rcu: Make RCU_FAST_NO_HZ handle adaptive ticks
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
64db4cff 56
9f77da9f 57#include "rcutree.h"
29c00b4a
PM
58#include <trace/events/rcu.h>
59
60#include "rcu.h"
9f77da9f 61
64db4cff
PM
62/* Data structures. */
63
f885b7f2 64static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 65static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 66
037b64ed 67#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 68 .level = { &sname##_state.node[0] }, \
037b64ed 69 .call = cr, \
af446b70 70 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
71 .gpnum = -300, \
72 .completed = -300, \
6c90cc7b
PM
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 77 .name = #sname, \
64db4cff
PM
78}
79
037b64ed
PM
80struct rcu_state rcu_sched_state =
81 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 82DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 83
037b64ed 84struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 85DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 86
27f4d280 87static struct rcu_state *rcu_state;
6ce75a23 88LIST_HEAD(rcu_struct_flavors);
27f4d280 89
f885b7f2
PM
90/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
91static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 92module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
93int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
94static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
95 NUM_RCU_LVL_0,
96 NUM_RCU_LVL_1,
97 NUM_RCU_LVL_2,
98 NUM_RCU_LVL_3,
99 NUM_RCU_LVL_4,
100};
101int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
102
b0d30417
PM
103/*
104 * The rcu_scheduler_active variable transitions from zero to one just
105 * before the first task is spawned. So when this variable is zero, RCU
106 * can assume that there is but one task, allowing RCU to (for example)
107 * optimized synchronize_sched() to a simple barrier(). When this variable
108 * is one, RCU must actually do all the hard work required to detect real
109 * grace periods. This variable is also used to suppress boot-time false
110 * positives from lockdep-RCU error checking.
111 */
bbad9379
PM
112int rcu_scheduler_active __read_mostly;
113EXPORT_SYMBOL_GPL(rcu_scheduler_active);
114
b0d30417
PM
115/*
116 * The rcu_scheduler_fully_active variable transitions from zero to one
117 * during the early_initcall() processing, which is after the scheduler
118 * is capable of creating new tasks. So RCU processing (for example,
119 * creating tasks for RCU priority boosting) must be delayed until after
120 * rcu_scheduler_fully_active transitions from zero to one. We also
121 * currently delay invocation of any RCU callbacks until after this point.
122 *
123 * It might later prove better for people registering RCU callbacks during
124 * early boot to take responsibility for these callbacks, but one step at
125 * a time.
126 */
127static int rcu_scheduler_fully_active __read_mostly;
128
a46e0899
PM
129#ifdef CONFIG_RCU_BOOST
130
a26ac245
PM
131/*
132 * Control variables for per-CPU and per-rcu_node kthreads. These
133 * handle all flavors of RCU.
134 */
135static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 136DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 138DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 139
a46e0899
PM
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
5d01bbd1 142static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 145
4a298656
PM
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
fc2219d4
PM
158/*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163static int rcu_gp_in_progress(struct rcu_state *rsp)
164{
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166}
167
b1f77b05 168/*
d6714c22 169 * Note a quiescent state. Because we do not need to know
b1f77b05 170 * how many quiescent states passed, just if there was at least
d6714c22 171 * one since the start of the grace period, this just sets a flag.
e4cc1f22 172 * The caller must have disabled preemption.
b1f77b05 173 */
d6714c22 174void rcu_sched_qs(int cpu)
b1f77b05 175{
25502a6c 176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 177
e4cc1f22 178 if (rdp->passed_quiesce == 0)
d4c08f2a 179 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 180 rdp->passed_quiesce = 1;
b1f77b05
IM
181}
182
d6714c22 183void rcu_bh_qs(int cpu)
b1f77b05 184{
25502a6c 185 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 186
e4cc1f22 187 if (rdp->passed_quiesce == 0)
d4c08f2a 188 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 189 rdp->passed_quiesce = 1;
b1f77b05 190}
64db4cff 191
25502a6c
PM
192/*
193 * Note a context switch. This is a quiescent state for RCU-sched,
194 * and requires special handling for preemptible RCU.
e4cc1f22 195 * The caller must have disabled preemption.
25502a6c
PM
196 */
197void rcu_note_context_switch(int cpu)
198{
300df91c 199 trace_rcu_utilization("Start context switch");
25502a6c 200 rcu_sched_qs(cpu);
cba6d0d6 201 rcu_preempt_note_context_switch(cpu);
300df91c 202 trace_rcu_utilization("End context switch");
25502a6c 203}
29ce8310 204EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 205
90a4d2c0 206DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 207 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 208 .dynticks = ATOMIC_INIT(1),
90a4d2c0 209};
64db4cff 210
e0f23060 211static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
212static int qhimark = 10000; /* If this many pending, ignore blimit. */
213static int qlowmark = 100; /* Once only this many pending, use blimit. */
214
7e5c2dfb
PM
215module_param(blimit, int, 0444);
216module_param(qhimark, int, 0444);
217module_param(qlowmark, int, 0444);
3d76c082 218
13cfcca0
PM
219int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
220int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
221
f2e0dd70 222module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 223module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 224
d40011f6
PM
225static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
226static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
227
228module_param(jiffies_till_first_fqs, ulong, 0644);
229module_param(jiffies_till_next_fqs, ulong, 0644);
230
4cdfc175
PM
231static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
232static void force_quiescent_state(struct rcu_state *rsp);
a157229c 233static int rcu_pending(int cpu);
64db4cff
PM
234
235/*
d6714c22 236 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 237 */
d6714c22 238long rcu_batches_completed_sched(void)
64db4cff 239{
d6714c22 240 return rcu_sched_state.completed;
64db4cff 241}
d6714c22 242EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
243
244/*
245 * Return the number of RCU BH batches processed thus far for debug & stats.
246 */
247long rcu_batches_completed_bh(void)
248{
249 return rcu_bh_state.completed;
250}
251EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
252
bf66f18e
PM
253/*
254 * Force a quiescent state for RCU BH.
255 */
256void rcu_bh_force_quiescent_state(void)
257{
4cdfc175 258 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
259}
260EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
261
4a298656
PM
262/*
263 * Record the number of times rcutorture tests have been initiated and
264 * terminated. This information allows the debugfs tracing stats to be
265 * correlated to the rcutorture messages, even when the rcutorture module
266 * is being repeatedly loaded and unloaded. In other words, we cannot
267 * store this state in rcutorture itself.
268 */
269void rcutorture_record_test_transition(void)
270{
271 rcutorture_testseq++;
272 rcutorture_vernum = 0;
273}
274EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
275
276/*
277 * Record the number of writer passes through the current rcutorture test.
278 * This is also used to correlate debugfs tracing stats with the rcutorture
279 * messages.
280 */
281void rcutorture_record_progress(unsigned long vernum)
282{
283 rcutorture_vernum++;
284}
285EXPORT_SYMBOL_GPL(rcutorture_record_progress);
286
bf66f18e
PM
287/*
288 * Force a quiescent state for RCU-sched.
289 */
290void rcu_sched_force_quiescent_state(void)
291{
4cdfc175 292 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
293}
294EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
295
64db4cff
PM
296/*
297 * Does the CPU have callbacks ready to be invoked?
298 */
299static int
300cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
301{
302 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
303}
304
305/*
306 * Does the current CPU require a yet-as-unscheduled grace period?
307 */
308static int
309cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
310{
a10d206e
PM
311 return *rdp->nxttail[RCU_DONE_TAIL +
312 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
313 !rcu_gp_in_progress(rsp);
64db4cff
PM
314}
315
316/*
317 * Return the root node of the specified rcu_state structure.
318 */
319static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
320{
321 return &rsp->node[0];
322}
323
9b2e4f18 324/*
adf5091e 325 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
326 *
327 * If the new value of the ->dynticks_nesting counter now is zero,
328 * we really have entered idle, and must do the appropriate accounting.
329 * The caller must have disabled interrupts.
330 */
adf5091e
FW
331static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
332 bool user)
9b2e4f18 333{
facc4e15 334 trace_rcu_dyntick("Start", oldval, 0);
adf5091e 335 if (!is_idle_task(current) && !user) {
0989cb46
PM
336 struct task_struct *idle = idle_task(smp_processor_id());
337
facc4e15 338 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 339 ftrace_dump(DUMP_ORIG);
0989cb46
PM
340 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
341 current->pid, current->comm,
342 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 343 }
aea1b35e 344 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
345 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
346 smp_mb__before_atomic_inc(); /* See above. */
347 atomic_inc(&rdtp->dynticks);
348 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
349 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
350
351 /*
adf5091e 352 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
353 * in an RCU read-side critical section.
354 */
355 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
356 "Illegal idle entry in RCU read-side critical section.");
357 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
358 "Illegal idle entry in RCU-bh read-side critical section.");
359 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
360 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 361}
64db4cff 362
adf5091e
FW
363/*
364 * Enter an RCU extended quiescent state, which can be either the
365 * idle loop or adaptive-tickless usermode execution.
64db4cff 366 */
adf5091e 367static void rcu_eqs_enter(bool user)
64db4cff
PM
368{
369 unsigned long flags;
4145fa7f 370 long long oldval;
64db4cff
PM
371 struct rcu_dynticks *rdtp;
372
64db4cff
PM
373 local_irq_save(flags);
374 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 375 oldval = rdtp->dynticks_nesting;
29e37d81
PM
376 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
377 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
378 rdtp->dynticks_nesting = 0;
379 else
380 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 381 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff
PM
382 local_irq_restore(flags);
383}
adf5091e
FW
384
385/**
386 * rcu_idle_enter - inform RCU that current CPU is entering idle
387 *
388 * Enter idle mode, in other words, -leave- the mode in which RCU
389 * read-side critical sections can occur. (Though RCU read-side
390 * critical sections can occur in irq handlers in idle, a possibility
391 * handled by irq_enter() and irq_exit().)
392 *
393 * We crowbar the ->dynticks_nesting field to zero to allow for
394 * the possibility of usermode upcalls having messed up our count
395 * of interrupt nesting level during the prior busy period.
396 */
397void rcu_idle_enter(void)
398{
399 rcu_eqs_enter(0);
400}
8a2ecf47 401EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 402
adf5091e
FW
403/**
404 * rcu_user_enter - inform RCU that we are resuming userspace.
405 *
406 * Enter RCU idle mode right before resuming userspace. No use of RCU
407 * is permitted between this call and rcu_user_exit(). This way the
408 * CPU doesn't need to maintain the tick for RCU maintenance purposes
409 * when the CPU runs in userspace.
410 */
411void rcu_user_enter(void)
412{
413 /*
414 * Some contexts may involve an exception occuring in an irq,
415 * leading to that nesting:
416 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
417 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
418 * helpers are enough to protect RCU uses inside the exception. So
419 * just return immediately if we detect we are in an IRQ.
420 */
421 if (in_interrupt())
422 return;
423
424 rcu_eqs_enter(1);
425}
426
427
19dd1591
FW
428/**
429 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
430 * after the current irq returns.
431 *
432 * This is similar to rcu_user_enter() but in the context of a non-nesting
433 * irq. After this call, RCU enters into idle mode when the interrupt
434 * returns.
