
9479 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 9480 * which kthread_is_per_cpu() and will push this task away.
2558aacf 9481 */
5cb9eaa3 9482 raw_spin_rq_lock(rq);
2558aacf 9483}
77bd3970 9484
2558aacf
PZ
9485static void balance_push_set(int cpu, bool on)
9486{
9487 struct rq *rq = cpu_rq(cpu);
9488 struct rq_flags rf;
48c5ccae 9489
2558aacf 9490 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
9491 if (on) {
9492 WARN_ON_ONCE(rq->balance_callback);
ae792702 9493 rq->balance_callback = &balance_push_callback;
22f667c9 9494 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 9495 rq->balance_callback = NULL;
22f667c9 9496 }
2558aacf
PZ
9497 rq_unlock_irqrestore(rq, &rf);
9498}
e692ab53 9499
f2469a1f
TG
9500/*
9501 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9502 * inactive. All tasks which are not per CPU kernel threads are either
9503 * pushed off this CPU now via balance_push() or placed on a different CPU
9504 * during wakeup. Wait until the CPU is quiescent.
9505 */
9506static void balance_hotplug_wait(void)
9507{
9508 struct rq *rq = this_rq();
5473e0cc 9509
3015ef4b
TG
9510 rcuwait_wait_event(&rq->hotplug_wait,
9511 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
9512 TASK_UNINTERRUPTIBLE);
9513}
5473e0cc 9514
2558aacf 9515#else
dce48a84 9516
2558aacf
PZ
9517static inline void balance_push(struct rq *rq)
9518{
dce48a84 9519}
dce48a84 9520
2558aacf
PZ
9521static inline void balance_push_set(int cpu, bool on)
9522{
9523}
9524
f2469a1f
TG
9525static inline void balance_hotplug_wait(void)
9526{
dce48a84 9527}
f2469a1f 9528
1da177e4
LT
9529#endif /* CONFIG_HOTPLUG_CPU */
9530
f2cb1360 9531void set_rq_online(struct rq *rq)
1f11eb6a
GH
9532{
9533 if (!rq->online) {
9534 const struct sched_class *class;
9535
c6c4927b 9536 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9537 rq->online = 1;
9538
9539 for_each_class(class) {
9540 if (class->rq_online)
9541 class->rq_online(rq);
9542 }
9543 }
9544}
9545
f2cb1360 9546void set_rq_offline(struct rq *rq)
1f11eb6a
GH
9547{
9548 if (rq->online) {
9549 const struct sched_class *class;
9550
9551 for_each_class(class) {
9552 if (class->rq_offline)
9553 class->rq_offline(rq);
9554 }
9555
c6c4927b 9556 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9557 rq->online = 0;
9558 }
9559}
9560
d1ccc66d
IM
9561/*
9562 * used to mark begin/end of suspend/resume:
9563 */
9564static int num_cpus_frozen;
d35be8ba 9565
1da177e4 9566/*
3a101d05
TH
9567 * Update cpusets according to cpu_active mask. If cpusets are
9568 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9569 * around partition_sched_domains().
d35be8ba
SB
9570 *
9571 * If we come here as part of a suspend/resume, don't touch cpusets because we
9572 * want to restore it back to its original state upon resume anyway.
1da177e4 9573 */
40190a78 9574static void cpuset_cpu_active(void)
e761b772 9575{
40190a78 9576 if (cpuhp_tasks_frozen) {
d35be8ba
SB
9577 /*
9578 * num_cpus_frozen tracks how many CPUs are involved in suspend
9579 * resume sequence. As long as this is not the last online
9580 * operation in the resume sequence, just build a single sched
9581 * domain, ignoring cpusets.
9582 */
50e76632
PZ
9583 partition_sched_domains(1, NULL, NULL);
9584 if (--num_cpus_frozen)
135fb3e1 9585 return;
d35be8ba
SB
9586 /*
9587 * This is the last CPU online operation. So fall through and
9588 * restore the original sched domains by considering the
9589 * cpuset configurations.
9590 */
50e76632 9591 cpuset_force_rebuild();
3a101d05 9592 }
30e03acd 9593 cpuset_update_active_cpus();
3a101d05 9594}
e761b772 9595
40190a78 9596static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 9597{
40190a78 9598 if (!cpuhp_tasks_frozen) {
772b6539
DE
9599 int ret = dl_cpu_busy(cpu, NULL);
9600
9601 if (ret)
9602 return ret;
30e03acd 9603 cpuset_update_active_cpus();
135fb3e1 9604 } else {
d35be8ba
SB
9605 num_cpus_frozen++;
9606 partition_sched_domains(1, NULL, NULL);
e761b772 9607 }
135fb3e1 9608 return 0;
e761b772 9609}
e761b772 9610
40190a78 9611int sched_cpu_activate(unsigned int cpu)
135fb3e1 9612{
7d976699 9613 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9614 struct rq_flags rf;
7d976699 9615
22f667c9 9616 /*
b5c44773
PZ
9617 * Clear the balance_push callback and prepare to schedule
9618 * regular tasks.
22f667c9 9619 */
2558aacf
PZ
9620 balance_push_set(cpu, false);
9621
ba2591a5
PZ
9622#ifdef CONFIG_SCHED_SMT
9623 /*
c5511d03 9624 * When going up, increment the number of cores with SMT present.
ba2591a5 9625 */
c5511d03
PZI
9626 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9627 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 9628#endif
40190a78 9629 set_cpu_active(cpu, true);
135fb3e1 9630
40190a78 9631 if (sched_smp_initialized) {
0fb3978b 9632 sched_update_numa(cpu, true);
135fb3e1 9633 sched_domains_numa_masks_set(cpu);
40190a78 9634 cpuset_cpu_active();
e761b772 9635 }
7d976699
TG
9636
9637 /*
9638 * Put the rq online, if not already. This happens:
9639 *
9640 * 1) In the early boot process, because we build the real domains
d1ccc66d 9641 * after all CPUs have been brought up.
7d976699
TG
9642 *
9643 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9644 * domains.
9645 */
8a8c69c3 9646 rq_lock_irqsave(rq, &rf);
7d976699
TG
9647 if (rq->rd) {
9648 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9649 set_rq_online(rq);
9650 }
8a8c69c3 9651 rq_unlock_irqrestore(rq, &rf);
7d976699 9652
40190a78 9653 return 0;
135fb3e1
TG
9654}
9655
40190a78 9656int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 9657{
120455c5
PZ
9658 struct rq *rq = cpu_rq(cpu);
9659 struct rq_flags rf;
135fb3e1
TG
9660 int ret;
9661
e0b257c3
AMB
9662 /*
9663 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9664 * load balancing when not active
9665 */
9666 nohz_balance_exit_idle(rq);
9667
40190a78 9668 set_cpu_active(cpu, false);
741ba80f
PZ
9669
9670 /*
9671 * From this point forward, this CPU will refuse to run any task that
9672 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9673 * push those tasks away until this gets cleared, see
9674 * sched_cpu_dying().
9675 */
975707f2
PZ
9676 balance_push_set(cpu, true);
9677
b2454caa 9678 /*
975707f2
PZ
9679 * We've cleared cpu_active_mask / set balance_push, wait for all
9680 * preempt-disabled and RCU users of this state to go away such that
9681 * all new such users will observe it.
b2454caa 9682 *
5ba2ffba
PZ
9683 * Specifically, we rely on ttwu to no longer target this CPU, see
9684 * ttwu_queue_cond() and is_cpu_allowed().
9685 *
b2454caa
PZ
9686 * Do sync before park smpboot threads to take care the rcu boost case.
9687 */
309ba859 9688 synchronize_rcu();
40190a78 9689
120455c5
PZ
9690 rq_lock_irqsave(rq, &rf);
9691 if (rq->rd) {
9692 update_rq_clock(rq);
9693 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9694 set_rq_offline(rq);
9695 }
9696 rq_unlock_irqrestore(rq, &rf);
9697
c5511d03
PZI
9698#ifdef CONFIG_SCHED_SMT
9699 /*
9700 * When going down, decrement the number of cores with SMT present.
9701 */
9702 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9703 static_branch_dec_cpuslocked(&sched_smt_present);
3c474b32
PZ
9704
9705 sched_core_cpu_deactivate(cpu);
c5511d03
PZI
9706#endif
9707
40190a78
TG
9708 if (!sched_smp_initialized)
9709 return 0;
9710
0fb3978b 9711 sched_update_numa(cpu, false);
40190a78
TG
9712 ret = cpuset_cpu_inactive(cpu);
9713 if (ret) {
2558aacf 9714 balance_push_set(cpu, false);
40190a78 9715 set_cpu_active(cpu, true);
0fb3978b 9716 sched_update_numa(cpu, true);
40190a78 9717 return ret;
135fb3e1 9718 }
40190a78
TG
9719 sched_domains_numa_masks_clear(cpu);
9720 return 0;
135fb3e1
TG
9721}
9722
94baf7a5
TG
9723static void sched_rq_cpu_starting(unsigned int cpu)
9724{
9725 struct rq *rq = cpu_rq(cpu);
9726
9727 rq->calc_load_update = calc_load_update;
94baf7a5
TG
9728 update_max_interval();
9729}
9730
135fb3e1
TG
9731int sched_cpu_starting(unsigned int cpu)
9732{
9edeaea1 9733 sched_core_cpu_starting(cpu);
94baf7a5 9734 sched_rq_cpu_starting(cpu);
d84b3131 9735 sched_tick_start(cpu);
135fb3e1 9736 return 0;
e761b772 9737}
e761b772 9738
f2785ddb 9739#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
9740
9741/*
9742 * Invoked immediately before the stopper thread is invoked to bring the
9743 * CPU down completely. At this point all per CPU kthreads except the
9744 * hotplug thread (current) and the stopper thread (inactive) have been
9745 * either parked or have been unbound from the outgoing CPU. Ensure that
9746 * any of those which might be on the way out are gone.
9747 *
9748 * If after this point a bound task is being woken on this CPU then the
9749 * responsible hotplug callback has failed to do it's job.
9750 * sched_cpu_dying() will catch it with the appropriate fireworks.
9751 */
9752int sched_cpu_wait_empty(unsigned int cpu)
9753{
9754 balance_hotplug_wait();
9755 return 0;
9756}
9757
9758/*
9759 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9760 * might have. Called from the CPU stopper task after ensuring that the
9761 * stopper is the last running task on the CPU, so nr_active count is
9762 * stable. We need to take the teardown thread which is calling this into
9763 * account, so we hand in adjust = 1 to the load calculation.
