rcu: Flag lockless access to ->gp_flags with ACCESS_ONCE()
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
d1d74d14 57#include <linux/suspend.h>
64db4cff 58
9f77da9f 59#include "rcutree.h"
29c00b4a
PM
60#include <trace/events/rcu.h>
61
62#include "rcu.h"
9f77da9f 63
f7f7bac9
SRRH
64/*
65 * Strings used in tracepoints need to be exported via the
66 * tracing system such that tools like perf and trace-cmd can
67 * translate the string address pointers to actual text.
68 */
69#define TPS(x) tracepoint_string(x)
70
64db4cff
PM
71/* Data structures. */
72
f885b7f2 73static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 74static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 75
f7f7bac9
SRRH
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
a41bfeb2 84#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
85static char sname##_varname[] = #sname; \
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 87struct rcu_state sname##_state = { \
6c90cc7b 88 .level = { &sname##_state.node[0] }, \
037b64ed 89 .call = cr, \
af446b70 90 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
7b2e6011 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 98 .name = sname##_varname, \
a4889858 99 .abbr = sabbr, \
a41bfeb2
SRRH
100}; \
101DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 102
a41bfeb2
SRRH
103RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 105
27f4d280 106static struct rcu_state *rcu_state;
6ce75a23 107LIST_HEAD(rcu_struct_flavors);
27f4d280 108
f885b7f2
PM
109/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119};
120int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
b0d30417
PM
122/*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 126 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
bbad9379
PM
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
b0d30417
PM
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
a46e0899
PM
148#ifdef CONFIG_RCU_BOOST
149
a26ac245
PM
150/*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 156DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 157DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 158
a46e0899
PM
159#endif /* #ifdef CONFIG_RCU_BOOST */
160
5d01bbd1 161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 164
4a298656
PM
165/*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174unsigned long rcutorture_testseq;
175unsigned long rcutorture_vernum;
176
fc2219d4
PM
177/*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182static int rcu_gp_in_progress(struct rcu_state *rsp)
183{
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185}
186
b1f77b05 187/*
d6714c22 188 * Note a quiescent state. Because we do not need to know
b1f77b05 189 * how many quiescent states passed, just if there was at least
d6714c22 190 * one since the start of the grace period, this just sets a flag.
e4cc1f22 191 * The caller must have disabled preemption.
b1f77b05 192 */
d6714c22 193void rcu_sched_qs(int cpu)
b1f77b05 194{
25502a6c 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 196
e4cc1f22 197 if (rdp->passed_quiesce == 0)
f7f7bac9 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 199 rdp->passed_quiesce = 1;
b1f77b05
IM
200}
201
d6714c22 202void rcu_bh_qs(int cpu)
b1f77b05 203{
25502a6c 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 205
e4cc1f22 206 if (rdp->passed_quiesce == 0)
f7f7bac9 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 208 rdp->passed_quiesce = 1;
b1f77b05 209}
64db4cff 210
25502a6c
PM
211/*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
e4cc1f22 214 * The caller must have disabled preemption.
25502a6c
PM
215 */
216void rcu_note_context_switch(int cpu)
217{
f7f7bac9 218 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 219 rcu_sched_qs(cpu);
cba6d0d6 220 rcu_preempt_note_context_switch(cpu);
f7f7bac9 221 trace_rcu_utilization(TPS("End context switch"));
25502a6c 222}
29ce8310 223EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 224
90a4d2c0 225DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 227 .dynticks = ATOMIC_INIT(1),
2333210b
PM
228#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 232};
64db4cff 233
878d7439
ED
234static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235static long qhimark = 10000; /* If this many pending, ignore blimit. */
236static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 237
878d7439
ED
238module_param(blimit, long, 0444);
239module_param(qhimark, long, 0444);
240module_param(qlowmark, long, 0444);
3d76c082 241
026ad283
PM
242static ulong jiffies_till_first_fqs = ULONG_MAX;
243static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
244
245module_param(jiffies_till_first_fqs, ulong, 0644);
246module_param(jiffies_till_next_fqs, ulong, 0644);
247
910ee45d
PM
248static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
217af2a2
PM
250static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
4cdfc175 254static void force_quiescent_state(struct rcu_state *rsp);
a157229c 255static int rcu_pending(int cpu);
64db4cff
PM
256
257/*
d6714c22 258 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 259 */
d6714c22 260long rcu_batches_completed_sched(void)
64db4cff 261{
d6714c22 262 return rcu_sched_state.completed;
64db4cff 263}
d6714c22 264EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
265
266/*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269long rcu_batches_completed_bh(void)
270{
271 return rcu_bh_state.completed;
272}
273EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
bf66f18e
PM
275/*
276 * Force a quiescent state for RCU BH.
277 */
278void rcu_bh_force_quiescent_state(void)
279{
4cdfc175 280 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
281}
282EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
4a298656
PM
284/*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291void rcutorture_record_test_transition(void)
292{
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295}
296EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298/*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303void rcutorture_record_progress(unsigned long vernum)
304{
305 rcutorture_vernum++;
306}
307EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
bf66f18e
PM
309/*
310 * Force a quiescent state for RCU-sched.
311 */
312void rcu_sched_force_quiescent_state(void)
313{
4cdfc175 314 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
315}
316EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
64db4cff
PM
318/*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321static int
322cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323{
3fbfbf7a
PM
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
326}
327
328/*
dc35c893
PM
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
64db4cff
PM
332 */
333static int
334cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335{
dc35c893 336 int i;
3fbfbf7a 337
dc35c893
PM
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
dae6e64d 340 if (rcu_nocb_needs_gp(rsp))
34ed6246 341 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
64db4cff
PM
352}
353
354/*
355 * Return the root node of the specified rcu_state structure.
356 */
357static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358{
359 return &rsp->node[0];
360}
361
9b2e4f18 362/*
adf5091e 363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
adf5091e
FW
369static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
9b2e4f18 371{
f7f7bac9 372 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 373 if (!user && !is_idle_task(current)) {
0989cb46
PM
374 struct task_struct *idle = idle_task(smp_processor_id());
375
f7f7bac9 376 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 377 ftrace_dump(DUMP_ORIG);
0989cb46
PM
378 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
379 current->pid, current->comm,
380 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 381 }
aea1b35e 382 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
383 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
384 smp_mb__before_atomic_inc(); /* See above. */
385 atomic_inc(&rdtp->dynticks);
386 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
387 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
388
389 /*
adf5091e 390 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
391 * in an RCU read-side critical section.
392 */
393 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
394 "Illegal idle entry in RCU read-side critical section.");
395 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
396 "Illegal idle entry in RCU-bh read-side critical section.");
397 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
398 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 399}
64db4cff 400
adf5091e
FW
401/*
402 * Enter an RCU extended quiescent state, which can be either the
403 * idle loop or adaptive-tickless usermode execution.
64db4cff 404 */
adf5091e 405static void rcu_eqs_enter(bool user)
64db4cff 406{
4145fa7f 407 long long oldval;
64db4cff
PM
408 struct rcu_dynticks *rdtp;
409
64db4cff 410 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 411 oldval = rdtp->dynticks_nesting;
29e37d81
PM
412 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
413 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
414 rdtp->dynticks_nesting = 0;
415 else
416 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 417 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 418}
adf5091e
FW
419
420/**
421 * rcu_idle_enter - inform RCU that current CPU is entering idle
422 *
423 * Enter idle mode, in other words, -leave- the mode in which RCU
424 * read-side critical sections can occur. (Though RCU read-side
425 * critical sections can occur in irq handlers in idle, a possibility
426 * handled by irq_enter() and irq_exit().)
427 *
428 * We crowbar the ->dynticks_nesting field to zero to allow for
429 * the possibility of usermode upcalls having messed up our count
430 * of interrupt nesting level during the prior busy period.
431 */
432void rcu_idle_enter(void)
433{
c5d900bf
FW
434 unsigned long flags;
435
436 local_irq_save(flags);
cb349ca9 437 rcu_eqs_enter(false);
eb348b89 438 rcu_sysidle_enter(&__get_cpu_var(rcu_dynticks), 0);
c5d900bf 439 local_irq_restore(flags);
adf5091e 440}
8a2ecf47 441EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 442
2b1d5024 443#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
444/**
445 * rcu_user_enter - inform RCU that we are resuming userspace.
446 *
447 * Enter RCU idle mode right before resuming userspace. No use of RCU
448 * is permitted between this call and rcu_user_exit(). This way the
449 * CPU doesn't need to maintain the tick for RCU maintenance purposes
450 * when the CPU runs in userspace.
451 */
452void rcu_user_enter(void)
453{
91d1aa43 454 rcu_eqs_enter(1);
adf5091e 455}
2b1d5024 456#endif /* CONFIG_RCU_USER_QS */
19dd1591 457
9b2e4f18
PM
458/**
459 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
460 *
461 * Exit from an interrupt handler, which might possibly result in entering
462 * idle mode, in other words, leaving the mode in which read-side critical
463 * sections can occur.
64db4cff 464 *
9b2e4f18
PM
465 * This code assumes that the idle loop never does anything that might
466 * result in unbalanced calls to irq_enter() and irq_exit(). If your
467 * architecture violates this assumption, RCU will give you what you
468 * deserve, good and hard. But very infrequently and irreproducibly.
469 *
470 * Use things like work queues to work around this limitation.
471 *
472 * You have been warned.
64db4cff 473 */
9b2e4f18 474void rcu_irq_exit(void)
64db4cff
PM
475{
476 unsigned long flags;
4145fa7f 477 long long oldval;
64db4cff
PM
478 struct rcu_dynticks *rdtp;
479
480 local_irq_save(flags);
481 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 482 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
483 rdtp->dynticks_nesting--;
484 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 485 if (rdtp->dynticks_nesting)
f7f7bac9 486 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 487 else
cb349ca9 488 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 489 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
490 local_irq_restore(flags);
491}
492
493/*
adf5091e 494 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
495 *
496 * If the new value of the ->dynticks_nesting counter was previously zero,
497 * we really have exited idle, and must do the appropriate accounting.
498 * The caller must have disabled interrupts.
499 */
adf5091e
FW
500static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
501 int user)
9b2e4f18 502{
23b5c8fa
PM
503 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
504 atomic_inc(&rdtp->dynticks);
505 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
506 smp_mb__after_atomic_inc(); /* See above. */
507 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 508 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 509 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 510 if (!user && !is_idle_task(current)) {
0989cb46
PM
511 struct task_struct *idle = idle_task(smp_processor_id());
512
f7f7bac9 513 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 514 oldval, rdtp->dynticks_nesting);
bf1304e9 515 ftrace_dump(DUMP_ORIG);
0989cb46
PM
516 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
517 current->pid, current->comm,
518 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
519 }
520}
521
adf5091e
FW
522/*
523 * Exit an RCU extended quiescent state, which can be either the
524 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 525 */
adf5091e 526static void rcu_eqs_exit(bool user)
9b2e4f18 527{
9b2e4f18
PM
528 struct rcu_dynticks *rdtp;
529 long long oldval;
530
9b2e4f18
PM
531 rdtp = &__get_cpu_var(rcu_dynticks);
532 oldval = rdtp->dynticks_nesting;
29e37d81
PM
533 WARN_ON_ONCE(oldval < 0);
534 if (oldval & DYNTICK_TASK_NEST_MASK)
535 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
536 else
537 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 538 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 539}
adf5091e
FW
540
541/**
542 * rcu_idle_exit - inform RCU that current CPU is leaving idle
543 *
544 * Exit idle mode, in other words, -enter- the mode in which RCU
545 * read-side critical sections can occur.
546 *
547 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
548 * allow for the possibility of usermode upcalls messing up our count
549 * of interrupt nesting level during the busy period that is just
550 * now starting.
551 */
552void rcu_idle_exit(void)
553{
c5d900bf
FW
554 unsigned long flags;
555
556 local_irq_save(flags);
cb349ca9 557 rcu_eqs_exit(false);
eb348b89 558 rcu_sysidle_exit(&__get_cpu_var(rcu_dynticks), 0);
c5d900bf 559 local_irq_restore(flags);
adf5091e 560}
8a2ecf47 561EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 562
2b1d5024 563#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
564/**
565 * rcu_user_exit - inform RCU that we are exiting userspace.
566 *
567 * Exit RCU idle mode while entering the kernel because it can
568 * run a RCU read side critical section anytime.
