rcu: Kconfig help needs to say that TREE_PREEMPT_RCU scales down
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52#ifdef CONFIG_DEBUG_LOCK_ALLOC
53static struct lock_class_key rcu_lock_key;
54struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56EXPORT_SYMBOL_GPL(rcu_lock_map);
57#endif
58
59/* Data structures. */
60
61#define RCU_STATE_INITIALIZER(name) { \
62 .level = { &name.node[0] }, \
63 .levelcnt = { \
64 NUM_RCU_LVL_0, /* root of hierarchy. */ \
65 NUM_RCU_LVL_1, \
66 NUM_RCU_LVL_2, \
67 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_SIGNAL_INIT, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
f41d911f 84extern long rcu_batches_completed_sched(void);
dd5d19ba 85static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
f41d911f
PM
86static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
c935a331 89#ifdef CONFIG_HOTPLUG_CPU
33f76148 90static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
c935a331 91#endif /* #ifdef CONFIG_HOTPLUG_CPU */
f41d911f
PM
92static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101#include "rcutree_plugin.h"
102
b1f77b05 103/*
d6714c22 104 * Note a quiescent state. Because we do not need to know
b1f77b05 105 * how many quiescent states passed, just if there was at least
d6714c22 106 * one since the start of the grace period, this just sets a flag.
b1f77b05 107 */
d6714c22 108void rcu_sched_qs(int cpu)
b1f77b05 109{
f41d911f
PM
110 unsigned long flags;
111 struct rcu_data *rdp;
112
113 local_irq_save(flags);
114 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05
IM
115 rdp->passed_quiesc = 1;
116 rdp->passed_quiesc_completed = rdp->completed;
f41d911f
PM
117 rcu_preempt_qs(cpu);
118 local_irq_restore(flags);
b1f77b05
IM
119}
120
d6714c22 121void rcu_bh_qs(int cpu)
b1f77b05 122{
f41d911f
PM
123 unsigned long flags;
124 struct rcu_data *rdp;
125
126 local_irq_save(flags);
127 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05
IM
128 rdp->passed_quiesc = 1;
129 rdp->passed_quiesc_completed = rdp->completed;
f41d911f 130 local_irq_restore(flags);
b1f77b05 131}
64db4cff
PM
132
133#ifdef CONFIG_NO_HZ
90a4d2c0
PM
134DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
135 .dynticks_nesting = 1,
136 .dynticks = 1,
137};
64db4cff
PM
138#endif /* #ifdef CONFIG_NO_HZ */
139
140static int blimit = 10; /* Maximum callbacks per softirq. */
141static int qhimark = 10000; /* If this many pending, ignore blimit. */
142static int qlowmark = 100; /* Once only this many pending, use blimit. */
143
144static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 145static int rcu_pending(int cpu);
64db4cff
PM
146
147/*
d6714c22 148 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 149 */
d6714c22 150long rcu_batches_completed_sched(void)
64db4cff 151{
d6714c22 152 return rcu_sched_state.completed;
64db4cff 153}
d6714c22 154EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
155
156/*
157 * Return the number of RCU BH batches processed thus far for debug & stats.
158 */
159long rcu_batches_completed_bh(void)
160{
161 return rcu_bh_state.completed;
162}
163EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
164
165/*
166 * Does the CPU have callbacks ready to be invoked?
167 */
168static int
169cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
170{
171 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
172}
173
174/*
175 * Does the current CPU require a yet-as-unscheduled grace period?
176 */
177static int
178cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
179{
180 /* ACCESS_ONCE() because we are accessing outside of lock. */
181 return *rdp->nxttail[RCU_DONE_TAIL] &&
182 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
183}
184
185/*
186 * Return the root node of the specified rcu_state structure.
187 */
188static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
189{
190 return &rsp->node[0];
191}
192
193#ifdef CONFIG_SMP
194
195/*
196 * If the specified CPU is offline, tell the caller that it is in
197 * a quiescent state. Otherwise, whack it with a reschedule IPI.
198 * Grace periods can end up waiting on an offline CPU when that
199 * CPU is in the process of coming online -- it will be added to the
200 * rcu_node bitmasks before it actually makes it online. The same thing
201 * can happen while a CPU is in the process of coming online. Because this
202 * race is quite rare, we check for it after detecting that the grace
203 * period has been delayed rather than checking each and every CPU
204 * each and every time we start a new grace period.
205 */
206static int rcu_implicit_offline_qs(struct rcu_data *rdp)
207{
208 /*
209 * If the CPU is offline, it is in a quiescent state. We can
210 * trust its state not to change because interrupts are disabled.
211 */
212 if (cpu_is_offline(rdp->cpu)) {
213 rdp->offline_fqs++;
214 return 1;
215 }
216
f41d911f
PM
217 /* If preemptable RCU, no point in sending reschedule IPI. */
218 if (rdp->preemptable)
219 return 0;
220
64db4cff
PM
221 /* The CPU is online, so send it a reschedule IPI. */
222 if (rdp->cpu != smp_processor_id())
223 smp_send_reschedule(rdp->cpu);
224 else
225 set_need_resched();
226 rdp->resched_ipi++;
227 return 0;
228}
229
230#endif /* #ifdef CONFIG_SMP */
231
232#ifdef CONFIG_NO_HZ
64db4cff
PM
233
234/**
235 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
236 *
237 * Enter nohz mode, in other words, -leave- the mode in which RCU
238 * read-side critical sections can occur. (Though RCU read-side
239 * critical sections can occur in irq handlers in nohz mode, a possibility
240 * handled by rcu_irq_enter() and rcu_irq_exit()).
241 */
242void rcu_enter_nohz(void)
243{
244 unsigned long flags;
245 struct rcu_dynticks *rdtp;
246
247 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
248 local_irq_save(flags);
249 rdtp = &__get_cpu_var(rcu_dynticks);
250 rdtp->dynticks++;
251 rdtp->dynticks_nesting--;
86848966 252 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
253 local_irq_restore(flags);
254}
255
256/*
257 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
258 *
259 * Exit nohz mode, in other words, -enter- the mode in which RCU
260 * read-side critical sections normally occur.
