rcu: React to callback overload by boosting RCU readers
[linux-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
22e40925 1/* SPDX-License-Identifier: GPL-2.0+ */
f41d911f
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
6cc68793 5 * or preemptible semantics.
f41d911f 6 *
f41d911f
PM
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
22e40925 11 * Paul E. McKenney <paulmck@linux.ibm.com>
f41d911f
PM
12 */
13
abaa93d9 14#include "../locking/rtmutex_common.h"
5b61b0ba 15
3fbfbf7a
PM
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 18static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
26845c28
PM
21/*
22 * Check the RCU kernel configuration parameters and print informative
699d4035 23 * messages about anything out of the ordinary.
26845c28
PM
24 */
25static void __init rcu_bootup_announce_oddness(void)
26{
ab6f5bd6 27 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 28 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
7fa27001 33 if (rcu_fanout_exact)
ab6f5bd6
PM
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 37 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 38 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 41 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
cca6f393 47 if (nr_cpu_ids != NR_CPUS)
9b130ad5 48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 49#ifdef CONFIG_RCU_BOOST
a7538352
JP
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
52#endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
b2b00ddf
PM
59 if (qovld != DEFAULT_RCU_QOVLD)
60 pr_info("\tBoot-time adjustment of callback overload leval to %ld.\n", qovld);
17c7798b
PM
61 if (jiffies_till_first_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63 if (jiffies_till_next_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
c06aed0e
PM
65 if (jiffies_till_sched_qs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
17c7798b
PM
67 if (rcu_kick_kthreads)
68 pr_info("\tKick kthreads if too-long grace period.\n");
69 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 71 if (gp_preinit_delay)
17c7798b 72 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 73 if (gp_init_delay)
17c7798b 74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 75 if (gp_cleanup_delay)
17c7798b 76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
48d07c04
SAS
77 if (!use_softirq)
78 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
17c7798b
PM
79 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 81 rcupdate_announce_bootup_oddness();
26845c28
PM
82}
83
28f6569a 84#ifdef CONFIG_PREEMPT_RCU
f41d911f 85
63d4c8c9 86static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
3949fa9b 87static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 88
f41d911f
PM
89/*
90 * Tell them what RCU they are running.
91 */
0e0fc1c2 92static void __init rcu_bootup_announce(void)
f41d911f 93{
efc151c3 94 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 95 rcu_bootup_announce_oddness();
f41d911f
PM
96}
97
8203d6d0
PM
98/* Flags for rcu_preempt_ctxt_queue() decision table. */
99#define RCU_GP_TASKS 0x8
100#define RCU_EXP_TASKS 0x4
101#define RCU_GP_BLKD 0x2
102#define RCU_EXP_BLKD 0x1
103
104/*
105 * Queues a task preempted within an RCU-preempt read-side critical
106 * section into the appropriate location within the ->blkd_tasks list,
107 * depending on the states of any ongoing normal and expedited grace
108 * periods. The ->gp_tasks pointer indicates which element the normal
109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110 * indicates which element the expedited grace period is waiting on (again,
111 * NULL if none). If a grace period is waiting on a given element in the
112 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
113 * adding a task to the tail of the list blocks any grace period that is
114 * already waiting on one of the elements. In contrast, adding a task
115 * to the head of the list won't block any grace period that is already
116 * waiting on one of the elements.
117 *
118 * This queuing is imprecise, and can sometimes make an ongoing grace
119 * period wait for a task that is not strictly speaking blocking it.
120 * Given the choice, we needlessly block a normal grace period rather than
121 * blocking an expedited grace period.
122 *
123 * Note that an endless sequence of expedited grace periods still cannot
124 * indefinitely postpone a normal grace period. Eventually, all of the
125 * fixed number of preempted tasks blocking the normal grace period that are
126 * not also blocking the expedited grace period will resume and complete
127 * their RCU read-side critical sections. At that point, the ->gp_tasks
128 * pointer will equal the ->exp_tasks pointer, at which point the end of
129 * the corresponding expedited grace period will also be the end of the
130 * normal grace period.
131 */
46a5d164
PM
132static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
134{
135 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139 struct task_struct *t = current;
140
a32e01ee 141 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 142 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 143 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
144 /* RCU better not be waiting on newly onlined CPUs! */
145 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146 rdp->grpmask);
ea9b0c8a 147
8203d6d0
PM
148 /*
149 * Decide where to queue the newly blocked task. In theory,
150 * this could be an if-statement. In practice, when I tried
151 * that, it was quite messy.
152 */
153 switch (blkd_state) {
154 case 0:
155 case RCU_EXP_TASKS:
156 case RCU_EXP_TASKS + RCU_GP_BLKD:
157 case RCU_GP_TASKS:
158 case RCU_GP_TASKS + RCU_EXP_TASKS:
159
160 /*
161 * Blocking neither GP, or first task blocking the normal
162 * GP but not blocking the already-waiting expedited GP.
163 * Queue at the head of the list to avoid unnecessarily
164 * blocking the already-waiting GPs.
165 */
166 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167 break;
168
169 case RCU_EXP_BLKD:
170 case RCU_GP_BLKD:
171 case RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_BLKD:
173 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175
176 /*
177 * First task arriving that blocks either GP, or first task
178 * arriving that blocks the expedited GP (with the normal
179 * GP already waiting), or a task arriving that blocks
180 * both GPs with both GPs already waiting. Queue at the
181 * tail of the list to avoid any GP waiting on any of the
182 * already queued tasks that are not blocking it.
183 */
184 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185 break;
186
187 case RCU_EXP_TASKS + RCU_EXP_BLKD:
188 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
190
191 /*
192 * Second or subsequent task blocking the expedited GP.
193 * The task either does not block the normal GP, or is the
194 * first task blocking the normal GP. Queue just after
195 * the first task blocking the expedited GP.
196 */
197 list_add(&t->rcu_node_entry, rnp->exp_tasks);
198 break;
199
200 case RCU_GP_TASKS + RCU_GP_BLKD:
201 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202
203 /*
204 * Second or subsequent task blocking the normal GP.
205 * The task does not block the expedited GP. Queue just
206 * after the first task blocking the normal GP.
207 */
208 list_add(&t->rcu_node_entry, rnp->gp_tasks);
209 break;
210
211 default:
212
213 /* Yet another exercise in excessive paranoia. */
214 WARN_ON_ONCE(1);
215 break;
216 }
217
218 /*
219 * We have now queued the task. If it was the first one to
220 * block either grace period, update the ->gp_tasks and/or
221 * ->exp_tasks pointers, respectively, to reference the newly
222 * blocked tasks.
223 */
4bc8d555 224 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
6935c398 225 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
d43a5d32 226 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 227 }
8203d6d0
PM
228 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
230 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231 !(rnp->qsmask & rdp->grpmask));
232 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233 !(rnp->expmask & rdp->grpmask));
67c583a7 234 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
235
236 /*
237 * Report the quiescent state for the expedited GP. This expedited
238 * GP should not be able to end until we report, so there should be
239 * no need to check for a subsequent expedited GP. (Though we are
240 * still in a quiescent state in any case.)
241 */
1bb33644 242 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
63d4c8c9 243 rcu_report_exp_rdp(rdp);
fcc878e4 244 else
1bb33644 245 WARN_ON_ONCE(rdp->exp_deferred_qs);
8203d6d0
PM
246}
247
f41d911f 248/*
c7037ff5
PM
249 * Record a preemptible-RCU quiescent state for the specified CPU.
250 * Note that this does not necessarily mean that the task currently running
251 * on the CPU is in a quiescent state: Instead, it means that the current
252 * grace period need not wait on any RCU read-side critical section that
253 * starts later on this CPU. It also means that if the current task is
254 * in an RCU read-side critical section, it has already added itself to
255 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
256 * current task, there might be any number of other tasks blocked while
257 * in an RCU read-side critical section.
25502a6c 258 *
c7037ff5 259 * Callers to this function must disable preemption.
f41d911f 260 */
45975c7d 261static void rcu_qs(void)
f41d911f 262{
45975c7d 263 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 264 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 265 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 266 __this_cpu_read(rcu_data.gp_seq),
284a8c93 267 TPS("cpuqs"));
2280ee5a 268 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
c98cac60 269 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
add0d37b 270 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
284a8c93 271 }
f41d911f
PM
272}
273
274/*
c3422bea
PM
275 * We have entered the scheduler, and the current task might soon be
276 * context-switched away from. If this task is in an RCU read-side
277 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
278 * record that fact, so we enqueue the task on the blkd_tasks list.
279 * The task will dequeue itself when it exits the outermost enclosing
280 * RCU read-side critical section. Therefore, the current grace period
281 * cannot be permitted to complete until the blkd_tasks list entries
282 * predating the current grace period drain, in other words, until
283 * rnp->gp_tasks becomes NULL.
c3422bea 284 *
46a5d164 285 * Caller must disable interrupts.
f41d911f 286 */
45975c7d 287void rcu_note_context_switch(bool preempt)
f41d911f
PM
288{
289 struct task_struct *t = current;
da1df50d 290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
291 struct rcu_node *rnp;
292
45975c7d 293 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 294 lockdep_assert_irqs_disabled();
77339e61
LJ
295 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296 if (rcu_preempt_depth() > 0 &&
1d082fd0 297 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
298
299 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 300 rnp = rdp->mynode;
46a5d164 301 raw_spin_lock_rcu_node(rnp);
1d082fd0 302 t->rcu_read_unlock_special.b.blocked = true;
86848966 303 t->rcu_blocked_node = rnp;
f41d911f
PM
304
305 /*
8203d6d0
PM
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
f41d911f 309 */
0aa04b05 310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
88d1bead 312 trace_rcu_preempt_task(rcu_state.name,
d4c08f2a
PM
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
598ce094
PM
315 ? rnp->gp_seq
316 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 317 rcu_preempt_ctxt_queue(rnp, rdp);
3e310098
PM
318 } else {
319 rcu_preempt_deferred_qs(t);
f41d911f
PM
320 }
321
322 /*
323 * Either we were not in an RCU read-side critical section to
324 * begin with, or we have now recorded that critical section
325 * globally. Either way, we can now note a quiescent state
326 * for this CPU. Again, if we were in an RCU read-side critical
327 * section, and if that critical section was blocking the current
328 * grace period, then the fact that the task has been enqueued
329 * means that we continue to block the current grace period.
330 */
45975c7d 331 rcu_qs();
1bb33644 332 if (rdp->exp_deferred_qs)
63d4c8c9 333 rcu_report_exp_rdp(rdp);
45975c7d 334 trace_rcu_utilization(TPS("End context switch"));
f41d911f 335}
45975c7d 336EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 337
fc2219d4
PM
338/*
339 * Check for preempted RCU readers blocking the current grace period
340 * for the specified rcu_node structure. If the caller needs a reliable
341 * answer, it must hold the rcu_node's ->lock.
