Merge tag 'staging-5.5-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-block.git] / kernel / sched / clock.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
3e51f33f 2/*
97fb7a0a 3 * sched_clock() for unstable CPU clocks
3e51f33f 4 *
90eec103 5 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
3e51f33f 6 *
c300ba25
SR
7 * Updates and enhancements:
8 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
9 *
3e51f33f
PZ
10 * Based on code by:
11 * Ingo Molnar <mingo@redhat.com>
12 * Guillaume Chazarain <guichaz@gmail.com>
13 *
c676329a 14 *
97fb7a0a 15 * What this file implements:
c676329a
PZ
16 *
17 * cpu_clock(i) provides a fast (execution time) high resolution
18 * clock with bounded drift between CPUs. The value of cpu_clock(i)
19 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 *
21 * ######################### BIG FAT WARNING ##########################
22 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23 * # go backwards !! #
24 * ####################################################################
25 *
26 * There is no strict promise about the base, although it tends to start
27 * at 0 on boot (but people really shouldn't rely on that).
28 *
29 * cpu_clock(i) -- can be used from any context, including NMI.
97fb7a0a 30 * local_clock() -- is cpu_clock() on the current CPU.
c676329a 31 *
ef08f0ff
PZ
32 * sched_clock_cpu(i)
33 *
97fb7a0a 34 * How it is implemented:
c676329a
PZ
35 *
36 * The implementation either uses sched_clock() when
37 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
38 * sched_clock() is assumed to provide these properties (mostly it means
39 * the architecture provides a globally synchronized highres time source).
40 *
41 * Otherwise it tries to create a semi stable clock from a mixture of other
42 * clocks, including:
43 *
44 * - GTOD (clock monotomic)
3e51f33f
PZ
45 * - sched_clock()
46 * - explicit idle events
47 *
c676329a
PZ
48 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
49 * deltas are filtered to provide monotonicity and keeping it within an
50 * expected window.
3e51f33f
PZ
51 *
52 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
53 * that is otherwise invisible (TSC gets stopped).
54 *
3e51f33f 55 */
325ea10c 56#include "sched.h"
5d2a4e91 57#include <linux/sched_clock.h>
3e51f33f 58
2c3d103b
HD
59/*
60 * Scheduler clock - returns current time in nanosec units.
61 * This is default implementation.
62 * Architectures and sub-architectures can override this.
63 */
52f5684c 64unsigned long long __weak sched_clock(void)
2c3d103b 65{
92d23f70
R
66 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
67 * (NSEC_PER_SEC / HZ);
2c3d103b 68}
b6ac23af 69EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 70
46457ea4 71static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
c1955a3d 72
3e51f33f 73#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
acb04058
PZ
74/*
75 * We must start with !__sched_clock_stable because the unstable -> stable
76 * transition is accurate, while the stable -> unstable transition is not.
77 *
78 * Similarly we start with __sched_clock_stable_early, thereby assuming we
79 * will become stable, such that there's only a single 1 -> 0 transition.
80 */
555570d7 81static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
acb04058 82static int __sched_clock_stable_early = 1;
35af99e6 83
5680d809 84/*
698eff63 85 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
5680d809 86 */
698eff63
PZ
87__read_mostly u64 __sched_clock_offset;
88static __read_mostly u64 __gtod_offset;
5680d809
PZ
89
90struct sched_clock_data {
91 u64 tick_raw;
92 u64 tick_gtod;
93 u64 clock;
94};
95
96static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
97
98static inline struct sched_clock_data *this_scd(void)
99{
100 return this_cpu_ptr(&sched_clock_data);
101}
102
103static inline struct sched_clock_data *cpu_sdc(int cpu)
104{
105 return &per_cpu(sched_clock_data, cpu);
106}
107
35af99e6
PZ
108int sched_clock_stable(void)
109{
555570d7 110 return static_branch_likely(&__sched_clock_stable);
35af99e6
PZ
111}
112
cf15ca8d
PZ
113static void __scd_stamp(struct sched_clock_data *scd)
114{
115 scd->tick_gtod = ktime_get_ns();
116 scd->tick_raw = sched_clock();
117}
118
d375b4e0 119static void __set_sched_clock_stable(void)
35af99e6 120{
45aea321 121 struct sched_clock_data *scd;
5680d809 122
45aea321
PZ
123 /*
124 * Since we're still unstable and the tick is already running, we have
125 * to disable IRQs in order to get a consistent scd->tick* reading.