261 */
262void rcu_exit_nohz(void)
263{
264 unsigned long flags;
265 struct rcu_dynticks *rdtp;
266
267 local_irq_save(flags);
268 rdtp = &__get_cpu_var(rcu_dynticks);
269 rdtp->dynticks++;
270 rdtp->dynticks_nesting++;
86848966 271 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
272 local_irq_restore(flags);
273 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
274}
275
276/**
277 * rcu_nmi_enter - inform RCU of entry to NMI context
278 *
279 * If the CPU was idle with dynamic ticks active, and there is no
280 * irq handler running, this updates rdtp->dynticks_nmi to let the
281 * RCU grace-period handling know that the CPU is active.
282 */
283void rcu_nmi_enter(void)
284{
285 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
286
287 if (rdtp->dynticks & 0x1)
288 return;
289 rdtp->dynticks_nmi++;
86848966 290 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
292}
293
294/**
295 * rcu_nmi_exit - inform RCU of exit from NMI context
296 *
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is no longer active.
300 */
301void rcu_nmi_exit(void)
302{
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks & 0x1)
306 return;
307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
308 rdtp->dynticks_nmi++;
86848966 309 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
310}
311
312/**
313 * rcu_irq_enter - inform RCU of entry to hard irq context
314 *
315 * If the CPU was idle with dynamic ticks active, this updates the
316 * rdtp->dynticks to let the RCU handling know that the CPU is active.
317 */
318void rcu_irq_enter(void)
319{
320 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
321
322 if (rdtp->dynticks_nesting++)
323 return;
324 rdtp->dynticks++;
86848966 325 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
326 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
327}
328
329/**
330 * rcu_irq_exit - inform RCU of exit from hard irq context
331 *
332 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
333 * to put let the RCU handling be aware that the CPU is going back to idle
334 * with no ticks.
335 */
336void rcu_irq_exit(void)
337{
338 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
339
340 if (--rdtp->dynticks_nesting)
341 return;
342 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
343 rdtp->dynticks++;
86848966 344 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
345
346 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 347 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
348 __get_cpu_var(rcu_bh_data).nxtlist)
349 set_need_resched();
350}
351
352/*
353 * Record the specified "completed" value, which is later used to validate
354 * dynticks counter manipulations. Specify "rsp->completed - 1" to
355 * unconditionally invalidate any future dynticks manipulations (which is
356 * useful at the beginning of a grace period).
357 */
358static void dyntick_record_completed(struct rcu_state *rsp, long comp)
359{
360 rsp->dynticks_completed = comp;
361}
362
363#ifdef CONFIG_SMP
364
365/*
366 * Recall the previously recorded value of the completion for dynticks.
367 */
368static long dyntick_recall_completed(struct rcu_state *rsp)
369{
370 return rsp->dynticks_completed;
371}
372
373/*
374 * Snapshot the specified CPU's dynticks counter so that we can later
375 * credit them with an implicit quiescent state. Return 1 if this CPU
376 * is already in a quiescent state courtesy of dynticks idle mode.
377 */
378static int dyntick_save_progress_counter(struct rcu_data *rdp)
379{
380 int ret;
381 int snap;
382 int snap_nmi;
383
384 snap = rdp->dynticks->dynticks;
385 snap_nmi = rdp->dynticks->dynticks_nmi;
386 smp_mb(); /* Order sampling of snap with end of grace period. */
387 rdp->dynticks_snap = snap;
388 rdp->dynticks_nmi_snap = snap_nmi;
389 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
390 if (ret)
391 rdp->dynticks_fqs++;
392 return ret;
393}
394
395/*
396 * Return true if the specified CPU has passed through a quiescent
397 * state by virtue of being in or having passed through an dynticks
398 * idle state since the last call to dyntick_save_progress_counter()
399 * for this same CPU.
400 */
401static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
402{
403 long curr;
404 long curr_nmi;
405 long snap;
406 long snap_nmi;
407
408 curr = rdp->dynticks->dynticks;
409 snap = rdp->dynticks_snap;
410 curr_nmi = rdp->dynticks->dynticks_nmi;
411 snap_nmi = rdp->dynticks_nmi_snap;
412 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
413
414 /*
415 * If the CPU passed through or entered a dynticks idle phase with
416 * no active irq/NMI handlers, then we can safely pretend that the CPU
417 * already acknowledged the request to pass through a quiescent
418 * state. Either way, that CPU cannot possibly be in an RCU
419 * read-side critical section that started before the beginning
420 * of the current RCU grace period.
421 */
422 if ((curr != snap || (curr & 0x1) == 0) &&
423 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
424 rdp->dynticks_fqs++;
425 return 1;
426 }
427
428 /* Go check for the CPU being offline. */
429 return rcu_implicit_offline_qs(rdp);
430}
431
432#endif /* #ifdef CONFIG_SMP */
433
434#else /* #ifdef CONFIG_NO_HZ */
435
436static void dyntick_record_completed(struct rcu_state *rsp, long comp)
437{
438}
439
440#ifdef CONFIG_SMP
441
442/*
443 * If there are no dynticks, then the only way that a CPU can passively
444 * be in a quiescent state is to be offline. Unlike dynticks idle, which
445 * is a point in time during the prior (already finished) grace period,
446 * an offline CPU is always in a quiescent state, and thus can be
447 * unconditionally applied. So just return the current value of completed.