342 */
27f4d280 343static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 344{
6935c398 345 return READ_ONCE(rnp->gp_tasks) != NULL;
fc2219d4
PM
346}
347
5f1a6ef3
PM
348/* Bias and limit values for ->rcu_read_lock_nesting. */
349#define RCU_NEST_BIAS INT_MAX
350#define RCU_NEST_NMAX (-INT_MAX / 2)
351#define RCU_NEST_PMAX (INT_MAX / 2)
352
77339e61
LJ
353static void rcu_preempt_read_enter(void)
354{
355 current->rcu_read_lock_nesting++;
356}
357
358static void rcu_preempt_read_exit(void)
359{
360 current->rcu_read_lock_nesting--;
361}
362
363static void rcu_preempt_depth_set(int val)
364{
365 current->rcu_read_lock_nesting = val;
366}
367
0e5da22e
PM
368/*
369 * Preemptible RCU implementation for rcu_read_lock().
370 * Just increment ->rcu_read_lock_nesting, shared state will be updated
371 * if we block.
372 */
373void __rcu_read_lock(void)
374{
77339e61 375 rcu_preempt_read_enter();
5f1a6ef3 376 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
77339e61 377 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
0e5da22e
PM
378 barrier(); /* critical section after entry code. */
379}
380EXPORT_SYMBOL_GPL(__rcu_read_lock);
381
382/*
383 * Preemptible RCU implementation for rcu_read_unlock().
384 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
385 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
386 * invoke rcu_read_unlock_special() to clean up after a context switch
387 * in an RCU read-side critical section and other special cases.
388 */
389void __rcu_read_unlock(void)
390{
391 struct task_struct *t = current;
392
77339e61
LJ
393 if (rcu_preempt_depth() != 1) {
394 rcu_preempt_read_exit();
0e5da22e
PM
395 } else {
396 barrier(); /* critical section before exit code. */
77339e61 397 rcu_preempt_depth_set(-RCU_NEST_BIAS);
0e5da22e
PM
398 barrier(); /* assign before ->rcu_read_unlock_special load */
399 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
400 rcu_read_unlock_special(t);
401 barrier(); /* ->rcu_read_unlock_special load before assign */
77339e61 402 rcu_preempt_depth_set(0);
0e5da22e 403 }
5f1a6ef3 404 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
77339e61 405 int rrln = rcu_preempt_depth();
0e5da22e 406
5f1a6ef3 407 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
0e5da22e 408 }
0e5da22e
PM
409}
410EXPORT_SYMBOL_GPL(__rcu_read_unlock);
411
12f5f524
PM
412/*
413 * Advance a ->blkd_tasks-list pointer to the next entry, instead
414 * returning NULL if at the end of the list.
415 */
416static struct list_head *rcu_next_node_entry(struct task_struct *t,
417 struct rcu_node *rnp)
418{
419 struct list_head *np;
420
421 np = t->rcu_node_entry.next;
422 if (np == &rnp->blkd_tasks)
423 np = NULL;
424 return np;
425}
426
8af3a5e7
PM
427/*
428 * Return true if the specified rcu_node structure has tasks that were
429 * preempted within an RCU read-side critical section.
430 */
431static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
432{
433 return !list_empty(&rnp->blkd_tasks);
434}
435
b668c9cf 436/*
3e310098
PM
437 * Report deferred quiescent states. The deferral time can
438 * be quite short, for example, in the case of the call from
439 * rcu_read_unlock_special().
b668c9cf 440 */
3e310098
PM
441static void
442rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 443{
b6a932d1
PM
444 bool empty_exp;
445 bool empty_norm;
446 bool empty_exp_now;
12f5f524 447 struct list_head *np;
abaa93d9 448 bool drop_boost_mutex = false;
8203d6d0 449 struct rcu_data *rdp;
f41d911f 450 struct rcu_node *rnp;
1d082fd0 451 union rcu_special special;
f41d911f 452
f41d911f 453 /*
8203d6d0
PM
454 * If RCU core is waiting for this CPU to exit its critical section,
455 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 456 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
457 */
458 special = t->rcu_read_unlock_special;
da1df50d 459 rdp = this_cpu_ptr(&rcu_data);
1bb33644 460 if (!special.s && !rdp->exp_deferred_qs) {
3e310098
PM
461 local_irq_restore(flags);
462 return;
463 }
3717e1e9
LJ
464 t->rcu_read_unlock_special.s = 0;
465 if (special.b.need_qs)
45975c7d 466 rcu_qs();
f41d911f 467
8203d6d0 468 /*
3e310098
PM
469 * Respond to a request by an expedited grace period for a
470 * quiescent state from this CPU. Note that requests from
471 * tasks are handled when removing the task from the
472 * blocked-tasks list below.
8203d6d0 473 */
3717e1e9 474 if (rdp->exp_deferred_qs)
63d4c8c9 475 rcu_report_exp_rdp(rdp);
8203d6d0 476
f41d911f 477 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0 478 if (special.b.blocked) {
f41d911f 479
dd5d19ba 480 /*
0a0ba1c9 481 * Remove this task from the list it blocked on. The task
8ba9153b
PM
482 * now remains queued on the rcu_node corresponding to the
483 * CPU it first blocked on, so there is no longer any need
484 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 485 */
8ba9153b
PM
486 rnp = t->rcu_blocked_node;
487 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
488 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 489 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 490 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 491 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 492 (!empty_norm || rnp->qsmask));
6c7d7dbf 493 empty_exp = sync_rcu_exp_done(rnp);
d9a3da06 494 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 495 np = rcu_next_node_entry(t, rnp);
f41d911f 496 list_del_init(&t->rcu_node_entry);
82e78d80 497 t->rcu_blocked_node = NULL;
f7f7bac9 498 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 499 rnp->gp_seq, t->pid);
12f5f524 500 if (&t->rcu_node_entry == rnp->gp_tasks)
6935c398 501 WRITE_ONCE(rnp->gp_tasks, np);
12f5f524
PM
502 if (&t->rcu_node_entry == rnp->exp_tasks)
503 rnp->exp_tasks = np;
727b705b 504 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
505 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
506 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
507 if (&t->rcu_node_entry == rnp->boost_tasks)
508 rnp->boost_tasks = np;
727b705b 509 }
f41d911f
PM
510
511 /*
512 * If this was the last task on the current list, and if
513 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
514 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
515 * so we must take a snapshot of the expedited state.
f41d911f 516 */
6c7d7dbf 517 empty_exp_now = sync_rcu_exp_done(rnp);
74e871ac 518 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 519 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 520 rnp->gp_seq,
d4c08f2a
PM
521 0, rnp->qsmask,
522 rnp->level,
523 rnp->grplo,
524 rnp->grphi,
525 !!rnp->gp_tasks);
139ad4da 526 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 527 } else {
67c583a7 528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 529 }
d9a3da06 530
27f4d280 531 /* Unboost if we were boosted. */
727b705b 532 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 533 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 534
d9a3da06
PM
535 /*
536 * If this was the last task on the expedited lists,
537 * then we need to report up the rcu_node hierarchy.
538 */
389abd48 539 if (!empty_exp && empty_exp_now)
63d4c8c9 540 rcu_report_exp_rnp(rnp, true);
b668c9cf
PM
541 } else {
542 local_irq_restore(flags);
f41d911f 543 }
f41d911f
PM
544}
545
3e310098
PM
546/*
547 * Is a deferred quiescent-state pending, and are we also not in
548 * an RCU read-side critical section? It is the caller's responsibility
549 * to ensure it is otherwise safe to report any deferred quiescent
550 * states. The reason for this is that it is safe to report a
551 * quiescent state during context switch even though preemption
552 * is disabled. This function cannot be expected to understand these
553 * nuances, so the caller must handle them.
554 */
555static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
556{
1bb33644 557 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
3e310098 558 READ_ONCE(t->rcu_read_unlock_special.s)) &&
77339e61 559 rcu_preempt_depth() <= 0;
3e310098
PM
560}
561
562/*
563 * Report a deferred quiescent state if needed and safe to do so.
564 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
565 * not being in an RCU read-side critical section. The caller must
566 * evaluate safety in terms of interrupt, softirq, and preemption
567 * disabling.
568 */
569static void rcu_preempt_deferred_qs(struct task_struct *t)
570{
571 unsigned long flags;
77339e61 572 bool couldrecurse = rcu_preempt_depth() >= 0;
3e310098
PM
573
574 if (!rcu_preempt_need_deferred_qs(t))
575 return;
576 if (couldrecurse)
77339e61 577 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
3e310098
PM
578 local_irq_save(flags);
579 rcu_preempt_deferred_qs_irqrestore(t, flags);
580 if (couldrecurse)
77339e61 581 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
3e310098
PM
582}
583
0864f057
PM
584/*
585 * Minimal handler to give the scheduler a chance to re-evaluate.
586 */
587static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
588{
589 struct rcu_data *rdp;
590
591 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
592 rdp->defer_qs_iw_pending = false;
593}
594
3e310098
PM
595/*
596 * Handle special cases during rcu_read_unlock(), such as needing to
597 * notify RCU core processing or task having blocked during the RCU
598 * read-side critical section.
599 */
600static void rcu_read_unlock_special(struct task_struct *t)
601{
602 unsigned long flags;
603 bool preempt_bh_were_disabled =
604 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
605 bool irqs_were_disabled;
606
607 /* NMI handlers cannot block and cannot safely manipulate state. */
608 if (in_nmi())
609 return;
610
611 local_irq_save(flags);
612 irqs_were_disabled = irqs_disabled_flags(flags);
05f41571 613 if (preempt_bh_were_disabled || irqs_were_disabled) {
25102de6
PM
614 bool exp;
615 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
616 struct rcu_node *rnp = rdp->mynode;
617
25102de6 618 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
c51f83c3 619 (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
25102de6 620 tick_nohz_full_cpu(rdp->cpu);
23634ebc 621 // Need to defer quiescent state until everything is enabled.
87446b48
PM
622 if (irqs_were_disabled && use_softirq &&
623 (in_interrupt() ||
624 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
23634ebc
PM
625 // Using softirq, safe to awaken, and we get
626 // no help from enabling irqs, unlike bh/preempt.
05f41571
PM
627 raise_softirq_irqoff(RCU_SOFTIRQ);
628 } else {
23634ebc 629 // Enabling BH or preempt does reschedule, so...
25102de6 630 // Also if no expediting or NO_HZ_FULL, slow is OK.
05f41571
PM
631 set_tsk_need_resched(current);
632 set_preempt_need_resched();
d143b3d1 633 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
0864f057
PM
634 !rdp->defer_qs_iw_pending && exp) {
635 // Get scheduler to re-evaluate and call hooks.
636 // If !IRQ_WORK, FQS scan will eventually IPI.
