rcu: Avoid data-race in rcu_gp_fqs_check_wake()
[linux-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
22e40925 1/* SPDX-License-Identifier: GPL-2.0+ */
f41d911f
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
6cc68793 5 * or preemptible semantics.
f41d911f 6 *
f41d911f
PM
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
22e40925 11 * Paul E. McKenney <paulmck@linux.ibm.com>
f41d911f
PM
12 */
13
abaa93d9 14#include "../locking/rtmutex_common.h"
5b61b0ba 15
3fbfbf7a
PM
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 18static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
26845c28
PM
21/*
22 * Check the RCU kernel configuration parameters and print informative
699d4035 23 * messages about anything out of the ordinary.
26845c28
PM
24 */
25static void __init rcu_bootup_announce_oddness(void)
26{
ab6f5bd6 27 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 28 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
7fa27001 33 if (rcu_fanout_exact)
ab6f5bd6
PM
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 37 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 38 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 41 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
cca6f393 47 if (nr_cpu_ids != NR_CPUS)
9b130ad5 48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 49#ifdef CONFIG_RCU_BOOST
a7538352
JP
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
52#endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (jiffies_till_first_fqs != ULONG_MAX)
60 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 if (jiffies_till_next_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
c06aed0e
PM
63 if (jiffies_till_sched_qs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
17c7798b
PM
65 if (rcu_kick_kthreads)
66 pr_info("\tKick kthreads if too-long grace period.\n");
67 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 69 if (gp_preinit_delay)
17c7798b 70 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 71 if (gp_init_delay)
17c7798b 72 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 73 if (gp_cleanup_delay)
17c7798b 74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
48d07c04
SAS
75 if (!use_softirq)
76 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
17c7798b
PM
77 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 79 rcupdate_announce_bootup_oddness();
26845c28
PM
80}
81
28f6569a 82#ifdef CONFIG_PREEMPT_RCU
f41d911f 83
63d4c8c9 84static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
3949fa9b 85static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 86
f41d911f
PM
87/*
88 * Tell them what RCU they are running.
89 */
0e0fc1c2 90static void __init rcu_bootup_announce(void)
f41d911f 91{
efc151c3 92 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 93 rcu_bootup_announce_oddness();
f41d911f
PM
94}
95
8203d6d0
PM
96/* Flags for rcu_preempt_ctxt_queue() decision table. */
97#define RCU_GP_TASKS 0x8
98#define RCU_EXP_TASKS 0x4
99#define RCU_GP_BLKD 0x2
100#define RCU_EXP_BLKD 0x1
101
102/*
103 * Queues a task preempted within an RCU-preempt read-side critical
104 * section into the appropriate location within the ->blkd_tasks list,
105 * depending on the states of any ongoing normal and expedited grace
106 * periods. The ->gp_tasks pointer indicates which element the normal
107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108 * indicates which element the expedited grace period is waiting on (again,
109 * NULL if none). If a grace period is waiting on a given element in the
110 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
111 * adding a task to the tail of the list blocks any grace period that is
112 * already waiting on one of the elements. In contrast, adding a task
113 * to the head of the list won't block any grace period that is already
114 * waiting on one of the elements.
115 *
116 * This queuing is imprecise, and can sometimes make an ongoing grace
117 * period wait for a task that is not strictly speaking blocking it.
118 * Given the choice, we needlessly block a normal grace period rather than
119 * blocking an expedited grace period.
120 *
121 * Note that an endless sequence of expedited grace periods still cannot
122 * indefinitely postpone a normal grace period. Eventually, all of the
123 * fixed number of preempted tasks blocking the normal grace period that are
124 * not also blocking the expedited grace period will resume and complete
125 * their RCU read-side critical sections. At that point, the ->gp_tasks
126 * pointer will equal the ->exp_tasks pointer, at which point the end of
127 * the corresponding expedited grace period will also be the end of the
128 * normal grace period.
129 */
46a5d164
PM
130static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
132{
133 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 struct task_struct *t = current;
138
a32e01ee 139 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 140 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 141 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
142 /* RCU better not be waiting on newly onlined CPUs! */
143 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 rdp->grpmask);
ea9b0c8a 145
8203d6d0
PM
146 /*
147 * Decide where to queue the newly blocked task. In theory,
148 * this could be an if-statement. In practice, when I tried
149 * that, it was quite messy.
150 */
151 switch (blkd_state) {
152 case 0:
153 case RCU_EXP_TASKS:
154 case RCU_EXP_TASKS + RCU_GP_BLKD:
155 case RCU_GP_TASKS:
156 case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158 /*
159 * Blocking neither GP, or first task blocking the normal
160 * GP but not blocking the already-waiting expedited GP.
161 * Queue at the head of the list to avoid unnecessarily
162 * blocking the already-waiting GPs.
163 */
164 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 break;
166
167 case RCU_EXP_BLKD:
168 case RCU_GP_BLKD:
169 case RCU_GP_BLKD + RCU_EXP_BLKD:
170 case RCU_GP_TASKS + RCU_EXP_BLKD:
171 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174 /*
175 * First task arriving that blocks either GP, or first task
176 * arriving that blocks the expedited GP (with the normal
177 * GP already waiting), or a task arriving that blocks
178 * both GPs with both GPs already waiting. Queue at the
179 * tail of the list to avoid any GP waiting on any of the
180 * already queued tasks that are not blocking it.
181 */
182 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 break;
184
185 case RCU_EXP_TASKS + RCU_EXP_BLKD:
186 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
188
189 /*
190 * Second or subsequent task blocking the expedited GP.
191 * The task either does not block the normal GP, or is the
192 * first task blocking the normal GP. Queue just after
193 * the first task blocking the expedited GP.
194 */
195 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 break;
197
198 case RCU_GP_TASKS + RCU_GP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the normal GP.
203 * The task does not block the expedited GP. Queue just
204 * after the first task blocking the normal GP.
205 */
206 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 break;
208
209 default:
210
211 /* Yet another exercise in excessive paranoia. */
212 WARN_ON_ONCE(1);
213 break;
214 }
215
216 /*
217 * We have now queued the task. If it was the first one to
218 * block either grace period, update the ->gp_tasks and/or
219 * ->exp_tasks pointers, respectively, to reference the newly
220 * blocked tasks.
221 */
4bc8d555 222 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
6935c398 223 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
d43a5d32 224 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 225 }
8203d6d0
PM
226 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
228 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 !(rnp->qsmask & rdp->grpmask));
230 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 !(rnp->expmask & rdp->grpmask));
67c583a7 232 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
233
234 /*
235 * Report the quiescent state for the expedited GP. This expedited
236 * GP should not be able to end until we report, so there should be
237 * no need to check for a subsequent expedited GP. (Though we are
238 * still in a quiescent state in any case.)
239 */
1bb33644 240 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
63d4c8c9 241 rcu_report_exp_rdp(rdp);
fcc878e4 242 else
1bb33644 243 WARN_ON_ONCE(rdp->exp_deferred_qs);
8203d6d0
PM
244}
245
f41d911f 246/*
c7037ff5
PM
247 * Record a preemptible-RCU quiescent state for the specified CPU.
248 * Note that this does not necessarily mean that the task currently running
249 * on the CPU is in a quiescent state: Instead, it means that the current
250 * grace period need not wait on any RCU read-side critical section that
251 * starts later on this CPU. It also means that if the current task is
252 * in an RCU read-side critical section, it has already added itself to
253 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
254 * current task, there might be any number of other tasks blocked while
255 * in an RCU read-side critical section.
25502a6c 256 *
c7037ff5 257 * Callers to this function must disable preemption.
f41d911f 258 */
45975c7d 259static void rcu_qs(void)
f41d911f 260{
45975c7d 261 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 262 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 263 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 264 __this_cpu_read(rcu_data.gp_seq),
284a8c93 265 TPS("cpuqs"));
2280ee5a 266 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
c98cac60 267 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
add0d37b 268 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
284a8c93 269 }
f41d911f
PM
270}
271
272/*
c3422bea
PM
273 * We have entered the scheduler, and the current task might soon be
274 * context-switched away from. If this task is in an RCU read-side
275 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
276 * record that fact, so we enqueue the task on the blkd_tasks list.
277 * The task will dequeue itself when it exits the outermost enclosing
278 * RCU read-side critical section. Therefore, the current grace period
279 * cannot be permitted to complete until the blkd_tasks list entries
280 * predating the current grace period drain, in other words, until
281 * rnp->gp_tasks becomes NULL.
c3422bea 282 *
46a5d164 283 * Caller must disable interrupts.
f41d911f 284 */
45975c7d 285void rcu_note_context_switch(bool preempt)
f41d911f
PM
286{
287 struct task_struct *t = current;
da1df50d 288 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
289 struct rcu_node *rnp;
290
45975c7d 291 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 292 lockdep_assert_irqs_disabled();
5b72f964 293 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
10f39bb1 294 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 295 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
296
297 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 298 rnp = rdp->mynode;
46a5d164 299 raw_spin_lock_rcu_node(rnp);
1d082fd0 300 t->rcu_read_unlock_special.b.blocked = true;
86848966 301 t->rcu_blocked_node = rnp;
f41d911f
PM
302
303 /*
8203d6d0
PM
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
f41d911f 307 */
0aa04b05 308 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 309 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
88d1bead 310 trace_rcu_preempt_task(rcu_state.name,
d4c08f2a
PM
311 t->pid,
312 (rnp->qsmask & rdp->grpmask)
598ce094
PM
313 ? rnp->gp_seq
314 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 315 rcu_preempt_ctxt_queue(rnp, rdp);
3e310098
PM
316 } else {
317 rcu_preempt_deferred_qs(t);
f41d911f
PM
318 }
319
320 /*
321 * Either we were not in an RCU read-side critical section to
322 * begin with, or we have now recorded that critical section
323 * globally. Either way, we can now note a quiescent state
324 * for this CPU. Again, if we were in an RCU read-side critical
325 * section, and if that critical section was blocking the current
326 * grace period, then the fact that the task has been enqueued
327 * means that we continue to block the current grace period.
328 */
45975c7d 329 rcu_qs();
1bb33644 330 if (rdp->exp_deferred_qs)
63d4c8c9 331 rcu_report_exp_rdp(rdp);
45975c7d 332 trace_rcu_utilization(TPS("End context switch"));
f41d911f 333}
45975c7d 334EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 335
fc2219d4
PM
336/*
337 * Check for preempted RCU readers blocking the current grace period
338 * for the specified rcu_node structure. If the caller needs a reliable
339 * answer, it must hold the rcu_node's ->lock.
340 */
27f4d280 341static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 342{
6935c398 343 return READ_ONCE(rnp->gp_tasks) != NULL;
fc2219d4
PM
344}
345
5f1a6ef3
PM
346/* Bias and limit values for ->rcu_read_lock_nesting. */
347#define RCU_NEST_BIAS INT_MAX
348#define RCU_NEST_NMAX (-INT_MAX / 2)
349#define RCU_NEST_PMAX (INT_MAX / 2)
350
0e5da22e
PM
351/*
352 * Preemptible RCU implementation for rcu_read_lock().