448 */
449static long dyntick_recall_completed(struct rcu_state *rsp)
450{
451 return rsp->completed;
452}
453
454static int dyntick_save_progress_counter(struct rcu_data *rdp)
455{
456 return 0;
457}
458
459static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
460{
461 return rcu_implicit_offline_qs(rdp);
462}
463
464#endif /* #ifdef CONFIG_SMP */
465
466#endif /* #else #ifdef CONFIG_NO_HZ */
467
468#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
469
470static void record_gp_stall_check_time(struct rcu_state *rsp)
471{
472 rsp->gp_start = jiffies;
473 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
474}
475
476static void print_other_cpu_stall(struct rcu_state *rsp)
477{
478 int cpu;
479 long delta;
480 unsigned long flags;
481 struct rcu_node *rnp = rcu_get_root(rsp);
482 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
483 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
484
485 /* Only let one CPU complain about others per time interval. */
486
487 spin_lock_irqsave(&rnp->lock, flags);
488 delta = jiffies - rsp->jiffies_stall;
489 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
490 spin_unlock_irqrestore(&rnp->lock, flags);
491 return;
492 }
493 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
494 spin_unlock_irqrestore(&rnp->lock, flags);
495
496 /* OK, time to rat on our buddy... */
497
498 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
499 for (; rnp_cur < rnp_end; rnp_cur++) {
f41d911f 500 rcu_print_task_stall(rnp);
64db4cff
PM
501 if (rnp_cur->qsmask == 0)
502 continue;
503 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
504 if (rnp_cur->qsmask & (1UL << cpu))
505 printk(" %d", rnp_cur->grplo + cpu);
506 }
507 printk(" (detected by %d, t=%ld jiffies)\n",
508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
509 trigger_all_cpu_backtrace();
510
64db4cff
PM
511 force_quiescent_state(rsp, 0); /* Kick them all. */
512}
513
514static void print_cpu_stall(struct rcu_state *rsp)
515{
516 unsigned long flags;
517 struct rcu_node *rnp = rcu_get_root(rsp);
518
519 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
520 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
521 trigger_all_cpu_backtrace();
522
64db4cff
PM
523 spin_lock_irqsave(&rnp->lock, flags);
524 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
525 rsp->jiffies_stall =
526 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
527 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 528
64db4cff
PM
529 set_need_resched(); /* kick ourselves to get things going. */
530}
531
532static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
533{
534 long delta;
535 struct rcu_node *rnp;
536
537 delta = jiffies - rsp->jiffies_stall;
538 rnp = rdp->mynode;
539 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
540
541 /* We haven't checked in, so go dump stack. */
542 print_cpu_stall(rsp);
543
544 } else if (rsp->gpnum != rsp->completed &&
545 delta >= RCU_STALL_RAT_DELAY) {
546
547 /* They had two time units to dump stack, so complain. */
548 print_other_cpu_stall(rsp);
549 }
550}
551
552#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
553
554static void record_gp_stall_check_time(struct rcu_state *rsp)
555{
556}
557
558static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
559{
560}
561
562#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
563
564/*
565 * Update CPU-local rcu_data state to record the newly noticed grace period.
566 * This is used both when we started the grace period and when we notice
567 * that someone else started the grace period.
568 */
569static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
570{
571 rdp->qs_pending = 1;
572 rdp->passed_quiesc = 0;
573 rdp->gpnum = rsp->gpnum;
64db4cff
PM
574}
575
576/*
577 * Did someone else start a new RCU grace period start since we last
578 * checked? Update local state appropriately if so. Must be called
579 * on the CPU corresponding to rdp.
580 */
581static int
582check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
583{
584 unsigned long flags;
585 int ret = 0;
586
587 local_irq_save(flags);
588 if (rdp->gpnum != rsp->gpnum) {
589 note_new_gpnum(rsp, rdp);
590 ret = 1;
591 }
592 local_irq_restore(flags);
593 return ret;
594}
595
596/*
597 * Start a new RCU grace period if warranted, re-initializing the hierarchy
598 * in preparation for detecting the next grace period. The caller must hold
599 * the root node's ->lock, which is released before return. Hard irqs must
600 * be disabled.
601 */
602static void
603rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
604 __releases(rcu_get_root(rsp)->lock)
605{
606 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
607 struct rcu_node *rnp = rcu_get_root(rsp);
608 struct rcu_node *rnp_cur;
609 struct rcu_node *rnp_end;
610
611 if (!cpu_needs_another_gp(rsp, rdp)) {
612 spin_unlock_irqrestore(&rnp->lock, flags);
613 return;
614 }
615
616 /* Advance to a new grace period and initialize state. */
617 rsp->gpnum++;
618 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
619 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
620 record_gp_stall_check_time(rsp);
621 dyntick_record_completed(rsp, rsp->completed - 1);
622 note_new_gpnum(rsp, rdp);
623
624 /*
625 * Because we are first, we know that all our callbacks will
626 * be covered by this upcoming grace period, even the ones
627 * that were registered arbitrarily recently.
628 */
629 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
630 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
631
632 /* Special-case the common single-level case. */
633 if (NUM_RCU_NODES == 1) {
634 rnp->qsmask = rnp->qsmaskinit;
de078d87 635 rnp->gpnum = rsp->gpnum;
c12172c0 636 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
637 spin_unlock_irqrestore(&rnp->lock, flags);
638 return;
639 }
640
641 spin_unlock(&rnp->lock); /* leave irqs disabled. */
642
643
644 /* Exclude any concurrent CPU-hotplug operations. */
645 spin_lock(&rsp->onofflock); /* irqs already disabled. */
646
647 /*
b835db1f
PM
648 * Set the quiescent-state-needed bits in all the rcu_node
649 * structures for all currently online CPUs in breadth-first
650 * order, starting from the root rcu_node structure. This
651 * operation relies on the layout of the hierarchy within the
652 * rsp->node[] array. Note that other CPUs will access only
653 * the leaves of the hierarchy, which still indicate that no
654 * grace period is in progress, at least until the corresponding
655 * leaf node has been initialized. In addition, we have excluded
656 * CPU-hotplug operations.
64db4cff
PM
657 *
658 * Note that the grace period cannot complete until we finish
659 * the initialization process, as there will be at least one
660 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
661 * one corresponding to this CPU, due to the fact that we have
662 * irqs disabled.