9764 *
9765 * Also see the comment "Global load-average calculations".
9766 */
9767static void calc_load_migrate(struct rq *rq)
9768{
9769 long delta = calc_load_fold_active(rq, 1);
9770
9771 if (delta)
9772 atomic_long_add(delta, &calc_load_tasks);
9773}
9774
36c6e17b
VS
9775static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9776{
9777 struct task_struct *g, *p;
9778 int cpu = cpu_of(rq);
9779
5cb9eaa3 9780 lockdep_assert_rq_held(rq);
36c6e17b
VS
9781
9782 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9783 for_each_process_thread(g, p) {
9784 if (task_cpu(p) != cpu)
9785 continue;
9786
9787 if (!task_on_rq_queued(p))
9788 continue;
9789
9790 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9791 }
9792}
9793
f2785ddb
TG
9794int sched_cpu_dying(unsigned int cpu)
9795{
9796 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9797 struct rq_flags rf;
f2785ddb
TG
9798
9799 /* Handle pending wakeups and then migrate everything off */
d84b3131 9800 sched_tick_stop(cpu);
8a8c69c3
PZ
9801
9802 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
9803 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9804 WARN(true, "Dying CPU not properly vacated!");
9805 dump_rq_tasks(rq, KERN_WARNING);
9806 }
8a8c69c3
PZ
9807 rq_unlock_irqrestore(rq, &rf);
9808
f2785ddb
TG
9809 calc_load_migrate(rq);
9810 update_max_interval();
e5ef27d0 9811 hrtick_clear(rq);
3c474b32 9812 sched_core_cpu_dying(cpu);
f2785ddb
TG
9813 return 0;
9814}
9815#endif
9816
1da177e4
LT
9817void __init sched_init_smp(void)
9818{
0fb3978b 9819 sched_init_numa(NUMA_NO_NODE);
cb83b629 9820
6acce3ef
PZ
9821 /*
9822 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 9823 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 9824 * happen.
6acce3ef 9825 */
712555ee 9826 mutex_lock(&sched_domains_mutex);
8d5dc512 9827 sched_init_domains(cpu_active_mask);
712555ee 9828 mutex_unlock(&sched_domains_mutex);
e761b772 9829
5c1e1767 9830 /* Move init over to a non-isolated CPU */
04d4e665 9831 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
5c1e1767 9832 BUG();
15faafc6 9833 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 9834 sched_init_granularity();
4212823f 9835
0e3900e6 9836 init_sched_rt_class();
1baca4ce 9837 init_sched_dl_class();
1b568f0a 9838
e26fbffd 9839 sched_smp_initialized = true;
1da177e4 9840}
e26fbffd
TG
9841
9842static int __init migration_init(void)
9843{
77a5352b 9844 sched_cpu_starting(smp_processor_id());
e26fbffd 9845 return 0;
1da177e4 9846}
e26fbffd
TG
9847early_initcall(migration_init);
9848
1da177e4
LT
9849#else
9850void __init sched_init_smp(void)
9851{
19978ca6 9852 sched_init_granularity();
1da177e4
LT
9853}
9854#endif /* CONFIG_SMP */
9855
9856int in_sched_functions(unsigned long addr)
9857{
1da177e4
LT
9858 return in_lock_functions(addr) ||
9859 (addr >= (unsigned long)__sched_text_start
9860 && addr < (unsigned long)__sched_text_end);
9861}
9862
029632fb 9863#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
9864/*
9865 * Default task group.
9866 * Every task in system belongs to this group at bootup.
9867 */
029632fb 9868struct task_group root_task_group;
35cf4e50 9869LIST_HEAD(task_groups);
b0367629
WL
9870
9871/* Cacheline aligned slab cache for task_group */
9872static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 9873#endif
6f505b16 9874
1da177e4
LT
9875void __init sched_init(void)
9876{
a1dc0446 9877 unsigned long ptr = 0;
55627e3c 9878 int i;
434d53b0 9879
c3a340f7 9880 /* Make sure the linker didn't screw up */
546a3fee
PZ
9881 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9882 &fair_sched_class != &rt_sched_class + 1 ||
9883 &rt_sched_class != &dl_sched_class + 1);
c3a340f7 9884#ifdef CONFIG_SMP
546a3fee 9885 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
c3a340f7
SRV
9886#endif
9887
5822a454 9888 wait_bit_init();
9dcb8b68 9889
434d53b0 9890#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 9891 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
9892#endif
9893#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 9894 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 9895#endif
a1dc0446
QC
9896 if (ptr) {
9897 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
9898
9899#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 9900 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
9901 ptr += nr_cpu_ids * sizeof(void **);
9902
07e06b01 9903 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 9904 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 9905
b1d1779e
WY
9906 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9907 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 9908#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 9909#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9910 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
9911 ptr += nr_cpu_ids * sizeof(void **);
9912
07e06b01 9913 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9914 ptr += nr_cpu_ids * sizeof(void **);
9915
6d6bc0ad 9916#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 9917 }
dd41f596 9918
d1ccc66d 9919 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 9920
57d885fe
GH
9921#ifdef CONFIG_SMP
9922 init_defrootdomain();
9923#endif
9924
d0b27fa7 9925#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9926 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 9927 global_rt_period(), global_rt_runtime());
6d6bc0ad 9928#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9929
7c941438 9930#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
9931 task_group_cache = KMEM_CACHE(task_group, 0);
9932
07e06b01
YZ
9933 list_add(&root_task_group.list, &task_groups);
9934 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 9935 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 9936 autogroup_init(&init_task);
7c941438 9937#endif /* CONFIG_CGROUP_SCHED */
6f505b16 9938
0a945022 9939 for_each_possible_cpu(i) {
70b97a7f 9940 struct rq *rq;
1da177e4
LT
9941
9942 rq = cpu_rq(i);
5cb9eaa3 9943 raw_spin_lock_init(&rq->__lock);
7897986b 9944 rq->nr_running = 0;
dce48a84
TG
9945 rq->calc_load_active = 0;
9946 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 9947 init_cfs_rq(&rq->cfs);
07c54f7a
AV
9948 init_rt_rq(&rq->rt);
9949 init_dl_rq(&rq->dl);
dd41f596 9950#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9951 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9952 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9953 /*
d1ccc66d 9954 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9955 *
9956 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9957 * gets 100% of the CPU resources in the system. This overall
9958 * system CPU resource is divided among the tasks of
07e06b01 9959 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9960 * based on each entity's (task or task-group's) weight
9961 * (se->load.weight).
9962 *
07e06b01 9963 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9964 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9965 * then A0's share of the CPU resource is:
354d60c2 9966 *
0d905bca 9967 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9968 *
07e06b01
YZ
9969 * We achieve this by letting root_task_group's tasks sit
9970 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9971 */
07e06b01 9972 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9973#endif /* CONFIG_FAIR_GROUP_SCHED */
9974
9975 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9976#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9977 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9978#endif
1da177e4 9979#ifdef CONFIG_SMP
41c7ce9a 9980 rq->sd = NULL;
57d885fe 9981 rq->rd = NULL;
ca6d75e6 9982 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9983 rq->balance_callback = &balance_push_callback;
1da177e4 9984 rq->active_balance = 0;
dd41f596 9985 rq->next_balance = jiffies;
1da177e4 9986 rq->push_cpu = 0;
0a2966b4 9987 rq->cpu = i;
1f11eb6a 9988 rq->online = 0;
eae0c9df
MG
9989 rq->idle_stamp = 0;
9990 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9991 rq->wake_stamp = jiffies;
9992 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9993 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9994
9995 INIT_LIST_HEAD(&rq->cfs_tasks);
9996
dc938520 9997 rq_attach_root(rq, &def_root_domain);
3451d024 9998#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9999 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 10000 atomic_set(&rq->nohz_flags, 0);
90b5363a 10001
545b8c8d 10002 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 10003#endif
f2469a1f
TG
10004#ifdef CONFIG_HOTPLUG_CPU
10005 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 10006#endif
9fd81dd5 10007#endif /* CONFIG_SMP */
77a021be 10008 hrtick_rq_init(rq);
1da177e4 10009 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
10010
10011#ifdef CONFIG_SCHED_CORE
3c474b32 10012 rq->core = rq;
539f6512 10013 rq->core_pick = NULL;
9edeaea1 10014 rq->core_enabled = 0;
539f6512 10015 rq->core_tree = RB_ROOT;
4feee7d1
JD
10016 rq->core_forceidle_count = 0;
10017 rq->core_forceidle_occupation = 0;
10018 rq->core_forceidle_start = 0;
539f6512
PZ
10019
10020 rq->core_cookie = 0UL;
9edeaea1 10021#endif
da019032 10022 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
1da177e4
LT
10023 }
10024
b1e82065 10025 set_load_weight(&init_task, false);
b50f60ce 10026
1da177e4
LT
10027 /*
10028 * The boot idle thread does lazy MMU switching as well:
10029 */
aa464ba9 10030 mmgrab_lazy_tlb(&init_mm);
1da177e4
LT
10031 enter_lazy_tlb(&init_mm, current);
10032
40966e31
EB
10033 /*
10034 * The idle task doesn't need the kthread struct to function, but it
10035 * is dressed up as a per-CPU kthread and thus needs to play the part
10036 * if we want to avoid special-casing it in code that deals with per-CPU
10037 * kthreads.
10038 */
dd621ee0 10039 WARN_ON(!set_kthread_struct(current));
40966e31 10040
1da177e4
LT
10041 /*
10042 * Make us the idle thread. Technically, schedule() should not be
10043 * called from this thread, however somewhere below it might be,
10044 * but because we are the idle thread, we just pick up running again
10045 * when this runqueue becomes "idle".
