rcu: Remove lockdep annotations from RCU's _notrace() API members
[linux-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <asm/atomic.h>
39#include <linux/bitops.h>
40#include <linux/module.h>
41#include <linux/completion.h>
42#include <linux/moduleparam.h>
43#include <linux/percpu.h>
44#include <linux/notifier.h>
45#include <linux/cpu.h>
46#include <linux/mutex.h>
47#include <linux/time.h>
48
9f77da9f
PM
49#include "rcutree.h"
50
64db4cff
PM
51#ifdef CONFIG_DEBUG_LOCK_ALLOC
52static struct lock_class_key rcu_lock_key;
53struct lockdep_map rcu_lock_map =
54 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
55EXPORT_SYMBOL_GPL(rcu_lock_map);
56#endif
57
58/* Data structures. */
59
60#define RCU_STATE_INITIALIZER(name) { \
61 .level = { &name.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_SIGNAL_INIT, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
72 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75}
76
d6714c22
PM
77struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
78DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 79
6258c4fb
IM
80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 82
f41d911f
PM
83extern long rcu_batches_completed_sched(void);
84static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
85 struct rcu_node *rnp, unsigned long flags);
86static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
c935a331 87#ifdef CONFIG_HOTPLUG_CPU
33f76148 88static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
c935a331 89#endif /* #ifdef CONFIG_HOTPLUG_CPU */
f41d911f
PM
90static void __rcu_process_callbacks(struct rcu_state *rsp,
91 struct rcu_data *rdp);
92static void __call_rcu(struct rcu_head *head,
93 void (*func)(struct rcu_head *rcu),
94 struct rcu_state *rsp);
95static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
96static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
97 int preemptable);
98
99#include "rcutree_plugin.h"
100
b1f77b05 101/*
d6714c22 102 * Note a quiescent state. Because we do not need to know
b1f77b05 103 * how many quiescent states passed, just if there was at least
d6714c22 104 * one since the start of the grace period, this just sets a flag.
b1f77b05 105 */
d6714c22 106void rcu_sched_qs(int cpu)
b1f77b05 107{
f41d911f
PM
108 unsigned long flags;
109 struct rcu_data *rdp;
110
111 local_irq_save(flags);
112 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05
IM
113 rdp->passed_quiesc = 1;
114 rdp->passed_quiesc_completed = rdp->completed;
f41d911f
PM
115 rcu_preempt_qs(cpu);
116 local_irq_restore(flags);
b1f77b05
IM
117}
118
d6714c22 119void rcu_bh_qs(int cpu)
b1f77b05 120{
f41d911f
PM
121 unsigned long flags;
122 struct rcu_data *rdp;
123
124 local_irq_save(flags);
125 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05
IM
126 rdp->passed_quiesc = 1;
127 rdp->passed_quiesc_completed = rdp->completed;
f41d911f 128 local_irq_restore(flags);
b1f77b05 129}
64db4cff
PM
130
131#ifdef CONFIG_NO_HZ
90a4d2c0
PM
132DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
133 .dynticks_nesting = 1,
134 .dynticks = 1,
135};
64db4cff
PM
136#endif /* #ifdef CONFIG_NO_HZ */
137
138static int blimit = 10; /* Maximum callbacks per softirq. */
139static int qhimark = 10000; /* If this many pending, ignore blimit. */
140static int qlowmark = 100; /* Once only this many pending, use blimit. */
141
142static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 143static int rcu_pending(int cpu);
64db4cff 144
d6714c22
PM
145/*
146 * Return the number of RCU-sched batches processed thus far for debug & stats.
147 */
148long rcu_batches_completed_sched(void)
149{
150 return rcu_sched_state.completed;
151}
152EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
153
64db4cff
PM
154/*
155 * Return the number of RCU BH batches processed thus far for debug & stats.
156 */
157long rcu_batches_completed_bh(void)
158{
159 return rcu_bh_state.completed;
160}
161EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
162
163/*
164 * Does the CPU have callbacks ready to be invoked?
165 */
166static int
167cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
168{
169 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
170}
171
172/*
173 * Does the current CPU require a yet-as-unscheduled grace period?
174 */
175static int
176cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
177{
178 /* ACCESS_ONCE() because we are accessing outside of lock. */
179 return *rdp->nxttail[RCU_DONE_TAIL] &&
180 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
181}
182
183/*
184 * Return the root node of the specified rcu_state structure.
185 */
186static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
187{
188 return &rsp->node[0];
189}
190
191#ifdef CONFIG_SMP
192
193/*
194 * If the specified CPU is offline, tell the caller that it is in
195 * a quiescent state. Otherwise, whack it with a reschedule IPI.
196 * Grace periods can end up waiting on an offline CPU when that
197 * CPU is in the process of coming online -- it will be added to the
198 * rcu_node bitmasks before it actually makes it online. The same thing
199 * can happen while a CPU is in the process of coming online. Because this
200 * race is quite rare, we check for it after detecting that the grace
201 * period has been delayed rather than checking each and every CPU
202 * each and every time we start a new grace period.
203 */
204static int rcu_implicit_offline_qs(struct rcu_data *rdp)
205{
206 /*
207 * If the CPU is offline, it is in a quiescent state. We can
208 * trust its state not to change because interrupts are disabled.
209 */
210 if (cpu_is_offline(rdp->cpu)) {
211 rdp->offline_fqs++;
212 return 1;
213 }
214
f41d911f
PM
215 /* If preemptable RCU, no point in sending reschedule IPI. */
216 if (rdp->preemptable)
217 return 0;
218
64db4cff
PM
219 /* The CPU is online, so send it a reschedule IPI. */
220 if (rdp->cpu != smp_processor_id())
221 smp_send_reschedule(rdp->cpu);
222 else
223 set_need_resched();
224 rdp->resched_ipi++;
225 return 0;
226}
227
228#endif /* #ifdef CONFIG_SMP */
229
230#ifdef CONFIG_NO_HZ
231static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
232
233/**
234 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
235 *
236 * Enter nohz mode, in other words, -leave- the mode in which RCU
237 * read-side critical sections can occur. (Though RCU read-side
238 * critical sections can occur in irq handlers in nohz mode, a possibility
239 * handled by rcu_irq_enter() and rcu_irq_exit()).
