Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / sched / clock.c
CommitLineData
3e51f33f 1/*
97fb7a0a 2 * sched_clock() for unstable CPU clocks
3e51f33f 3 *
90eec103 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
3e51f33f 5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
c676329a 13 *
97fb7a0a 14 * What this file implements:
c676329a
PZ
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
97fb7a0a 29 * local_clock() -- is cpu_clock() on the current CPU.
c676329a 30 *
ef08f0ff
PZ
31 * sched_clock_cpu(i)
32 *
97fb7a0a 33 * How it is implemented:
c676329a
PZ
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
3e51f33f
PZ
44 * - sched_clock()
45 * - explicit idle events
46 *
c676329a
PZ
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
3e51f33f
PZ
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
3e51f33f 54 */
325ea10c 55#include "sched.h"
3e51f33f 56
2c3d103b
HD
57/*
58 * Scheduler clock - returns current time in nanosec units.
59 * This is default implementation.
60 * Architectures and sub-architectures can override this.
61 */
52f5684c 62unsigned long long __weak sched_clock(void)
2c3d103b 63{
92d23f70
R
64 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
65 * (NSEC_PER_SEC / HZ);
2c3d103b 66}
b6ac23af 67EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 68
5bb6b1ea 69__read_mostly int sched_clock_running;
c1955a3d 70
9881b024
PZ
71void sched_clock_init(void)
72{
73 sched_clock_running = 1;
74}
75
3e51f33f 76#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
acb04058
PZ
77/*
78 * We must start with !__sched_clock_stable because the unstable -> stable
79 * transition is accurate, while the stable -> unstable transition is not.
80 *
81 * Similarly we start with __sched_clock_stable_early, thereby assuming we
82 * will become stable, such that there's only a single 1 -> 0 transition.
83 */
555570d7 84static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
acb04058 85static int __sched_clock_stable_early = 1;
35af99e6 86
5680d809 87/*
698eff63 88 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
5680d809 89 */
698eff63
PZ
90__read_mostly u64 __sched_clock_offset;
91static __read_mostly u64 __gtod_offset;
5680d809
PZ
92
93struct sched_clock_data {
94 u64 tick_raw;
95 u64 tick_gtod;
96 u64 clock;
97};
98
99static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
100
101static inline struct sched_clock_data *this_scd(void)
102{
103 return this_cpu_ptr(&sched_clock_data);
104}
105
106static inline struct sched_clock_data *cpu_sdc(int cpu)
107{
108 return &per_cpu(sched_clock_data, cpu);
109}
110
35af99e6
PZ
111int sched_clock_stable(void)
112{
555570d7 113 return static_branch_likely(&__sched_clock_stable);
35af99e6
PZ
114}
115
cf15ca8d
PZ
116static void __scd_stamp(struct sched_clock_data *scd)
117{
118 scd->tick_gtod = ktime_get_ns();
119 scd->tick_raw = sched_clock();
120}
121
d375b4e0 122static void __set_sched_clock_stable(void)
35af99e6 123{
45aea321 124 struct sched_clock_data *scd;
5680d809 125
45aea321
PZ
126 /*
127 * Since we're still unstable and the tick is already running, we have
128 * to disable IRQs in order to get a consistent scd->tick* reading.
129 */
130 local_irq_disable();
131 scd = this_scd();
5680d809
PZ
132 /*
133 * Attempt to make the (initial) unstable->stable transition continuous.
134 */
698eff63 135 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
45aea321 136 local_irq_enable();
5680d809
PZ
137
138 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
698eff63
PZ
139 scd->tick_gtod, __gtod_offset,
140 scd->tick_raw, __sched_clock_offset);
5680d809 141
555570d7 142 static_branch_enable(&__sched_clock_stable);
4f49b90a 143 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
d375b4e0
PZ
144}
145
cf15ca8d
PZ
146/*
147 * If we ever get here, we're screwed, because we found out -- typically after
148 * the fact -- that TSC wasn't good. This means all our clocksources (including
149 * ktime) could have reported wrong values.
150 *
151 * What we do here is an attempt to fix up and continue sort of where we left
152 * off in a coherent manner.
153 *
154 * The only way to fully avoid random clock jumps is to boot with:
155 * "tsc=unstable".