435 */
436void rcu_user_enter_after_irq(void)
437{
438 unsigned long flags;
439 struct rcu_dynticks *rdtp;
440
441 local_irq_save(flags);
442 rdtp = &__get_cpu_var(rcu_dynticks);
443 /* Ensure this irq is interrupting a non-idle RCU state. */
444 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
445 rdtp->dynticks_nesting = 1;
446 local_irq_restore(flags);
447}
448
9b2e4f18
PM
449/**
450 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
451 *
452 * Exit from an interrupt handler, which might possibly result in entering
453 * idle mode, in other words, leaving the mode in which read-side critical
454 * sections can occur.
64db4cff 455 *
9b2e4f18
PM
456 * This code assumes that the idle loop never does anything that might
457 * result in unbalanced calls to irq_enter() and irq_exit(). If your
458 * architecture violates this assumption, RCU will give you what you
459 * deserve, good and hard. But very infrequently and irreproducibly.
460 *
461 * Use things like work queues to work around this limitation.
462 *
463 * You have been warned.
64db4cff 464 */
9b2e4f18 465void rcu_irq_exit(void)
64db4cff
PM
466{
467 unsigned long flags;
4145fa7f 468 long long oldval;
64db4cff
PM
469 struct rcu_dynticks *rdtp;
470
471 local_irq_save(flags);
472 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 473 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
474 rdtp->dynticks_nesting--;
475 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
476 if (rdtp->dynticks_nesting)
477 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
478 else
adf5091e 479 rcu_eqs_enter_common(rdtp, oldval, 1);
9b2e4f18
PM
480 local_irq_restore(flags);
481}
482
483/*
adf5091e 484 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
485 *
486 * If the new value of the ->dynticks_nesting counter was previously zero,
487 * we really have exited idle, and must do the appropriate accounting.
488 * The caller must have disabled interrupts.
489 */
adf5091e
FW
490static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
491 int user)
9b2e4f18 492{
23b5c8fa
PM
493 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
494 atomic_inc(&rdtp->dynticks);
495 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
496 smp_mb__after_atomic_inc(); /* See above. */
497 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 498 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 499 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
adf5091e 500 if (!is_idle_task(current) && !user) {
0989cb46
PM
501 struct task_struct *idle = idle_task(smp_processor_id());
502
4145fa7f
PM
503 trace_rcu_dyntick("Error on exit: not idle task",
504 oldval, rdtp->dynticks_nesting);
bf1304e9 505 ftrace_dump(DUMP_ORIG);
0989cb46
PM
506 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
507 current->pid, current->comm,
508 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
509 }
510}
511
adf5091e
FW
512/*
513 * Exit an RCU extended quiescent state, which can be either the
514 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 515 */
adf5091e 516static void rcu_eqs_exit(bool user)
9b2e4f18
PM
517{
518 unsigned long flags;
519 struct rcu_dynticks *rdtp;
520 long long oldval;
521
522 local_irq_save(flags);
523 rdtp = &__get_cpu_var(rcu_dynticks);
524 oldval = rdtp->dynticks_nesting;
29e37d81
PM
525 WARN_ON_ONCE(oldval < 0);
526 if (oldval & DYNTICK_TASK_NEST_MASK)
527 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
528 else
529 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 530 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18
PM
531 local_irq_restore(flags);
532}
adf5091e
FW
533
534/**
535 * rcu_idle_exit - inform RCU that current CPU is leaving idle
536 *
537 * Exit idle mode, in other words, -enter- the mode in which RCU
538 * read-side critical sections can occur.
539 *
540 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
541 * allow for the possibility of usermode upcalls messing up our count
542 * of interrupt nesting level during the busy period that is just
543 * now starting.
544 */
545void rcu_idle_exit(void)
546{
547 rcu_eqs_exit(0);
548}
8a2ecf47 549EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 550
adf5091e
FW
551/**
552 * rcu_user_exit - inform RCU that we are exiting userspace.
553 *
554 * Exit RCU idle mode while entering the kernel because it can
555 * run a RCU read side critical section anytime.
556 */
557void rcu_user_exit(void)
558{
559 /*
560 * Some contexts may involve an exception occuring in an irq,
561 * leading to that nesting:
562 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
563 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
564 * helpers are enough to protect RCU uses inside the exception. So
565 * just return immediately if we detect we are in an IRQ.
566 */
567 if (in_interrupt())
568 return;
569
570 rcu_eqs_exit(1);
571}
572
19dd1591
FW
573/**
574 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
575 * idle mode after the current non-nesting irq returns.
576 *
577 * This is similar to rcu_user_exit() but in the context of an irq.
578 * This is called when the irq has interrupted a userspace RCU idle mode
579 * context. When the current non-nesting interrupt returns after this call,
580 * the CPU won't restore the RCU idle mode.
581 */
582void rcu_user_exit_after_irq(void)
583{
584 unsigned long flags;
585 struct rcu_dynticks *rdtp;
586
587 local_irq_save(flags);
588 rdtp = &__get_cpu_var(rcu_dynticks);
589 /* Ensure we are interrupting an RCU idle mode. */
590 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
591 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
592 local_irq_restore(flags);
593}
594
9b2e4f18
PM
595/**
596 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
597 *
598 * Enter an interrupt handler, which might possibly result in exiting
599 * idle mode, in other words, entering the mode in which read-side critical
600 * sections can occur.
601 *
602 * Note that the Linux kernel is fully capable of entering an interrupt
603 * handler that it never exits, for example when doing upcalls to
604 * user mode! This code assumes that the idle loop never does upcalls to
605 * user mode. If your architecture does do upcalls from the idle loop (or
606 * does anything else that results in unbalanced calls to the irq_enter()
607 * and irq_exit() functions), RCU will give you what you deserve, good
608 * and hard. But very infrequently and irreproducibly.
609 *
610 * Use things like work queues to work around this limitation.
611 *
612 * You have been warned.
613 */
614void rcu_irq_enter(void)
615{
616 unsigned long flags;
617 struct rcu_dynticks *rdtp;
618 long long oldval;
619
620 local_irq_save(flags);
621 rdtp = &__get_cpu_var(rcu_dynticks);
622 oldval = rdtp->dynticks_nesting;
623 rdtp->dynticks_nesting++;
624 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
625 if (oldval)
626 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
627 else
adf5091e 628 rcu_eqs_exit_common(rdtp, oldval, 1);
64db4cff 629 local_irq_restore(flags);
64db4cff
PM
630}
631
632/**
633 * rcu_nmi_enter - inform RCU of entry to NMI context
634 *
635 * If the CPU was idle with dynamic ticks active, and there is no
636 * irq handler running, this updates rdtp->dynticks_nmi to let the
637 * RCU grace-period handling know that the CPU is active.
638 */
639void rcu_nmi_enter(void)
640{
641 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
642
23b5c8fa
PM
643 if (rdtp->dynticks_nmi_nesting == 0 &&
644 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 645 return;
23b5c8fa
PM
646 rdtp->dynticks_nmi_nesting++;
647 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
648 atomic_inc(&rdtp->dynticks);
649 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
650 smp_mb__after_atomic_inc(); /* See above. */
651 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
652}
653
654/**
655 * rcu_nmi_exit - inform RCU of exit from NMI context
656 *
657 * If the CPU was idle with dynamic ticks active, and there is no
658 * irq handler running, this updates rdtp->dynticks_nmi to let the
659 * RCU grace-period handling know that the CPU is no longer active.
660 */
661void rcu_nmi_exit(void)
662{
663 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
664
23b5c8fa
PM
665 if (rdtp->dynticks_nmi_nesting == 0 ||
666 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 667 return;
23b5c8fa
PM
668 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
669 smp_mb__before_atomic_inc(); /* See above. */
670 atomic_inc(&rdtp->dynticks);
671 smp_mb__after_atomic_inc(); /* Force delay to next write. */
672 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
673}
674
675/**
9b2e4f18 676 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 677 *
9b2e4f18 678 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 679 * or NMI handler, return true.
64db4cff 680 */
9b2e4f18 681int rcu_is_cpu_idle(void)
64db4cff 682{
34240697
PM
683 int ret;
684
685 preempt_disable();
686 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
687 preempt_enable();
688 return ret;
64db4cff 689}
e6b80a3b 690EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 691
62fde6ed 692#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
693
694/*
695 * Is the current CPU online? Disable preemption to avoid false positives
696 * that could otherwise happen due to the current CPU number being sampled,
697 * this task being preempted, its old CPU being taken offline, resuming
698 * on some other CPU, then determining that its old CPU is now offline.
699 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
700 * the check for rcu_scheduler_fully_active. Note also that it is OK
701 * for a CPU coming online to use RCU for one jiffy prior to marking itself
702 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
703 * offline to continue to use RCU for one jiffy after marking itself
704 * offline in the cpu_online_mask. This leniency is necessary given the
705 * non-atomic nature of the online and offline processing, for example,
706 * the fact that a CPU enters the scheduler after completing the CPU_DYING
707 * notifiers.
708 *
709 * This is also why RCU internally marks CPUs online during the
710 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
711 *
712 * Disable checking if in an NMI handler because we cannot safely report
713 * errors from NMI handlers anyway.
714 */
715bool rcu_lockdep_current_cpu_online(void)
716{
2036d94a
PM
717 struct rcu_data *rdp;
718 struct rcu_node *rnp;
c0d6d01b
PM
719 bool ret;
720
721 if (in_nmi())
722 return 1;
723 preempt_disable();
2036d94a
PM
724 rdp = &__get_cpu_var(rcu_sched_data);
725 rnp = rdp->mynode;
726 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
727 !rcu_scheduler_fully_active;
728 preempt_enable();
729 return ret;
730}
731EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
732
62fde6ed 733#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 734
64db4cff 735/**
9b2e4f18 736 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 737 *
9b2e4f18
PM
738 * If the current CPU is idle or running at a first-level (not nested)
739 * interrupt from idle, return true. The caller must have at least
740 * disabled preemption.
64db4cff 741 */
9b2e4f18 742int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 743{
9b2e4f18 744 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
745}
746
64db4cff
PM
747/*
748 * Snapshot the specified CPU's dynticks counter so that we can later
749 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 750 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
751 */
752static int dyntick_save_progress_counter(struct rcu_data *rdp)
753{
23b5c8fa 754 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 755 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
756}
757
758/*
759 * Return true if the specified CPU has passed through a quiescent
760 * state by virtue of being in or having passed through an dynticks
761 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 762 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
763 */
764static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
765{
7eb4f455
PM
766 unsigned int curr;
767 unsigned int snap;
64db4cff 768
7eb4f455
PM
769 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
770 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
771
772 /*
773 * If the CPU passed through or entered a dynticks idle phase with
774 * no active irq/NMI handlers, then we can safely pretend that the CPU
775 * already acknowledged the request to pass through a quiescent
776 * state. Either way, that CPU cannot possibly be in an RCU
777 * read-side critical section that started before the beginning
778 * of the current RCU grace period.
779 */
7eb4f455 780 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 781 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
782 rdp->dynticks_fqs++;
783 return 1;
784 }
785
a82dcc76
PM
786 /*
787 * Check for the CPU being offline, but only if the grace period
788 * is old enough. We don't need to worry about the CPU changing
789 * state: If we see it offline even once, it has been through a
790 * quiescent state.
791 *
792 * The reason for insisting that the grace period be at least
793 * one jiffy old is that CPUs that are not quite online and that
794 * have just gone offline can still execute RCU read-side critical
795 * sections.