10046 */
10047 init_idle(current, smp_processor_id());
dce48a84
TG
10048
10049 calc_load_update = jiffies + LOAD_FREQ;
10050
bf4d83f6 10051#ifdef CONFIG_SMP
29d5e047 10052 idle_thread_set_boot_cpu();
b5c44773 10053 balance_push_set(smp_processor_id(), false);
029632fb
PZ
10054#endif
10055 init_sched_fair_class();
6a7b3dc3 10056
eb414681
JW
10057 psi_init();
10058
69842cba
PB
10059 init_uclamp();
10060
c597bfdd
FW
10061 preempt_dynamic_init();
10062
6892b75e 10063 scheduler_running = 1;
1da177e4
LT
10064}
10065
d902db1e 10066#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2 10067
42a38756 10068void __might_sleep(const char *file, int line)
1da177e4 10069{
d6c23bb3 10070 unsigned int state = get_current_state();
8eb23b9f
PZ
10071 /*
10072 * Blocking primitives will set (and therefore destroy) current->state,
10073 * since we will exit with TASK_RUNNING make sure we enter with it,
10074 * otherwise we will destroy state.
10075 */
d6c23bb3 10076 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 10077 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 10078 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 10079 (void *)current->task_state_change,
00845eb9 10080 (void *)current->task_state_change);
8eb23b9f 10081
42a38756 10082 __might_resched(file, line, 0);
3427445a
PZ
10083}
10084EXPORT_SYMBOL(__might_sleep);
10085
8d713b69
TG
10086static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10087{
10088 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10089 return;
10090
10091 if (preempt_count() == preempt_offset)
10092 return;
10093
10094 pr_err("Preemption disabled at:");
10095 print_ip_sym(KERN_ERR, ip);
10096}
10097
50e081b9
TG
10098static inline bool resched_offsets_ok(unsigned int offsets)
10099{
10100 unsigned int nested = preempt_count();
10101
10102 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10103
10104 return nested == offsets;
10105}
10106
10107void __might_resched(const char *file, int line, unsigned int offsets)
1da177e4 10108{
d1ccc66d
IM
10109 /* Ratelimiting timestamp: */
10110 static unsigned long prev_jiffy;
10111
d1c6d149 10112 unsigned long preempt_disable_ip;
1da177e4 10113
d1ccc66d
IM
10114 /* WARN_ON_ONCE() by default, no rate limit required: */
10115 rcu_sleep_check();
10116
50e081b9 10117 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
312364f3 10118 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
10119 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10120 oops_in_progress)
aef745fc 10121 return;
1c3c5eab 10122
aef745fc
IM
10123 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10124 return;
10125 prev_jiffy = jiffies;
10126
d1ccc66d 10127 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
10128 preempt_disable_ip = get_preempt_disable_ip(current);
10129
a45ed302
TG
10130 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10131 file, line);
10132 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10133 in_atomic(), irqs_disabled(), current->non_block_count,
10134 current->pid, current->comm);
8d713b69 10135 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
50e081b9 10136 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8d713b69
TG
10137
10138 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
50e081b9
TG
10139 pr_err("RCU nest depth: %d, expected: %u\n",
10140 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8d713b69 10141 }
aef745fc 10142
a8b686b3 10143 if (task_stack_end_corrupted(current))
a45ed302 10144 pr_emerg("Thread overran stack, or stack corrupted\n");
a8b686b3 10145
aef745fc
IM
10146 debug_show_held_locks(current);
10147 if (irqs_disabled())
10148 print_irqtrace_events(current);
8d713b69 10149
50e081b9
TG
10150 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10151 preempt_disable_ip);
8d713b69 10152
aef745fc 10153 dump_stack();
f0b22e39 10154 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 10155}
874f670e 10156EXPORT_SYMBOL(__might_resched);
568f1967
PZ
10157
10158void __cant_sleep(const char *file, int line, int preempt_offset)
10159{
10160 static unsigned long prev_jiffy;
10161
10162 if (irqs_disabled())
10163 return;
10164
10165 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10166 return;
10167
10168 if (preempt_count() > preempt_offset)
10169 return;
10170
10171 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10172 return;
10173 prev_jiffy = jiffies;
10174
10175 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10176 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10177 in_atomic(), irqs_disabled(),
10178 current->pid, current->comm);
10179
10180 debug_show_held_locks(current);
10181 dump_stack();
10182 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10183}
10184EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
10185
10186#ifdef CONFIG_SMP
10187void __cant_migrate(const char *file, int line)
10188{
10189 static unsigned long prev_jiffy;
10190
10191 if (irqs_disabled())
10192 return;
10193
10194 if (is_migration_disabled(current))
10195 return;
10196
10197 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10198 return;
10199
10200 if (preempt_count() > 0)
10201 return;
10202
10203 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10204 return;
10205 prev_jiffy = jiffies;
10206
10207 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10208 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10209 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10210 current->pid, current->comm);
10211
10212 debug_show_held_locks(current);
10213 dump_stack();
10214 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10215}
10216EXPORT_SYMBOL_GPL(__cant_migrate);
10217#endif
1da177e4
LT
10218#endif
10219
10220#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 10221void normalize_rt_tasks(void)
3a5e4dc1 10222{
dbc7f069 10223 struct task_struct *g, *p;
d50dde5a
DF
10224 struct sched_attr attr = {
10225 .sched_policy = SCHED_NORMAL,
10226 };
1da177e4 10227
3472eaa1 10228 read_lock(&tasklist_lock);
5d07f420 10229 for_each_process_thread(g, p) {
178be793
IM
10230 /*
10231 * Only normalize user tasks:
10232 */
3472eaa1 10233 if (p->flags & PF_KTHREAD)
178be793
IM
10234 continue;
10235
4fa8d299 10236 p->se.exec_start = 0;
ceeadb83
YS
10237 schedstat_set(p->stats.wait_start, 0);
10238 schedstat_set(p->stats.sleep_start, 0);
10239 schedstat_set(p->stats.block_start, 0);
dd41f596 10240
aab03e05 10241 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
10242 /*
10243 * Renice negative nice level userspace
10244 * tasks back to 0:
10245 */
3472eaa1 10246 if (task_nice(p) < 0)
dd41f596 10247 set_user_nice(p, 0);
1da177e4 10248 continue;
dd41f596 10249 }
1da177e4 10250
dbc7f069 10251 __sched_setscheduler(p, &attr, false, false);
5d07f420 10252 }
3472eaa1 10253 read_unlock(&tasklist_lock);
1da177e4
LT
10254}
10255
10256#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 10257
67fc4e0c 10258#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 10259/*
67fc4e0c 10260 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
10261 *
10262 * They can only be called when the whole system has been
10263 * stopped - every CPU needs to be quiescent, and no scheduling
10264 * activity can take place. Using them for anything else would
10265 * be a serious bug, and as a result, they aren't even visible
10266 * under any other configuration.
10267 */
10268
10269/**
d1ccc66d 10270 * curr_task - return the current task for a given CPU.
1df5c10a
LT
10271 * @cpu: the processor in question.
10272 *
10273 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
10274 *
10275 * Return: The current task for @cpu.
1df5c10a 10276 */
36c8b586 10277struct task_struct *curr_task(int cpu)
1df5c10a
LT
10278{
10279 return cpu_curr(cpu);
10280}
10281
67fc4e0c
JW
10282#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10283
10284#ifdef CONFIG_IA64
1df5c10a 10285/**
5feeb783 10286 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
10287 * @cpu: the processor in question.
10288 * @p: the task pointer to set.
10289 *
10290 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 10291 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 10292 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
10293 * must be called with all CPU's synchronized, and interrupts disabled, the
10294 * and caller must save the original value of the current task (see
10295 * curr_task() above) and restore that value before reenabling interrupts and
10296 * re-starting the system.
10297 *
10298 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10299 */
a458ae2e 10300void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
10301{
10302 cpu_curr(cpu) = p;
10303}
10304
10305#endif
29f59db3 10306
7c941438 10307#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
10308/* task_group_lock serializes the addition/removal of task groups */
10309static DEFINE_SPINLOCK(task_group_lock);
10310
2480c093
PB
10311static inline void alloc_uclamp_sched_group(struct task_group *tg,
10312 struct task_group *parent)
10313{
10314#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 10315 enum uclamp_id clamp_id;
2480c093
PB
10316
10317 for_each_clamp_id(clamp_id) {
10318 uclamp_se_set(&tg->uclamp_req[clamp_id],
10319 uclamp_none(clamp_id), false);
0b60ba2d 10320 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
10321 }
10322#endif
10323}
10324
2f5177f0 10325static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
10326{
10327 free_fair_sched_group(tg);
10328 free_rt_sched_group(tg);
e9aa1dd1 10329 autogroup_free(tg);
b0367629 10330 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
10331}
10332
b027789e
MK
10333static void sched_free_group_rcu(struct rcu_head *rcu)
10334{
10335 sched_free_group(container_of(rcu, struct task_group, rcu));
10336}
10337
10338static void sched_unregister_group(struct task_group *tg)
10339{
10340 unregister_fair_sched_group(tg);
10341 unregister_rt_sched_group(tg);
10342 /*
10343 * We have to wait for yet another RCU grace period to expire, as
10344 * print_cfs_stats() might run concurrently.
10345 */
10346 call_rcu(&tg->rcu, sched_free_group_rcu);
10347}
10348
bccbe08a 10349/* allocate runqueue etc for a new task group */
ec7dc8ac 10350struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10351{
10352 struct task_group *tg;
bccbe08a 10353
b0367629 10354 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
10355 if (!tg)
10356 return ERR_PTR(-ENOMEM);
10357
ec7dc8ac 10358 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10359 goto err;
10360
ec7dc8ac 10361 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10362 goto err;
10363
2480c093
PB
10364 alloc_uclamp_sched_group(tg, parent);
10365
ace783b9
LZ
10366 return tg;
10367
10368err:
2f5177f0 10369 sched_free_group(tg);
ace783b9
LZ
10370 return ERR_PTR(-ENOMEM);
10371}
10372
10373void sched_online_group(struct task_group *tg, struct task_group *parent)
10374{
10375 unsigned long flags;
10376
8ed36996 10377 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10378 list_add_rcu(&tg->list, &task_groups);
f473aa5e 10379
d1ccc66d
IM
10380 /* Root should already exist: */
10381 WARN_ON(!parent);
f473aa5e
PZ
10382
10383 tg->parent = parent;
f473aa5e 10384 INIT_LIST_HEAD(&tg->children);
09f2724a 10385 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10386 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
10387
10388 online_fair_sched_group(tg);
29f59db3
SV
10389}
10390
9b5b7751 10391/* rcu callback to free various structures associated with a task group */
b027789e 10392static void sched_unregister_group_rcu(struct rcu_head *rhp)
29f59db3 10393{
d1ccc66d 10394 /* Now it should be safe to free those cfs_rqs: */
b027789e 10395 sched_unregister_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10396}
10397
4cf86d77 10398void sched_destroy_group(struct task_group *tg)
ace783b9 10399{
d1ccc66d 10400 /* Wait for possible concurrent references to cfs_rqs complete: */
b027789e 10401 call_rcu(&tg->rcu, sched_unregister_group_rcu);
ace783b9
LZ
10402}
10403
b027789e 10404void sched_release_group(struct task_group *tg)
29f59db3 10405{
8ed36996 10406 unsigned long flags;
29f59db3 10407
b027789e
MK
10408 /*
10409 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10410 * sched_cfs_period_timer()).