569 */
570void rcu_user_exit(void)
571{
91d1aa43 572 rcu_eqs_exit(1);
adf5091e 573}
2b1d5024 574#endif /* CONFIG_RCU_USER_QS */
19dd1591 575
9b2e4f18
PM
576/**
577 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
578 *
579 * Enter an interrupt handler, which might possibly result in exiting
580 * idle mode, in other words, entering the mode in which read-side critical
581 * sections can occur.
582 *
583 * Note that the Linux kernel is fully capable of entering an interrupt
584 * handler that it never exits, for example when doing upcalls to
585 * user mode! This code assumes that the idle loop never does upcalls to
586 * user mode. If your architecture does do upcalls from the idle loop (or
587 * does anything else that results in unbalanced calls to the irq_enter()
588 * and irq_exit() functions), RCU will give you what you deserve, good
589 * and hard. But very infrequently and irreproducibly.
590 *
591 * Use things like work queues to work around this limitation.
592 *
593 * You have been warned.
594 */
595void rcu_irq_enter(void)
596{
597 unsigned long flags;
598 struct rcu_dynticks *rdtp;
599 long long oldval;
600
601 local_irq_save(flags);
602 rdtp = &__get_cpu_var(rcu_dynticks);
603 oldval = rdtp->dynticks_nesting;
604 rdtp->dynticks_nesting++;
605 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 606 if (oldval)
f7f7bac9 607 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 608 else
cb349ca9 609 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 610 rcu_sysidle_exit(rdtp, 1);
64db4cff 611 local_irq_restore(flags);
64db4cff
PM
612}
613
614/**
615 * rcu_nmi_enter - inform RCU of entry to NMI context
616 *
617 * If the CPU was idle with dynamic ticks active, and there is no
618 * irq handler running, this updates rdtp->dynticks_nmi to let the
619 * RCU grace-period handling know that the CPU is active.
620 */
621void rcu_nmi_enter(void)
622{
623 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
624
23b5c8fa
PM
625 if (rdtp->dynticks_nmi_nesting == 0 &&
626 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 627 return;
23b5c8fa
PM
628 rdtp->dynticks_nmi_nesting++;
629 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
630 atomic_inc(&rdtp->dynticks);
631 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
632 smp_mb__after_atomic_inc(); /* See above. */
633 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
634}
635
636/**
637 * rcu_nmi_exit - inform RCU of exit from NMI context
638 *
639 * If the CPU was idle with dynamic ticks active, and there is no
640 * irq handler running, this updates rdtp->dynticks_nmi to let the
641 * RCU grace-period handling know that the CPU is no longer active.
642 */
643void rcu_nmi_exit(void)
644{
645 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
646
23b5c8fa
PM
647 if (rdtp->dynticks_nmi_nesting == 0 ||
648 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 649 return;
23b5c8fa
PM
650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
651 smp_mb__before_atomic_inc(); /* See above. */
652 atomic_inc(&rdtp->dynticks);
653 smp_mb__after_atomic_inc(); /* Force delay to next write. */
654 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
655}
656
657/**
9b2e4f18 658 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 659 *
9b2e4f18 660 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 661 * or NMI handler, return true.
64db4cff 662 */
9b2e4f18 663int rcu_is_cpu_idle(void)
64db4cff 664{
34240697
PM
665 int ret;
666
667 preempt_disable();
668 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
669 preempt_enable();
670 return ret;
64db4cff 671}
e6b80a3b 672EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 673
62fde6ed 674#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
675
676/*
677 * Is the current CPU online? Disable preemption to avoid false positives
678 * that could otherwise happen due to the current CPU number being sampled,
679 * this task being preempted, its old CPU being taken offline, resuming
680 * on some other CPU, then determining that its old CPU is now offline.
681 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
682 * the check for rcu_scheduler_fully_active. Note also that it is OK
683 * for a CPU coming online to use RCU for one jiffy prior to marking itself
684 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
685 * offline to continue to use RCU for one jiffy after marking itself
686 * offline in the cpu_online_mask. This leniency is necessary given the
687 * non-atomic nature of the online and offline processing, for example,
688 * the fact that a CPU enters the scheduler after completing the CPU_DYING
689 * notifiers.
690 *
691 * This is also why RCU internally marks CPUs online during the
692 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
693 *
694 * Disable checking if in an NMI handler because we cannot safely report
695 * errors from NMI handlers anyway.
696 */
697bool rcu_lockdep_current_cpu_online(void)
698{
2036d94a
PM
699 struct rcu_data *rdp;
700 struct rcu_node *rnp;
c0d6d01b
PM
701 bool ret;
702
703 if (in_nmi())
704 return 1;
705 preempt_disable();
2036d94a
PM
706 rdp = &__get_cpu_var(rcu_sched_data);
707 rnp = rdp->mynode;
708 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
709 !rcu_scheduler_fully_active;
710 preempt_enable();
711 return ret;
712}
713EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
714
62fde6ed 715#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 716
64db4cff 717/**
9b2e4f18 718 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 719 *
9b2e4f18
PM
720 * If the current CPU is idle or running at a first-level (not nested)
721 * interrupt from idle, return true. The caller must have at least
722 * disabled preemption.
64db4cff 723 */
62e3cb14 724static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 725{
9b2e4f18 726 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
727}
728
64db4cff
PM
729/*
730 * Snapshot the specified CPU's dynticks counter so that we can later
731 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 732 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 733 */
217af2a2
PM
734static int dyntick_save_progress_counter(struct rcu_data *rdp,
735 bool *isidle, unsigned long *maxj)
64db4cff 736{
23b5c8fa 737 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 738 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 739 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
740}
741
742/*
743 * Return true if the specified CPU has passed through a quiescent
744 * state by virtue of being in or having passed through an dynticks
745 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 746 * for this same CPU, or by virtue of having been offline.
64db4cff 747 */
217af2a2
PM
748static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
749 bool *isidle, unsigned long *maxj)
64db4cff 750{
7eb4f455
PM
751 unsigned int curr;
752 unsigned int snap;
64db4cff 753
7eb4f455
PM
754 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
755 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
756
757 /*
758 * If the CPU passed through or entered a dynticks idle phase with
759 * no active irq/NMI handlers, then we can safely pretend that the CPU
760 * already acknowledged the request to pass through a quiescent
761 * state. Either way, that CPU cannot possibly be in an RCU
762 * read-side critical section that started before the beginning
763 * of the current RCU grace period.
764 */
7eb4f455 765 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 766 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
767 rdp->dynticks_fqs++;
768 return 1;
769 }
770
a82dcc76
PM
771 /*
772 * Check for the CPU being offline, but only if the grace period
773 * is old enough. We don't need to worry about the CPU changing
774 * state: If we see it offline even once, it has been through a
775 * quiescent state.
776 *
777 * The reason for insisting that the grace period be at least
778 * one jiffy old is that CPUs that are not quite online and that
779 * have just gone offline can still execute RCU read-side critical
780 * sections.
781 */
782 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
783 return 0; /* Grace period is not old enough. */
784 barrier();
785 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 786 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
787 rdp->offline_fqs++;
788 return 1;
789 }
65d798f0
PM
790
791 /*
792 * There is a possibility that a CPU in adaptive-ticks state
793 * might run in the kernel with the scheduling-clock tick disabled
794 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
795 * force the CPU to restart the scheduling-clock tick in this
796 * CPU is in this state.
797 */
798 rcu_kick_nohz_cpu(rdp->cpu);
799
a82dcc76 800 return 0;
64db4cff
PM
801}
802
64db4cff
PM
803static void record_gp_stall_check_time(struct rcu_state *rsp)
804{
805 rsp->gp_start = jiffies;
6bfc09e2 806 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
807}
808
b637a328
PM
809/*
810 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
811 * for architectures that do not implement trigger_all_cpu_backtrace().
812 * The NMI-triggered stack traces are more accurate because they are
813 * printed by the target CPU.
814 */
815static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
816{
817 int cpu;
818 unsigned long flags;
819 struct rcu_node *rnp;
820
821 rcu_for_each_leaf_node(rsp, rnp) {
822 raw_spin_lock_irqsave(&rnp->lock, flags);
823 if (rnp->qsmask != 0) {
824 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
825 if (rnp->qsmask & (1UL << cpu))
826 dump_cpu_task(rnp->grplo + cpu);
827 }
828 raw_spin_unlock_irqrestore(&rnp->lock, flags);
829 }
830}
831
64db4cff
PM
832static void print_other_cpu_stall(struct rcu_state *rsp)
833{
834 int cpu;
835 long delta;
836 unsigned long flags;
285fe294 837 int ndetected = 0;
64db4cff 838 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 839 long totqlen = 0;
64db4cff
PM
840
841 /* Only let one CPU complain about others per time interval. */
842
1304afb2 843 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 844 delta = jiffies - rsp->jiffies_stall;
fc2219d4 845 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 846 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
847 return;
848 }
6bfc09e2 849 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 850 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 851
8cdd32a9
PM
852 /*
853 * OK, time to rat on our buddy...
854 * See Documentation/RCU/stallwarn.txt for info on how to debug
855 * RCU CPU stall warnings.
856 */
d7f3e207 857 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 858 rsp->name);
a858af28 859 print_cpu_stall_info_begin();
a0b6c9a7 860 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 861 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 862 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
863 if (rnp->qsmask != 0) {
864 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
865 if (rnp->qsmask & (1UL << cpu)) {
866 print_cpu_stall_info(rsp,
867 rnp->grplo + cpu);
868 ndetected++;
869 }
870 }
3acd9eb3 871 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 872 }
a858af28
PM
873
874 /*
875 * Now rat on any tasks that got kicked up to the root rcu_node
876 * due to CPU offlining.
877 */
878 rnp = rcu_get_root(rsp);
879 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 880 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
881 raw_spin_unlock_irqrestore(&rnp->lock, flags);
882
883 print_cpu_stall_info_end();
53bb857c
PM
884 for_each_possible_cpu(cpu)
885 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
886 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 887 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 888 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 889 if (ndetected == 0)
d7f3e207 890 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 891 else if (!trigger_all_cpu_backtrace())
b637a328 892 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 893
4cdfc175 894 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
895
896 rcu_print_detail_task_stall(rsp);
897
4cdfc175 898 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
899}
900
901static void print_cpu_stall(struct rcu_state *rsp)
902{
53bb857c 903 int cpu;
64db4cff
PM
904 unsigned long flags;
905 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 906 long totqlen = 0;
64db4cff 907
8cdd32a9
PM
908 /*
909 * OK, time to rat on ourselves...
910 * See Documentation/RCU/stallwarn.txt for info on how to debug
911 * RCU CPU stall warnings.
912 */
d7f3e207 913 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
914 print_cpu_stall_info_begin();
915 print_cpu_stall_info(rsp, smp_processor_id());
916 print_cpu_stall_info_end();
53bb857c
PM
917 for_each_possible_cpu(cpu)
918 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
919 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
920 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
921 if (!trigger_all_cpu_backtrace())
922 dump_stack();
c1dc0b9c 923
1304afb2 924 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 925 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 926 rsp->jiffies_stall = jiffies +
6bfc09e2 927 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 928 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 929
64db4cff
PM
930 set_need_resched(); /* kick ourselves to get things going. */
931}
932
933static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
934{
bad6e139
PM
935 unsigned long j;
936 unsigned long js;
64db4cff
PM
937 struct rcu_node *rnp;
938
742734ee 939 if (rcu_cpu_stall_suppress)
c68de209 940 return;
bad6e139
PM
941 j = ACCESS_ONCE(jiffies);
942 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 943 rnp = rdp->mynode;
c96ea7cf
PM
944 if (rcu_gp_in_progress(rsp) &&
945 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
946
947 /* We haven't checked in, so go dump stack. */
948 print_cpu_stall(rsp);
949
bad6e139
PM
950 } else if (rcu_gp_in_progress(rsp) &&
951 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 952
bad6e139 953 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
954 print_other_cpu_stall(rsp);
955 }
956}
957
53d84e00
PM
958/**
959 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
960 *
961 * Set the stall-warning timeout way off into the future, thus preventing
962 * any RCU CPU stall-warning messages from appearing in the current set of
963 * RCU grace periods.
964 *
965 * The caller must disable hard irqs.
966 */
967void rcu_cpu_stall_reset(void)
968{
6ce75a23
PM
969 struct rcu_state *rsp;
970
971 for_each_rcu_flavor(rsp)
972 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
973}
974
3f5d3ea6
PM
975/*
976 * Initialize the specified rcu_data structure's callback list to empty.