353 * Just increment ->rcu_read_lock_nesting, shared state will be updated
354 * if we block.
355 */
356void __rcu_read_lock(void)
357{
358 current->rcu_read_lock_nesting++;
5f1a6ef3
PM
359 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
0e5da22e
PM
361 barrier(); /* critical section after entry code. */
362}
363EXPORT_SYMBOL_GPL(__rcu_read_lock);
364
365/*
366 * Preemptible RCU implementation for rcu_read_unlock().
367 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
368 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369 * invoke rcu_read_unlock_special() to clean up after a context switch
370 * in an RCU read-side critical section and other special cases.
371 */
372void __rcu_read_unlock(void)
373{
374 struct task_struct *t = current;
375
376 if (t->rcu_read_lock_nesting != 1) {
377 --t->rcu_read_lock_nesting;
378 } else {
379 barrier(); /* critical section before exit code. */
5f1a6ef3 380 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
0e5da22e
PM
381 barrier(); /* assign before ->rcu_read_unlock_special load */
382 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383 rcu_read_unlock_special(t);
384 barrier(); /* ->rcu_read_unlock_special load before assign */
385 t->rcu_read_lock_nesting = 0;
386 }
5f1a6ef3
PM
387 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388 int rrln = t->rcu_read_lock_nesting;
0e5da22e 389
5f1a6ef3 390 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
0e5da22e 391 }
0e5da22e
PM
392}
393EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394
12f5f524
PM
395/*
396 * Advance a ->blkd_tasks-list pointer to the next entry, instead
397 * returning NULL if at the end of the list.
398 */
399static struct list_head *rcu_next_node_entry(struct task_struct *t,
400 struct rcu_node *rnp)
401{
402 struct list_head *np;
403
404 np = t->rcu_node_entry.next;
405 if (np == &rnp->blkd_tasks)
406 np = NULL;
407 return np;
408}
409
8af3a5e7
PM
410/*
411 * Return true if the specified rcu_node structure has tasks that were
412 * preempted within an RCU read-side critical section.
413 */
414static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415{
416 return !list_empty(&rnp->blkd_tasks);
417}
418
b668c9cf 419/*
3e310098
PM
420 * Report deferred quiescent states. The deferral time can
421 * be quite short, for example, in the case of the call from
422 * rcu_read_unlock_special().
b668c9cf 423 */
3e310098
PM
424static void
425rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 426{
b6a932d1
PM
427 bool empty_exp;
428 bool empty_norm;
429 bool empty_exp_now;
12f5f524 430 struct list_head *np;
abaa93d9 431 bool drop_boost_mutex = false;
8203d6d0 432 struct rcu_data *rdp;
f41d911f 433 struct rcu_node *rnp;
1d082fd0 434 union rcu_special special;
f41d911f 435
f41d911f 436 /*
8203d6d0
PM
437 * If RCU core is waiting for this CPU to exit its critical section,
438 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 439 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
440 */
441 special = t->rcu_read_unlock_special;
da1df50d 442 rdp = this_cpu_ptr(&rcu_data);
1bb33644 443 if (!special.s && !rdp->exp_deferred_qs) {
3e310098
PM
444 local_irq_restore(flags);
445 return;
446 }
23634ebc 447 t->rcu_read_unlock_special.b.deferred_qs = false;
1d082fd0 448 if (special.b.need_qs) {
45975c7d 449 rcu_qs();
c0135d07 450 t->rcu_read_unlock_special.b.need_qs = false;
1bb33644 451 if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
79a62f95
LJ
452 local_irq_restore(flags);
453 return;
454 }
f41d911f
PM
455 }
456
8203d6d0 457 /*
3e310098
PM
458 * Respond to a request by an expedited grace period for a
459 * quiescent state from this CPU. Note that requests from
460 * tasks are handled when removing the task from the
461 * blocked-tasks list below.
8203d6d0 462 */
1bb33644 463 if (rdp->exp_deferred_qs) {
63d4c8c9 464 rcu_report_exp_rdp(rdp);
8203d6d0
PM
465 if (!t->rcu_read_unlock_special.s) {
466 local_irq_restore(flags);
467 return;
468 }
469 }
470
f41d911f 471 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
472 if (special.b.blocked) {
473 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 474
dd5d19ba 475 /*
0a0ba1c9 476 * Remove this task from the list it blocked on. The task
8ba9153b
PM
477 * now remains queued on the rcu_node corresponding to the
478 * CPU it first blocked on, so there is no longer any need
479 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 480 */
8ba9153b
PM
481 rnp = t->rcu_blocked_node;
482 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 484 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 485 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 486 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 487 (!empty_norm || rnp->qsmask));
8203d6d0 488 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 489 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 490 np = rcu_next_node_entry(t, rnp);
f41d911f 491 list_del_init(&t->rcu_node_entry);
82e78d80 492 t->rcu_blocked_node = NULL;
f7f7bac9 493 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 494 rnp->gp_seq, t->pid);
12f5f524 495 if (&t->rcu_node_entry == rnp->gp_tasks)
6935c398 496 WRITE_ONCE(rnp->gp_tasks, np);
12f5f524
PM
497 if (&t->rcu_node_entry == rnp->exp_tasks)
498 rnp->exp_tasks = np;
727b705b 499 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
500 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
502 if (&t->rcu_node_entry == rnp->boost_tasks)
503 rnp->boost_tasks = np;
727b705b 504 }
f41d911f
PM
505
506 /*
507 * If this was the last task on the current list, and if
508 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
509 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510 * so we must take a snapshot of the expedited state.
f41d911f 511 */
8203d6d0 512 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 513 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 514 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 515 rnp->gp_seq,
d4c08f2a
PM
516 0, rnp->qsmask,
517 rnp->level,
518 rnp->grplo,
519 rnp->grphi,
520 !!rnp->gp_tasks);
139ad4da 521 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 522 } else {
67c583a7 523 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 524 }
d9a3da06 525
27f4d280 526 /* Unboost if we were boosted. */
727b705b 527 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 528 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 529
d9a3da06
PM
530 /*
531 * If this was the last task on the expedited lists,
532 * then we need to report up the rcu_node hierarchy.
533 */
389abd48 534 if (!empty_exp && empty_exp_now)
63d4c8c9 535 rcu_report_exp_rnp(rnp, true);
b668c9cf
PM
536 } else {
537 local_irq_restore(flags);
f41d911f 538 }
f41d911f
PM
539}
540
3e310098
PM
541/*
542 * Is a deferred quiescent-state pending, and are we also not in
543 * an RCU read-side critical section? It is the caller's responsibility
544 * to ensure it is otherwise safe to report any deferred quiescent
545 * states. The reason for this is that it is safe to report a
546 * quiescent state during context switch even though preemption
547 * is disabled. This function cannot be expected to understand these
548 * nuances, so the caller must handle them.
549 */
550static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
551{
1bb33644 552 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
3e310098 553 READ_ONCE(t->rcu_read_unlock_special.s)) &&
27c744e3 554 t->rcu_read_lock_nesting <= 0;
3e310098
PM
555}
556
557/*
558 * Report a deferred quiescent state if needed and safe to do so.
559 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
560 * not being in an RCU read-side critical section. The caller must
561 * evaluate safety in terms of interrupt, softirq, and preemption
562 * disabling.
563 */
564static void rcu_preempt_deferred_qs(struct task_struct *t)
565{
566 unsigned long flags;
567 bool couldrecurse = t->rcu_read_lock_nesting >= 0;
568
569 if (!rcu_preempt_need_deferred_qs(t))
570 return;
571 if (couldrecurse)
5f1a6ef3 572 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
3e310098
PM
573 local_irq_save(flags);
574 rcu_preempt_deferred_qs_irqrestore(t, flags);
575 if (couldrecurse)
5f1a6ef3 576 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
3e310098
PM
577}
578
0864f057
PM
579/*
580 * Minimal handler to give the scheduler a chance to re-evaluate.
581 */
582static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
583{
584 struct rcu_data *rdp;
585
586 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
587 rdp->defer_qs_iw_pending = false;
588}
589
3e310098
PM
590/*
591 * Handle special cases during rcu_read_unlock(), such as needing to
592 * notify RCU core processing or task having blocked during the RCU
593 * read-side critical section.
594 */
595static void rcu_read_unlock_special(struct task_struct *t)
596{
597 unsigned long flags;
598 bool preempt_bh_were_disabled =
599 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
600 bool irqs_were_disabled;
601
602 /* NMI handlers cannot block and cannot safely manipulate state. */
603 if (in_nmi())
604 return;
605
606 local_irq_save(flags);
607 irqs_were_disabled = irqs_disabled_flags(flags);
05f41571 608 if (preempt_bh_were_disabled || irqs_were_disabled) {
25102de6
PM
609 bool exp;
610 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611 struct rcu_node *rnp = rdp->mynode;
612
23634ebc 613 t->rcu_read_unlock_special.b.exp_hint = false;
25102de6
PM
614 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
615 (rdp->grpmask & rnp->expmask) ||
616 tick_nohz_full_cpu(rdp->cpu);
23634ebc 617 // Need to defer quiescent state until everything is enabled.
87446b48
PM
618 if (irqs_were_disabled && use_softirq &&
619 (in_interrupt() ||
620 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
23634ebc
PM
621 // Using softirq, safe to awaken, and we get
622 // no help from enabling irqs, unlike bh/preempt.
05f41571
PM
623 raise_softirq_irqoff(RCU_SOFTIRQ);
624 } else {
23634ebc 625 // Enabling BH or preempt does reschedule, so...
25102de6 626 // Also if no expediting or NO_HZ_FULL, slow is OK.
05f41571
PM
627 set_tsk_need_resched(current);
628 set_preempt_need_resched();
d143b3d1 629 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
0864f057
PM
630 !rdp->defer_qs_iw_pending && exp) {
631 // Get scheduler to re-evaluate and call hooks.
632 // If !IRQ_WORK, FQS scan will eventually IPI.
633 init_irq_work(&rdp->defer_qs_iw,
634 rcu_preempt_deferred_qs_handler);
635 rdp->defer_qs_iw_pending = true;
636 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
637 }
05f41571 638 }
23634ebc 639 t->rcu_read_unlock_special.b.deferred_qs = true;
3e310098
PM
640 local_irq_restore(flags);
641 return;
642 }
05f41571 643 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
3e310098
PM
644 rcu_preempt_deferred_qs_irqrestore(t, flags);
645}
646
b0e165c0
PM
647/*
648 * Check that the list of blocked tasks for the newly completed grace
649 * period is in fact empty. It is a serious bug to complete a grace
650 * period that still has RCU readers blocked! This function must be
ff3bb6f4 651 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
b0e165c0 652 * must be held by the caller.