10411 *
10412 * For this to be effective, we have to wait for all pending users of
10413 * this task group to leave their RCU critical section to ensure no new
10414 * user will see our dying task group any more. Specifically ensure
10415 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10416 *
10417 * We therefore defer calling unregister_fair_sched_group() to
10418 * sched_unregister_group() which is guarantied to get called only after the
10419 * current RCU grace period has expired.
10420 */
3d4b47b4 10421 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10422 list_del_rcu(&tg->list);
f473aa5e 10423 list_del_rcu(&tg->siblings);
8ed36996 10424 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
10425}
10426
eff6c8ce 10427static struct task_group *sched_get_task_group(struct task_struct *tsk)
29f59db3 10428{
8323f26c 10429 struct task_group *tg;
29f59db3 10430
f7b8a47d
KT
10431 /*
10432 * All callers are synchronized by task_rq_lock(); we do not use RCU
10433 * which is pointless here. Thus, we pass "true" to task_css_check()
10434 * to prevent lockdep warnings.
10435 */
10436 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
10437 struct task_group, css);
10438 tg = autogroup_task_group(tsk, tg);
eff6c8ce 10439
10440 return tg;
10441}
10442
10443static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10444{
10445 tsk->sched_task_group = group;
8323f26c 10446
810b3817 10447#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10448 if (tsk->sched_class->task_change_group)
39c42611 10449 tsk->sched_class->task_change_group(tsk);
b2b5ce02 10450 else
810b3817 10451#endif
b2b5ce02 10452 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
10453}
10454
10455/*
10456 * Change task's runqueue when it moves between groups.
10457 *
10458 * The caller of this function should have put the task in its new group by
10459 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10460 * its new group.
10461 */
10462void sched_move_task(struct task_struct *tsk)
10463{
7a57f32a
PZ
10464 int queued, running, queue_flags =
10465 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eff6c8ce 10466 struct task_group *group;
ea86cb4b
VG
10467 struct rq_flags rf;
10468 struct rq *rq;
10469
10470 rq = task_rq_lock(tsk, &rf);
eff6c8ce 10471 /*
10472 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10473 * group changes.
10474 */
10475 group = sched_get_task_group(tsk);
10476 if (group == tsk->sched_task_group)
10477 goto unlock;
10478
1b1d6225 10479 update_rq_clock(rq);
ea86cb4b
VG
10480
10481 running = task_current(rq, tsk);
10482 queued = task_on_rq_queued(tsk);
10483
10484 if (queued)
7a57f32a 10485 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 10486 if (running)
ea86cb4b
VG
10487 put_prev_task(rq, tsk);
10488
eff6c8ce 10489 sched_change_group(tsk, group);
810b3817 10490
da0c1e65 10491 if (queued)
7a57f32a 10492 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 10493 if (running) {
03b7fad1 10494 set_next_task(rq, tsk);
2a4b03ff
VG
10495 /*
10496 * After changing group, the running task may have joined a
10497 * throttled one but it's still the running task. Trigger a
10498 * resched to make sure that task can still run.
10499 */
10500 resched_curr(rq);
10501 }
29f59db3 10502
eff6c8ce 10503unlock:
eb580751 10504 task_rq_unlock(rq, tsk, &rf);
29f59db3 10505}
68318b8e 10506
a7c6d554 10507static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 10508{
a7c6d554 10509 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
10510}
10511
eb95419b
TH
10512static struct cgroup_subsys_state *
10513cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 10514{
eb95419b
TH
10515 struct task_group *parent = css_tg(parent_css);
10516 struct task_group *tg;
68318b8e 10517
eb95419b 10518 if (!parent) {
68318b8e 10519 /* This is early initialization for the top cgroup */
07e06b01 10520 return &root_task_group.css;
68318b8e
SV
10521 }
10522
ec7dc8ac 10523 tg = sched_create_group(parent);
68318b8e
SV
10524 if (IS_ERR(tg))
10525 return ERR_PTR(-ENOMEM);
10526
68318b8e
SV
10527 return &tg->css;
10528}
10529
96b77745
KK
10530/* Expose task group only after completing cgroup initialization */
10531static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10532{
10533 struct task_group *tg = css_tg(css);
10534 struct task_group *parent = css_tg(css->parent);
10535
10536 if (parent)
10537 sched_online_group(tg, parent);
7226017a
QY
10538
10539#ifdef CONFIG_UCLAMP_TASK_GROUP
10540 /* Propagate the effective uclamp value for the new group */
93b73858
QY
10541 mutex_lock(&uclamp_mutex);
10542 rcu_read_lock();
7226017a 10543 cpu_util_update_eff(css);
93b73858
QY
10544 rcu_read_unlock();
10545 mutex_unlock(&uclamp_mutex);
7226017a
QY
10546#endif
10547
96b77745
KK
10548 return 0;
10549}
10550
2f5177f0 10551static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 10552{
eb95419b 10553 struct task_group *tg = css_tg(css);
ace783b9 10554
b027789e 10555 sched_release_group(tg);
ace783b9
LZ
10556}
10557
eb95419b 10558static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 10559{
eb95419b 10560 struct task_group *tg = css_tg(css);
68318b8e 10561
2f5177f0
PZ
10562 /*
10563 * Relies on the RCU grace period between css_released() and this.
10564 */
b027789e 10565 sched_unregister_group(tg);
ace783b9
LZ
10566}
10567
df16b71c 10568#ifdef CONFIG_RT_GROUP_SCHED
1f7dd3e5 10569static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 10570{
bb9d97b6 10571 struct task_struct *task;
1f7dd3e5 10572 struct cgroup_subsys_state *css;
bb9d97b6 10573
1f7dd3e5 10574 cgroup_taskset_for_each(task, css, tset) {
eb95419b 10575 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 10576 return -EINVAL;
bb9d97b6 10577 }
df16b71c 10578 return 0;
be367d09 10579}
df16b71c 10580#endif
68318b8e 10581
1f7dd3e5 10582static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 10583{
bb9d97b6 10584 struct task_struct *task;
1f7dd3e5 10585 struct cgroup_subsys_state *css;
bb9d97b6 10586
1f7dd3e5 10587 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10588 sched_move_task(task);
68318b8e
SV
10589}
10590
2480c093 10591#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
10592static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10593{
10594 struct cgroup_subsys_state *top_css = css;
10595 struct uclamp_se *uc_parent = NULL;
10596 struct uclamp_se *uc_se = NULL;
10597 unsigned int eff[UCLAMP_CNT];
0413d7f3 10598 enum uclamp_id clamp_id;
0b60ba2d
PB
10599 unsigned int clamps;
10600
93b73858
QY
10601 lockdep_assert_held(&uclamp_mutex);
10602 SCHED_WARN_ON(!rcu_read_lock_held());
10603
0b60ba2d
PB
10604 css_for_each_descendant_pre(css, top_css) {
10605 uc_parent = css_tg(css)->parent
10606 ? css_tg(css)->parent->uclamp : NULL;
10607
10608 for_each_clamp_id(clamp_id) {
10609 /* Assume effective clamps matches requested clamps */
10610 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10611 /* Cap effective clamps with parent's effective clamps */
10612 if (uc_parent &&
10613 eff[clamp_id] > uc_parent[clamp_id].value) {
10614 eff[clamp_id] = uc_parent[clamp_id].value;
10615 }
10616 }
10617 /* Ensure protection is always capped by limit */
10618 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10619
10620 /* Propagate most restrictive effective clamps */
10621 clamps = 0x0;
10622 uc_se = css_tg(css)->uclamp;
10623 for_each_clamp_id(clamp_id) {
10624 if (eff[clamp_id] == uc_se[clamp_id].value)
10625 continue;
10626 uc_se[clamp_id].value = eff[clamp_id];
10627 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10628 clamps |= (0x1 << clamp_id);
10629 }
babbe170 10630 if (!clamps) {
0b60ba2d 10631 css = css_rightmost_descendant(css);
babbe170
PB
10632 continue;
10633 }
10634
10635 /* Immediately update descendants RUNNABLE tasks */
0213b708 10636 uclamp_update_active_tasks(css);
0b60ba2d
PB
10637 }
10638}
2480c093
PB
10639
10640/*
10641 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10642 * C expression. Since there is no way to convert a macro argument (N) into a
10643 * character constant, use two levels of macros.