977 */
978static void init_callback_list(struct rcu_data *rdp)
979{
980 int i;
981
34ed6246
PM
982 if (init_nocb_callback_list(rdp))
983 return;
3f5d3ea6
PM
984 rdp->nxtlist = NULL;
985 for (i = 0; i < RCU_NEXT_SIZE; i++)
986 rdp->nxttail[i] = &rdp->nxtlist;
987}
988
dc35c893
PM
989/*
990 * Determine the value that ->completed will have at the end of the
991 * next subsequent grace period. This is used to tag callbacks so that
992 * a CPU can invoke callbacks in a timely fashion even if that CPU has
993 * been dyntick-idle for an extended period with callbacks under the
994 * influence of RCU_FAST_NO_HZ.
995 *
996 * The caller must hold rnp->lock with interrupts disabled.
997 */
998static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
999 struct rcu_node *rnp)
1000{
1001 /*
1002 * If RCU is idle, we just wait for the next grace period.
1003 * But we can only be sure that RCU is idle if we are looking
1004 * at the root rcu_node structure -- otherwise, a new grace
1005 * period might have started, but just not yet gotten around
1006 * to initializing the current non-root rcu_node structure.
1007 */
1008 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1009 return rnp->completed + 1;
1010
1011 /*
1012 * Otherwise, wait for a possible partial grace period and
1013 * then the subsequent full grace period.
1014 */
1015 return rnp->completed + 2;
1016}
1017
0446be48
PM
1018/*
1019 * Trace-event helper function for rcu_start_future_gp() and
1020 * rcu_nocb_wait_gp().
1021 */
1022static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1023 unsigned long c, const char *s)
0446be48
PM
1024{
1025 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1026 rnp->completed, c, rnp->level,
1027 rnp->grplo, rnp->grphi, s);
1028}
1029
1030/*
1031 * Start some future grace period, as needed to handle newly arrived
1032 * callbacks. The required future grace periods are recorded in each
1033 * rcu_node structure's ->need_future_gp field.
1034 *
1035 * The caller must hold the specified rcu_node structure's ->lock.
1036 */
1037static unsigned long __maybe_unused
1038rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1039{
1040 unsigned long c;
1041 int i;
1042 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1043
1044 /*
1045 * Pick up grace-period number for new callbacks. If this
1046 * grace period is already marked as needed, return to the caller.
1047 */
1048 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1049 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1050 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1051 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1052 return c;
1053 }
1054
1055 /*
1056 * If either this rcu_node structure or the root rcu_node structure
1057 * believe that a grace period is in progress, then we must wait
1058 * for the one following, which is in "c". Because our request
1059 * will be noticed at the end of the current grace period, we don't
1060 * need to explicitly start one.
1061 */
1062 if (rnp->gpnum != rnp->completed ||
1063 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1064 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1065 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1066 return c;
1067 }
1068
1069 /*
1070 * There might be no grace period in progress. If we don't already
1071 * hold it, acquire the root rcu_node structure's lock in order to
1072 * start one (if needed).
1073 */
1074 if (rnp != rnp_root)
1075 raw_spin_lock(&rnp_root->lock);
1076
1077 /*
1078 * Get a new grace-period number. If there really is no grace
1079 * period in progress, it will be smaller than the one we obtained
1080 * earlier. Adjust callbacks as needed. Note that even no-CBs
1081 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1082 */
1083 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1084 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1085 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1086 rdp->nxtcompleted[i] = c;
1087
1088 /*
1089 * If the needed for the required grace period is already
1090 * recorded, trace and leave.
1091 */
1092 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1093 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1094 goto unlock_out;
1095 }
1096
1097 /* Record the need for the future grace period. */
1098 rnp_root->need_future_gp[c & 0x1]++;
1099
1100 /* If a grace period is not already in progress, start one. */
1101 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1102 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1103 } else {
f7f7bac9 1104 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1105 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1106 }
1107unlock_out:
1108 if (rnp != rnp_root)
1109 raw_spin_unlock(&rnp_root->lock);
1110 return c;
1111}
1112
1113/*
1114 * Clean up any old requests for the just-ended grace period. Also return
1115 * whether any additional grace periods have been requested. Also invoke
1116 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1117 * waiting for this grace period to complete.
1118 */
1119static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1120{
1121 int c = rnp->completed;
1122 int needmore;
1123 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1124
1125 rcu_nocb_gp_cleanup(rsp, rnp);
1126 rnp->need_future_gp[c & 0x1] = 0;
1127 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1128 trace_rcu_future_gp(rnp, rdp, c,
1129 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1130 return needmore;
1131}
1132
dc35c893
PM
1133/*
1134 * If there is room, assign a ->completed number to any callbacks on
1135 * this CPU that have not already been assigned. Also accelerate any
1136 * callbacks that were previously assigned a ->completed number that has
1137 * since proven to be too conservative, which can happen if callbacks get
1138 * assigned a ->completed number while RCU is idle, but with reference to
1139 * a non-root rcu_node structure. This function is idempotent, so it does
1140 * not hurt to call it repeatedly.
1141 *
1142 * The caller must hold rnp->lock with interrupts disabled.
1143 */
1144static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1145 struct rcu_data *rdp)
1146{
1147 unsigned long c;
1148 int i;
1149
1150 /* If the CPU has no callbacks, nothing to do. */
1151 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1152 return;
1153
1154 /*
1155 * Starting from the sublist containing the callbacks most
1156 * recently assigned a ->completed number and working down, find the
1157 * first sublist that is not assignable to an upcoming grace period.
1158 * Such a sublist has something in it (first two tests) and has
1159 * a ->completed number assigned that will complete sooner than
1160 * the ->completed number for newly arrived callbacks (last test).
1161 *
1162 * The key point is that any later sublist can be assigned the
1163 * same ->completed number as the newly arrived callbacks, which
1164 * means that the callbacks in any of these later sublist can be
1165 * grouped into a single sublist, whether or not they have already
1166 * been assigned a ->completed number.
1167 */
1168 c = rcu_cbs_completed(rsp, rnp);
1169 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1170 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1171 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1172 break;
1173
1174 /*
1175 * If there are no sublist for unassigned callbacks, leave.
1176 * At the same time, advance "i" one sublist, so that "i" will
1177 * index into the sublist where all the remaining callbacks should
1178 * be grouped into.
1179 */
1180 if (++i >= RCU_NEXT_TAIL)
1181 return;
1182
1183 /*
1184 * Assign all subsequent callbacks' ->completed number to the next
1185 * full grace period and group them all in the sublist initially
1186 * indexed by "i".
1187 */
1188 for (; i <= RCU_NEXT_TAIL; i++) {
1189 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1190 rdp->nxtcompleted[i] = c;
1191 }
910ee45d
PM
1192 /* Record any needed additional grace periods. */
1193 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1194
1195 /* Trace depending on how much we were able to accelerate. */
1196 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1197 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1198 else
f7f7bac9 1199 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1200}
1201
1202/*
1203 * Move any callbacks whose grace period has completed to the
1204 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1205 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1206 * sublist. This function is idempotent, so it does not hurt to
1207 * invoke it repeatedly. As long as it is not invoked -too- often...
1208 *
1209 * The caller must hold rnp->lock with interrupts disabled.
1210 */
1211static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1212 struct rcu_data *rdp)
1213{
1214 int i, j;
1215
1216 /* If the CPU has no callbacks, nothing to do. */
1217 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1218 return;
1219
1220 /*
1221 * Find all callbacks whose ->completed numbers indicate that they
1222 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1223 */
1224 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1225 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1226 break;
1227 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1228 }
1229 /* Clean up any sublist tail pointers that were misordered above. */
1230 for (j = RCU_WAIT_TAIL; j < i; j++)
1231 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1232
1233 /* Copy down callbacks to fill in empty sublists. */
1234 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1235 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1236 break;
1237 rdp->nxttail[j] = rdp->nxttail[i];
1238 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1239 }
1240
1241 /* Classify any remaining callbacks. */
1242 rcu_accelerate_cbs(rsp, rnp, rdp);
1243}
1244
d09b62df 1245/*
ba9fbe95
PM
1246 * Update CPU-local rcu_data state to record the beginnings and ends of
1247 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1248 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1249 */
ba9fbe95 1250static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1251{
ba9fbe95 1252 /* Handle the ends of any preceding grace periods first. */
dc35c893 1253 if (rdp->completed == rnp->completed) {
d09b62df 1254
ba9fbe95 1255 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1256 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1257
dc35c893
PM
1258 } else {
1259
1260 /* Advance callbacks. */
1261 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1262
1263 /* Remember that we saw this grace-period completion. */
1264 rdp->completed = rnp->completed;
f7f7bac9 1265 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1266 }
398ebe60 1267
6eaef633
PM
1268 if (rdp->gpnum != rnp->gpnum) {
1269 /*
1270 * If the current grace period is waiting for this CPU,
1271 * set up to detect a quiescent state, otherwise don't
1272 * go looking for one.
1273 */
1274 rdp->gpnum = rnp->gpnum;
f7f7bac9 1275 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1276 rdp->passed_quiesce = 0;
1277 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1278 zero_cpu_stall_ticks(rdp);
1279 }
1280}
1281
d34ea322 1282static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1283{
1284 unsigned long flags;
1285 struct rcu_node *rnp;
1286
1287 local_irq_save(flags);
1288 rnp = rdp->mynode;
d34ea322
PM
1289 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1290 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1291 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1292 local_irq_restore(flags);
1293 return;
1294 }
d34ea322 1295 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1296 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1297}
1298
b3dbec76 1299/*
f7be8209 1300 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1301 */
7fdefc10 1302static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1303{
1304 struct rcu_data *rdp;
7fdefc10 1305 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1306
eb75767b 1307 rcu_bind_gp_kthread();
7fdefc10 1308 raw_spin_lock_irq(&rnp->lock);
f7be8209
PM
1309 if (rsp->gp_flags == 0) {
1310 /* Spurious wakeup, tell caller to go back to sleep. */
1311 raw_spin_unlock_irq(&rnp->lock);
1312 return 0;
1313 }
4cdfc175 1314 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1315
f7be8209
PM
1316 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1317 /*
1318 * Grace period already in progress, don't start another.
1319 * Not supposed to be able to happen.
1320 */
7fdefc10
PM
1321 raw_spin_unlock_irq(&rnp->lock);
1322 return 0;
1323 }
1324
7fdefc10
PM
1325 /* Advance to a new grace period and initialize state. */
1326 rsp->gpnum++;
f7f7bac9 1327 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1328 record_gp_stall_check_time(rsp);
1329 raw_spin_unlock_irq(&rnp->lock);
1330
1331 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1332 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1333
1334 /*
1335 * Set the quiescent-state-needed bits in all the rcu_node
1336 * structures for all currently online CPUs in breadth-first order,
1337 * starting from the root rcu_node structure, relying on the layout
1338 * of the tree within the rsp->node[] array. Note that other CPUs
1339 * will access only the leaves of the hierarchy, thus seeing that no
1340 * grace period is in progress, at least until the corresponding
1341 * leaf node has been initialized. In addition, we have excluded
1342 * CPU-hotplug operations.
1343 *
1344 * The grace period cannot complete until the initialization
1345 * process finishes, because this kthread handles both.
1346 */
1347 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1348 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1349 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1350 rcu_preempt_check_blocked_tasks(rnp);
1351 rnp->qsmask = rnp->qsmaskinit;
0446be48 1352 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1353 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1354 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1355 if (rnp == rdp->mynode)
ce3d9c03 1356 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1357 rcu_preempt_boost_start_gp(rnp);
1358 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1359 rnp->level, rnp->grplo,
1360 rnp->grphi, rnp->qsmask);
1361 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1362#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1363 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1364 system_state == SYSTEM_RUNNING)
971394f3 1365 udelay(200);
661a85dc 1366#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1367 cond_resched();
1368 }
b3dbec76 1369
a4fbe35a 1370 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1371 return 1;
1372}
b3dbec76 1373
4cdfc175
PM
1374/*
1375 * Do one round of quiescent-state forcing.
1376 */
1377int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1378{
1379 int fqs_state = fqs_state_in;
217af2a2
PM
1380 bool isidle = false;
1381 unsigned long maxj;
4cdfc175
PM
1382 struct rcu_node *rnp = rcu_get_root(rsp);
1383
1384 rsp->n_force_qs++;
1385 if (fqs_state == RCU_SAVE_DYNTICK) {
1386 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1387 if (is_sysidle_rcu_state(rsp)) {
1388 isidle = 1;
1389 maxj = jiffies - ULONG_MAX / 4;
1390 }
217af2a2
PM
1391 force_qs_rnp(rsp, dyntick_save_progress_counter,
1392 &isidle, &maxj);
0edd1b17 1393 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1394 fqs_state = RCU_FORCE_QS;
1395 } else {
1396 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1397 isidle = 0;
217af2a2 1398 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1399 }
1400 /* Clear flag to prevent immediate re-entry. */
1401 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1402 raw_spin_lock_irq(&rnp->lock);
1403 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1404 raw_spin_unlock_irq(&rnp->lock);
1405 }
1406 return fqs_state;
1407}
1408
7fdefc10
PM
1409/*
1410 * Clean up after the old grace period.