12f5f524
PM
653 *
654 * Also, if there are blocked tasks on the list, they automatically
655 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 656 */
81ab59a3 657static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 658{
c5ebe66c
PM
659 struct task_struct *t;
660
ea9b0c8a 661 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
4bc8d555 662 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 663 dump_blkd_tasks(rnp, 10);
0b107d24
PM
664 if (rcu_preempt_has_tasks(rnp) &&
665 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
6935c398 666 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
c5ebe66c
PM
667 t = container_of(rnp->gp_tasks, struct task_struct,
668 rcu_node_entry);
669 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 670 rnp->gp_seq, t->pid);
c5ebe66c 671 }
28ecd580 672 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
673}
674
f41d911f 675/*
c98cac60
PM
676 * Check for a quiescent state from the current CPU, including voluntary
677 * context switches for Tasks RCU. When a task blocks, the task is
678 * recorded in the corresponding CPU's rcu_node structure, which is checked
679 * elsewhere, hence this function need only check for quiescent states
680 * related to the current CPU, not to those related to tasks.
f41d911f 681 */
c98cac60 682static void rcu_flavor_sched_clock_irq(int user)
f41d911f
PM
683{
684 struct task_struct *t = current;
685
45975c7d
PM
686 if (user || rcu_is_cpu_rrupt_from_idle()) {
687 rcu_note_voluntary_context_switch(current);
688 }
3e310098
PM
689 if (t->rcu_read_lock_nesting > 0 ||
690 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
691 /* No QS, force context switch if deferred. */
fced9c8c
PM
692 if (rcu_preempt_need_deferred_qs(t)) {
693 set_tsk_need_resched(t);
694 set_preempt_need_resched();
695 }
3e310098
PM
696 } else if (rcu_preempt_need_deferred_qs(t)) {
697 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
698 return;
699 } else if (!t->rcu_read_lock_nesting) {
45975c7d 700 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
701 return;
702 }
3e310098
PM
703
704 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
10f39bb1 705 if (t->rcu_read_lock_nesting > 0 &&
2280ee5a
PM
706 __this_cpu_read(rcu_data.core_needs_qs) &&
707 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201 708 !t->rcu_read_unlock_special.b.need_qs &&
564a9ae6 709 time_after(jiffies, rcu_state.gp_start + HZ))
1d082fd0 710 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
711}
712
2439b696
PM
713/*
714 * Check for a task exiting while in a preemptible-RCU read-side
884157ce
PM
715 * critical section, clean up if so. No need to issue warnings, as
716 * debug_check_no_locks_held() already does this if lockdep is enabled.
717 * Besides, if this function does anything other than just immediately
718 * return, there was a bug of some sort. Spewing warnings from this
719 * function is like as not to simply obscure important prior warnings.
2439b696
PM
720 */
721void exit_rcu(void)
722{
723 struct task_struct *t = current;
724
884157ce
PM
725 if (unlikely(!list_empty(&current->rcu_node_entry))) {
726 t->rcu_read_lock_nesting = 1;
727 barrier();
add0d37b 728 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
884157ce
PM
729 } else if (unlikely(t->rcu_read_lock_nesting)) {
730 t->rcu_read_lock_nesting = 1;
731 } else {
2439b696 732 return;
884157ce 733 }
2439b696 734 __rcu_read_unlock();
3e310098 735 rcu_preempt_deferred_qs(current);
2439b696
PM
736}
737
4bc8d555
PM
738/*
739 * Dump the blocked-tasks state, but limit the list dump to the
740 * specified number of elements.
741 */
57738942 742static void
81ab59a3 743dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 744{
57738942 745 int cpu;
4bc8d555
PM
746 int i;
747 struct list_head *lhp;
57738942
PM
748 bool onl;
749 struct rcu_data *rdp;
ff3cee39 750 struct rcu_node *rnp1;
4bc8d555 751
ce11fae8 752 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 753 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 754 __func__, rnp->grplo, rnp->grphi, rnp->level,
ff3cee39
PM
755 (long)rnp->gp_seq, (long)rnp->completedqs);
756 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
757 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
758 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf 759 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
6935c398
ED
760 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
761 rnp->exp_tasks);
77cfc7bf 762 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
763 i = 0;
764 list_for_each(lhp, &rnp->blkd_tasks) {
765 pr_cont(" %p", lhp);
cd6d17b4 766 if (++i >= ncheck)
4bc8d555
PM
767 break;
768 }
769 pr_cont("\n");
57738942 770 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 771 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
772 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
773 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
774 cpu, ".o"[onl],
775 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
776 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
777 }
4bc8d555
PM
778}
779
28f6569a 780#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
781
782/*
783 * Tell them what RCU they are running.
784 */
0e0fc1c2 785static void __init rcu_bootup_announce(void)
f41d911f 786{
efc151c3 787 pr_info("Hierarchical RCU implementation.\n");
26845c28 788 rcu_bootup_announce_oddness();
f41d911f
PM
789}
790
45975c7d
PM
791/*
792 * Note a quiescent state for PREEMPT=n. Because we do not need to know
793 * how many quiescent states passed, just if there was at least one since
794 * the start of the grace period, this just sets a flag. The caller must
795 * have disabled preemption.
796 */
797static void rcu_qs(void)
d28139c4 798{
45975c7d
PM
799 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
800 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
801 return;
802 trace_rcu_grace_period(TPS("rcu_sched"),
803 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
804 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
805 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
806 return;
807 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
63d4c8c9 808 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
d28139c4
PM
809}
810
395a2f09
PM
811/*
812 * Register an urgently needed quiescent state. If there is an
813 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
814 * dyntick-idle quiescent state visible to other CPUs, which will in
815 * some cases serve for expedited as well as normal grace periods.
816 * Either way, register a lightweight quiescent state.
395a2f09
PM
817 */
818void rcu_all_qs(void)
819{
820 unsigned long flags;
821
2dba13f0 822 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
395a2f09
PM
823 return;
824 preempt_disable();
825 /* Load rcu_urgent_qs before other flags. */
2dba13f0 826 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
395a2f09
PM
827 preempt_enable();
828 return;
829 }
2dba13f0 830 this_cpu_write(rcu_data.rcu_urgent_qs, false);
2dba13f0 831 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
395a2f09
PM
832 local_irq_save(flags);
833 rcu_momentary_dyntick_idle();
834 local_irq_restore(flags);
835 }
7e28c5af 836 rcu_qs();
395a2f09
PM
837 preempt_enable();
838}
839EXPORT_SYMBOL_GPL(rcu_all_qs);
840
cba6d0d6 841/*
45975c7d 842 * Note a PREEMPT=n context switch. The caller must have disabled interrupts.
cba6d0d6 843 */
45975c7d 844void rcu_note_context_switch(bool preempt)
cba6d0d6 845{
45975c7d
PM
846 trace_rcu_utilization(TPS("Start context switch"));
847 rcu_qs();
848 /* Load rcu_urgent_qs before other flags. */
2dba13f0 849 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
45975c7d 850 goto out;
2dba13f0
PM
851 this_cpu_write(rcu_data.rcu_urgent_qs, false);
852 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
45975c7d 853 rcu_momentary_dyntick_idle();
45975c7d
PM
854 if (!preempt)
855 rcu_tasks_qs(current);
856out:
857 trace_rcu_utilization(TPS("End context switch"));
cba6d0d6 858}
45975c7d 859EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 860
fc2219d4 861/*
6cc68793 862 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
863 * RCU readers.
864 */
27f4d280 865static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
866{
867 return 0;
868}
869
8af3a5e7
PM
870/*
871 * Because there is no preemptible RCU, there can be no readers blocked.
872 */
873static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 874{
8af3a5e7 875 return false;
b668c9cf
PM
876}
877
3e310098
PM
878/*
879 * Because there is no preemptible RCU, there can be no deferred quiescent
880 * states.
881 */
882static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
883{
884 return false;
885}
886static void rcu_preempt_deferred_qs(struct task_struct *t) { }
887
b0e165c0 888/*
6cc68793 889 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
890 * so there is no need to check for blocked tasks. So check only for
891 * bogus qsmask values.
b0e165c0 892 */
81ab59a3 893static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 894{
49e29126 895 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
896}
897
f41d911f 898/*
c98cac60
PM
899 * Check to see if this CPU is in a non-context-switch quiescent state,
900 * namely user mode and idle loop.
f41d911f 901 */
c98cac60 902static void rcu_flavor_sched_clock_irq(int user)
f41d911f 903{
45975c7d 904 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 905
45975c7d
PM
906 /*
907 * Get here if this CPU took its interrupt from user
908 * mode or from the idle loop, and if this is not a
909 * nested interrupt. In this case, the CPU is in
910 * a quiescent state, so note it.
911 *
912 * No memory barrier is required here because rcu_qs()
913 * references only CPU-local variables that other CPUs
914 * neither access nor modify, at least not while the
915 * corresponding CPU is online.
916 */
917
918 rcu_qs();
919 }
e74f4c45 920}
e74f4c45 921
2439b696
PM
922/*
923 * Because preemptible RCU does not exist, tasks cannot possibly exit
924 * while in preemptible RCU read-side critical sections.
925 */
926void exit_rcu(void)
927{
928}
929
4bc8d555
PM
930/*
931 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
932 */
57738942 933static void
81ab59a3 934dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
935{
936 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
937}
938
28f6569a 939#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 940
48d07c04
SAS
941/*
942 * If boosting, set rcuc kthreads to realtime priority.
943 */
944static void rcu_cpu_kthread_setup(unsigned int cpu)
945{
27f4d280 946#ifdef CONFIG_RCU_BOOST
48d07c04 947 struct sched_param sp;
27f4d280 948
48d07c04
SAS
949 sp.sched_priority = kthread_prio;
950 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
951#endif /* #ifdef CONFIG_RCU_BOOST */
5d01bbd1
TG
952}
953
48d07c04
SAS
954#ifdef CONFIG_RCU_BOOST
955
27f4d280
PM
956/*
957 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
958 * or ->boost_tasks, advancing the pointer to the next task in the
959 * ->blkd_tasks list.
960 *
961 * Note that irqs must be enabled: boosting the task can block.
962 * Returns 1 if there are more tasks needing to be boosted.
963 */
964static int rcu_boost(struct rcu_node *rnp)
965{
966 unsigned long flags;
27f4d280
PM
967 struct task_struct *t;
968 struct list_head *tb;
969
7d0ae808
PM
970 if (READ_ONCE(rnp->exp_tasks) == NULL &&
971 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
972 return 0; /* Nothing left to boost. */
973
2a67e741 974 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
975
976 /*
977 * Recheck under the lock: all tasks in need of boosting
978 * might exit their RCU read-side critical sections on their own.
979 */
980 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
982 return 0;
983 }
984
985 /*
986 * Preferentially boost tasks blocking expedited grace periods.