796 */
797 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
798 return 0; /* Grace period is not old enough. */
799 barrier();
800 if (cpu_is_offline(rdp->cpu)) {
801 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
802 rdp->offline_fqs++;
803 return 1;
804 }
805 return 0;
64db4cff
PM
806}
807
13cfcca0
PM
808static int jiffies_till_stall_check(void)
809{
810 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
811
812 /*
813 * Limit check must be consistent with the Kconfig limits
814 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
815 */
816 if (till_stall_check < 3) {
817 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
818 till_stall_check = 3;
819 } else if (till_stall_check > 300) {
820 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
821 till_stall_check = 300;
822 }
823 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
824}
825
64db4cff
PM
826static void record_gp_stall_check_time(struct rcu_state *rsp)
827{
828 rsp->gp_start = jiffies;
13cfcca0 829 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
830}
831
832static void print_other_cpu_stall(struct rcu_state *rsp)
833{
834 int cpu;
835 long delta;
836 unsigned long flags;
285fe294 837 int ndetected = 0;
64db4cff 838 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
839
840 /* Only let one CPU complain about others per time interval. */
841
1304afb2 842 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 843 delta = jiffies - rsp->jiffies_stall;
fc2219d4 844 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 845 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
846 return;
847 }
13cfcca0 848 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 849 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 850
8cdd32a9
PM
851 /*
852 * OK, time to rat on our buddy...
853 * See Documentation/RCU/stallwarn.txt for info on how to debug
854 * RCU CPU stall warnings.
855 */
a858af28 856 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 857 rsp->name);
a858af28 858 print_cpu_stall_info_begin();
a0b6c9a7 859 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 860 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 861 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
862 if (rnp->qsmask != 0) {
863 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
864 if (rnp->qsmask & (1UL << cpu)) {
865 print_cpu_stall_info(rsp,
866 rnp->grplo + cpu);
867 ndetected++;
868 }
869 }
3acd9eb3 870 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 871 }
a858af28
PM
872
873 /*
874 * Now rat on any tasks that got kicked up to the root rcu_node
875 * due to CPU offlining.
876 */
877 rnp = rcu_get_root(rsp);
878 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 879 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
880 raw_spin_unlock_irqrestore(&rnp->lock, flags);
881
882 print_cpu_stall_info_end();
883 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 884 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
885 if (ndetected == 0)
886 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
887 else if (!trigger_all_cpu_backtrace())
4627e240 888 dump_stack();
c1dc0b9c 889
4cdfc175 890 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
891
892 rcu_print_detail_task_stall(rsp);
893
4cdfc175 894 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
895}
896
897static void print_cpu_stall(struct rcu_state *rsp)
898{
899 unsigned long flags;
900 struct rcu_node *rnp = rcu_get_root(rsp);
901
8cdd32a9
PM
902 /*
903 * OK, time to rat on ourselves...
904 * See Documentation/RCU/stallwarn.txt for info on how to debug
905 * RCU CPU stall warnings.
906 */
a858af28
PM
907 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
908 print_cpu_stall_info_begin();
909 print_cpu_stall_info(rsp, smp_processor_id());
910 print_cpu_stall_info_end();
911 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
912 if (!trigger_all_cpu_backtrace())
913 dump_stack();
c1dc0b9c 914
1304afb2 915 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 916 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
917 rsp->jiffies_stall = jiffies +
918 3 * jiffies_till_stall_check() + 3;
1304afb2 919 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 920
64db4cff
PM
921 set_need_resched(); /* kick ourselves to get things going. */
922}
923
924static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
925{
bad6e139
PM
926 unsigned long j;
927 unsigned long js;
64db4cff
PM
928 struct rcu_node *rnp;
929
742734ee 930 if (rcu_cpu_stall_suppress)
c68de209 931 return;
bad6e139
PM
932 j = ACCESS_ONCE(jiffies);
933 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 934 rnp = rdp->mynode;
c96ea7cf
PM
935 if (rcu_gp_in_progress(rsp) &&
936 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
937
938 /* We haven't checked in, so go dump stack. */
939 print_cpu_stall(rsp);
940
bad6e139
PM
941 } else if (rcu_gp_in_progress(rsp) &&
942 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 943
bad6e139 944 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
945 print_other_cpu_stall(rsp);
946 }
947}
948
c68de209
PM
949static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
950{
742734ee 951 rcu_cpu_stall_suppress = 1;
c68de209
PM
952 return NOTIFY_DONE;
953}
954
53d84e00
PM
955/**
956 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
957 *
958 * Set the stall-warning timeout way off into the future, thus preventing
959 * any RCU CPU stall-warning messages from appearing in the current set of
960 * RCU grace periods.
961 *
962 * The caller must disable hard irqs.
963 */
964void rcu_cpu_stall_reset(void)
965{
6ce75a23
PM
966 struct rcu_state *rsp;
967
968 for_each_rcu_flavor(rsp)
969 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
970}
971
c68de209
PM
972static struct notifier_block rcu_panic_block = {
973 .notifier_call = rcu_panic,
974};
975
976static void __init check_cpu_stall_init(void)
977{
978 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
979}
980
64db4cff
PM
981/*
982 * Update CPU-local rcu_data state to record the newly noticed grace period.
983 * This is used both when we started the grace period and when we notice
9160306e
PM
984 * that someone else started the grace period. The caller must hold the
985 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
986 * and must have irqs disabled.
64db4cff 987 */
9160306e
PM
988static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
989{
990 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
991 /*
992 * If the current grace period is waiting for this CPU,
993 * set up to detect a quiescent state, otherwise don't
994 * go looking for one.
995 */
9160306e 996 rdp->gpnum = rnp->gpnum;
d4c08f2a 997 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
d7d6a11e
PM
998 rdp->passed_quiesce = 0;
999 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
a858af28 1000 zero_cpu_stall_ticks(rdp);
9160306e
PM
1001 }
1002}
1003
64db4cff
PM
1004static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1005{
9160306e
PM
1006 unsigned long flags;
1007 struct rcu_node *rnp;
1008
1009 local_irq_save(flags);
1010 rnp = rdp->mynode;
1011 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 1012 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
1013 local_irq_restore(flags);
1014 return;
1015 }
1016 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 1017 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1018}
1019
1020/*
1021 * Did someone else start a new RCU grace period start since we last
1022 * checked? Update local state appropriately if so. Must be called
1023 * on the CPU corresponding to rdp.
1024 */
1025static int
1026check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1027{
1028 unsigned long flags;
1029 int ret = 0;
1030
1031 local_irq_save(flags);
1032 if (rdp->gpnum != rsp->gpnum) {
1033 note_new_gpnum(rsp, rdp);
1034 ret = 1;
1035 }
1036 local_irq_restore(flags);
1037 return ret;
1038}
1039
3f5d3ea6
PM
1040/*
1041 * Initialize the specified rcu_data structure's callback list to empty.
1042 */
1043static void init_callback_list(struct rcu_data *rdp)
1044{
1045 int i;
1046
1047 rdp->nxtlist = NULL;
1048 for (i = 0; i < RCU_NEXT_SIZE; i++)
1049 rdp->nxttail[i] = &rdp->nxtlist;
1050}
1051
d09b62df
PM
1052/*
1053 * Advance this CPU's callbacks, but only if the current grace period
1054 * has ended. This may be called only from the CPU to whom the rdp
1055 * belongs. In addition, the corresponding leaf rcu_node structure's
1056 * ->lock must be held by the caller, with irqs disabled.
1057 */
1058static void
1059__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1060{
1061 /* Did another grace period end? */
1062 if (rdp->completed != rnp->completed) {
1063
1064 /* Advance callbacks. No harm if list empty. */
1065 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1066 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1067 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1068
1069 /* Remember that we saw this grace-period completion. */
1070 rdp->completed = rnp->completed;
d4c08f2a 1071 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 1072
5ff8e6f0
FW
1073 /*
1074 * If we were in an extended quiescent state, we may have
121dfc4b 1075 * missed some grace periods that others CPUs handled on
5ff8e6f0 1076 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
1077 * spurious new grace periods. If another grace period
1078 * has started, then rnp->gpnum will have advanced, so
d7d6a11e
PM
1079 * we will detect this later on. Of course, any quiescent
1080 * states we found for the old GP are now invalid.
5ff8e6f0 1081 */
d7d6a11e 1082 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
5ff8e6f0 1083 rdp->gpnum = rdp->completed;
d7d6a11e
PM
1084 rdp->passed_quiesce = 0;
1085 }
5ff8e6f0 1086
20377f32 1087 /*
121dfc4b
PM
1088 * If RCU does not need a quiescent state from this CPU,
1089 * then make sure that this CPU doesn't go looking for one.
20377f32 1090 */
121dfc4b 1091 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 1092 rdp->qs_pending = 0;
d09b62df
PM
1093 }
1094}
1095
1096/*
1097 * Advance this CPU's callbacks, but only if the current grace period
1098 * has ended. This may be called only from the CPU to whom the rdp
1099 * belongs.
1100 */
1101static void
1102rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1103{
1104 unsigned long flags;
1105 struct rcu_node *rnp;
1106
1107 local_irq_save(flags);
1108 rnp = rdp->mynode;
1109 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1110 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1111 local_irq_restore(flags);
1112 return;
1113 }
1114 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1115 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1116}
1117
1118/*
1119 * Do per-CPU grace-period initialization for running CPU. The caller
1120 * must hold the lock of the leaf rcu_node structure corresponding to
1121 * this CPU.
1122 */
1123static void
1124rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1125{
1126 /* Prior grace period ended, so advance callbacks for current CPU. */
1127 __rcu_process_gp_end(rsp, rnp, rdp);
1128
9160306e
PM
1129 /* Set state so that this CPU will detect the next quiescent state. */
1130 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1131}
1132
b3dbec76 1133/*
7fdefc10 1134 * Initialize a new grace period.
b3dbec76 1135 */
7fdefc10 1136static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1137{
1138 struct rcu_data *rdp;
7fdefc10 1139 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1140
7fdefc10 1141 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1142 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1143
7fdefc10
PM
1144 if (rcu_gp_in_progress(rsp)) {
1145 /* Grace period already in progress, don't start another. */
1146 raw_spin_unlock_irq(&rnp->lock);
1147 return 0;
1148 }
1149
7fdefc10
PM
1150 /* Advance to a new grace period and initialize state. */
1151 rsp->gpnum++;
1152 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
7fdefc10
PM
1153 record_gp_stall_check_time(rsp);
1154 raw_spin_unlock_irq(&rnp->lock);
1155
1156 /* Exclude any concurrent CPU-hotplug operations. */
1157 get_online_cpus();
1158
1159 /*
1160 * Set the quiescent-state-needed bits in all the rcu_node
1161 * structures for all currently online CPUs in breadth-first order,
1162 * starting from the root rcu_node structure, relying on the layout
1163 * of the tree within the rsp->node[] array. Note that other CPUs
1164 * will access only the leaves of the hierarchy, thus seeing that no
1165 * grace period is in progress, at least until the corresponding
1166 * leaf node has been initialized. In addition, we have excluded
1167 * CPU-hotplug operations.
1168 *
1169 * The grace period cannot complete until the initialization
1170 * process finishes, because this kthread handles both.