10644 */
10645#define _POW10(exp) ((unsigned int)1e##exp)
10646#define POW10(exp) _POW10(exp)
10647
10648struct uclamp_request {
10649#define UCLAMP_PERCENT_SHIFT 2
10650#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10651 s64 percent;
10652 u64 util;
10653 int ret;
10654};
10655
10656static inline struct uclamp_request
10657capacity_from_percent(char *buf)
10658{
10659 struct uclamp_request req = {
10660 .percent = UCLAMP_PERCENT_SCALE,
10661 .util = SCHED_CAPACITY_SCALE,
10662 .ret = 0,
10663 };
10664
10665 buf = strim(buf);
10666 if (strcmp(buf, "max")) {
10667 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10668 &req.percent);
10669 if (req.ret)
10670 return req;
b562d140 10671 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
10672 req.ret = -ERANGE;
10673 return req;
10674 }
10675
10676 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10677 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10678 }
10679
10680 return req;
10681}
10682
10683static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10684 size_t nbytes, loff_t off,
10685 enum uclamp_id clamp_id)
10686{
10687 struct uclamp_request req;
10688 struct task_group *tg;
10689
10690 req = capacity_from_percent(buf);
10691 if (req.ret)
10692 return req.ret;
10693
46609ce2
QY
10694 static_branch_enable(&sched_uclamp_used);
10695
2480c093
PB
10696 mutex_lock(&uclamp_mutex);
10697 rcu_read_lock();
10698
10699 tg = css_tg(of_css(of));
10700 if (tg->uclamp_req[clamp_id].value != req.util)
10701 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10702
10703 /*
10704 * Because of not recoverable conversion rounding we keep track of the
10705 * exact requested value
10706 */
10707 tg->uclamp_pct[clamp_id] = req.percent;
10708
0b60ba2d
PB
10709 /* Update effective clamps to track the most restrictive value */
10710 cpu_util_update_eff(of_css(of));
10711
2480c093
PB
10712 rcu_read_unlock();
10713 mutex_unlock(&uclamp_mutex);
10714
10715 return nbytes;
10716}
10717
10718static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10719 char *buf, size_t nbytes,
10720 loff_t off)
10721{
10722 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10723}
10724
10725static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10726 char *buf, size_t nbytes,
10727 loff_t off)
10728{
10729 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10730}
10731
10732static inline void cpu_uclamp_print(struct seq_file *sf,
10733 enum uclamp_id clamp_id)
10734{
10735 struct task_group *tg;
10736 u64 util_clamp;
10737 u64 percent;
10738 u32 rem;
10739
10740 rcu_read_lock();
10741 tg = css_tg(seq_css(sf));
10742 util_clamp = tg->uclamp_req[clamp_id].value;
10743 rcu_read_unlock();
10744
10745 if (util_clamp == SCHED_CAPACITY_SCALE) {
10746 seq_puts(sf, "max\n");
10747 return;
10748 }
10749
10750 percent = tg->uclamp_pct[clamp_id];
10751 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10752 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10753}
10754
10755static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10756{
10757 cpu_uclamp_print(sf, UCLAMP_MIN);
10758 return 0;
10759}
10760
10761static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10762{
10763 cpu_uclamp_print(sf, UCLAMP_MAX);
10764 return 0;
10765}
10766#endif /* CONFIG_UCLAMP_TASK_GROUP */
10767
052f1dc7 10768#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
10769static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10770 struct cftype *cftype, u64 shareval)
68318b8e 10771{
5b61d50a
KK
10772 if (shareval > scale_load_down(ULONG_MAX))
10773 shareval = MAX_SHARES;
182446d0 10774 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
10775}
10776
182446d0
TH
10777static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10778 struct cftype *cft)
68318b8e 10779{
182446d0 10780 struct task_group *tg = css_tg(css);
68318b8e 10781
c8b28116 10782 return (u64) scale_load_down(tg->shares);
68318b8e 10783}
ab84d31e
PT
10784
10785#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
10786static DEFINE_MUTEX(cfs_constraints_mutex);
10787
ab84d31e 10788const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 10789static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
10790/* More than 203 days if BW_SHIFT equals 20. */
10791static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 10792
a790de99
PT
10793static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10794
f4183717
HC
10795static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10796 u64 burst)
ab84d31e 10797{
56f570e5 10798 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 10799 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
10800
10801 if (tg == &root_task_group)
10802 return -EINVAL;
10803
10804 /*
10805 * Ensure we have at some amount of bandwidth every period. This is
10806 * to prevent reaching a state of large arrears when throttled via
10807 * entity_tick() resulting in prolonged exit starvation.
10808 */
10809 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10810 return -EINVAL;
10811
10812 /*
3b03706f 10813 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
10814 * periods. This also allows us to normalize in computing quota
10815 * feasibility.
10816 */
10817 if (period > max_cfs_quota_period)
10818 return -EINVAL;
10819
d505b8af
HC
10820 /*
10821 * Bound quota to defend quota against overflow during bandwidth shift.
10822 */
10823 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10824 return -EINVAL;
10825
f4183717
HC
10826 if (quota != RUNTIME_INF && (burst > quota ||
10827 burst + quota > max_cfs_runtime))
10828 return -EINVAL;
10829
0e59bdae
KT
10830 /*
10831 * Prevent race between setting of cfs_rq->runtime_enabled and
10832 * unthrottle_offline_cfs_rqs().
10833 */
746f5ea9 10834 cpus_read_lock();
a790de99
PT
10835 mutex_lock(&cfs_constraints_mutex);
10836 ret = __cfs_schedulable(tg, period, quota);
10837 if (ret)
10838 goto out_unlock;
10839
58088ad0 10840 runtime_enabled = quota != RUNTIME_INF;
56f570e5 10841 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
10842 /*
10843 * If we need to toggle cfs_bandwidth_used, off->on must occur
10844 * before making related changes, and on->off must occur afterwards
10845 */
10846 if (runtime_enabled && !runtime_was_enabled)
10847 cfs_bandwidth_usage_inc();
ab84d31e
PT
10848 raw_spin_lock_irq(&cfs_b->lock);
10849 cfs_b->period = ns_to_ktime(period);
10850 cfs_b->quota = quota;
f4183717 10851 cfs_b->burst = burst;
58088ad0 10852
a9cf55b2 10853 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
10854
10855 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
10856 if (runtime_enabled)
10857 start_cfs_bandwidth(cfs_b);
d1ccc66d 10858
ab84d31e
PT
10859 raw_spin_unlock_irq(&cfs_b->lock);
10860
0e59bdae 10861 for_each_online_cpu(i) {
ab84d31e 10862 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 10863 struct rq *rq = cfs_rq->rq;
8a8c69c3 10864 struct rq_flags rf;
ab84d31e 10865
8a8c69c3 10866 rq_lock_irq(rq, &rf);
58088ad0 10867 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 10868 cfs_rq->runtime_remaining = 0;
671fd9da 10869
029632fb 10870 if (cfs_rq->throttled)
671fd9da 10871 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 10872 rq_unlock_irq(rq, &rf);
ab84d31e 10873 }
1ee14e6c
BS
10874 if (runtime_was_enabled && !runtime_enabled)
10875 cfs_bandwidth_usage_dec();
a790de99
PT
10876out_unlock:
10877 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 10878 cpus_read_unlock();
ab84d31e 10879
a790de99 10880 return ret;
ab84d31e
PT
10881}
10882
b1546edc 10883static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 10884{
f4183717 10885 u64 quota, period, burst;
ab84d31e 10886
029632fb 10887 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 10888 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
10889 if (cfs_quota_us < 0)
10890 quota = RUNTIME_INF;
1a8b4540 10891 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 10892 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
10893 else
10894 return -EINVAL;
ab84d31e 10895
f4183717 10896 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10897}
10898
b1546edc 10899static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
10900{
10901 u64 quota_us;
10902
029632fb 10903 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
10904 return -1;
10905
029632fb 10906 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
10907 do_div(quota_us, NSEC_PER_USEC);
10908
10909 return quota_us;
10910}
10911
b1546edc 10912static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 10913{
f4183717 10914 u64 quota, period, burst;
ab84d31e 10915
1a8b4540
KK
10916 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10917 return -EINVAL;
10918
ab84d31e 10919 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 10920 quota = tg->cfs_bandwidth.quota;
f4183717 10921 burst = tg->cfs_bandwidth.burst;
ab84d31e 10922
f4183717 10923 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10924}
10925
b1546edc 10926static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
10927{
10928 u64 cfs_period_us;
10929
029632fb 10930 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
10931 do_div(cfs_period_us, NSEC_PER_USEC);
10932
10933 return cfs_period_us;
10934}
10935
f4183717
HC
10936static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10937{
10938 u64 quota, period, burst;
10939
10940 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10941 return -EINVAL;
10942
10943 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10944 period = ktime_to_ns(tg->cfs_bandwidth.period);
10945 quota = tg->cfs_bandwidth.quota;
10946
10947 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10948}
10949
10950static long tg_get_cfs_burst(struct task_group *tg)
10951{
10952 u64 burst_us;
10953
10954 burst_us = tg->cfs_bandwidth.burst;
10955 do_div(burst_us, NSEC_PER_USEC);
10956
10957 return burst_us;
10958}
10959
182446d0
TH
10960static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10961 struct cftype *cft)
ab84d31e 10962{
182446d0 10963 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
10964}
10965
182446d0
TH
10966static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10967 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 10968{
182446d0 10969 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
10970}
10971
182446d0
TH
10972static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10973 struct cftype *cft)
ab84d31e 10974{
182446d0 10975 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
10976}
10977
182446d0
TH
10978static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10979 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 10980{
182446d0 10981 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
10982}
10983
f4183717
HC
10984static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10985 struct cftype *cft)
10986{
10987 return tg_get_cfs_burst(css_tg(css));
10988}
10989
10990static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10991 struct cftype *cftype, u64 cfs_burst_us)
10992{
10993 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10994}
10995
a790de99
PT
10996struct cfs_schedulable_data {
10997 struct task_group *tg;
10998 u64 period, quota;
10999};
11000
11001/*
11002 * normalize group quota/period to be quota/max_period
11003 * note: units are usecs
11004 */
11005static u64 normalize_cfs_quota(struct task_group *tg,
