rcu: Remove rsp parameter from no-CBs CPU functions
[linux-2.6-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
b17b0153 30#include <linux/sched/debug.h>
62ab7072 31#include <linux/smpboot.h>
78634061 32#include <linux/sched/isolation.h>
ae7e81c0 33#include <uapi/linux/sched/types.h>
4102adab 34#include "../time/tick-internal.h"
f41d911f 35
5b61b0ba 36#ifdef CONFIG_RCU_BOOST
61cfd097 37
abaa93d9 38#include "../locking/rtmutex_common.h"
21871d7e 39
61cfd097
PM
40/*
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
43 */
44static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47DEFINE_PER_CPU(char, rcu_cpu_has_work);
48
727b705b
PM
49#else /* #ifdef CONFIG_RCU_BOOST */
50
51/*
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
56 */
57#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
b8869781 58#define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
727b705b
PM
59
60#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 61
3fbfbf7a
PM
62#ifdef CONFIG_RCU_NOCB_CPU
63static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 64static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
65#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66
26845c28
PM
67/*
68 * Check the RCU kernel configuration parameters and print informative
699d4035 69 * messages about anything out of the ordinary.
26845c28
PM
70 */
71static void __init rcu_bootup_announce_oddness(void)
72{
ab6f5bd6 73 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 74 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
78 RCU_FANOUT);
7fa27001 79 if (rcu_fanout_exact)
ab6f5bd6
PM
80 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 83 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 84 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 87 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
92 rcu_fanout_leaf);
cca6f393 93 if (nr_cpu_ids != NR_CPUS)
9b130ad5 94 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 95#ifdef CONFIG_RCU_BOOST
a7538352
JP
96 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
97 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
98#endif
99 if (blimit != DEFAULT_RCU_BLIMIT)
100 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
101 if (qhimark != DEFAULT_RCU_QHIMARK)
102 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
103 if (qlowmark != DEFAULT_RCU_QLOMARK)
104 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
105 if (jiffies_till_first_fqs != ULONG_MAX)
106 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
107 if (jiffies_till_next_fqs != ULONG_MAX)
108 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
109 if (rcu_kick_kthreads)
110 pr_info("\tKick kthreads if too-long grace period.\n");
111 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
112 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 113 if (gp_preinit_delay)
17c7798b 114 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 115 if (gp_init_delay)
17c7798b 116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 117 if (gp_cleanup_delay)
17c7798b
PM
118 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
119 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
120 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 121 rcupdate_announce_bootup_oddness();
26845c28
PM
122}
123
28f6569a 124#ifdef CONFIG_PREEMPT_RCU
f41d911f 125
d19fb8d1
PM
126static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
127 bool wake);
3949fa9b 128static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 129
f41d911f
PM
130/*
131 * Tell them what RCU they are running.
132 */
0e0fc1c2 133static void __init rcu_bootup_announce(void)
f41d911f 134{
efc151c3 135 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 136 rcu_bootup_announce_oddness();
f41d911f
PM
137}
138
8203d6d0
PM
139/* Flags for rcu_preempt_ctxt_queue() decision table. */
140#define RCU_GP_TASKS 0x8
141#define RCU_EXP_TASKS 0x4
142#define RCU_GP_BLKD 0x2
143#define RCU_EXP_BLKD 0x1
144
145/*
146 * Queues a task preempted within an RCU-preempt read-side critical
147 * section into the appropriate location within the ->blkd_tasks list,
148 * depending on the states of any ongoing normal and expedited grace
149 * periods. The ->gp_tasks pointer indicates which element the normal
150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151 * indicates which element the expedited grace period is waiting on (again,
152 * NULL if none). If a grace period is waiting on a given element in the
153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
154 * adding a task to the tail of the list blocks any grace period that is
155 * already waiting on one of the elements. In contrast, adding a task
156 * to the head of the list won't block any grace period that is already
157 * waiting on one of the elements.
158 *
159 * This queuing is imprecise, and can sometimes make an ongoing grace
160 * period wait for a task that is not strictly speaking blocking it.
161 * Given the choice, we needlessly block a normal grace period rather than
162 * blocking an expedited grace period.