1171 */
1172 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1173 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1174 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1175 rcu_preempt_check_blocked_tasks(rnp);
1176 rnp->qsmask = rnp->qsmaskinit;
1177 rnp->gpnum = rsp->gpnum;
25d30cf4 1178 WARN_ON_ONCE(rnp->completed != rsp->completed);
7fdefc10
PM
1179 rnp->completed = rsp->completed;
1180 if (rnp == rdp->mynode)
1181 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1182 rcu_preempt_boost_start_gp(rnp);
1183 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1184 rnp->level, rnp->grplo,
1185 rnp->grphi, rnp->qsmask);
1186 raw_spin_unlock_irq(&rnp->lock);
661a85dc
PM
1187#ifdef CONFIG_PROVE_RCU_DELAY
1188 if ((random32() % (rcu_num_nodes * 8)) == 0)
1189 schedule_timeout_uninterruptible(2);
1190#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1191 cond_resched();
1192 }
b3dbec76 1193
7fdefc10
PM
1194 put_online_cpus();
1195 return 1;
1196}
b3dbec76 1197
4cdfc175
PM
1198/*
1199 * Do one round of quiescent-state forcing.
1200 */
1201int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1202{
1203 int fqs_state = fqs_state_in;
1204 struct rcu_node *rnp = rcu_get_root(rsp);
1205
1206 rsp->n_force_qs++;
1207 if (fqs_state == RCU_SAVE_DYNTICK) {
1208 /* Collect dyntick-idle snapshots. */
1209 force_qs_rnp(rsp, dyntick_save_progress_counter);
1210 fqs_state = RCU_FORCE_QS;
1211 } else {
1212 /* Handle dyntick-idle and offline CPUs. */
1213 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1214 }
1215 /* Clear flag to prevent immediate re-entry. */
1216 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1217 raw_spin_lock_irq(&rnp->lock);
1218 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1219 raw_spin_unlock_irq(&rnp->lock);
1220 }
1221 return fqs_state;
1222}
1223
7fdefc10
PM
1224/*
1225 * Clean up after the old grace period.
1226 */
4cdfc175 1227static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1228{
1229 unsigned long gp_duration;
1230 struct rcu_data *rdp;
1231 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1232
7fdefc10
PM
1233 raw_spin_lock_irq(&rnp->lock);
1234 gp_duration = jiffies - rsp->gp_start;
1235 if (gp_duration > rsp->gp_max)
1236 rsp->gp_max = gp_duration;
b3dbec76 1237
7fdefc10
PM
1238 /*
1239 * We know the grace period is complete, but to everyone else
1240 * it appears to still be ongoing. But it is also the case
1241 * that to everyone else it looks like there is nothing that
1242 * they can do to advance the grace period. It is therefore
1243 * safe for us to drop the lock in order to mark the grace
1244 * period as completed in all of the rcu_node structures.
7fdefc10 1245 */
5d4b8659 1246 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1247
5d4b8659
PM
1248 /*
1249 * Propagate new ->completed value to rcu_node structures so
1250 * that other CPUs don't have to wait until the start of the next
1251 * grace period to process their callbacks. This also avoids
1252 * some nasty RCU grace-period initialization races by forcing
1253 * the end of the current grace period to be completely recorded in
1254 * all of the rcu_node structures before the beginning of the next
1255 * grace period is recorded in any of the rcu_node structures.
1256 */
1257 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1258 raw_spin_lock_irq(&rnp->lock);
5d4b8659
PM
1259 rnp->completed = rsp->gpnum;
1260 raw_spin_unlock_irq(&rnp->lock);
1261 cond_resched();
7fdefc10 1262 }
5d4b8659
PM
1263 rnp = rcu_get_root(rsp);
1264 raw_spin_lock_irq(&rnp->lock);
7fdefc10
PM
1265
1266 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1267 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1268 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1269 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1270 if (cpu_needs_another_gp(rsp, rdp))
1271 rsp->gp_flags = 1;
1272 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1273}
1274
1275/*
1276 * Body of kthread that handles grace periods.
1277 */
1278static int __noreturn rcu_gp_kthread(void *arg)
1279{
4cdfc175 1280 int fqs_state;
d40011f6 1281 unsigned long j;
4cdfc175 1282 int ret;
7fdefc10
PM
1283 struct rcu_state *rsp = arg;
1284 struct rcu_node *rnp = rcu_get_root(rsp);
1285
1286 for (;;) {
1287
1288 /* Handle grace-period start. */
1289 for (;;) {
4cdfc175
PM
1290 wait_event_interruptible(rsp->gp_wq,
1291 rsp->gp_flags &
1292 RCU_GP_FLAG_INIT);
1293 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1294 rcu_gp_init(rsp))
7fdefc10
PM
1295 break;
1296 cond_resched();
1297 flush_signals(current);
1298 }
cabc49c1 1299
4cdfc175
PM
1300 /* Handle quiescent-state forcing. */
1301 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1302 j = jiffies_till_first_fqs;
1303 if (j > HZ) {
1304 j = HZ;
1305 jiffies_till_first_fqs = HZ;
1306 }
cabc49c1 1307 for (;;) {
d40011f6 1308 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1309 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1310 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1311 (!ACCESS_ONCE(rnp->qsmask) &&
1312 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1313 j);
4cdfc175 1314 /* If grace period done, leave loop. */
cabc49c1 1315 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1316 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1317 break;
4cdfc175
PM
1318 /* If time for quiescent-state forcing, do it. */
1319 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1320 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1321 cond_resched();
1322 } else {
1323 /* Deal with stray signal. */
1324 cond_resched();
1325 flush_signals(current);
1326 }
d40011f6
PM
1327 j = jiffies_till_next_fqs;
1328 if (j > HZ) {
1329 j = HZ;
1330 jiffies_till_next_fqs = HZ;
1331 } else if (j < 1) {
1332 j = 1;
1333 jiffies_till_next_fqs = 1;
1334 }
cabc49c1 1335 }
4cdfc175
PM
1336
1337 /* Handle grace-period end. */
1338 rcu_gp_cleanup(rsp);
b3dbec76 1339 }
b3dbec76
PM
1340}
1341
64db4cff
PM
1342/*
1343 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1344 * in preparation for detecting the next grace period. The caller must hold
1345 * the root node's ->lock, which is released before return. Hard irqs must
1346 * be disabled.
e5601400
PM
1347 *
1348 * Note that it is legal for a dying CPU (which is marked as offline) to
1349 * invoke this function. This can happen when the dying CPU reports its
1350 * quiescent state.
64db4cff
PM
1351 */
1352static void
1353rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1354 __releases(rcu_get_root(rsp)->lock)
1355{
394f99a9 1356 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1357 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1358
b3dbec76 1359 if (!rsp->gp_kthread ||
afe24b12
PM
1360 !cpu_needs_another_gp(rsp, rdp)) {
1361 /*
b3dbec76
PM
1362 * Either we have not yet spawned the grace-period
1363 * task or this CPU does not need another grace period.
1364 * Either way, don't start a new grace period.
afe24b12
PM
1365 */
1366 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1367 return;
1368 }
b32e9eb6 1369
4cdfc175 1370 rsp->gp_flags = RCU_GP_FLAG_INIT;
b3dbec76
PM
1371 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1372 wake_up(&rsp->gp_wq);
64db4cff
PM
1373}
1374
f41d911f 1375/*
d3f6bad3
PM
1376 * Report a full set of quiescent states to the specified rcu_state
1377 * data structure. This involves cleaning up after the prior grace
1378 * period and letting rcu_start_gp() start up the next grace period
1379 * if one is needed. Note that the caller must hold rnp->lock, as
1380 * required by rcu_start_gp(), which will release it.
f41d911f 1381 */
d3f6bad3 1382static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1383 __releases(rcu_get_root(rsp)->lock)
f41d911f 1384{
fc2219d4 1385 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1386 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1387 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1388}
1389
64db4cff 1390/*
d3f6bad3
PM
1391 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1392 * Allows quiescent states for a group of CPUs to be reported at one go
1393 * to the specified rcu_node structure, though all the CPUs in the group
1394 * must be represented by the same rcu_node structure (which need not be
1395 * a leaf rcu_node structure, though it often will be). That structure's
1396 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1397 */
1398static void
d3f6bad3
PM
1399rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1400 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1401 __releases(rnp->lock)
1402{
28ecd580
PM
1403 struct rcu_node *rnp_c;
1404
64db4cff
PM
1405 /* Walk up the rcu_node hierarchy. */
1406 for (;;) {
1407 if (!(rnp->qsmask & mask)) {
1408
1409 /* Our bit has already been cleared, so done. */
1304afb2 1410 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1411 return;
1412 }
1413 rnp->qsmask &= ~mask;
d4c08f2a
PM
1414 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1415 mask, rnp->qsmask, rnp->level,
1416 rnp->grplo, rnp->grphi,
1417 !!rnp->gp_tasks);
27f4d280 1418 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1419
1420 /* Other bits still set at this level, so done. */
1304afb2 1421 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1422 return;
1423 }
1424 mask = rnp->grpmask;
1425 if (rnp->parent == NULL) {
1426
1427 /* No more levels. Exit loop holding root lock. */
1428
1429 break;
1430 }
1304afb2 1431 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1432 rnp_c = rnp;
64db4cff 1433 rnp = rnp->parent;
1304afb2 1434 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1435 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1436 }
1437
1438 /*
1439 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1440 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1441 * to clean up and start the next grace period if one is needed.
64db4cff 1442 */
d3f6bad3 1443 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1444}
1445
1446/*
d3f6bad3
PM
1447 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1448 * structure. This must be either called from the specified CPU, or
1449 * called when the specified CPU is known to be offline (and when it is
1450 * also known that no other CPU is concurrently trying to help the offline
1451 * CPU). The lastcomp argument is used to make sure we are still in the
1452 * grace period of interest. We don't want to end the current grace period
1453 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1454 */
1455static void
d7d6a11e 1456rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1457{
1458 unsigned long flags;
1459 unsigned long mask;
1460 struct rcu_node *rnp;
1461
1462 rnp = rdp->mynode;
1304afb2 1463 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1464 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1465 rnp->completed == rnp->gpnum) {
64db4cff
PM
1466
1467 /*
e4cc1f22
PM
1468 * The grace period in which this quiescent state was
1469 * recorded has ended, so don't report it upwards.
1470 * We will instead need a new quiescent state that lies
1471 * within the current grace period.
64db4cff 1472 */
e4cc1f22 1473 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1474 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1475 return;
1476 }
1477 mask = rdp->grpmask;
1478 if ((rnp->qsmask & mask) == 0) {
1304afb2 1479 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1480 } else {
1481 rdp->qs_pending = 0;
1482
1483 /*
1484 * This GP can't end until cpu checks in, so all of our
1485 * callbacks can be processed during the next GP.
1486 */
64db4cff
PM
1487 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1488
d3f6bad3 1489 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1490 }
1491}
1492
1493/*
1494 * Check to see if there is a new grace period of which this CPU
1495 * is not yet aware, and if so, set up local rcu_data state for it.
1496 * Otherwise, see if this CPU has just passed through its first
1497 * quiescent state for this grace period, and record that fact if so.
1498 */
1499static void
1500rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1501{
1502 /* If there is now a new grace period, record and return. */
1503 if (check_for_new_grace_period(rsp, rdp))
1504 return;
1505
1506 /*
1507 * Does this CPU still need to do its part for current grace period?
1508 * If no, return and let the other CPUs do their part as well.
1509 */
1510 if (!rdp->qs_pending)
1511 return;
1512
1513 /*
1514 * Was there a quiescent state since the beginning of the grace
1515 * period? If no, then exit and wait for the next call.
1516 */
e4cc1f22 1517 if (!rdp->passed_quiesce)
64db4cff
PM
1518 return;
1519
d3f6bad3
PM
1520 /*
1521 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1522 * judge of that).
