rcu/nocb: Reduce contention at no-CBs registry-time CB advancement
[linux-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
22e40925 1/* SPDX-License-Identifier: GPL-2.0+ */
f41d911f
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
6cc68793 5 * or preemptible semantics.
f41d911f 6 *
f41d911f
PM
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
22e40925 11 * Paul E. McKenney <paulmck@linux.ibm.com>
f41d911f
PM
12 */
13
abaa93d9 14#include "../locking/rtmutex_common.h"
5b61b0ba 15
3fbfbf7a
PM
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 18static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
26845c28
PM
21/*
22 * Check the RCU kernel configuration parameters and print informative
699d4035 23 * messages about anything out of the ordinary.
26845c28
PM
24 */
25static void __init rcu_bootup_announce_oddness(void)
26{
ab6f5bd6 27 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 28 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
7fa27001 33 if (rcu_fanout_exact)
ab6f5bd6
PM
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 37 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 38 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 41 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
cca6f393 47 if (nr_cpu_ids != NR_CPUS)
9b130ad5 48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 49#ifdef CONFIG_RCU_BOOST
a7538352
JP
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
52#endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (jiffies_till_first_fqs != ULONG_MAX)
60 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 if (jiffies_till_next_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
c06aed0e
PM
63 if (jiffies_till_sched_qs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
17c7798b
PM
65 if (rcu_kick_kthreads)
66 pr_info("\tKick kthreads if too-long grace period.\n");
67 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 69 if (gp_preinit_delay)
17c7798b 70 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 71 if (gp_init_delay)
17c7798b 72 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 73 if (gp_cleanup_delay)
17c7798b 74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
48d07c04
SAS
75 if (!use_softirq)
76 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
17c7798b
PM
77 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 79 rcupdate_announce_bootup_oddness();
26845c28
PM
80}
81
28f6569a 82#ifdef CONFIG_PREEMPT_RCU
f41d911f 83
63d4c8c9 84static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
3949fa9b 85static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 86
f41d911f
PM
87/*
88 * Tell them what RCU they are running.
89 */
0e0fc1c2 90static void __init rcu_bootup_announce(void)
f41d911f 91{
efc151c3 92 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 93 rcu_bootup_announce_oddness();
f41d911f
PM
94}
95
8203d6d0
PM
96/* Flags for rcu_preempt_ctxt_queue() decision table. */
97#define RCU_GP_TASKS 0x8
98#define RCU_EXP_TASKS 0x4
99#define RCU_GP_BLKD 0x2
100#define RCU_EXP_BLKD 0x1
101
102/*
103 * Queues a task preempted within an RCU-preempt read-side critical
104 * section into the appropriate location within the ->blkd_tasks list,
105 * depending on the states of any ongoing normal and expedited grace
106 * periods. The ->gp_tasks pointer indicates which element the normal
107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108 * indicates which element the expedited grace period is waiting on (again,
109 * NULL if none). If a grace period is waiting on a given element in the
110 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
111 * adding a task to the tail of the list blocks any grace period that is
112 * already waiting on one of the elements. In contrast, adding a task
113 * to the head of the list won't block any grace period that is already
114 * waiting on one of the elements.
115 *
116 * This queuing is imprecise, and can sometimes make an ongoing grace
117 * period wait for a task that is not strictly speaking blocking it.
118 * Given the choice, we needlessly block a normal grace period rather than
119 * blocking an expedited grace period.
120 *
121 * Note that an endless sequence of expedited grace periods still cannot
122 * indefinitely postpone a normal grace period. Eventually, all of the
123 * fixed number of preempted tasks blocking the normal grace period that are
124 * not also blocking the expedited grace period will resume and complete
125 * their RCU read-side critical sections. At that point, the ->gp_tasks
126 * pointer will equal the ->exp_tasks pointer, at which point the end of
127 * the corresponding expedited grace period will also be the end of the
128 * normal grace period.
129 */
46a5d164
PM
130static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
132{
133 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 struct task_struct *t = current;
138
a32e01ee 139 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 140 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 141 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
142 /* RCU better not be waiting on newly onlined CPUs! */
143 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 rdp->grpmask);
ea9b0c8a 145
8203d6d0
PM
146 /*
147 * Decide where to queue the newly blocked task. In theory,
148 * this could be an if-statement. In practice, when I tried
149 * that, it was quite messy.
150 */
151 switch (blkd_state) {
152 case 0:
153 case RCU_EXP_TASKS:
154 case RCU_EXP_TASKS + RCU_GP_BLKD:
155 case RCU_GP_TASKS:
156 case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158 /*
159 * Blocking neither GP, or first task blocking the normal
160 * GP but not blocking the already-waiting expedited GP.
161 * Queue at the head of the list to avoid unnecessarily
162 * blocking the already-waiting GPs.
163 */
164 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 break;
166
167 case RCU_EXP_BLKD:
168 case RCU_GP_BLKD:
169 case RCU_GP_BLKD + RCU_EXP_BLKD:
170 case RCU_GP_TASKS + RCU_EXP_BLKD:
171 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174 /*
175 * First task arriving that blocks either GP, or first task
176 * arriving that blocks the expedited GP (with the normal
177 * GP already waiting), or a task arriving that blocks
178 * both GPs with both GPs already waiting. Queue at the
179 * tail of the list to avoid any GP waiting on any of the
180 * already queued tasks that are not blocking it.
181 */
182 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 break;
184
185 case RCU_EXP_TASKS + RCU_EXP_BLKD:
186 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
188
189 /*
190 * Second or subsequent task blocking the expedited GP.
191 * The task either does not block the normal GP, or is the
192 * first task blocking the normal GP. Queue just after
193 * the first task blocking the expedited GP.
194 */
195 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 break;
197
198 case RCU_GP_TASKS + RCU_GP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the normal GP.
203 * The task does not block the expedited GP. Queue just
204 * after the first task blocking the normal GP.
205 */
206 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 break;
208
209 default:
210
211 /* Yet another exercise in excessive paranoia. */
212 WARN_ON_ONCE(1);
213 break;
214 }
215
216 /*
217 * We have now queued the task. If it was the first one to
218 * block either grace period, update the ->gp_tasks and/or
219 * ->exp_tasks pointers, respectively, to reference the newly
220 * blocked tasks.
221 */
4bc8d555 222 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
8203d6d0 223 rnp->gp_tasks = &t->rcu_node_entry;
d43a5d32 224 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 225 }
8203d6d0
PM
226 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
228 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 !(rnp->qsmask & rdp->grpmask));
230 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 !(rnp->expmask & rdp->grpmask));
67c583a7 232 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
233
234 /*
235 * Report the quiescent state for the expedited GP. This expedited
236 * GP should not be able to end until we report, so there should be
237 * no need to check for a subsequent expedited GP. (Though we are
238 * still in a quiescent state in any case.)
239 */
1bb33644 240 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
63d4c8c9 241 rcu_report_exp_rdp(rdp);
fcc878e4 242 else
1bb33644 243 WARN_ON_ONCE(rdp->exp_deferred_qs);
8203d6d0
PM
244}
245
f41d911f 246/*
c7037ff5
PM
247 * Record a preemptible-RCU quiescent state for the specified CPU.
248 * Note that this does not necessarily mean that the task currently running
249 * on the CPU is in a quiescent state: Instead, it means that the current
250 * grace period need not wait on any RCU read-side critical section that
251 * starts later on this CPU. It also means that if the current task is
252 * in an RCU read-side critical section, it has already added itself to
253 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
254 * current task, there might be any number of other tasks blocked while
255 * in an RCU read-side critical section.
25502a6c 256 *
c7037ff5 257 * Callers to this function must disable preemption.
f41d911f 258 */
45975c7d 259static void rcu_qs(void)
f41d911f 260{
45975c7d 261 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 262 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 263 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 264 __this_cpu_read(rcu_data.gp_seq),
284a8c93 265 TPS("cpuqs"));
2280ee5a 266 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
c98cac60 267 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
add0d37b 268 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
284a8c93 269 }
f41d911f
PM
270}
271
272/*
c3422bea
PM
273 * We have entered the scheduler, and the current task might soon be
274 * context-switched away from. If this task is in an RCU read-side
275 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
276 * record that fact, so we enqueue the task on the blkd_tasks list.
277 * The task will dequeue itself when it exits the outermost enclosing
278 * RCU read-side critical section. Therefore, the current grace period
279 * cannot be permitted to complete until the blkd_tasks list entries
280 * predating the current grace period drain, in other words, until
281 * rnp->gp_tasks becomes NULL.
c3422bea 282 *
46a5d164 283 * Caller must disable interrupts.
f41d911f 284 */
45975c7d 285void rcu_note_context_switch(bool preempt)
f41d911f
PM
286{
287 struct task_struct *t = current;
da1df50d 288 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
289 struct rcu_node *rnp;
290
45975c7d 291 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 292 lockdep_assert_irqs_disabled();
5b72f964 293 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
10f39bb1 294 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 295 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
296
297 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 298 rnp = rdp->mynode;
46a5d164 299 raw_spin_lock_rcu_node(rnp);
1d082fd0 300 t->rcu_read_unlock_special.b.blocked = true;
86848966 301 t->rcu_blocked_node = rnp;
f41d911f
PM
302
303 /*
8203d6d0
PM
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
f41d911f 307 */
0aa04b05 308 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 309 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
88d1bead 310 trace_rcu_preempt_task(rcu_state.name,
d4c08f2a
PM
311 t->pid,
312 (rnp->qsmask & rdp->grpmask)
598ce094
PM
313 ? rnp->gp_seq
314 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 315 rcu_preempt_ctxt_queue(rnp, rdp);
3e310098
PM
316 } else {
317 rcu_preempt_deferred_qs(t);
f41d911f
PM
318 }
319
320 /*
321 * Either we were not in an RCU read-side critical section to
322 * begin with, or we have now recorded that critical section
323 * globally. Either way, we can now note a quiescent state
324 * for this CPU. Again, if we were in an RCU read-side critical
325 * section, and if that critical section was blocking the current
326 * grace period, then the fact that the task has been enqueued
327 * means that we continue to block the current grace period.