240 */
241void rcu_enter_nohz(void)
242{
243 unsigned long flags;
244 struct rcu_dynticks *rdtp;
245
246 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
247 local_irq_save(flags);
248 rdtp = &__get_cpu_var(rcu_dynticks);
249 rdtp->dynticks++;
250 rdtp->dynticks_nesting--;
251 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
252 local_irq_restore(flags);
253}
254
255/*
256 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
257 *
258 * Exit nohz mode, in other words, -enter- the mode in which RCU
259 * read-side critical sections normally occur.
260 */
261void rcu_exit_nohz(void)
262{
263 unsigned long flags;
264 struct rcu_dynticks *rdtp;
265
266 local_irq_save(flags);
267 rdtp = &__get_cpu_var(rcu_dynticks);
268 rdtp->dynticks++;
269 rdtp->dynticks_nesting++;
270 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
271 local_irq_restore(flags);
272 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
273}
274
275/**
276 * rcu_nmi_enter - inform RCU of entry to NMI context
277 *
278 * If the CPU was idle with dynamic ticks active, and there is no
279 * irq handler running, this updates rdtp->dynticks_nmi to let the
280 * RCU grace-period handling know that the CPU is active.
281 */
282void rcu_nmi_enter(void)
283{
284 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
285
286 if (rdtp->dynticks & 0x1)
287 return;
288 rdtp->dynticks_nmi++;
289 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
290 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
291}
292
293/**
294 * rcu_nmi_exit - inform RCU of exit from NMI context
295 *
296 * If the CPU was idle with dynamic ticks active, and there is no
297 * irq handler running, this updates rdtp->dynticks_nmi to let the
298 * RCU grace-period handling know that the CPU is no longer active.
299 */
300void rcu_nmi_exit(void)
301{
302 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
303
304 if (rdtp->dynticks & 0x1)
305 return;
306 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
307 rdtp->dynticks_nmi++;
308 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
309}
310
311/**
312 * rcu_irq_enter - inform RCU of entry to hard irq context
313 *
314 * If the CPU was idle with dynamic ticks active, this updates the
315 * rdtp->dynticks to let the RCU handling know that the CPU is active.
316 */
317void rcu_irq_enter(void)
318{
319 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
320
321 if (rdtp->dynticks_nesting++)
322 return;
323 rdtp->dynticks++;
324 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
325 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
326}
327
328/**
329 * rcu_irq_exit - inform RCU of exit from hard irq context
330 *
331 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
332 * to put let the RCU handling be aware that the CPU is going back to idle
333 * with no ticks.
334 */
335void rcu_irq_exit(void)
336{
337 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
338
339 if (--rdtp->dynticks_nesting)
340 return;
341 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
342 rdtp->dynticks++;
343 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
344
345 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 346 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
347 __get_cpu_var(rcu_bh_data).nxtlist)
348 set_need_resched();
349}
350
351/*
352 * Record the specified "completed" value, which is later used to validate
353 * dynticks counter manipulations. Specify "rsp->completed - 1" to
354 * unconditionally invalidate any future dynticks manipulations (which is
355 * useful at the beginning of a grace period).
356 */
357static void dyntick_record_completed(struct rcu_state *rsp, long comp)
358{
359 rsp->dynticks_completed = comp;
360}
361
362#ifdef CONFIG_SMP
363
364/*
365 * Recall the previously recorded value of the completion for dynticks.
366 */
367static long dyntick_recall_completed(struct rcu_state *rsp)
368{
369 return rsp->dynticks_completed;
370}
371
372/*
373 * Snapshot the specified CPU's dynticks counter so that we can later
374 * credit them with an implicit quiescent state. Return 1 if this CPU
375 * is already in a quiescent state courtesy of dynticks idle mode.
376 */
377static int dyntick_save_progress_counter(struct rcu_data *rdp)
378{
379 int ret;
380 int snap;
381 int snap_nmi;
382
383 snap = rdp->dynticks->dynticks;
384 snap_nmi = rdp->dynticks->dynticks_nmi;
385 smp_mb(); /* Order sampling of snap with end of grace period. */
386 rdp->dynticks_snap = snap;
387 rdp->dynticks_nmi_snap = snap_nmi;
388 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
389 if (ret)
390 rdp->dynticks_fqs++;
391 return ret;
392}
393
394/*
395 * Return true if the specified CPU has passed through a quiescent
396 * state by virtue of being in or having passed through an dynticks
397 * idle state since the last call to dyntick_save_progress_counter()
398 * for this same CPU.
399 */
400static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
401{
402 long curr;
403 long curr_nmi;
404 long snap;
405 long snap_nmi;
406
407 curr = rdp->dynticks->dynticks;
408 snap = rdp->dynticks_snap;
409 curr_nmi = rdp->dynticks->dynticks_nmi;
410 snap_nmi = rdp->dynticks_nmi_snap;
411 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
412
413 /*
414 * If the CPU passed through or entered a dynticks idle phase with
415 * no active irq/NMI handlers, then we can safely pretend that the CPU
416 * already acknowledged the request to pass through a quiescent
417 * state. Either way, that CPU cannot possibly be in an RCU
418 * read-side critical section that started before the beginning
419 * of the current RCU grace period.
420 */
421 if ((curr != snap || (curr & 0x1) == 0) &&
422 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
423 rdp->dynticks_fqs++;
424 return 1;
425 }
426
427 /* Go check for the CPU being offline. */
428 return rcu_implicit_offline_qs(rdp);
429}
430
431#endif /* #ifdef CONFIG_SMP */
432
433#else /* #ifdef CONFIG_NO_HZ */
434
435static void dyntick_record_completed(struct rcu_state *rsp, long comp)
436{
437}
438
439#ifdef CONFIG_SMP
440
441/*
442 * If there are no dynticks, then the only way that a CPU can passively
443 * be in a quiescent state is to be offline. Unlike dynticks idle, which
444 * is a point in time during the prior (already finished) grace period,
445 * an offline CPU is always in a quiescent state, and thus can be
446 * unconditionally applied. So just return the current value of completed.