156 */
71fdb70e
PZ
157static void __sched_clock_work(struct work_struct *work)
158{
cf15ca8d
PZ
159 struct sched_clock_data *scd;
160 int cpu;
161
162 /* take a current timestamp and set 'now' */
163 preempt_disable();
164 scd = this_scd();
165 __scd_stamp(scd);
166 scd->clock = scd->tick_gtod + __gtod_offset;
167 preempt_enable();
168
169 /* clone to all CPUs */
170 for_each_possible_cpu(cpu)
171 per_cpu(sched_clock_data, cpu) = *scd;
172
7708d5f0 173 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
cf15ca8d
PZ
174 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
175 scd->tick_gtod, __gtod_offset,
176 scd->tick_raw, __sched_clock_offset);
177
71fdb70e
PZ
178 static_branch_disable(&__sched_clock_stable);
179}
180
181static DECLARE_WORK(sched_clock_work, __sched_clock_work);
182
183static void __clear_sched_clock_stable(void)
35af99e6 184{
cf15ca8d
PZ
185 if (!sched_clock_stable())
186 return;
5680d809 187
4f49b90a 188 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
cf15ca8d 189 schedule_work(&sched_clock_work);
71fdb70e 190}
6577e42a
PZ
191
192void clear_sched_clock_stable(void)
193{
d375b4e0
PZ
194 __sched_clock_stable_early = 0;
195
9881b024 196 smp_mb(); /* matches sched_clock_init_late() */
d375b4e0 197
9881b024 198 if (sched_clock_running == 2)
71fdb70e 199 __clear_sched_clock_stable();
6577e42a
PZ
200}
201
2e44b7dd
PZ
202/*
203 * We run this as late_initcall() such that it runs after all built-in drivers,
204 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
205 */
206static int __init sched_clock_init_late(void)
3e51f33f 207{
9881b024 208 sched_clock_running = 2;
d375b4e0
PZ
209 /*
210 * Ensure that it is impossible to not do a static_key update.
211 *
212 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
213 * and do the update, or we must see their __sched_clock_stable_early
214 * and do the update, or both.
215 */
216 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
217
218 if (__sched_clock_stable_early)
219 __set_sched_clock_stable();
2e44b7dd
PZ
220
221 return 0;
3e51f33f 222}
2e44b7dd 223late_initcall(sched_clock_init_late);
3e51f33f 224
354879bb 225/*
b342501c 226 * min, max except they take wrapping into account
354879bb
PZ
227 */
228
229static inline u64 wrap_min(u64 x, u64 y)
230{
231 return (s64)(x - y) < 0 ? x : y;
232}
233
234static inline u64 wrap_max(u64 x, u64 y)
235{
236 return (s64)(x - y) > 0 ? x : y;
237}
238
3e51f33f
PZ
239/*
240 * update the percpu scd from the raw @now value
241 *
242 * - filter out backward motion
354879bb 243 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 244 */
def0a9b2 245static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 246{
7b09cc5a 247 u64 now, clock, old_clock, min_clock, max_clock, gtod;
def0a9b2 248 s64 delta;
3e51f33f 249
def0a9b2
PZ
250again:
251 now = sched_clock();
252 delta = now - scd->tick_raw;
354879bb
PZ
253 if (unlikely(delta < 0))
254 delta = 0;
3e51f33f 255
def0a9b2
PZ
256 old_clock = scd->clock;
257
354879bb
PZ
258 /*
259 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
260 * max(scd->tick_gtod, scd->clock),
261 * scd->tick_gtod + TICK_NSEC);
354879bb 262 */
3e51f33f 263
7b09cc5a
PT
264 gtod = scd->tick_gtod + __gtod_offset;
265 clock = gtod + delta;
266 min_clock = wrap_max(gtod, old_clock);
267 max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
3e51f33f 268
354879bb
PZ
269 clock = wrap_max(clock, min_clock);
270 clock = wrap_min(clock, max_clock);
3e51f33f 271
152f9d07 272 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 273 goto again;
56b90612 274
def0a9b2 275 return clock;
3e51f33f
PZ
276}
277
def0a9b2 278static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 279{
def0a9b2
PZ
280 struct sched_clock_data *my_scd = this_scd();
281 u64 this_clock, remote_clock;
282 u64 *ptr, old_val, val;
283
a1cbcaa9
TG
284#if BITS_PER_LONG != 64
285again:
286 /*
287 * Careful here: The local and the remote clock values need to
288 * be read out atomic as we need to compare the values and
289 * then update either the local or the remote side. So the
290 * cmpxchg64 below only protects one readout.
291 *
292 * We must reread via sched_clock_local() in the retry case on
97fb7a0a 293 * 32-bit kernels as an NMI could use sched_clock_local() via the
a1cbcaa9 294 * tracer and hit between the readout of
97fb7a0a 295 * the low 32-bit and the high 32-bit portion.
a1cbcaa9
TG
296 */
297 this_clock = sched_clock_local(my_scd);
298 /*
97fb7a0a
IM
299 * We must enforce atomic readout on 32-bit, otherwise the
300 * update on the remote CPU can hit inbetween the readout of
301 * the low 32-bit and the high 32-bit portion.
a1cbcaa9
TG
302 */
303 remote_clock = cmpxchg64(&scd->clock, 0, 0);
304#else
305 /*
97fb7a0a
IM
306 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
307 * update, so we can avoid the above 32-bit dance.