637 init_irq_work(&rdp->defer_qs_iw,
638 rcu_preempt_deferred_qs_handler);
639 rdp->defer_qs_iw_pending = true;
640 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
641 }
05f41571 642 }
23634ebc 643 t->rcu_read_unlock_special.b.deferred_qs = true;
3e310098
PM
644 local_irq_restore(flags);
645 return;
646 }
647 rcu_preempt_deferred_qs_irqrestore(t, flags);
648}
649
b0e165c0
PM
650/*
651 * Check that the list of blocked tasks for the newly completed grace
652 * period is in fact empty. It is a serious bug to complete a grace
653 * period that still has RCU readers blocked! This function must be
03bd2983 654 * invoked -before- updating this rnp's ->gp_seq.
12f5f524
PM
655 *
656 * Also, if there are blocked tasks on the list, they automatically
657 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 658 */
81ab59a3 659static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 660{
c5ebe66c
PM
661 struct task_struct *t;
662
ea9b0c8a 663 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
03bd2983 664 raw_lockdep_assert_held_rcu_node(rnp);
4bc8d555 665 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 666 dump_blkd_tasks(rnp, 10);
0b107d24
PM
667 if (rcu_preempt_has_tasks(rnp) &&
668 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
6935c398 669 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
c5ebe66c
PM
670 t = container_of(rnp->gp_tasks, struct task_struct,
671 rcu_node_entry);
672 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 673 rnp->gp_seq, t->pid);
c5ebe66c 674 }
28ecd580 675 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
676}
677
f41d911f 678/*
c98cac60
PM
679 * Check for a quiescent state from the current CPU, including voluntary
680 * context switches for Tasks RCU. When a task blocks, the task is
681 * recorded in the corresponding CPU's rcu_node structure, which is checked
682 * elsewhere, hence this function need only check for quiescent states
683 * related to the current CPU, not to those related to tasks.
f41d911f 684 */
c98cac60 685static void rcu_flavor_sched_clock_irq(int user)
f41d911f
PM
686{
687 struct task_struct *t = current;
688
45975c7d
PM
689 if (user || rcu_is_cpu_rrupt_from_idle()) {
690 rcu_note_voluntary_context_switch(current);
691 }
77339e61 692 if (rcu_preempt_depth() > 0 ||
3e310098
PM
693 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
694 /* No QS, force context switch if deferred. */
fced9c8c
PM
695 if (rcu_preempt_need_deferred_qs(t)) {
696 set_tsk_need_resched(t);
697 set_preempt_need_resched();
698 }
3e310098
PM
699 } else if (rcu_preempt_need_deferred_qs(t)) {
700 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
701 return;
77339e61 702 } else if (!rcu_preempt_depth()) {
45975c7d 703 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
704 return;
705 }
3e310098
PM
706
707 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
77339e61 708 if (rcu_preempt_depth() > 0 &&
2280ee5a
PM
709 __this_cpu_read(rcu_data.core_needs_qs) &&
710 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201 711 !t->rcu_read_unlock_special.b.need_qs &&
564a9ae6 712 time_after(jiffies, rcu_state.gp_start + HZ))
1d082fd0 713 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
714}
715
2439b696
PM
716/*
717 * Check for a task exiting while in a preemptible-RCU read-side
884157ce
PM
718 * critical section, clean up if so. No need to issue warnings, as
719 * debug_check_no_locks_held() already does this if lockdep is enabled.
720 * Besides, if this function does anything other than just immediately
721 * return, there was a bug of some sort. Spewing warnings from this
722 * function is like as not to simply obscure important prior warnings.
2439b696
PM
723 */
724void exit_rcu(void)
725{
726 struct task_struct *t = current;
727
884157ce 728 if (unlikely(!list_empty(&current->rcu_node_entry))) {
77339e61 729 rcu_preempt_depth_set(1);
884157ce 730 barrier();
add0d37b 731 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
77339e61
LJ
732 } else if (unlikely(rcu_preempt_depth())) {
733 rcu_preempt_depth_set(1);
884157ce 734 } else {
2439b696 735 return;
884157ce 736 }
2439b696 737 __rcu_read_unlock();
3e310098 738 rcu_preempt_deferred_qs(current);
2439b696
PM
739}
740
4bc8d555
PM
741/*
742 * Dump the blocked-tasks state, but limit the list dump to the
743 * specified number of elements.
744 */
57738942 745static void
81ab59a3 746dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 747{
57738942 748 int cpu;
4bc8d555
PM
749 int i;
750 struct list_head *lhp;
57738942
PM
751 bool onl;
752 struct rcu_data *rdp;
ff3cee39 753 struct rcu_node *rnp1;
4bc8d555 754
ce11fae8 755 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 756 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 757 __func__, rnp->grplo, rnp->grphi, rnp->level,
ff3cee39
PM
758 (long)rnp->gp_seq, (long)rnp->completedqs);
759 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
760 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
761 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf 762 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
6935c398
ED
763 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
764 rnp->exp_tasks);
77cfc7bf 765 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
766 i = 0;
767 list_for_each(lhp, &rnp->blkd_tasks) {
768 pr_cont(" %p", lhp);
cd6d17b4 769 if (++i >= ncheck)
4bc8d555
PM
770 break;
771 }
772 pr_cont("\n");
57738942 773 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 774 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
775 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
776 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
777 cpu, ".o"[onl],
778 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
779 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
780 }
4bc8d555
PM
781}
782
28f6569a 783#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
784
785/*
786 * Tell them what RCU they are running.
787 */
0e0fc1c2 788static void __init rcu_bootup_announce(void)
f41d911f 789{
efc151c3 790 pr_info("Hierarchical RCU implementation.\n");
26845c28 791 rcu_bootup_announce_oddness();
f41d911f
PM
792}
793
45975c7d 794/*
90326f05 795 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
45975c7d
PM
796 * how many quiescent states passed, just if there was at least one since
797 * the start of the grace period, this just sets a flag. The caller must
798 * have disabled preemption.
799 */
800static void rcu_qs(void)
d28139c4 801{
45975c7d
PM
802 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
803 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
804 return;
805 trace_rcu_grace_period(TPS("rcu_sched"),
806 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
807 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
808 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
809 return;
810 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
63d4c8c9 811 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
d28139c4
PM
812}
813
395a2f09
PM
814/*
815 * Register an urgently needed quiescent state. If there is an
816 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
817 * dyntick-idle quiescent state visible to other CPUs, which will in
818 * some cases serve for expedited as well as normal grace periods.
819 * Either way, register a lightweight quiescent state.
395a2f09
PM
820 */
821void rcu_all_qs(void)
822{
823 unsigned long flags;
824
2dba13f0 825 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
395a2f09
PM
826 return;
827 preempt_disable();
828 /* Load rcu_urgent_qs before other flags. */
2dba13f0 829 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
395a2f09
PM
830 preempt_enable();
831 return;
832 }
2dba13f0 833 this_cpu_write(rcu_data.rcu_urgent_qs, false);
2dba13f0 834 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
395a2f09
PM
835 local_irq_save(flags);
836 rcu_momentary_dyntick_idle();
837 local_irq_restore(flags);
838 }
7e28c5af 839 rcu_qs();
395a2f09
PM
840 preempt_enable();
841}
842EXPORT_SYMBOL_GPL(rcu_all_qs);
843
cba6d0d6 844/*
90326f05 845 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
cba6d0d6 846 */
45975c7d 847void rcu_note_context_switch(bool preempt)
cba6d0d6 848{
45975c7d
PM
849 trace_rcu_utilization(TPS("Start context switch"));
850 rcu_qs();
851 /* Load rcu_urgent_qs before other flags. */
2dba13f0 852 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
45975c7d 853 goto out;
2dba13f0
PM
854 this_cpu_write(rcu_data.rcu_urgent_qs, false);
855 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
45975c7d 856 rcu_momentary_dyntick_idle();
45975c7d
PM
857 if (!preempt)
858 rcu_tasks_qs(current);
859out:
860 trace_rcu_utilization(TPS("End context switch"));
cba6d0d6 861}
45975c7d 862EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 863
fc2219d4 864/*
6cc68793 865 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
866 * RCU readers.
867 */
27f4d280 868static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
869{
870 return 0;
871}
872
8af3a5e7
PM
873/*
874 * Because there is no preemptible RCU, there can be no readers blocked.
875 */
876static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 877{
8af3a5e7 878 return false;
b668c9cf
PM
879}
880
3e310098
PM
881/*
882 * Because there is no preemptible RCU, there can be no deferred quiescent
883 * states.
884 */
885static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
886{
887 return false;
888}
889static void rcu_preempt_deferred_qs(struct task_struct *t) { }
890
b0e165c0 891/*
6cc68793 892 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
893 * so there is no need to check for blocked tasks. So check only for
894 * bogus qsmask values.
b0e165c0 895 */
81ab59a3 896static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 897{
49e29126 898 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
899}
900
f41d911f 901/*
c98cac60
PM
902 * Check to see if this CPU is in a non-context-switch quiescent state,
903 * namely user mode and idle loop.
f41d911f 904 */
c98cac60 905static void rcu_flavor_sched_clock_irq(int user)
f41d911f 906{
45975c7d 907 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 908
45975c7d
PM
909 /*
910 * Get here if this CPU took its interrupt from user
911 * mode or from the idle loop, and if this is not a
912 * nested interrupt. In this case, the CPU is in
913 * a quiescent state, so note it.
914 *
915 * No memory barrier is required here because rcu_qs()
916 * references only CPU-local variables that other CPUs
917 * neither access nor modify, at least not while the
918 * corresponding CPU is online.
919 */
920
921 rcu_qs();
922 }
e74f4c45 923}
e74f4c45 924
2439b696
PM
925/*
926 * Because preemptible RCU does not exist, tasks cannot possibly exit
927 * while in preemptible RCU read-side critical sections.
928 */
929void exit_rcu(void)
930{
931}
932
4bc8d555
PM
933/*
934 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
935 */
57738942 936static void
81ab59a3 937dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
938{
939 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
940}
941
28f6569a 942#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 943
48d07c04
SAS
944/*
945 * If boosting, set rcuc kthreads to realtime priority.
946 */
947static void rcu_cpu_kthread_setup(unsigned int cpu)
948{
27f4d280 949#ifdef CONFIG_RCU_BOOST
48d07c04 950 struct sched_param sp;
27f4d280 951
48d07c04
SAS
952 sp.sched_priority = kthread_prio;
953 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
954#endif /* #ifdef CONFIG_RCU_BOOST */
5d01bbd1
TG
955}
956
48d07c04
SAS
957#ifdef CONFIG_RCU_BOOST
958
27f4d280
PM
959/*
960 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
961 * or ->boost_tasks, advancing the pointer to the next task in the
962 * ->blkd_tasks list.
963 *
964 * Note that irqs must be enabled: boosting the task can block.