447 */
448static long dyntick_recall_completed(struct rcu_state *rsp)
449{
450 return rsp->completed;
451}
452
453static int dyntick_save_progress_counter(struct rcu_data *rdp)
454{
455 return 0;
456}
457
458static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
459{
460 return rcu_implicit_offline_qs(rdp);
461}
462
463#endif /* #ifdef CONFIG_SMP */
464
465#endif /* #else #ifdef CONFIG_NO_HZ */
466
467#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
468
469static void record_gp_stall_check_time(struct rcu_state *rsp)
470{
471 rsp->gp_start = jiffies;
472 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
473}
474
475static void print_other_cpu_stall(struct rcu_state *rsp)
476{
477 int cpu;
478 long delta;
479 unsigned long flags;
480 struct rcu_node *rnp = rcu_get_root(rsp);
481 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
482 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
483
484 /* Only let one CPU complain about others per time interval. */
485
486 spin_lock_irqsave(&rnp->lock, flags);
487 delta = jiffies - rsp->jiffies_stall;
488 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
489 spin_unlock_irqrestore(&rnp->lock, flags);
490 return;
491 }
492 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
493 spin_unlock_irqrestore(&rnp->lock, flags);
494
495 /* OK, time to rat on our buddy... */
496
497 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
498 for (; rnp_cur < rnp_end; rnp_cur++) {
f41d911f 499 rcu_print_task_stall(rnp);
64db4cff
PM
500 if (rnp_cur->qsmask == 0)
501 continue;
502 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
503 if (rnp_cur->qsmask & (1UL << cpu))
504 printk(" %d", rnp_cur->grplo + cpu);
505 }
506 printk(" (detected by %d, t=%ld jiffies)\n",
507 smp_processor_id(), (long)(jiffies - rsp->gp_start));
508 force_quiescent_state(rsp, 0); /* Kick them all. */
509}
510
511static void print_cpu_stall(struct rcu_state *rsp)
512{
513 unsigned long flags;
514 struct rcu_node *rnp = rcu_get_root(rsp);
515
516 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
517 smp_processor_id(), jiffies - rsp->gp_start);
518 dump_stack();
519 spin_lock_irqsave(&rnp->lock, flags);
520 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
521 rsp->jiffies_stall =
522 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
523 spin_unlock_irqrestore(&rnp->lock, flags);
524 set_need_resched(); /* kick ourselves to get things going. */
525}
526
527static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
528{
529 long delta;
530 struct rcu_node *rnp;
531
532 delta = jiffies - rsp->jiffies_stall;
533 rnp = rdp->mynode;
534 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
535
536 /* We haven't checked in, so go dump stack. */
537 print_cpu_stall(rsp);
538
539 } else if (rsp->gpnum != rsp->completed &&
540 delta >= RCU_STALL_RAT_DELAY) {
541
542 /* They had two time units to dump stack, so complain. */
543 print_other_cpu_stall(rsp);
544 }
545}
546
547#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
548
549static void record_gp_stall_check_time(struct rcu_state *rsp)
550{
551}
552
553static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
554{
555}
556
557#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
558
559/*
560 * Update CPU-local rcu_data state to record the newly noticed grace period.
561 * This is used both when we started the grace period and when we notice
562 * that someone else started the grace period.
563 */
564static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
565{
566 rdp->qs_pending = 1;
567 rdp->passed_quiesc = 0;
568 rdp->gpnum = rsp->gpnum;
64db4cff
PM
569}
570
571/*
572 * Did someone else start a new RCU grace period start since we last
573 * checked? Update local state appropriately if so. Must be called
574 * on the CPU corresponding to rdp.
575 */
576static int
577check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
578{
579 unsigned long flags;
580 int ret = 0;
581
582 local_irq_save(flags);
583 if (rdp->gpnum != rsp->gpnum) {
584 note_new_gpnum(rsp, rdp);
585 ret = 1;
586 }
587 local_irq_restore(flags);
588 return ret;
589}
590
591/*
592 * Start a new RCU grace period if warranted, re-initializing the hierarchy
593 * in preparation for detecting the next grace period. The caller must hold
594 * the root node's ->lock, which is released before return. Hard irqs must
595 * be disabled.
596 */
597static void
598rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
599 __releases(rcu_get_root(rsp)->lock)
600{
601 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
602 struct rcu_node *rnp = rcu_get_root(rsp);
603 struct rcu_node *rnp_cur;
604 struct rcu_node *rnp_end;
605
606 if (!cpu_needs_another_gp(rsp, rdp)) {
607 spin_unlock_irqrestore(&rnp->lock, flags);
608 return;
609 }
610
611 /* Advance to a new grace period and initialize state. */
612 rsp->gpnum++;
613 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
614 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
615 record_gp_stall_check_time(rsp);
616 dyntick_record_completed(rsp, rsp->completed - 1);
617 note_new_gpnum(rsp, rdp);
618
619 /*
620 * Because we are first, we know that all our callbacks will
621 * be covered by this upcoming grace period, even the ones
622 * that were registered arbitrarily recently.
623 */
624 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
625 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
626
627 /* Special-case the common single-level case. */
628 if (NUM_RCU_NODES == 1) {
629 rnp->qsmask = rnp->qsmaskinit;
c12172c0 630 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
631 spin_unlock_irqrestore(&rnp->lock, flags);
632 return;
633 }
634
635 spin_unlock(&rnp->lock); /* leave irqs disabled. */
636
637
638 /* Exclude any concurrent CPU-hotplug operations. */
639 spin_lock(&rsp->onofflock); /* irqs already disabled. */
640
641 /*
642 * Set the quiescent-state-needed bits in all the non-leaf RCU
643 * nodes for all currently online CPUs. This operation relies
644 * on the layout of the hierarchy within the rsp->node[] array.
645 * Note that other CPUs will access only the leaves of the
646 * hierarchy, which still indicate that no grace period is in
647 * progress. In addition, we have excluded CPU-hotplug operations.
648 *
649 * We therefore do not need to hold any locks. Any required
650 * memory barriers will be supplied by the locks guarding the
651 * leaf rcu_nodes in the hierarchy.