1411 */
4cdfc175 1412static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1413{
1414 unsigned long gp_duration;
dae6e64d 1415 int nocb = 0;
7fdefc10
PM
1416 struct rcu_data *rdp;
1417 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1418
7fdefc10
PM
1419 raw_spin_lock_irq(&rnp->lock);
1420 gp_duration = jiffies - rsp->gp_start;
1421 if (gp_duration > rsp->gp_max)
1422 rsp->gp_max = gp_duration;
b3dbec76 1423
7fdefc10
PM
1424 /*
1425 * We know the grace period is complete, but to everyone else
1426 * it appears to still be ongoing. But it is also the case
1427 * that to everyone else it looks like there is nothing that
1428 * they can do to advance the grace period. It is therefore
1429 * safe for us to drop the lock in order to mark the grace
1430 * period as completed in all of the rcu_node structures.
7fdefc10 1431 */
5d4b8659 1432 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1433
5d4b8659
PM
1434 /*
1435 * Propagate new ->completed value to rcu_node structures so
1436 * that other CPUs don't have to wait until the start of the next
1437 * grace period to process their callbacks. This also avoids
1438 * some nasty RCU grace-period initialization races by forcing
1439 * the end of the current grace period to be completely recorded in
1440 * all of the rcu_node structures before the beginning of the next
1441 * grace period is recorded in any of the rcu_node structures.
1442 */
1443 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1444 raw_spin_lock_irq(&rnp->lock);
0446be48 1445 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1446 rdp = this_cpu_ptr(rsp->rda);
1447 if (rnp == rdp->mynode)
470716fc 1448 __note_gp_changes(rsp, rnp, rdp);
0446be48 1449 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1450 raw_spin_unlock_irq(&rnp->lock);
1451 cond_resched();
7fdefc10 1452 }
5d4b8659
PM
1453 rnp = rcu_get_root(rsp);
1454 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1455 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1456
1457 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1458 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1459 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1460 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1461 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1462 if (cpu_needs_another_gp(rsp, rdp))
1463 rsp->gp_flags = 1;
1464 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1465}
1466
1467/*
1468 * Body of kthread that handles grace periods.
1469 */
1470static int __noreturn rcu_gp_kthread(void *arg)
1471{
4cdfc175 1472 int fqs_state;
88d6df61 1473 int gf;
d40011f6 1474 unsigned long j;
4cdfc175 1475 int ret;
7fdefc10
PM
1476 struct rcu_state *rsp = arg;
1477 struct rcu_node *rnp = rcu_get_root(rsp);
1478
1479 for (;;) {
1480
1481 /* Handle grace-period start. */
1482 for (;;) {
4cdfc175 1483 wait_event_interruptible(rsp->gp_wq,
591c6d17 1484 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1485 RCU_GP_FLAG_INIT);
f7be8209 1486 if (rcu_gp_init(rsp))
7fdefc10
PM
1487 break;
1488 cond_resched();
1489 flush_signals(current);
1490 }
cabc49c1 1491
4cdfc175
PM
1492 /* Handle quiescent-state forcing. */
1493 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1494 j = jiffies_till_first_fqs;
1495 if (j > HZ) {
1496 j = HZ;
1497 jiffies_till_first_fqs = HZ;
1498 }
88d6df61 1499 ret = 0;
cabc49c1 1500 for (;;) {
88d6df61
PM
1501 if (!ret)
1502 rsp->jiffies_force_qs = jiffies + j;
4cdfc175 1503 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1504 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1505 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1506 (!ACCESS_ONCE(rnp->qsmask) &&
1507 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1508 j);
4cdfc175 1509 /* If grace period done, leave loop. */
cabc49c1 1510 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1511 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1512 break;
4cdfc175 1513 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1514 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1515 (gf & RCU_GP_FLAG_FQS)) {
4cdfc175
PM
1516 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1517 cond_resched();
1518 } else {
1519 /* Deal with stray signal. */
1520 cond_resched();
1521 flush_signals(current);
1522 }
d40011f6
PM
1523 j = jiffies_till_next_fqs;
1524 if (j > HZ) {
1525 j = HZ;
1526 jiffies_till_next_fqs = HZ;
1527 } else if (j < 1) {
1528 j = 1;
1529 jiffies_till_next_fqs = 1;
1530 }
cabc49c1 1531 }
4cdfc175
PM
1532
1533 /* Handle grace-period end. */
1534 rcu_gp_cleanup(rsp);
b3dbec76 1535 }
b3dbec76
PM
1536}
1537
016a8d5b
SR
1538static void rsp_wakeup(struct irq_work *work)
1539{
1540 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1541
1542 /* Wake up rcu_gp_kthread() to start the grace period. */
1543 wake_up(&rsp->gp_wq);
1544}
1545
64db4cff
PM
1546/*
1547 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1548 * in preparation for detecting the next grace period. The caller must hold
b8462084 1549 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1550 *
1551 * Note that it is legal for a dying CPU (which is marked as offline) to
1552 * invoke this function. This can happen when the dying CPU reports its
1553 * quiescent state.
64db4cff
PM
1554 */
1555static void
910ee45d
PM
1556rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1557 struct rcu_data *rdp)
64db4cff 1558{
b8462084 1559 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1560 /*
b3dbec76 1561 * Either we have not yet spawned the grace-period
62da1921
PM
1562 * task, this CPU does not need another grace period,
1563 * or a grace period is already in progress.
b3dbec76 1564 * Either way, don't start a new grace period.
afe24b12 1565 */
afe24b12
PM
1566 return;
1567 }
4cdfc175 1568 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1569
016a8d5b
SR
1570 /*
1571 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1572 * could cause possible deadlocks with the rq->lock. Defer
1573 * the wakeup to interrupt context. And don't bother waking
1574 * up the running kthread.
016a8d5b 1575 */
1eafd31c
PM
1576 if (current != rsp->gp_kthread)
1577 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1578}
1579
910ee45d
PM
1580/*
1581 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1582 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1583 * is invoked indirectly from rcu_advance_cbs(), which would result in
1584 * endless recursion -- or would do so if it wasn't for the self-deadlock
1585 * that is encountered beforehand.
1586 */
1587static void
1588rcu_start_gp(struct rcu_state *rsp)
1589{
1590 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1591 struct rcu_node *rnp = rcu_get_root(rsp);
1592
1593 /*
1594 * If there is no grace period in progress right now, any
1595 * callbacks we have up to this point will be satisfied by the
1596 * next grace period. Also, advancing the callbacks reduces the
1597 * probability of false positives from cpu_needs_another_gp()
1598 * resulting in pointless grace periods. So, advance callbacks
1599 * then start the grace period!
1600 */
1601 rcu_advance_cbs(rsp, rnp, rdp);
1602 rcu_start_gp_advanced(rsp, rnp, rdp);
1603}
1604
f41d911f 1605/*
d3f6bad3
PM
1606 * Report a full set of quiescent states to the specified rcu_state
1607 * data structure. This involves cleaning up after the prior grace
1608 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1609 * if one is needed. Note that the caller must hold rnp->lock, which
1610 * is released before return.
f41d911f 1611 */
d3f6bad3 1612static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1613 __releases(rcu_get_root(rsp)->lock)
f41d911f 1614{
fc2219d4 1615 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1616 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1617 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1618}
1619
64db4cff 1620/*
d3f6bad3
PM
1621 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1622 * Allows quiescent states for a group of CPUs to be reported at one go
1623 * to the specified rcu_node structure, though all the CPUs in the group
1624 * must be represented by the same rcu_node structure (which need not be
1625 * a leaf rcu_node structure, though it often will be). That structure's
1626 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1627 */
1628static void
d3f6bad3
PM
1629rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1630 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1631 __releases(rnp->lock)
1632{
28ecd580
PM
1633 struct rcu_node *rnp_c;
1634
64db4cff
PM
1635 /* Walk up the rcu_node hierarchy. */
1636 for (;;) {
1637 if (!(rnp->qsmask & mask)) {
1638
1639 /* Our bit has already been cleared, so done. */
1304afb2 1640 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1641 return;
1642 }
1643 rnp->qsmask &= ~mask;
d4c08f2a
PM
1644 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1645 mask, rnp->qsmask, rnp->level,
1646 rnp->grplo, rnp->grphi,
1647 !!rnp->gp_tasks);
27f4d280 1648 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1649
1650 /* Other bits still set at this level, so done. */
1304afb2 1651 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1652 return;
1653 }
1654 mask = rnp->grpmask;
1655 if (rnp->parent == NULL) {
1656
1657 /* No more levels. Exit loop holding root lock. */
1658
1659 break;
1660 }
1304afb2 1661 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1662 rnp_c = rnp;
64db4cff 1663 rnp = rnp->parent;
1304afb2 1664 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1665 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1666 }
1667
1668 /*
1669 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1670 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1671 * to clean up and start the next grace period if one is needed.
64db4cff 1672 */
d3f6bad3 1673 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1674}
1675
1676/*
d3f6bad3
PM
1677 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1678 * structure. This must be either called from the specified CPU, or
1679 * called when the specified CPU is known to be offline (and when it is
1680 * also known that no other CPU is concurrently trying to help the offline
1681 * CPU). The lastcomp argument is used to make sure we are still in the
1682 * grace period of interest. We don't want to end the current grace period
1683 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1684 */
1685static void
d7d6a11e 1686rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1687{
1688 unsigned long flags;
1689 unsigned long mask;
1690 struct rcu_node *rnp;
1691
1692 rnp = rdp->mynode;
1304afb2 1693 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1694 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1695 rnp->completed == rnp->gpnum) {
64db4cff
PM
1696
1697 /*
e4cc1f22
PM
1698 * The grace period in which this quiescent state was
1699 * recorded has ended, so don't report it upwards.
1700 * We will instead need a new quiescent state that lies
1701 * within the current grace period.
64db4cff 1702 */
e4cc1f22 1703 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1704 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1705 return;
1706 }
1707 mask = rdp->grpmask;
1708 if ((rnp->qsmask & mask) == 0) {
1304afb2 1709 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1710 } else {
1711 rdp->qs_pending = 0;
1712
1713 /*
1714 * This GP can't end until cpu checks in, so all of our
1715 * callbacks can be processed during the next GP.
1716 */
dc35c893 1717 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1718
d3f6bad3 1719 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1720 }
1721}
1722
1723/*
1724 * Check to see if there is a new grace period of which this CPU
1725 * is not yet aware, and if so, set up local rcu_data state for it.
1726 * Otherwise, see if this CPU has just passed through its first
1727 * quiescent state for this grace period, and record that fact if so.
1728 */
1729static void
1730rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1731{
05eb552b
PM
1732 /* Check for grace-period ends and beginnings. */
1733 note_gp_changes(rsp, rdp);
64db4cff
PM
1734
1735 /*
1736 * Does this CPU still need to do its part for current grace period?
1737 * If no, return and let the other CPUs do their part as well.
1738 */
1739 if (!rdp->qs_pending)
1740 return;
1741
1742 /*
1743 * Was there a quiescent state since the beginning of the grace
1744 * period? If no, then exit and wait for the next call.
1745 */
e4cc1f22 1746 if (!rdp->passed_quiesce)
64db4cff
PM
1747 return;
1748
d3f6bad3
PM
1749 /*
1750 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1751 * judge of that).
1752 */
d7d6a11e 1753 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1754}
1755
1756#ifdef CONFIG_HOTPLUG_CPU
1757
e74f4c45 1758/*
b1420f1c
PM
1759 * Send the specified CPU's RCU callbacks to the orphanage. The
1760 * specified CPU must be offline, and the caller must hold the
7b2e6011 1761 * ->orphan_lock.
e74f4c45 1762 */
b1420f1c
PM
1763static void
1764rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1765 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1766{
3fbfbf7a 1767 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1768 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1769 return;
1770
b1420f1c
PM
1771 /*
1772 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1773 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1774 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1775 */
a50c3af9 1776 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1777 rsp->qlen_lazy += rdp->qlen_lazy;
1778 rsp->qlen += rdp->qlen;
1779 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1780 rdp->qlen_lazy = 0;
1d1fb395 1781 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1782 }
1783
1784 /*
b1420f1c
PM
1785 * Next, move those callbacks still needing a grace period to
1786 * the orphanage, where some other CPU will pick them up.