126 */
127 local_irq_disable();
128 scd = this_scd();
5680d809
PZ
129 /*
130 * Attempt to make the (initial) unstable->stable transition continuous.
131 */
698eff63 132 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
45aea321 133 local_irq_enable();
5680d809
PZ
134
135 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
698eff63
PZ
136 scd->tick_gtod, __gtod_offset,
137 scd->tick_raw, __sched_clock_offset);
5680d809 138
555570d7 139 static_branch_enable(&__sched_clock_stable);
4f49b90a 140 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
d375b4e0
PZ
141}
142
cf15ca8d
PZ
143/*
144 * If we ever get here, we're screwed, because we found out -- typically after
145 * the fact -- that TSC wasn't good. This means all our clocksources (including
146 * ktime) could have reported wrong values.
147 *
148 * What we do here is an attempt to fix up and continue sort of where we left
149 * off in a coherent manner.
150 *
151 * The only way to fully avoid random clock jumps is to boot with:
152 * "tsc=unstable".
153 */
71fdb70e
PZ
154static void __sched_clock_work(struct work_struct *work)
155{
cf15ca8d
PZ
156 struct sched_clock_data *scd;
157 int cpu;
158
159 /* take a current timestamp and set 'now' */
160 preempt_disable();
161 scd = this_scd();
162 __scd_stamp(scd);
163 scd->clock = scd->tick_gtod + __gtod_offset;
164 preempt_enable();
165
166 /* clone to all CPUs */
167 for_each_possible_cpu(cpu)
168 per_cpu(sched_clock_data, cpu) = *scd;
169
7708d5f0 170 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
cf15ca8d
PZ
171 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
172 scd->tick_gtod, __gtod_offset,
173 scd->tick_raw, __sched_clock_offset);
174
71fdb70e
PZ
175 static_branch_disable(&__sched_clock_stable);
176}
177
178static DECLARE_WORK(sched_clock_work, __sched_clock_work);
179
180static void __clear_sched_clock_stable(void)
35af99e6 181{
cf15ca8d
PZ
182 if (!sched_clock_stable())
183 return;
5680d809 184
4f49b90a 185 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
cf15ca8d 186 schedule_work(&sched_clock_work);
71fdb70e 187}
6577e42a
PZ
188
189void clear_sched_clock_stable(void)
190{
d375b4e0
PZ
191 __sched_clock_stable_early = 0;
192
9881b024 193 smp_mb(); /* matches sched_clock_init_late() */
d375b4e0 194
46457ea4 195 if (static_key_count(&sched_clock_running.key) == 2)
71fdb70e 196 __clear_sched_clock_stable();
6577e42a
PZ
197}
198
5d2a4e91
PT
199static void __sched_clock_gtod_offset(void)
200{
9407f5a7
PZ
201 struct sched_clock_data *scd = this_scd();
202
203 __scd_stamp(scd);
204 __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
5d2a4e91
PT
205}
206
207void __init sched_clock_init(void)
208{
857baa87
PT
209 /*
210 * Set __gtod_offset such that once we mark sched_clock_running,
211 * sched_clock_tick() continues where sched_clock() left off.
212 *
213 * Even if TSC is buggered, we're still UP at this point so it
214 * can't really be out of sync.
215 */
9407f5a7 216 local_irq_disable();
857baa87 217 __sched_clock_gtod_offset();
9407f5a7 218 local_irq_enable();
857baa87 219
46457ea4 220 static_branch_inc(&sched_clock_running);
5d2a4e91 221}
2e44b7dd
PZ
222/*
223 * We run this as late_initcall() such that it runs after all built-in drivers,
224 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
225 */
226static int __init sched_clock_init_late(void)
3e51f33f 227{
46457ea4 228 static_branch_inc(&sched_clock_running);
d375b4e0
PZ
229 /*
230 * Ensure that it is impossible to not do a static_key update.
231 *
232 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
233 * and do the update, or we must see their __sched_clock_stable_early
234 * and do the update, or both.