64db4cff
PM
663 */
664 rnp_end = &rsp->node[NUM_RCU_NODES];
b835db1f 665 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) {
64db4cff
PM
666 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
667 rnp_cur->qsmask = rnp_cur->qsmaskinit;
de078d87 668 rnp->gpnum = rsp->gpnum;
64db4cff
PM
669 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
670 }
671
672 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
673 spin_unlock_irqrestore(&rsp->onofflock, flags);
674}
675
676/*
677 * Advance this CPU's callbacks, but only if the current grace period
678 * has ended. This may be called only from the CPU to whom the rdp
679 * belongs.
680 */
681static void
682rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
683{
684 long completed_snap;
685 unsigned long flags;
686
687 local_irq_save(flags);
688 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
689
690 /* Did another grace period end? */
691 if (rdp->completed != completed_snap) {
692
693 /* Advance callbacks. No harm if list empty. */
694 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
695 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
696 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
697
698 /* Remember that we saw this grace-period completion. */
699 rdp->completed = completed_snap;
700 }
701 local_irq_restore(flags);
702}
703
f41d911f
PM
704/*
705 * Clean up after the prior grace period and let rcu_start_gp() start up
706 * the next grace period if one is needed. Note that the caller must
707 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
708 */
709static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
710 __releases(rnp->lock)
711{
712 rsp->completed = rsp->gpnum;
713 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
714 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
715}
716
64db4cff
PM
717/*
718 * Similar to cpu_quiet(), for which it is a helper function. Allows
719 * a group of CPUs to be quieted at one go, though all the CPUs in the
720 * group must be represented by the same leaf rcu_node structure.
721 * That structure's lock must be held upon entry, and it is released
722 * before return.
723 */
724static void
725cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
726 unsigned long flags)
727 __releases(rnp->lock)
728{
729 /* Walk up the rcu_node hierarchy. */
730 for (;;) {
731 if (!(rnp->qsmask & mask)) {
732
733 /* Our bit has already been cleared, so done. */
734 spin_unlock_irqrestore(&rnp->lock, flags);
735 return;
736 }
737 rnp->qsmask &= ~mask;
f41d911f 738 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
739
740 /* Other bits still set at this level, so done. */
741 spin_unlock_irqrestore(&rnp->lock, flags);
742 return;
743 }
744 mask = rnp->grpmask;
745 if (rnp->parent == NULL) {
746
747 /* No more levels. Exit loop holding root lock. */
748
749 break;
750 }
751 spin_unlock_irqrestore(&rnp->lock, flags);
752 rnp = rnp->parent;
753 spin_lock_irqsave(&rnp->lock, flags);
754 }
755
756 /*
757 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
758 * state for this grace period. Invoke cpu_quiet_msk_finish()
759 * to clean up and start the next grace period if one is needed.
64db4cff 760 */
f41d911f 761 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
762}
763
764/*
765 * Record a quiescent state for the specified CPU, which must either be
766 * the current CPU or an offline CPU. The lastcomp argument is used to
767 * make sure we are still in the grace period of interest. We don't want
768 * to end the current grace period based on quiescent states detected in
769 * an earlier grace period!
770 */
771static void
772cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
773{
774 unsigned long flags;
775 unsigned long mask;
776 struct rcu_node *rnp;
777
778 rnp = rdp->mynode;
779 spin_lock_irqsave(&rnp->lock, flags);
780 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
781
782 /*
783 * Someone beat us to it for this grace period, so leave.
784 * The race with GP start is resolved by the fact that we
785 * hold the leaf rcu_node lock, so that the per-CPU bits
786 * cannot yet be initialized -- so we would simply find our
787 * CPU's bit already cleared in cpu_quiet_msk() if this race
788 * occurred.
789 */
790 rdp->passed_quiesc = 0; /* try again later! */
791 spin_unlock_irqrestore(&rnp->lock, flags);
792 return;
793 }
794 mask = rdp->grpmask;
795 if ((rnp->qsmask & mask) == 0) {
796 spin_unlock_irqrestore(&rnp->lock, flags);
797 } else {
798 rdp->qs_pending = 0;
799
800 /*
801 * This GP can't end until cpu checks in, so all of our
802 * callbacks can be processed during the next GP.
803 */
804 rdp = rsp->rda[smp_processor_id()];
805 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
806
807 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
808 }
809}
810
811/*
812 * Check to see if there is a new grace period of which this CPU
813 * is not yet aware, and if so, set up local rcu_data state for it.
814 * Otherwise, see if this CPU has just passed through its first
815 * quiescent state for this grace period, and record that fact if so.
816 */
817static void
818rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
819{
820 /* If there is now a new grace period, record and return. */
821 if (check_for_new_grace_period(rsp, rdp))
822 return;
823
824 /*
825 * Does this CPU still need to do its part for current grace period?
826 * If no, return and let the other CPUs do their part as well.
827 */
828 if (!rdp->qs_pending)
829 return;
830
831 /*
832 * Was there a quiescent state since the beginning of the grace
833 * period? If no, then exit and wait for the next call.
834 */
835 if (!rdp->passed_quiesc)
836 return;
837
838 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
839 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
840}
841
842#ifdef CONFIG_HOTPLUG_CPU
843
844/*
845 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
846 * and move all callbacks from the outgoing CPU to the current one.
847 */
848static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
849{
850 int i;
851 unsigned long flags;
852 long lastcomp;
853 unsigned long mask;
854 struct rcu_data *rdp = rsp->rda[cpu];
855 struct rcu_data *rdp_me;
856 struct rcu_node *rnp;
857
858 /* Exclude any attempts to start a new grace period. */
859 spin_lock_irqsave(&rsp->onofflock, flags);
860
861 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
862 rnp = rdp->mynode;
863 mask = rdp->grpmask; /* rnp->grplo is constant. */
864 do {
865 spin_lock(&rnp->lock); /* irqs already disabled. */
866 rnp->qsmaskinit &= ~mask;
867 if (rnp->qsmaskinit != 0) {
f41d911f 868 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
869 break;
870 }
dd5d19ba 871 rcu_preempt_offline_tasks(rsp, rnp);
64db4cff 872 mask = rnp->grpmask;
f41d911f 873 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
874 rnp = rnp->parent;
875 } while (rnp != NULL);
876 lastcomp = rsp->completed;
877
878 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
879
880 /* Being offline is a quiescent state, so go record it. */
881 cpu_quiet(cpu, rsp, rdp, lastcomp);
882
883 /*
884 * Move callbacks from the outgoing CPU to the running CPU.