163 *
164 * Note that an endless sequence of expedited grace periods still cannot
165 * indefinitely postpone a normal grace period. Eventually, all of the
166 * fixed number of preempted tasks blocking the normal grace period that are
167 * not also blocking the expedited grace period will resume and complete
168 * their RCU read-side critical sections. At that point, the ->gp_tasks
169 * pointer will equal the ->exp_tasks pointer, at which point the end of
170 * the corresponding expedited grace period will also be the end of the
171 * normal grace period.
172 */
46a5d164
PM
173static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
174 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
175{
176 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
177 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
178 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
179 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
180 struct task_struct *t = current;
181
a32e01ee 182 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 183 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 184 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
185 /* RCU better not be waiting on newly onlined CPUs! */
186 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
187 rdp->grpmask);
ea9b0c8a 188
8203d6d0
PM
189 /*
190 * Decide where to queue the newly blocked task. In theory,
191 * this could be an if-statement. In practice, when I tried
192 * that, it was quite messy.
193 */
194 switch (blkd_state) {
195 case 0:
196 case RCU_EXP_TASKS:
197 case RCU_EXP_TASKS + RCU_GP_BLKD:
198 case RCU_GP_TASKS:
199 case RCU_GP_TASKS + RCU_EXP_TASKS:
200
201 /*
202 * Blocking neither GP, or first task blocking the normal
203 * GP but not blocking the already-waiting expedited GP.
204 * Queue at the head of the list to avoid unnecessarily
205 * blocking the already-waiting GPs.
206 */
207 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
208 break;
209
210 case RCU_EXP_BLKD:
211 case RCU_GP_BLKD:
212 case RCU_GP_BLKD + RCU_EXP_BLKD:
213 case RCU_GP_TASKS + RCU_EXP_BLKD:
214 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
215 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
216
217 /*
218 * First task arriving that blocks either GP, or first task
219 * arriving that blocks the expedited GP (with the normal
220 * GP already waiting), or a task arriving that blocks
221 * both GPs with both GPs already waiting. Queue at the
222 * tail of the list to avoid any GP waiting on any of the
223 * already queued tasks that are not blocking it.
224 */
225 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
226 break;
227
228 case RCU_EXP_TASKS + RCU_EXP_BLKD:
229 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
230 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
231
232 /*
233 * Second or subsequent task blocking the expedited GP.
234 * The task either does not block the normal GP, or is the
235 * first task blocking the normal GP. Queue just after
236 * the first task blocking the expedited GP.
237 */
238 list_add(&t->rcu_node_entry, rnp->exp_tasks);
239 break;
240
241 case RCU_GP_TASKS + RCU_GP_BLKD:
242 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
243
244 /*
245 * Second or subsequent task blocking the normal GP.
246 * The task does not block the expedited GP. Queue just
247 * after the first task blocking the normal GP.
248 */
249 list_add(&t->rcu_node_entry, rnp->gp_tasks);
250 break;
251
252 default:
253
254 /* Yet another exercise in excessive paranoia. */
255 WARN_ON_ONCE(1);
256 break;
257 }
258
259 /*
260 * We have now queued the task. If it was the first one to
261 * block either grace period, update the ->gp_tasks and/or
262 * ->exp_tasks pointers, respectively, to reference the newly
263 * blocked tasks.
264 */
4bc8d555 265 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
8203d6d0 266 rnp->gp_tasks = &t->rcu_node_entry;
d43a5d32 267 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 268 }
8203d6d0
PM
269 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
270 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
271 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
272 !(rnp->qsmask & rdp->grpmask));
273 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
274 !(rnp->expmask & rdp->grpmask));
67c583a7 275 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
276
277 /*
278 * Report the quiescent state for the expedited GP. This expedited
279 * GP should not be able to end until we report, so there should be
280 * no need to check for a subsequent expedited GP. (Though we are
281 * still in a quiescent state in any case.)
282 */
fcc878e4 283 if (blkd_state & RCU_EXP_BLKD && rdp->deferred_qs)
2bbfc25b 284 rcu_report_exp_rdp(rdp->rsp, rdp);
fcc878e4
PM
285 else
286 WARN_ON_ONCE(rdp->deferred_qs);
8203d6d0
PM
287}
288
f41d911f 289/*
c7037ff5
PM
290 * Record a preemptible-RCU quiescent state for the specified CPU.