1523 */
d7d6a11e 1524 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1525}
1526
1527#ifdef CONFIG_HOTPLUG_CPU
1528
e74f4c45 1529/*
b1420f1c
PM
1530 * Send the specified CPU's RCU callbacks to the orphanage. The
1531 * specified CPU must be offline, and the caller must hold the
1532 * ->onofflock.
e74f4c45 1533 */
b1420f1c
PM
1534static void
1535rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1536 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1537{
b1420f1c
PM
1538 /*
1539 * Orphan the callbacks. First adjust the counts. This is safe
1540 * because ->onofflock excludes _rcu_barrier()'s adoption of
1541 * the callbacks, thus no memory barrier is required.
1542 */
a50c3af9 1543 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1544 rsp->qlen_lazy += rdp->qlen_lazy;
1545 rsp->qlen += rdp->qlen;
1546 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1547 rdp->qlen_lazy = 0;
1d1fb395 1548 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1549 }
1550
1551 /*
b1420f1c
PM
1552 * Next, move those callbacks still needing a grace period to
1553 * the orphanage, where some other CPU will pick them up.
1554 * Some of the callbacks might have gone partway through a grace
1555 * period, but that is too bad. They get to start over because we
1556 * cannot assume that grace periods are synchronized across CPUs.
1557 * We don't bother updating the ->nxttail[] array yet, instead
1558 * we just reset the whole thing later on.
a50c3af9 1559 */
b1420f1c
PM
1560 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1561 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1562 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1563 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1564 }
1565
1566 /*
b1420f1c
PM
1567 * Then move the ready-to-invoke callbacks to the orphanage,
1568 * where some other CPU will pick them up. These will not be
1569 * required to pass though another grace period: They are done.
a50c3af9 1570 */
e5601400 1571 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1572 *rsp->orphan_donetail = rdp->nxtlist;
1573 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1574 }
e74f4c45 1575
b1420f1c 1576 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1577 init_callback_list(rdp);
b1420f1c
PM
1578}
1579
1580/*
1581 * Adopt the RCU callbacks from the specified rcu_state structure's
1582 * orphanage. The caller must hold the ->onofflock.
1583 */
1584static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1585{
1586 int i;
1587 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1588
b1420f1c
PM
1589 /* Do the accounting first. */
1590 rdp->qlen_lazy += rsp->qlen_lazy;
1591 rdp->qlen += rsp->qlen;
1592 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1593 if (rsp->qlen_lazy != rsp->qlen)
1594 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1595 rsp->qlen_lazy = 0;
1596 rsp->qlen = 0;
1597
1598 /*
1599 * We do not need a memory barrier here because the only way we
1600 * can get here if there is an rcu_barrier() in flight is if
1601 * we are the task doing the rcu_barrier().
1602 */
1603
1604 /* First adopt the ready-to-invoke callbacks. */
1605 if (rsp->orphan_donelist != NULL) {
1606 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1607 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1608 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1609 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1610 rdp->nxttail[i] = rsp->orphan_donetail;
1611 rsp->orphan_donelist = NULL;
1612 rsp->orphan_donetail = &rsp->orphan_donelist;
1613 }
1614
1615 /* And then adopt the callbacks that still need a grace period. */
1616 if (rsp->orphan_nxtlist != NULL) {
1617 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1618 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1619 rsp->orphan_nxtlist = NULL;
1620 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1621 }
1622}
1623
1624/*
1625 * Trace the fact that this CPU is going offline.
1626 */
1627static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1628{
1629 RCU_TRACE(unsigned long mask);
1630 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1631 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1632
1633 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1634 trace_rcu_grace_period(rsp->name,
1635 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1636 "cpuofl");
64db4cff
PM
1637}
1638
1639/*
e5601400 1640 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1641 * this fact from process context. Do the remainder of the cleanup,
1642 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1643 * adopting them. There can only be one CPU hotplug operation at a time,
1644 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1645 */
e5601400 1646static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1647{
2036d94a
PM
1648 unsigned long flags;
1649 unsigned long mask;
1650 int need_report = 0;
e5601400 1651 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1652 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1653
2036d94a 1654 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1655 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1656
b1420f1c 1657 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1658
1659 /* Exclude any attempts to start a new grace period. */
1660 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1661
b1420f1c
PM
1662 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1663 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1664 rcu_adopt_orphan_cbs(rsp);
1665
2036d94a
PM
1666 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1667 mask = rdp->grpmask; /* rnp->grplo is constant. */
1668 do {
1669 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1670 rnp->qsmaskinit &= ~mask;
1671 if (rnp->qsmaskinit != 0) {
1672 if (rnp != rdp->mynode)
1673 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1674 break;
1675 }
1676 if (rnp == rdp->mynode)
1677 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1678 else
1679 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1680 mask = rnp->grpmask;
1681 rnp = rnp->parent;
1682 } while (rnp != NULL);
1683
1684 /*
1685 * We still hold the leaf rcu_node structure lock here, and
1686 * irqs are still disabled. The reason for this subterfuge is
1687 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1688 * held leads to deadlock.
1689 */
1690 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1691 rnp = rdp->mynode;
1692 if (need_report & RCU_OFL_TASKS_NORM_GP)
1693 rcu_report_unblock_qs_rnp(rnp, flags);
1694 else
1695 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1696 if (need_report & RCU_OFL_TASKS_EXP_GP)
1697 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1698 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1699 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1700 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1701 init_callback_list(rdp);
1702 /* Disallow further callbacks on this CPU. */
1703 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
64db4cff
PM
1704}
1705
1706#else /* #ifdef CONFIG_HOTPLUG_CPU */
1707
e5601400 1708static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1709{
1710}
1711
e5601400 1712static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1713{
1714}
1715
1716#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1717
1718/*
1719 * Invoke any RCU callbacks that have made it to the end of their grace
1720 * period. Thottle as specified by rdp->blimit.
1721 */
37c72e56 1722static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1723{
1724 unsigned long flags;
1725 struct rcu_head *next, *list, **tail;
b41772ab 1726 int bl, count, count_lazy, i;
64db4cff
PM
1727
1728 /* If no callbacks are ready, just return.*/
29c00b4a 1729 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1730 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1731 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1732 need_resched(), is_idle_task(current),
1733 rcu_is_callbacks_kthread());
64db4cff 1734 return;
29c00b4a 1735 }
64db4cff
PM
1736
1737 /*
1738 * Extract the list of ready callbacks, disabling to prevent
1739 * races with call_rcu() from interrupt handlers.
1740 */
1741 local_irq_save(flags);
8146c4e2 1742 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1743 bl = rdp->blimit;
486e2593 1744 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1745 list = rdp->nxtlist;
1746 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1747 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1748 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1749 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1750 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1751 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1752 local_irq_restore(flags);
1753
1754 /* Invoke callbacks. */
486e2593 1755 count = count_lazy = 0;
64db4cff
PM
1756 while (list) {
1757 next = list->next;
1758 prefetch(next);
551d55a9 1759 debug_rcu_head_unqueue(list);
486e2593
PM
1760 if (__rcu_reclaim(rsp->name, list))
1761 count_lazy++;
64db4cff 1762 list = next;
dff1672d
PM
1763 /* Stop only if limit reached and CPU has something to do. */
1764 if (++count >= bl &&
1765 (need_resched() ||
1766 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1767 break;
1768 }
1769
1770 local_irq_save(flags);
4968c300
PM
1771 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1772 is_idle_task(current),
1773 rcu_is_callbacks_kthread());
64db4cff
PM
1774
1775 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1776 if (list != NULL) {
1777 *tail = rdp->nxtlist;
1778 rdp->nxtlist = list;
b41772ab
PM
1779 for (i = 0; i < RCU_NEXT_SIZE; i++)
1780 if (&rdp->nxtlist == rdp->nxttail[i])
1781 rdp->nxttail[i] = tail;
64db4cff
PM
1782 else
1783 break;
1784 }
b1420f1c
PM
1785 smp_mb(); /* List handling before counting for rcu_barrier(). */
1786 rdp->qlen_lazy -= count_lazy;
1d1fb395 1787 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1788 rdp->n_cbs_invoked += count;
64db4cff
PM
1789
1790 /* Reinstate batch limit if we have worked down the excess. */
1791 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1792 rdp->blimit = blimit;
1793
37c72e56
PM
1794 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1795 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1796 rdp->qlen_last_fqs_check = 0;
1797 rdp->n_force_qs_snap = rsp->n_force_qs;
1798 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1799 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1800 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1801
64db4cff
PM
1802 local_irq_restore(flags);
1803
e0f23060 1804 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1805 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1806 invoke_rcu_core();
64db4cff
PM
1807}
1808
1809/*
1810 * Check to see if this CPU is in a non-context-switch quiescent state
1811 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1812 * Also schedule RCU core processing.
64db4cff 1813 *
9b2e4f18 1814 * This function must be called from hardirq context. It is normally
64db4cff
PM
1815 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1816 * false, there is no point in invoking rcu_check_callbacks().
1817 */
1818void rcu_check_callbacks(int cpu, int user)
1819{
300df91c 1820 trace_rcu_utilization("Start scheduler-tick");
a858af28 1821 increment_cpu_stall_ticks();
9b2e4f18 1822 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1823
1824 /*
1825 * Get here if this CPU took its interrupt from user
1826 * mode or from the idle loop, and if this is not a
1827 * nested interrupt. In this case, the CPU is in
d6714c22 1828 * a quiescent state, so note it.
64db4cff
PM
1829 *
1830 * No memory barrier is required here because both
d6714c22
PM
1831 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1832 * variables that other CPUs neither access nor modify,
1833 * at least not while the corresponding CPU is online.
64db4cff
PM
1834 */
1835
d6714c22
PM
1836 rcu_sched_qs(cpu);
1837 rcu_bh_qs(cpu);
64db4cff
PM
1838
1839 } else if (!in_softirq()) {
1840
1841 /*
1842 * Get here if this CPU did not take its interrupt from
1843 * softirq, in other words, if it is not interrupting
1844 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1845 * critical section, so note it.
64db4cff
PM
1846 */
1847
d6714c22 1848 rcu_bh_qs(cpu);
64db4cff 1849 }
f41d911f 1850 rcu_preempt_check_callbacks(cpu);
d21670ac 1851 if (rcu_pending(cpu))
a46e0899 1852 invoke_rcu_core();
300df91c 1853 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1854}
1855
64db4cff
PM
1856/*
1857 * Scan the leaf rcu_node structures, processing dyntick state for any that
1858 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1859 * Also initiate boosting for any threads blocked on the root rcu_node.
1860 *
ee47eb9f 1861 * The caller must have suppressed start of new grace periods.
64db4cff 1862 */
45f014c5 1863static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1864{
1865 unsigned long bit;
1866 int cpu;
1867 unsigned long flags;
1868 unsigned long mask;
a0b6c9a7 1869 struct rcu_node *rnp;
64db4cff 1870
a0b6c9a7 1871 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 1872 cond_resched();
64db4cff 1873 mask = 0;
1304afb2 1874 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1875 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1876 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1877 return;
64db4cff 1878 }
a0b6c9a7 1879 if (rnp->qsmask == 0) {
1217ed1b 1880 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1881 continue;
1882 }
a0b6c9a7 1883 cpu = rnp->grplo;
64db4cff 1884 bit = 1;
a0b6c9a7 1885 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1886 if ((rnp->qsmask & bit) != 0 &&
1887 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1888 mask |= bit;
1889 }
45f014c5 1890 if (mask != 0) {
64db4cff 1891
d3f6bad3
PM
1892 /* rcu_report_qs_rnp() releases rnp->lock. */
1893 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1894 continue;
1895 }
1304afb2 1896 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1897 }
27f4d280 1898 rnp = rcu_get_root(rsp);
1217ed1b
PM
1899 if (rnp->qsmask == 0) {
1900 raw_spin_lock_irqsave(&rnp->lock, flags);
1901 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1902 }
64db4cff
PM
1903}
1904
1905/*
1906 * Force quiescent states on reluctant CPUs, and also detect which
1907 * CPUs are in dyntick-idle mode.