885 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 886 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
887 * Note also that we must carefully retain the order of the
888 * outgoing CPU's callbacks in order for rcu_barrier() to work
889 * correctly. Finally, note that we start all the callbacks
890 * afresh, even those that have passed through a grace period
891 * and are therefore ready to invoke. The theory is that hotplug
892 * events are rare, and that if they are frequent enough to
893 * indefinitely delay callbacks, you have far worse things to
894 * be worrying about.
895 */
896 rdp_me = rsp->rda[smp_processor_id()];
897 if (rdp->nxtlist != NULL) {
898 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
899 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
900 rdp->nxtlist = NULL;
901 for (i = 0; i < RCU_NEXT_SIZE; i++)
902 rdp->nxttail[i] = &rdp->nxtlist;
903 rdp_me->qlen += rdp->qlen;
904 rdp->qlen = 0;
905 }
906 local_irq_restore(flags);
907}
908
909/*
910 * Remove the specified CPU from the RCU hierarchy and move any pending
911 * callbacks that it might have to the current CPU. This code assumes
912 * that at least one CPU in the system will remain running at all times.
913 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
914 */
915static void rcu_offline_cpu(int cpu)
916{
d6714c22 917 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 918 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 919 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
920}
921
922#else /* #ifdef CONFIG_HOTPLUG_CPU */
923
924static void rcu_offline_cpu(int cpu)
925{
926}
927
928#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
929
930/*
931 * Invoke any RCU callbacks that have made it to the end of their grace
932 * period. Thottle as specified by rdp->blimit.
933 */
934static void rcu_do_batch(struct rcu_data *rdp)
935{
936 unsigned long flags;
937 struct rcu_head *next, *list, **tail;
938 int count;
939
940 /* If no callbacks are ready, just return.*/
941 if (!cpu_has_callbacks_ready_to_invoke(rdp))
942 return;
943
944 /*
945 * Extract the list of ready callbacks, disabling to prevent
946 * races with call_rcu() from interrupt handlers.
947 */
948 local_irq_save(flags);
949 list = rdp->nxtlist;
950 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
951 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
952 tail = rdp->nxttail[RCU_DONE_TAIL];
953 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
954 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
955 rdp->nxttail[count] = &rdp->nxtlist;
956 local_irq_restore(flags);
957
958 /* Invoke callbacks. */
959 count = 0;
960 while (list) {
961 next = list->next;
962 prefetch(next);
963 list->func(list);
964 list = next;
965 if (++count >= rdp->blimit)
966 break;
967 }
968
969 local_irq_save(flags);
970
971 /* Update count, and requeue any remaining callbacks. */
972 rdp->qlen -= count;
973 if (list != NULL) {
974 *tail = rdp->nxtlist;
975 rdp->nxtlist = list;
976 for (count = 0; count < RCU_NEXT_SIZE; count++)
977 if (&rdp->nxtlist == rdp->nxttail[count])
978 rdp->nxttail[count] = tail;
979 else
980 break;
981 }
982
983 /* Reinstate batch limit if we have worked down the excess. */
984 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
985 rdp->blimit = blimit;
986
987 local_irq_restore(flags);
988
989 /* Re-raise the RCU softirq if there are callbacks remaining. */
990 if (cpu_has_callbacks_ready_to_invoke(rdp))
991 raise_softirq(RCU_SOFTIRQ);
992}
993
994/*
995 * Check to see if this CPU is in a non-context-switch quiescent state
996 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
997 * Also schedule the RCU softirq handler.
998 *
999 * This function must be called with hardirqs disabled. It is normally
1000 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1001 * false, there is no point in invoking rcu_check_callbacks().
1002 */
1003void rcu_check_callbacks(int cpu, int user)
1004{
a157229c
PM
1005 if (!rcu_pending(cpu))
1006 return; /* if nothing for RCU to do. */
64db4cff 1007 if (user ||
a6826048
PM
1008 (idle_cpu(cpu) && rcu_scheduler_active &&
1009 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1010
1011 /*
1012 * Get here if this CPU took its interrupt from user
1013 * mode or from the idle loop, and if this is not a
1014 * nested interrupt. In this case, the CPU is in
d6714c22 1015 * a quiescent state, so note it.
64db4cff
PM
1016 *
1017 * No memory barrier is required here because both
d6714c22
PM
1018 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1019 * variables that other CPUs neither access nor modify,
1020 * at least not while the corresponding CPU is online.
64db4cff
PM
1021 */
1022
d6714c22
PM
1023 rcu_sched_qs(cpu);
1024 rcu_bh_qs(cpu);
64db4cff
PM
1025
1026 } else if (!in_softirq()) {
1027
1028 /*
1029 * Get here if this CPU did not take its interrupt from
1030 * softirq, in other words, if it is not interrupting
1031 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1032 * critical section, so note it.
64db4cff
PM
1033 */
1034
d6714c22 1035 rcu_bh_qs(cpu);
64db4cff 1036 }
f41d911f 1037 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1038 raise_softirq(RCU_SOFTIRQ);
1039}
1040
1041#ifdef CONFIG_SMP
1042
1043/*
1044 * Scan the leaf rcu_node structures, processing dyntick state for any that
1045 * have not yet encountered a quiescent state, using the function specified.
1046 * Returns 1 if the current grace period ends while scanning (possibly
1047 * because we made it end).