291 * Note that this does not necessarily mean that the task currently running
292 * on the CPU is in a quiescent state: Instead, it means that the current
293 * grace period need not wait on any RCU read-side critical section that
294 * starts later on this CPU. It also means that if the current task is
295 * in an RCU read-side critical section, it has already added itself to
296 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
297 * current task, there might be any number of other tasks blocked while
298 * in an RCU read-side critical section.
25502a6c 299 *
c7037ff5 300 * Callers to this function must disable preemption.
f41d911f 301 */
45975c7d 302static void rcu_qs(void)
f41d911f 303{
45975c7d 304 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 305 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 306 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 307 __this_cpu_read(rcu_data.gp_seq),
284a8c93 308 TPS("cpuqs"));
2280ee5a 309 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
45975c7d 310 barrier(); /* Coordinate with rcu_flavor_check_callbacks(). */
284a8c93
PM
311 current->rcu_read_unlock_special.b.need_qs = false;
312 }
f41d911f
PM
313}
314
315/*
c3422bea
PM
316 * We have entered the scheduler, and the current task might soon be
317 * context-switched away from. If this task is in an RCU read-side
318 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
319 * record that fact, so we enqueue the task on the blkd_tasks list.
320 * The task will dequeue itself when it exits the outermost enclosing
321 * RCU read-side critical section. Therefore, the current grace period
322 * cannot be permitted to complete until the blkd_tasks list entries
323 * predating the current grace period drain, in other words, until
324 * rnp->gp_tasks becomes NULL.
c3422bea 325 *
46a5d164 326 * Caller must disable interrupts.
f41d911f 327 */
45975c7d 328void rcu_note_context_switch(bool preempt)
f41d911f
PM
329{
330 struct task_struct *t = current;
da1df50d 331 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
332 struct rcu_node *rnp;
333
45975c7d
PM
334 barrier(); /* Avoid RCU read-side critical sections leaking down. */
335 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 336 lockdep_assert_irqs_disabled();
5b72f964 337 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
10f39bb1 338 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 339 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
340
341 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 342 rnp = rdp->mynode;
46a5d164 343 raw_spin_lock_rcu_node(rnp);
1d082fd0 344 t->rcu_read_unlock_special.b.blocked = true;
86848966 345 t->rcu_blocked_node = rnp;
f41d911f
PM
346
347 /*
8203d6d0
PM
348 * Verify the CPU's sanity, trace the preemption, and
349 * then queue the task as required based on the states
350 * of any ongoing and expedited grace periods.
f41d911f 351 */
0aa04b05 352 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 353 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
d4c08f2a
PM
354 trace_rcu_preempt_task(rdp->rsp->name,
355 t->pid,
356 (rnp->qsmask & rdp->grpmask)
598ce094
PM
357 ? rnp->gp_seq
358 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 359 rcu_preempt_ctxt_queue(rnp, rdp);
10f39bb1 360 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 361 t->rcu_read_unlock_special.s) {
10f39bb1
PM
362
363 /*
364 * Complete exit from RCU read-side critical section on
365 * behalf of preempted instance of __rcu_read_unlock().
366 */
367 rcu_read_unlock_special(t);
3e310098
PM
368 rcu_preempt_deferred_qs(t);
369 } else {
370 rcu_preempt_deferred_qs(t);
f41d911f
PM
371 }
372
373 /*
374 * Either we were not in an RCU read-side critical section to
375 * begin with, or we have now recorded that critical section
376 * globally. Either way, we can now note a quiescent state
377 * for this CPU. Again, if we were in an RCU read-side critical
378 * section, and if that critical section was blocking the current
379 * grace period, then the fact that the task has been enqueued
380 * means that we continue to block the current grace period.
381 */
45975c7d 382 rcu_qs();
ba1c64c2 383 if (rdp->deferred_qs)
16fc9c60 384 rcu_report_exp_rdp(&rcu_state, rdp);
45975c7d
PM
385 trace_rcu_utilization(TPS("End context switch"));
386 barrier(); /* Avoid RCU read-side critical sections leaking up. */
f41d911f 387}
45975c7d 388EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 389
fc2219d4
PM
390/*
391 * Check for preempted RCU readers blocking the current grace period
392 * for the specified rcu_node structure. If the caller needs a reliable
393 * answer, it must hold the rcu_node's ->lock.