328 */
45975c7d 329 rcu_qs();
1bb33644 330 if (rdp->exp_deferred_qs)
63d4c8c9 331 rcu_report_exp_rdp(rdp);
45975c7d 332 trace_rcu_utilization(TPS("End context switch"));
f41d911f 333}
45975c7d 334EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 335
fc2219d4
PM
336/*
337 * Check for preempted RCU readers blocking the current grace period
338 * for the specified rcu_node structure. If the caller needs a reliable
339 * answer, it must hold the rcu_node's ->lock.
340 */
27f4d280 341static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 342{
12f5f524 343 return rnp->gp_tasks != NULL;
fc2219d4
PM
344}
345
5f1a6ef3
PM
346/* Bias and limit values for ->rcu_read_lock_nesting. */
347#define RCU_NEST_BIAS INT_MAX
348#define RCU_NEST_NMAX (-INT_MAX / 2)
349#define RCU_NEST_PMAX (INT_MAX / 2)
350
0e5da22e
PM
351/*
352 * Preemptible RCU implementation for rcu_read_lock().
353 * Just increment ->rcu_read_lock_nesting, shared state will be updated
354 * if we block.
355 */
356void __rcu_read_lock(void)
357{
358 current->rcu_read_lock_nesting++;
5f1a6ef3
PM
359 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
0e5da22e
PM
361 barrier(); /* critical section after entry code. */
362}
363EXPORT_SYMBOL_GPL(__rcu_read_lock);
364
365/*
366 * Preemptible RCU implementation for rcu_read_unlock().
367 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
368 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369 * invoke rcu_read_unlock_special() to clean up after a context switch
370 * in an RCU read-side critical section and other special cases.
371 */
372void __rcu_read_unlock(void)
373{
374 struct task_struct *t = current;
375
376 if (t->rcu_read_lock_nesting != 1) {
377 --t->rcu_read_lock_nesting;
378 } else {
379 barrier(); /* critical section before exit code. */
5f1a6ef3 380 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
0e5da22e
PM
381 barrier(); /* assign before ->rcu_read_unlock_special load */
382 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383 rcu_read_unlock_special(t);
384 barrier(); /* ->rcu_read_unlock_special load before assign */
385 t->rcu_read_lock_nesting = 0;
386 }
5f1a6ef3
PM
387 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388 int rrln = t->rcu_read_lock_nesting;
0e5da22e 389
5f1a6ef3 390 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
0e5da22e 391 }
0e5da22e
PM
392}
393EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394
12f5f524
PM
395/*
396 * Advance a ->blkd_tasks-list pointer to the next entry, instead
397 * returning NULL if at the end of the list.
398 */
399static struct list_head *rcu_next_node_entry(struct task_struct *t,
400 struct rcu_node *rnp)
401{
402 struct list_head *np;
403
404 np = t->rcu_node_entry.next;
405 if (np == &rnp->blkd_tasks)
406 np = NULL;
407 return np;
408}
409
8af3a5e7
PM
410/*
411 * Return true if the specified rcu_node structure has tasks that were
412 * preempted within an RCU read-side critical section.
413 */
414static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415{
416 return !list_empty(&rnp->blkd_tasks);
417}
418
b668c9cf 419/*
3e310098
PM
420 * Report deferred quiescent states. The deferral time can
421 * be quite short, for example, in the case of the call from
422 * rcu_read_unlock_special().
b668c9cf 423 */
3e310098
PM
424static void
425rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 426{
b6a932d1
PM
427 bool empty_exp;
428 bool empty_norm;
429 bool empty_exp_now;
12f5f524 430 struct list_head *np;
abaa93d9 431 bool drop_boost_mutex = false;
8203d6d0 432 struct rcu_data *rdp;
f41d911f 433 struct rcu_node *rnp;
1d082fd0 434 union rcu_special special;
f41d911f 435
f41d911f 436 /*
8203d6d0
PM
437 * If RCU core is waiting for this CPU to exit its critical section,
438 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 439 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
440 */
441 special = t->rcu_read_unlock_special;
da1df50d 442 rdp = this_cpu_ptr(&rcu_data);
1bb33644 443 if (!special.s && !rdp->exp_deferred_qs) {
3e310098
PM
444 local_irq_restore(flags);
445 return;
446 }
23634ebc 447 t->rcu_read_unlock_special.b.deferred_qs = false;
1d082fd0 448 if (special.b.need_qs) {
45975c7d 449 rcu_qs();
c0135d07 450 t->rcu_read_unlock_special.b.need_qs = false;
1bb33644 451 if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
79a62f95
LJ
452 local_irq_restore(flags);
453 return;
454 }
f41d911f
PM
455 }
456
8203d6d0 457 /*
3e310098
PM
458 * Respond to a request by an expedited grace period for a
459 * quiescent state from this CPU. Note that requests from
460 * tasks are handled when removing the task from the
461 * blocked-tasks list below.
8203d6d0 462 */
1bb33644 463 if (rdp->exp_deferred_qs) {
63d4c8c9 464 rcu_report_exp_rdp(rdp);
8203d6d0
PM
465 if (!t->rcu_read_unlock_special.s) {
466 local_irq_restore(flags);
467 return;
468 }
469 }
470
f41d911f 471 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
472 if (special.b.blocked) {
473 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 474
dd5d19ba 475 /*
0a0ba1c9 476 * Remove this task from the list it blocked on. The task
8ba9153b
PM
477 * now remains queued on the rcu_node corresponding to the
478 * CPU it first blocked on, so there is no longer any need
479 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 480 */
8ba9153b
PM
481 rnp = t->rcu_blocked_node;
482 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 484 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 485 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 486 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 487 (!empty_norm || rnp->qsmask));
8203d6d0 488 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 489 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 490 np = rcu_next_node_entry(t, rnp);
f41d911f 491 list_del_init(&t->rcu_node_entry);
82e78d80 492 t->rcu_blocked_node = NULL;
f7f7bac9 493 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 494 rnp->gp_seq, t->pid);
12f5f524
PM
495 if (&t->rcu_node_entry == rnp->gp_tasks)
496 rnp->gp_tasks = np;
497 if (&t->rcu_node_entry == rnp->exp_tasks)
498 rnp->exp_tasks = np;
727b705b 499 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
500 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
502 if (&t->rcu_node_entry == rnp->boost_tasks)
503 rnp->boost_tasks = np;
727b705b 504 }
f41d911f
PM
505
506 /*
507 * If this was the last task on the current list, and if
508 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
509 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510 * so we must take a snapshot of the expedited state.
f41d911f 511 */
8203d6d0 512 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 513 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 514 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 515 rnp->gp_seq,
d4c08f2a
PM
516 0, rnp->qsmask,
517 rnp->level,
518 rnp->grplo,
519 rnp->grphi,
520 !!rnp->gp_tasks);
139ad4da 521 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 522 } else {
67c583a7 523 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 524 }
d9a3da06 525
27f4d280 526 /* Unboost if we were boosted. */
727b705b 527 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 528 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 529
d9a3da06
PM
530 /*
531 * If this was the last task on the expedited lists,
532 * then we need to report up the rcu_node hierarchy.
533 */
389abd48 534 if (!empty_exp && empty_exp_now)
63d4c8c9 535 rcu_report_exp_rnp(rnp, true);
b668c9cf
PM
536 } else {
537 local_irq_restore(flags);
f41d911f 538 }
f41d911f
PM
539}
540
3e310098
PM
541/*
542 * Is a deferred quiescent-state pending, and are we also not in
543 * an RCU read-side critical section? It is the caller's responsibility
544 * to ensure it is otherwise safe to report any deferred quiescent
545 * states. The reason for this is that it is safe to report a
546 * quiescent state during context switch even though preemption
547 * is disabled. This function cannot be expected to understand these
548 * nuances, so the caller must handle them.
549 */
550static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
551{
1bb33644 552 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
3e310098 553 READ_ONCE(t->rcu_read_unlock_special.s)) &&
27c744e3 554 t->rcu_read_lock_nesting <= 0;
3e310098
PM
555}
556
557/*
558 * Report a deferred quiescent state if needed and safe to do so.
559 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
560 * not being in an RCU read-side critical section. The caller must
561 * evaluate safety in terms of interrupt, softirq, and preemption
562 * disabling.
563 */
564static void rcu_preempt_deferred_qs(struct task_struct *t)
565{
566 unsigned long flags;
567 bool couldrecurse = t->rcu_read_lock_nesting >= 0;
568
569 if (!rcu_preempt_need_deferred_qs(t))
570 return;
571 if (couldrecurse)
5f1a6ef3 572 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
3e310098
PM
573 local_irq_save(flags);
574 rcu_preempt_deferred_qs_irqrestore(t, flags);
575 if (couldrecurse)
5f1a6ef3 576 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
3e310098
PM
577}
578
0864f057
PM
579/*
580 * Minimal handler to give the scheduler a chance to re-evaluate.