652 */
653
654 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
655 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
656 rnp_cur->qsmask = rnp_cur->qsmaskinit;
657
658 /*
659 * Now set up the leaf nodes. Here we must be careful. First,
660 * we need to hold the lock in order to exclude other CPUs, which
661 * might be contending for the leaf nodes' locks. Second, as
662 * soon as we initialize a given leaf node, its CPUs might run
663 * up the rest of the hierarchy. We must therefore acquire locks
664 * for each node that we touch during this stage. (But we still
665 * are excluding CPU-hotplug operations.)
666 *
667 * Note that the grace period cannot complete until we finish
668 * the initialization process, as there will be at least one
669 * qsmask bit set in the root node until that time, namely the
670 * one corresponding to this CPU.
671 */
672 rnp_end = &rsp->node[NUM_RCU_NODES];
673 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
674 for (; rnp_cur < rnp_end; rnp_cur++) {
675 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
676 rnp_cur->qsmask = rnp_cur->qsmaskinit;
677 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
678 }
679
680 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
681 spin_unlock_irqrestore(&rsp->onofflock, flags);
682}
683
684/*
685 * Advance this CPU's callbacks, but only if the current grace period
686 * has ended. This may be called only from the CPU to whom the rdp
687 * belongs.
688 */
689static void
690rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
691{
692 long completed_snap;
693 unsigned long flags;
694
695 local_irq_save(flags);
696 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
697
698 /* Did another grace period end? */
699 if (rdp->completed != completed_snap) {
700
701 /* Advance callbacks. No harm if list empty. */
702 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
703 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
704 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
705
706 /* Remember that we saw this grace-period completion. */
707 rdp->completed = completed_snap;
708 }
709 local_irq_restore(flags);
710}
711
f41d911f
PM
712/*
713 * Clean up after the prior grace period and let rcu_start_gp() start up
714 * the next grace period if one is needed. Note that the caller must
715 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
716 */
717static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
718 __releases(rnp->lock)
719{
720 rsp->completed = rsp->gpnum;
721 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
722 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
723}
724
64db4cff
PM
725/*
726 * Similar to cpu_quiet(), for which it is a helper function. Allows
727 * a group of CPUs to be quieted at one go, though all the CPUs in the
728 * group must be represented by the same leaf rcu_node structure.
729 * That structure's lock must be held upon entry, and it is released
730 * before return.
731 */
732static void
733cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
734 unsigned long flags)
735 __releases(rnp->lock)
736{
737 /* Walk up the rcu_node hierarchy. */
738 for (;;) {
739 if (!(rnp->qsmask & mask)) {
740
741 /* Our bit has already been cleared, so done. */
742 spin_unlock_irqrestore(&rnp->lock, flags);
743 return;
744 }
745 rnp->qsmask &= ~mask;
f41d911f 746 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
747
748 /* Other bits still set at this level, so done. */
749 spin_unlock_irqrestore(&rnp->lock, flags);
750 return;
751 }
752 mask = rnp->grpmask;
753 if (rnp->parent == NULL) {
754
755 /* No more levels. Exit loop holding root lock. */
756
757 break;
758 }
759 spin_unlock_irqrestore(&rnp->lock, flags);
760 rnp = rnp->parent;
761 spin_lock_irqsave(&rnp->lock, flags);
762 }
763
764 /*
765 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
766 * state for this grace period. Invoke cpu_quiet_msk_finish()
767 * to clean up and start the next grace period if one is needed.
64db4cff 768 */
f41d911f 769 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
770}
771
772/*
773 * Record a quiescent state for the specified CPU, which must either be
774 * the current CPU or an offline CPU. The lastcomp argument is used to
775 * make sure we are still in the grace period of interest. We don't want
776 * to end the current grace period based on quiescent states detected in
777 * an earlier grace period!
778 */
779static void
780cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
781{
782 unsigned long flags;
783 unsigned long mask;
784 struct rcu_node *rnp;
785
786 rnp = rdp->mynode;
787 spin_lock_irqsave(&rnp->lock, flags);
788 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
789
790 /*
791 * Someone beat us to it for this grace period, so leave.
792 * The race with GP start is resolved by the fact that we
793 * hold the leaf rcu_node lock, so that the per-CPU bits
794 * cannot yet be initialized -- so we would simply find our
795 * CPU's bit already cleared in cpu_quiet_msk() if this race
796 * occurred.
797 */
798 rdp->passed_quiesc = 0; /* try again later! */
799 spin_unlock_irqrestore(&rnp->lock, flags);
800 return;
801 }
802 mask = rdp->grpmask;
803 if ((rnp->qsmask & mask) == 0) {
804 spin_unlock_irqrestore(&rnp->lock, flags);
805 } else {
806 rdp->qs_pending = 0;
807
808 /*
809 * This GP can't end until cpu checks in, so all of our
810 * callbacks can be processed during the next GP.
811 */
812 rdp = rsp->rda[smp_processor_id()];
813 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
814
815 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
816 }
817}
818
819/*
820 * Check to see if there is a new grace period of which this CPU
821 * is not yet aware, and if so, set up local rcu_data state for it.
822 * Otherwise, see if this CPU has just passed through its first
823 * quiescent state for this grace period, and record that fact if so.
824 */
825static void
826rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
827{
828 /* If there is now a new grace period, record and return. */
829 if (check_for_new_grace_period(rsp, rdp))
830 return;
831
832 /*
833 * Does this CPU still need to do its part for current grace period?
834 * If no, return and let the other CPUs do their part as well.
835 */
836 if (!rdp->qs_pending)
837 return;
838
839 /*
840 * Was there a quiescent state since the beginning of the grace
841 * period? If no, then exit and wait for the next call.
842 */
843 if (!rdp->passed_quiesc)
844 return;
845
846 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
847 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
848}
849
850#ifdef CONFIG_HOTPLUG_CPU
851
852/*
853 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
854 * and move all callbacks from the outgoing CPU to the current one.