987 * This cannot starve the normal grace periods because a second
988 * expedited grace period must boost all blocked tasks, including
989 * those blocking the pre-existing normal grace period.
990 */
bec06785 991 if (rnp->exp_tasks != NULL)
27f4d280 992 tb = rnp->exp_tasks;
bec06785 993 else
27f4d280
PM
994 tb = rnp->boost_tasks;
995
996 /*
997 * We boost task t by manufacturing an rt_mutex that appears to
998 * be held by task t. We leave a pointer to that rt_mutex where
999 * task t can find it, and task t will release the mutex when it
1000 * exits its outermost RCU read-side critical section. Then
1001 * simply acquiring this artificial rt_mutex will boost task
1002 * t's priority. (Thanks to tglx for suggesting this approach!)
1003 *
1004 * Note that task t must acquire rnp->lock to remove itself from
1005 * the ->blkd_tasks list, which it will do from exit() if from
1006 * nowhere else. We therefore are guaranteed that task t will
1007 * stay around at least until we drop rnp->lock. Note that
1008 * rnp->lock also resolves races between our priority boosting
1009 * and task t's exiting its outermost RCU read-side critical
1010 * section.
1011 */
1012 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1013 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1014 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1015 /* Lock only for side effect: boosts task t's priority. */
1016 rt_mutex_lock(&rnp->boost_mtx);
1017 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1018
7d0ae808
PM
1019 return READ_ONCE(rnp->exp_tasks) != NULL ||
1020 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1021}
1022
27f4d280 1023/*
bc17ea10 1024 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1025 */
1026static int rcu_boost_kthread(void *arg)
1027{
1028 struct rcu_node *rnp = (struct rcu_node *)arg;
1029 int spincnt = 0;
1030 int more2boost;
1031
f7f7bac9 1032 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1033 for (;;) {
d71df90e 1034 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1035 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1036 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1037 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1038 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1039 more2boost = rcu_boost(rnp);
1040 if (more2boost)
1041 spincnt++;
1042 else
1043 spincnt = 0;
1044 if (spincnt > 10) {
5d01bbd1 1045 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1046 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1047 schedule_timeout_interruptible(2);
f7f7bac9 1048 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1049 spincnt = 0;
1050 }
1051 }
1217ed1b 1052 /* NOTREACHED */
f7f7bac9 1053 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1054 return 0;
1055}
1056
1057/*
1058 * Check to see if it is time to start boosting RCU readers that are
1059 * blocking the current grace period, and, if so, tell the per-rcu_node
1060 * kthread to start boosting them. If there is an expedited grace
1061 * period in progress, it is always time to boost.
1062 *
b065a853
PM
1063 * The caller must hold rnp->lock, which this function releases.
1064 * The ->boost_kthread_task is immortal, so we don't need to worry
1065 * about it going away.
27f4d280 1066 */
1217ed1b 1067static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1068 __releases(rnp->lock)
27f4d280 1069{
a32e01ee 1070 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1071 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1072 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1073 return;
0ea1f2eb 1074 }
27f4d280
PM
1075 if (rnp->exp_tasks != NULL ||
1076 (rnp->gp_tasks != NULL &&
1077 rnp->boost_tasks == NULL &&
1078 rnp->qsmask == 0 &&
1079 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1080 if (rnp->exp_tasks == NULL)
1081 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1082 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
a2badefa
PM
1083 rcu_wake_cond(rnp->boost_kthread_task,
1084 rnp->boost_kthread_status);
1217ed1b 1085 } else {
67c583a7 1086 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1087 }
27f4d280
PM
1088}
1089
dff1672d
PM
1090/*
1091 * Is the current CPU running the RCU-callbacks kthread?
1092 * Caller must have preemption disabled.
1093 */
1094static bool rcu_is_callbacks_kthread(void)
1095{
37f62d7c 1096 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
dff1672d
PM
1097}
1098
27f4d280
PM
1099#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1100
1101/*
1102 * Do priority-boost accounting for the start of a new grace period.
1103 */
1104static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1105{
1106 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1107}
1108
27f4d280
PM
1109/*
1110 * Create an RCU-boost kthread for the specified node if one does not
1111 * already exist. We only create this kthread for preemptible RCU.
1112 * Returns zero if all is well, a negated errno otherwise.
1113 */
3545832f 1114static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1115{
6dbfdc14 1116 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1117 unsigned long flags;
1118 struct sched_param sp;
1119 struct task_struct *t;
1120
6dbfdc14 1121 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
3545832f 1122 return;
5d01bbd1 1123
0aa04b05 1124 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
3545832f 1125 return;
5d01bbd1 1126
6dbfdc14 1127 rcu_state.boost = 1;
3545832f 1128
27f4d280 1129 if (rnp->boost_kthread_task != NULL)
3545832f
BP
1130 return;
1131
27f4d280 1132 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1133 "rcub/%d", rnp_index);
3545832f
BP
1134 if (WARN_ON_ONCE(IS_ERR(t)))
1135 return;
1136
2a67e741 1137 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1138 rnp->boost_kthread_task = t;
67c583a7 1139 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1140 sp.sched_priority = kthread_prio;
27f4d280 1141 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1142 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1143}
1144
f8b7fc6b
PM
1145/*
1146 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1147 * served by the rcu_node in question. The CPU hotplug lock is still
1148 * held, so the value of rnp->qsmaskinit will be stable.
1149 *
1150 * We don't include outgoingcpu in the affinity set, use -1 if there is
1151 * no outgoing CPU. If there are no CPUs left in the affinity set,
1152 * this function allows the kthread to execute on any CPU.
1153 */
5d01bbd1 1154static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1155{
5d01bbd1 1156 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1157 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1158 cpumask_var_t cm;
1159 int cpu;
f8b7fc6b 1160
5d01bbd1 1161 if (!t)
f8b7fc6b 1162 return;
5d01bbd1 1163 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1164 return;
bc75e999
MR
1165 for_each_leaf_node_possible_cpu(rnp, cpu)
1166 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1167 cpu != outgoingcpu)
f8b7fc6b 1168 cpumask_set_cpu(cpu, cm);
5d0b0249 1169 if (cpumask_weight(cm) == 0)
f8b7fc6b 1170 cpumask_setall(cm);
5d01bbd1 1171 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1172 free_cpumask_var(cm);
1173}
1174
f8b7fc6b 1175/*
9386c0b7 1176 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1177 */
9386c0b7 1178static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1179{
f8b7fc6b
PM
1180 struct rcu_node *rnp;
1181
aedf4ba9 1182 rcu_for_each_leaf_node(rnp)
3545832f 1183 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1184}
f8b7fc6b 1185
49fb4c62 1186static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1187{
da1df50d 1188 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1189 struct rcu_node *rnp = rdp->mynode;
1190
1191 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1192 if (rcu_scheduler_fully_active)
3545832f 1193 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1194}
1195
27f4d280
PM
1196#else /* #ifdef CONFIG_RCU_BOOST */
1197
1217ed1b 1198static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1199 __releases(rnp->lock)
27f4d280 1200{
67c583a7 1201 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1202}
1203
dff1672d
PM
1204static bool rcu_is_callbacks_kthread(void)
1205{
1206 return false;
1207}
1208
27f4d280
PM
1209static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1210{
1211}
1212
5d01bbd1 1213static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1214{
1215}
1216
9386c0b7 1217static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1218{
b0d30417 1219}
b0d30417 1220
49fb4c62 1221static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1222{
1223}
1224
27f4d280
PM
1225#endif /* #else #ifdef CONFIG_RCU_BOOST */
1226
8bd93a2c
PM
1227#if !defined(CONFIG_RCU_FAST_NO_HZ)
1228
1229/*
0bd55c69
PM
1230 * Check to see if any future non-offloaded RCU-related work will need
1231 * to be done by the current CPU, even if none need be done immediately,
1232 * returning 1 if so. This function is part of the RCU implementation;
1233 * it is -not- an exported member of the RCU API.
8bd93a2c 1234 *
0ae86a27
PM
1235 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1236 * CPU has RCU callbacks queued.
8bd93a2c 1237 */
c1ad348b 1238int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1239{
c1ad348b 1240 *nextevt = KTIME_MAX;
0bd55c69
PM
1241 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1242 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
7cb92499
PM
1243}
1244
1245/*
1246 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1247 * after it.
1248 */
8fa7845d 1249static void rcu_cleanup_after_idle(void)
7cb92499
PM
1250{
1251}
1252
aea1b35e 1253/*
a858af28 1254 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1255 * is nothing.
1256 */
198bbf81 1257static void rcu_prepare_for_idle(void)
aea1b35e
PM
1258{
1259}
1260
8bd93a2c
PM
1261#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1262
f23f7fa1
PM
1263/*
1264 * This code is invoked when a CPU goes idle, at which point we want
1265 * to have the CPU do everything required for RCU so that it can enter
1266 * the energy-efficient dyntick-idle mode. This is handled by a
1267 * state machine implemented by rcu_prepare_for_idle() below.
1268 *
1269 * The following three proprocessor symbols control this state machine:
1270 *
f23f7fa1
PM
1271 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1272 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1273 * is sized to be roughly one RCU grace period. Those energy-efficiency
1274 * benchmarkers who might otherwise be tempted to set this to a large
1275 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1276 * system. And if you are -that- concerned about energy efficiency,
1277 * just power the system down and be done with it!
778d250a
PM
1278 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1279 * permitted to sleep in dyntick-idle mode with only lazy RCU
1280 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1281 *
1282 * The values below work well in practice. If future workloads require
1283 * adjustment, they can be converted into kernel config parameters, though
1284 * making the state machine smarter might be a better option.
1285 */
e84c48ae 1286#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1287#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1288
5e44ce35
PM
1289static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1290module_param(rcu_idle_gp_delay, int, 0644);
1291static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1292module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1293
486e2593 1294/*
0ae86a27
PM
1295 * Try to advance callbacks on the current CPU, but only if it has been
1296 * awhile since the last time we did so. Afterwards, if there are any
1297 * callbacks ready for immediate invocation, return true.
486e2593 1298 */
f1f399d1 1299static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1300{
c0f4dfd4 1301 bool cbs_ready = false;
5998a75a 1302 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1303 struct rcu_node *rnp;
486e2593 1304
c229828c 1305 /* Exit early if we advanced recently. */
5998a75a 1306 if (jiffies == rdp->last_advance_all)
d0bc90fd 1307 return false;
5998a75a 1308 rdp->last_advance_all = jiffies;
c229828c 1309
b97d23c5 1310 rnp = rdp->mynode;
486e2593 1311
b97d23c5
PM
1312 /*
1313 * Don't bother checking unless a grace period has
1314 * completed since we last checked and there are
1315 * callbacks not yet ready to invoke.