a1cbcaa9 308 */
def0a9b2
PZ
309 sched_clock_local(my_scd);
310again:
311 this_clock = my_scd->clock;
312 remote_clock = scd->clock;
a1cbcaa9 313#endif
def0a9b2
PZ
314
315 /*
316 * Use the opportunity that we have both locks
317 * taken to couple the two clocks: we take the
318 * larger time as the latest time for both
319 * runqueues. (this creates monotonic movement)
320 */
321 if (likely((s64)(remote_clock - this_clock) < 0)) {
322 ptr = &scd->clock;
323 old_val = remote_clock;
324 val = this_clock;
3e51f33f 325 } else {
def0a9b2
PZ
326 /*
327 * Should be rare, but possible:
328 */
329 ptr = &my_scd->clock;
330 old_val = this_clock;
331 val = remote_clock;
3e51f33f 332 }
def0a9b2 333
152f9d07 334 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
335 goto again;
336
337 return val;
3e51f33f
PZ
338}
339
c676329a
PZ
340/*
341 * Similar to cpu_clock(), but requires local IRQs to be disabled.
342 *
343 * See cpu_clock().
344 */
3e51f33f
PZ
345u64 sched_clock_cpu(int cpu)
346{
b342501c 347 struct sched_clock_data *scd;
def0a9b2
PZ
348 u64 clock;
349
35af99e6 350 if (sched_clock_stable())
698eff63 351 return sched_clock() + __sched_clock_offset;
a381759d 352
a381759d
PZ
353 if (unlikely(!sched_clock_running))
354 return 0ull;
355
96b3d28b 356 preempt_disable_notrace();
def0a9b2 357 scd = cpu_sdc(cpu);
3e51f33f 358
def0a9b2
PZ
359 if (cpu != smp_processor_id())
360 clock = sched_clock_remote(scd);
361 else
362 clock = sched_clock_local(scd);
96b3d28b 363 preempt_enable_notrace();
e4e4e534 364
3e51f33f
PZ
365 return clock;
366}
2c923e94 367EXPORT_SYMBOL_GPL(sched_clock_cpu);
3e51f33f
PZ
368
369void sched_clock_tick(void)
370{
8325d9c0 371 struct sched_clock_data *scd;
a381759d 372
b421b22b
PZ
373 if (sched_clock_stable())
374 return;
375
376 if (unlikely(!sched_clock_running))
377 return;
378
2c11dba0 379 lockdep_assert_irqs_disabled();
3e51f33f 380
8325d9c0 381 scd = this_scd();
cf15ca8d 382 __scd_stamp(scd);
b421b22b
PZ
383 sched_clock_local(scd);
384}
385
386void sched_clock_tick_stable(void)
387{
388 u64 gtod, clock;
3e51f33f 389
b421b22b
PZ
390 if (!sched_clock_stable())
391 return;
392
393 /*
394 * Called under watchdog_lock.
395 *
396 * The watchdog just found this TSC to (still) be stable, so now is a
397 * good moment to update our __gtod_offset. Because once we find the
398 * TSC to be unstable, any computation will be computing crap.
399 */
400 local_irq_disable();
401 gtod = ktime_get_ns();
402 clock = sched_clock();
403 __gtod_offset = (clock + __sched_clock_offset) - gtod;
404 local_irq_enable();
3e51f33f
PZ
405}
406
407/*
408 * We are going deep-idle (irqs are disabled):
409 */
410void sched_clock_idle_sleep_event(void)
411{
412 sched_clock_cpu(smp_processor_id());
413}
414EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
415
416/*
f9fccdb9 417 * We just idled; resync with ktime.
3e51f33f 418 */
ac1e843f 419void sched_clock_idle_wakeup_event(void)
3e51f33f 420{
f9fccdb9
PZ
421 unsigned long flags;
422
423 if (sched_clock_stable())
424 return;
425
426 if (unlikely(timekeeping_suspended))
1c5745aa
TG
427 return;
428
f9fccdb9 429 local_irq_save(flags);
354879bb 430 sched_clock_tick();
f9fccdb9 431 local_irq_restore(flags);
3e51f33f
PZ
432}
433EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
434
8325d9c0
PZ
435#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
436
8325d9c0
PZ
437u64 sched_clock_cpu(int cpu)
438{
439 if (unlikely(!sched_clock_running))
440 return 0;
441
442 return sched_clock();
443}
9881b024 444
b9f8fcd5 445#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 446
545a2bf7
CB
447/*
448 * Running clock - returns the time that has elapsed while a guest has been
449 * running.
450 * On a guest this value should be local_clock minus the time the guest was
451 * suspended by the hypervisor (for any reason).
452 * On bare metal this function should return the same as local_clock.
453 * Architectures and sub-architectures can override this.
454 */
455u64 __weak running_clock(void)
456{
457 return local_clock();
458}