855 */
856static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
857{
858 int i;
859 unsigned long flags;
860 long lastcomp;
861 unsigned long mask;
862 struct rcu_data *rdp = rsp->rda[cpu];
863 struct rcu_data *rdp_me;
864 struct rcu_node *rnp;
865
866 /* Exclude any attempts to start a new grace period. */
867 spin_lock_irqsave(&rsp->onofflock, flags);
868
869 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
870 rnp = rdp->mynode;
871 mask = rdp->grpmask; /* rnp->grplo is constant. */
872 do {
873 spin_lock(&rnp->lock); /* irqs already disabled. */
874 rnp->qsmaskinit &= ~mask;
875 if (rnp->qsmaskinit != 0) {
f41d911f 876 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
877 break;
878 }
879 mask = rnp->grpmask;
f41d911f 880 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
881 rnp = rnp->parent;
882 } while (rnp != NULL);
883 lastcomp = rsp->completed;
884
885 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
886
887 /* Being offline is a quiescent state, so go record it. */
888 cpu_quiet(cpu, rsp, rdp, lastcomp);
889
890 /*
891 * Move callbacks from the outgoing CPU to the running CPU.
892 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 893 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
894 * Note also that we must carefully retain the order of the
895 * outgoing CPU's callbacks in order for rcu_barrier() to work
896 * correctly. Finally, note that we start all the callbacks
897 * afresh, even those that have passed through a grace period
898 * and are therefore ready to invoke. The theory is that hotplug
899 * events are rare, and that if they are frequent enough to
900 * indefinitely delay callbacks, you have far worse things to
901 * be worrying about.
902 */
903 rdp_me = rsp->rda[smp_processor_id()];
904 if (rdp->nxtlist != NULL) {
905 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
906 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
907 rdp->nxtlist = NULL;
908 for (i = 0; i < RCU_NEXT_SIZE; i++)
909 rdp->nxttail[i] = &rdp->nxtlist;
910 rdp_me->qlen += rdp->qlen;
911 rdp->qlen = 0;
912 }
913 local_irq_restore(flags);
914}
915
916/*
917 * Remove the specified CPU from the RCU hierarchy and move any pending
918 * callbacks that it might have to the current CPU. This code assumes
919 * that at least one CPU in the system will remain running at all times.
920 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
921 */
922static void rcu_offline_cpu(int cpu)
923{
d6714c22 924 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 925 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 926 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
927}
928
929#else /* #ifdef CONFIG_HOTPLUG_CPU */
930
931static void rcu_offline_cpu(int cpu)
932{
933}
934
935#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
936
937/*
938 * Invoke any RCU callbacks that have made it to the end of their grace
939 * period. Thottle as specified by rdp->blimit.
940 */
941static void rcu_do_batch(struct rcu_data *rdp)
942{
943 unsigned long flags;
944 struct rcu_head *next, *list, **tail;
945 int count;
946
947 /* If no callbacks are ready, just return.*/
948 if (!cpu_has_callbacks_ready_to_invoke(rdp))
949 return;
950
951 /*
952 * Extract the list of ready callbacks, disabling to prevent
953 * races with call_rcu() from interrupt handlers.
954 */
955 local_irq_save(flags);
956 list = rdp->nxtlist;
957 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
958 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
959 tail = rdp->nxttail[RCU_DONE_TAIL];
960 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
961 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
962 rdp->nxttail[count] = &rdp->nxtlist;
963 local_irq_restore(flags);
964
965 /* Invoke callbacks. */
966 count = 0;
967 while (list) {
968 next = list->next;
969 prefetch(next);
970 list->func(list);
971 list = next;
972 if (++count >= rdp->blimit)
973 break;
974 }
975
976 local_irq_save(flags);
977
978 /* Update count, and requeue any remaining callbacks. */
979 rdp->qlen -= count;
980 if (list != NULL) {
981 *tail = rdp->nxtlist;
982 rdp->nxtlist = list;
983 for (count = 0; count < RCU_NEXT_SIZE; count++)
984 if (&rdp->nxtlist == rdp->nxttail[count])
985 rdp->nxttail[count] = tail;
986 else
987 break;
988 }
989
990 /* Reinstate batch limit if we have worked down the excess. */
991 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
992 rdp->blimit = blimit;
993
994 local_irq_restore(flags);
995
996 /* Re-raise the RCU softirq if there are callbacks remaining. */
997 if (cpu_has_callbacks_ready_to_invoke(rdp))
998 raise_softirq(RCU_SOFTIRQ);
999}
1000
1001/*
1002 * Check to see if this CPU is in a non-context-switch quiescent state
1003 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1004 * Also schedule the RCU softirq handler.
1005 *
1006 * This function must be called with hardirqs disabled. It is normally
1007 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1008 * false, there is no point in invoking rcu_check_callbacks().
1009 */
1010void rcu_check_callbacks(int cpu, int user)
1011{
a157229c
PM
1012 if (!rcu_pending(cpu))
1013 return; /* if nothing for RCU to do. */
64db4cff 1014 if (user ||
a6826048
PM
1015 (idle_cpu(cpu) && rcu_scheduler_active &&
1016 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1017
1018 /*
1019 * Get here if this CPU took its interrupt from user
1020 * mode or from the idle loop, and if this is not a
1021 * nested interrupt. In this case, the CPU is in
d6714c22 1022 * a quiescent state, so note it.
64db4cff
PM
1023 *
1024 * No memory barrier is required here because both
d6714c22
PM
1025 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1026 * variables that other CPUs neither access nor modify,
1027 * at least not while the corresponding CPU is online.
64db4cff
PM
1028 */
1029
d6714c22
PM
1030 rcu_sched_qs(cpu);
1031 rcu_bh_qs(cpu);
64db4cff
PM
1032
1033 } else if (!in_softirq()) {
1034
1035 /*
1036 * Get here if this CPU did not take its interrupt from
1037 * softirq, in other words, if it is not interrupting
1038 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1039 * critical section, so note it.
64db4cff
PM
1040 */
1041
d6714c22 1042 rcu_bh_qs(cpu);
64db4cff 1043 }
f41d911f 1044 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1045 raise_softirq(RCU_SOFTIRQ);
1046}
1047
1048#ifdef CONFIG_SMP
1049
1050/*
1051 * Scan the leaf rcu_node structures, processing dyntick state for any that
1052 * have not yet encountered a quiescent state, using the function specified.