1908 */
4cdfc175 1909static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
1910{
1911 unsigned long flags;
394f2769
PM
1912 bool ret;
1913 struct rcu_node *rnp;
1914 struct rcu_node *rnp_old = NULL;
1915
1916 /* Funnel through hierarchy to reduce memory contention. */
1917 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1918 for (; rnp != NULL; rnp = rnp->parent) {
1919 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1920 !raw_spin_trylock(&rnp->fqslock);
1921 if (rnp_old != NULL)
1922 raw_spin_unlock(&rnp_old->fqslock);
1923 if (ret) {
1924 rsp->n_force_qs_lh++;
1925 return;
1926 }
1927 rnp_old = rnp;
1928 }
1929 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 1930
394f2769
PM
1931 /* Reached the root of the rcu_node tree, acquire lock. */
1932 raw_spin_lock_irqsave(&rnp_old->lock, flags);
1933 raw_spin_unlock(&rnp_old->fqslock);
1934 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1935 rsp->n_force_qs_lh++;
1936 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 1937 return; /* Someone beat us to it. */
46a1e34e 1938 }
4cdfc175 1939 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 1940 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 1941 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
1942}
1943
64db4cff 1944/*
e0f23060
PM
1945 * This does the RCU core processing work for the specified rcu_state
1946 * and rcu_data structures. This may be called only from the CPU to
1947 * whom the rdp belongs.
64db4cff
PM
1948 */
1949static void
1bca8cf1 1950__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1951{
1952 unsigned long flags;
1bca8cf1 1953 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1954
2e597558
PM
1955 WARN_ON_ONCE(rdp->beenonline == 0);
1956
64db4cff
PM
1957 /*
1958 * Advance callbacks in response to end of earlier grace
1959 * period that some other CPU ended.
1960 */
1961 rcu_process_gp_end(rsp, rdp);
1962
1963 /* Update RCU state based on any recent quiescent states. */
1964 rcu_check_quiescent_state(rsp, rdp);
1965
1966 /* Does this CPU require a not-yet-started grace period? */
1967 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1968 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1969 rcu_start_gp(rsp, flags); /* releases above lock */
1970 }
1971
1972 /* If there are callbacks ready, invoke them. */
09223371 1973 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1974 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1975}
1976
64db4cff 1977/*
e0f23060 1978 * Do RCU core processing for the current CPU.
64db4cff 1979 */
09223371 1980static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1981{
6ce75a23
PM
1982 struct rcu_state *rsp;
1983
bfa00b4c
PM
1984 if (cpu_is_offline(smp_processor_id()))
1985 return;
300df91c 1986 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
1987 for_each_rcu_flavor(rsp)
1988 __rcu_process_callbacks(rsp);
300df91c 1989 trace_rcu_utilization("End RCU core");
64db4cff
PM
1990}
1991
a26ac245 1992/*
e0f23060
PM
1993 * Schedule RCU callback invocation. If the specified type of RCU
1994 * does not support RCU priority boosting, just do a direct call,
1995 * otherwise wake up the per-CPU kernel kthread. Note that because we
1996 * are running on the current CPU with interrupts disabled, the
1997 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1998 */
a46e0899 1999static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2000{
b0d30417
PM
2001 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2002 return;
a46e0899
PM
2003 if (likely(!rsp->boost)) {
2004 rcu_do_batch(rsp, rdp);
a26ac245
PM
2005 return;
2006 }
a46e0899 2007 invoke_rcu_callbacks_kthread();
a26ac245
PM
2008}
2009
a46e0899 2010static void invoke_rcu_core(void)
09223371
SL
2011{
2012 raise_softirq(RCU_SOFTIRQ);
2013}
2014
29154c57
PM
2015/*
2016 * Handle any core-RCU processing required by a call_rcu() invocation.
2017 */
2018static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2019 struct rcu_head *head, unsigned long flags)
64db4cff 2020{
62fde6ed
PM
2021 /*
2022 * If called from an extended quiescent state, invoke the RCU
2023 * core in order to force a re-evaluation of RCU's idleness.
2024 */
a16b7a69 2025 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2026 invoke_rcu_core();
2027
a16b7a69 2028 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2029 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2030 return;
64db4cff 2031
37c72e56
PM
2032 /*
2033 * Force the grace period if too many callbacks or too long waiting.
2034 * Enforce hysteresis, and don't invoke force_quiescent_state()
2035 * if some other CPU has recently done so. Also, don't bother
2036 * invoking force_quiescent_state() if the newly enqueued callback
2037 * is the only one waiting for a grace period to complete.
2038 */
2655d57e 2039 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2040
2041 /* Are we ignoring a completed grace period? */
2042 rcu_process_gp_end(rsp, rdp);
2043 check_for_new_grace_period(rsp, rdp);
2044
2045 /* Start a new grace period if one not already started. */
2046 if (!rcu_gp_in_progress(rsp)) {
2047 unsigned long nestflag;
2048 struct rcu_node *rnp_root = rcu_get_root(rsp);
2049
2050 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2051 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2052 } else {
2053 /* Give the grace period a kick. */
2054 rdp->blimit = LONG_MAX;
2055 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2056 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2057 force_quiescent_state(rsp);
b52573d2
PM
2058 rdp->n_force_qs_snap = rsp->n_force_qs;
2059 rdp->qlen_last_fqs_check = rdp->qlen;
2060 }
4cdfc175 2061 }
29154c57
PM
2062}
2063
64db4cff
PM
2064static void
2065__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 2066 struct rcu_state *rsp, bool lazy)
64db4cff
PM
2067{
2068 unsigned long flags;
2069 struct rcu_data *rdp;
2070
0bb7b59d 2071 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2072 debug_rcu_head_queue(head);
64db4cff
PM
2073 head->func = func;
2074 head->next = NULL;
2075
64db4cff
PM
2076 /*
2077 * Opportunistically note grace-period endings and beginnings.
2078 * Note that we might see a beginning right after we see an
2079 * end, but never vice versa, since this CPU has to pass through
2080 * a quiescent state betweentimes.
2081 */
2082 local_irq_save(flags);
394f99a9 2083 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2084
2085 /* Add the callback to our list. */
0d8ee37e
PM
2086 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
2087 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2088 WARN_ON_ONCE(1);
2089 local_irq_restore(flags);
2090 return;
2091 }
29154c57 2092 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2093 if (lazy)
2094 rdp->qlen_lazy++;
c57afe80
PM
2095 else
2096 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2097 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2098 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2099 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2100
d4c08f2a
PM
2101 if (__is_kfree_rcu_offset((unsigned long)func))
2102 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2103 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2104 else
486e2593 2105 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2106
29154c57
PM
2107 /* Go handle any RCU core processing required. */
2108 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2109 local_irq_restore(flags);
2110}
2111
2112/*
d6714c22 2113 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2114 */
d6714c22 2115void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2116{
486e2593 2117 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 2118}
d6714c22 2119EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2120
2121/*
486e2593 2122 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2123 */
2124void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2125{
486e2593 2126 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
2127}
2128EXPORT_SYMBOL_GPL(call_rcu_bh);
2129
6d813391
PM
2130/*
2131 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2132 * any blocking grace-period wait automatically implies a grace period
2133 * if there is only one CPU online at any point time during execution
2134 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2135 * occasionally incorrectly indicate that there are multiple CPUs online
2136 * when there was in fact only one the whole time, as this just adds
2137 * some overhead: RCU still operates correctly.
6d813391
PM
2138 */
2139static inline int rcu_blocking_is_gp(void)
2140{
95f0c1de
PM
2141 int ret;
2142
6d813391 2143 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2144 preempt_disable();
2145 ret = num_online_cpus() <= 1;
2146 preempt_enable();
2147 return ret;
6d813391
PM
2148}
2149
6ebb237b
PM
2150/**
2151 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2152 *
2153 * Control will return to the caller some time after a full rcu-sched
2154 * grace period has elapsed, in other words after all currently executing
2155 * rcu-sched read-side critical sections have completed. These read-side
2156 * critical sections are delimited by rcu_read_lock_sched() and
2157 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2158 * local_irq_disable(), and so on may be used in place of
2159 * rcu_read_lock_sched().
2160 *
2161 * This means that all preempt_disable code sequences, including NMI and
2162 * hardware-interrupt handlers, in progress on entry will have completed
2163 * before this primitive returns. However, this does not guarantee that
2164 * softirq handlers will have completed, since in some kernels, these
2165 * handlers can run in process context, and can block.
2166 *
2167 * This primitive provides the guarantees made by the (now removed)
2168 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2169 * guarantees that rcu_read_lock() sections will have completed.
2170 * In "classic RCU", these two guarantees happen to be one and
2171 * the same, but can differ in realtime RCU implementations.
2172 */
2173void synchronize_sched(void)
2174{
fe15d706
PM
2175 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2176 !lock_is_held(&rcu_lock_map) &&
2177 !lock_is_held(&rcu_sched_lock_map),
2178 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2179 if (rcu_blocking_is_gp())
2180 return;
2c42818e 2181 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2182}
2183EXPORT_SYMBOL_GPL(synchronize_sched);
2184
2185/**
2186 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2187 *
2188 * Control will return to the caller some time after a full rcu_bh grace
2189 * period has elapsed, in other words after all currently executing rcu_bh
2190 * read-side critical sections have completed. RCU read-side critical
2191 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2192 * and may be nested.
2193 */
2194void synchronize_rcu_bh(void)
2195{
fe15d706
PM
2196 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2197 !lock_is_held(&rcu_lock_map) &&
2198 !lock_is_held(&rcu_sched_lock_map),
2199 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2200 if (rcu_blocking_is_gp())
2201 return;
2c42818e 2202 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2203}
2204EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2205
3d3b7db0
PM
2206static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2207static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2208
2209static int synchronize_sched_expedited_cpu_stop(void *data)
2210{
2211 /*
2212 * There must be a full memory barrier on each affected CPU
2213 * between the time that try_stop_cpus() is called and the
2214 * time that it returns.
2215 *
2216 * In the current initial implementation of cpu_stop, the
2217 * above condition is already met when the control reaches
2218 * this point and the following smp_mb() is not strictly
2219 * necessary. Do smp_mb() anyway for documentation and
2220 * robustness against future implementation changes.
2221 */
2222 smp_mb(); /* See above comment block. */
2223 return 0;
2224}
2225
236fefaf
PM
2226/**
2227 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2228 *
2229 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2230 * approach to force the grace period to end quickly. This consumes
2231 * significant time on all CPUs and is unfriendly to real-time workloads,
2232 * so is thus not recommended for any sort of common-case code. In fact,
2233 * if you are using synchronize_sched_expedited() in a loop, please
2234 * restructure your code to batch your updates, and then use a single
2235 * synchronize_sched() instead.
3d3b7db0 2236 *
236fefaf
PM
2237 * Note that it is illegal to call this function while holding any lock
2238 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2239 * to call this function from a CPU-hotplug notifier. Failing to observe
2240 * these restriction will result in deadlock.