235 */
236 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
237
238 if (__sched_clock_stable_early)
239 __set_sched_clock_stable();
2e44b7dd
PZ
240
241 return 0;
3e51f33f 242}
2e44b7dd 243late_initcall(sched_clock_init_late);
3e51f33f 244
354879bb 245/*
b342501c 246 * min, max except they take wrapping into account
354879bb
PZ
247 */
248
249static inline u64 wrap_min(u64 x, u64 y)
250{
251 return (s64)(x - y) < 0 ? x : y;
252}
253
254static inline u64 wrap_max(u64 x, u64 y)
255{
256 return (s64)(x - y) > 0 ? x : y;
257}
258
3e51f33f
PZ
259/*
260 * update the percpu scd from the raw @now value
261 *
262 * - filter out backward motion
354879bb 263 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 264 */
def0a9b2 265static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 266{
7b09cc5a 267 u64 now, clock, old_clock, min_clock, max_clock, gtod;
def0a9b2 268 s64 delta;
3e51f33f 269
def0a9b2
PZ
270again:
271 now = sched_clock();
272 delta = now - scd->tick_raw;
354879bb
PZ
273 if (unlikely(delta < 0))
274 delta = 0;
3e51f33f 275
def0a9b2
PZ
276 old_clock = scd->clock;
277
354879bb
PZ
278 /*
279 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
280 * max(scd->tick_gtod, scd->clock),
281 * scd->tick_gtod + TICK_NSEC);
354879bb 282 */
3e51f33f 283
7b09cc5a
PT
284 gtod = scd->tick_gtod + __gtod_offset;
285 clock = gtod + delta;
286 min_clock = wrap_max(gtod, old_clock);
287 max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
3e51f33f 288
354879bb
PZ
289 clock = wrap_max(clock, min_clock);
290 clock = wrap_min(clock, max_clock);
3e51f33f 291
152f9d07 292 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 293 goto again;
56b90612 294
def0a9b2 295 return clock;
3e51f33f
PZ
296}
297
def0a9b2 298static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 299{
def0a9b2
PZ
300 struct sched_clock_data *my_scd = this_scd();
301 u64 this_clock, remote_clock;
302 u64 *ptr, old_val, val;
303
a1cbcaa9
TG
304#if BITS_PER_LONG != 64
305again:
306 /*
307 * Careful here: The local and the remote clock values need to
308 * be read out atomic as we need to compare the values and
309 * then update either the local or the remote side. So the
310 * cmpxchg64 below only protects one readout.
311 *
312 * We must reread via sched_clock_local() in the retry case on
97fb7a0a 313 * 32-bit kernels as an NMI could use sched_clock_local() via the
a1cbcaa9 314 * tracer and hit between the readout of
97fb7a0a 315 * the low 32-bit and the high 32-bit portion.
a1cbcaa9
TG
316 */
317 this_clock = sched_clock_local(my_scd);
318 /*
97fb7a0a
IM
319 * We must enforce atomic readout on 32-bit, otherwise the
320 * update on the remote CPU can hit inbetween the readout of
321 * the low 32-bit and the high 32-bit portion.
a1cbcaa9
TG
322 */
323 remote_clock = cmpxchg64(&scd->clock, 0, 0);
324#else
325 /*
97fb7a0a
IM
326 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
327 * update, so we can avoid the above 32-bit dance.
a1cbcaa9 328 */
def0a9b2
PZ
329 sched_clock_local(my_scd);
330again:
331 this_clock = my_scd->clock;
332 remote_clock = scd->clock;
a1cbcaa9 333#endif
def0a9b2
PZ
334
335 /*
336 * Use the opportunity that we have both locks
337 * taken to couple the two clocks: we take the
338 * larger time as the latest time for both
339 * runqueues. (this creates monotonic movement)
340 */
341 if (likely((s64)(remote_clock - this_clock) < 0)) {
342 ptr = &scd->clock;
343 old_val = remote_clock;
344 val = this_clock;
3e51f33f 345 } else {
def0a9b2
PZ
346 /*
347 * Should be rare, but possible:
348 */
349 ptr = &my_scd->clock;
350 old_val = this_clock;
351 val = remote_clock;
3e51f33f 352 }
def0a9b2 353
152f9d07 354 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
355 goto again;
356
357 return val;
3e51f33f
PZ
358}
359
c676329a
PZ
360/*
361 * Similar to cpu_clock(), but requires local IRQs to be disabled.
