sched: Clean up and harmonize the coding style of the scheduler code base
[linux-2.6-block.git] / kernel / sched / clock.c
CommitLineData
3e51f33f 1/*
97fb7a0a 2 * sched_clock() for unstable CPU clocks
3e51f33f 3 *
90eec103 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
3e51f33f 5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
c676329a 13 *
97fb7a0a 14 * What this file implements:
c676329a
PZ
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
97fb7a0a 29 * local_clock() -- is cpu_clock() on the current CPU.
c676329a 30 *
ef08f0ff
PZ
31 * sched_clock_cpu(i)
32 *
97fb7a0a 33 * How it is implemented:
c676329a
PZ
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
3e51f33f
PZ
44 * - sched_clock()
45 * - explicit idle events
46 *
c676329a
PZ
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
3e51f33f
PZ
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
3e51f33f 54 */
3e51f33f 55#include <linux/spinlock.h>
6409c4da 56#include <linux/hardirq.h>
9984de1a 57#include <linux/export.h>
b342501c
IM
58#include <linux/percpu.h>
59#include <linux/ktime.h>
60#include <linux/sched.h>
38b8d208 61#include <linux/nmi.h>
e6017571 62#include <linux/sched/clock.h>
35af99e6 63#include <linux/static_key.h>
6577e42a 64#include <linux/workqueue.h>
52f5684c 65#include <linux/compiler.h>
4f49b90a 66#include <linux/tick.h>
2e44b7dd 67#include <linux/init.h>
3e51f33f 68
2c3d103b
HD
69/*
70 * Scheduler clock - returns current time in nanosec units.
71 * This is default implementation.
72 * Architectures and sub-architectures can override this.
73 */
52f5684c 74unsigned long long __weak sched_clock(void)
2c3d103b 75{
92d23f70
R
76 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
77 * (NSEC_PER_SEC / HZ);
2c3d103b 78}
b6ac23af 79EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 80
5bb6b1ea 81__read_mostly int sched_clock_running;
c1955a3d 82
9881b024
PZ
83void sched_clock_init(void)
84{
85 sched_clock_running = 1;
86}
87
3e51f33f 88#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
acb04058
PZ
89/*
90 * We must start with !__sched_clock_stable because the unstable -> stable
91 * transition is accurate, while the stable -> unstable transition is not.
92 *
93 * Similarly we start with __sched_clock_stable_early, thereby assuming we
94 * will become stable, such that there's only a single 1 -> 0 transition.
95 */
555570d7 96static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
acb04058 97static int __sched_clock_stable_early = 1;
35af99e6 98
5680d809 99/*
698eff63 100 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
5680d809 101 */
698eff63
PZ
102__read_mostly u64 __sched_clock_offset;
103static __read_mostly u64 __gtod_offset;
5680d809
PZ
104
105struct sched_clock_data {
106 u64 tick_raw;
107 u64 tick_gtod;
108 u64 clock;
109};
110
111static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
112
113static inline struct sched_clock_data *this_scd(void)
114{
115 return this_cpu_ptr(&sched_clock_data);
116}
117
118static inline struct sched_clock_data *cpu_sdc(int cpu)
119{
120 return &per_cpu(sched_clock_data, cpu);
121}
122
35af99e6
PZ
123int sched_clock_stable(void)
124{
555570d7 125 return static_branch_likely(&__sched_clock_stable);
35af99e6
PZ
126}
127
cf15ca8d
PZ
128static void __scd_stamp(struct sched_clock_data *scd)
129{
130 scd->tick_gtod = ktime_get_ns();
131 scd->tick_raw = sched_clock();
132}
133
d375b4e0 134static void __set_sched_clock_stable(void)
35af99e6 135{
45aea321 136 struct sched_clock_data *scd;
5680d809 137
45aea321
PZ
138 /*
139 * Since we're still unstable and the tick is already running, we have
140 * to disable IRQs in order to get a consistent scd->tick* reading.
141 */
142 local_irq_disable();
143 scd = this_scd();
5680d809
PZ
144 /*
145 * Attempt to make the (initial) unstable->stable transition continuous.
146 */
698eff63 147 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
45aea321 148 local_irq_enable();
5680d809
PZ
149
150 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
698eff63
PZ
151 scd->tick_gtod, __gtod_offset,
152 scd->tick_raw, __sched_clock_offset);
5680d809 153
555570d7 154 static_branch_enable(&__sched_clock_stable);
4f49b90a 155 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
d375b4e0
PZ
156}
157
cf15ca8d
PZ
158/*
159 * If we ever get here, we're screwed, because we found out -- typically after
160 * the fact -- that TSC wasn't good. This means all our clocksources (including
161 * ktime) could have reported wrong values.
162 *
163 * What we do here is an attempt to fix up and continue sort of where we left
164 * off in a coherent manner.
165 *
166 * The only way to fully avoid random clock jumps is to boot with:
167 * "tsc=unstable".