1316 */
1317 if ((rcu_seq_completed_gp(rdp->gp_seq,
1318 rcu_seq_current(&rnp->gp_seq)) ||
1319 unlikely(READ_ONCE(rdp->gpwrap))) &&
1320 rcu_segcblist_pend_cbs(&rdp->cblist))
1321 note_gp_changes(rdp);
1322
1323 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1324 cbs_ready = true;
c0f4dfd4 1325 return cbs_ready;
486e2593
PM
1326}
1327
aa9b1630 1328/*
c0f4dfd4
PM
1329 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1330 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1331 * caller to set the timeout based on whether or not there are non-lazy
1332 * callbacks.
aa9b1630 1333 *
c0f4dfd4 1334 * The caller must have disabled interrupts.
aa9b1630 1335 */
c1ad348b 1336int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1337{
5998a75a 1338 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c1ad348b 1339 unsigned long dj;
aa9b1630 1340
b04db8e1 1341 lockdep_assert_irqs_disabled();
3382adbc 1342
0bd55c69
PM
1343 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1344 if (rcu_segcblist_empty(&rdp->cblist) ||
1345 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
c1ad348b 1346 *nextevt = KTIME_MAX;
aa9b1630
PM
1347 return 0;
1348 }
c0f4dfd4
PM
1349
1350 /* Attempt to advance callbacks. */
1351 if (rcu_try_advance_all_cbs()) {
1352 /* Some ready to invoke, so initiate later invocation. */
1353 invoke_rcu_core();
aa9b1630
PM
1354 return 1;
1355 }
5998a75a 1356 rdp->last_accelerate = jiffies;
c0f4dfd4
PM
1357
1358 /* Request timer delay depending on laziness, and round. */
260e1e4f
PM
1359 rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1360 if (rdp->all_lazy) {
1361 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1362 } else {
c1ad348b 1363 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1364 rcu_idle_gp_delay) - jiffies;
e84c48ae 1365 }
c1ad348b 1366 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1367 return 0;
1368}
1369
21e52e15 1370/*
c0f4dfd4
PM
1371 * Prepare a CPU for idle from an RCU perspective. The first major task
1372 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1373 * The second major task is to check to see if a non-lazy callback has
1374 * arrived at a CPU that previously had only lazy callbacks. The third
1375 * major task is to accelerate (that is, assign grace-period numbers to)
1376 * any recently arrived callbacks.
aea1b35e
PM
1377 *
1378 * The caller must have disabled interrupts.
8bd93a2c 1379 */
198bbf81 1380static void rcu_prepare_for_idle(void)
8bd93a2c 1381{
48a7639c 1382 bool needwake;
0fd79e75 1383 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1384 struct rcu_node *rnp;
9d2ad243
PM
1385 int tne;
1386
b04db8e1 1387 lockdep_assert_irqs_disabled();
ce5215c1 1388 if (rcu_segcblist_is_offloaded(&rdp->cblist))
3382adbc
PM
1389 return;
1390
9d2ad243 1391 /* Handle nohz enablement switches conservatively. */
7d0ae808 1392 tne = READ_ONCE(tick_nohz_active);
0fd79e75 1393 if (tne != rdp->tick_nohz_enabled_snap) {
260e1e4f 1394 if (!rcu_segcblist_empty(&rdp->cblist))
9d2ad243 1395 invoke_rcu_core(); /* force nohz to see update. */
0fd79e75 1396 rdp->tick_nohz_enabled_snap = tne;
9d2ad243
PM
1397 return;
1398 }
1399 if (!tne)
1400 return;
f511fc62 1401
c57afe80 1402 /*
c0f4dfd4
PM
1403 * If a non-lazy callback arrived at a CPU having only lazy
1404 * callbacks, invoke RCU core for the side-effect of recalculating
1405 * idle duration on re-entry to idle.
c57afe80 1406 */
260e1e4f 1407 if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
c458a89e 1408 rdp->all_lazy = false;
c0f4dfd4 1409 invoke_rcu_core();
c57afe80
PM
1410 return;
1411 }
c57afe80 1412
3084f2f8 1413 /*
c0f4dfd4
PM
1414 * If we have not yet accelerated this jiffy, accelerate all
1415 * callbacks on this CPU.
3084f2f8 1416 */
5998a75a 1417 if (rdp->last_accelerate == jiffies)
aea1b35e 1418 return;
5998a75a 1419 rdp->last_accelerate = jiffies;
b97d23c5 1420 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
c0f4dfd4 1421 rnp = rdp->mynode;
2a67e741 1422 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1423 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1424 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1425 if (needwake)
532c00c9 1426 rcu_gp_kthread_wake();
77e38ed3 1427 }
c0f4dfd4 1428}
3084f2f8 1429
c0f4dfd4
PM
1430/*
1431 * Clean up for exit from idle. Attempt to advance callbacks based on
1432 * any grace periods that elapsed while the CPU was idle, and if any
1433 * callbacks are now ready to invoke, initiate invocation.
1434 */
8fa7845d 1435static void rcu_cleanup_after_idle(void)
c0f4dfd4 1436{
ce5215c1
PM
1437 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1438
b04db8e1 1439 lockdep_assert_irqs_disabled();
ce5215c1 1440 if (rcu_segcblist_is_offloaded(&rdp->cblist))
aea1b35e 1441 return;
7a497c96
PM
1442 if (rcu_try_advance_all_cbs())
1443 invoke_rcu_core();
8bd93a2c
PM
1444}
1445
1446#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1447
3fbfbf7a
PM
1448#ifdef CONFIG_RCU_NOCB_CPU
1449
1450/*
1451 * Offload callback processing from the boot-time-specified set of CPUs
a9fefdb2
PM
1452 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1453 * created that pull the callbacks from the corresponding CPU, wait for
1454 * a grace period to elapse, and invoke the callbacks. These kthreads
6484fe54
PM
1455 * are organized into GP kthreads, which manage incoming callbacks, wait for
1456 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1457 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1458 * do a wake_up() on their GP kthread when they insert a callback into any
a9fefdb2
PM
1459 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1460 * in which case each kthread actively polls its CPU. (Which isn't so great
1461 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
3fbfbf7a
PM
1462 *
1463 * This is intended to be used in conjunction with Frederic Weisbecker's
1464 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1465 * running CPU-bound user-mode computations.
1466 *
a9fefdb2
PM
1467 * Offloading of callbacks can also be used as an energy-efficiency
1468 * measure because CPUs with no RCU callbacks queued are more aggressive
1469 * about entering dyntick-idle mode.
3fbfbf7a
PM
1470 */
1471
1472
497e4260
PM
1473/*
1474 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1475 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1476 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1477 * given, a warning is emitted and all CPUs are offloaded.
1478 */
3fbfbf7a
PM
1479static int __init rcu_nocb_setup(char *str)
1480{
1481 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
da8739f2
PM
1482 if (!strcasecmp(str, "all"))
1483 cpumask_setall(rcu_nocb_mask);
1484 else
497e4260
PM
1485 if (cpulist_parse(str, rcu_nocb_mask)) {
1486 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1487 cpumask_setall(rcu_nocb_mask);
1488 }
3fbfbf7a
PM
1489 return 1;
1490}
1491__setup("rcu_nocbs=", rcu_nocb_setup);
1492
1b0048a4
PG
1493static int __init parse_rcu_nocb_poll(char *arg)
1494{
5455a7f6 1495 rcu_nocb_poll = true;
1b0048a4
PG
1496 return 0;
1497}
1498early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1499
5d6742b3 1500/*
d1b222c6
PM
1501 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1502 * After all, the main point of bypassing is to avoid lock contention
1503 * on ->nocb_lock, which only can happen at high call_rcu() rates.
5d6742b3 1504 */
d1b222c6
PM
1505int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1506module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1507
1508/*
1509 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1510 * lock isn't immediately available, increment ->nocb_lock_contended to
1511 * flag the contention.
1512 */
1513static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
5d6742b3 1514{
81c0b3d7 1515 lockdep_assert_irqs_disabled();
d1b222c6 1516 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
81c0b3d7
PM
1517 return;
1518 atomic_inc(&rdp->nocb_lock_contended);
6aacd88d 1519 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
81c0b3d7 1520 smp_mb__after_atomic(); /* atomic_inc() before lock. */
d1b222c6 1521 raw_spin_lock(&rdp->nocb_bypass_lock);
81c0b3d7
PM
1522 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1523 atomic_dec(&rdp->nocb_lock_contended);
1524}
1525
1526/*
1527 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1528 * not contended. Please note that this is extremely special-purpose,
1529 * relying on the fact that at most two kthreads and one CPU contend for
1530 * this lock, and also that the two kthreads are guaranteed to have frequent
1531 * grace-period-duration time intervals between successive acquisitions
1532 * of the lock. This allows us to use an extremely simple throttling
1533 * mechanism, and further to apply it only to the CPU doing floods of
1534 * call_rcu() invocations. Don't try this at home!
1535 */
1536static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1537{
6aacd88d
PM
1538 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1539 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
81c0b3d7 1540 cpu_relax();
5d6742b3
PM
1541}
1542
d1b222c6
PM
1543/*
1544 * Conditionally acquire the specified rcu_data structure's
1545 * ->nocb_bypass_lock.
1546 */
1547static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1548{
1549 lockdep_assert_irqs_disabled();
1550 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1551}
1552
1553/*
1554 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1555 */
1556static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1557{
1558 lockdep_assert_irqs_disabled();
1559 raw_spin_unlock(&rdp->nocb_bypass_lock);
1560}
1561
1562/*
1563 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1564 * if it corresponds to a no-CBs CPU.
1565 */
1566static void rcu_nocb_lock(struct rcu_data *rdp)
1567{
1568 lockdep_assert_irqs_disabled();
1569 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1570 return;
1571 raw_spin_lock(&rdp->nocb_lock);
1572}
1573
5d6742b3
PM
1574/*
1575 * Release the specified rcu_data structure's ->nocb_lock, but only
1576 * if it corresponds to a no-CBs CPU.
1577 */
1578static void rcu_nocb_unlock(struct rcu_data *rdp)
1579{
1580 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1581 lockdep_assert_irqs_disabled();
1582 raw_spin_unlock(&rdp->nocb_lock);
1583 }
1584}
1585
1586/*
1587 * Release the specified rcu_data structure's ->nocb_lock and restore
1588 * interrupts, but only if it corresponds to a no-CBs CPU.