965 * Returns 1 if there are more tasks needing to be boosted.
966 */
967static int rcu_boost(struct rcu_node *rnp)
968{
969 unsigned long flags;
27f4d280
PM
970 struct task_struct *t;
971 struct list_head *tb;
972
7d0ae808
PM
973 if (READ_ONCE(rnp->exp_tasks) == NULL &&
974 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
975 return 0; /* Nothing left to boost. */
976
2a67e741 977 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
978
979 /*
980 * Recheck under the lock: all tasks in need of boosting
981 * might exit their RCU read-side critical sections on their own.
982 */
983 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 984 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
985 return 0;
986 }
987
988 /*
989 * Preferentially boost tasks blocking expedited grace periods.
990 * This cannot starve the normal grace periods because a second
991 * expedited grace period must boost all blocked tasks, including
992 * those blocking the pre-existing normal grace period.
993 */
bec06785 994 if (rnp->exp_tasks != NULL)
27f4d280 995 tb = rnp->exp_tasks;
bec06785 996 else
27f4d280
PM
997 tb = rnp->boost_tasks;
998
999 /*
1000 * We boost task t by manufacturing an rt_mutex that appears to
1001 * be held by task t. We leave a pointer to that rt_mutex where
1002 * task t can find it, and task t will release the mutex when it
1003 * exits its outermost RCU read-side critical section. Then
1004 * simply acquiring this artificial rt_mutex will boost task
1005 * t's priority. (Thanks to tglx for suggesting this approach!)
1006 *
1007 * Note that task t must acquire rnp->lock to remove itself from
1008 * the ->blkd_tasks list, which it will do from exit() if from
1009 * nowhere else. We therefore are guaranteed that task t will
1010 * stay around at least until we drop rnp->lock. Note that
1011 * rnp->lock also resolves races between our priority boosting
1012 * and task t's exiting its outermost RCU read-side critical
1013 * section.
1014 */
1015 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1016 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1017 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1018 /* Lock only for side effect: boosts task t's priority. */
1019 rt_mutex_lock(&rnp->boost_mtx);
1020 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1021
7d0ae808
PM
1022 return READ_ONCE(rnp->exp_tasks) != NULL ||
1023 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1024}
1025
27f4d280 1026/*
bc17ea10 1027 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1028 */
1029static int rcu_boost_kthread(void *arg)
1030{
1031 struct rcu_node *rnp = (struct rcu_node *)arg;
1032 int spincnt = 0;
1033 int more2boost;
1034
f7f7bac9 1035 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1036 for (;;) {
d71df90e 1037 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1038 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1039 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1040 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1041 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1042 more2boost = rcu_boost(rnp);
1043 if (more2boost)
1044 spincnt++;
1045 else
1046 spincnt = 0;
1047 if (spincnt > 10) {
5d01bbd1 1048 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1049 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1050 schedule_timeout_interruptible(2);
f7f7bac9 1051 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1052 spincnt = 0;
1053 }
1054 }
1217ed1b 1055 /* NOTREACHED */
f7f7bac9 1056 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1057 return 0;
1058}
1059
1060/*
1061 * Check to see if it is time to start boosting RCU readers that are
1062 * blocking the current grace period, and, if so, tell the per-rcu_node
1063 * kthread to start boosting them. If there is an expedited grace
1064 * period in progress, it is always time to boost.
1065 *
b065a853
PM
1066 * The caller must hold rnp->lock, which this function releases.
1067 * The ->boost_kthread_task is immortal, so we don't need to worry
1068 * about it going away.
27f4d280 1069 */
1217ed1b 1070static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1071 __releases(rnp->lock)
27f4d280 1072{
a32e01ee 1073 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1074 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1076 return;
0ea1f2eb 1077 }
27f4d280
PM
1078 if (rnp->exp_tasks != NULL ||
1079 (rnp->gp_tasks != NULL &&
1080 rnp->boost_tasks == NULL &&
1081 rnp->qsmask == 0 &&
8c14263d 1082 (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) {
27f4d280
PM
1083 if (rnp->exp_tasks == NULL)
1084 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
a2badefa
PM
1086 rcu_wake_cond(rnp->boost_kthread_task,
1087 rnp->boost_kthread_status);
1217ed1b 1088 } else {
67c583a7 1089 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1090 }
27f4d280
PM
1091}
1092
dff1672d
PM
1093/*
1094 * Is the current CPU running the RCU-callbacks kthread?
1095 * Caller must have preemption disabled.
1096 */
1097static bool rcu_is_callbacks_kthread(void)
1098{
37f62d7c 1099 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
dff1672d
PM
1100}
1101
27f4d280
PM
1102#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103
1104/*
1105 * Do priority-boost accounting for the start of a new grace period.
1106 */
1107static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1108{
1109 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1110}
1111
27f4d280
PM
1112/*
1113 * Create an RCU-boost kthread for the specified node if one does not
1114 * already exist. We only create this kthread for preemptible RCU.
1115 * Returns zero if all is well, a negated errno otherwise.
1116 */
3545832f 1117static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1118{
6dbfdc14 1119 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1120 unsigned long flags;
1121 struct sched_param sp;
1122 struct task_struct *t;
1123
6dbfdc14 1124 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
3545832f 1125 return;
5d01bbd1 1126
0aa04b05 1127 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
3545832f 1128 return;
5d01bbd1 1129
6dbfdc14 1130 rcu_state.boost = 1;
3545832f 1131
27f4d280 1132 if (rnp->boost_kthread_task != NULL)
3545832f
BP
1133 return;
1134
27f4d280 1135 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1136 "rcub/%d", rnp_index);
3545832f
BP
1137 if (WARN_ON_ONCE(IS_ERR(t)))
1138 return;
1139
2a67e741 1140 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1141 rnp->boost_kthread_task = t;
67c583a7 1142 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1143 sp.sched_priority = kthread_prio;
27f4d280 1144 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1145 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1146}
1147
f8b7fc6b
PM
1148/*
1149 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1150 * served by the rcu_node in question. The CPU hotplug lock is still
1151 * held, so the value of rnp->qsmaskinit will be stable.
1152 *
1153 * We don't include outgoingcpu in the affinity set, use -1 if there is
1154 * no outgoing CPU. If there are no CPUs left in the affinity set,
1155 * this function allows the kthread to execute on any CPU.
1156 */
5d01bbd1 1157static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1158{
5d01bbd1 1159 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1160 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1161 cpumask_var_t cm;
1162 int cpu;
f8b7fc6b 1163
5d01bbd1 1164 if (!t)
f8b7fc6b 1165 return;
5d01bbd1 1166 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1167 return;
bc75e999
MR
1168 for_each_leaf_node_possible_cpu(rnp, cpu)
1169 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1170 cpu != outgoingcpu)
f8b7fc6b 1171 cpumask_set_cpu(cpu, cm);
5d0b0249 1172 if (cpumask_weight(cm) == 0)
f8b7fc6b 1173 cpumask_setall(cm);
5d01bbd1 1174 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1175 free_cpumask_var(cm);
1176}
1177
f8b7fc6b 1178/*
9386c0b7 1179 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1180 */
9386c0b7 1181static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1182{
f8b7fc6b
PM
1183 struct rcu_node *rnp;
1184
aedf4ba9 1185 rcu_for_each_leaf_node(rnp)
3545832f 1186 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1187}
f8b7fc6b 1188
49fb4c62 1189static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1190{
da1df50d 1191 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1192 struct rcu_node *rnp = rdp->mynode;
1193
1194 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1195 if (rcu_scheduler_fully_active)
3545832f 1196 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1197}
1198
27f4d280
PM
1199#else /* #ifdef CONFIG_RCU_BOOST */
1200
1217ed1b 1201static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1202 __releases(rnp->lock)
27f4d280 1203{
67c583a7 1204 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1205}
1206
dff1672d
PM
1207static bool rcu_is_callbacks_kthread(void)
1208{
1209 return false;
1210}
1211
27f4d280
PM
1212static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1213{
1214}
1215
5d01bbd1 1216static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1217{
1218}
1219
9386c0b7 1220static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1221{
b0d30417 1222}
b0d30417 1223
49fb4c62 1224static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1225{
1226}
1227
27f4d280
PM
1228#endif /* #else #ifdef CONFIG_RCU_BOOST */
1229
8bd93a2c
PM
1230#if !defined(CONFIG_RCU_FAST_NO_HZ)
1231
1232/*
0bd55c69
PM
1233 * Check to see if any future non-offloaded RCU-related work will need
1234 * to be done by the current CPU, even if none need be done immediately,
1235 * returning 1 if so. This function is part of the RCU implementation;
1236 * it is -not- an exported member of the RCU API.
8bd93a2c 1237 *
0ae86a27
PM
1238 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1239 * CPU has RCU callbacks queued.
8bd93a2c 1240 */
c1ad348b 1241int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1242{
c1ad348b 1243 *nextevt = KTIME_MAX;
0bd55c69
PM
1244 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1245 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
7cb92499
PM
1246}
1247
1248/*
1249 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1250 * after it.
1251 */
8fa7845d 1252static void rcu_cleanup_after_idle(void)
7cb92499
PM
1253{
1254}
1255
aea1b35e 1256/*
a858af28 1257 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1258 * is nothing.
1259 */
198bbf81 1260static void rcu_prepare_for_idle(void)
aea1b35e
PM
1261{
1262}
1263
8bd93a2c
PM
1264#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1265
f23f7fa1
PM
1266/*
1267 * This code is invoked when a CPU goes idle, at which point we want
1268 * to have the CPU do everything required for RCU so that it can enter
77a40f97 1269 * the energy-efficient dyntick-idle mode.
f23f7fa1 1270 *
77a40f97 1271 * The following preprocessor symbol controls this:
f23f7fa1 1272 *
f23f7fa1
PM
1273 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1274 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1275 * is sized to be roughly one RCU grace period. Those energy-efficiency
1276 * benchmarkers who might otherwise be tempted to set this to a large
1277 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1278 * system. And if you are -that- concerned about energy efficiency,
1279 * just power the system down and be done with it!
1280 *
77a40f97 1281 * The value below works well in practice. If future workloads require
f23f7fa1
PM
1282 * adjustment, they can be converted into kernel config parameters, though
1283 * making the state machine smarter might be a better option.
1284 */
e84c48ae 1285#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
f23f7fa1 1286
5e44ce35
PM
1287static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1288module_param(rcu_idle_gp_delay, int, 0644);
486e2593 1289
486e2593 1290/*
0ae86a27
PM
1291 * Try to advance callbacks on the current CPU, but only if it has been
1292 * awhile since the last time we did so. Afterwards, if there are any
1293 * callbacks ready for immediate invocation, return true.