1053 * Returns 1 if the current grace period ends while scanning (possibly
1054 * because we made it end).
1055 */
1056static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1057 int (*f)(struct rcu_data *))
1058{
1059 unsigned long bit;
1060 int cpu;
1061 unsigned long flags;
1062 unsigned long mask;
1063 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1064 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1065
1066 for (; rnp_cur < rnp_end; rnp_cur++) {
1067 mask = 0;
1068 spin_lock_irqsave(&rnp_cur->lock, flags);
1069 if (rsp->completed != lastcomp) {
1070 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1071 return 1;
1072 }
1073 if (rnp_cur->qsmask == 0) {
1074 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1075 continue;
1076 }
1077 cpu = rnp_cur->grplo;
1078 bit = 1;
1079 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1080 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1081 mask |= bit;
1082 }
1083 if (mask != 0 && rsp->completed == lastcomp) {
1084
1085 /* cpu_quiet_msk() releases rnp_cur->lock. */
1086 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1087 continue;
1088 }
1089 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1090 }
1091 return 0;
1092}
1093
1094/*
1095 * Force quiescent states on reluctant CPUs, and also detect which
1096 * CPUs are in dyntick-idle mode.
1097 */
1098static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1099{
1100 unsigned long flags;
1101 long lastcomp;
64db4cff
PM
1102 struct rcu_node *rnp = rcu_get_root(rsp);
1103 u8 signaled;
1104
1105 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1106 return; /* No grace period in progress, nothing to force. */
1107 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1108 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1109 return; /* Someone else is already on the job. */
1110 }
1111 if (relaxed &&
ef631b0c 1112 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1113 goto unlock_ret; /* no emergency and done recently. */
1114 rsp->n_force_qs++;
1115 spin_lock(&rnp->lock);
1116 lastcomp = rsp->completed;
1117 signaled = rsp->signaled;
1118 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1119 if (lastcomp == rsp->gpnum) {
1120 rsp->n_force_qs_ngp++;
1121 spin_unlock(&rnp->lock);
1122 goto unlock_ret; /* no GP in progress, time updated. */
1123 }
1124 spin_unlock(&rnp->lock);
1125 switch (signaled) {
1126 case RCU_GP_INIT:
1127
1128 break; /* grace period still initializing, ignore. */
1129
1130 case RCU_SAVE_DYNTICK:
1131
1132 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1133 break; /* So gcc recognizes the dead code. */
1134
1135 /* Record dyntick-idle state. */
1136 if (rcu_process_dyntick(rsp, lastcomp,
1137 dyntick_save_progress_counter))
1138 goto unlock_ret;
1139
1140 /* Update state, record completion counter. */
1141 spin_lock(&rnp->lock);
1142 if (lastcomp == rsp->completed) {
1143 rsp->signaled = RCU_FORCE_QS;
1144 dyntick_record_completed(rsp, lastcomp);
1145 }
1146 spin_unlock(&rnp->lock);
1147 break;
1148
1149 case RCU_FORCE_QS:
1150
1151 /* Check dyntick-idle state, send IPI to laggarts. */
1152 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1153 rcu_implicit_dynticks_qs))
1154 goto unlock_ret;
1155
1156 /* Leave state in case more forcing is required. */
1157
1158 break;
1159 }
1160unlock_ret:
1161 spin_unlock_irqrestore(&rsp->fqslock, flags);
1162}
1163
1164#else /* #ifdef CONFIG_SMP */
1165
1166static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1167{
1168 set_need_resched();
1169}
1170
1171#endif /* #else #ifdef CONFIG_SMP */
1172
1173/*
1174 * This does the RCU processing work from softirq context for the
1175 * specified rcu_state and rcu_data structures. This may be called
1176 * only from the CPU to whom the rdp belongs.
1177 */
1178static void
1179__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1180{
1181 unsigned long flags;
1182
2e597558
PM
1183 WARN_ON_ONCE(rdp->beenonline == 0);
1184
64db4cff
PM
1185 /*
1186 * If an RCU GP has gone long enough, go check for dyntick
1187 * idle CPUs and, if needed, send resched IPIs.
1188 */
ef631b0c 1189 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1190 force_quiescent_state(rsp, 1);
1191
1192 /*
1193 * Advance callbacks in response to end of earlier grace
1194 * period that some other CPU ended.
1195 */
1196 rcu_process_gp_end(rsp, rdp);
1197
1198 /* Update RCU state based on any recent quiescent states. */
1199 rcu_check_quiescent_state(rsp, rdp);
1200
1201 /* Does this CPU require a not-yet-started grace period? */
1202 if (cpu_needs_another_gp(rsp, rdp)) {
1203 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1204 rcu_start_gp(rsp, flags); /* releases above lock */
1205 }
1206
1207 /* If there are callbacks ready, invoke them. */
1208 rcu_do_batch(rdp);
1209}
1210
1211/*
1212 * Do softirq processing for the current CPU.
1213 */
1214static void rcu_process_callbacks(struct softirq_action *unused)
1215{
1216 /*
1217 * Memory references from any prior RCU read-side critical sections
1218 * executed by the interrupted code must be seen before any RCU
1219 * grace-period manipulations below.
1220 */
1221 smp_mb(); /* See above block comment. */
1222
d6714c22
PM
1223 __rcu_process_callbacks(&rcu_sched_state,
1224 &__get_cpu_var(rcu_sched_data));
64db4cff 1225 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1226 rcu_preempt_process_callbacks();
64db4cff
PM
1227
1228 /*
1229 * Memory references from any later RCU read-side critical sections
1230 * executed by the interrupted code must be seen after any RCU
1231 * grace-period manipulations above.
1232 */
1233 smp_mb(); /* See above block comment. */
1234}
1235
1236static void
1237__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1238 struct rcu_state *rsp)
1239{
1240 unsigned long flags;
1241 struct rcu_data *rdp;
1242
1243 head->func = func;
1244 head->next = NULL;
1245
1246 smp_mb(); /* Ensure RCU update seen before callback registry. */
1247
1248 /*
1249 * Opportunistically note grace-period endings and beginnings.
1250 * Note that we might see a beginning right after we see an
1251 * end, but never vice versa, since this CPU has to pass through
1252 * a quiescent state betweentimes.