394 */
27f4d280 395static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 396{
12f5f524 397 return rnp->gp_tasks != NULL;
fc2219d4
PM
398}
399
0e5da22e
PM
400/*
401 * Preemptible RCU implementation for rcu_read_lock().
402 * Just increment ->rcu_read_lock_nesting, shared state will be updated
403 * if we block.
404 */
405void __rcu_read_lock(void)
406{
407 current->rcu_read_lock_nesting++;
408 barrier(); /* critical section after entry code. */
409}
410EXPORT_SYMBOL_GPL(__rcu_read_lock);
411
412/*
413 * Preemptible RCU implementation for rcu_read_unlock().
414 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
415 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
416 * invoke rcu_read_unlock_special() to clean up after a context switch
417 * in an RCU read-side critical section and other special cases.
418 */
419void __rcu_read_unlock(void)
420{
421 struct task_struct *t = current;
422
423 if (t->rcu_read_lock_nesting != 1) {
424 --t->rcu_read_lock_nesting;
425 } else {
426 barrier(); /* critical section before exit code. */
427 t->rcu_read_lock_nesting = INT_MIN;
428 barrier(); /* assign before ->rcu_read_unlock_special load */
429 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
430 rcu_read_unlock_special(t);
431 barrier(); /* ->rcu_read_unlock_special load before assign */
432 t->rcu_read_lock_nesting = 0;
433 }
434#ifdef CONFIG_PROVE_LOCKING
435 {
436 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
437
438 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
439 }
440#endif /* #ifdef CONFIG_PROVE_LOCKING */
441}
442EXPORT_SYMBOL_GPL(__rcu_read_unlock);
443
12f5f524
PM
444/*
445 * Advance a ->blkd_tasks-list pointer to the next entry, instead
446 * returning NULL if at the end of the list.
447 */
448static struct list_head *rcu_next_node_entry(struct task_struct *t,
449 struct rcu_node *rnp)
450{
451 struct list_head *np;
452
453 np = t->rcu_node_entry.next;
454 if (np == &rnp->blkd_tasks)
455 np = NULL;
456 return np;
457}
458
8af3a5e7
PM
459/*
460 * Return true if the specified rcu_node structure has tasks that were
461 * preempted within an RCU read-side critical section.
462 */
463static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
464{
465 return !list_empty(&rnp->blkd_tasks);
466}
467
b668c9cf 468/*
3e310098
PM
469 * Report deferred quiescent states. The deferral time can
470 * be quite short, for example, in the case of the call from
471 * rcu_read_unlock_special().
b668c9cf 472 */
3e310098
PM
473static void
474rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 475{
b6a932d1
PM
476 bool empty_exp;
477 bool empty_norm;
478 bool empty_exp_now;
12f5f524 479 struct list_head *np;
abaa93d9 480 bool drop_boost_mutex = false;
8203d6d0 481 struct rcu_data *rdp;
f41d911f 482 struct rcu_node *rnp;
1d082fd0 483 union rcu_special special;
f41d911f 484
f41d911f 485 /*
8203d6d0
PM
486 * If RCU core is waiting for this CPU to exit its critical section,
487 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 488 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
489 */
490 special = t->rcu_read_unlock_special;
da1df50d 491 rdp = this_cpu_ptr(&rcu_data);
3e310098
PM
492 if (!special.s && !rdp->deferred_qs) {
493 local_irq_restore(flags);
494 return;
495 }
1d082fd0 496 if (special.b.need_qs) {
45975c7d 497 rcu_qs();
c0135d07 498 t->rcu_read_unlock_special.b.need_qs = false;
3e310098 499 if (!t->rcu_read_unlock_special.s && !rdp->deferred_qs) {
79a62f95
LJ
500 local_irq_restore(flags);
501 return;
502 }
f41d911f
PM
503 }
504
8203d6d0 505 /*
3e310098
PM
506 * Respond to a request by an expedited grace period for a
507 * quiescent state from this CPU. Note that requests from
508 * tasks are handled when removing the task from the
509 * blocked-tasks list below.