581 */
582static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
583{
584 struct rcu_data *rdp;
585
586 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
587 rdp->defer_qs_iw_pending = false;
588}
589
3e310098
PM
590/*
591 * Handle special cases during rcu_read_unlock(), such as needing to
592 * notify RCU core processing or task having blocked during the RCU
593 * read-side critical section.
594 */
595static void rcu_read_unlock_special(struct task_struct *t)
596{
597 unsigned long flags;
598 bool preempt_bh_were_disabled =
599 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
600 bool irqs_were_disabled;
601
602 /* NMI handlers cannot block and cannot safely manipulate state. */
603 if (in_nmi())
604 return;
605
606 local_irq_save(flags);
607 irqs_were_disabled = irqs_disabled_flags(flags);
05f41571 608 if (preempt_bh_were_disabled || irqs_were_disabled) {
25102de6
PM
609 bool exp;
610 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611 struct rcu_node *rnp = rdp->mynode;
612
23634ebc 613 t->rcu_read_unlock_special.b.exp_hint = false;
25102de6
PM
614 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
615 (rdp->grpmask & rnp->expmask) ||
616 tick_nohz_full_cpu(rdp->cpu);
23634ebc 617 // Need to defer quiescent state until everything is enabled.
87446b48
PM
618 if (irqs_were_disabled && use_softirq &&
619 (in_interrupt() ||
620 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
23634ebc
PM
621 // Using softirq, safe to awaken, and we get
622 // no help from enabling irqs, unlike bh/preempt.
05f41571
PM
623 raise_softirq_irqoff(RCU_SOFTIRQ);
624 } else {
23634ebc 625 // Enabling BH or preempt does reschedule, so...
25102de6 626 // Also if no expediting or NO_HZ_FULL, slow is OK.
05f41571
PM
627 set_tsk_need_resched(current);
628 set_preempt_need_resched();
d143b3d1 629 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
0864f057
PM
630 !rdp->defer_qs_iw_pending && exp) {
631 // Get scheduler to re-evaluate and call hooks.
632 // If !IRQ_WORK, FQS scan will eventually IPI.
633 init_irq_work(&rdp->defer_qs_iw,
634 rcu_preempt_deferred_qs_handler);
635 rdp->defer_qs_iw_pending = true;
636 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
637 }
05f41571 638 }
23634ebc 639 t->rcu_read_unlock_special.b.deferred_qs = true;
3e310098
PM
640 local_irq_restore(flags);
641 return;
642 }
05f41571 643 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
3e310098
PM
644 rcu_preempt_deferred_qs_irqrestore(t, flags);
645}
646
b0e165c0
PM
647/*
648 * Check that the list of blocked tasks for the newly completed grace
649 * period is in fact empty. It is a serious bug to complete a grace
650 * period that still has RCU readers blocked! This function must be
ff3bb6f4 651 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
b0e165c0 652 * must be held by the caller.
12f5f524
PM
653 *
654 * Also, if there are blocked tasks on the list, they automatically
655 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 656 */
81ab59a3 657static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 658{
c5ebe66c
PM
659 struct task_struct *t;
660
ea9b0c8a 661 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
4bc8d555 662 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 663 dump_blkd_tasks(rnp, 10);
0b107d24
PM
664 if (rcu_preempt_has_tasks(rnp) &&
665 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
12f5f524 666 rnp->gp_tasks = rnp->blkd_tasks.next;
c5ebe66c
PM
667 t = container_of(rnp->gp_tasks, struct task_struct,
668 rcu_node_entry);
669 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 670 rnp->gp_seq, t->pid);
c5ebe66c 671 }
28ecd580 672 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
673}
674
f41d911f 675/*
c98cac60
PM
676 * Check for a quiescent state from the current CPU, including voluntary
677 * context switches for Tasks RCU. When a task blocks, the task is
678 * recorded in the corresponding CPU's rcu_node structure, which is checked
679 * elsewhere, hence this function need only check for quiescent states
680 * related to the current CPU, not to those related to tasks.
f41d911f 681 */
c98cac60 682static void rcu_flavor_sched_clock_irq(int user)
f41d911f
PM
683{
684 struct task_struct *t = current;
685
45975c7d
PM
686 if (user || rcu_is_cpu_rrupt_from_idle()) {
687 rcu_note_voluntary_context_switch(current);
688 }
3e310098
PM
689 if (t->rcu_read_lock_nesting > 0 ||
690 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
691 /* No QS, force context switch if deferred. */
fced9c8c
PM
692 if (rcu_preempt_need_deferred_qs(t)) {
693 set_tsk_need_resched(t);
694 set_preempt_need_resched();
695 }
3e310098
PM
696 } else if (rcu_preempt_need_deferred_qs(t)) {
697 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
698 return;
699 } else if (!t->rcu_read_lock_nesting) {
45975c7d 700 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
701 return;
702 }
3e310098
PM
703
704 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
10f39bb1 705 if (t->rcu_read_lock_nesting > 0 &&
2280ee5a
PM
706 __this_cpu_read(rcu_data.core_needs_qs) &&
707 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201 708 !t->rcu_read_unlock_special.b.need_qs &&
564a9ae6 709 time_after(jiffies, rcu_state.gp_start + HZ))
1d082fd0 710 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
711}
712
2439b696
PM
713/*
714 * Check for a task exiting while in a preemptible-RCU read-side
884157ce
PM
715 * critical section, clean up if so. No need to issue warnings, as
716 * debug_check_no_locks_held() already does this if lockdep is enabled.
717 * Besides, if this function does anything other than just immediately
718 * return, there was a bug of some sort. Spewing warnings from this
719 * function is like as not to simply obscure important prior warnings.
2439b696
PM
720 */
721void exit_rcu(void)
722{
723 struct task_struct *t = current;
724
884157ce
PM
725 if (unlikely(!list_empty(&current->rcu_node_entry))) {
726 t->rcu_read_lock_nesting = 1;
727 barrier();
add0d37b 728 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
884157ce
PM
729 } else if (unlikely(t->rcu_read_lock_nesting)) {
730 t->rcu_read_lock_nesting = 1;
731 } else {
2439b696 732 return;
884157ce 733 }
2439b696 734 __rcu_read_unlock();
3e310098 735 rcu_preempt_deferred_qs(current);
2439b696
PM
736}
737
4bc8d555
PM
738/*
739 * Dump the blocked-tasks state, but limit the list dump to the
740 * specified number of elements.
741 */
57738942 742static void
81ab59a3 743dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 744{
57738942 745 int cpu;
4bc8d555
PM
746 int i;
747 struct list_head *lhp;
57738942
PM
748 bool onl;
749 struct rcu_data *rdp;
ff3cee39 750 struct rcu_node *rnp1;
4bc8d555 751
ce11fae8 752 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 753 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 754 __func__, rnp->grplo, rnp->grphi, rnp->level,
ff3cee39
PM
755 (long)rnp->gp_seq, (long)rnp->completedqs);
756 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
757 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
758 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf
PM
759 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
760 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
761 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
762 i = 0;
763 list_for_each(lhp, &rnp->blkd_tasks) {
764 pr_cont(" %p", lhp);
cd6d17b4 765 if (++i >= ncheck)
4bc8d555
PM
766 break;
767 }
768 pr_cont("\n");
57738942 769 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 770 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
771 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
772 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
773 cpu, ".o"[onl],
774 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
775 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
776 }
4bc8d555
PM
777}
778
28f6569a 779#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
780
781/*
782 * Tell them what RCU they are running.
783 */
0e0fc1c2 784static void __init rcu_bootup_announce(void)
f41d911f 785{
efc151c3 786 pr_info("Hierarchical RCU implementation.\n");
26845c28 787 rcu_bootup_announce_oddness();
f41d911f
PM
788}
789
45975c7d
PM
790/*
791 * Note a quiescent state for PREEMPT=n. Because we do not need to know
792 * how many quiescent states passed, just if there was at least one since
793 * the start of the grace period, this just sets a flag. The caller must
794 * have disabled preemption.
795 */
796static void rcu_qs(void)
d28139c4 797{
45975c7d
PM
798 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
799 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
800 return;
801 trace_rcu_grace_period(TPS("rcu_sched"),
802 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
803 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
804 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
805 return;
806 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
63d4c8c9 807 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
d28139c4
PM
808}
809
395a2f09
PM
810/*
811 * Register an urgently needed quiescent state. If there is an
812 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
813 * dyntick-idle quiescent state visible to other CPUs, which will in
814 * some cases serve for expedited as well as normal grace periods.
815 * Either way, register a lightweight quiescent state.