1787 * Some of the callbacks might have gone partway through a grace
1788 * period, but that is too bad. They get to start over because we
1789 * cannot assume that grace periods are synchronized across CPUs.
1790 * We don't bother updating the ->nxttail[] array yet, instead
1791 * we just reset the whole thing later on.
a50c3af9 1792 */
b1420f1c
PM
1793 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1794 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1795 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1796 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1797 }
1798
1799 /*
b1420f1c
PM
1800 * Then move the ready-to-invoke callbacks to the orphanage,
1801 * where some other CPU will pick them up. These will not be
1802 * required to pass though another grace period: They are done.
a50c3af9 1803 */
e5601400 1804 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1805 *rsp->orphan_donetail = rdp->nxtlist;
1806 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1807 }
e74f4c45 1808
b1420f1c 1809 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1810 init_callback_list(rdp);
b1420f1c
PM
1811}
1812
1813/*
1814 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1815 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1816 */
1817static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1818{
1819 int i;
1820 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1821
3fbfbf7a
PM
1822 /* No-CBs CPUs are handled specially. */
1823 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1824 return;
1825
b1420f1c
PM
1826 /* Do the accounting first. */
1827 rdp->qlen_lazy += rsp->qlen_lazy;
1828 rdp->qlen += rsp->qlen;
1829 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1830 if (rsp->qlen_lazy != rsp->qlen)
1831 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1832 rsp->qlen_lazy = 0;
1833 rsp->qlen = 0;
1834
1835 /*
1836 * We do not need a memory barrier here because the only way we
1837 * can get here if there is an rcu_barrier() in flight is if
1838 * we are the task doing the rcu_barrier().
1839 */
1840
1841 /* First adopt the ready-to-invoke callbacks. */
1842 if (rsp->orphan_donelist != NULL) {
1843 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1844 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1845 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1846 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1847 rdp->nxttail[i] = rsp->orphan_donetail;
1848 rsp->orphan_donelist = NULL;
1849 rsp->orphan_donetail = &rsp->orphan_donelist;
1850 }
1851
1852 /* And then adopt the callbacks that still need a grace period. */
1853 if (rsp->orphan_nxtlist != NULL) {
1854 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1855 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1856 rsp->orphan_nxtlist = NULL;
1857 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1858 }
1859}
1860
1861/*
1862 * Trace the fact that this CPU is going offline.
1863 */
1864static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1865{
1866 RCU_TRACE(unsigned long mask);
1867 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1868 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1869
1870 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1871 trace_rcu_grace_period(rsp->name,
1872 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1873 TPS("cpuofl"));
64db4cff
PM
1874}
1875
1876/*
e5601400 1877 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1878 * this fact from process context. Do the remainder of the cleanup,
1879 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1880 * adopting them. There can only be one CPU hotplug operation at a time,
1881 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1882 */
e5601400 1883static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1884{
2036d94a
PM
1885 unsigned long flags;
1886 unsigned long mask;
1887 int need_report = 0;
e5601400 1888 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1889 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1890
2036d94a 1891 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1892 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1893
b1420f1c 1894 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1895
1896 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1897 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1898 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1899
b1420f1c
PM
1900 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1901 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1902 rcu_adopt_orphan_cbs(rsp);
1903
2036d94a
PM
1904 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1905 mask = rdp->grpmask; /* rnp->grplo is constant. */
1906 do {
1907 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1908 rnp->qsmaskinit &= ~mask;
1909 if (rnp->qsmaskinit != 0) {
1910 if (rnp != rdp->mynode)
1911 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1912 break;
1913 }
1914 if (rnp == rdp->mynode)
1915 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1916 else
1917 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1918 mask = rnp->grpmask;
1919 rnp = rnp->parent;
1920 } while (rnp != NULL);
1921
1922 /*
1923 * We still hold the leaf rcu_node structure lock here, and
1924 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1925 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1926 * held leads to deadlock.
1927 */
7b2e6011 1928 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1929 rnp = rdp->mynode;
1930 if (need_report & RCU_OFL_TASKS_NORM_GP)
1931 rcu_report_unblock_qs_rnp(rnp, flags);
1932 else
1933 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1934 if (need_report & RCU_OFL_TASKS_EXP_GP)
1935 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1936 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1937 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1938 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1939 init_callback_list(rdp);
1940 /* Disallow further callbacks on this CPU. */
1941 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1942 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1943}
1944
1945#else /* #ifdef CONFIG_HOTPLUG_CPU */
1946
e5601400 1947static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1948{
1949}
1950
e5601400 1951static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1952{
1953}
1954
1955#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1956
1957/*
1958 * Invoke any RCU callbacks that have made it to the end of their grace
1959 * period. Thottle as specified by rdp->blimit.
1960 */
37c72e56 1961static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1962{
1963 unsigned long flags;
1964 struct rcu_head *next, *list, **tail;
878d7439
ED
1965 long bl, count, count_lazy;
1966 int i;
64db4cff 1967
dc35c893 1968 /* If no callbacks are ready, just return. */
29c00b4a 1969 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1970 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1971 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1972 need_resched(), is_idle_task(current),
1973 rcu_is_callbacks_kthread());
64db4cff 1974 return;
29c00b4a 1975 }
64db4cff
PM
1976
1977 /*
1978 * Extract the list of ready callbacks, disabling to prevent
1979 * races with call_rcu() from interrupt handlers.
1980 */
1981 local_irq_save(flags);
8146c4e2 1982 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1983 bl = rdp->blimit;
486e2593 1984 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1985 list = rdp->nxtlist;
1986 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1987 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1988 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1989 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1990 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1991 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1992 local_irq_restore(flags);
1993
1994 /* Invoke callbacks. */
486e2593 1995 count = count_lazy = 0;
64db4cff
PM
1996 while (list) {
1997 next = list->next;
1998 prefetch(next);
551d55a9 1999 debug_rcu_head_unqueue(list);
486e2593
PM
2000 if (__rcu_reclaim(rsp->name, list))
2001 count_lazy++;
64db4cff 2002 list = next;
dff1672d
PM
2003 /* Stop only if limit reached and CPU has something to do. */
2004 if (++count >= bl &&
2005 (need_resched() ||
2006 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2007 break;
2008 }
2009
2010 local_irq_save(flags);
4968c300
PM
2011 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2012 is_idle_task(current),
2013 rcu_is_callbacks_kthread());
64db4cff
PM
2014
2015 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2016 if (list != NULL) {
2017 *tail = rdp->nxtlist;
2018 rdp->nxtlist = list;
b41772ab
PM
2019 for (i = 0; i < RCU_NEXT_SIZE; i++)
2020 if (&rdp->nxtlist == rdp->nxttail[i])
2021 rdp->nxttail[i] = tail;
64db4cff
PM
2022 else
2023 break;
2024 }
b1420f1c
PM
2025 smp_mb(); /* List handling before counting for rcu_barrier(). */
2026 rdp->qlen_lazy -= count_lazy;
1d1fb395 2027 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2028 rdp->n_cbs_invoked += count;
64db4cff
PM
2029
2030 /* Reinstate batch limit if we have worked down the excess. */
2031 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2032 rdp->blimit = blimit;
2033
37c72e56
PM
2034 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2035 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2036 rdp->qlen_last_fqs_check = 0;
2037 rdp->n_force_qs_snap = rsp->n_force_qs;
2038 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2039 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2040 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2041
64db4cff
PM
2042 local_irq_restore(flags);
2043
e0f23060 2044 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2045 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2046 invoke_rcu_core();
64db4cff
PM
2047}
2048
2049/*
2050 * Check to see if this CPU is in a non-context-switch quiescent state
2051 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2052 * Also schedule RCU core processing.
64db4cff 2053 *
9b2e4f18 2054 * This function must be called from hardirq context. It is normally
64db4cff
PM
2055 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2056 * false, there is no point in invoking rcu_check_callbacks().
2057 */
2058void rcu_check_callbacks(int cpu, int user)
2059{
f7f7bac9 2060 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2061 increment_cpu_stall_ticks();
9b2e4f18 2062 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2063
2064 /*
2065 * Get here if this CPU took its interrupt from user
2066 * mode or from the idle loop, and if this is not a
2067 * nested interrupt. In this case, the CPU is in
d6714c22 2068 * a quiescent state, so note it.
64db4cff
PM
2069 *
2070 * No memory barrier is required here because both
d6714c22
PM
2071 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2072 * variables that other CPUs neither access nor modify,
2073 * at least not while the corresponding CPU is online.
64db4cff
PM
2074 */
2075
d6714c22
PM
2076 rcu_sched_qs(cpu);
2077 rcu_bh_qs(cpu);
64db4cff
PM
2078
2079 } else if (!in_softirq()) {
2080
2081 /*
2082 * Get here if this CPU did not take its interrupt from
2083 * softirq, in other words, if it is not interrupting
2084 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2085 * critical section, so note it.
64db4cff
PM
2086 */
2087
d6714c22 2088 rcu_bh_qs(cpu);
64db4cff 2089 }
f41d911f 2090 rcu_preempt_check_callbacks(cpu);
d21670ac 2091 if (rcu_pending(cpu))
a46e0899 2092 invoke_rcu_core();
f7f7bac9 2093 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2094}
2095
64db4cff
PM
2096/*
2097 * Scan the leaf rcu_node structures, processing dyntick state for any that
2098 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2099 * Also initiate boosting for any threads blocked on the root rcu_node.
2100 *
ee47eb9f 2101 * The caller must have suppressed start of new grace periods.
64db4cff 2102 */
217af2a2
PM
2103static void force_qs_rnp(struct rcu_state *rsp,
2104 int (*f)(struct rcu_data *rsp, bool *isidle,
2105 unsigned long *maxj),
2106 bool *isidle, unsigned long *maxj)
64db4cff
PM
2107{
2108 unsigned long bit;
2109 int cpu;
2110 unsigned long flags;
2111 unsigned long mask;
a0b6c9a7 2112 struct rcu_node *rnp;
64db4cff 2113
a0b6c9a7 2114 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2115 cond_resched();
64db4cff 2116 mask = 0;
1304afb2 2117 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2118 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2119 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2120 return;
64db4cff 2121 }
a0b6c9a7 2122 if (rnp->qsmask == 0) {
1217ed1b 2123 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2124 continue;
2125 }
a0b6c9a7 2126 cpu = rnp->grplo;
64db4cff 2127 bit = 1;
a0b6c9a7 2128 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2129 if ((rnp->qsmask & bit) != 0) {
2130 if ((rnp->qsmaskinit & bit) != 0)
2131 *isidle = 0;
2132 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2133 mask |= bit;
2134 }
64db4cff 2135 }
45f014c5 2136 if (mask != 0) {
64db4cff 2137
d3f6bad3
PM
2138 /* rcu_report_qs_rnp() releases rnp->lock. */
2139 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2140 continue;
2141 }
1304afb2 2142 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2143 }
27f4d280 2144 rnp = rcu_get_root(rsp);
1217ed1b
PM
2145 if (rnp->qsmask == 0) {
2146 raw_spin_lock_irqsave(&rnp->lock, flags);
2147 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2148 }
64db4cff
PM
2149}
2150
2151/*
2152 * Force quiescent states on reluctant CPUs, and also detect which
2153 * CPUs are in dyntick-idle mode.
2154 */
4cdfc175 2155static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2156{
2157 unsigned long flags;
394f2769
PM
2158 bool ret;
2159 struct rcu_node *rnp;
2160 struct rcu_node *rnp_old = NULL;
2161
2162 /* Funnel through hierarchy to reduce memory contention. */
2163 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2164 for (; rnp != NULL; rnp = rnp->parent) {
2165 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2166 !raw_spin_trylock(&rnp->fqslock);
2167 if (rnp_old != NULL)
2168 raw_spin_unlock(&rnp_old->fqslock);
2169 if (ret) {
2170 rsp->n_force_qs_lh++;
2171 return;
2172 }
2173 rnp_old = rnp;
2174 }
2175 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2176
394f2769
PM
2177 /* Reached the root of the rcu_node tree, acquire lock. */
2178 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2179 raw_spin_unlock(&rnp_old->fqslock);
2180 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2181 rsp->n_force_qs_lh++;
2182 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2183 return; /* Someone beat us to it. */
46a1e34e 2184 }
4cdfc175 2185 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2186 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2187 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2188}
2189
64db4cff 2190/*
e0f23060
PM
2191 * This does the RCU core processing work for the specified rcu_state
2192 * and rcu_data structures. This may be called only from the CPU to
2193 * whom the rdp belongs.