8203d6d0 510 */
fcc878e4 511 if (rdp->deferred_qs) {
16fc9c60 512 rcu_report_exp_rdp(&rcu_state, rdp);
8203d6d0
PM
513 if (!t->rcu_read_unlock_special.s) {
514 local_irq_restore(flags);
515 return;
516 }
517 }
518
f41d911f 519 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
520 if (special.b.blocked) {
521 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 522
dd5d19ba 523 /*
0a0ba1c9 524 * Remove this task from the list it blocked on. The task
8ba9153b
PM
525 * now remains queued on the rcu_node corresponding to the
526 * CPU it first blocked on, so there is no longer any need
527 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 528 */
8ba9153b
PM
529 rnp = t->rcu_blocked_node;
530 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
531 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 532 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 533 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 534 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 535 (!empty_norm || rnp->qsmask));
8203d6d0 536 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 537 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 538 np = rcu_next_node_entry(t, rnp);
f41d911f 539 list_del_init(&t->rcu_node_entry);
82e78d80 540 t->rcu_blocked_node = NULL;
f7f7bac9 541 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 542 rnp->gp_seq, t->pid);
12f5f524
PM
543 if (&t->rcu_node_entry == rnp->gp_tasks)
544 rnp->gp_tasks = np;
545 if (&t->rcu_node_entry == rnp->exp_tasks)
546 rnp->exp_tasks = np;
727b705b 547 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
548 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
549 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
550 if (&t->rcu_node_entry == rnp->boost_tasks)
551 rnp->boost_tasks = np;
727b705b 552 }
f41d911f
PM
553
554 /*
555 * If this was the last task on the current list, and if
556 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
557 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
558 * so we must take a snapshot of the expedited state.
f41d911f 559 */
8203d6d0 560 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 561 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 562 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 563 rnp->gp_seq,
d4c08f2a
PM
564 0, rnp->qsmask,
565 rnp->level,
566 rnp->grplo,
567 rnp->grphi,
568 !!rnp->gp_tasks);
139ad4da 569 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 570 } else {
67c583a7 571 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 572 }
d9a3da06 573
27f4d280 574 /* Unboost if we were boosted. */
727b705b 575 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 576 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 577
d9a3da06
PM
578 /*
579 * If this was the last task on the expedited lists,
580 * then we need to report up the rcu_node hierarchy.
581 */
389abd48 582 if (!empty_exp && empty_exp_now)
16fc9c60 583 rcu_report_exp_rnp(&rcu_state, rnp, true);
b668c9cf
PM
584 } else {
585 local_irq_restore(flags);
f41d911f 586 }
f41d911f
PM
587}
588
3e310098
PM
589/*
590 * Is a deferred quiescent-state pending, and are we also not in
591 * an RCU read-side critical section? It is the caller's responsibility
592 * to ensure it is otherwise safe to report any deferred quiescent
593 * states. The reason for this is that it is safe to report a
594 * quiescent state during context switch even though preemption
595 * is disabled. This function cannot be expected to understand these
596 * nuances, so the caller must handle them.
597 */
598static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
599{
45975c7d 600 return (this_cpu_ptr(&rcu_data)->deferred_qs ||
3e310098 601 READ_ONCE(t->rcu_read_unlock_special.s)) &&
27c744e3 602 t->rcu_read_lock_nesting <= 0;
3e310098
PM
603}
604
605/*
606 * Report a deferred quiescent state if needed and safe to do so.
607 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
608 * not being in an RCU read-side critical section. The caller must
609 * evaluate safety in terms of interrupt, softirq, and preemption
610 * disabling.
611 */
612static void rcu_preempt_deferred_qs(struct task_struct *t)
613{
614 unsigned long flags;
615 bool couldrecurse = t->rcu_read_lock_nesting >= 0;
616
617 if (!rcu_preempt_need_deferred_qs(t))
618 return;
619 if (couldrecurse)
620 t->rcu_read_lock_nesting -= INT_MIN;
621 local_irq_save(flags);
622 rcu_preempt_deferred_qs_irqrestore(t, flags);
623 if (couldrecurse)
624 t->rcu_read_lock_nesting += INT_MIN;
625}
626
627/*
628 * Handle special cases during rcu_read_unlock(), such as needing to
629 * notify RCU core processing or task having blocked during the RCU
630 * read-side critical section.