395a2f09
PM
816 */
817void rcu_all_qs(void)
818{
819 unsigned long flags;
820
2dba13f0 821 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
395a2f09
PM
822 return;
823 preempt_disable();
824 /* Load rcu_urgent_qs before other flags. */
2dba13f0 825 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
395a2f09
PM
826 preempt_enable();
827 return;
828 }
2dba13f0 829 this_cpu_write(rcu_data.rcu_urgent_qs, false);
2dba13f0 830 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
395a2f09
PM
831 local_irq_save(flags);
832 rcu_momentary_dyntick_idle();
833 local_irq_restore(flags);
834 }
7e28c5af 835 rcu_qs();
395a2f09
PM
836 preempt_enable();
837}
838EXPORT_SYMBOL_GPL(rcu_all_qs);
839
cba6d0d6 840/*
45975c7d 841 * Note a PREEMPT=n context switch. The caller must have disabled interrupts.
cba6d0d6 842 */
45975c7d 843void rcu_note_context_switch(bool preempt)
cba6d0d6 844{
45975c7d
PM
845 trace_rcu_utilization(TPS("Start context switch"));
846 rcu_qs();
847 /* Load rcu_urgent_qs before other flags. */
2dba13f0 848 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
45975c7d 849 goto out;
2dba13f0
PM
850 this_cpu_write(rcu_data.rcu_urgent_qs, false);
851 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
45975c7d 852 rcu_momentary_dyntick_idle();
45975c7d
PM
853 if (!preempt)
854 rcu_tasks_qs(current);
855out:
856 trace_rcu_utilization(TPS("End context switch"));
cba6d0d6 857}
45975c7d 858EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 859
fc2219d4 860/*
6cc68793 861 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
862 * RCU readers.
863 */
27f4d280 864static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
865{
866 return 0;
867}
868
8af3a5e7
PM
869/*
870 * Because there is no preemptible RCU, there can be no readers blocked.
871 */
872static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 873{
8af3a5e7 874 return false;
b668c9cf
PM
875}
876
3e310098
PM
877/*
878 * Because there is no preemptible RCU, there can be no deferred quiescent
879 * states.
880 */
881static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
882{
883 return false;
884}
885static void rcu_preempt_deferred_qs(struct task_struct *t) { }
886
b0e165c0 887/*
6cc68793 888 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
889 * so there is no need to check for blocked tasks. So check only for
890 * bogus qsmask values.
b0e165c0 891 */
81ab59a3 892static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 893{
49e29126 894 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
895}
896
f41d911f 897/*
c98cac60
PM
898 * Check to see if this CPU is in a non-context-switch quiescent state,
899 * namely user mode and idle loop.
f41d911f 900 */
c98cac60 901static void rcu_flavor_sched_clock_irq(int user)
f41d911f 902{
45975c7d 903 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 904
45975c7d
PM
905 /*
906 * Get here if this CPU took its interrupt from user
907 * mode or from the idle loop, and if this is not a
908 * nested interrupt. In this case, the CPU is in
909 * a quiescent state, so note it.
910 *
911 * No memory barrier is required here because rcu_qs()
912 * references only CPU-local variables that other CPUs
913 * neither access nor modify, at least not while the
914 * corresponding CPU is online.
915 */
916
917 rcu_qs();
918 }
e74f4c45 919}
e74f4c45 920
2439b696
PM
921/*
922 * Because preemptible RCU does not exist, tasks cannot possibly exit
923 * while in preemptible RCU read-side critical sections.
924 */
925void exit_rcu(void)
926{
927}
928
4bc8d555
PM
929/*
930 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
931 */
57738942 932static void
81ab59a3 933dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
934{
935 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
936}
937
28f6569a 938#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 939
48d07c04
SAS
940/*
941 * If boosting, set rcuc kthreads to realtime priority.
942 */
943static void rcu_cpu_kthread_setup(unsigned int cpu)
944{
27f4d280 945#ifdef CONFIG_RCU_BOOST
48d07c04 946 struct sched_param sp;
27f4d280 947
48d07c04
SAS
948 sp.sched_priority = kthread_prio;
949 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
950#endif /* #ifdef CONFIG_RCU_BOOST */
5d01bbd1
TG
951}
952
48d07c04
SAS
953#ifdef CONFIG_RCU_BOOST
954
27f4d280
PM
955/*
956 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
957 * or ->boost_tasks, advancing the pointer to the next task in the
958 * ->blkd_tasks list.
959 *
960 * Note that irqs must be enabled: boosting the task can block.
961 * Returns 1 if there are more tasks needing to be boosted.
962 */
963static int rcu_boost(struct rcu_node *rnp)
964{
965 unsigned long flags;
27f4d280
PM
966 struct task_struct *t;
967 struct list_head *tb;
968
7d0ae808
PM
969 if (READ_ONCE(rnp->exp_tasks) == NULL &&
970 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
971 return 0; /* Nothing left to boost. */
972
2a67e741 973 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
974
975 /*
976 * Recheck under the lock: all tasks in need of boosting
977 * might exit their RCU read-side critical sections on their own.
978 */
979 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 980 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
981 return 0;
982 }
983
984 /*
985 * Preferentially boost tasks blocking expedited grace periods.
986 * This cannot starve the normal grace periods because a second
987 * expedited grace period must boost all blocked tasks, including
988 * those blocking the pre-existing normal grace period.
989 */
bec06785 990 if (rnp->exp_tasks != NULL)
27f4d280 991 tb = rnp->exp_tasks;
bec06785 992 else
27f4d280
PM
993 tb = rnp->boost_tasks;
994
995 /*
996 * We boost task t by manufacturing an rt_mutex that appears to
997 * be held by task t. We leave a pointer to that rt_mutex where
998 * task t can find it, and task t will release the mutex when it
999 * exits its outermost RCU read-side critical section. Then
1000 * simply acquiring this artificial rt_mutex will boost task
1001 * t's priority. (Thanks to tglx for suggesting this approach!)
1002 *
1003 * Note that task t must acquire rnp->lock to remove itself from
1004 * the ->blkd_tasks list, which it will do from exit() if from
1005 * nowhere else. We therefore are guaranteed that task t will
1006 * stay around at least until we drop rnp->lock. Note that
1007 * rnp->lock also resolves races between our priority boosting
1008 * and task t's exiting its outermost RCU read-side critical
1009 * section.
1010 */
1011 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1012 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1013 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1014 /* Lock only for side effect: boosts task t's priority. */
1015 rt_mutex_lock(&rnp->boost_mtx);
1016 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1017
7d0ae808
PM
1018 return READ_ONCE(rnp->exp_tasks) != NULL ||
1019 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1020}
1021
27f4d280 1022/*
bc17ea10 1023 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1024 */
1025static int rcu_boost_kthread(void *arg)
1026{
1027 struct rcu_node *rnp = (struct rcu_node *)arg;
1028 int spincnt = 0;
1029 int more2boost;
1030
f7f7bac9 1031 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1032 for (;;) {
d71df90e 1033 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1034 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1035 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1036 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1037 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1038 more2boost = rcu_boost(rnp);
1039 if (more2boost)
1040 spincnt++;
1041 else
1042 spincnt = 0;
1043 if (spincnt > 10) {
5d01bbd1 1044 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1045 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1046 schedule_timeout_interruptible(2);
f7f7bac9 1047 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1048 spincnt = 0;
1049 }
1050 }
1217ed1b 1051 /* NOTREACHED */
f7f7bac9 1052 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1053 return 0;
1054}
1055
1056/*
1057 * Check to see if it is time to start boosting RCU readers that are
1058 * blocking the current grace period, and, if so, tell the per-rcu_node
1059 * kthread to start boosting them. If there is an expedited grace
1060 * period in progress, it is always time to boost.
1061 *
b065a853
PM
1062 * The caller must hold rnp->lock, which this function releases.
1063 * The ->boost_kthread_task is immortal, so we don't need to worry
1064 * about it going away.
27f4d280 1065 */
1217ed1b 1066static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1067 __releases(rnp->lock)
27f4d280 1068{
a32e01ee 1069 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1070 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1071 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1072 return;
0ea1f2eb 1073 }
27f4d280
PM
1074 if (rnp->exp_tasks != NULL ||
1075 (rnp->gp_tasks != NULL &&
1076 rnp->boost_tasks == NULL &&
1077 rnp->qsmask == 0 &&
1078 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1079 if (rnp->exp_tasks == NULL)
1080 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1081 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
a2badefa
PM
1082 rcu_wake_cond(rnp->boost_kthread_task,
1083 rnp->boost_kthread_status);
1217ed1b 1084 } else {
67c583a7 1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1086 }
27f4d280
PM
1087}
1088
dff1672d
PM
1089/*
1090 * Is the current CPU running the RCU-callbacks kthread?
1091 * Caller must have preemption disabled.
1092 */
1093static bool rcu_is_callbacks_kthread(void)
1094{
37f62d7c 1095 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
dff1672d
PM
1096}
1097
27f4d280
PM
1098#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1099
1100/*
1101 * Do priority-boost accounting for the start of a new grace period.
1102 */
1103static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1104{
1105 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1106}
1107
27f4d280
PM
1108/*
1109 * Create an RCU-boost kthread for the specified node if one does not
1110 * already exist. We only create this kthread for preemptible RCU.
1111 * Returns zero if all is well, a negated errno otherwise.
1112 */
3545832f 1113static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1114{
6dbfdc14 1115 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1116 unsigned long flags;
1117 struct sched_param sp;
1118 struct task_struct *t;
1119
6dbfdc14 1120 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
3545832f 1121 return;
5d01bbd1 1122
0aa04b05 1123 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
3545832f 1124 return;
5d01bbd1 1125
6dbfdc14 1126 rcu_state.boost = 1;
3545832f 1127
27f4d280 1128 if (rnp->boost_kthread_task != NULL)
3545832f
BP
1129 return;
1130
27f4d280 1131 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1132 "rcub/%d", rnp_index);
3545832f
BP
1133 if (WARN_ON_ONCE(IS_ERR(t)))
1134 return;
1135
2a67e741 1136 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1137 rnp->boost_kthread_task = t;
67c583a7 1138 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1139 sp.sched_priority = kthread_prio;
27f4d280 1140 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1141 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1142}
1143
f8b7fc6b
PM
1144/*
1145 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1146 * served by the rcu_node in question. The CPU hotplug lock is still
1147 * held, so the value of rnp->qsmaskinit will be stable.