11006 struct cfs_schedulable_data *d)
11007{
11008 u64 quota, period;
11009
11010 if (tg == d->tg) {
11011 period = d->period;
11012 quota = d->quota;
11013 } else {
11014 period = tg_get_cfs_period(tg);
11015 quota = tg_get_cfs_quota(tg);
11016 }
11017
11018 /* note: these should typically be equivalent */
11019 if (quota == RUNTIME_INF || quota == -1)
11020 return RUNTIME_INF;
11021
11022 return to_ratio(period, quota);
11023}
11024
11025static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11026{
11027 struct cfs_schedulable_data *d = data;
029632fb 11028 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
11029 s64 quota = 0, parent_quota = -1;
11030
11031 if (!tg->parent) {
11032 quota = RUNTIME_INF;
11033 } else {
029632fb 11034 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
11035
11036 quota = normalize_cfs_quota(tg, d);
9c58c79a 11037 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
11038
11039 /*
c53593e5
TH
11040 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11041 * always take the min. On cgroup1, only inherit when no
d1ccc66d 11042 * limit is set:
a790de99 11043 */
c53593e5
TH
11044 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11045 quota = min(quota, parent_quota);
11046 } else {
11047 if (quota == RUNTIME_INF)
11048 quota = parent_quota;
11049 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11050 return -EINVAL;
11051 }
a790de99 11052 }
9c58c79a 11053 cfs_b->hierarchical_quota = quota;
a790de99
PT
11054
11055 return 0;
11056}
11057
11058static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11059{
8277434e 11060 int ret;
a790de99
PT
11061 struct cfs_schedulable_data data = {
11062 .tg = tg,
11063 .period = period,
11064 .quota = quota,
11065 };
11066
11067 if (quota != RUNTIME_INF) {
11068 do_div(data.period, NSEC_PER_USEC);
11069 do_div(data.quota, NSEC_PER_USEC);
11070 }
11071
8277434e
PT
11072 rcu_read_lock();
11073 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11074 rcu_read_unlock();
11075
11076 return ret;
a790de99 11077}
e8da1b18 11078
a1f7164c 11079static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 11080{
2da8ca82 11081 struct task_group *tg = css_tg(seq_css(sf));
029632fb 11082 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 11083
44ffc75b
TH
11084 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11085 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11086 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 11087
3d6c50c2 11088 if (schedstat_enabled() && tg != &root_task_group) {
ceeadb83 11089 struct sched_statistics *stats;
3d6c50c2
YW
11090 u64 ws = 0;
11091 int i;
11092
ceeadb83
YS
11093 for_each_possible_cpu(i) {
11094 stats = __schedstats_from_se(tg->se[i]);
11095 ws += schedstat_val(stats->wait_sum);
11096 }
3d6c50c2
YW
11097
11098 seq_printf(sf, "wait_sum %llu\n", ws);
11099 }
11100
bcb1704a
HC
11101 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11102 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11103
e8da1b18
NR
11104 return 0;
11105}
ab84d31e 11106#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 11107#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 11108
052f1dc7 11109#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
11110static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11111 struct cftype *cft, s64 val)
6f505b16 11112{
182446d0 11113 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
11114}
11115
182446d0
TH
11116static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11117 struct cftype *cft)
6f505b16 11118{
182446d0 11119 return sched_group_rt_runtime(css_tg(css));
6f505b16 11120}
d0b27fa7 11121
182446d0
TH
11122static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11123 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 11124{
182446d0 11125 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
11126}
11127
182446d0
TH
11128static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11129 struct cftype *cft)
d0b27fa7 11130{
182446d0 11131 return sched_group_rt_period(css_tg(css));
d0b27fa7 11132}
6d6bc0ad 11133#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 11134
30400039
JD
11135#ifdef CONFIG_FAIR_GROUP_SCHED
11136static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11137 struct cftype *cft)
11138{
11139 return css_tg(css)->idle;
11140}
11141
11142static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11143 struct cftype *cft, s64 idle)
11144{
11145 return sched_group_set_idle(css_tg(css), idle);
11146}
11147#endif
11148
a1f7164c 11149static struct cftype cpu_legacy_files[] = {
052f1dc7 11150#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
11151 {
11152 .name = "shares",
f4c753b7
PM
11153 .read_u64 = cpu_shares_read_u64,
11154 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 11155 },
30400039
JD
11156 {
11157 .name = "idle",
11158 .read_s64 = cpu_idle_read_s64,
11159 .write_s64 = cpu_idle_write_s64,
11160 },
052f1dc7 11161#endif
ab84d31e
PT
11162#ifdef CONFIG_CFS_BANDWIDTH
11163 {
11164 .name = "cfs_quota_us",
11165 .read_s64 = cpu_cfs_quota_read_s64,
11166 .write_s64 = cpu_cfs_quota_write_s64,
11167 },
11168 {
11169 .name = "cfs_period_us",
11170 .read_u64 = cpu_cfs_period_read_u64,
11171 .write_u64 = cpu_cfs_period_write_u64,
11172 },
f4183717
HC
11173 {
11174 .name = "cfs_burst_us",
11175 .read_u64 = cpu_cfs_burst_read_u64,
11176 .write_u64 = cpu_cfs_burst_write_u64,
11177 },
e8da1b18
NR
11178 {
11179 .name = "stat",
a1f7164c 11180 .seq_show = cpu_cfs_stat_show,
e8da1b18 11181 },
ab84d31e 11182#endif
052f1dc7 11183#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 11184 {
9f0c1e56 11185 .name = "rt_runtime_us",
06ecb27c
PM
11186 .read_s64 = cpu_rt_runtime_read,
11187 .write_s64 = cpu_rt_runtime_write,
6f505b16 11188 },
d0b27fa7
PZ
11189 {
11190 .name = "rt_period_us",
f4c753b7
PM
11191 .read_u64 = cpu_rt_period_read_uint,
11192 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 11193 },
2480c093
PB
11194#endif
11195#ifdef CONFIG_UCLAMP_TASK_GROUP
11196 {
11197 .name = "uclamp.min",
11198 .flags = CFTYPE_NOT_ON_ROOT,
11199 .seq_show = cpu_uclamp_min_show,
11200 .write = cpu_uclamp_min_write,
11201 },
11202 {
11203 .name = "uclamp.max",
11204 .flags = CFTYPE_NOT_ON_ROOT,
11205 .seq_show = cpu_uclamp_max_show,
11206 .write = cpu_uclamp_max_write,
11207 },
052f1dc7 11208#endif
d1ccc66d 11209 { } /* Terminate */
68318b8e
SV
11210};
11211
d41bf8c9
TH
11212static int cpu_extra_stat_show(struct seq_file *sf,
11213 struct cgroup_subsys_state *css)
0d593634 11214{
0d593634
TH
11215#ifdef CONFIG_CFS_BANDWIDTH
11216 {
d41bf8c9 11217 struct task_group *tg = css_tg(css);
0d593634 11218 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
bcb1704a 11219 u64 throttled_usec, burst_usec;
0d593634
TH
11220
11221 throttled_usec = cfs_b->throttled_time;
11222 do_div(throttled_usec, NSEC_PER_USEC);
bcb1704a
HC
11223 burst_usec = cfs_b->burst_time;
11224 do_div(burst_usec, NSEC_PER_USEC);
0d593634
TH
11225
11226 seq_printf(sf, "nr_periods %d\n"
11227 "nr_throttled %d\n"
bcb1704a
HC
11228 "throttled_usec %llu\n"
11229 "nr_bursts %d\n"
11230 "burst_usec %llu\n",
0d593634 11231 cfs_b->nr_periods, cfs_b->nr_throttled,
bcb1704a 11232 throttled_usec, cfs_b->nr_burst, burst_usec);
0d593634
TH
11233 }
11234#endif
11235 return 0;
11236}
11237
11238#ifdef CONFIG_FAIR_GROUP_SCHED
11239static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11240 struct cftype *cft)
11241{
11242 struct task_group *tg = css_tg(css);
11243 u64 weight = scale_load_down(tg->shares);
11244
11245 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11246}
11247
11248static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11249 struct cftype *cft, u64 weight)
11250{
11251 /*
11252 * cgroup weight knobs should use the common MIN, DFL and MAX
11253 * values which are 1, 100 and 10000 respectively. While it loses
11254 * a bit of range on both ends, it maps pretty well onto the shares
11255 * value used by scheduler and the round-trip conversions preserve
11256 * the original value over the entire range.
11257 */
11258 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11259 return -ERANGE;
11260
11261 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11262
11263 return sched_group_set_shares(css_tg(css), scale_load(weight));
11264}
11265
11266static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11267 struct cftype *cft)
11268{
11269 unsigned long weight = scale_load_down(css_tg(css)->shares);
11270 int last_delta = INT_MAX;
11271 int prio, delta;
11272
11273 /* find the closest nice value to the current weight */
11274 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11275 delta = abs(sched_prio_to_weight[prio] - weight);
11276 if (delta >= last_delta)
11277 break;
11278 last_delta = delta;
11279 }
11280
11281 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11282}
11283
11284static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11285 struct cftype *cft, s64 nice)
11286{
11287 unsigned long weight;
7281c8de 11288 int idx;
0d593634
TH
11289
11290 if (nice < MIN_NICE || nice > MAX_NICE)
11291 return -ERANGE;
11292
7281c8de
PZ
11293 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11294 idx = array_index_nospec(idx, 40);
11295 weight = sched_prio_to_weight[idx];
11296
0d593634
TH
11297 return sched_group_set_shares(css_tg(css), scale_load(weight));
11298}
11299#endif
11300
11301static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11302 long period, long quota)
11303{
11304 if (quota < 0)
11305 seq_puts(sf, "max");
11306 else
11307 seq_printf(sf, "%ld", quota);
11308
11309 seq_printf(sf, " %ld\n", period);
11310}
11311
11312/* caller should put the current value in *@periodp before calling */
11313static int __maybe_unused cpu_period_quota_parse(char *buf,
11314 u64 *periodp, u64 *quotap)
11315{
11316 char tok[21]; /* U64_MAX */
11317
4c47acd8 11318 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
11319 return -EINVAL;
11320
11321 *periodp *= NSEC_PER_USEC;
11322
11323 if (sscanf(tok, "%llu", quotap))
11324 *quotap *= NSEC_PER_USEC;
11325 else if (!strcmp(tok, "max"))
11326 *quotap = RUNTIME_INF;
11327 else
11328 return -EINVAL;
11329
11330 return 0;
11331}
11332
11333#ifdef CONFIG_CFS_BANDWIDTH
11334static int cpu_max_show(struct seq_file *sf, void *v)
11335{
11336 struct task_group *tg = css_tg(seq_css(sf));
11337
11338 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11339 return 0;
11340}
11341
11342static ssize_t cpu_max_write(struct kernfs_open_file *of,
11343 char *buf, size_t nbytes, loff_t off)
11344{
11345 struct task_group *tg = css_tg(of_css(of));
11346 u64 period = tg_get_cfs_period(tg);
f4183717 11347 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
11348 u64 quota;
11349 int ret;
11350
11351 ret = cpu_period_quota_parse(buf, &period, &quota);
11352 if (!ret)
f4183717 11353 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
11354 return ret ?: nbytes;
11355}
11356#endif
11357
11358static struct cftype cpu_files[] = {
0d593634
TH
11359#ifdef CONFIG_FAIR_GROUP_SCHED
11360 {
11361 .name = "weight",
11362 .flags = CFTYPE_NOT_ON_ROOT,
11363 .read_u64 = cpu_weight_read_u64,
11364 .write_u64 = cpu_weight_write_u64,
11365 },
11366 {
11367 .name = "weight.nice",
11368 .flags = CFTYPE_NOT_ON_ROOT,
11369 .read_s64 = cpu_weight_nice_read_s64,