1253 */
1254 local_irq_save(flags);
1255 rdp = rsp->rda[smp_processor_id()];
1256 rcu_process_gp_end(rsp, rdp);
1257 check_for_new_grace_period(rsp, rdp);
1258
1259 /* Add the callback to our list. */
1260 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1261 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1262
1263 /* Start a new grace period if one not already started. */
1264 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1265 unsigned long nestflag;
1266 struct rcu_node *rnp_root = rcu_get_root(rsp);
1267
1268 spin_lock_irqsave(&rnp_root->lock, nestflag);
1269 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1270 }
1271
1272 /* Force the grace period if too many callbacks or too long waiting. */
1273 if (unlikely(++rdp->qlen > qhimark)) {
1274 rdp->blimit = LONG_MAX;
1275 force_quiescent_state(rsp, 0);
ef631b0c 1276 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1277 force_quiescent_state(rsp, 1);
1278 local_irq_restore(flags);
1279}
1280
1281/*
d6714c22
PM
1282 * Queue an RCU-sched callback for invocation after a grace period.
1283 */
1284void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1285{
1286 __call_rcu(head, func, &rcu_sched_state);
1287}
1288EXPORT_SYMBOL_GPL(call_rcu_sched);
1289
64db4cff
PM
1290/*
1291 * Queue an RCU for invocation after a quicker grace period.
1292 */
1293void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1294{
1295 __call_rcu(head, func, &rcu_bh_state);
1296}
1297EXPORT_SYMBOL_GPL(call_rcu_bh);
1298
1299/*
1300 * Check to see if there is any immediate RCU-related work to be done
1301 * by the current CPU, for the specified type of RCU, returning 1 if so.
1302 * The checks are in order of increasing expense: checks that can be
1303 * carried out against CPU-local state are performed first. However,
1304 * we must check for CPU stalls first, else we might not get a chance.
1305 */
1306static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1307{
1308 rdp->n_rcu_pending++;
1309
1310 /* Check for CPU stalls, if enabled. */
1311 check_cpu_stall(rsp, rdp);
1312
1313 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1314 if (rdp->qs_pending) {
1315 rdp->n_rp_qs_pending++;
64db4cff 1316 return 1;
7ba5c840 1317 }
64db4cff
PM
1318
1319 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1320 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1321 rdp->n_rp_cb_ready++;
64db4cff 1322 return 1;
7ba5c840 1323 }
64db4cff
PM
1324
1325 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1326 if (cpu_needs_another_gp(rsp, rdp)) {
1327 rdp->n_rp_cpu_needs_gp++;
64db4cff 1328 return 1;
7ba5c840 1329 }
64db4cff
PM
1330
1331 /* Has another RCU grace period completed? */
7ba5c840
PM
1332 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1333 rdp->n_rp_gp_completed++;
64db4cff 1334 return 1;
7ba5c840 1335 }
64db4cff
PM
1336
1337 /* Has a new RCU grace period started? */
7ba5c840
PM
1338 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1339 rdp->n_rp_gp_started++;
64db4cff 1340 return 1;
7ba5c840 1341 }
64db4cff
PM
1342
1343 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1344 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1345 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1346 rdp->n_rp_need_fqs++;
64db4cff 1347 return 1;
7ba5c840 1348 }
64db4cff
PM
1349
1350 /* nothing to do */
7ba5c840 1351 rdp->n_rp_need_nothing++;
64db4cff
PM
1352 return 0;
1353}
1354
1355/*
1356 * Check to see if there is any immediate RCU-related work to be done
1357 * by the current CPU, returning 1 if so. This function is part of the
1358 * RCU implementation; it is -not- an exported member of the RCU API.
1359 */
a157229c 1360static int rcu_pending(int cpu)
64db4cff 1361{
d6714c22 1362 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1363 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1364 rcu_preempt_pending(cpu);
64db4cff
PM
1365}
1366
1367/*
1368 * Check to see if any future RCU-related work will need to be done
1369 * by the current CPU, even if none need be done immediately, returning
1370 * 1 if so. This function is part of the RCU implementation; it is -not-
1371 * an exported member of the RCU API.
1372 */
1373int rcu_needs_cpu(int cpu)
1374{
1375 /* RCU callbacks either ready or pending? */
d6714c22 1376 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1377 per_cpu(rcu_bh_data, cpu).nxtlist ||
1378 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1379}
1380
1381/*
27569620
PM
1382 * Do boot-time initialization of a CPU's per-CPU RCU data.
1383 */
1384static void __init
1385rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1386{
1387 unsigned long flags;
1388 int i;
1389 struct rcu_data *rdp = rsp->rda[cpu];
1390 struct rcu_node *rnp = rcu_get_root(rsp);
1391
1392 /* Set up local state, ensuring consistent view of global state. */
1393 spin_lock_irqsave(&rnp->lock, flags);
1394 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1395 rdp->nxtlist = NULL;
1396 for (i = 0; i < RCU_NEXT_SIZE; i++)
1397 rdp->nxttail[i] = &rdp->nxtlist;
1398 rdp->qlen = 0;
1399#ifdef CONFIG_NO_HZ
1400 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1401#endif /* #ifdef CONFIG_NO_HZ */
1402 rdp->cpu = cpu;
1403 spin_unlock_irqrestore(&rnp->lock, flags);
1404}
1405
1406/*
1407 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1408 * offline event can be happening at a given time. Note also that we
1409 * can accept some slop in the rsp->completed access due to the fact
1410 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1411 */
e4fa4c97 1412static void __cpuinit
f41d911f 1413rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1414{
1415 unsigned long flags;
64db4cff
PM
1416 long lastcomp;
1417 unsigned long mask;
1418 struct rcu_data *rdp = rsp->rda[cpu];
1419 struct rcu_node *rnp = rcu_get_root(rsp);
1420
1421 /* Set up local state, ensuring consistent view of global state. */
1422 spin_lock_irqsave(&rnp->lock, flags);
1423 lastcomp = rsp->completed;
1424 rdp->completed = lastcomp;
1425 rdp->gpnum = lastcomp;
1426 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1427 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1428 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1429 rdp->preemptable = preemptable;
64db4cff 1430 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1431 rdp->blimit = blimit;
64db4cff
PM
1432 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1433
1434 /*
1435 * A new grace period might start here. If so, we won't be part
1436 * of it, but that is OK, as we are currently in a quiescent state.