1148 *
1149 * We don't include outgoingcpu in the affinity set, use -1 if there is
1150 * no outgoing CPU. If there are no CPUs left in the affinity set,
1151 * this function allows the kthread to execute on any CPU.
1152 */
5d01bbd1 1153static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1154{
5d01bbd1 1155 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1156 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1157 cpumask_var_t cm;
1158 int cpu;
f8b7fc6b 1159
5d01bbd1 1160 if (!t)
f8b7fc6b 1161 return;
5d01bbd1 1162 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1163 return;
bc75e999
MR
1164 for_each_leaf_node_possible_cpu(rnp, cpu)
1165 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1166 cpu != outgoingcpu)
f8b7fc6b 1167 cpumask_set_cpu(cpu, cm);
5d0b0249 1168 if (cpumask_weight(cm) == 0)
f8b7fc6b 1169 cpumask_setall(cm);
5d01bbd1 1170 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1171 free_cpumask_var(cm);
1172}
1173
f8b7fc6b 1174/*
9386c0b7 1175 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1176 */
9386c0b7 1177static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1178{
f8b7fc6b
PM
1179 struct rcu_node *rnp;
1180
aedf4ba9 1181 rcu_for_each_leaf_node(rnp)
3545832f 1182 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1183}
f8b7fc6b 1184
49fb4c62 1185static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1186{
da1df50d 1187 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1188 struct rcu_node *rnp = rdp->mynode;
1189
1190 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1191 if (rcu_scheduler_fully_active)
3545832f 1192 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1193}
1194
27f4d280
PM
1195#else /* #ifdef CONFIG_RCU_BOOST */
1196
1217ed1b 1197static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1198 __releases(rnp->lock)
27f4d280 1199{
67c583a7 1200 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1201}
1202
dff1672d
PM
1203static bool rcu_is_callbacks_kthread(void)
1204{
1205 return false;
1206}
1207
27f4d280
PM
1208static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1209{
1210}
1211
5d01bbd1 1212static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1213{
1214}
1215
9386c0b7 1216static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1217{
b0d30417 1218}
b0d30417 1219
49fb4c62 1220static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1221{
1222}
1223
27f4d280
PM
1224#endif /* #else #ifdef CONFIG_RCU_BOOST */
1225
8bd93a2c
PM
1226#if !defined(CONFIG_RCU_FAST_NO_HZ)
1227
1228/*
0bd55c69
PM
1229 * Check to see if any future non-offloaded RCU-related work will need
1230 * to be done by the current CPU, even if none need be done immediately,
1231 * returning 1 if so. This function is part of the RCU implementation;
1232 * it is -not- an exported member of the RCU API.
8bd93a2c 1233 *
0ae86a27
PM
1234 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1235 * CPU has RCU callbacks queued.
8bd93a2c 1236 */
c1ad348b 1237int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1238{
c1ad348b 1239 *nextevt = KTIME_MAX;
0bd55c69
PM
1240 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1241 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
7cb92499
PM
1242}
1243
1244/*
1245 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1246 * after it.
1247 */
8fa7845d 1248static void rcu_cleanup_after_idle(void)
7cb92499
PM
1249{
1250}
1251
aea1b35e 1252/*
a858af28 1253 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1254 * is nothing.
1255 */
198bbf81 1256static void rcu_prepare_for_idle(void)
aea1b35e
PM
1257{
1258}
1259
8bd93a2c
PM
1260#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1261
f23f7fa1
PM
1262/*
1263 * This code is invoked when a CPU goes idle, at which point we want
1264 * to have the CPU do everything required for RCU so that it can enter
1265 * the energy-efficient dyntick-idle mode. This is handled by a
1266 * state machine implemented by rcu_prepare_for_idle() below.
1267 *
1268 * The following three proprocessor symbols control this state machine:
1269 *
f23f7fa1
PM
1270 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1271 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1272 * is sized to be roughly one RCU grace period. Those energy-efficiency
1273 * benchmarkers who might otherwise be tempted to set this to a large
1274 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1275 * system. And if you are -that- concerned about energy efficiency,
1276 * just power the system down and be done with it!
778d250a
PM
1277 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1278 * permitted to sleep in dyntick-idle mode with only lazy RCU
1279 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1280 *
1281 * The values below work well in practice. If future workloads require
1282 * adjustment, they can be converted into kernel config parameters, though
1283 * making the state machine smarter might be a better option.
1284 */
e84c48ae 1285#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1286#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1287
5e44ce35
PM
1288static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1289module_param(rcu_idle_gp_delay, int, 0644);
1290static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1291module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1292
486e2593 1293/*
0ae86a27
PM
1294 * Try to advance callbacks on the current CPU, but only if it has been
1295 * awhile since the last time we did so. Afterwards, if there are any
1296 * callbacks ready for immediate invocation, return true.
486e2593 1297 */
f1f399d1 1298static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1299{
c0f4dfd4 1300 bool cbs_ready = false;
5998a75a 1301 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1302 struct rcu_node *rnp;
486e2593 1303
c229828c 1304 /* Exit early if we advanced recently. */
5998a75a 1305 if (jiffies == rdp->last_advance_all)
d0bc90fd 1306 return false;
5998a75a 1307 rdp->last_advance_all = jiffies;
c229828c 1308
b97d23c5 1309 rnp = rdp->mynode;
486e2593 1310
b97d23c5
PM
1311 /*
1312 * Don't bother checking unless a grace period has
1313 * completed since we last checked and there are
1314 * callbacks not yet ready to invoke.
1315 */
1316 if ((rcu_seq_completed_gp(rdp->gp_seq,
1317 rcu_seq_current(&rnp->gp_seq)) ||
1318 unlikely(READ_ONCE(rdp->gpwrap))) &&
1319 rcu_segcblist_pend_cbs(&rdp->cblist))
1320 note_gp_changes(rdp);
1321
1322 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1323 cbs_ready = true;
c0f4dfd4 1324 return cbs_ready;
486e2593
PM
1325}
1326
aa9b1630 1327/*
c0f4dfd4
PM
1328 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1329 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1330 * caller to set the timeout based on whether or not there are non-lazy
1331 * callbacks.
aa9b1630 1332 *
c0f4dfd4 1333 * The caller must have disabled interrupts.
aa9b1630 1334 */
c1ad348b 1335int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1336{
5998a75a 1337 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c1ad348b 1338 unsigned long dj;
aa9b1630 1339
b04db8e1 1340 lockdep_assert_irqs_disabled();
3382adbc 1341
0bd55c69
PM
1342 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1343 if (rcu_segcblist_empty(&rdp->cblist) ||
1344 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
c1ad348b 1345 *nextevt = KTIME_MAX;
aa9b1630
PM
1346 return 0;
1347 }
c0f4dfd4
PM
1348
1349 /* Attempt to advance callbacks. */
1350 if (rcu_try_advance_all_cbs()) {
1351 /* Some ready to invoke, so initiate later invocation. */
1352 invoke_rcu_core();
aa9b1630
PM
1353 return 1;
1354 }
5998a75a 1355 rdp->last_accelerate = jiffies;
c0f4dfd4
PM
1356
1357 /* Request timer delay depending on laziness, and round. */
260e1e4f
PM
1358 rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1359 if (rdp->all_lazy) {
1360 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1361 } else {
c1ad348b 1362 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1363 rcu_idle_gp_delay) - jiffies;
e84c48ae 1364 }
c1ad348b 1365 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1366 return 0;
1367}
1368
21e52e15 1369/*
c0f4dfd4
PM
1370 * Prepare a CPU for idle from an RCU perspective. The first major task
1371 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1372 * The second major task is to check to see if a non-lazy callback has
1373 * arrived at a CPU that previously had only lazy callbacks. The third
1374 * major task is to accelerate (that is, assign grace-period numbers to)
1375 * any recently arrived callbacks.
aea1b35e
PM
1376 *
1377 * The caller must have disabled interrupts.
8bd93a2c 1378 */
198bbf81 1379static void rcu_prepare_for_idle(void)
8bd93a2c 1380{
48a7639c 1381 bool needwake;
0fd79e75 1382 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1383 struct rcu_node *rnp;
9d2ad243
PM
1384 int tne;
1385
b04db8e1 1386 lockdep_assert_irqs_disabled();
ce5215c1 1387 if (rcu_segcblist_is_offloaded(&rdp->cblist))
3382adbc
PM
1388 return;
1389
9d2ad243 1390 /* Handle nohz enablement switches conservatively. */
7d0ae808 1391 tne = READ_ONCE(tick_nohz_active);
0fd79e75 1392 if (tne != rdp->tick_nohz_enabled_snap) {
260e1e4f 1393 if (!rcu_segcblist_empty(&rdp->cblist))
9d2ad243 1394 invoke_rcu_core(); /* force nohz to see update. */
0fd79e75 1395 rdp->tick_nohz_enabled_snap = tne;
9d2ad243
PM
1396 return;
1397 }
1398 if (!tne)
1399 return;
f511fc62 1400
c57afe80 1401 /*
c0f4dfd4
PM
1402 * If a non-lazy callback arrived at a CPU having only lazy
1403 * callbacks, invoke RCU core for the side-effect of recalculating
1404 * idle duration on re-entry to idle.
c57afe80 1405 */
260e1e4f 1406 if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
c458a89e 1407 rdp->all_lazy = false;
c0f4dfd4 1408 invoke_rcu_core();
c57afe80
PM
1409 return;
1410 }
c57afe80 1411
3084f2f8 1412 /*
c0f4dfd4
PM
1413 * If we have not yet accelerated this jiffy, accelerate all
1414 * callbacks on this CPU.