3d3b7db0
PM
2241 *
2242 * This implementation can be thought of as an application of ticket
2243 * locking to RCU, with sync_sched_expedited_started and
2244 * sync_sched_expedited_done taking on the roles of the halves
2245 * of the ticket-lock word. Each task atomically increments
2246 * sync_sched_expedited_started upon entry, snapshotting the old value,
2247 * then attempts to stop all the CPUs. If this succeeds, then each
2248 * CPU will have executed a context switch, resulting in an RCU-sched
2249 * grace period. We are then done, so we use atomic_cmpxchg() to
2250 * update sync_sched_expedited_done to match our snapshot -- but
2251 * only if someone else has not already advanced past our snapshot.
2252 *
2253 * On the other hand, if try_stop_cpus() fails, we check the value
2254 * of sync_sched_expedited_done. If it has advanced past our
2255 * initial snapshot, then someone else must have forced a grace period
2256 * some time after we took our snapshot. In this case, our work is
2257 * done for us, and we can simply return. Otherwise, we try again,
2258 * but keep our initial snapshot for purposes of checking for someone
2259 * doing our work for us.
2260 *
2261 * If we fail too many times in a row, we fall back to synchronize_sched().
2262 */
2263void synchronize_sched_expedited(void)
2264{
2265 int firstsnap, s, snap, trycount = 0;
2266
2267 /* Note that atomic_inc_return() implies full memory barrier. */
2268 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2269 get_online_cpus();
1cc85961 2270 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2271
2272 /*
2273 * Each pass through the following loop attempts to force a
2274 * context switch on each CPU.
2275 */
2276 while (try_stop_cpus(cpu_online_mask,
2277 synchronize_sched_expedited_cpu_stop,
2278 NULL) == -EAGAIN) {
2279 put_online_cpus();
2280
2281 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2282 if (trycount++ < 10) {
3d3b7db0 2283 udelay(trycount * num_online_cpus());
c701d5d9 2284 } else {
3d3b7db0
PM
2285 synchronize_sched();
2286 return;
2287 }
2288
2289 /* Check to see if someone else did our work for us. */
2290 s = atomic_read(&sync_sched_expedited_done);
2291 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2292 smp_mb(); /* ensure test happens before caller kfree */
2293 return;
2294 }
2295
2296 /*
2297 * Refetching sync_sched_expedited_started allows later
2298 * callers to piggyback on our grace period. We subtract
2299 * 1 to get the same token that the last incrementer got.
2300 * We retry after they started, so our grace period works
2301 * for them, and they started after our first try, so their
2302 * grace period works for us.
2303 */
2304 get_online_cpus();
2305 snap = atomic_read(&sync_sched_expedited_started);
2306 smp_mb(); /* ensure read is before try_stop_cpus(). */
2307 }
2308
2309 /*
2310 * Everyone up to our most recent fetch is covered by our grace
2311 * period. Update the counter, but only if our work is still
2312 * relevant -- which it won't be if someone who started later
2313 * than we did beat us to the punch.
2314 */
2315 do {
2316 s = atomic_read(&sync_sched_expedited_done);
2317 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2318 smp_mb(); /* ensure test happens before caller kfree */
2319 break;
2320 }
2321 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2322
2323 put_online_cpus();
2324}
2325EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2326
64db4cff
PM
2327/*
2328 * Check to see if there is any immediate RCU-related work to be done
2329 * by the current CPU, for the specified type of RCU, returning 1 if so.
2330 * The checks are in order of increasing expense: checks that can be
2331 * carried out against CPU-local state are performed first. However,
2332 * we must check for CPU stalls first, else we might not get a chance.
2333 */
2334static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2335{
2f51f988
PM
2336 struct rcu_node *rnp = rdp->mynode;
2337
64db4cff
PM
2338 rdp->n_rcu_pending++;
2339
2340 /* Check for CPU stalls, if enabled. */
2341 check_cpu_stall(rsp, rdp);
2342
2343 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2344 if (rcu_scheduler_fully_active &&
2345 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2346 rdp->n_rp_qs_pending++;
e4cc1f22 2347 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2348 rdp->n_rp_report_qs++;
64db4cff 2349 return 1;
7ba5c840 2350 }
64db4cff
PM
2351
2352 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2353 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2354 rdp->n_rp_cb_ready++;
64db4cff 2355 return 1;
7ba5c840 2356 }
64db4cff
PM
2357
2358 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2359 if (cpu_needs_another_gp(rsp, rdp)) {
2360 rdp->n_rp_cpu_needs_gp++;
64db4cff 2361 return 1;
7ba5c840 2362 }
64db4cff
PM
2363
2364 /* Has another RCU grace period completed? */
2f51f988 2365 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2366 rdp->n_rp_gp_completed++;
64db4cff 2367 return 1;
7ba5c840 2368 }
64db4cff
PM
2369
2370 /* Has a new RCU grace period started? */
2f51f988 2371 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2372 rdp->n_rp_gp_started++;
64db4cff 2373 return 1;
7ba5c840 2374 }
64db4cff 2375
64db4cff 2376 /* nothing to do */
7ba5c840 2377 rdp->n_rp_need_nothing++;
64db4cff
PM
2378 return 0;
2379}
2380
2381/*
2382 * Check to see if there is any immediate RCU-related work to be done
2383 * by the current CPU, returning 1 if so. This function is part of the
2384 * RCU implementation; it is -not- an exported member of the RCU API.
2385 */
a157229c 2386static int rcu_pending(int cpu)
64db4cff 2387{
6ce75a23
PM
2388 struct rcu_state *rsp;
2389
2390 for_each_rcu_flavor(rsp)
2391 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2392 return 1;
2393 return 0;
64db4cff
PM
2394}
2395
2396/*
2397 * Check to see if any future RCU-related work will need to be done
2398 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2399 * 1 if so.
64db4cff 2400 */
aea1b35e 2401static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2402{
6ce75a23
PM
2403 struct rcu_state *rsp;
2404
64db4cff 2405 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2406 for_each_rcu_flavor(rsp)
2407 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2408 return 1;
2409 return 0;
64db4cff
PM
2410}
2411
a83eff0a
PM
2412/*
2413 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2414 * the compiler is expected to optimize this away.
2415 */
2416static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2417 int cpu, unsigned long done)
2418{
2419 trace_rcu_barrier(rsp->name, s, cpu,
2420 atomic_read(&rsp->barrier_cpu_count), done);
2421}
2422
b1420f1c
PM
2423/*
2424 * RCU callback function for _rcu_barrier(). If we are last, wake
2425 * up the task executing _rcu_barrier().
2426 */
24ebbca8 2427static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2428{
24ebbca8
PM
2429 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2430 struct rcu_state *rsp = rdp->rsp;
2431
a83eff0a
PM
2432 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2433 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2434 complete(&rsp->barrier_completion);
a83eff0a
PM
2435 } else {
2436 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2437 }
d0ec774c
PM
2438}
2439
2440/*
2441 * Called with preemption disabled, and from cross-cpu IRQ context.
2442 */
2443static void rcu_barrier_func(void *type)
2444{
037b64ed 2445 struct rcu_state *rsp = type;
06668efa 2446 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2447
a83eff0a 2448 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2449 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2450 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2451}
2452
d0ec774c
PM
2453/*
2454 * Orchestrate the specified type of RCU barrier, waiting for all
2455 * RCU callbacks of the specified type to complete.
2456 */
037b64ed 2457static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2458{
b1420f1c 2459 int cpu;
b1420f1c 2460 struct rcu_data *rdp;
cf3a9c48
PM
2461 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2462 unsigned long snap_done;
b1420f1c 2463
a83eff0a 2464 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2465
e74f4c45 2466 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2467 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2468
cf3a9c48
PM
2469 /*
2470 * Ensure that all prior references, including to ->n_barrier_done,
2471 * are ordered before the _rcu_barrier() machinery.
2472 */
2473 smp_mb(); /* See above block comment. */
2474
2475 /*
2476 * Recheck ->n_barrier_done to see if others did our work for us.
2477 * This means checking ->n_barrier_done for an even-to-odd-to-even
2478 * transition. The "if" expression below therefore rounds the old
2479 * value up to the next even number and adds two before comparing.
2480 */
2481 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2482 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2483 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2484 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2485 smp_mb(); /* caller's subsequent code after above check. */
2486 mutex_unlock(&rsp->barrier_mutex);
2487 return;
2488 }
2489
2490 /*
2491 * Increment ->n_barrier_done to avoid duplicate work. Use
2492 * ACCESS_ONCE() to prevent the compiler from speculating
2493 * the increment to precede the early-exit check.
2494 */
2495 ACCESS_ONCE(rsp->n_barrier_done)++;
2496 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2497 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2498 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2499
d0ec774c 2500 /*
b1420f1c
PM
2501 * Initialize the count to one rather than to zero in order to
2502 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2503 * (or preemption of this task). Exclude CPU-hotplug operations
2504 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2505 */
7db74df8 2506 init_completion(&rsp->barrier_completion);
24ebbca8 2507 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2508 get_online_cpus();
b1420f1c
PM
2509
2510 /*
1331e7a1
PM
2511 * Force each CPU with callbacks to register a new callback.
2512 * When that callback is invoked, we will know that all of the
2513 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2514 */
1331e7a1 2515 for_each_online_cpu(cpu) {
b1420f1c 2516 rdp = per_cpu_ptr(rsp->rda, cpu);
1331e7a1 2517 if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2518 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2519 rsp->n_barrier_done);
037b64ed 2520 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2521 } else {
a83eff0a
PM
2522 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2523 rsp->n_barrier_done);
b1420f1c
PM
2524 }
2525 }
1331e7a1 2526 put_online_cpus();
b1420f1c
PM
2527
2528 /*
2529 * Now that we have an rcu_barrier_callback() callback on each
2530 * CPU, and thus each counted, remove the initial count.
2531 */
24ebbca8 2532 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2533 complete(&rsp->barrier_completion);
b1420f1c 2534
cf3a9c48
PM
2535 /* Increment ->n_barrier_done to prevent duplicate work. */
2536 smp_mb(); /* Keep increment after above mechanism. */
2537 ACCESS_ONCE(rsp->n_barrier_done)++;
2538 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2539 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2540 smp_mb(); /* Keep increment before caller's subsequent code. */
2541
b1420f1c 2542 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2543 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2544
2545 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2546 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2547}
d0ec774c
PM
2548
2549/**
2550 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2551 */
2552void rcu_barrier_bh(void)
2553{
037b64ed 2554 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2555}
2556EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2557
2558/**
2559 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2560 */
2561void rcu_barrier_sched(void)
2562{
037b64ed 2563 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2564}
2565EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2566
64db4cff 2567/*
27569620 2568 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2569 */
27569620
PM
2570static void __init
2571rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2572{
2573 unsigned long flags;
394f99a9 2574 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2575 struct rcu_node *rnp = rcu_get_root(rsp);
2576
2577 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2578 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2579 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2580 init_callback_list(rdp);
486e2593 2581 rdp->qlen_lazy = 0;
1d1fb395 2582 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2583 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2584 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2585 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2586 rdp->cpu = cpu;
d4c08f2a 2587 rdp->rsp = rsp;
1304afb2 2588 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2589}
2590
2591/*
2592 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2593 * offline event can be happening at a given time. Note also that we
2594 * can accept some slop in the rsp->completed access due to the fact
2595 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2596 */
e4fa4c97 2597static void __cpuinit
6cc68793 2598rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2599{
2600 unsigned long flags;
64db4cff 2601 unsigned long mask;
394f99a9 2602 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2603 struct rcu_node *rnp = rcu_get_root(rsp);
2604
2605 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2606 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2607 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2608 rdp->preemptible = preemptible;
37c72e56
PM
2609 rdp->qlen_last_fqs_check = 0;
2610 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2611 rdp->blimit = blimit;
0d8ee37e 2612 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2613 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2614 atomic_set(&rdp->dynticks->dynticks,
2615 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2616 rcu_prepare_for_idle_init(cpu);
1304afb2 2617 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2618
2619 /*
2620 * A new grace period might start here. If so, we won't be part
2621 * of it, but that is OK, as we are currently in a quiescent state.