486e2593 1294 */
f1f399d1 1295static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1296{
c0f4dfd4 1297 bool cbs_ready = false;
5998a75a 1298 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1299 struct rcu_node *rnp;
486e2593 1300
c229828c 1301 /* Exit early if we advanced recently. */
5998a75a 1302 if (jiffies == rdp->last_advance_all)
d0bc90fd 1303 return false;
5998a75a 1304 rdp->last_advance_all = jiffies;
c229828c 1305
b97d23c5 1306 rnp = rdp->mynode;
486e2593 1307
b97d23c5
PM
1308 /*
1309 * Don't bother checking unless a grace period has
1310 * completed since we last checked and there are
1311 * callbacks not yet ready to invoke.
1312 */
1313 if ((rcu_seq_completed_gp(rdp->gp_seq,
1314 rcu_seq_current(&rnp->gp_seq)) ||
1315 unlikely(READ_ONCE(rdp->gpwrap))) &&
1316 rcu_segcblist_pend_cbs(&rdp->cblist))
1317 note_gp_changes(rdp);
1318
1319 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1320 cbs_ready = true;
c0f4dfd4 1321 return cbs_ready;
486e2593
PM
1322}
1323
aa9b1630 1324/*
c0f4dfd4
PM
1325 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1326 * to invoke. If the CPU has callbacks, try to advance them. Tell the
77a40f97 1327 * caller about what to set the timeout.
aa9b1630 1328 *
c0f4dfd4 1329 * The caller must have disabled interrupts.
aa9b1630 1330 */
c1ad348b 1331int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1332{
5998a75a 1333 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c1ad348b 1334 unsigned long dj;
aa9b1630 1335
b04db8e1 1336 lockdep_assert_irqs_disabled();
3382adbc 1337
0bd55c69
PM
1338 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1339 if (rcu_segcblist_empty(&rdp->cblist) ||
1340 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
c1ad348b 1341 *nextevt = KTIME_MAX;
aa9b1630
PM
1342 return 0;
1343 }
c0f4dfd4
PM
1344
1345 /* Attempt to advance callbacks. */
1346 if (rcu_try_advance_all_cbs()) {
1347 /* Some ready to invoke, so initiate later invocation. */
1348 invoke_rcu_core();
aa9b1630
PM
1349 return 1;
1350 }
5998a75a 1351 rdp->last_accelerate = jiffies;
c0f4dfd4 1352
77a40f97
JFG
1353 /* Request timer and round. */
1354 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1355
c1ad348b 1356 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1357 return 0;
1358}
1359
21e52e15 1360/*
77a40f97
JFG
1361 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1362 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1363 * major task is to accelerate (that is, assign grace-period numbers to) any
1364 * recently arrived callbacks.
aea1b35e
PM
1365 *
1366 * The caller must have disabled interrupts.
8bd93a2c 1367 */
198bbf81 1368static void rcu_prepare_for_idle(void)
8bd93a2c 1369{
48a7639c 1370 bool needwake;
0fd79e75 1371 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1372 struct rcu_node *rnp;
9d2ad243
PM
1373 int tne;
1374
b04db8e1 1375 lockdep_assert_irqs_disabled();
ce5215c1 1376 if (rcu_segcblist_is_offloaded(&rdp->cblist))
3382adbc
PM
1377 return;
1378
9d2ad243 1379 /* Handle nohz enablement switches conservatively. */
7d0ae808 1380 tne = READ_ONCE(tick_nohz_active);
0fd79e75 1381 if (tne != rdp->tick_nohz_enabled_snap) {
260e1e4f 1382 if (!rcu_segcblist_empty(&rdp->cblist))
9d2ad243 1383 invoke_rcu_core(); /* force nohz to see update. */
0fd79e75 1384 rdp->tick_nohz_enabled_snap = tne;
9d2ad243
PM
1385 return;
1386 }
1387 if (!tne)
1388 return;
f511fc62 1389
3084f2f8 1390 /*
c0f4dfd4
PM
1391 * If we have not yet accelerated this jiffy, accelerate all
1392 * callbacks on this CPU.
3084f2f8 1393 */
5998a75a 1394 if (rdp->last_accelerate == jiffies)
aea1b35e 1395 return;
5998a75a 1396 rdp->last_accelerate = jiffies;
b97d23c5 1397 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
c0f4dfd4 1398 rnp = rdp->mynode;
2a67e741 1399 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1400 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1401 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1402 if (needwake)
532c00c9 1403 rcu_gp_kthread_wake();
77e38ed3 1404 }
c0f4dfd4 1405}
3084f2f8 1406
c0f4dfd4
PM
1407/*
1408 * Clean up for exit from idle. Attempt to advance callbacks based on
1409 * any grace periods that elapsed while the CPU was idle, and if any
1410 * callbacks are now ready to invoke, initiate invocation.
1411 */
8fa7845d 1412static void rcu_cleanup_after_idle(void)
c0f4dfd4 1413{
ce5215c1
PM
1414 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1415
b04db8e1 1416 lockdep_assert_irqs_disabled();
ce5215c1 1417 if (rcu_segcblist_is_offloaded(&rdp->cblist))
aea1b35e 1418 return;
7a497c96
PM
1419 if (rcu_try_advance_all_cbs())
1420 invoke_rcu_core();
8bd93a2c
PM
1421}
1422
1423#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1424
3fbfbf7a
PM
1425#ifdef CONFIG_RCU_NOCB_CPU
1426
1427/*
1428 * Offload callback processing from the boot-time-specified set of CPUs
a9fefdb2
PM
1429 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1430 * created that pull the callbacks from the corresponding CPU, wait for
1431 * a grace period to elapse, and invoke the callbacks. These kthreads
6484fe54
PM
1432 * are organized into GP kthreads, which manage incoming callbacks, wait for
1433 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1434 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1435 * do a wake_up() on their GP kthread when they insert a callback into any
a9fefdb2
PM
1436 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1437 * in which case each kthread actively polls its CPU. (Which isn't so great
1438 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
3fbfbf7a
PM
1439 *
1440 * This is intended to be used in conjunction with Frederic Weisbecker's
1441 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1442 * running CPU-bound user-mode computations.
1443 *
a9fefdb2
PM
1444 * Offloading of callbacks can also be used as an energy-efficiency
1445 * measure because CPUs with no RCU callbacks queued are more aggressive
1446 * about entering dyntick-idle mode.
3fbfbf7a
PM
1447 */
1448
1449
497e4260
PM
1450/*
1451 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1452 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1453 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1454 * given, a warning is emitted and all CPUs are offloaded.
1455 */
3fbfbf7a
PM
1456static int __init rcu_nocb_setup(char *str)
1457{
1458 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
da8739f2
PM
1459 if (!strcasecmp(str, "all"))
1460 cpumask_setall(rcu_nocb_mask);
1461 else
497e4260
PM
1462 if (cpulist_parse(str, rcu_nocb_mask)) {
1463 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1464 cpumask_setall(rcu_nocb_mask);
1465 }
3fbfbf7a
PM
1466 return 1;
1467}
1468__setup("rcu_nocbs=", rcu_nocb_setup);
1469
1b0048a4
PG
1470static int __init parse_rcu_nocb_poll(char *arg)
1471{
5455a7f6 1472 rcu_nocb_poll = true;
1b0048a4
PG
1473 return 0;
1474}
1475early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1476
5d6742b3 1477/*
d1b222c6
PM
1478 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1479 * After all, the main point of bypassing is to avoid lock contention
1480 * on ->nocb_lock, which only can happen at high call_rcu() rates.
5d6742b3 1481 */
d1b222c6
PM
1482int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1483module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1484
1485/*
1486 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1487 * lock isn't immediately available, increment ->nocb_lock_contended to
1488 * flag the contention.
1489 */
1490static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
5d6742b3 1491{
81c0b3d7 1492 lockdep_assert_irqs_disabled();
d1b222c6 1493 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
81c0b3d7
PM
1494 return;
1495 atomic_inc(&rdp->nocb_lock_contended);
6aacd88d 1496 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
81c0b3d7 1497 smp_mb__after_atomic(); /* atomic_inc() before lock. */
d1b222c6 1498 raw_spin_lock(&rdp->nocb_bypass_lock);
81c0b3d7
PM
1499 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1500 atomic_dec(&rdp->nocb_lock_contended);
1501}
1502
1503/*
1504 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1505 * not contended. Please note that this is extremely special-purpose,
1506 * relying on the fact that at most two kthreads and one CPU contend for
1507 * this lock, and also that the two kthreads are guaranteed to have frequent
1508 * grace-period-duration time intervals between successive acquisitions
1509 * of the lock. This allows us to use an extremely simple throttling
1510 * mechanism, and further to apply it only to the CPU doing floods of
1511 * call_rcu() invocations. Don't try this at home!
1512 */
1513static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1514{
6aacd88d
PM
1515 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1516 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
81c0b3d7 1517 cpu_relax();
5d6742b3
PM
1518}
1519
d1b222c6
PM
1520/*
1521 * Conditionally acquire the specified rcu_data structure's
1522 * ->nocb_bypass_lock.
1523 */
1524static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1525{
1526 lockdep_assert_irqs_disabled();
1527 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1528}
1529
1530/*
1531 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1532 */
1533static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1534{
1535 lockdep_assert_irqs_disabled();
1536 raw_spin_unlock(&rdp->nocb_bypass_lock);
1537}
1538
1539/*
1540 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1541 * if it corresponds to a no-CBs CPU.
1542 */
1543static void rcu_nocb_lock(struct rcu_data *rdp)
1544{
1545 lockdep_assert_irqs_disabled();
1546 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1547 return;
1548 raw_spin_lock(&rdp->nocb_lock);
1549}
1550
5d6742b3
PM
1551/*
1552 * Release the specified rcu_data structure's ->nocb_lock, but only
1553 * if it corresponds to a no-CBs CPU.
1554 */
1555static void rcu_nocb_unlock(struct rcu_data *rdp)
1556{
1557 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1558 lockdep_assert_irqs_disabled();
1559 raw_spin_unlock(&rdp->nocb_lock);
1560 }
1561}
1562
1563/*
1564 * Release the specified rcu_data structure's ->nocb_lock and restore
1565 * interrupts, but only if it corresponds to a no-CBs CPU.