3084f2f8 1415 */
5998a75a 1416 if (rdp->last_accelerate == jiffies)
aea1b35e 1417 return;
5998a75a 1418 rdp->last_accelerate = jiffies;
b97d23c5 1419 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
c0f4dfd4 1420 rnp = rdp->mynode;
2a67e741 1421 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1422 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1423 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1424 if (needwake)
532c00c9 1425 rcu_gp_kthread_wake();
77e38ed3 1426 }
c0f4dfd4 1427}
3084f2f8 1428
c0f4dfd4
PM
1429/*
1430 * Clean up for exit from idle. Attempt to advance callbacks based on
1431 * any grace periods that elapsed while the CPU was idle, and if any
1432 * callbacks are now ready to invoke, initiate invocation.
1433 */
8fa7845d 1434static void rcu_cleanup_after_idle(void)
c0f4dfd4 1435{
ce5215c1
PM
1436 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1437
b04db8e1 1438 lockdep_assert_irqs_disabled();
ce5215c1 1439 if (rcu_segcblist_is_offloaded(&rdp->cblist))
aea1b35e 1440 return;
7a497c96
PM
1441 if (rcu_try_advance_all_cbs())
1442 invoke_rcu_core();
8bd93a2c
PM
1443}
1444
1445#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1446
3fbfbf7a
PM
1447#ifdef CONFIG_RCU_NOCB_CPU
1448
1449/*
1450 * Offload callback processing from the boot-time-specified set of CPUs
a9fefdb2
PM
1451 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1452 * created that pull the callbacks from the corresponding CPU, wait for
1453 * a grace period to elapse, and invoke the callbacks. These kthreads
6484fe54
PM
1454 * are organized into GP kthreads, which manage incoming callbacks, wait for
1455 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1456 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1457 * do a wake_up() on their GP kthread when they insert a callback into any
a9fefdb2
PM
1458 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1459 * in which case each kthread actively polls its CPU. (Which isn't so great
1460 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
3fbfbf7a
PM
1461 *
1462 * This is intended to be used in conjunction with Frederic Weisbecker's
1463 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1464 * running CPU-bound user-mode computations.
1465 *
a9fefdb2
PM
1466 * Offloading of callbacks can also be used as an energy-efficiency
1467 * measure because CPUs with no RCU callbacks queued are more aggressive
1468 * about entering dyntick-idle mode.
3fbfbf7a
PM
1469 */
1470
1471
497e4260
PM
1472/*
1473 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1474 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1475 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1476 * given, a warning is emitted and all CPUs are offloaded.
1477 */
3fbfbf7a
PM
1478static int __init rcu_nocb_setup(char *str)
1479{
1480 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
da8739f2
PM
1481 if (!strcasecmp(str, "all"))
1482 cpumask_setall(rcu_nocb_mask);
1483 else
497e4260
PM
1484 if (cpulist_parse(str, rcu_nocb_mask)) {
1485 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1486 cpumask_setall(rcu_nocb_mask);
1487 }
3fbfbf7a
PM
1488 return 1;
1489}
1490__setup("rcu_nocbs=", rcu_nocb_setup);
1491
1b0048a4
PG
1492static int __init parse_rcu_nocb_poll(char *arg)
1493{
5455a7f6 1494 rcu_nocb_poll = true;
1b0048a4
PG
1495 return 0;
1496}
1497early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1498
5d6742b3
PM
1499/*
1500 * Acquire the specified rcu_data structure's ->nocb_lock, but only
81c0b3d7
PM
1501 * if it corresponds to a no-CBs CPU. If the lock isn't immediately
1502 * available, increment ->nocb_lock_contended to flag the contention.
5d6742b3
PM
1503 */
1504static void rcu_nocb_lock(struct rcu_data *rdp)
1505{
81c0b3d7
PM
1506 lockdep_assert_irqs_disabled();
1507 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1508 raw_spin_trylock(&rdp->nocb_lock))
1509 return;
1510 atomic_inc(&rdp->nocb_lock_contended);
1511 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1512 raw_spin_lock(&rdp->nocb_lock);
1513 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1514 atomic_dec(&rdp->nocb_lock_contended);
1515}
1516
1517/*
1518 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1519 * not contended. Please note that this is extremely special-purpose,
1520 * relying on the fact that at most two kthreads and one CPU contend for
1521 * this lock, and also that the two kthreads are guaranteed to have frequent
1522 * grace-period-duration time intervals between successive acquisitions
1523 * of the lock. This allows us to use an extremely simple throttling
1524 * mechanism, and further to apply it only to the CPU doing floods of
1525 * call_rcu() invocations. Don't try this at home!
1526 */
1527static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1528{
1529 while (atomic_read(&rdp->nocb_lock_contended))
1530 cpu_relax();
5d6742b3
PM
1531}
1532
1533/*
1534 * Release the specified rcu_data structure's ->nocb_lock, but only
1535 * if it corresponds to a no-CBs CPU.
1536 */
1537static void rcu_nocb_unlock(struct rcu_data *rdp)
1538{
1539 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1540 lockdep_assert_irqs_disabled();
1541 raw_spin_unlock(&rdp->nocb_lock);
1542 }
1543}
1544
1545/*
1546 * Release the specified rcu_data structure's ->nocb_lock and restore
1547 * interrupts, but only if it corresponds to a no-CBs CPU.
1548 */
1549static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1550 unsigned long flags)
1551{
1552 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1553 lockdep_assert_irqs_disabled();
1554 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1555 } else {
1556 local_irq_restore(flags);
1557 }
1558}
1559
dae6e64d 1560/*
0446be48
PM
1561 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1562 * grace period.
dae6e64d 1563 */
abedf8e2 1564static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1565{
abedf8e2 1566 swake_up_all(sq);
dae6e64d
PM
1567}
1568
abedf8e2 1569static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1570{
e0da2374 1571 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1572}
1573
dae6e64d 1574static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1575{
abedf8e2
PG
1576 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1577 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1578}
1579
24342c96 1580/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1581bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1582{
84b12b75 1583 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1584 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1585 return false;
1586}
1587
fbce7497 1588/*
6484fe54 1589 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
8be6e1b1 1590 * and this function releases it.
fbce7497 1591 */
5d6742b3 1592static void wake_nocb_gp(struct rcu_data *rdp, bool force,
5f675ba6 1593 unsigned long flags)
8be6e1b1 1594 __releases(rdp->nocb_lock)
fbce7497 1595{
5f675ba6 1596 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
fbce7497 1597
8be6e1b1 1598 lockdep_assert_held(&rdp->nocb_lock);
5f675ba6 1599 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
81c0b3d7 1600 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497 1601 return;
8be6e1b1 1602 }
5d6742b3 1603 if (READ_ONCE(rdp_gp->nocb_gp_sleep) || force) {
8be6e1b1 1604 del_timer(&rdp->nocb_timer);
81c0b3d7 1605 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1606 smp_mb(); /* enqueue before ->nocb_gp_sleep. */
81c0b3d7 1607 rcu_nocb_lock_irqsave(rdp_gp, flags);
5d6742b3 1608 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
81c0b3d7 1609 rcu_nocb_unlock_irqrestore(rdp_gp, flags);
5d6742b3 1610 wake_up_process(rdp_gp->nocb_gp_kthread);
8be6e1b1 1611 } else {
81c0b3d7 1612 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497
PM
1613 }
1614}
1615
8be6e1b1 1616/*
6484fe54
PM
1617 * Arrange to wake the GP kthread for this NOCB group at some future
1618 * time when it is safe to do so.
8be6e1b1 1619 */
0d52a665
PM
1620static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1621 const char *reason)
8be6e1b1 1622{
8be6e1b1
PM
1623 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1624 mod_timer(&rdp->nocb_timer, jiffies + 1);
383e1332
PM
1625 if (rdp->nocb_defer_wakeup < waketype)
1626 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
88d1bead 1627 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
d7e29933
PM
1628}
1629
3fbfbf7a 1630/*
5d6742b3
PM
1631 * Awaken the no-CBs grace-period kthead if needed, either due to it
1632 * legitimately being asleep or due to overload conditions.
3fbfbf7a
PM
1633 *
1634 * If warranted, also wake up the kthread servicing this CPUs queues.
1635 */
5d6742b3
PM
1636static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1637 unsigned long flags)
1638 __releases(rdp->nocb_lock)
3fbfbf7a 1639{
ce0a825e 1640 long len;
3fbfbf7a
PM
1641 struct task_struct *t;
1642
5d6742b3 1643 // If we are being polled or there is no kthread, just leave.