1589 */
1590static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1591 unsigned long flags)
1592{
1593 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1594 lockdep_assert_irqs_disabled();
1595 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1596 } else {
1597 local_irq_restore(flags);
1598 }
1599}
1600
d1b222c6
PM
1601/* Lockdep check that ->cblist may be safely accessed. */
1602static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1603{
1604 lockdep_assert_irqs_disabled();
1605 if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1606 cpu_online(rdp->cpu))
1607 lockdep_assert_held(&rdp->nocb_lock);
1608}
1609
dae6e64d 1610/*
0446be48
PM
1611 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1612 * grace period.
dae6e64d 1613 */
abedf8e2 1614static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1615{
abedf8e2 1616 swake_up_all(sq);
dae6e64d
PM
1617}
1618
abedf8e2 1619static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1620{
e0da2374 1621 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1622}
1623
dae6e64d 1624static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1625{
abedf8e2
PG
1626 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1627 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1628}
1629
24342c96 1630/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1631bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1632{
84b12b75 1633 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1634 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1635 return false;
1636}
1637
fbce7497 1638/*
6484fe54 1639 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
8be6e1b1 1640 * and this function releases it.
fbce7497 1641 */
5d6742b3 1642static void wake_nocb_gp(struct rcu_data *rdp, bool force,
5f675ba6 1643 unsigned long flags)
8be6e1b1 1644 __releases(rdp->nocb_lock)
fbce7497 1645{
d1b222c6 1646 bool needwake = false;
5f675ba6 1647 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
fbce7497 1648
8be6e1b1 1649 lockdep_assert_held(&rdp->nocb_lock);
5f675ba6 1650 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
d1b222c6
PM
1651 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1652 TPS("AlreadyAwake"));
81c0b3d7 1653 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497 1654 return;
8be6e1b1 1655 }
d1b222c6
PM
1656 del_timer(&rdp->nocb_timer);
1657 rcu_nocb_unlock_irqrestore(rdp, flags);
1658 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1659 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
5d6742b3 1660 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
d1b222c6
PM
1661 needwake = true;
1662 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
fbce7497 1663 }
d1b222c6
PM
1664 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1665 if (needwake)
1666 wake_up_process(rdp_gp->nocb_gp_kthread);
fbce7497
PM
1667}
1668
8be6e1b1 1669/*
6484fe54
PM
1670 * Arrange to wake the GP kthread for this NOCB group at some future
1671 * time when it is safe to do so.
8be6e1b1 1672 */
0d52a665
PM
1673static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1674 const char *reason)
8be6e1b1 1675{
8be6e1b1
PM
1676 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1677 mod_timer(&rdp->nocb_timer, jiffies + 1);
383e1332
PM
1678 if (rdp->nocb_defer_wakeup < waketype)
1679 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
88d1bead 1680 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
d7e29933
PM
1681}
1682
d1b222c6
PM
1683/*
1684 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1685 * However, if there is a callback to be enqueued and if ->nocb_bypass
1686 * proves to be initially empty, just return false because the no-CB GP
1687 * kthread may need to be awakened in this case.
1688 *
1689 * Note that this function always returns true if rhp is NULL.
1690 */
1691static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1692 unsigned long j)
1693{
1694 struct rcu_cblist rcl;
1695
1696 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1697 rcu_lockdep_assert_cblist_protected(rdp);
1698 lockdep_assert_held(&rdp->nocb_bypass_lock);
1699 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1700 raw_spin_unlock(&rdp->nocb_bypass_lock);
1701 return false;
1702 }
1703 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1704 if (rhp)
1705 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1706 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1707 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1708 WRITE_ONCE(rdp->nocb_bypass_first, j);
1709 rcu_nocb_bypass_unlock(rdp);
1710 return true;
1711}
1712
1713/*
1714 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1715 * However, if there is a callback to be enqueued and if ->nocb_bypass
1716 * proves to be initially empty, just return false because the no-CB GP
1717 * kthread may need to be awakened in this case.
1718 *
1719 * Note that this function always returns true if rhp is NULL.
1720 */
1721static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1722 unsigned long j)
1723{
1724 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1725 return true;
1726 rcu_lockdep_assert_cblist_protected(rdp);
1727 rcu_nocb_bypass_lock(rdp);
1728 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1729}
1730
1731/*
1732 * If the ->nocb_bypass_lock is immediately available, flush the
1733 * ->nocb_bypass queue into ->cblist.
1734 */
1735static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1736{
1737 rcu_lockdep_assert_cblist_protected(rdp);
1738 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1739 !rcu_nocb_bypass_trylock(rdp))
1740 return;
1741 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1742}
1743
1744/*
1745 * See whether it is appropriate to use the ->nocb_bypass list in order
1746 * to control contention on ->nocb_lock. A limited number of direct
1747 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1748 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1749 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1750 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1751 * used if ->cblist is empty, because otherwise callbacks can be stranded
1752 * on ->nocb_bypass because we cannot count on the current CPU ever again
1753 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1754 * non-empty, the corresponding no-CBs grace-period kthread must not be
1755 * in an indefinite sleep state.
1756 *
1757 * Finally, it is not permitted to use the bypass during early boot,
1758 * as doing so would confuse the auto-initialization code. Besides
1759 * which, there is no point in worrying about lock contention while
1760 * there is only one CPU in operation.
1761 */
1762static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1763 bool *was_alldone, unsigned long flags)
1764{
1765 unsigned long c;
1766 unsigned long cur_gp_seq;
1767 unsigned long j = jiffies;
1768 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1769
1770 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1771 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1772 return false; /* Not offloaded, no bypassing. */
1773 }
1774 lockdep_assert_irqs_disabled();
1775
1776 // Don't use ->nocb_bypass during early boot.
1777 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1778 rcu_nocb_lock(rdp);
1779 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1780 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1781 return false;
1782 }
1783
1784 // If we have advanced to a new jiffy, reset counts to allow
1785 // moving back from ->nocb_bypass to ->cblist.
1786 if (j == rdp->nocb_nobypass_last) {
1787 c = rdp->nocb_nobypass_count + 1;
1788 } else {
1789 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1790 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1791 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1792 nocb_nobypass_lim_per_jiffy))
1793 c = 0;
1794 else if (c > nocb_nobypass_lim_per_jiffy)
1795 c = nocb_nobypass_lim_per_jiffy;
1796 }
1797 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1798
1799 // If there hasn't yet been all that many ->cblist enqueues
1800 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1801 // ->nocb_bypass first.
1802 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1803 rcu_nocb_lock(rdp);
1804 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1805 if (*was_alldone)
1806 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1807 TPS("FirstQ"));
1808 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1809 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1810 return false; // Caller must enqueue the callback.
1811 }
1812
1813 // If ->nocb_bypass has been used too long or is too full,
1814 // flush ->nocb_bypass to ->cblist.
1815 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1816 ncbs >= qhimark) {
1817 rcu_nocb_lock(rdp);
1818 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1819 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1820 if (*was_alldone)
1821 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1822 TPS("FirstQ"));
1823 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1824 return false; // Caller must enqueue the callback.
1825 }
1826 if (j != rdp->nocb_gp_adv_time &&
1827 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1828 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1829 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1830 rdp->nocb_gp_adv_time = j;
1831 }
1832 rcu_nocb_unlock_irqrestore(rdp, flags);
1833 return true; // Callback already enqueued.
1834 }
1835
1836 // We need to use the bypass.
1837 rcu_nocb_wait_contended(rdp);
1838 rcu_nocb_bypass_lock(rdp);
1839 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1840 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1841 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1842 if (!ncbs) {
1843 WRITE_ONCE(rdp->nocb_bypass_first, j);
1844 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1845 }
1846 rcu_nocb_bypass_unlock(rdp);
1847 smp_mb(); /* Order enqueue before wake. */
1848 if (ncbs) {
1849 local_irq_restore(flags);
1850 } else {
1851 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1852 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1853 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1854 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1855 TPS("FirstBQwake"));
1856 __call_rcu_nocb_wake(rdp, true, flags);
1857 } else {
1858 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1859 TPS("FirstBQnoWake"));
1860 rcu_nocb_unlock_irqrestore(rdp, flags);
1861 }
1862 }
1863 return true; // Callback already enqueued.
1864}
1865
3fbfbf7a 1866/*
5d6742b3
PM
1867 * Awaken the no-CBs grace-period kthead if needed, either due to it
1868 * legitimately being asleep or due to overload conditions.
3fbfbf7a
PM
1869 *
1870 * If warranted, also wake up the kthread servicing this CPUs queues.
1871 */
5d6742b3
PM
1872static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1873 unsigned long flags)
1874 __releases(rdp->nocb_lock)
3fbfbf7a 1875{
296181d7
PM
1876 unsigned long cur_gp_seq;
1877 unsigned long j;
ce0a825e 1878 long len;
3fbfbf7a
PM
1879 struct task_struct *t;
1880
5d6742b3 1881 // If we are being polled or there is no kthread, just leave.
12f54c3a 1882 t = READ_ONCE(rdp->nocb_gp_kthread);
25e03a74 1883 if (rcu_nocb_poll || !t) {
88d1bead 1884 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
9261dd0d 1885 TPS("WakeNotPoll"));
5d6742b3 1886 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1887 return;
9261dd0d 1888 }
5d6742b3
PM
1889 // Need to actually to a wakeup.
1890 len = rcu_segcblist_n_cbs(&rdp->cblist);
1891 if (was_alldone) {
aeeacd9d 1892 rdp->qlen_last_fqs_check = len;
96d3fd0d 1893 if (!irqs_disabled_flags(flags)) {
fbce7497 1894 /* ... if queue was empty ... */
5d6742b3 1895 wake_nocb_gp(rdp, false, flags);
88d1bead 1896 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
96d3fd0d
PM
1897 TPS("WakeEmpty"));
1898 } else {
0d52a665
PM
1899 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1900 TPS("WakeEmptyIsDeferred"));
5d6742b3 1901 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1902 }
3fbfbf7a 1903 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1904 /* ... or if many callbacks queued. */
aeeacd9d 1905 rdp->qlen_last_fqs_check = len;
296181d7
PM
1906 j = jiffies;
1907 if (j != rdp->nocb_gp_adv_time &&
1908 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1909 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
faca5c25 1910 rcu_advance_cbs_nowake(rdp->mynode, rdp);
296181d7
PM
1911 rdp->nocb_gp_adv_time = j;
1912 }
f48fe4c5
PM
1913 smp_mb(); /* Enqueue before timer_pending(). */
1914 if ((rdp->nocb_cb_sleep ||
1915 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1916 !timer_pending(&rdp->nocb_bypass_timer))
273f0340
PM
1917 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1918 TPS("WakeOvfIsDeferred"));
273f0340 1919 rcu_nocb_unlock_irqrestore(rdp, flags);
9261dd0d 1920 } else {
88d1bead 1921 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
5d6742b3 1922 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a
PM
1923 }
1924 return;
1925}
1926
d1b222c6
PM
1927/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1928static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1929{
1930 unsigned long flags;
1931 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1932
1933 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1934 rcu_nocb_lock_irqsave(rdp, flags);
f48fe4c5 1935 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
d1b222c6
PM
1936 __call_rcu_nocb_wake(rdp, true, flags);
1937}
1938
3fbfbf7a 1939/*
5d6742b3
PM
1940 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1941 * or for grace periods to end.
fbce7497 1942 */
12f54c3a 1943static void nocb_gp_wait(struct rcu_data *my_rdp)
fbce7497 1944{
d1b222c6
PM
1945 bool bypass = false;
1946 long bypass_ncbs;
5d6742b3
PM
1947 int __maybe_unused cpu = my_rdp->cpu;
1948 unsigned long cur_gp_seq;
8be6e1b1 1949 unsigned long flags;
b8889c9c 1950 bool gotcbs = false;
d1b222c6 1951 unsigned long j = jiffies;
969974e5 1952 bool needwait_gp = false; // This prevents actual uninitialized use.