1566 */
1567static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1568 unsigned long flags)
1569{
1570 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1571 lockdep_assert_irqs_disabled();
1572 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1573 } else {
1574 local_irq_restore(flags);
1575 }
1576}
1577
d1b222c6
PM
1578/* Lockdep check that ->cblist may be safely accessed. */
1579static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1580{
1581 lockdep_assert_irqs_disabled();
1582 if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1583 cpu_online(rdp->cpu))
1584 lockdep_assert_held(&rdp->nocb_lock);
1585}
1586
dae6e64d 1587/*
0446be48
PM
1588 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1589 * grace period.
dae6e64d 1590 */
abedf8e2 1591static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1592{
abedf8e2 1593 swake_up_all(sq);
dae6e64d
PM
1594}
1595
abedf8e2 1596static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1597{
e0da2374 1598 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1599}
1600
dae6e64d 1601static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1602{
abedf8e2
PG
1603 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1604 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1605}
1606
24342c96 1607/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1608bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1609{
84b12b75 1610 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1611 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1612 return false;
1613}
1614
fbce7497 1615/*
6484fe54 1616 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
8be6e1b1 1617 * and this function releases it.
fbce7497 1618 */
5d6742b3 1619static void wake_nocb_gp(struct rcu_data *rdp, bool force,
5f675ba6 1620 unsigned long flags)
8be6e1b1 1621 __releases(rdp->nocb_lock)
fbce7497 1622{
d1b222c6 1623 bool needwake = false;
5f675ba6 1624 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
fbce7497 1625
8be6e1b1 1626 lockdep_assert_held(&rdp->nocb_lock);
5f675ba6 1627 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
d1b222c6
PM
1628 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1629 TPS("AlreadyAwake"));
81c0b3d7 1630 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497 1631 return;
8be6e1b1 1632 }
d1b222c6
PM
1633 del_timer(&rdp->nocb_timer);
1634 rcu_nocb_unlock_irqrestore(rdp, flags);
1635 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1636 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
5d6742b3 1637 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
d1b222c6
PM
1638 needwake = true;
1639 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
fbce7497 1640 }
d1b222c6
PM
1641 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1642 if (needwake)
1643 wake_up_process(rdp_gp->nocb_gp_kthread);
fbce7497
PM
1644}
1645
8be6e1b1 1646/*
6484fe54
PM
1647 * Arrange to wake the GP kthread for this NOCB group at some future
1648 * time when it is safe to do so.
8be6e1b1 1649 */
0d52a665
PM
1650static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1651 const char *reason)
8be6e1b1 1652{
8be6e1b1
PM
1653 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1654 mod_timer(&rdp->nocb_timer, jiffies + 1);
383e1332
PM
1655 if (rdp->nocb_defer_wakeup < waketype)
1656 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
88d1bead 1657 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
d7e29933
PM
1658}
1659
d1b222c6
PM
1660/*
1661 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1662 * However, if there is a callback to be enqueued and if ->nocb_bypass
1663 * proves to be initially empty, just return false because the no-CB GP
1664 * kthread may need to be awakened in this case.
1665 *
1666 * Note that this function always returns true if rhp is NULL.
1667 */
1668static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1669 unsigned long j)
1670{
1671 struct rcu_cblist rcl;
1672
1673 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1674 rcu_lockdep_assert_cblist_protected(rdp);
1675 lockdep_assert_held(&rdp->nocb_bypass_lock);
1676 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1677 raw_spin_unlock(&rdp->nocb_bypass_lock);
1678 return false;
1679 }
1680 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1681 if (rhp)
1682 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1683 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1684 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1685 WRITE_ONCE(rdp->nocb_bypass_first, j);
1686 rcu_nocb_bypass_unlock(rdp);
1687 return true;
1688}
1689
1690/*
1691 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1692 * However, if there is a callback to be enqueued and if ->nocb_bypass
1693 * proves to be initially empty, just return false because the no-CB GP
1694 * kthread may need to be awakened in this case.
1695 *
1696 * Note that this function always returns true if rhp is NULL.
1697 */
1698static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1699 unsigned long j)
1700{
1701 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1702 return true;
1703 rcu_lockdep_assert_cblist_protected(rdp);
1704 rcu_nocb_bypass_lock(rdp);
1705 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1706}
1707
1708/*
1709 * If the ->nocb_bypass_lock is immediately available, flush the
1710 * ->nocb_bypass queue into ->cblist.
1711 */
1712static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1713{
1714 rcu_lockdep_assert_cblist_protected(rdp);
1715 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1716 !rcu_nocb_bypass_trylock(rdp))
1717 return;
1718 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1719}
1720
1721/*
1722 * See whether it is appropriate to use the ->nocb_bypass list in order
1723 * to control contention on ->nocb_lock. A limited number of direct
1724 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1725 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1726 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1727 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1728 * used if ->cblist is empty, because otherwise callbacks can be stranded
1729 * on ->nocb_bypass because we cannot count on the current CPU ever again
1730 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1731 * non-empty, the corresponding no-CBs grace-period kthread must not be
1732 * in an indefinite sleep state.
1733 *
1734 * Finally, it is not permitted to use the bypass during early boot,
1735 * as doing so would confuse the auto-initialization code. Besides
1736 * which, there is no point in worrying about lock contention while
1737 * there is only one CPU in operation.
1738 */
1739static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1740 bool *was_alldone, unsigned long flags)
1741{
1742 unsigned long c;
1743 unsigned long cur_gp_seq;
1744 unsigned long j = jiffies;
1745 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1746
1747 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1748 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1749 return false; /* Not offloaded, no bypassing. */
1750 }
1751 lockdep_assert_irqs_disabled();
1752
1753 // Don't use ->nocb_bypass during early boot.
1754 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1755 rcu_nocb_lock(rdp);
1756 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1757 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1758 return false;
1759 }
1760
1761 // If we have advanced to a new jiffy, reset counts to allow
1762 // moving back from ->nocb_bypass to ->cblist.
1763 if (j == rdp->nocb_nobypass_last) {
1764 c = rdp->nocb_nobypass_count + 1;
1765 } else {
1766 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1767 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1768 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1769 nocb_nobypass_lim_per_jiffy))
1770 c = 0;
1771 else if (c > nocb_nobypass_lim_per_jiffy)
1772 c = nocb_nobypass_lim_per_jiffy;
1773 }
1774 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1775
1776 // If there hasn't yet been all that many ->cblist enqueues
1777 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1778 // ->nocb_bypass first.
1779 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1780 rcu_nocb_lock(rdp);
1781 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1782 if (*was_alldone)
1783 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1784 TPS("FirstQ"));
1785 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1786 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1787 return false; // Caller must enqueue the callback.
1788 }
1789
1790 // If ->nocb_bypass has been used too long or is too full,
1791 // flush ->nocb_bypass to ->cblist.
1792 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1793 ncbs >= qhimark) {
1794 rcu_nocb_lock(rdp);
1795 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1796 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1797 if (*was_alldone)
1798 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1799 TPS("FirstQ"));
1800 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1801 return false; // Caller must enqueue the callback.
1802 }
1803 if (j != rdp->nocb_gp_adv_time &&
1804 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1805 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1806 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1807 rdp->nocb_gp_adv_time = j;
1808 }
1809 rcu_nocb_unlock_irqrestore(rdp, flags);
1810 return true; // Callback already enqueued.
1811 }
1812
1813 // We need to use the bypass.
1814 rcu_nocb_wait_contended(rdp);
1815 rcu_nocb_bypass_lock(rdp);
1816 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1817 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1818 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1819 if (!ncbs) {
1820 WRITE_ONCE(rdp->nocb_bypass_first, j);
1821 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1822 }
1823 rcu_nocb_bypass_unlock(rdp);
1824 smp_mb(); /* Order enqueue before wake. */
1825 if (ncbs) {
1826 local_irq_restore(flags);
1827 } else {
1828 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1829 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1830 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1831 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1832 TPS("FirstBQwake"));
1833 __call_rcu_nocb_wake(rdp, true, flags);
1834 } else {
1835 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1836 TPS("FirstBQnoWake"));
1837 rcu_nocb_unlock_irqrestore(rdp, flags);
1838 }
1839 }
1840 return true; // Callback already enqueued.
1841}
1842
3fbfbf7a 1843/*
5d6742b3
PM
1844 * Awaken the no-CBs grace-period kthead if needed, either due to it
1845 * legitimately being asleep or due to overload conditions.
3fbfbf7a
PM
1846 *
1847 * If warranted, also wake up the kthread servicing this CPUs queues.
1848 */
5d6742b3
PM
1849static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1850 unsigned long flags)
1851 __releases(rdp->nocb_lock)
3fbfbf7a 1852{
296181d7
PM
1853 unsigned long cur_gp_seq;
1854 unsigned long j;
ce0a825e 1855 long len;
3fbfbf7a
PM
1856 struct task_struct *t;
1857
5d6742b3 1858 // If we are being polled or there is no kthread, just leave.
12f54c3a 1859 t = READ_ONCE(rdp->nocb_gp_kthread);
25e03a74 1860 if (rcu_nocb_poll || !t) {
88d1bead 1861 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
9261dd0d 1862 TPS("WakeNotPoll"));
5d6742b3 1863 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1864 return;
9261dd0d 1865 }
5d6742b3
PM
1866 // Need to actually to a wakeup.
1867 len = rcu_segcblist_n_cbs(&rdp->cblist);
1868 if (was_alldone) {
aeeacd9d 1869 rdp->qlen_last_fqs_check = len;
96d3fd0d 1870 if (!irqs_disabled_flags(flags)) {
fbce7497 1871 /* ... if queue was empty ... */
5d6742b3 1872 wake_nocb_gp(rdp, false, flags);
88d1bead 1873 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
96d3fd0d
PM
1874 TPS("WakeEmpty"));
1875 } else {
0d52a665
PM
1876 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1877 TPS("WakeEmptyIsDeferred"));
5d6742b3 1878 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1879 }
3fbfbf7a 1880 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1881 /* ... or if many callbacks queued. */
aeeacd9d 1882 rdp->qlen_last_fqs_check = len;
296181d7
PM
1883 j = jiffies;
1884 if (j != rdp->nocb_gp_adv_time &&
1885 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1886 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
faca5c25 1887 rcu_advance_cbs_nowake(rdp->mynode, rdp);
296181d7
PM
1888 rdp->nocb_gp_adv_time = j;
1889 }
f48fe4c5
PM
1890 smp_mb(); /* Enqueue before timer_pending(). */
1891 if ((rdp->nocb_cb_sleep ||
1892 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1893 !timer_pending(&rdp->nocb_bypass_timer))
273f0340
PM
1894 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1895 TPS("WakeOvfIsDeferred"));
273f0340 1896 rcu_nocb_unlock_irqrestore(rdp, flags);
9261dd0d 1897 } else {
88d1bead 1898 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
5d6742b3 1899 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a
PM
1900 }
1901 return;
1902}
1903
d1b222c6
PM
1904/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1905static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1906{
1907 unsigned long flags;
1908 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1909
1910 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1911 rcu_nocb_lock_irqsave(rdp, flags);
f48fe4c5 1912 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
d1b222c6
PM
1913 __call_rcu_nocb_wake(rdp, true, flags);
1914}
1915
3fbfbf7a 1916/*
5d6742b3
PM
1917 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1918 * or for grace periods to end.
fbce7497 1919 */
12f54c3a 1920static void nocb_gp_wait(struct rcu_data *my_rdp)
fbce7497 1921{
d1b222c6
PM
1922 bool bypass = false;
1923 long bypass_ncbs;
5d6742b3
PM
1924 int __maybe_unused cpu = my_rdp->cpu;
1925 unsigned long cur_gp_seq;
8be6e1b1 1926 unsigned long flags;
b8889c9c 1927 bool gotcbs = false;
d1b222c6 1928 unsigned long j = jiffies;
969974e5 1929 bool needwait_gp = false; // This prevents actual uninitialized use.