168 */
71fdb70e
PZ
169static void __sched_clock_work(struct work_struct *work)
170{
cf15ca8d
PZ
171 struct sched_clock_data *scd;
172 int cpu;
173
174 /* take a current timestamp and set 'now' */
175 preempt_disable();
176 scd = this_scd();
177 __scd_stamp(scd);
178 scd->clock = scd->tick_gtod + __gtod_offset;
179 preempt_enable();
180
181 /* clone to all CPUs */
182 for_each_possible_cpu(cpu)
183 per_cpu(sched_clock_data, cpu) = *scd;
184
7708d5f0 185 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
cf15ca8d
PZ
186 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
187 scd->tick_gtod, __gtod_offset,
188 scd->tick_raw, __sched_clock_offset);
189
71fdb70e
PZ
190 static_branch_disable(&__sched_clock_stable);
191}
192
193static DECLARE_WORK(sched_clock_work, __sched_clock_work);
194
195static void __clear_sched_clock_stable(void)
35af99e6 196{
cf15ca8d
PZ
197 if (!sched_clock_stable())
198 return;
5680d809 199
4f49b90a 200 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
cf15ca8d 201 schedule_work(&sched_clock_work);
71fdb70e 202}
6577e42a
PZ
203
204void clear_sched_clock_stable(void)
205{
d375b4e0
PZ
206 __sched_clock_stable_early = 0;
207
9881b024 208 smp_mb(); /* matches sched_clock_init_late() */
d375b4e0 209
9881b024 210 if (sched_clock_running == 2)
71fdb70e 211 __clear_sched_clock_stable();
6577e42a
PZ
212}
213
2e44b7dd
PZ
214/*
215 * We run this as late_initcall() such that it runs after all built-in drivers,
216 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
217 */
218static int __init sched_clock_init_late(void)
3e51f33f 219{
9881b024 220 sched_clock_running = 2;
d375b4e0
PZ
221 /*
222 * Ensure that it is impossible to not do a static_key update.
223 *
224 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
225 * and do the update, or we must see their __sched_clock_stable_early
226 * and do the update, or both.
227 */
228 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
229
230 if (__sched_clock_stable_early)
231 __set_sched_clock_stable();
2e44b7dd
PZ
232
233 return 0;
3e51f33f 234}
2e44b7dd 235late_initcall(sched_clock_init_late);
3e51f33f 236
354879bb 237/*
b342501c 238 * min, max except they take wrapping into account
354879bb
PZ
239 */
240
241static inline u64 wrap_min(u64 x, u64 y)
242{
243 return (s64)(x - y) < 0 ? x : y;
244}
245
246static inline u64 wrap_max(u64 x, u64 y)
247{
248 return (s64)(x - y) > 0 ? x : y;
249}
250
3e51f33f
PZ
251/*
252 * update the percpu scd from the raw @now value
253 *
254 * - filter out backward motion
354879bb 255 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 256 */
def0a9b2 257static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 258{
7b09cc5a 259 u64 now, clock, old_clock, min_clock, max_clock, gtod;
def0a9b2 260 s64 delta;
3e51f33f 261
def0a9b2
PZ
262again:
263 now = sched_clock();
264 delta = now - scd->tick_raw;
354879bb
PZ
265 if (unlikely(delta < 0))
266 delta = 0;
3e51f33f 267
def0a9b2
PZ
268 old_clock = scd->clock;
269
354879bb
PZ
270 /*
271 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
272 * max(scd->tick_gtod, scd->clock),
273 * scd->tick_gtod + TICK_NSEC);
354879bb 274 */
3e51f33f 275
7b09cc5a
PT
276 gtod = scd->tick_gtod + __gtod_offset;
277 clock = gtod + delta;
278 min_clock = wrap_max(gtod, old_clock);
279 max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
3e51f33f 280
354879bb
PZ
281 clock = wrap_max(clock, min_clock);
282 clock = wrap_min(clock, max_clock);
3e51f33f 283
152f9d07 284 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 285 goto again;
56b90612 286
def0a9b2 287 return clock;
3e51f33f
PZ
288}
289
def0a9b2 290static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 291{
def0a9b2
PZ
292 struct sched_clock_data *my_scd = this_scd();
293 u64 this_clock, remote_clock;
294 u64 *ptr, old_val, val;
295
a1cbcaa9
TG
296#if BITS_PER_LONG != 64
297again:
298 /*
299 * Careful here: The local and the remote clock values need to
300 * be read out atomic as we need to compare the values and
301 * then update either the local or the remote side. So the
302 * cmpxchg64 below only protects one readout.