1437 */
1438
1439 /* Exclude any attempts to start a new GP on large systems. */
1440 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1441
1442 /* Add CPU to rcu_node bitmasks. */
1443 rnp = rdp->mynode;
1444 mask = rdp->grpmask;
1445 do {
1446 /* Exclude any attempts to start a new GP on small systems. */
1447 spin_lock(&rnp->lock); /* irqs already disabled. */
1448 rnp->qsmaskinit |= mask;
1449 mask = rnp->grpmask;
1450 spin_unlock(&rnp->lock); /* irqs already disabled. */
1451 rnp = rnp->parent;
1452 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1453
1454 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1455
1456 /*
1457 * A new grace period might start here. If so, we will be part of
1458 * it, and its gpnum will be greater than ours, so we will
1459 * participate. It is also possible for the gpnum to have been
1460 * incremented before this function was called, and the bitmasks
1461 * to not be filled out until now, in which case we will also
1462 * participate due to our gpnum being behind.
1463 */
1464
1465 /* Since it is coming online, the CPU is in a quiescent state. */
1466 cpu_quiet(cpu, rsp, rdp, lastcomp);
1467 local_irq_restore(flags);
1468}
1469
1470static void __cpuinit rcu_online_cpu(int cpu)
1471{
f41d911f
PM
1472 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1473 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1474 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1475}
1476
1477/*
f41d911f 1478 * Handle CPU online/offline notification events.
64db4cff 1479 */
2e597558
PM
1480int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1481 unsigned long action, void *hcpu)
64db4cff
PM
1482{
1483 long cpu = (long)hcpu;
1484
1485 switch (action) {
1486 case CPU_UP_PREPARE:
1487 case CPU_UP_PREPARE_FROZEN:
1488 rcu_online_cpu(cpu);
1489 break;
1490 case CPU_DEAD:
1491 case CPU_DEAD_FROZEN:
1492 case CPU_UP_CANCELED:
1493 case CPU_UP_CANCELED_FROZEN:
1494 rcu_offline_cpu(cpu);
1495 break;
1496 default:
1497 break;
1498 }
1499 return NOTIFY_OK;
1500}
1501
1502/*
1503 * Compute the per-level fanout, either using the exact fanout specified
1504 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1505 */
1506#ifdef CONFIG_RCU_FANOUT_EXACT
1507static void __init rcu_init_levelspread(struct rcu_state *rsp)
1508{
1509 int i;
1510
1511 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1512 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1513}
1514#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1515static void __init rcu_init_levelspread(struct rcu_state *rsp)
1516{
1517 int ccur;
1518 int cprv;
1519 int i;
1520
1521 cprv = NR_CPUS;
1522 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1523 ccur = rsp->levelcnt[i];
1524 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1525 cprv = ccur;
1526 }
1527}
1528#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1529
1530/*
1531 * Helper function for rcu_init() that initializes one rcu_state structure.
1532 */
1533static void __init rcu_init_one(struct rcu_state *rsp)
1534{
1535 int cpustride = 1;
1536 int i;
1537 int j;
1538 struct rcu_node *rnp;
1539
1540 /* Initialize the level-tracking arrays. */
1541
1542 for (i = 1; i < NUM_RCU_LVLS; i++)
1543 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1544 rcu_init_levelspread(rsp);
1545
1546 /* Initialize the elements themselves, starting from the leaves. */
1547
1548 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1549 cpustride *= rsp->levelspread[i];
1550 rnp = rsp->level[i];
1551 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1552 spin_lock_init(&rnp->lock);
f41d911f 1553 rnp->gpnum = 0;
64db4cff
PM
1554 rnp->qsmask = 0;
1555 rnp->qsmaskinit = 0;
1556 rnp->grplo = j * cpustride;
1557 rnp->grphi = (j + 1) * cpustride - 1;
1558 if (rnp->grphi >= NR_CPUS)
1559 rnp->grphi = NR_CPUS - 1;
1560 if (i == 0) {
1561 rnp->grpnum = 0;
1562 rnp->grpmask = 0;
1563 rnp->parent = NULL;
1564 } else {
1565 rnp->grpnum = j % rsp->levelspread[i - 1];
1566 rnp->grpmask = 1UL << rnp->grpnum;
1567 rnp->parent = rsp->level[i - 1] +
1568 j / rsp->levelspread[i - 1];
1569 }
1570 rnp->level = i;
f41d911f
PM
1571 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1572 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1573 }
1574 }
1575}
1576
1577/*
f41d911f
PM
1578 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1579 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1580 * structure.
64db4cff 1581 */
65cf8f86 1582#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1583do { \
65cf8f86 1584 rcu_init_one(rsp); \
64db4cff
PM
1585 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1586 j = 0; \
1587 for_each_possible_cpu(i) { \
1588 if (i > rnp[j].grphi) \
1589 j++; \
1590 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1591 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1592 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1593 } \
1594} while (0)
1595
f41d911f
PM
1596#ifdef CONFIG_TREE_PREEMPT_RCU
1597
1598void __init __rcu_init_preempt(void)
1599{
1600 int i; /* All used by RCU_INIT_FLAVOR(). */
1601 int j;
1602 struct rcu_node *rnp;
1603
1604 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1605}
1606
1607#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1608
1609void __init __rcu_init_preempt(void)
1610{
1611}
1612
1613#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1614
64db4cff
PM
1615void __init __rcu_init(void)
1616{
f41d911f 1617 int i; /* All used by RCU_INIT_FLAVOR(). */
64db4cff
PM
1618 int j;
1619 struct rcu_node *rnp;
1620
f41d911f 1621 rcu_bootup_announce();
64db4cff
PM
1622#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1623 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1624#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1625 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1626 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1627 __rcu_init_preempt();
2e597558 1628 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1629}
1630
1631module_param(blimit, int, 0);
1632module_param(qhimark, int, 0);
1633module_param(qlowmark, int, 0);