5d6742b3
PM
1930 bool needwake;
1931 bool needwake_gp;
fbce7497 1932 struct rcu_data *rdp;
5d6742b3 1933 struct rcu_node *rnp;
969974e5 1934 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
fbce7497
PM
1935
1936 /*
5d6742b3
PM
1937 * Each pass through the following loop checks for CBs and for the
1938 * nearest grace period (if any) to wait for next. The CB kthreads
1939 * and the global grace-period kthread are awakened if needed.
fbce7497 1940 */
58bf6f77 1941 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
d1b222c6
PM
1942 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1943 rcu_nocb_lock_irqsave(rdp, flags);
1944 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1945 if (bypass_ncbs &&
1946 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1947 bypass_ncbs > 2 * qhimark)) {
1948 // Bypass full or old, so flush it.
1949 (void)rcu_nocb_try_flush_bypass(rdp, j);
1950 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1951 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1952 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1953 continue; /* No callbacks here, try next. */
d1b222c6
PM
1954 }
1955 if (bypass_ncbs) {
1956 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1957 TPS("Bypass"));
1958 bypass = true;
1959 }
5d6742b3 1960 rnp = rdp->mynode;
d1b222c6
PM
1961 if (bypass) { // Avoid race with first bypass CB.
1962 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1963 RCU_NOCB_WAKE_NOT);
1964 del_timer(&my_rdp->nocb_timer);
1965 }
1966 // Advance callbacks if helpful and low contention.
1967 needwake_gp = false;
1968 if (!rcu_segcblist_restempty(&rdp->cblist,
1969 RCU_NEXT_READY_TAIL) ||
1970 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1971 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1972 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1973 needwake_gp = rcu_advance_cbs(rnp, rdp);
1974 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1975 }
5d6742b3 1976 // Need to wait on some grace period?
d1b222c6
PM
1977 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
1978 RCU_NEXT_READY_TAIL));
5d6742b3
PM
1979 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1980 if (!needwait_gp ||
1981 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1982 wait_gp_seq = cur_gp_seq;
1983 needwait_gp = true;
d1b222c6
PM
1984 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1985 TPS("NeedWaitGP"));
8be6e1b1 1986 }
5d6742b3
PM
1987 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1988 needwake = rdp->nocb_cb_sleep;
1989 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1990 smp_mb(); /* CB invocation -after- GP end. */
1991 } else {
1992 needwake = false;
8be6e1b1 1993 }
81c0b3d7 1994 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1995 if (needwake) {
12f54c3a 1996 swake_up_one(&rdp->nocb_cb_wq);
5d6742b3 1997 gotcbs = true;
fbce7497 1998 }
5d6742b3
PM
1999 if (needwake_gp)
2000 rcu_gp_kthread_wake();
2001 }
2002
f7a81b12
PM
2003 my_rdp->nocb_gp_bypass = bypass;
2004 my_rdp->nocb_gp_gp = needwait_gp;
2005 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
d1b222c6
PM
2006 if (bypass && !rcu_nocb_poll) {
2007 // At least one child with non-empty ->nocb_bypass, so set
2008 // timer in order to avoid stranding its callbacks.
2009 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2010 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2011 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2012 }
5d6742b3
PM
2013 if (rcu_nocb_poll) {
2014 /* Polling, so trace if first poll in the series. */
2015 if (gotcbs)
2016 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2017 schedule_timeout_interruptible(1);
2018 } else if (!needwait_gp) {
2019 /* Wait for callbacks to appear. */
2020 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2021 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2022 !READ_ONCE(my_rdp->nocb_gp_sleep));
d1b222c6 2023 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
5d6742b3
PM
2024 } else {
2025 rnp = my_rdp->mynode;
2026 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2027 swait_event_interruptible_exclusive(
2028 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2029 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2030 !READ_ONCE(my_rdp->nocb_gp_sleep));
2031 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2032 }
2033 if (!rcu_nocb_poll) {
4fd8c5f1 2034 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
d1b222c6
PM
2035 if (bypass)
2036 del_timer(&my_rdp->nocb_bypass_timer);
5d6742b3 2037 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
4fd8c5f1 2038 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
fbce7497 2039 }
f7a81b12 2040 my_rdp->nocb_gp_seq = -1;
5d6742b3 2041 WARN_ON(signal_pending(current));
12f54c3a 2042}
fbce7497 2043
12f54c3a
PM
2044/*
2045 * No-CBs grace-period-wait kthread. There is one of these per group
2046 * of CPUs, but only once at least one CPU in that group has come online
2047 * at least once since boot. This kthread checks for newly posted
2048 * callbacks from any of the CPUs it is responsible for, waits for a
2049 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2050 * that then have callback-invocation work to do.
2051 */
2052static int rcu_nocb_gp_kthread(void *arg)
2053{
2054 struct rcu_data *rdp = arg;
2055
5d6742b3 2056 for (;;) {
f7a81b12 2057 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
12f54c3a 2058 nocb_gp_wait(rdp);
5d6742b3
PM
2059 cond_resched_tasks_rcu_qs();
2060 }
12f54c3a 2061 return 0;
fbce7497
PM
2062}
2063
2064/*
5d6742b3
PM
2065 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2066 * then, if there are no more, wait for more to appear.
fbce7497 2067 */
5d6742b3 2068static void nocb_cb_wait(struct rcu_data *rdp)
fbce7497 2069{
1d5a81c1 2070 unsigned long cur_gp_seq;
5d6742b3
PM
2071 unsigned long flags;
2072 bool needwake_gp = false;
2073 struct rcu_node *rnp = rdp->mynode;
2074
2075 local_irq_save(flags);
2076 rcu_momentary_dyntick_idle();
2077 local_irq_restore(flags);
2078 local_bh_disable();
2079 rcu_do_batch(rdp);
2080 local_bh_enable();
2081 lockdep_assert_irqs_enabled();
81c0b3d7 2082 rcu_nocb_lock_irqsave(rdp, flags);
1d5a81c1
PM
2083 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2084 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2085 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
523bddd5
PM
2086 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2087 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2088 }
5d6742b3 2089 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
81c0b3d7 2090 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2091 if (needwake_gp)
2092 rcu_gp_kthread_wake();
2093 return;
2094 }
2095
f7c9a9b6 2096 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
5d6742b3 2097 WRITE_ONCE(rdp->nocb_cb_sleep, true);
81c0b3d7 2098 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2099 if (needwake_gp)
2100 rcu_gp_kthread_wake();
12f54c3a 2101 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
5d6742b3
PM
2102 !READ_ONCE(rdp->nocb_cb_sleep));
2103 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2104 /* ^^^ Ensure CB invocation follows _sleep test. */
2105 return;
fbce7497 2106 }
12f54c3a
PM
2107 WARN_ON(signal_pending(current));
2108 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2109}
2110
3fbfbf7a 2111/*
5d6742b3
PM
2112 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2113 * nocb_cb_wait() to do the dirty work.
3fbfbf7a 2114 */
12f54c3a 2115static int rcu_nocb_cb_kthread(void *arg)
3fbfbf7a 2116{
3fbfbf7a
PM
2117 struct rcu_data *rdp = arg;
2118
5d6742b3
PM
2119 // Each pass through this loop does one callback batch, and,
2120 // if there are no more ready callbacks, waits for them.
3fbfbf7a 2121 for (;;) {
5d6742b3
PM
2122 nocb_cb_wait(rdp);
2123 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2124 }
2125 return 0;
2126}
2127
96d3fd0d 2128/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2129static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2130{
7d0ae808 2131 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2132}
2133
2134/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2135static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2136{
8be6e1b1 2137 unsigned long flags;
9fdd3bc9
PM
2138 int ndw;
2139
81c0b3d7 2140 rcu_nocb_lock_irqsave(rdp, flags);
8be6e1b1 2141 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
81c0b3d7 2142 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 2143 return;
8be6e1b1 2144 }
7d0ae808 2145 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2146 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
5d6742b3 2147 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
88d1bead 2148 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2149}
2150
8be6e1b1 2151/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2152static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2153{
fd30b717
KC
2154 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2155
2156 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2157}
2158
2159/*
2160 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2161 * This means we do an inexact common-case check. Note that if
2162 * we miss, ->nocb_timer will eventually clean things up.
2163 */
2164static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2165{
2166 if (rcu_nocb_need_deferred_wakeup(rdp))
2167 do_nocb_deferred_wakeup_common(rdp);
2168}
2169
f4579fc5
PM
2170void __init rcu_init_nohz(void)
2171{
2172 int cpu;
ef126206 2173 bool need_rcu_nocb_mask = false;
e83e73f5 2174 struct rcu_data *rdp;
f4579fc5 2175
f4579fc5
PM
2176#if defined(CONFIG_NO_HZ_FULL)
2177 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2178 need_rcu_nocb_mask = true;
2179#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2180
84b12b75 2181 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2182 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2183 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2184 return;
2185 }
f4579fc5 2186 }
84b12b75 2187 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2188 return;
2189
f4579fc5
PM
2190#if defined(CONFIG_NO_HZ_FULL)
2191 if (tick_nohz_full_running)
2192 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2193#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2194
2195 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2196 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2197 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2198 rcu_nocb_mask);
2199 }
3016611e
PM
2200 if (cpumask_empty(rcu_nocb_mask))
2201 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2202 else
2203 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2204 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2205 if (rcu_nocb_poll)
2206 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2207
e83e73f5
PM
2208 for_each_cpu(cpu, rcu_nocb_mask) {
2209 rdp = per_cpu_ptr(&rcu_data, cpu);
2210 if (rcu_segcblist_empty(&rdp->cblist))
2211 rcu_segcblist_init(&rdp->cblist);
2212 rcu_segcblist_offload(&rdp->cblist);
2213 }
b97d23c5 2214 rcu_organize_nocb_kthreads();
96d3fd0d
PM
2215}
2216
3fbfbf7a
PM
2217/* Initialize per-rcu_data variables for no-CBs CPUs. */
2218static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2219{
12f54c3a
PM
2220 init_swait_queue_head(&rdp->nocb_cb_wq);
2221 init_swait_queue_head(&rdp->nocb_gp_wq);
8be6e1b1 2222 raw_spin_lock_init(&rdp->nocb_lock);
d1b222c6 2223 raw_spin_lock_init(&rdp->nocb_bypass_lock);
4fd8c5f1 2224 raw_spin_lock_init(&rdp->nocb_gp_lock);
fd30b717 2225 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
d1b222c6
PM
2226 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2227 rcu_cblist_init(&rdp->nocb_bypass);
3fbfbf7a
PM
2228}
2229
35ce7f29
PM
2230/*
2231 * If the specified CPU is a no-CBs CPU that does not already have its
12f54c3a
PM
2232 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2233 * for this CPU's group has not yet been created, spawn it as well.