362 *
363 * See cpu_clock().
364 */
3e51f33f
PZ
365u64 sched_clock_cpu(int cpu)
366{
b342501c 367 struct sched_clock_data *scd;
def0a9b2
PZ
368 u64 clock;
369
35af99e6 370 if (sched_clock_stable())
698eff63 371 return sched_clock() + __sched_clock_offset;
a381759d 372
46457ea4 373 if (!static_branch_unlikely(&sched_clock_running))
857baa87 374 return sched_clock();
a381759d 375
96b3d28b 376 preempt_disable_notrace();
def0a9b2 377 scd = cpu_sdc(cpu);
3e51f33f 378
def0a9b2
PZ
379 if (cpu != smp_processor_id())
380 clock = sched_clock_remote(scd);
381 else
382 clock = sched_clock_local(scd);
96b3d28b 383 preempt_enable_notrace();
e4e4e534 384
3e51f33f
PZ
385 return clock;
386}
2c923e94 387EXPORT_SYMBOL_GPL(sched_clock_cpu);
3e51f33f
PZ
388
389void sched_clock_tick(void)
390{
8325d9c0 391 struct sched_clock_data *scd;
a381759d 392
b421b22b
PZ
393 if (sched_clock_stable())
394 return;
395
46457ea4 396 if (!static_branch_unlikely(&sched_clock_running))
b421b22b
PZ
397 return;
398
2c11dba0 399 lockdep_assert_irqs_disabled();
3e51f33f 400
8325d9c0 401 scd = this_scd();
cf15ca8d 402 __scd_stamp(scd);
b421b22b
PZ
403 sched_clock_local(scd);
404}
405
406void sched_clock_tick_stable(void)
407{
b421b22b
PZ
408 if (!sched_clock_stable())
409 return;
410
411 /*
412 * Called under watchdog_lock.
413 *
414 * The watchdog just found this TSC to (still) be stable, so now is a
415 * good moment to update our __gtod_offset. Because once we find the
416 * TSC to be unstable, any computation will be computing crap.
417 */
418 local_irq_disable();
5d2a4e91 419 __sched_clock_gtod_offset();
b421b22b 420 local_irq_enable();
3e51f33f
PZ
421}
422
423/*
424 * We are going deep-idle (irqs are disabled):
425 */
426void sched_clock_idle_sleep_event(void)
427{
428 sched_clock_cpu(smp_processor_id());
429}
430EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
431
432/*
f9fccdb9 433 * We just idled; resync with ktime.
3e51f33f 434 */
ac1e843f 435void sched_clock_idle_wakeup_event(void)
3e51f33f 436{
f9fccdb9
PZ
437 unsigned long flags;
438
439 if (sched_clock_stable())
440 return;
441
442 if (unlikely(timekeeping_suspended))
1c5745aa
TG
443 return;
444
f9fccdb9 445 local_irq_save(flags);
354879bb 446 sched_clock_tick();
f9fccdb9 447 local_irq_restore(flags);
3e51f33f
PZ
448}
449EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
450
8325d9c0
PZ
451#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
452
5d2a4e91
PT
453void __init sched_clock_init(void)
454{
46457ea4 455 static_branch_inc(&sched_clock_running);
bd9f943e 456 local_irq_disable();
5d2a4e91 457 generic_sched_clock_init();
bd9f943e 458 local_irq_enable();
5d2a4e91
PT
459}
460
8325d9c0
PZ
461u64 sched_clock_cpu(int cpu)
462{
46457ea4 463 if (!static_branch_unlikely(&sched_clock_running))
8325d9c0
PZ
464 return 0;
465
466 return sched_clock();
467}
9881b024 468
b9f8fcd5 469#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 470
545a2bf7
CB
471/*
472 * Running clock - returns the time that has elapsed while a guest has been
473 * running.
474 * On a guest this value should be local_clock minus the time the guest was
475 * suspended by the hypervisor (for any reason).
476 * On bare metal this function should return the same as local_clock.
477 * Architectures and sub-architectures can override this.
478 */
479u64 __weak running_clock(void)
480{
481 return local_clock();
482}