5d6742b3
PM
1953 bool needwake;
1954 bool needwake_gp;
fbce7497 1955 struct rcu_data *rdp;
5d6742b3 1956 struct rcu_node *rnp;
969974e5 1957 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
fbce7497
PM
1958
1959 /*
5d6742b3
PM
1960 * Each pass through the following loop checks for CBs and for the
1961 * nearest grace period (if any) to wait for next. The CB kthreads
1962 * and the global grace-period kthread are awakened if needed.
fbce7497 1963 */
58bf6f77 1964 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
d1b222c6
PM
1965 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1966 rcu_nocb_lock_irqsave(rdp, flags);
1967 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968 if (bypass_ncbs &&
1969 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1970 bypass_ncbs > 2 * qhimark)) {
1971 // Bypass full or old, so flush it.
1972 (void)rcu_nocb_try_flush_bypass(rdp, j);
1973 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1974 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1975 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1976 continue; /* No callbacks here, try next. */
d1b222c6
PM
1977 }
1978 if (bypass_ncbs) {
1979 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1980 TPS("Bypass"));
1981 bypass = true;
1982 }
5d6742b3 1983 rnp = rdp->mynode;
d1b222c6
PM
1984 if (bypass) { // Avoid race with first bypass CB.
1985 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1986 RCU_NOCB_WAKE_NOT);
1987 del_timer(&my_rdp->nocb_timer);
1988 }
1989 // Advance callbacks if helpful and low contention.
1990 needwake_gp = false;
1991 if (!rcu_segcblist_restempty(&rdp->cblist,
1992 RCU_NEXT_READY_TAIL) ||
1993 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1994 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1995 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1996 needwake_gp = rcu_advance_cbs(rnp, rdp);
1997 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1998 }
5d6742b3 1999 // Need to wait on some grace period?
d1b222c6
PM
2000 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2001 RCU_NEXT_READY_TAIL));
5d6742b3
PM
2002 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2003 if (!needwait_gp ||
2004 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2005 wait_gp_seq = cur_gp_seq;
2006 needwait_gp = true;
d1b222c6
PM
2007 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2008 TPS("NeedWaitGP"));
8be6e1b1 2009 }
5d6742b3
PM
2010 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2011 needwake = rdp->nocb_cb_sleep;
2012 WRITE_ONCE(rdp->nocb_cb_sleep, false);
2013 smp_mb(); /* CB invocation -after- GP end. */
2014 } else {
2015 needwake = false;
8be6e1b1 2016 }
81c0b3d7 2017 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 2018 if (needwake) {
12f54c3a 2019 swake_up_one(&rdp->nocb_cb_wq);
5d6742b3 2020 gotcbs = true;
fbce7497 2021 }
5d6742b3
PM
2022 if (needwake_gp)
2023 rcu_gp_kthread_wake();
2024 }
2025
f7a81b12
PM
2026 my_rdp->nocb_gp_bypass = bypass;
2027 my_rdp->nocb_gp_gp = needwait_gp;
2028 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
d1b222c6
PM
2029 if (bypass && !rcu_nocb_poll) {
2030 // At least one child with non-empty ->nocb_bypass, so set
2031 // timer in order to avoid stranding its callbacks.
2032 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2033 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2034 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2035 }
5d6742b3
PM
2036 if (rcu_nocb_poll) {
2037 /* Polling, so trace if first poll in the series. */
2038 if (gotcbs)
2039 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2040 schedule_timeout_interruptible(1);
2041 } else if (!needwait_gp) {
2042 /* Wait for callbacks to appear. */
2043 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2044 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2045 !READ_ONCE(my_rdp->nocb_gp_sleep));
d1b222c6 2046 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
5d6742b3
PM
2047 } else {
2048 rnp = my_rdp->mynode;
2049 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2050 swait_event_interruptible_exclusive(
2051 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2052 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2053 !READ_ONCE(my_rdp->nocb_gp_sleep));
2054 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2055 }
2056 if (!rcu_nocb_poll) {
4fd8c5f1 2057 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
d1b222c6
PM
2058 if (bypass)
2059 del_timer(&my_rdp->nocb_bypass_timer);
5d6742b3 2060 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
4fd8c5f1 2061 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
fbce7497 2062 }
f7a81b12 2063 my_rdp->nocb_gp_seq = -1;
5d6742b3 2064 WARN_ON(signal_pending(current));
12f54c3a 2065}
fbce7497 2066
12f54c3a
PM
2067/*
2068 * No-CBs grace-period-wait kthread. There is one of these per group
2069 * of CPUs, but only once at least one CPU in that group has come online
2070 * at least once since boot. This kthread checks for newly posted
2071 * callbacks from any of the CPUs it is responsible for, waits for a
2072 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2073 * that then have callback-invocation work to do.
2074 */
2075static int rcu_nocb_gp_kthread(void *arg)
2076{
2077 struct rcu_data *rdp = arg;
2078
5d6742b3 2079 for (;;) {
f7a81b12 2080 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
12f54c3a 2081 nocb_gp_wait(rdp);
5d6742b3
PM
2082 cond_resched_tasks_rcu_qs();
2083 }
12f54c3a 2084 return 0;
fbce7497
PM
2085}
2086
2087/*
5d6742b3
PM
2088 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2089 * then, if there are no more, wait for more to appear.
fbce7497 2090 */
5d6742b3 2091static void nocb_cb_wait(struct rcu_data *rdp)
fbce7497 2092{
1d5a81c1 2093 unsigned long cur_gp_seq;
5d6742b3
PM
2094 unsigned long flags;
2095 bool needwake_gp = false;
2096 struct rcu_node *rnp = rdp->mynode;
2097
2098 local_irq_save(flags);
2099 rcu_momentary_dyntick_idle();
2100 local_irq_restore(flags);
2101 local_bh_disable();
2102 rcu_do_batch(rdp);
2103 local_bh_enable();
2104 lockdep_assert_irqs_enabled();
81c0b3d7 2105 rcu_nocb_lock_irqsave(rdp, flags);
1d5a81c1
PM
2106 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2107 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2108 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
523bddd5
PM
2109 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2110 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2111 }
5d6742b3 2112 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
81c0b3d7 2113 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2114 if (needwake_gp)
2115 rcu_gp_kthread_wake();
2116 return;
2117 }
2118
f7c9a9b6 2119 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
5d6742b3 2120 WRITE_ONCE(rdp->nocb_cb_sleep, true);
81c0b3d7 2121 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2122 if (needwake_gp)
2123 rcu_gp_kthread_wake();
12f54c3a 2124 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
5d6742b3
PM
2125 !READ_ONCE(rdp->nocb_cb_sleep));
2126 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2127 /* ^^^ Ensure CB invocation follows _sleep test. */
2128 return;
fbce7497 2129 }
12f54c3a
PM
2130 WARN_ON(signal_pending(current));
2131 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2132}
2133
3fbfbf7a 2134/*
5d6742b3
PM
2135 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2136 * nocb_cb_wait() to do the dirty work.
3fbfbf7a 2137 */
12f54c3a 2138static int rcu_nocb_cb_kthread(void *arg)
3fbfbf7a 2139{
3fbfbf7a
PM
2140 struct rcu_data *rdp = arg;
2141
5d6742b3
PM
2142 // Each pass through this loop does one callback batch, and,
2143 // if there are no more ready callbacks, waits for them.
3fbfbf7a 2144 for (;;) {
5d6742b3
PM
2145 nocb_cb_wait(rdp);
2146 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2147 }
2148 return 0;
2149}
2150
96d3fd0d 2151/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2152static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2153{
7d0ae808 2154 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2155}
2156
2157/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2158static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2159{
8be6e1b1 2160 unsigned long flags;
9fdd3bc9
PM
2161 int ndw;
2162
81c0b3d7 2163 rcu_nocb_lock_irqsave(rdp, flags);
8be6e1b1 2164 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
81c0b3d7 2165 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 2166 return;
8be6e1b1 2167 }
7d0ae808 2168 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2169 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
5d6742b3 2170 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
88d1bead 2171 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2172}
2173
8be6e1b1 2174/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2175static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2176{
fd30b717
KC
2177 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2178
2179 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2180}
2181
2182/*
2183 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2184 * This means we do an inexact common-case check. Note that if
2185 * we miss, ->nocb_timer will eventually clean things up.
2186 */
2187static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2188{
2189 if (rcu_nocb_need_deferred_wakeup(rdp))
2190 do_nocb_deferred_wakeup_common(rdp);
2191}
2192
f4579fc5
PM
2193void __init rcu_init_nohz(void)
2194{
2195 int cpu;
ef126206 2196 bool need_rcu_nocb_mask = false;
e83e73f5 2197 struct rcu_data *rdp;
f4579fc5 2198
f4579fc5
PM
2199#if defined(CONFIG_NO_HZ_FULL)
2200 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2201 need_rcu_nocb_mask = true;
2202#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2203
84b12b75 2204 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2205 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2206 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2207 return;
2208 }
f4579fc5 2209 }
84b12b75 2210 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2211 return;
2212
f4579fc5
PM
2213#if defined(CONFIG_NO_HZ_FULL)
2214 if (tick_nohz_full_running)
2215 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2216#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2217
2218 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2219 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2220 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2221 rcu_nocb_mask);
2222 }
3016611e
PM
2223 if (cpumask_empty(rcu_nocb_mask))
2224 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2225 else
2226 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2227 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2228 if (rcu_nocb_poll)
2229 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2230
e83e73f5
PM
2231 for_each_cpu(cpu, rcu_nocb_mask) {
2232 rdp = per_cpu_ptr(&rcu_data, cpu);
2233 if (rcu_segcblist_empty(&rdp->cblist))
2234 rcu_segcblist_init(&rdp->cblist);
2235 rcu_segcblist_offload(&rdp->cblist);
2236 }
b97d23c5 2237 rcu_organize_nocb_kthreads();
96d3fd0d
PM
2238}
2239
3fbfbf7a
PM
2240/* Initialize per-rcu_data variables for no-CBs CPUs. */
2241static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2242{
12f54c3a
PM
2243 init_swait_queue_head(&rdp->nocb_cb_wq);
2244 init_swait_queue_head(&rdp->nocb_gp_wq);
8be6e1b1 2245 raw_spin_lock_init(&rdp->nocb_lock);
d1b222c6 2246 raw_spin_lock_init(&rdp->nocb_bypass_lock);
4fd8c5f1 2247 raw_spin_lock_init(&rdp->nocb_gp_lock);
fd30b717 2248 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
d1b222c6
PM
2249 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2250 rcu_cblist_init(&rdp->nocb_bypass);
3fbfbf7a
PM
2251}
2252
35ce7f29
PM
2253/*
2254 * If the specified CPU is a no-CBs CPU that does not already have its
12f54c3a
PM
2255 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2256 * for this CPU's group has not yet been created, spawn it as well.