1048 */
1049static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1050 int (*f)(struct rcu_data *))
1051{
1052 unsigned long bit;
1053 int cpu;
1054 unsigned long flags;
1055 unsigned long mask;
1056 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1057 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1058
1059 for (; rnp_cur < rnp_end; rnp_cur++) {
1060 mask = 0;
1061 spin_lock_irqsave(&rnp_cur->lock, flags);
1062 if (rsp->completed != lastcomp) {
1063 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1064 return 1;
1065 }
1066 if (rnp_cur->qsmask == 0) {
1067 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1068 continue;
1069 }
1070 cpu = rnp_cur->grplo;
1071 bit = 1;
1072 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1073 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1074 mask |= bit;
1075 }
1076 if (mask != 0 && rsp->completed == lastcomp) {
1077
1078 /* cpu_quiet_msk() releases rnp_cur->lock. */
1079 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1080 continue;
1081 }
1082 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1083 }
1084 return 0;
1085}
1086
1087/*
1088 * Force quiescent states on reluctant CPUs, and also detect which
1089 * CPUs are in dyntick-idle mode.
1090 */
1091static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1092{
1093 unsigned long flags;
1094 long lastcomp;
64db4cff
PM
1095 struct rcu_node *rnp = rcu_get_root(rsp);
1096 u8 signaled;
1097
1098 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1099 return; /* No grace period in progress, nothing to force. */
1100 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1101 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1102 return; /* Someone else is already on the job. */
1103 }
1104 if (relaxed &&
ef631b0c 1105 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1106 goto unlock_ret; /* no emergency and done recently. */
1107 rsp->n_force_qs++;
1108 spin_lock(&rnp->lock);
1109 lastcomp = rsp->completed;
1110 signaled = rsp->signaled;
1111 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1112 if (lastcomp == rsp->gpnum) {
1113 rsp->n_force_qs_ngp++;
1114 spin_unlock(&rnp->lock);
1115 goto unlock_ret; /* no GP in progress, time updated. */
1116 }
1117 spin_unlock(&rnp->lock);
1118 switch (signaled) {
1119 case RCU_GP_INIT:
1120
1121 break; /* grace period still initializing, ignore. */
1122
1123 case RCU_SAVE_DYNTICK:
1124
1125 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1126 break; /* So gcc recognizes the dead code. */
1127
1128 /* Record dyntick-idle state. */
1129 if (rcu_process_dyntick(rsp, lastcomp,
1130 dyntick_save_progress_counter))
1131 goto unlock_ret;
1132
1133 /* Update state, record completion counter. */
1134 spin_lock(&rnp->lock);
1135 if (lastcomp == rsp->completed) {
1136 rsp->signaled = RCU_FORCE_QS;
1137 dyntick_record_completed(rsp, lastcomp);
1138 }
1139 spin_unlock(&rnp->lock);
1140 break;
1141
1142 case RCU_FORCE_QS:
1143
1144 /* Check dyntick-idle state, send IPI to laggarts. */
1145 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1146 rcu_implicit_dynticks_qs))
1147 goto unlock_ret;
1148
1149 /* Leave state in case more forcing is required. */
1150
1151 break;
1152 }
1153unlock_ret:
1154 spin_unlock_irqrestore(&rsp->fqslock, flags);
1155}
1156
1157#else /* #ifdef CONFIG_SMP */
1158
1159static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1160{
1161 set_need_resched();
1162}
1163
1164#endif /* #else #ifdef CONFIG_SMP */
1165
1166/*
1167 * This does the RCU processing work from softirq context for the
1168 * specified rcu_state and rcu_data structures. This may be called
1169 * only from the CPU to whom the rdp belongs.
1170 */
1171static void
1172__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1173{
1174 unsigned long flags;
1175
2e597558
PM
1176 WARN_ON_ONCE(rdp->beenonline == 0);
1177
64db4cff
PM
1178 /*
1179 * If an RCU GP has gone long enough, go check for dyntick
1180 * idle CPUs and, if needed, send resched IPIs.
1181 */
ef631b0c 1182 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1183 force_quiescent_state(rsp, 1);
1184
1185 /*
1186 * Advance callbacks in response to end of earlier grace
1187 * period that some other CPU ended.
1188 */
1189 rcu_process_gp_end(rsp, rdp);
1190
1191 /* Update RCU state based on any recent quiescent states. */
1192 rcu_check_quiescent_state(rsp, rdp);
1193
1194 /* Does this CPU require a not-yet-started grace period? */
1195 if (cpu_needs_another_gp(rsp, rdp)) {
1196 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1197 rcu_start_gp(rsp, flags); /* releases above lock */
1198 }
1199
1200 /* If there are callbacks ready, invoke them. */
1201 rcu_do_batch(rdp);
1202}
1203
1204/*
1205 * Do softirq processing for the current CPU.
1206 */
1207static void rcu_process_callbacks(struct softirq_action *unused)
1208{
1209 /*
1210 * Memory references from any prior RCU read-side critical sections
1211 * executed by the interrupted code must be seen before any RCU
1212 * grace-period manipulations below.
1213 */
1214 smp_mb(); /* See above block comment. */
1215
d6714c22
PM
1216 __rcu_process_callbacks(&rcu_sched_state,
1217 &__get_cpu_var(rcu_sched_data));
64db4cff 1218 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1219 rcu_preempt_process_callbacks();
64db4cff
PM
1220
1221 /*
1222 * Memory references from any later RCU read-side critical sections
1223 * executed by the interrupted code must be seen after any RCU
1224 * grace-period manipulations above.
1225 */
1226 smp_mb(); /* See above block comment. */
1227}
1228
1229static void
1230__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1231 struct rcu_state *rsp)
1232{
1233 unsigned long flags;
1234 struct rcu_data *rdp;
1235
1236 head->func = func;
1237 head->next = NULL;
1238
1239 smp_mb(); /* Ensure RCU update seen before callback registry. */
1240
1241 /*
1242 * Opportunistically note grace-period endings and beginnings.
1243 * Note that we might see a beginning right after we see an
1244 * end, but never vice versa, since this CPU has to pass through
1245 * a quiescent state betweentimes.