2622 */
2623
2624 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2625 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2626
2627 /* Add CPU to rcu_node bitmasks. */
2628 rnp = rdp->mynode;
2629 mask = rdp->grpmask;
2630 do {
2631 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2632 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2633 rnp->qsmaskinit |= mask;
2634 mask = rnp->grpmask;
d09b62df 2635 if (rnp == rdp->mynode) {
06ae115a
PM
2636 /*
2637 * If there is a grace period in progress, we will
2638 * set up to wait for it next time we run the
2639 * RCU core code.
2640 */
2641 rdp->gpnum = rnp->completed;
d09b62df 2642 rdp->completed = rnp->completed;
06ae115a
PM
2643 rdp->passed_quiesce = 0;
2644 rdp->qs_pending = 0;
d4c08f2a 2645 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2646 }
1304afb2 2647 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2648 rnp = rnp->parent;
2649 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2650
1304afb2 2651 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2652}
2653
d72bce0e 2654static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2655{
6ce75a23
PM
2656 struct rcu_state *rsp;
2657
2658 for_each_rcu_flavor(rsp)
2659 rcu_init_percpu_data(cpu, rsp,
2660 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2661}
2662
2663/*
f41d911f 2664 * Handle CPU online/offline notification events.
64db4cff 2665 */
9f680ab4
PM
2666static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2667 unsigned long action, void *hcpu)
64db4cff
PM
2668{
2669 long cpu = (long)hcpu;
27f4d280 2670 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2671 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2672 struct rcu_state *rsp;
64db4cff 2673
300df91c 2674 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2675 switch (action) {
2676 case CPU_UP_PREPARE:
2677 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2678 rcu_prepare_cpu(cpu);
2679 rcu_prepare_kthreads(cpu);
a26ac245
PM
2680 break;
2681 case CPU_ONLINE:
0f962a5e 2682 case CPU_DOWN_FAILED:
5d01bbd1 2683 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2684 break;
2685 case CPU_DOWN_PREPARE:
5d01bbd1 2686 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2687 break;
d0ec774c
PM
2688 case CPU_DYING:
2689 case CPU_DYING_FROZEN:
2690 /*
2d999e03
PM
2691 * The whole machine is "stopped" except this CPU, so we can
2692 * touch any data without introducing corruption. We send the
2693 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2694 */
6ce75a23
PM
2695 for_each_rcu_flavor(rsp)
2696 rcu_cleanup_dying_cpu(rsp);
7cb92499 2697 rcu_cleanup_after_idle(cpu);
d0ec774c 2698 break;
64db4cff
PM
2699 case CPU_DEAD:
2700 case CPU_DEAD_FROZEN:
2701 case CPU_UP_CANCELED:
2702 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2703 for_each_rcu_flavor(rsp)
2704 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2705 break;
2706 default:
2707 break;
2708 }
300df91c 2709 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2710 return NOTIFY_OK;
2711}
2712
b3dbec76
PM
2713/*
2714 * Spawn the kthread that handles this RCU flavor's grace periods.
2715 */
2716static int __init rcu_spawn_gp_kthread(void)
2717{
2718 unsigned long flags;
2719 struct rcu_node *rnp;
2720 struct rcu_state *rsp;
2721 struct task_struct *t;
2722
2723 for_each_rcu_flavor(rsp) {
2724 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2725 BUG_ON(IS_ERR(t));
2726 rnp = rcu_get_root(rsp);
2727 raw_spin_lock_irqsave(&rnp->lock, flags);
2728 rsp->gp_kthread = t;
2729 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2730 }
2731 return 0;
2732}
2733early_initcall(rcu_spawn_gp_kthread);
2734
bbad9379
PM
2735/*
2736 * This function is invoked towards the end of the scheduler's initialization
2737 * process. Before this is called, the idle task might contain
2738 * RCU read-side critical sections (during which time, this idle
2739 * task is booting the system). After this function is called, the
2740 * idle tasks are prohibited from containing RCU read-side critical
2741 * sections. This function also enables RCU lockdep checking.
2742 */
2743void rcu_scheduler_starting(void)
2744{
2745 WARN_ON(num_online_cpus() != 1);
2746 WARN_ON(nr_context_switches() > 0);
2747 rcu_scheduler_active = 1;
2748}
2749
64db4cff
PM
2750/*
2751 * Compute the per-level fanout, either using the exact fanout specified
2752 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2753 */
2754#ifdef CONFIG_RCU_FANOUT_EXACT
2755static void __init rcu_init_levelspread(struct rcu_state *rsp)
2756{
2757 int i;
2758
f885b7f2 2759 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2760 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2761 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2762}
2763#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2764static void __init rcu_init_levelspread(struct rcu_state *rsp)
2765{
2766 int ccur;
2767 int cprv;
2768 int i;
2769
4dbd6bb3 2770 cprv = nr_cpu_ids;
f885b7f2 2771 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2772 ccur = rsp->levelcnt[i];
2773 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2774 cprv = ccur;
2775 }
2776}
2777#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2778
2779/*
2780 * Helper function for rcu_init() that initializes one rcu_state structure.
2781 */
394f99a9
LJ
2782static void __init rcu_init_one(struct rcu_state *rsp,
2783 struct rcu_data __percpu *rda)
64db4cff 2784{
394f2769
PM
2785 static char *buf[] = { "rcu_node_0",
2786 "rcu_node_1",
2787 "rcu_node_2",
2788 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2789 static char *fqs[] = { "rcu_node_fqs_0",
2790 "rcu_node_fqs_1",
2791 "rcu_node_fqs_2",
2792 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2793 int cpustride = 1;
2794 int i;
2795 int j;
2796 struct rcu_node *rnp;
2797
b6407e86
PM
2798 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2799
64db4cff
PM
2800 /* Initialize the level-tracking arrays. */
2801
f885b7f2
PM
2802 for (i = 0; i < rcu_num_lvls; i++)
2803 rsp->levelcnt[i] = num_rcu_lvl[i];
2804 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2805 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2806 rcu_init_levelspread(rsp);
2807
2808 /* Initialize the elements themselves, starting from the leaves. */
2809
f885b7f2 2810 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2811 cpustride *= rsp->levelspread[i];
2812 rnp = rsp->level[i];
2813 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2814 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2815 lockdep_set_class_and_name(&rnp->lock,
2816 &rcu_node_class[i], buf[i]);
394f2769
PM
2817 raw_spin_lock_init(&rnp->fqslock);
2818 lockdep_set_class_and_name(&rnp->fqslock,
2819 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
2820 rnp->gpnum = rsp->gpnum;
2821 rnp->completed = rsp->completed;
64db4cff
PM
2822 rnp->qsmask = 0;
2823 rnp->qsmaskinit = 0;
2824 rnp->grplo = j * cpustride;
2825 rnp->grphi = (j + 1) * cpustride - 1;
2826 if (rnp->grphi >= NR_CPUS)
2827 rnp->grphi = NR_CPUS - 1;
2828 if (i == 0) {
2829 rnp->grpnum = 0;
2830 rnp->grpmask = 0;
2831 rnp->parent = NULL;
2832 } else {
2833 rnp->grpnum = j % rsp->levelspread[i - 1];
2834 rnp->grpmask = 1UL << rnp->grpnum;
2835 rnp->parent = rsp->level[i - 1] +
2836 j / rsp->levelspread[i - 1];
2837 }
2838 rnp->level = i;
12f5f524 2839 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2840 }
2841 }
0c34029a 2842
394f99a9 2843 rsp->rda = rda;
b3dbec76 2844 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 2845 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2846 for_each_possible_cpu(i) {
4a90a068 2847 while (i > rnp->grphi)
0c34029a 2848 rnp++;
394f99a9 2849 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2850 rcu_boot_init_percpu_data(i, rsp);
2851 }
6ce75a23 2852 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2853}
2854
f885b7f2
PM
2855/*
2856 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2857 * replace the definitions in rcutree.h because those are needed to size
2858 * the ->node array in the rcu_state structure.
2859 */
2860static void __init rcu_init_geometry(void)
2861{
2862 int i;
2863 int j;
cca6f393 2864 int n = nr_cpu_ids;
f885b7f2
PM
2865 int rcu_capacity[MAX_RCU_LVLS + 1];
2866
2867 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
2868 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2869 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
2870 return;
2871
2872 /*
2873 * Compute number of nodes that can be handled an rcu_node tree
2874 * with the given number of levels. Setting rcu_capacity[0] makes
2875 * some of the arithmetic easier.
2876 */
2877 rcu_capacity[0] = 1;
2878 rcu_capacity[1] = rcu_fanout_leaf;
2879 for (i = 2; i <= MAX_RCU_LVLS; i++)
2880 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2881
2882 /*
2883 * The boot-time rcu_fanout_leaf parameter is only permitted
2884 * to increase the leaf-level fanout, not decrease it. Of course,
2885 * the leaf-level fanout cannot exceed the number of bits in
2886 * the rcu_node masks. Finally, the tree must be able to accommodate
2887 * the configured number of CPUs. Complain and fall back to the
2888 * compile-time values if these limits are exceeded.
2889 */
2890 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2891 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2892 n > rcu_capacity[MAX_RCU_LVLS]) {
2893 WARN_ON(1);
2894 return;
2895 }
2896
2897 /* Calculate the number of rcu_nodes at each level of the tree. */
2898 for (i = 1; i <= MAX_RCU_LVLS; i++)
2899 if (n <= rcu_capacity[i]) {
2900 for (j = 0; j <= i; j++)
2901 num_rcu_lvl[j] =
2902 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2903 rcu_num_lvls = i;
2904 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2905 num_rcu_lvl[j] = 0;
2906 break;
2907 }
2908
2909 /* Calculate the total number of rcu_node structures. */
2910 rcu_num_nodes = 0;
2911 for (i = 0; i <= MAX_RCU_LVLS; i++)
2912 rcu_num_nodes += num_rcu_lvl[i];
2913 rcu_num_nodes -= n;
2914}
2915
9f680ab4 2916void __init rcu_init(void)
64db4cff 2917{
017c4261 2918 int cpu;
9f680ab4 2919
f41d911f 2920 rcu_bootup_announce();
f885b7f2 2921 rcu_init_geometry();
394f99a9
LJ
2922 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2923 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2924 __rcu_init_preempt();
09223371 2925 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2926
2927 /*
2928 * We don't need protection against CPU-hotplug here because
2929 * this is called early in boot, before either interrupts
2930 * or the scheduler are operational.
2931 */
2932 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2933 for_each_online_cpu(cpu)
2934 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2935 check_cpu_stall_init();
64db4cff
PM
2936}
2937
1eba8f84 2938#include "rcutree_plugin.h"