12f54c3a 1644 t = READ_ONCE(rdp->nocb_gp_kthread);
25e03a74 1645 if (rcu_nocb_poll || !t) {
88d1bead 1646 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
9261dd0d 1647 TPS("WakeNotPoll"));
5d6742b3 1648 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1649 return;
9261dd0d 1650 }
5d6742b3
PM
1651 // Need to actually to a wakeup.
1652 len = rcu_segcblist_n_cbs(&rdp->cblist);
1653 if (was_alldone) {
aeeacd9d 1654 rdp->qlen_last_fqs_check = len;
96d3fd0d 1655 if (!irqs_disabled_flags(flags)) {
fbce7497 1656 /* ... if queue was empty ... */
5d6742b3 1657 wake_nocb_gp(rdp, false, flags);
88d1bead 1658 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
96d3fd0d
PM
1659 TPS("WakeEmpty"));
1660 } else {
0d52a665
PM
1661 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1662 TPS("WakeEmptyIsDeferred"));
5d6742b3 1663 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1664 }
3fbfbf7a 1665 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1666 /* ... or if many callbacks queued. */
aeeacd9d 1667 rdp->qlen_last_fqs_check = len;
7f36ef82
PM
1668 if (!rdp->nocb_cb_sleep &&
1669 rcu_segcblist_ready_cbs(&rdp->cblist)) {
1670 // Already going full tilt, so don't try to rewake.
6608c3a0 1671 } else if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
7f36ef82 1672 rcu_advance_cbs_nowake(rdp->mynode, rdp);
9fdd3bc9 1673 } else {
0d52a665
PM
1674 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1675 TPS("WakeOvfIsDeferred"));
9fdd3bc9 1676 }
81c0b3d7 1677 rcu_nocb_unlock_irqrestore(rdp, flags);
9261dd0d 1678 } else {
88d1bead 1679 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
5d6742b3 1680 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1681 }
81c0b3d7 1682 if (!irqs_disabled_flags(flags)) {
5d6742b3 1683 lockdep_assert_irqs_enabled();
81c0b3d7
PM
1684 rcu_nocb_wait_contended(rdp);
1685 }
3fbfbf7a
PM
1686 return;
1687}
1688
1689/*
5d6742b3
PM
1690 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1691 * or for grace periods to end.
fbce7497 1692 */
12f54c3a 1693static void nocb_gp_wait(struct rcu_data *my_rdp)
fbce7497 1694{
5d6742b3
PM
1695 int __maybe_unused cpu = my_rdp->cpu;
1696 unsigned long cur_gp_seq;
8be6e1b1 1697 unsigned long flags;
fbce7497 1698 bool gotcbs;
969974e5 1699 bool needwait_gp = false; // This prevents actual uninitialized use.
5d6742b3
PM
1700 bool needwake;
1701 bool needwake_gp;
fbce7497 1702 struct rcu_data *rdp;
5d6742b3 1703 struct rcu_node *rnp;
969974e5 1704 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
fbce7497
PM
1705
1706 /*
5d6742b3
PM
1707 * Each pass through the following loop checks for CBs and for the
1708 * nearest grace period (if any) to wait for next. The CB kthreads
1709 * and the global grace-period kthread are awakened if needed.
fbce7497 1710 */
58bf6f77 1711 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
5d6742b3
PM
1712 if (rcu_segcblist_empty(&rdp->cblist))
1713 continue; /* No callbacks here, try next. */
1714 rnp = rdp->mynode;
81c0b3d7 1715 rcu_nocb_lock_irqsave(rdp, flags);
5d6742b3
PM
1716 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
1717 del_timer(&my_rdp->nocb_timer);
1718 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1719 needwake_gp = rcu_advance_cbs(rnp, rdp);
1720 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1721 // Need to wait on some grace period?
1722 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1723 if (!needwait_gp ||
1724 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1725 wait_gp_seq = cur_gp_seq;
1726 needwait_gp = true;
8be6e1b1 1727 }
5d6742b3
PM
1728 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1729 needwake = rdp->nocb_cb_sleep;
1730 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1731 smp_mb(); /* CB invocation -after- GP end. */
1732 } else {
1733 needwake = false;
8be6e1b1 1734 }
81c0b3d7 1735 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1736 if (needwake) {
12f54c3a 1737 swake_up_one(&rdp->nocb_cb_wq);
5d6742b3 1738 gotcbs = true;
fbce7497 1739 }
5d6742b3
PM
1740 if (needwake_gp)
1741 rcu_gp_kthread_wake();
1742 }
1743
1744 if (rcu_nocb_poll) {
1745 /* Polling, so trace if first poll in the series. */
1746 if (gotcbs)
1747 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
1748 schedule_timeout_interruptible(1);
1749 } else if (!needwait_gp) {
1750 /* Wait for callbacks to appear. */
1751 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
1752 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
1753 !READ_ONCE(my_rdp->nocb_gp_sleep));
1754 } else {
1755 rnp = my_rdp->mynode;
1756 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
1757 swait_event_interruptible_exclusive(
1758 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
1759 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
1760 !READ_ONCE(my_rdp->nocb_gp_sleep));
1761 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
1762 }
1763 if (!rcu_nocb_poll) {
81c0b3d7 1764 rcu_nocb_lock_irqsave(my_rdp, flags);
5d6742b3 1765 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
81c0b3d7 1766 rcu_nocb_unlock_irqrestore(my_rdp, flags);
fbce7497 1767 }
5d6742b3 1768 WARN_ON(signal_pending(current));
12f54c3a 1769}
fbce7497 1770
12f54c3a
PM
1771/*
1772 * No-CBs grace-period-wait kthread. There is one of these per group
1773 * of CPUs, but only once at least one CPU in that group has come online
1774 * at least once since boot. This kthread checks for newly posted
1775 * callbacks from any of the CPUs it is responsible for, waits for a
1776 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
1777 * that then have callback-invocation work to do.
1778 */
1779static int rcu_nocb_gp_kthread(void *arg)
1780{
1781 struct rcu_data *rdp = arg;
1782
5d6742b3 1783 for (;;) {
12f54c3a 1784 nocb_gp_wait(rdp);
5d6742b3
PM
1785 cond_resched_tasks_rcu_qs();
1786 }
12f54c3a 1787 return 0;
fbce7497
PM
1788}
1789
1790/*
5d6742b3
PM
1791 * Invoke any ready callbacks from the corresponding no-CBs CPU,
1792 * then, if there are no more, wait for more to appear.
fbce7497 1793 */
5d6742b3 1794static void nocb_cb_wait(struct rcu_data *rdp)
fbce7497 1795{
5d6742b3
PM
1796 unsigned long flags;
1797 bool needwake_gp = false;
1798 struct rcu_node *rnp = rdp->mynode;
1799
1800 local_irq_save(flags);
1801 rcu_momentary_dyntick_idle();
1802 local_irq_restore(flags);
1803 local_bh_disable();
1804 rcu_do_batch(rdp);
1805 local_bh_enable();
1806 lockdep_assert_irqs_enabled();
81c0b3d7 1807 rcu_nocb_lock_irqsave(rdp, flags);
5d6742b3
PM
1808 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1809 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
1810 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1811 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
81c0b3d7 1812 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
1813 if (needwake_gp)
1814 rcu_gp_kthread_wake();
1815 return;
1816 }
1817
f7c9a9b6 1818 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
5d6742b3 1819 WRITE_ONCE(rdp->nocb_cb_sleep, true);
81c0b3d7 1820 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
1821 if (needwake_gp)
1822 rcu_gp_kthread_wake();
12f54c3a 1823 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
5d6742b3
PM
1824 !READ_ONCE(rdp->nocb_cb_sleep));
1825 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
1826 /* ^^^ Ensure CB invocation follows _sleep test. */
1827 return;
fbce7497 1828 }
12f54c3a
PM
1829 WARN_ON(signal_pending(current));
1830 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
1831}
1832
3fbfbf7a 1833/*
5d6742b3
PM
1834 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
1835 * nocb_cb_wait() to do the dirty work.
3fbfbf7a 1836 */
12f54c3a 1837static int rcu_nocb_cb_kthread(void *arg)
3fbfbf7a 1838{
3fbfbf7a
PM
1839 struct rcu_data *rdp = arg;
1840
5d6742b3
PM
1841 // Each pass through this loop does one callback batch, and,
1842 // if there are no more ready callbacks, waits for them.
3fbfbf7a 1843 for (;;) {
5d6742b3
PM
1844 nocb_cb_wait(rdp);
1845 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
1846 }
1847 return 0;
1848}
1849
96d3fd0d 1850/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 1851static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 1852{
7d0ae808 1853 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
1854}
1855
1856/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 1857static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 1858{
8be6e1b1 1859 unsigned long flags;
9fdd3bc9
PM
1860 int ndw;
1861
81c0b3d7 1862 rcu_nocb_lock_irqsave(rdp, flags);
8be6e1b1 1863 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
81c0b3d7 1864 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1865 return;
8be6e1b1 1866 }
7d0ae808 1867 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 1868 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
5d6742b3 1869 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
88d1bead 1870 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
1871}
1872
8be6e1b1 1873/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 1874static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 1875{
fd30b717
KC
1876 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1877
1878 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
1879}
1880
1881/*
1882 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1883 * This means we do an inexact common-case check. Note that if
1884 * we miss, ->nocb_timer will eventually clean things up.