11370 .write_s64 = cpu_weight_nice_write_s64,
11371 },
30400039
JD
11372 {
11373 .name = "idle",
11374 .flags = CFTYPE_NOT_ON_ROOT,
11375 .read_s64 = cpu_idle_read_s64,
11376 .write_s64 = cpu_idle_write_s64,
11377 },
0d593634
TH
11378#endif
11379#ifdef CONFIG_CFS_BANDWIDTH
11380 {
11381 .name = "max",
11382 .flags = CFTYPE_NOT_ON_ROOT,
11383 .seq_show = cpu_max_show,
11384 .write = cpu_max_write,
11385 },
f4183717
HC
11386 {
11387 .name = "max.burst",
11388 .flags = CFTYPE_NOT_ON_ROOT,
11389 .read_u64 = cpu_cfs_burst_read_u64,
11390 .write_u64 = cpu_cfs_burst_write_u64,
11391 },
2480c093
PB
11392#endif
11393#ifdef CONFIG_UCLAMP_TASK_GROUP
11394 {
11395 .name = "uclamp.min",
11396 .flags = CFTYPE_NOT_ON_ROOT,
11397 .seq_show = cpu_uclamp_min_show,
11398 .write = cpu_uclamp_min_write,
11399 },
11400 {
11401 .name = "uclamp.max",
11402 .flags = CFTYPE_NOT_ON_ROOT,
11403 .seq_show = cpu_uclamp_max_show,
11404 .write = cpu_uclamp_max_write,
11405 },
0d593634
TH
11406#endif
11407 { } /* terminate */
11408};
11409
073219e9 11410struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 11411 .css_alloc = cpu_cgroup_css_alloc,
96b77745 11412 .css_online = cpu_cgroup_css_online,
2f5177f0 11413 .css_released = cpu_cgroup_css_released,
92fb9748 11414 .css_free = cpu_cgroup_css_free,
d41bf8c9 11415 .css_extra_stat_show = cpu_extra_stat_show,
df16b71c 11416#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6 11417 .can_attach = cpu_cgroup_can_attach,
df16b71c 11418#endif
bb9d97b6 11419 .attach = cpu_cgroup_attach,
a1f7164c 11420 .legacy_cftypes = cpu_legacy_files,
0d593634 11421 .dfl_cftypes = cpu_files,
b38e42e9 11422 .early_init = true,
0d593634 11423 .threaded = true,
68318b8e
SV
11424};
11425
052f1dc7 11426#endif /* CONFIG_CGROUP_SCHED */
d842de87 11427
b637a328
PM
11428void dump_cpu_task(int cpu)
11429{
bc1cca97
ZL
11430 if (cpu == smp_processor_id() && in_hardirq()) {
11431 struct pt_regs *regs;
11432
11433 regs = get_irq_regs();
11434 if (regs) {
11435 show_regs(regs);
11436 return;
11437 }
11438 }
11439
e73dfe30
ZL
11440 if (trigger_single_cpu_backtrace(cpu))
11441 return;
11442
b637a328
PM
11443 pr_info("Task dump for CPU %d:\n", cpu);
11444 sched_show_task(cpu_curr(cpu));
11445}
ed82b8a1
AK
11446
11447/*
11448 * Nice levels are multiplicative, with a gentle 10% change for every
11449 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11450 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11451 * that remained on nice 0.
11452 *
11453 * The "10% effect" is relative and cumulative: from _any_ nice level,
11454 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11455 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11456 * If a task goes up by ~10% and another task goes down by ~10% then
11457 * the relative distance between them is ~25%.)
11458 */
11459const int sched_prio_to_weight[40] = {
11460 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11461 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11462 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11463 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11464 /* 0 */ 1024, 820, 655, 526, 423,
11465 /* 5 */ 335, 272, 215, 172, 137,
11466 /* 10 */ 110, 87, 70, 56, 45,
11467 /* 15 */ 36, 29, 23, 18, 15,
11468};
11469
11470/*
11471 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11472 *
11473 * In cases where the weight does not change often, we can use the
11474 * precalculated inverse to speed up arithmetics by turning divisions
11475 * into multiplications:
11476 */
11477const u32 sched_prio_to_wmult[40] = {
11478 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11479 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11480 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11481 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11482 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11483 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11484 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11485 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11486};
14a7405b 11487
9d246053
PA
11488void call_trace_sched_update_nr_running(struct rq *rq, int count)
11489{
11490 trace_sched_update_nr_running_tp(rq, count);
11491}
af7f588d
MD
11492
11493#ifdef CONFIG_SCHED_MM_CID
223baf9d
MD
11494
11495/**
11496 * @cid_lock: Guarantee forward-progress of cid allocation.
11497 *
11498 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11499 * is only used when contention is detected by the lock-free allocation so
11500 * forward progress can be guaranteed.
11501 */
11502DEFINE_RAW_SPINLOCK(cid_lock);
11503
11504/**
11505 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11506 *
11507 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11508 * detected, it is set to 1 to ensure that all newly coming allocations are
11509 * serialized by @cid_lock until the allocation which detected contention
11510 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11511 * of a cid allocation.
11512 */
11513int use_cid_lock;
11514
11515/*
11516 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11517 * concurrently with respect to the execution of the source runqueue context
11518 * switch.
11519 *
11520 * There is one basic properties we want to guarantee here:
11521 *
11522 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11523 * used by a task. That would lead to concurrent allocation of the cid and
11524 * userspace corruption.
11525 *
11526 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11527 * that a pair of loads observe at least one of a pair of stores, which can be
11528 * shown as:
11529 *
11530 * X = Y = 0
11531 *
11532 * w[X]=1 w[Y]=1
11533 * MB MB
11534 * r[Y]=y r[X]=x
11535 *
11536 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11537 * values 0 and 1, this algorithm cares about specific state transitions of the
11538 * runqueue current task (as updated by the scheduler context switch), and the
11539 * per-mm/cpu cid value.
11540 *
11541 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11542 * task->mm != mm for the rest of the discussion. There are two scheduler state
11543 * transitions on context switch we care about:
11544 *
11545 * (TSA) Store to rq->curr with transition from (N) to (Y)
11546 *
11547 * (TSB) Store to rq->curr with transition from (Y) to (N)
11548 *
11549 * On the remote-clear side, there is one transition we care about:
11550 *
11551 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11552 *
11553 * There is also a transition to UNSET state which can be performed from all
11554 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11555 * guarantees that only a single thread will succeed:
11556 *
11557 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11558 *
11559 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11560 * when a thread is actively using the cid (property (1)).
11561 *
11562 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11563 *
11564 * Scenario A) (TSA)+(TMA) (from next task perspective)
11565 *
11566 * CPU0 CPU1
11567 *
11568 * Context switch CS-1 Remote-clear
11569 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11570 * (implied barrier after cmpxchg)
11571 * - switch_mm_cid()
11572 * - memory barrier (see switch_mm_cid()
11573 * comment explaining how this barrier
11574 * is combined with other scheduler
11575 * barriers)
11576 * - mm_cid_get (next)
11577 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11578 *
11579 * This Dekker ensures that either task (Y) is observed by the
11580 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11581 * observed.
11582 *
11583 * If task (Y) store is observed by rcu_dereference(), it means that there is
11584 * still an active task on the cpu. Remote-clear will therefore not transition
11585 * to UNSET, which fulfills property (1).
11586 *
11587 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11588 * it will move its state to UNSET, which clears the percpu cid perhaps
11589 * uselessly (which is not an issue for correctness). Because task (Y) is not
11590 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11591 * state to UNSET is done with a cmpxchg expecting that the old state has the
11592 * LAZY flag set, only one thread will successfully UNSET.
11593 *
11594 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11595 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11596 * CPU1 will observe task (Y) and do nothing more, which is fine.
11597 *
11598 * What we are effectively preventing with this Dekker is a scenario where
11599 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11600 * because this would UNSET a cid which is actively used.
11601 */
11602
11603void sched_mm_cid_migrate_from(struct task_struct *t)
11604{
11605 t->migrate_from_cpu = task_cpu(t);
11606}
11607
11608static
11609int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11610 struct task_struct *t,
11611 struct mm_cid *src_pcpu_cid)
af7f588d
MD
11612{
11613 struct mm_struct *mm = t->mm;
223baf9d
MD
11614 struct task_struct *src_task;
11615 int src_cid, last_mm_cid;
af7f588d
MD
11616
11617 if (!mm)
223baf9d
MD
11618 return -1;
11619
11620 last_mm_cid = t->last_mm_cid;
11621 /*
11622 * If the migrated task has no last cid, or if the current
11623 * task on src rq uses the cid, it means the source cid does not need
11624 * to be moved to the destination cpu.
11625 */
11626 if (last_mm_cid == -1)
11627 return -1;
11628 src_cid = READ_ONCE(src_pcpu_cid->cid);
11629 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11630 return -1;
11631
11632 /*
11633 * If we observe an active task using the mm on this rq, it means we
11634 * are not the last task to be migrated from this cpu for this mm, so
11635 * there is no need to move src_cid to the destination cpu.
11636 */
11637 rcu_read_lock();
11638 src_task = rcu_dereference(src_rq->curr);
11639 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11640 rcu_read_unlock();
11641 t->last_mm_cid = -1;
11642 return -1;
11643 }
11644 rcu_read_unlock();
11645
11646 return src_cid;
11647}
11648
11649static
11650int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11651 struct task_struct *t,
11652 struct mm_cid *src_pcpu_cid,
11653 int src_cid)
11654{
11655 struct task_struct *src_task;
11656 struct mm_struct *mm = t->mm;
11657 int lazy_cid;
11658
11659 if (src_cid == -1)
11660 return -1;
11661
11662 /*
11663 * Attempt to clear the source cpu cid to move it to the destination
11664 * cpu.
11665 */
11666 lazy_cid = mm_cid_set_lazy_put(src_cid);
11667 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11668 return -1;
11669
11670 /*
11671 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11672 * rq->curr->mm matches the scheduler barrier in context_switch()
11673 * between store to rq->curr and load of prev and next task's
11674 * per-mm/cpu cid.
11675 *
11676 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11677 * rq->curr->mm_cid_active matches the barrier in
11678 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11679 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11680 * load of per-mm/cpu cid.
11681 */
11682
11683 /*
11684 * If we observe an active task using the mm on this rq after setting
11685 * the lazy-put flag, this task will be responsible for transitioning
11686 * from lazy-put flag set to MM_CID_UNSET.