64db4cff
PM
2194 */
2195static void
1bca8cf1 2196__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2197{
2198 unsigned long flags;
1bca8cf1 2199 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2200
2e597558
PM
2201 WARN_ON_ONCE(rdp->beenonline == 0);
2202
64db4cff
PM
2203 /* Update RCU state based on any recent quiescent states. */
2204 rcu_check_quiescent_state(rsp, rdp);
2205
2206 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2207 local_irq_save(flags);
64db4cff 2208 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2209 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2210 rcu_start_gp(rsp);
2211 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2212 } else {
2213 local_irq_restore(flags);
64db4cff
PM
2214 }
2215
2216 /* If there are callbacks ready, invoke them. */
09223371 2217 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2218 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2219}
2220
64db4cff 2221/*
e0f23060 2222 * Do RCU core processing for the current CPU.
64db4cff 2223 */
09223371 2224static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2225{
6ce75a23
PM
2226 struct rcu_state *rsp;
2227
bfa00b4c
PM
2228 if (cpu_is_offline(smp_processor_id()))
2229 return;
f7f7bac9 2230 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2231 for_each_rcu_flavor(rsp)
2232 __rcu_process_callbacks(rsp);
f7f7bac9 2233 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2234}
2235
a26ac245 2236/*
e0f23060
PM
2237 * Schedule RCU callback invocation. If the specified type of RCU
2238 * does not support RCU priority boosting, just do a direct call,
2239 * otherwise wake up the per-CPU kernel kthread. Note that because we
2240 * are running on the current CPU with interrupts disabled, the
2241 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2242 */
a46e0899 2243static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2244{
b0d30417
PM
2245 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2246 return;
a46e0899
PM
2247 if (likely(!rsp->boost)) {
2248 rcu_do_batch(rsp, rdp);
a26ac245
PM
2249 return;
2250 }
a46e0899 2251 invoke_rcu_callbacks_kthread();
a26ac245
PM
2252}
2253
a46e0899 2254static void invoke_rcu_core(void)
09223371 2255{
b0f74036
PM
2256 if (cpu_online(smp_processor_id()))
2257 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2258}
2259
29154c57
PM
2260/*
2261 * Handle any core-RCU processing required by a call_rcu() invocation.
2262 */
2263static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2264 struct rcu_head *head, unsigned long flags)
64db4cff 2265{
62fde6ed
PM
2266 /*
2267 * If called from an extended quiescent state, invoke the RCU
2268 * core in order to force a re-evaluation of RCU's idleness.
2269 */
a16b7a69 2270 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2271 invoke_rcu_core();
2272
a16b7a69 2273 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2274 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2275 return;
64db4cff 2276
37c72e56
PM
2277 /*
2278 * Force the grace period if too many callbacks or too long waiting.
2279 * Enforce hysteresis, and don't invoke force_quiescent_state()
2280 * if some other CPU has recently done so. Also, don't bother
2281 * invoking force_quiescent_state() if the newly enqueued callback
2282 * is the only one waiting for a grace period to complete.
2283 */
2655d57e 2284 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2285
2286 /* Are we ignoring a completed grace period? */
470716fc 2287 note_gp_changes(rsp, rdp);
b52573d2
PM
2288
2289 /* Start a new grace period if one not already started. */
2290 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2291 struct rcu_node *rnp_root = rcu_get_root(rsp);
2292
b8462084
PM
2293 raw_spin_lock(&rnp_root->lock);
2294 rcu_start_gp(rsp);
2295 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2296 } else {
2297 /* Give the grace period a kick. */
2298 rdp->blimit = LONG_MAX;
2299 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2300 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2301 force_quiescent_state(rsp);
b52573d2
PM
2302 rdp->n_force_qs_snap = rsp->n_force_qs;
2303 rdp->qlen_last_fqs_check = rdp->qlen;
2304 }
4cdfc175 2305 }
29154c57
PM
2306}
2307
ae150184
PM
2308/*
2309 * RCU callback function to leak a callback.
2310 */
2311static void rcu_leak_callback(struct rcu_head *rhp)
2312{
2313}
2314
3fbfbf7a
PM
2315/*
2316 * Helper function for call_rcu() and friends. The cpu argument will
2317 * normally be -1, indicating "currently running CPU". It may specify
2318 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2319 * is expected to specify a CPU.
2320 */
64db4cff
PM
2321static void
2322__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2323 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2324{
2325 unsigned long flags;
2326 struct rcu_data *rdp;
2327
0bb7b59d 2328 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2329 if (debug_rcu_head_queue(head)) {
2330 /* Probable double call_rcu(), so leak the callback. */
2331 ACCESS_ONCE(head->func) = rcu_leak_callback;
2332 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2333 return;
2334 }
64db4cff
PM
2335 head->func = func;
2336 head->next = NULL;
2337
64db4cff
PM
2338 /*
2339 * Opportunistically note grace-period endings and beginnings.
2340 * Note that we might see a beginning right after we see an
2341 * end, but never vice versa, since this CPU has to pass through
2342 * a quiescent state betweentimes.
2343 */
2344 local_irq_save(flags);
394f99a9 2345 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2346
2347 /* Add the callback to our list. */
3fbfbf7a
PM
2348 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2349 int offline;
2350
2351 if (cpu != -1)
2352 rdp = per_cpu_ptr(rsp->rda, cpu);
2353 offline = !__call_rcu_nocb(rdp, head, lazy);
2354 WARN_ON_ONCE(offline);
0d8ee37e 2355 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2356 local_irq_restore(flags);
2357 return;
2358 }
29154c57 2359 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2360 if (lazy)
2361 rdp->qlen_lazy++;
c57afe80
PM
2362 else
2363 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2364 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2365 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2366 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2367
d4c08f2a
PM
2368 if (__is_kfree_rcu_offset((unsigned long)func))
2369 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2370 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2371 else
486e2593 2372 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2373
29154c57
PM
2374 /* Go handle any RCU core processing required. */
2375 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2376 local_irq_restore(flags);
2377}
2378
2379/*
d6714c22 2380 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2381 */
d6714c22 2382void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2383{
3fbfbf7a 2384 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2385}
d6714c22 2386EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2387
2388/*
486e2593 2389 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2390 */
2391void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2392{
3fbfbf7a 2393 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2394}
2395EXPORT_SYMBOL_GPL(call_rcu_bh);
2396
6d813391
PM
2397/*
2398 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2399 * any blocking grace-period wait automatically implies a grace period
2400 * if there is only one CPU online at any point time during execution
2401 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2402 * occasionally incorrectly indicate that there are multiple CPUs online
2403 * when there was in fact only one the whole time, as this just adds
2404 * some overhead: RCU still operates correctly.
6d813391
PM
2405 */
2406static inline int rcu_blocking_is_gp(void)
2407{
95f0c1de
PM
2408 int ret;
2409
6d813391 2410 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2411 preempt_disable();
2412 ret = num_online_cpus() <= 1;
2413 preempt_enable();
2414 return ret;
6d813391
PM
2415}
2416
6ebb237b
PM
2417/**
2418 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2419 *
2420 * Control will return to the caller some time after a full rcu-sched
2421 * grace period has elapsed, in other words after all currently executing
2422 * rcu-sched read-side critical sections have completed. These read-side
2423 * critical sections are delimited by rcu_read_lock_sched() and
2424 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2425 * local_irq_disable(), and so on may be used in place of
2426 * rcu_read_lock_sched().
2427 *
2428 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2429 * non-threaded hardware-interrupt handlers, in progress on entry will
2430 * have completed before this primitive returns. However, this does not
2431 * guarantee that softirq handlers will have completed, since in some
2432 * kernels, these handlers can run in process context, and can block.
2433 *
2434 * Note that this guarantee implies further memory-ordering guarantees.
2435 * On systems with more than one CPU, when synchronize_sched() returns,
2436 * each CPU is guaranteed to have executed a full memory barrier since the
2437 * end of its last RCU-sched read-side critical section whose beginning
2438 * preceded the call to synchronize_sched(). In addition, each CPU having
2439 * an RCU read-side critical section that extends beyond the return from
2440 * synchronize_sched() is guaranteed to have executed a full memory barrier
2441 * after the beginning of synchronize_sched() and before the beginning of
2442 * that RCU read-side critical section. Note that these guarantees include
2443 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2444 * that are executing in the kernel.
2445 *
2446 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2447 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2448 * to have executed a full memory barrier during the execution of
2449 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2450 * again only if the system has more than one CPU).
6ebb237b
PM
2451 *
2452 * This primitive provides the guarantees made by the (now removed)
2453 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2454 * guarantees that rcu_read_lock() sections will have completed.
2455 * In "classic RCU", these two guarantees happen to be one and
2456 * the same, but can differ in realtime RCU implementations.
2457 */
2458void synchronize_sched(void)
2459{
fe15d706
PM
2460 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2461 !lock_is_held(&rcu_lock_map) &&
2462 !lock_is_held(&rcu_sched_lock_map),
2463 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2464 if (rcu_blocking_is_gp())
2465 return;
3705b88d
AM
2466 if (rcu_expedited)
2467 synchronize_sched_expedited();
2468 else
2469 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2470}
2471EXPORT_SYMBOL_GPL(synchronize_sched);
2472
2473/**
2474 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2475 *
2476 * Control will return to the caller some time after a full rcu_bh grace
2477 * period has elapsed, in other words after all currently executing rcu_bh
2478 * read-side critical sections have completed. RCU read-side critical
2479 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2480 * and may be nested.
f0a0e6f2
PM
2481 *
2482 * See the description of synchronize_sched() for more detailed information
2483 * on memory ordering guarantees.
6ebb237b
PM
2484 */
2485void synchronize_rcu_bh(void)
2486{
fe15d706
PM
2487 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2488 !lock_is_held(&rcu_lock_map) &&
2489 !lock_is_held(&rcu_sched_lock_map),
2490 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2491 if (rcu_blocking_is_gp())
2492 return;
3705b88d
AM
2493 if (rcu_expedited)
2494 synchronize_rcu_bh_expedited();
2495 else
2496 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2497}
2498EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2499
3d3b7db0
PM
2500static int synchronize_sched_expedited_cpu_stop(void *data)
2501{
2502 /*
2503 * There must be a full memory barrier on each affected CPU
2504 * between the time that try_stop_cpus() is called and the
2505 * time that it returns.
2506 *
2507 * In the current initial implementation of cpu_stop, the
2508 * above condition is already met when the control reaches
2509 * this point and the following smp_mb() is not strictly
2510 * necessary. Do smp_mb() anyway for documentation and
2511 * robustness against future implementation changes.
2512 */
2513 smp_mb(); /* See above comment block. */
2514 return 0;
2515}
2516
236fefaf
PM
2517/**
2518 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2519 *
2520 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2521 * approach to force the grace period to end quickly. This consumes
2522 * significant time on all CPUs and is unfriendly to real-time workloads,
2523 * so is thus not recommended for any sort of common-case code. In fact,
2524 * if you are using synchronize_sched_expedited() in a loop, please
2525 * restructure your code to batch your updates, and then use a single
2526 * synchronize_sched() instead.
3d3b7db0 2527 *
236fefaf
PM
2528 * Note that it is illegal to call this function while holding any lock
2529 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2530 * to call this function from a CPU-hotplug notifier. Failing to observe
2531 * these restriction will result in deadlock.
3d3b7db0
PM
2532 *
2533 * This implementation can be thought of as an application of ticket
2534 * locking to RCU, with sync_sched_expedited_started and
2535 * sync_sched_expedited_done taking on the roles of the halves
2536 * of the ticket-lock word. Each task atomically increments
2537 * sync_sched_expedited_started upon entry, snapshotting the old value,
2538 * then attempts to stop all the CPUs. If this succeeds, then each
2539 * CPU will have executed a context switch, resulting in an RCU-sched
2540 * grace period. We are then done, so we use atomic_cmpxchg() to
2541 * update sync_sched_expedited_done to match our snapshot -- but
2542 * only if someone else has not already advanced past our snapshot.
2543 *
2544 * On the other hand, if try_stop_cpus() fails, we check the value
2545 * of sync_sched_expedited_done. If it has advanced past our
2546 * initial snapshot, then someone else must have forced a grace period
2547 * some time after we took our snapshot. In this case, our work is
2548 * done for us, and we can simply return. Otherwise, we try again,
2549 * but keep our initial snapshot for purposes of checking for someone
2550 * doing our work for us.