1246 */
1247 local_irq_save(flags);
1248 rdp = rsp->rda[smp_processor_id()];
1249 rcu_process_gp_end(rsp, rdp);
1250 check_for_new_grace_period(rsp, rdp);
1251
1252 /* Add the callback to our list. */
1253 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1254 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1255
1256 /* Start a new grace period if one not already started. */
1257 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1258 unsigned long nestflag;
1259 struct rcu_node *rnp_root = rcu_get_root(rsp);
1260
1261 spin_lock_irqsave(&rnp_root->lock, nestflag);
1262 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1263 }
1264
1265 /* Force the grace period if too many callbacks or too long waiting. */
1266 if (unlikely(++rdp->qlen > qhimark)) {
1267 rdp->blimit = LONG_MAX;
1268 force_quiescent_state(rsp, 0);
ef631b0c 1269 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1270 force_quiescent_state(rsp, 1);
1271 local_irq_restore(flags);
1272}
1273
1274/*
d6714c22 1275 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1276 */
d6714c22 1277void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1278{
d6714c22 1279 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1280}
d6714c22 1281EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1282
1283/*
1284 * Queue an RCU for invocation after a quicker grace period.
1285 */
1286void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1287{
1288 __call_rcu(head, func, &rcu_bh_state);
1289}
1290EXPORT_SYMBOL_GPL(call_rcu_bh);
1291
1292/*
1293 * Check to see if there is any immediate RCU-related work to be done
1294 * by the current CPU, for the specified type of RCU, returning 1 if so.
1295 * The checks are in order of increasing expense: checks that can be
1296 * carried out against CPU-local state are performed first. However,
1297 * we must check for CPU stalls first, else we might not get a chance.
1298 */
1299static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1300{
1301 rdp->n_rcu_pending++;
1302
1303 /* Check for CPU stalls, if enabled. */
1304 check_cpu_stall(rsp, rdp);
1305
1306 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1307 if (rdp->qs_pending) {
1308 rdp->n_rp_qs_pending++;
64db4cff 1309 return 1;
7ba5c840 1310 }
64db4cff
PM
1311
1312 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1313 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1314 rdp->n_rp_cb_ready++;
64db4cff 1315 return 1;
7ba5c840 1316 }
64db4cff
PM
1317
1318 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1319 if (cpu_needs_another_gp(rsp, rdp)) {
1320 rdp->n_rp_cpu_needs_gp++;
64db4cff 1321 return 1;
7ba5c840 1322 }
64db4cff
PM
1323
1324 /* Has another RCU grace period completed? */
7ba5c840
PM
1325 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1326 rdp->n_rp_gp_completed++;
64db4cff 1327 return 1;
7ba5c840 1328 }
64db4cff
PM
1329
1330 /* Has a new RCU grace period started? */
7ba5c840
PM
1331 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1332 rdp->n_rp_gp_started++;
64db4cff 1333 return 1;
7ba5c840 1334 }
64db4cff
PM
1335
1336 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1337 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1338 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1339 rdp->n_rp_need_fqs++;
64db4cff 1340 return 1;
7ba5c840 1341 }
64db4cff
PM
1342
1343 /* nothing to do */
7ba5c840 1344 rdp->n_rp_need_nothing++;
64db4cff
PM
1345 return 0;
1346}
1347
1348/*
1349 * Check to see if there is any immediate RCU-related work to be done
1350 * by the current CPU, returning 1 if so. This function is part of the
1351 * RCU implementation; it is -not- an exported member of the RCU API.
1352 */
a157229c 1353static int rcu_pending(int cpu)
64db4cff 1354{
d6714c22 1355 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1356 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1357 rcu_preempt_pending(cpu);
64db4cff
PM
1358}
1359
1360/*
1361 * Check to see if any future RCU-related work will need to be done
1362 * by the current CPU, even if none need be done immediately, returning
1363 * 1 if so. This function is part of the RCU implementation; it is -not-
1364 * an exported member of the RCU API.
1365 */
1366int rcu_needs_cpu(int cpu)
1367{
1368 /* RCU callbacks either ready or pending? */
d6714c22 1369 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1370 per_cpu(rcu_bh_data, cpu).nxtlist ||
1371 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1372}
1373
1374/*
27569620 1375 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1376 */
27569620
PM
1377static void __init
1378rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1379{
1380 unsigned long flags;
1381 int i;
27569620
PM
1382 struct rcu_data *rdp = rsp->rda[cpu];
1383 struct rcu_node *rnp = rcu_get_root(rsp);
1384
1385 /* Set up local state, ensuring consistent view of global state. */
1386 spin_lock_irqsave(&rnp->lock, flags);
1387 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1388 rdp->nxtlist = NULL;
1389 for (i = 0; i < RCU_NEXT_SIZE; i++)
1390 rdp->nxttail[i] = &rdp->nxtlist;
1391 rdp->qlen = 0;
1392#ifdef CONFIG_NO_HZ
1393 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1394#endif /* #ifdef CONFIG_NO_HZ */
1395 rdp->cpu = cpu;
1396 spin_unlock_irqrestore(&rnp->lock, flags);
1397}
1398
1399/*
1400 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1401 * offline event can be happening at a given time. Note also that we
1402 * can accept some slop in the rsp->completed access due to the fact
1403 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1404 */
e4fa4c97 1405static void __cpuinit
f41d911f 1406rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1407{
1408 unsigned long flags;
64db4cff
PM
1409 long lastcomp;
1410 unsigned long mask;
1411 struct rcu_data *rdp = rsp->rda[cpu];
1412 struct rcu_node *rnp = rcu_get_root(rsp);
1413
1414 /* Set up local state, ensuring consistent view of global state. */
1415 spin_lock_irqsave(&rnp->lock, flags);
1416 lastcomp = rsp->completed;
1417 rdp->completed = lastcomp;
1418 rdp->gpnum = lastcomp;
1419 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1420 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1421 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1422 rdp->preemptable = preemptable;
64db4cff 1423 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1424 rdp->blimit = blimit;
64db4cff
PM
1425 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1426
1427 /*
1428 * A new grace period might start here. If so, we won't be part
1429 * of it, but that is OK, as we are currently in a quiescent state.