11687 */
11688 rcu_read_lock();
11689 src_task = rcu_dereference(src_rq->curr);
11690 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11691 rcu_read_unlock();
11692 /*
11693 * We observed an active task for this mm, there is therefore
11694 * no point in moving this cid to the destination cpu.
11695 */
11696 t->last_mm_cid = -1;
11697 return -1;
11698 }
11699 rcu_read_unlock();
11700
11701 /*
11702 * The src_cid is unused, so it can be unset.
11703 */
11704 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11705 return -1;
11706 return src_cid;
11707}
11708
11709/*
11710 * Migration to dst cpu. Called with dst_rq lock held.
11711 * Interrupts are disabled, which keeps the window of cid ownership without the
11712 * source rq lock held small.
11713 */
11714void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11715{
11716 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11717 struct mm_struct *mm = t->mm;
11718 int src_cid, dst_cid, src_cpu;
11719 struct rq *src_rq;
11720
11721 lockdep_assert_rq_held(dst_rq);
af7f588d
MD
11722
11723 if (!mm)
11724 return;
223baf9d
MD
11725 src_cpu = t->migrate_from_cpu;
11726 if (src_cpu == -1) {
11727 t->last_mm_cid = -1;
11728 return;
11729 }
11730 /*
11731 * Move the src cid if the dst cid is unset. This keeps id
11732 * allocation closest to 0 in cases where few threads migrate around
11733 * many cpus.
11734 *
11735 * If destination cid is already set, we may have to just clear
11736 * the src cid to ensure compactness in frequent migrations
11737 * scenarios.
11738 *
11739 * It is not useful to clear the src cid when the number of threads is
11740 * greater or equal to the number of allowed cpus, because user-space
11741 * can expect that the number of allowed cids can reach the number of
11742 * allowed cpus.
11743 */
11744 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11745 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11746 if (!mm_cid_is_unset(dst_cid) &&
11747 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11748 return;
11749 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11750 src_rq = cpu_rq(src_cpu);
11751 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11752 if (src_cid == -1)
11753 return;
11754 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11755 src_cid);
11756 if (src_cid == -1)
11757 return;
11758 if (!mm_cid_is_unset(dst_cid)) {
11759 __mm_cid_put(mm, src_cid);
11760 return;
11761 }
11762 /* Move src_cid to dst cpu. */
11763 mm_cid_snapshot_time(dst_rq, mm);
11764 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11765}
11766
11767static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11768 int cpu)
11769{
11770 struct rq *rq = cpu_rq(cpu);
11771 struct task_struct *t;
11772 unsigned long flags;
11773 int cid, lazy_cid;
11774
11775 cid = READ_ONCE(pcpu_cid->cid);
11776 if (!mm_cid_is_valid(cid))
af7f588d 11777 return;
223baf9d
MD
11778
11779 /*
11780 * Clear the cpu cid if it is set to keep cid allocation compact. If
11781 * there happens to be other tasks left on the source cpu using this
11782 * mm, the next task using this mm will reallocate its cid on context
11783 * switch.
11784 */
11785 lazy_cid = mm_cid_set_lazy_put(cid);
11786 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11787 return;
11788
11789 /*
11790 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11791 * rq->curr->mm matches the scheduler barrier in context_switch()
11792 * between store to rq->curr and load of prev and next task's
11793 * per-mm/cpu cid.
11794 *
11795 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11796 * rq->curr->mm_cid_active matches the barrier in
11797 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11798 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11799 * load of per-mm/cpu cid.
11800 */
11801
11802 /*
11803 * If we observe an active task using the mm on this rq after setting
11804 * the lazy-put flag, that task will be responsible for transitioning
11805 * from lazy-put flag set to MM_CID_UNSET.
11806 */
11807 rcu_read_lock();
11808 t = rcu_dereference(rq->curr);
11809 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11810 rcu_read_unlock();
11811 return;
11812 }
11813 rcu_read_unlock();
11814
11815 /*
11816 * The cid is unused, so it can be unset.
11817 * Disable interrupts to keep the window of cid ownership without rq
11818 * lock small.
11819 */
af7f588d 11820 local_irq_save(flags);
223baf9d
MD
11821 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11822 __mm_cid_put(mm, cid);
af7f588d
MD
11823 local_irq_restore(flags);
11824}
11825
223baf9d
MD
11826static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11827{
11828 struct rq *rq = cpu_rq(cpu);
11829 struct mm_cid *pcpu_cid;
11830 struct task_struct *curr;
11831 u64 rq_clock;
11832
11833 /*
11834 * rq->clock load is racy on 32-bit but one spurious clear once in a
11835 * while is irrelevant.
11836 */
11837 rq_clock = READ_ONCE(rq->clock);
11838 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11839
11840 /*
11841 * In order to take care of infrequently scheduled tasks, bump the time
11842 * snapshot associated with this cid if an active task using the mm is
11843 * observed on this rq.
11844 */
11845 rcu_read_lock();
11846 curr = rcu_dereference(rq->curr);
11847 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11848 WRITE_ONCE(pcpu_cid->time, rq_clock);
11849 rcu_read_unlock();
11850 return;
11851 }
11852 rcu_read_unlock();
11853
11854 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11855 return;
11856 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11857}
11858
11859static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11860 int weight)
11861{
11862 struct mm_cid *pcpu_cid;
11863 int cid;
11864
11865 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11866 cid = READ_ONCE(pcpu_cid->cid);
11867 if (!mm_cid_is_valid(cid) || cid < weight)
11868 return;
11869 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11870}
11871
11872static void task_mm_cid_work(struct callback_head *work)
11873{
11874 unsigned long now = jiffies, old_scan, next_scan;
11875 struct task_struct *t = current;
11876 struct cpumask *cidmask;
11877 struct mm_struct *mm;
11878 int weight, cpu;
11879
11880 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11881
11882 work->next = work; /* Prevent double-add */
11883 if (t->flags & PF_EXITING)
11884 return;
11885 mm = t->mm;
11886 if (!mm)
11887 return;
11888 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11889 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11890 if (!old_scan) {
11891 unsigned long res;
11892
11893 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11894 if (res != old_scan)
11895 old_scan = res;
11896 else
11897 old_scan = next_scan;
11898 }
11899 if (time_before(now, old_scan))
11900 return;
11901 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11902 return;
11903 cidmask = mm_cidmask(mm);
11904 /* Clear cids that were not recently used. */
11905 for_each_possible_cpu(cpu)
11906 sched_mm_cid_remote_clear_old(mm, cpu);
11907 weight = cpumask_weight(cidmask);
11908 /*
11909 * Clear cids that are greater or equal to the cidmask weight to
11910 * recompact it.
11911 */
11912 for_each_possible_cpu(cpu)
11913 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11914}
11915
11916void init_sched_mm_cid(struct task_struct *t)
11917{
11918 struct mm_struct *mm = t->mm;
11919 int mm_users = 0;
11920
11921 if (mm) {
11922 mm_users = atomic_read(&mm->mm_users);
11923 if (mm_users == 1)
11924 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11925 }
11926 t->cid_work.next = &t->cid_work; /* Protect against double add */
11927 init_task_work(&t->cid_work, task_mm_cid_work);
11928}
11929
11930void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11931{
11932 struct callback_head *work = &curr->cid_work;
11933 unsigned long now = jiffies;
11934
11935 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11936 work->next != work)
11937 return;
11938 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11939 return;
11940 task_work_add(curr, work, TWA_RESUME);
11941}
11942
11943void sched_mm_cid_exit_signals(struct task_struct *t)
11944{
11945 struct mm_struct *mm = t->mm;
11946 struct rq_flags rf;
11947 struct rq *rq;
11948
11949 if (!mm)
11950 return;
11951
11952 preempt_disable();
11953 rq = this_rq();
11954 rq_lock_irqsave(rq, &rf);
11955 preempt_enable_no_resched(); /* holding spinlock */
11956 WRITE_ONCE(t->mm_cid_active, 0);
11957 /*
11958 * Store t->mm_cid_active before loading per-mm/cpu cid.
11959 * Matches barrier in sched_mm_cid_remote_clear_old().
11960 */
11961 smp_mb();
11962 mm_cid_put(mm);
11963 t->last_mm_cid = t->mm_cid = -1;
11964 rq_unlock_irqrestore(rq, &rf);
11965}
11966
af7f588d
MD
11967void sched_mm_cid_before_execve(struct task_struct *t)
11968{
11969 struct mm_struct *mm = t->mm;
223baf9d
MD
11970 struct rq_flags rf;
11971 struct rq *rq;
af7f588d
MD
11972
11973 if (!mm)
11974 return;
223baf9d
MD
11975
11976 preempt_disable();
11977 rq = this_rq();
11978 rq_lock_irqsave(rq, &rf);
11979 preempt_enable_no_resched(); /* holding spinlock */
11980 WRITE_ONCE(t->mm_cid_active, 0);
11981 /*
11982 * Store t->mm_cid_active before loading per-mm/cpu cid.
11983 * Matches barrier in sched_mm_cid_remote_clear_old().
11984 */
11985 smp_mb();
11986 mm_cid_put(mm);
11987 t->last_mm_cid = t->mm_cid = -1;
11988 rq_unlock_irqrestore(rq, &rf);
af7f588d
MD
11989}
11990
11991void sched_mm_cid_after_execve(struct task_struct *t)
11992{
11993 struct mm_struct *mm = t->mm;
223baf9d
MD
11994 struct rq_flags rf;
11995 struct rq *rq;
af7f588d 11996
bbd0b031
MD
11997 if (!mm)
11998 return;
223baf9d
MD
11999
12000 preempt_disable();
12001 rq = this_rq();
12002 rq_lock_irqsave(rq, &rf);
12003 preempt_enable_no_resched(); /* holding spinlock */
12004 WRITE_ONCE(t->mm_cid_active, 1);
12005 /*
12006 * Store t->mm_cid_active before loading per-mm/cpu cid.
12007 * Matches barrier in sched_mm_cid_remote_clear_old().
12008 */
12009 smp_mb();
12010 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12011 rq_unlock_irqrestore(rq, &rf);
af7f588d
MD
12012 rseq_set_notify_resume(t);
12013}
12014
12015void sched_mm_cid_fork(struct task_struct *t)
12016{
bbd0b031 12017 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
af7f588d
MD
12018 t->mm_cid_active = 1;
12019}
12020#endif