2551 *
2552 * If we fail too many times in a row, we fall back to synchronize_sched().
2553 */
2554void synchronize_sched_expedited(void)
2555{
1924bcb0
PM
2556 long firstsnap, s, snap;
2557 int trycount = 0;
40694d66 2558 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2559
1924bcb0
PM
2560 /*
2561 * If we are in danger of counter wrap, just do synchronize_sched().
2562 * By allowing sync_sched_expedited_started to advance no more than
2563 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2564 * that more than 3.5 billion CPUs would be required to force a
2565 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2566 * course be required on a 64-bit system.
2567 */
40694d66
PM
2568 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2569 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2570 ULONG_MAX / 8)) {
2571 synchronize_sched();
a30489c5 2572 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2573 return;
2574 }
3d3b7db0 2575
1924bcb0
PM
2576 /*
2577 * Take a ticket. Note that atomic_inc_return() implies a
2578 * full memory barrier.
2579 */
40694d66 2580 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2581 firstsnap = snap;
3d3b7db0 2582 get_online_cpus();
1cc85961 2583 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2584
2585 /*
2586 * Each pass through the following loop attempts to force a
2587 * context switch on each CPU.
2588 */
2589 while (try_stop_cpus(cpu_online_mask,
2590 synchronize_sched_expedited_cpu_stop,
2591 NULL) == -EAGAIN) {
2592 put_online_cpus();
a30489c5 2593 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2594
1924bcb0 2595 /* Check to see if someone else did our work for us. */
40694d66 2596 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2597 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2598 /* ensure test happens before caller kfree */
2599 smp_mb__before_atomic_inc(); /* ^^^ */
2600 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2601 return;
2602 }
3d3b7db0
PM
2603
2604 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2605 if (trycount++ < 10) {
3d3b7db0 2606 udelay(trycount * num_online_cpus());
c701d5d9 2607 } else {
3705b88d 2608 wait_rcu_gp(call_rcu_sched);
a30489c5 2609 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2610 return;
2611 }
2612
1924bcb0 2613 /* Recheck to see if someone else did our work for us. */
40694d66 2614 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2615 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2616 /* ensure test happens before caller kfree */
2617 smp_mb__before_atomic_inc(); /* ^^^ */
2618 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2619 return;
2620 }
2621
2622 /*
2623 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2624 * callers to piggyback on our grace period. We retry
2625 * after they started, so our grace period works for them,
2626 * and they started after our first try, so their grace
2627 * period works for us.
3d3b7db0
PM
2628 */
2629 get_online_cpus();
40694d66 2630 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2631 smp_mb(); /* ensure read is before try_stop_cpus(). */
2632 }
a30489c5 2633 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2634
2635 /*
2636 * Everyone up to our most recent fetch is covered by our grace
2637 * period. Update the counter, but only if our work is still
2638 * relevant -- which it won't be if someone who started later
1924bcb0 2639 * than we did already did their update.
3d3b7db0
PM
2640 */
2641 do {
a30489c5 2642 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2643 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2644 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2645 /* ensure test happens before caller kfree */
2646 smp_mb__before_atomic_inc(); /* ^^^ */
2647 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2648 break;
2649 }
40694d66 2650 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2651 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2652
2653 put_online_cpus();
2654}
2655EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2656
64db4cff
PM
2657/*
2658 * Check to see if there is any immediate RCU-related work to be done
2659 * by the current CPU, for the specified type of RCU, returning 1 if so.
2660 * The checks are in order of increasing expense: checks that can be
2661 * carried out against CPU-local state are performed first. However,
2662 * we must check for CPU stalls first, else we might not get a chance.
2663 */
2664static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2665{
2f51f988
PM
2666 struct rcu_node *rnp = rdp->mynode;
2667
64db4cff
PM
2668 rdp->n_rcu_pending++;
2669
2670 /* Check for CPU stalls, if enabled. */
2671 check_cpu_stall(rsp, rdp);
2672
2673 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2674 if (rcu_scheduler_fully_active &&
2675 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2676 rdp->n_rp_qs_pending++;
e4cc1f22 2677 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2678 rdp->n_rp_report_qs++;
64db4cff 2679 return 1;
7ba5c840 2680 }
64db4cff
PM
2681
2682 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2683 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2684 rdp->n_rp_cb_ready++;
64db4cff 2685 return 1;
7ba5c840 2686 }
64db4cff
PM
2687
2688 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2689 if (cpu_needs_another_gp(rsp, rdp)) {
2690 rdp->n_rp_cpu_needs_gp++;
64db4cff 2691 return 1;
7ba5c840 2692 }
64db4cff
PM
2693
2694 /* Has another RCU grace period completed? */
2f51f988 2695 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2696 rdp->n_rp_gp_completed++;
64db4cff 2697 return 1;
7ba5c840 2698 }
64db4cff
PM
2699
2700 /* Has a new RCU grace period started? */
2f51f988 2701 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2702 rdp->n_rp_gp_started++;
64db4cff 2703 return 1;
7ba5c840 2704 }
64db4cff 2705
64db4cff 2706 /* nothing to do */
7ba5c840 2707 rdp->n_rp_need_nothing++;
64db4cff
PM
2708 return 0;
2709}
2710
2711/*
2712 * Check to see if there is any immediate RCU-related work to be done
2713 * by the current CPU, returning 1 if so. This function is part of the
2714 * RCU implementation; it is -not- an exported member of the RCU API.
2715 */
a157229c 2716static int rcu_pending(int cpu)
64db4cff 2717{
6ce75a23
PM
2718 struct rcu_state *rsp;
2719
2720 for_each_rcu_flavor(rsp)
2721 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2722 return 1;
2723 return 0;
64db4cff
PM
2724}
2725
2726/*
c0f4dfd4
PM
2727 * Return true if the specified CPU has any callback. If all_lazy is
2728 * non-NULL, store an indication of whether all callbacks are lazy.
2729 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2730 */
c0f4dfd4 2731static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2732{
c0f4dfd4
PM
2733 bool al = true;
2734 bool hc = false;
2735 struct rcu_data *rdp;
6ce75a23
PM
2736 struct rcu_state *rsp;
2737
c0f4dfd4
PM
2738 for_each_rcu_flavor(rsp) {
2739 rdp = per_cpu_ptr(rsp->rda, cpu);
2740 if (rdp->qlen != rdp->qlen_lazy)
2741 al = false;
2742 if (rdp->nxtlist)
2743 hc = true;
2744 }
2745 if (all_lazy)
2746 *all_lazy = al;
2747 return hc;
64db4cff
PM
2748}
2749
a83eff0a
PM
2750/*
2751 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2752 * the compiler is expected to optimize this away.
2753 */
e66c33d5 2754static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2755 int cpu, unsigned long done)
2756{
2757 trace_rcu_barrier(rsp->name, s, cpu,
2758 atomic_read(&rsp->barrier_cpu_count), done);
2759}
2760
b1420f1c
PM
2761/*
2762 * RCU callback function for _rcu_barrier(). If we are last, wake
2763 * up the task executing _rcu_barrier().
2764 */
24ebbca8 2765static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2766{
24ebbca8
PM
2767 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2768 struct rcu_state *rsp = rdp->rsp;
2769
a83eff0a
PM
2770 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2771 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2772 complete(&rsp->barrier_completion);
a83eff0a
PM
2773 } else {
2774 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2775 }
d0ec774c
PM
2776}
2777
2778/*
2779 * Called with preemption disabled, and from cross-cpu IRQ context.
2780 */
2781static void rcu_barrier_func(void *type)
2782{
037b64ed 2783 struct rcu_state *rsp = type;
06668efa 2784 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2785
a83eff0a 2786 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2787 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2788 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2789}
2790
d0ec774c
PM
2791/*
2792 * Orchestrate the specified type of RCU barrier, waiting for all
2793 * RCU callbacks of the specified type to complete.
2794 */
037b64ed 2795static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2796{
b1420f1c 2797 int cpu;
b1420f1c 2798 struct rcu_data *rdp;
cf3a9c48
PM
2799 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2800 unsigned long snap_done;
b1420f1c 2801
a83eff0a 2802 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2803
e74f4c45 2804 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2805 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2806
cf3a9c48
PM
2807 /*
2808 * Ensure that all prior references, including to ->n_barrier_done,
2809 * are ordered before the _rcu_barrier() machinery.
2810 */
2811 smp_mb(); /* See above block comment. */
2812
2813 /*
2814 * Recheck ->n_barrier_done to see if others did our work for us.
2815 * This means checking ->n_barrier_done for an even-to-odd-to-even
2816 * transition. The "if" expression below therefore rounds the old
2817 * value up to the next even number and adds two before comparing.
2818 */
458fb381 2819 snap_done = rsp->n_barrier_done;
a83eff0a 2820 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
2821
2822 /*
2823 * If the value in snap is odd, we needed to wait for the current
2824 * rcu_barrier() to complete, then wait for the next one, in other
2825 * words, we need the value of snap_done to be three larger than
2826 * the value of snap. On the other hand, if the value in snap is
2827 * even, we only had to wait for the next rcu_barrier() to complete,
2828 * in other words, we need the value of snap_done to be only two
2829 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2830 * this for us (thank you, Linus!).
2831 */
2832 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 2833 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2834 smp_mb(); /* caller's subsequent code after above check. */
2835 mutex_unlock(&rsp->barrier_mutex);
2836 return;
2837 }
2838
2839 /*
2840 * Increment ->n_barrier_done to avoid duplicate work. Use
2841 * ACCESS_ONCE() to prevent the compiler from speculating
2842 * the increment to precede the early-exit check.
2843 */
2844 ACCESS_ONCE(rsp->n_barrier_done)++;
2845 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2846 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2847 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2848
d0ec774c 2849 /*
b1420f1c
PM
2850 * Initialize the count to one rather than to zero in order to
2851 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2852 * (or preemption of this task). Exclude CPU-hotplug operations
2853 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2854 */
7db74df8 2855 init_completion(&rsp->barrier_completion);
24ebbca8 2856 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2857 get_online_cpus();
b1420f1c
PM
2858
2859 /*
1331e7a1
PM
2860 * Force each CPU with callbacks to register a new callback.
2861 * When that callback is invoked, we will know that all of the
2862 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2863 */
3fbfbf7a 2864 for_each_possible_cpu(cpu) {
d1e43fa5 2865 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2866 continue;
b1420f1c 2867 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2868 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2869 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2870 rsp->n_barrier_done);
2871 atomic_inc(&rsp->barrier_cpu_count);
2872 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2873 rsp, cpu, 0);
2874 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2875 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2876 rsp->n_barrier_done);
037b64ed 2877 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2878 } else {
a83eff0a
PM
2879 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2880 rsp->n_barrier_done);
b1420f1c
PM
2881 }
2882 }
1331e7a1 2883 put_online_cpus();
b1420f1c
PM
2884
2885 /*
2886 * Now that we have an rcu_barrier_callback() callback on each
2887 * CPU, and thus each counted, remove the initial count.
2888 */
24ebbca8 2889 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2890 complete(&rsp->barrier_completion);
b1420f1c 2891
cf3a9c48
PM
2892 /* Increment ->n_barrier_done to prevent duplicate work. */
2893 smp_mb(); /* Keep increment after above mechanism. */
2894 ACCESS_ONCE(rsp->n_barrier_done)++;
2895 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2896 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2897 smp_mb(); /* Keep increment before caller's subsequent code. */
2898
b1420f1c 2899 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2900 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2901
2902 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2903 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2904}
d0ec774c
PM
2905
2906/**
2907 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2908 */
2909void rcu_barrier_bh(void)
2910{
037b64ed 2911 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2912}
2913EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2914
2915/**
2916 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2917 */
2918void rcu_barrier_sched(void)
2919{
037b64ed 2920 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2921}
2922EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2923
64db4cff 2924/*
27569620 2925 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2926 */
27569620
PM
2927static void __init
2928rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2929{
2930 unsigned long flags;
394f99a9 2931 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2932 struct rcu_node *rnp = rcu_get_root(rsp);
2933
2934 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2935 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2936 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2937 init_callback_list(rdp);
486e2593 2938 rdp->qlen_lazy = 0;
1d1fb395 2939 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2940 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2941 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2942 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2943 rdp->cpu = cpu;
d4c08f2a 2944 rdp->rsp = rsp;
3fbfbf7a 2945 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2946 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2947}
2948
2949/*
2950 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2951 * offline event can be happening at a given time. Note also that we
2952 * can accept some slop in the rsp->completed access due to the fact
2953 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2954 */
49fb4c62 2955static void
6cc68793 2956rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2957{
2958 unsigned long flags;
64db4cff 2959 unsigned long mask;
394f99a9 2960 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2961 struct rcu_node *rnp = rcu_get_root(rsp);
2962
a4fbe35a
PM
2963 /* Exclude new grace periods. */
2964 mutex_lock(&rsp->onoff_mutex);
2965
64db4cff 2966 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2967 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2968 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2969 rdp->preemptible = preemptible;
37c72e56
PM
2970 rdp->qlen_last_fqs_check = 0;
2971 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2972 rdp->blimit = blimit;
0d8ee37e 2973 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2974 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 2975 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
2976 atomic_set(&rdp->dynticks->dynticks,
2977 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2978 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2979
64db4cff
PM
2980 /* Add CPU to rcu_node bitmasks. */
2981 rnp = rdp->mynode;
2982 mask = rdp->grpmask;
2983 do {
2984 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2985 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2986 rnp->qsmaskinit |= mask;
2987 mask = rnp->grpmask;
d09b62df 2988 if (rnp == rdp->mynode) {
06ae115a
PM
2989 /*
2990 * If there is a grace period in progress, we will
2991 * set up to wait for it next time we run the
2992 * RCU core code.