303 *
304 * We must reread via sched_clock_local() in the retry case on
97fb7a0a 305 * 32-bit kernels as an NMI could use sched_clock_local() via the
a1cbcaa9 306 * tracer and hit between the readout of
97fb7a0a 307 * the low 32-bit and the high 32-bit portion.
a1cbcaa9
TG
308 */
309 this_clock = sched_clock_local(my_scd);
310 /*
97fb7a0a
IM
311 * We must enforce atomic readout on 32-bit, otherwise the
312 * update on the remote CPU can hit inbetween the readout of
313 * the low 32-bit and the high 32-bit portion.
a1cbcaa9
TG
314 */
315 remote_clock = cmpxchg64(&scd->clock, 0, 0);
316#else
317 /*
97fb7a0a
IM
318 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
319 * update, so we can avoid the above 32-bit dance.
a1cbcaa9 320 */
def0a9b2
PZ
321 sched_clock_local(my_scd);
322again:
323 this_clock = my_scd->clock;
324 remote_clock = scd->clock;
a1cbcaa9 325#endif
def0a9b2
PZ
326
327 /*
328 * Use the opportunity that we have both locks
329 * taken to couple the two clocks: we take the
330 * larger time as the latest time for both
331 * runqueues. (this creates monotonic movement)
332 */
333 if (likely((s64)(remote_clock - this_clock) < 0)) {
334 ptr = &scd->clock;
335 old_val = remote_clock;
336 val = this_clock;
3e51f33f 337 } else {
def0a9b2
PZ
338 /*
339 * Should be rare, but possible:
340 */
341 ptr = &my_scd->clock;
342 old_val = this_clock;
343 val = remote_clock;
3e51f33f 344 }
def0a9b2 345
152f9d07 346 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
347 goto again;
348
349 return val;
3e51f33f
PZ
350}
351
c676329a
PZ
352/*
353 * Similar to cpu_clock(), but requires local IRQs to be disabled.
354 *
355 * See cpu_clock().
356 */
3e51f33f
PZ
357u64 sched_clock_cpu(int cpu)
358{
b342501c 359 struct sched_clock_data *scd;
def0a9b2
PZ
360 u64 clock;
361
35af99e6 362 if (sched_clock_stable())
698eff63 363 return sched_clock() + __sched_clock_offset;
a381759d 364
a381759d
PZ
365 if (unlikely(!sched_clock_running))
366 return 0ull;
367
96b3d28b 368 preempt_disable_notrace();
def0a9b2 369 scd = cpu_sdc(cpu);
3e51f33f 370
def0a9b2
PZ
371 if (cpu != smp_processor_id())
372 clock = sched_clock_remote(scd);
373 else
374 clock = sched_clock_local(scd);
96b3d28b 375 preempt_enable_notrace();
e4e4e534 376
3e51f33f
PZ
377 return clock;
378}
2c923e94 379EXPORT_SYMBOL_GPL(sched_clock_cpu);
3e51f33f
PZ
380
381void sched_clock_tick(void)
382{
8325d9c0 383 struct sched_clock_data *scd;
a381759d 384
b421b22b
PZ
385 if (sched_clock_stable())
386 return;
387
388 if (unlikely(!sched_clock_running))
389 return;
390
2c11dba0 391 lockdep_assert_irqs_disabled();
3e51f33f 392
8325d9c0 393 scd = this_scd();
cf15ca8d 394 __scd_stamp(scd);
b421b22b
PZ
395 sched_clock_local(scd);
396}
397
398void sched_clock_tick_stable(void)
399{
400 u64 gtod, clock;
3e51f33f 401
b421b22b
PZ
402 if (!sched_clock_stable())
403 return;
404
405 /*
406 * Called under watchdog_lock.
407 *
408 * The watchdog just found this TSC to (still) be stable, so now is a
409 * good moment to update our __gtod_offset. Because once we find the
410 * TSC to be unstable, any computation will be computing crap.
411 */
412 local_irq_disable();
413 gtod = ktime_get_ns();
414 clock = sched_clock();
415 __gtod_offset = (clock + __sched_clock_offset) - gtod;
416 local_irq_enable();
3e51f33f
PZ
417}
418
419/*
420 * We are going deep-idle (irqs are disabled):
421 */
422void sched_clock_idle_sleep_event(void)
423{
424 sched_clock_cpu(smp_processor_id());
425}
426EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
427
428/*
f9fccdb9 429 * We just idled; resync with ktime.
3e51f33f 430 */
ac1e843f 431void sched_clock_idle_wakeup_event(void)
3e51f33f 432{
f9fccdb9
PZ
433 unsigned long flags;
434
435 if (sched_clock_stable())
436 return;
437
438 if (unlikely(timekeeping_suspended))
1c5745aa
TG
439 return;
440
f9fccdb9 441 local_irq_save(flags);
354879bb 442 sched_clock_tick();
f9fccdb9 443 local_irq_restore(flags);
3e51f33f
PZ
444}
445EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
446
8325d9c0
PZ
447#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
448
8325d9c0
PZ
449u64 sched_clock_cpu(int cpu)
450{
451 if (unlikely(!sched_clock_running))
452 return 0;
453
454 return sched_clock();
455}
9881b024 456
b9f8fcd5 457#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 458
545a2bf7
CB
459/*
460 * Running clock - returns the time that has elapsed while a guest has been
461 * running.
462 * On a guest this value should be local_clock minus the time the guest was
463 * suspended by the hypervisor (for any reason).
464 * On bare metal this function should return the same as local_clock.
465 * Architectures and sub-architectures can override this.
466 */
467u64 __weak running_clock(void)
468{
469 return local_clock();
470}