631 */
632static void rcu_read_unlock_special(struct task_struct *t)
633{
634 unsigned long flags;
635 bool preempt_bh_were_disabled =
636 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
637 bool irqs_were_disabled;
638
639 /* NMI handlers cannot block and cannot safely manipulate state. */
640 if (in_nmi())
641 return;
642
643 local_irq_save(flags);
644 irqs_were_disabled = irqs_disabled_flags(flags);
645 if ((preempt_bh_were_disabled || irqs_were_disabled) &&
646 t->rcu_read_unlock_special.b.blocked) {
647 /* Need to defer quiescent state until everything is enabled. */
648 raise_softirq_irqoff(RCU_SOFTIRQ);
649 local_irq_restore(flags);
650 return;
651 }
652 rcu_preempt_deferred_qs_irqrestore(t, flags);
653}
654
1ed509a2
PM
655/*
656 * Dump detailed information for all tasks blocking the current RCU
657 * grace period on the specified rcu_node structure.
658 */
659static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
660{
661 unsigned long flags;
1ed509a2
PM
662 struct task_struct *t;
663
6cf10081 664 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5fd4dc06 665 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 666 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5fd4dc06
PM
667 return;
668 }
82efed06 669 t = list_entry(rnp->gp_tasks->prev,
12f5f524 670 struct task_struct, rcu_node_entry);
3caa973b
TH
671 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
672 /*
673 * We could be printing a lot while holding a spinlock.
674 * Avoid triggering hard lockup.
675 */
676 touch_nmi_watchdog();
12f5f524 677 sched_show_task(t);
3caa973b 678 }
67c583a7 679 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1ed509a2
PM
680}
681
682/*
683 * Dump detailed information for all tasks blocking the current RCU
684 * grace period.
685 */
a2887cd8 686static void rcu_print_detail_task_stall(void)
1ed509a2 687{
336a4f6c 688 struct rcu_node *rnp = rcu_get_root();
1ed509a2
PM
689
690 rcu_print_detail_task_stall_rnp(rnp);
a2887cd8 691 rcu_for_each_leaf_node(&rcu_state, rnp)
1ed509a2
PM
692 rcu_print_detail_task_stall_rnp(rnp);
693}
694
a858af28
PM
695static void rcu_print_task_stall_begin(struct rcu_node *rnp)
696{
efc151c3 697 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
698 rnp->level, rnp->grplo, rnp->grphi);
699}
700
701static void rcu_print_task_stall_end(void)
702{
efc151c3 703 pr_cont("\n");
a858af28
PM
704}
705
f41d911f
PM
706/*
707 * Scan the current list of tasks blocked within RCU read-side critical
708 * sections, printing out the tid of each.
709 */
9bc8b558 710static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 711{
f41d911f 712 struct task_struct *t;
9bc8b558 713 int ndetected = 0;
f41d911f 714
27f4d280 715 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 716 return 0;
a858af28 717 rcu_print_task_stall_begin(rnp);
82efed06 718 t = list_entry(rnp->gp_tasks->prev,
12f5f524 719 struct task_struct, rcu_node_entry);
9bc8b558 720 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 721 pr_cont(" P%d", t->pid);
9bc8b558
PM
722 ndetected++;
723 }
a858af28 724 rcu_print_task_stall_end();
9bc8b558 725 return ndetected;
f41d911f
PM
726}
727
74611ecb
PM
728/*
729 * Scan the current list of tasks blocked within RCU read-side critical
730 * sections, printing out the tid of each that is blocking the current
731 * expedited grace period.
732 */
733static int rcu_print_task_exp_stall(struct rcu_node *rnp)
734{
735 struct task_struct *t;
736 int ndetected = 0;
737
738 if (!rnp->exp_tasks)
739 return 0;
740 t = list_entry(rnp->exp_tasks->prev,
741 struct task_struct, rcu_node_entry);
742 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
743 pr_cont(" P%d", t->pid);
744 ndetected++;
745 }
746 return ndetected;
747}
748
b0e165c0
PM
749/*
750 * Check that the list of blocked tasks for the newly completed grace
751 * period is in fact empty. It is a serious bug to complete a grace
752 * period that still has RCU readers blocked! This function must be
ff3bb6f4 753 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
b0e165c0 754 * must be held by the caller.