2993 */
2994 rdp->gpnum = rnp->completed;
d09b62df 2995 rdp->completed = rnp->completed;
06ae115a
PM
2996 rdp->passed_quiesce = 0;
2997 rdp->qs_pending = 0;
f7f7bac9 2998 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2999 }
1304afb2 3000 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3001 rnp = rnp->parent;
3002 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3003 local_irq_restore(flags);
64db4cff 3004
a4fbe35a 3005 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3006}
3007
49fb4c62 3008static void rcu_prepare_cpu(int cpu)
64db4cff 3009{
6ce75a23
PM
3010 struct rcu_state *rsp;
3011
3012 for_each_rcu_flavor(rsp)
3013 rcu_init_percpu_data(cpu, rsp,
3014 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3015}
3016
3017/*
f41d911f 3018 * Handle CPU online/offline notification events.
64db4cff 3019 */
49fb4c62 3020static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3021 unsigned long action, void *hcpu)
64db4cff
PM
3022{
3023 long cpu = (long)hcpu;
27f4d280 3024 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3025 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3026 struct rcu_state *rsp;
64db4cff 3027
f7f7bac9 3028 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3029 switch (action) {
3030 case CPU_UP_PREPARE:
3031 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3032 rcu_prepare_cpu(cpu);
3033 rcu_prepare_kthreads(cpu);
a26ac245
PM
3034 break;
3035 case CPU_ONLINE:
0f962a5e 3036 case CPU_DOWN_FAILED:
5d01bbd1 3037 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3038 break;
3039 case CPU_DOWN_PREPARE:
34ed6246 3040 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3041 break;
d0ec774c
PM
3042 case CPU_DYING:
3043 case CPU_DYING_FROZEN:
6ce75a23
PM
3044 for_each_rcu_flavor(rsp)
3045 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3046 break;
64db4cff
PM
3047 case CPU_DEAD:
3048 case CPU_DEAD_FROZEN:
3049 case CPU_UP_CANCELED:
3050 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3051 for_each_rcu_flavor(rsp)
3052 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3053 break;
3054 default:
3055 break;
3056 }
f7f7bac9 3057 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3058 return NOTIFY_OK;
64db4cff
PM
3059}
3060
d1d74d14
BP
3061static int rcu_pm_notify(struct notifier_block *self,
3062 unsigned long action, void *hcpu)
3063{
3064 switch (action) {
3065 case PM_HIBERNATION_PREPARE:
3066 case PM_SUSPEND_PREPARE:
3067 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3068 rcu_expedited = 1;
3069 break;
3070 case PM_POST_HIBERNATION:
3071 case PM_POST_SUSPEND:
3072 rcu_expedited = 0;
3073 break;
3074 default:
3075 break;
3076 }
3077 return NOTIFY_OK;
3078}
3079
b3dbec76
PM
3080/*
3081 * Spawn the kthread that handles this RCU flavor's grace periods.
3082 */
3083static int __init rcu_spawn_gp_kthread(void)
3084{
3085 unsigned long flags;
3086 struct rcu_node *rnp;
3087 struct rcu_state *rsp;
3088 struct task_struct *t;
3089
3090 for_each_rcu_flavor(rsp) {
f170168b 3091 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3092 BUG_ON(IS_ERR(t));
3093 rnp = rcu_get_root(rsp);
3094 raw_spin_lock_irqsave(&rnp->lock, flags);
3095 rsp->gp_kthread = t;
3096 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3097 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3098 }
3099 return 0;
3100}
3101early_initcall(rcu_spawn_gp_kthread);
3102
bbad9379
PM
3103/*
3104 * This function is invoked towards the end of the scheduler's initialization
3105 * process. Before this is called, the idle task might contain
3106 * RCU read-side critical sections (during which time, this idle
3107 * task is booting the system). After this function is called, the
3108 * idle tasks are prohibited from containing RCU read-side critical
3109 * sections. This function also enables RCU lockdep checking.
3110 */
3111void rcu_scheduler_starting(void)
3112{
3113 WARN_ON(num_online_cpus() != 1);
3114 WARN_ON(nr_context_switches() > 0);
3115 rcu_scheduler_active = 1;
3116}
3117
64db4cff
PM
3118/*
3119 * Compute the per-level fanout, either using the exact fanout specified
3120 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3121 */
3122#ifdef CONFIG_RCU_FANOUT_EXACT
3123static void __init rcu_init_levelspread(struct rcu_state *rsp)
3124{
3125 int i;
3126
f885b7f2 3127 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3128 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3129 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3130}
3131#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3132static void __init rcu_init_levelspread(struct rcu_state *rsp)
3133{
3134 int ccur;
3135 int cprv;
3136 int i;
3137
4dbd6bb3 3138 cprv = nr_cpu_ids;
f885b7f2 3139 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3140 ccur = rsp->levelcnt[i];
3141 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3142 cprv = ccur;
3143 }
3144}
3145#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3146
3147/*
3148 * Helper function for rcu_init() that initializes one rcu_state structure.
3149 */
394f99a9
LJ
3150static void __init rcu_init_one(struct rcu_state *rsp,
3151 struct rcu_data __percpu *rda)
64db4cff 3152{
394f2769
PM
3153 static char *buf[] = { "rcu_node_0",
3154 "rcu_node_1",
3155 "rcu_node_2",
3156 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3157 static char *fqs[] = { "rcu_node_fqs_0",
3158 "rcu_node_fqs_1",
3159 "rcu_node_fqs_2",
3160 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3161 int cpustride = 1;
3162 int i;
3163 int j;
3164 struct rcu_node *rnp;
3165
b6407e86
PM
3166 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3167
4930521a
PM
3168 /* Silence gcc 4.8 warning about array index out of range. */
3169 if (rcu_num_lvls > RCU_NUM_LVLS)
3170 panic("rcu_init_one: rcu_num_lvls overflow");
3171
64db4cff
PM
3172 /* Initialize the level-tracking arrays. */
3173
f885b7f2
PM
3174 for (i = 0; i < rcu_num_lvls; i++)
3175 rsp->levelcnt[i] = num_rcu_lvl[i];
3176 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3177 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3178 rcu_init_levelspread(rsp);
3179
3180 /* Initialize the elements themselves, starting from the leaves. */
3181
f885b7f2 3182 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3183 cpustride *= rsp->levelspread[i];
3184 rnp = rsp->level[i];
3185 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3186 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3187 lockdep_set_class_and_name(&rnp->lock,
3188 &rcu_node_class[i], buf[i]);
394f2769
PM
3189 raw_spin_lock_init(&rnp->fqslock);
3190 lockdep_set_class_and_name(&rnp->fqslock,
3191 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3192 rnp->gpnum = rsp->gpnum;
3193 rnp->completed = rsp->completed;
64db4cff
PM
3194 rnp->qsmask = 0;
3195 rnp->qsmaskinit = 0;
3196 rnp->grplo = j * cpustride;
3197 rnp->grphi = (j + 1) * cpustride - 1;
3198 if (rnp->grphi >= NR_CPUS)
3199 rnp->grphi = NR_CPUS - 1;
3200 if (i == 0) {
3201 rnp->grpnum = 0;
3202 rnp->grpmask = 0;
3203 rnp->parent = NULL;
3204 } else {
3205 rnp->grpnum = j % rsp->levelspread[i - 1];
3206 rnp->grpmask = 1UL << rnp->grpnum;
3207 rnp->parent = rsp->level[i - 1] +
3208 j / rsp->levelspread[i - 1];
3209 }
3210 rnp->level = i;
12f5f524 3211 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3212 rcu_init_one_nocb(rnp);
64db4cff
PM
3213 }
3214 }
0c34029a 3215
394f99a9 3216 rsp->rda = rda;
b3dbec76 3217 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3218 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3219 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3220 for_each_possible_cpu(i) {
4a90a068 3221 while (i > rnp->grphi)
0c34029a 3222 rnp++;
394f99a9 3223 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3224 rcu_boot_init_percpu_data(i, rsp);
3225 }
6ce75a23 3226 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3227}
3228
f885b7f2
PM
3229/*
3230 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3231 * replace the definitions in rcutree.h because those are needed to size
3232 * the ->node array in the rcu_state structure.
3233 */
3234static void __init rcu_init_geometry(void)
3235{
026ad283 3236 ulong d;
f885b7f2
PM
3237 int i;
3238 int j;
cca6f393 3239 int n = nr_cpu_ids;
f885b7f2
PM
3240 int rcu_capacity[MAX_RCU_LVLS + 1];
3241
026ad283
PM
3242 /*
3243 * Initialize any unspecified boot parameters.
3244 * The default values of jiffies_till_first_fqs and
3245 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3246 * value, which is a function of HZ, then adding one for each
3247 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3248 */
3249 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3250 if (jiffies_till_first_fqs == ULONG_MAX)
3251 jiffies_till_first_fqs = d;
3252 if (jiffies_till_next_fqs == ULONG_MAX)
3253 jiffies_till_next_fqs = d;
3254
f885b7f2 3255 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3256 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3257 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3258 return;
3259
3260 /*
3261 * Compute number of nodes that can be handled an rcu_node tree
3262 * with the given number of levels. Setting rcu_capacity[0] makes
3263 * some of the arithmetic easier.
3264 */
3265 rcu_capacity[0] = 1;
3266 rcu_capacity[1] = rcu_fanout_leaf;
3267 for (i = 2; i <= MAX_RCU_LVLS; i++)
3268 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3269
3270 /*
3271 * The boot-time rcu_fanout_leaf parameter is only permitted
3272 * to increase the leaf-level fanout, not decrease it. Of course,
3273 * the leaf-level fanout cannot exceed the number of bits in
3274 * the rcu_node masks. Finally, the tree must be able to accommodate
3275 * the configured number of CPUs. Complain and fall back to the
3276 * compile-time values if these limits are exceeded.
3277 */
3278 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3279 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3280 n > rcu_capacity[MAX_RCU_LVLS]) {
3281 WARN_ON(1);
3282 return;
3283 }
3284
3285 /* Calculate the number of rcu_nodes at each level of the tree. */
3286 for (i = 1; i <= MAX_RCU_LVLS; i++)
3287 if (n <= rcu_capacity[i]) {
3288 for (j = 0; j <= i; j++)
3289 num_rcu_lvl[j] =
3290 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3291 rcu_num_lvls = i;
3292 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3293 num_rcu_lvl[j] = 0;
3294 break;
3295 }
3296
3297 /* Calculate the total number of rcu_node structures. */
3298 rcu_num_nodes = 0;
3299 for (i = 0; i <= MAX_RCU_LVLS; i++)
3300 rcu_num_nodes += num_rcu_lvl[i];
3301 rcu_num_nodes -= n;
3302}
3303
9f680ab4 3304void __init rcu_init(void)
64db4cff 3305{
017c4261 3306 int cpu;
9f680ab4 3307
f41d911f 3308 rcu_bootup_announce();
f885b7f2 3309 rcu_init_geometry();
394f99a9
LJ
3310 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3311 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3312 __rcu_init_preempt();
b5b39360 3313 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3314
3315 /*
3316 * We don't need protection against CPU-hotplug here because
3317 * this is called early in boot, before either interrupts
3318 * or the scheduler are operational.
3319 */
3320 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3321 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3322 for_each_online_cpu(cpu)
3323 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3324}
3325
1eba8f84 3326#include "rcutree_plugin.h"