35ce7f29 2234 */
4580b054 2235static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29 2236{
12f54c3a
PM
2237 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2238 struct rcu_data *rdp_gp;
35ce7f29
PM
2239 struct task_struct *t;
2240
2241 /*
2242 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2243 * then nothing to do.
2244 */
12f54c3a 2245 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
35ce7f29
PM
2246 return;
2247
6484fe54 2248 /* If we didn't spawn the GP kthread first, reorganize! */
12f54c3a
PM
2249 rdp_gp = rdp->nocb_gp_rdp;
2250 if (!rdp_gp->nocb_gp_kthread) {
2251 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2252 "rcuog/%d", rdp_gp->cpu);
2253 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2254 return;
2255 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
35ce7f29
PM
2256 }
2257
0ae86a27 2258 /* Spawn the kthread for this CPU. */
12f54c3a 2259 t = kthread_run(rcu_nocb_cb_kthread, rdp,
4580b054 2260 "rcuo%c/%d", rcu_state.abbr, cpu);
12f54c3a 2261 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
9213784b 2262 return;
12f54c3a
PM
2263 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2264 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
35ce7f29
PM
2265}
2266
2267/*
2268 * If the specified CPU is a no-CBs CPU that does not already have its
ad368d15 2269 * rcuo kthread, spawn it.
35ce7f29 2270 */
ad368d15 2271static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29 2272{
35ce7f29 2273 if (rcu_scheduler_fully_active)
b97d23c5 2274 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
2275}
2276
2277/*
2278 * Once the scheduler is running, spawn rcuo kthreads for all online
2279 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2280 * non-boot CPUs come online -- if this changes, we will need to add
2281 * some mutual exclusion.
2282 */
2283static void __init rcu_spawn_nocb_kthreads(void)
2284{
2285 int cpu;
2286
2287 for_each_online_cpu(cpu)
ad368d15 2288 rcu_spawn_cpu_nocb_kthread(cpu);
35ce7f29
PM
2289}
2290
6484fe54 2291/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
f7c612b0
PM
2292static int rcu_nocb_gp_stride = -1;
2293module_param(rcu_nocb_gp_stride, int, 0444);
fbce7497
PM
2294
2295/*
6484fe54 2296 * Initialize GP-CB relationships for all no-CBs CPU.
fbce7497 2297 */
4580b054 2298static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2299{
2300 int cpu;
18cd8c93 2301 bool firsttime = true;
610dea36
SR
2302 bool gotnocbs = false;
2303 bool gotnocbscbs = true;
f7c612b0 2304 int ls = rcu_nocb_gp_stride;
6484fe54 2305 int nl = 0; /* Next GP kthread. */
3fbfbf7a 2306 struct rcu_data *rdp;
0bdc33da 2307 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
fbce7497 2308 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2309
84b12b75 2310 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2311 return;
fbce7497 2312 if (ls == -1) {
9fcb09bd 2313 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
f7c612b0 2314 rcu_nocb_gp_stride = ls;
fbce7497
PM
2315 }
2316
2317 /*
9831ce3b
PM
2318 * Each pass through this loop sets up one rcu_data structure.
2319 * Should the corresponding CPU come online in the future, then
2320 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2321 */
3fbfbf7a 2322 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2323 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497 2324 if (rdp->cpu >= nl) {
6484fe54 2325 /* New GP kthread, set up for CBs & next GP. */
610dea36 2326 gotnocbs = true;
fbce7497 2327 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
58bf6f77 2328 rdp->nocb_gp_rdp = rdp;
0bdc33da 2329 rdp_gp = rdp;
610dea36
SR
2330 if (dump_tree) {
2331 if (!firsttime)
2332 pr_cont("%s\n", gotnocbscbs
2333 ? "" : " (self only)");
2334 gotnocbscbs = false;
2335 firsttime = false;
2336 pr_alert("%s: No-CB GP kthread CPU %d:",
2337 __func__, cpu);
2338 }
fbce7497 2339 } else {
6484fe54 2340 /* Another CB kthread, link to previous GP kthread. */
610dea36 2341 gotnocbscbs = true;
0bdc33da 2342 rdp->nocb_gp_rdp = rdp_gp;
58bf6f77 2343 rdp_prev->nocb_next_cb_rdp = rdp;
610dea36
SR
2344 if (dump_tree)
2345 pr_cont(" %d", cpu);
fbce7497
PM
2346 }
2347 rdp_prev = rdp;
3fbfbf7a 2348 }
610dea36
SR
2349 if (gotnocbs && dump_tree)
2350 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
3fbfbf7a
PM
2351}
2352
5ab7ab83
PM
2353/*
2354 * Bind the current task to the offloaded CPUs. If there are no offloaded
2355 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2356 */
2357void rcu_bind_current_to_nocb(void)
2358{
2359 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2360 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2361}
2362EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2363
f7a81b12
PM
2364/*
2365 * Dump out nocb grace-period kthread state for the specified rcu_data
2366 * structure.
2367 */
2368static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2369{
2370 struct rcu_node *rnp = rdp->mynode;
2371
2372 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2373 rdp->cpu,
2374 "kK"[!!rdp->nocb_gp_kthread],
2375 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2376 "dD"[!!rdp->nocb_defer_wakeup],
2377 "tT"[timer_pending(&rdp->nocb_timer)],
2378 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2379 "sS"[!!rdp->nocb_gp_sleep],
2380 ".W"[swait_active(&rdp->nocb_gp_wq)],
2381 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2382 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2383 ".B"[!!rdp->nocb_gp_bypass],
2384 ".G"[!!rdp->nocb_gp_gp],
2385 (long)rdp->nocb_gp_seq,
2386 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2387}
2388
2389/* Dump out nocb kthread state for the specified rcu_data structure. */
2390static void show_rcu_nocb_state(struct rcu_data *rdp)
2391{
2392 struct rcu_segcblist *rsclp = &rdp->cblist;
2393 bool waslocked;
2394 bool wastimer;
2395 bool wassleep;
2396
2397 if (rdp->nocb_gp_rdp == rdp)
2398 show_rcu_nocb_gp_state(rdp);
2399
2400 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2401 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2402 "kK"[!!rdp->nocb_cb_kthread],
2403 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2404 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2405 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2406 "sS"[!!rdp->nocb_cb_sleep],
2407 ".W"[swait_active(&rdp->nocb_cb_wq)],
2408 jiffies - rdp->nocb_bypass_first,
2409 jiffies - rdp->nocb_nobypass_last,
2410 rdp->nocb_nobypass_count,
2411 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2412 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2413 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2414 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2415 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2416 rcu_segcblist_n_cbs(&rdp->cblist));
2417
2418 /* It is OK for GP kthreads to have GP state. */
2419 if (rdp->nocb_gp_rdp == rdp)
2420 return;
2421
2422 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2423 wastimer = timer_pending(&rdp->nocb_timer);
2424 wassleep = swait_active(&rdp->nocb_gp_wq);
2425 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2426 !waslocked && !wastimer && !wassleep)
2427 return; /* Nothing untowards. */
2428
2429 pr_info(" !!! %c%c%c%c %c\n",
2430 "lL"[waslocked],
2431 "dD"[!!rdp->nocb_defer_wakeup],
2432 "tT"[wastimer],
2433 "sS"[!!rdp->nocb_gp_sleep],
2434 ".W"[wassleep]);
2435}
2436
34ed6246
PM
2437#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2438
5d6742b3
PM
2439/* No ->nocb_lock to acquire. */
2440static void rcu_nocb_lock(struct rcu_data *rdp)
d7e29933 2441{
5d6742b3
PM
2442}
2443
2444/* No ->nocb_lock to release. */
2445static void rcu_nocb_unlock(struct rcu_data *rdp)
2446{
2447}
2448
2449/* No ->nocb_lock to release. */
2450static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2451 unsigned long flags)
2452{
2453 local_irq_restore(flags);
d7e29933
PM
2454}
2455
d1b222c6
PM
2456/* Lockdep check that ->cblist may be safely accessed. */
2457static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2458{
2459 lockdep_assert_irqs_disabled();
2460}
2461
abedf8e2 2462static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2463{
3fbfbf7a
PM
2464}
2465
abedf8e2 2466static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2467{
2468 return NULL;
2469}
2470
dae6e64d
PM
2471static void rcu_init_one_nocb(struct rcu_node *rnp)
2472{
2473}
3fbfbf7a 2474
d1b222c6
PM
2475static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2476 unsigned long j)
2477{
2478 return true;
2479}
2480
2481static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2482 bool *was_alldone, unsigned long flags)
2483{
2484 return false;
2485}
2486
5d6742b3
PM
2487static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2488 unsigned long flags)
3fbfbf7a 2489{
5d6742b3 2490 WARN_ON_ONCE(1); /* Should be dead code! */
3fbfbf7a
PM
2491}
2492
3fbfbf7a
PM
2493static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2494{
2495}
2496
9fdd3bc9 2497static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2498{
2499 return false;
2500}
2501
2502static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2503{
2504}
2505
ad368d15 2506static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29
PM
2507{
2508}
2509
2510static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2511{
2512}
2513
f7a81b12
PM
2514static void show_rcu_nocb_state(struct rcu_data *rdp)
2515{
2516}
2517
3fbfbf7a 2518#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2519
a096932f
PM
2520/*
2521 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2522 * grace-period kthread will do force_quiescent_state() processing?
2523 * The idea is to avoid waking up RCU core processing on such a
2524 * CPU unless the grace period has extended for too long.
2525 *
2526 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2527 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2528 */
4580b054 2529static bool rcu_nohz_full_cpu(void)
a096932f
PM
2530{
2531#ifdef CONFIG_NO_HZ_FULL
2532 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2533 (!rcu_gp_in_progress() ||
4580b054 2534 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2535 return true;
a096932f 2536#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2537 return false;
a096932f 2538}
5057f55e
PM
2539
2540/*
265f5f28 2541 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2542 */
2543static void rcu_bind_gp_kthread(void)
2544{
c0f489d2 2545 if (!tick_nohz_full_enabled())
5057f55e 2546 return;
de201559 2547 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2548}
176f8f7a
PM
2549
2550/* Record the current task on dyntick-idle entry. */
2551static void rcu_dynticks_task_enter(void)
2552{
2553#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2554 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2555#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2556}
2557
2558/* Record no current task on dyntick-idle exit. */
2559static void rcu_dynticks_task_exit(void)
2560{
2561#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2562 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2563#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2564}