12f5f524
PM
755 *
756 * Also, if there are blocked tasks on the list, they automatically
757 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 758 */
81ab59a3 759static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 760{
c5ebe66c
PM
761 struct task_struct *t;
762
ea9b0c8a 763 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
4bc8d555 764 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 765 dump_blkd_tasks(rnp, 10);
0b107d24
PM
766 if (rcu_preempt_has_tasks(rnp) &&
767 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
12f5f524 768 rnp->gp_tasks = rnp->blkd_tasks.next;
c5ebe66c
PM
769 t = container_of(rnp->gp_tasks, struct task_struct,
770 rcu_node_entry);
771 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 772 rnp->gp_seq, t->pid);
c5ebe66c 773 }
28ecd580 774 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
775}
776
f41d911f
PM
777/*
778 * Check for a quiescent state from the current CPU. When a task blocks,
779 * the task is recorded in the corresponding CPU's rcu_node structure,
780 * which is checked elsewhere.
781 *
782 * Caller must disable hard irqs.
783 */
45975c7d 784static void rcu_flavor_check_callbacks(int user)
f41d911f 785{
45975c7d 786 struct rcu_state *rsp = &rcu_state;
f41d911f
PM
787 struct task_struct *t = current;
788
45975c7d
PM
789 if (user || rcu_is_cpu_rrupt_from_idle()) {
790 rcu_note_voluntary_context_switch(current);
791 }
3e310098
PM
792 if (t->rcu_read_lock_nesting > 0 ||
793 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
794 /* No QS, force context switch if deferred. */
795 if (rcu_preempt_need_deferred_qs(t))
796 resched_cpu(smp_processor_id());
797 } else if (rcu_preempt_need_deferred_qs(t)) {
798 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
799 return;
800 } else if (!t->rcu_read_lock_nesting) {
45975c7d 801 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
802 return;
803 }
3e310098
PM
804
805 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
10f39bb1 806 if (t->rcu_read_lock_nesting > 0 &&
2280ee5a
PM
807 __this_cpu_read(rcu_data.core_needs_qs) &&
808 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201
PM
809 !t->rcu_read_unlock_special.b.need_qs &&
810 time_after(jiffies, rsp->gp_start + HZ))
1d082fd0 811 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
812}
813
6ebb237b
PM
814/**
815 * synchronize_rcu - wait until a grace period has elapsed.
816 *
817 * Control will return to the caller some time after a full grace
818 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
819 * read-side critical sections have completed. Note, however, that
820 * upon return from synchronize_rcu(), the caller might well be executing
821 * concurrently with new RCU read-side critical sections that began while
822 * synchronize_rcu() was waiting. RCU read-side critical sections are
823 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
45975c7d
PM
824 * In addition, regions of code across which interrupts, preemption, or
825 * softirqs have been disabled also serve as RCU read-side critical
826 * sections. This includes hardware interrupt handlers, softirq handlers,
827 * and NMI handlers.
828 *
829 * Note that this guarantee implies further memory-ordering guarantees.
830 * On systems with more than one CPU, when synchronize_rcu() returns,
831 * each CPU is guaranteed to have executed a full memory barrier since the
832 * end of its last RCU-sched read-side critical section whose beginning
833 * preceded the call to synchronize_rcu(). In addition, each CPU having
834 * an RCU read-side critical section that extends beyond the return from
835 * synchronize_rcu() is guaranteed to have executed a full memory barrier
836 * after the beginning of synchronize_rcu() and before the beginning of
837 * that RCU read-side critical section. Note that these guarantees include
838 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
839 * that are executing in the kernel.
f0a0e6f2 840 *
45975c7d
PM
841 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
842 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
843 * to have executed a full memory barrier during the execution of
844 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
845 * again only if the system has more than one CPU).
6ebb237b
PM
846 */
847void synchronize_rcu(void)
848{
f78f5b90
PM
849 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
850 lock_is_held(&rcu_lock_map) ||
851 lock_is_held(&rcu_sched_lock_map),
852 "Illegal synchronize_rcu() in RCU read-side critical section");
52d7e48b 853 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
6ebb237b 854 return;
5afff48b 855 if (rcu_gp_is_expedited())
3705b88d
AM
856 synchronize_rcu_expedited();
857 else
858 wait_rcu_gp(call_rcu);
6ebb237b
PM
859}
860EXPORT_SYMBOL_GPL(synchronize_rcu);
861
2439b696
PM
862/*
863 * Check for a task exiting while in a preemptible-RCU read-side
864 * critical section, clean up if so. No need to issue warnings,
865 * as debug_check_no_locks_held() already does this if lockdep
866 * is enabled.