1430 */
1431
1432 /* Exclude any attempts to start a new GP on large systems. */
1433 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1434
1435 /* Add CPU to rcu_node bitmasks. */
1436 rnp = rdp->mynode;
1437 mask = rdp->grpmask;
1438 do {
1439 /* Exclude any attempts to start a new GP on small systems. */
1440 spin_lock(&rnp->lock); /* irqs already disabled. */
1441 rnp->qsmaskinit |= mask;
1442 mask = rnp->grpmask;
1443 spin_unlock(&rnp->lock); /* irqs already disabled. */
1444 rnp = rnp->parent;
1445 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1446
1447 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1448
1449 /*
1450 * A new grace period might start here. If so, we will be part of
1451 * it, and its gpnum will be greater than ours, so we will
1452 * participate. It is also possible for the gpnum to have been
1453 * incremented before this function was called, and the bitmasks
1454 * to not be filled out until now, in which case we will also
1455 * participate due to our gpnum being behind.
1456 */
1457
1458 /* Since it is coming online, the CPU is in a quiescent state. */
1459 cpu_quiet(cpu, rsp, rdp, lastcomp);
1460 local_irq_restore(flags);
1461}
1462
1463static void __cpuinit rcu_online_cpu(int cpu)
1464{
f41d911f
PM
1465 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1466 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1467 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1468}
1469
1470/*
f41d911f 1471 * Handle CPU online/offline notification events.
64db4cff 1472 */
2e597558
PM
1473int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1474 unsigned long action, void *hcpu)
64db4cff
PM
1475{
1476 long cpu = (long)hcpu;
1477
1478 switch (action) {
1479 case CPU_UP_PREPARE:
1480 case CPU_UP_PREPARE_FROZEN:
1481 rcu_online_cpu(cpu);
1482 break;
1483 case CPU_DEAD:
1484 case CPU_DEAD_FROZEN:
1485 case CPU_UP_CANCELED:
1486 case CPU_UP_CANCELED_FROZEN:
1487 rcu_offline_cpu(cpu);
1488 break;
1489 default:
1490 break;
1491 }
1492 return NOTIFY_OK;
1493}
1494
1495/*
1496 * Compute the per-level fanout, either using the exact fanout specified
1497 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1498 */
1499#ifdef CONFIG_RCU_FANOUT_EXACT
1500static void __init rcu_init_levelspread(struct rcu_state *rsp)
1501{
1502 int i;
1503
1504 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1505 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1506}
1507#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1508static void __init rcu_init_levelspread(struct rcu_state *rsp)
1509{
1510 int ccur;
1511 int cprv;
1512 int i;
1513
1514 cprv = NR_CPUS;
1515 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1516 ccur = rsp->levelcnt[i];
1517 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1518 cprv = ccur;
1519 }
1520}
1521#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1522
1523/*
1524 * Helper function for rcu_init() that initializes one rcu_state structure.
1525 */
1526static void __init rcu_init_one(struct rcu_state *rsp)
1527{
1528 int cpustride = 1;
1529 int i;
1530 int j;
1531 struct rcu_node *rnp;
1532
1533 /* Initialize the level-tracking arrays. */
1534
1535 for (i = 1; i < NUM_RCU_LVLS; i++)
1536 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1537 rcu_init_levelspread(rsp);
1538
1539 /* Initialize the elements themselves, starting from the leaves. */
1540
1541 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1542 cpustride *= rsp->levelspread[i];
1543 rnp = rsp->level[i];
1544 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1545 spin_lock_init(&rnp->lock);
f41d911f 1546 rnp->gpnum = 0;
64db4cff
PM
1547 rnp->qsmask = 0;
1548 rnp->qsmaskinit = 0;
1549 rnp->grplo = j * cpustride;
1550 rnp->grphi = (j + 1) * cpustride - 1;
1551 if (rnp->grphi >= NR_CPUS)
1552 rnp->grphi = NR_CPUS - 1;
1553 if (i == 0) {
1554 rnp->grpnum = 0;
1555 rnp->grpmask = 0;
1556 rnp->parent = NULL;
1557 } else {
1558 rnp->grpnum = j % rsp->levelspread[i - 1];
1559 rnp->grpmask = 1UL << rnp->grpnum;
1560 rnp->parent = rsp->level[i - 1] +
1561 j / rsp->levelspread[i - 1];
1562 }
1563 rnp->level = i;
f41d911f
PM
1564 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1565 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1566 }
1567 }
1568}
1569
1570/*
f41d911f
PM
1571 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1572 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1573 * structure.
64db4cff 1574 */
65cf8f86 1575#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1576do { \
65cf8f86 1577 rcu_init_one(rsp); \
64db4cff
PM
1578 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1579 j = 0; \
1580 for_each_possible_cpu(i) { \
1581 if (i > rnp[j].grphi) \
1582 j++; \
1583 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1584 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1585 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1586 } \
1587} while (0)
1588
f41d911f
PM
1589#ifdef CONFIG_TREE_PREEMPT_RCU
1590
1591void __init __rcu_init_preempt(void)
1592{
1593 int i; /* All used by RCU_INIT_FLAVOR(). */
1594 int j;
1595 struct rcu_node *rnp;
1596
1597 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1598}
1599
1600#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1601
1602void __init __rcu_init_preempt(void)
1603{
1604}
1605
1606#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
64db4cff
PM
1607
1608void __init __rcu_init(void)
1609{
f41d911f 1610 int i; /* All used by RCU_INIT_FLAVOR(). */
64db4cff
PM
1611 int j;
1612 struct rcu_node *rnp;
1613
f41d911f 1614 rcu_bootup_announce();
64db4cff
PM
1615#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1616 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1617#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1618 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1619 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1620 __rcu_init_preempt();
2e597558 1621 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1622}
1623
1624module_param(blimit, int, 0);
1625module_param(qhimark, int, 0);
1626module_param(qlowmark, int, 0);