35ce7f29 2257 */
4580b054 2258static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29 2259{
12f54c3a
PM
2260 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2261 struct rcu_data *rdp_gp;
35ce7f29
PM
2262 struct task_struct *t;
2263
2264 /*
2265 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2266 * then nothing to do.
2267 */
12f54c3a 2268 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
35ce7f29
PM
2269 return;
2270
6484fe54 2271 /* If we didn't spawn the GP kthread first, reorganize! */
12f54c3a
PM
2272 rdp_gp = rdp->nocb_gp_rdp;
2273 if (!rdp_gp->nocb_gp_kthread) {
2274 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2275 "rcuog/%d", rdp_gp->cpu);
2276 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2277 return;
2278 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
35ce7f29
PM
2279 }
2280
0ae86a27 2281 /* Spawn the kthread for this CPU. */
12f54c3a 2282 t = kthread_run(rcu_nocb_cb_kthread, rdp,
4580b054 2283 "rcuo%c/%d", rcu_state.abbr, cpu);
12f54c3a 2284 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
9213784b 2285 return;
12f54c3a
PM
2286 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2287 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
35ce7f29
PM
2288}
2289
2290/*
2291 * If the specified CPU is a no-CBs CPU that does not already have its
ad368d15 2292 * rcuo kthread, spawn it.
35ce7f29 2293 */
ad368d15 2294static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29 2295{
35ce7f29 2296 if (rcu_scheduler_fully_active)
b97d23c5 2297 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
2298}
2299
2300/*
2301 * Once the scheduler is running, spawn rcuo kthreads for all online
2302 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2303 * non-boot CPUs come online -- if this changes, we will need to add
2304 * some mutual exclusion.
2305 */
2306static void __init rcu_spawn_nocb_kthreads(void)
2307{
2308 int cpu;
2309
2310 for_each_online_cpu(cpu)
ad368d15 2311 rcu_spawn_cpu_nocb_kthread(cpu);
35ce7f29
PM
2312}
2313
6484fe54 2314/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
f7c612b0
PM
2315static int rcu_nocb_gp_stride = -1;
2316module_param(rcu_nocb_gp_stride, int, 0444);
fbce7497
PM
2317
2318/*
6484fe54 2319 * Initialize GP-CB relationships for all no-CBs CPU.
fbce7497 2320 */
4580b054 2321static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2322{
2323 int cpu;
18cd8c93 2324 bool firsttime = true;
610dea36
SR
2325 bool gotnocbs = false;
2326 bool gotnocbscbs = true;
f7c612b0 2327 int ls = rcu_nocb_gp_stride;
6484fe54 2328 int nl = 0; /* Next GP kthread. */
3fbfbf7a 2329 struct rcu_data *rdp;
0bdc33da 2330 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
fbce7497 2331 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2332
84b12b75 2333 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2334 return;
fbce7497 2335 if (ls == -1) {
9fcb09bd 2336 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
f7c612b0 2337 rcu_nocb_gp_stride = ls;
fbce7497
PM
2338 }
2339
2340 /*
9831ce3b
PM
2341 * Each pass through this loop sets up one rcu_data structure.
2342 * Should the corresponding CPU come online in the future, then
2343 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2344 */
3fbfbf7a 2345 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2346 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497 2347 if (rdp->cpu >= nl) {
6484fe54 2348 /* New GP kthread, set up for CBs & next GP. */
610dea36 2349 gotnocbs = true;
fbce7497 2350 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
58bf6f77 2351 rdp->nocb_gp_rdp = rdp;
0bdc33da 2352 rdp_gp = rdp;
610dea36
SR
2353 if (dump_tree) {
2354 if (!firsttime)
2355 pr_cont("%s\n", gotnocbscbs
2356 ? "" : " (self only)");
2357 gotnocbscbs = false;
2358 firsttime = false;
2359 pr_alert("%s: No-CB GP kthread CPU %d:",
2360 __func__, cpu);
2361 }
fbce7497 2362 } else {
6484fe54 2363 /* Another CB kthread, link to previous GP kthread. */
610dea36 2364 gotnocbscbs = true;
0bdc33da 2365 rdp->nocb_gp_rdp = rdp_gp;
58bf6f77 2366 rdp_prev->nocb_next_cb_rdp = rdp;
610dea36
SR
2367 if (dump_tree)
2368 pr_cont(" %d", cpu);
fbce7497
PM
2369 }
2370 rdp_prev = rdp;
3fbfbf7a 2371 }
610dea36
SR
2372 if (gotnocbs && dump_tree)
2373 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
3fbfbf7a
PM
2374}
2375
5ab7ab83
PM
2376/*
2377 * Bind the current task to the offloaded CPUs. If there are no offloaded
2378 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2379 */
2380void rcu_bind_current_to_nocb(void)
2381{
2382 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2383 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2384}
2385EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2386
f7a81b12
PM
2387/*
2388 * Dump out nocb grace-period kthread state for the specified rcu_data
2389 * structure.
2390 */
2391static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2392{
2393 struct rcu_node *rnp = rdp->mynode;
2394
2395 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2396 rdp->cpu,
2397 "kK"[!!rdp->nocb_gp_kthread],
2398 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2399 "dD"[!!rdp->nocb_defer_wakeup],
2400 "tT"[timer_pending(&rdp->nocb_timer)],
2401 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2402 "sS"[!!rdp->nocb_gp_sleep],
2403 ".W"[swait_active(&rdp->nocb_gp_wq)],
2404 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2405 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2406 ".B"[!!rdp->nocb_gp_bypass],
2407 ".G"[!!rdp->nocb_gp_gp],
2408 (long)rdp->nocb_gp_seq,
2409 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2410}
2411
2412/* Dump out nocb kthread state for the specified rcu_data structure. */
2413static void show_rcu_nocb_state(struct rcu_data *rdp)
2414{
2415 struct rcu_segcblist *rsclp = &rdp->cblist;
2416 bool waslocked;
2417 bool wastimer;
2418 bool wassleep;
2419
2420 if (rdp->nocb_gp_rdp == rdp)
2421 show_rcu_nocb_gp_state(rdp);
2422
2423 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2424 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2425 "kK"[!!rdp->nocb_cb_kthread],
2426 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2427 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2428 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2429 "sS"[!!rdp->nocb_cb_sleep],
2430 ".W"[swait_active(&rdp->nocb_cb_wq)],
2431 jiffies - rdp->nocb_bypass_first,
2432 jiffies - rdp->nocb_nobypass_last,
2433 rdp->nocb_nobypass_count,
2434 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2435 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2436 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2437 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2438 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2439 rcu_segcblist_n_cbs(&rdp->cblist));
2440
2441 /* It is OK for GP kthreads to have GP state. */
2442 if (rdp->nocb_gp_rdp == rdp)
2443 return;
2444
2445 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2446 wastimer = timer_pending(&rdp->nocb_timer);
2447 wassleep = swait_active(&rdp->nocb_gp_wq);
2448 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2449 !waslocked && !wastimer && !wassleep)
2450 return; /* Nothing untowards. */
2451
2452 pr_info(" !!! %c%c%c%c %c\n",
2453 "lL"[waslocked],
2454 "dD"[!!rdp->nocb_defer_wakeup],
2455 "tT"[wastimer],
2456 "sS"[!!rdp->nocb_gp_sleep],
2457 ".W"[wassleep]);
2458}
2459
34ed6246
PM
2460#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2461
5d6742b3
PM
2462/* No ->nocb_lock to acquire. */
2463static void rcu_nocb_lock(struct rcu_data *rdp)
d7e29933 2464{
5d6742b3
PM
2465}
2466
2467/* No ->nocb_lock to release. */
2468static void rcu_nocb_unlock(struct rcu_data *rdp)
2469{
2470}
2471
2472/* No ->nocb_lock to release. */
2473static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2474 unsigned long flags)
2475{
2476 local_irq_restore(flags);
d7e29933
PM
2477}
2478
d1b222c6
PM
2479/* Lockdep check that ->cblist may be safely accessed. */
2480static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2481{
2482 lockdep_assert_irqs_disabled();
2483}
2484
abedf8e2 2485static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2486{
3fbfbf7a
PM
2487}
2488
abedf8e2 2489static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2490{
2491 return NULL;
2492}
2493
dae6e64d
PM
2494static void rcu_init_one_nocb(struct rcu_node *rnp)
2495{
2496}
3fbfbf7a 2497
d1b222c6
PM
2498static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2499 unsigned long j)
2500{
2501 return true;
2502}
2503
2504static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2505 bool *was_alldone, unsigned long flags)
2506{
2507 return false;
2508}
2509
5d6742b3
PM
2510static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2511 unsigned long flags)
3fbfbf7a 2512{
5d6742b3 2513 WARN_ON_ONCE(1); /* Should be dead code! */
3fbfbf7a
PM
2514}
2515
3fbfbf7a
PM
2516static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2517{
2518}
2519
9fdd3bc9 2520static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2521{
2522 return false;
2523}
2524
2525static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2526{
2527}
2528
ad368d15 2529static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29
PM
2530{
2531}
2532
2533static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2534{
2535}
2536
f7a81b12
PM
2537static void show_rcu_nocb_state(struct rcu_data *rdp)
2538{
2539}
2540
3fbfbf7a 2541#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2542
a096932f
PM
2543/*
2544 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2545 * grace-period kthread will do force_quiescent_state() processing?
2546 * The idea is to avoid waking up RCU core processing on such a
2547 * CPU unless the grace period has extended for too long.
2548 *
2549 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2550 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2551 */
4580b054 2552static bool rcu_nohz_full_cpu(void)
a096932f
PM
2553{
2554#ifdef CONFIG_NO_HZ_FULL
2555 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2556 (!rcu_gp_in_progress() ||
4580b054 2557 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2558 return true;
a096932f 2559#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2560 return false;
a096932f 2561}
5057f55e
PM
2562
2563/*
265f5f28 2564 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2565 */
2566static void rcu_bind_gp_kthread(void)
2567{
c0f489d2 2568 if (!tick_nohz_full_enabled())
5057f55e 2569 return;
de201559 2570 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2571}
176f8f7a
PM
2572
2573/* Record the current task on dyntick-idle entry. */
2574static void rcu_dynticks_task_enter(void)
2575{
2576#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2577 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2578#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2579}
2580
2581/* Record no current task on dyntick-idle exit. */
2582static void rcu_dynticks_task_exit(void)
2583{
2584#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2585 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2586#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2587}