1885 */
1886static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
1887{
1888 if (rcu_nocb_need_deferred_wakeup(rdp))
1889 do_nocb_deferred_wakeup_common(rdp);
1890}
1891
f4579fc5
PM
1892void __init rcu_init_nohz(void)
1893{
1894 int cpu;
ef126206 1895 bool need_rcu_nocb_mask = false;
e83e73f5 1896 struct rcu_data *rdp;
f4579fc5 1897
f4579fc5
PM
1898#if defined(CONFIG_NO_HZ_FULL)
1899 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
1900 need_rcu_nocb_mask = true;
1901#endif /* #if defined(CONFIG_NO_HZ_FULL) */
1902
84b12b75 1903 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
1904 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1905 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1906 return;
1907 }
f4579fc5 1908 }
84b12b75 1909 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
1910 return;
1911
f4579fc5
PM
1912#if defined(CONFIG_NO_HZ_FULL)
1913 if (tick_nohz_full_running)
1914 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
1915#endif /* #if defined(CONFIG_NO_HZ_FULL) */
1916
1917 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 1918 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
1919 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1920 rcu_nocb_mask);
1921 }
3016611e
PM
1922 if (cpumask_empty(rcu_nocb_mask))
1923 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1924 else
1925 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1926 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
1927 if (rcu_nocb_poll)
1928 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1929
e83e73f5
PM
1930 for_each_cpu(cpu, rcu_nocb_mask) {
1931 rdp = per_cpu_ptr(&rcu_data, cpu);
1932 if (rcu_segcblist_empty(&rdp->cblist))
1933 rcu_segcblist_init(&rdp->cblist);
1934 rcu_segcblist_offload(&rdp->cblist);
1935 }
b97d23c5 1936 rcu_organize_nocb_kthreads();
96d3fd0d
PM
1937}
1938
3fbfbf7a
PM
1939/* Initialize per-rcu_data variables for no-CBs CPUs. */
1940static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1941{
12f54c3a
PM
1942 init_swait_queue_head(&rdp->nocb_cb_wq);
1943 init_swait_queue_head(&rdp->nocb_gp_wq);
8be6e1b1 1944 raw_spin_lock_init(&rdp->nocb_lock);
fd30b717 1945 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
3fbfbf7a
PM
1946}
1947
35ce7f29
PM
1948/*
1949 * If the specified CPU is a no-CBs CPU that does not already have its
12f54c3a
PM
1950 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
1951 * for this CPU's group has not yet been created, spawn it as well.
35ce7f29 1952 */
4580b054 1953static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29 1954{
12f54c3a
PM
1955 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1956 struct rcu_data *rdp_gp;
35ce7f29
PM
1957 struct task_struct *t;
1958
1959 /*
1960 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
1961 * then nothing to do.
1962 */
12f54c3a 1963 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
35ce7f29
PM
1964 return;
1965
6484fe54 1966 /* If we didn't spawn the GP kthread first, reorganize! */
12f54c3a
PM
1967 rdp_gp = rdp->nocb_gp_rdp;
1968 if (!rdp_gp->nocb_gp_kthread) {
1969 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1970 "rcuog/%d", rdp_gp->cpu);
1971 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
1972 return;
1973 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
35ce7f29
PM
1974 }
1975
0ae86a27 1976 /* Spawn the kthread for this CPU. */
12f54c3a 1977 t = kthread_run(rcu_nocb_cb_kthread, rdp,
4580b054 1978 "rcuo%c/%d", rcu_state.abbr, cpu);
12f54c3a 1979 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
9213784b 1980 return;
12f54c3a
PM
1981 WRITE_ONCE(rdp->nocb_cb_kthread, t);
1982 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
35ce7f29
PM
1983}
1984
1985/*
1986 * If the specified CPU is a no-CBs CPU that does not already have its
ad368d15 1987 * rcuo kthread, spawn it.
35ce7f29 1988 */
ad368d15 1989static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29 1990{
35ce7f29 1991 if (rcu_scheduler_fully_active)
b97d23c5 1992 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
1993}
1994
1995/*
1996 * Once the scheduler is running, spawn rcuo kthreads for all online
1997 * no-CBs CPUs. This assumes that the early_initcall()s happen before
1998 * non-boot CPUs come online -- if this changes, we will need to add
1999 * some mutual exclusion.
2000 */
2001static void __init rcu_spawn_nocb_kthreads(void)
2002{
2003 int cpu;
2004
2005 for_each_online_cpu(cpu)
ad368d15 2006 rcu_spawn_cpu_nocb_kthread(cpu);
35ce7f29
PM
2007}
2008
6484fe54 2009/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
f7c612b0
PM
2010static int rcu_nocb_gp_stride = -1;
2011module_param(rcu_nocb_gp_stride, int, 0444);
fbce7497
PM
2012
2013/*
6484fe54 2014 * Initialize GP-CB relationships for all no-CBs CPU.
fbce7497 2015 */
4580b054 2016static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2017{
2018 int cpu;
18cd8c93 2019 bool firsttime = true;
f7c612b0 2020 int ls = rcu_nocb_gp_stride;
6484fe54 2021 int nl = 0; /* Next GP kthread. */
3fbfbf7a 2022 struct rcu_data *rdp;
0bdc33da 2023 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
fbce7497 2024 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2025
84b12b75 2026 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2027 return;
fbce7497 2028 if (ls == -1) {
9fcb09bd 2029 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
f7c612b0 2030 rcu_nocb_gp_stride = ls;
fbce7497
PM
2031 }
2032
2033 /*
9831ce3b
PM
2034 * Each pass through this loop sets up one rcu_data structure.
2035 * Should the corresponding CPU come online in the future, then
2036 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2037 */
3fbfbf7a 2038 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2039 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497 2040 if (rdp->cpu >= nl) {
6484fe54 2041 /* New GP kthread, set up for CBs & next GP. */
fbce7497 2042 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
58bf6f77 2043 rdp->nocb_gp_rdp = rdp;
0bdc33da 2044 rdp_gp = rdp;
18cd8c93
PM
2045 if (!firsttime && dump_tree)
2046 pr_cont("\n");
2047 firsttime = false;
2048 pr_alert("%s: No-CB GP kthread CPU %d:", __func__, cpu);
fbce7497 2049 } else {
6484fe54 2050 /* Another CB kthread, link to previous GP kthread. */
0bdc33da 2051 rdp->nocb_gp_rdp = rdp_gp;
58bf6f77 2052 rdp_prev->nocb_next_cb_rdp = rdp;
18cd8c93 2053 pr_alert(" %d", cpu);
fbce7497
PM
2054 }
2055 rdp_prev = rdp;
3fbfbf7a
PM
2056 }
2057}
2058
5ab7ab83
PM
2059/*
2060 * Bind the current task to the offloaded CPUs. If there are no offloaded
2061 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2062 */
2063void rcu_bind_current_to_nocb(void)
2064{
2065 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2066 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2067}
2068EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2069
34ed6246
PM
2070#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2071
5d6742b3
PM
2072/* No ->nocb_lock to acquire. */
2073static void rcu_nocb_lock(struct rcu_data *rdp)
d7e29933 2074{
5d6742b3
PM
2075}
2076
2077/* No ->nocb_lock to release. */
2078static void rcu_nocb_unlock(struct rcu_data *rdp)
2079{
2080}
2081
2082/* No ->nocb_lock to release. */
2083static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2084 unsigned long flags)
2085{
2086 local_irq_restore(flags);
d7e29933
PM
2087}
2088
abedf8e2 2089static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2090{
3fbfbf7a
PM
2091}
2092
abedf8e2 2093static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2094{
2095 return NULL;
2096}
2097
dae6e64d
PM
2098static void rcu_init_one_nocb(struct rcu_node *rnp)
2099{
2100}
3fbfbf7a 2101
5d6742b3
PM
2102static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2103 unsigned long flags)
3fbfbf7a 2104{
5d6742b3 2105 WARN_ON_ONCE(1); /* Should be dead code! */
3fbfbf7a
PM
2106}
2107
3fbfbf7a
PM
2108static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2109{
2110}
2111
9fdd3bc9 2112static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2113{
2114 return false;
2115}
2116
2117static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2118{
2119}
2120
ad368d15 2121static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29
PM
2122{
2123}
2124
2125static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2126{
2127}
2128
3fbfbf7a 2129#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2130
a096932f
PM
2131/*
2132 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2133 * grace-period kthread will do force_quiescent_state() processing?
2134 * The idea is to avoid waking up RCU core processing on such a
2135 * CPU unless the grace period has extended for too long.
2136 *
2137 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2138 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2139 */
4580b054 2140static bool rcu_nohz_full_cpu(void)
a096932f
PM
2141{
2142#ifdef CONFIG_NO_HZ_FULL
2143 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2144 (!rcu_gp_in_progress() ||
4580b054 2145 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2146 return true;
a096932f 2147#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2148 return false;
a096932f 2149}
5057f55e
PM
2150
2151/*
265f5f28 2152 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2153 */
2154static void rcu_bind_gp_kthread(void)
2155{
c0f489d2 2156 if (!tick_nohz_full_enabled())
5057f55e 2157 return;
de201559 2158 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2159}
176f8f7a
PM
2160
2161/* Record the current task on dyntick-idle entry. */
2162static void rcu_dynticks_task_enter(void)
2163{
2164#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2165 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2166#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2167}
2168
2169/* Record no current task on dyntick-idle exit. */
2170static void rcu_dynticks_task_exit(void)
2171{
2172#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2173 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2174#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2175}