867 */
868void exit_rcu(void)
869{
870 struct task_struct *t = current;
871
872 if (likely(list_empty(&current->rcu_node_entry)))
873 return;
874 t->rcu_read_lock_nesting = 1;
875 barrier();
1d082fd0 876 t->rcu_read_unlock_special.b.blocked = true;
2439b696 877 __rcu_read_unlock();
3e310098 878 rcu_preempt_deferred_qs(current);
2439b696
PM
879}
880
4bc8d555
PM
881/*
882 * Dump the blocked-tasks state, but limit the list dump to the
883 * specified number of elements.
884 */
57738942 885static void
81ab59a3 886dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 887{
57738942 888 int cpu;
4bc8d555
PM
889 int i;
890 struct list_head *lhp;
57738942
PM
891 bool onl;
892 struct rcu_data *rdp;
ff3cee39 893 struct rcu_node *rnp1;
4bc8d555 894
ce11fae8 895 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 896 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 897 __func__, rnp->grplo, rnp->grphi, rnp->level,
ff3cee39
PM
898 (long)rnp->gp_seq, (long)rnp->completedqs);
899 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
900 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
901 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf
PM
902 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
903 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
904 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
905 i = 0;
906 list_for_each(lhp, &rnp->blkd_tasks) {
907 pr_cont(" %p", lhp);
908 if (++i >= 10)
909 break;
910 }
911 pr_cont("\n");
57738942 912 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 913 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
914 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
915 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
916 cpu, ".o"[onl],
917 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
918 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
919 }
4bc8d555
PM
920}
921
28f6569a 922#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
923
924/*
925 * Tell them what RCU they are running.
926 */
0e0fc1c2 927static void __init rcu_bootup_announce(void)
f41d911f 928{
efc151c3 929 pr_info("Hierarchical RCU implementation.\n");
26845c28 930 rcu_bootup_announce_oddness();
f41d911f
PM
931}
932
45975c7d
PM
933/*
934 * Note a quiescent state for PREEMPT=n. Because we do not need to know
935 * how many quiescent states passed, just if there was at least one since
936 * the start of the grace period, this just sets a flag. The caller must
937 * have disabled preemption.
938 */
939static void rcu_qs(void)
d28139c4 940{
45975c7d
PM
941 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
942 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
943 return;
944 trace_rcu_grace_period(TPS("rcu_sched"),
945 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
946 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
947 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
948 return;
949 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
950 rcu_report_exp_rdp(&rcu_state, this_cpu_ptr(&rcu_data));
d28139c4
PM
951}
952
cba6d0d6 953/*
45975c7d 954 * Note a PREEMPT=n context switch. The caller must have disabled interrupts.
cba6d0d6 955 */
45975c7d 956void rcu_note_context_switch(bool preempt)
cba6d0d6 957{
45975c7d
PM
958 barrier(); /* Avoid RCU read-side critical sections leaking down. */
959 trace_rcu_utilization(TPS("Start context switch"));
960 rcu_qs();
961 /* Load rcu_urgent_qs before other flags. */
962 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
963 goto out;
964 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
965 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
966 rcu_momentary_dyntick_idle();
967 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
968 if (!preempt)
969 rcu_tasks_qs(current);
970out:
971 trace_rcu_utilization(TPS("End context switch"));
972 barrier(); /* Avoid RCU read-side critical sections leaking up. */
cba6d0d6 973}
45975c7d 974EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 975
fc2219d4 976/*
6cc68793 977 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
978 * RCU readers.
979 */
27f4d280 980static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
981{
982 return 0;
983}
984
8af3a5e7
PM
985/*
986 * Because there is no preemptible RCU, there can be no readers blocked.
987 */
988static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 989{
8af3a5e7 990 return false;
b668c9cf
PM
991}
992
3e310098
PM
993/*
994 * Because there is no preemptible RCU, there can be no deferred quiescent
995 * states.
996 */
997static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
998{
999 return false;
1000}
1001static void rcu_preempt_deferred_qs(struct task_struct *t) { }
1002
1ed509a2 1003/*
6cc68793 1004 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
1005 * tasks blocked within RCU read-side critical sections.
1006 */
a2887cd8 1007static void rcu_print_detail_task_stall(void)
1ed509a2
PM
1008{
1009}
1010
f41d911f 1011/*
6cc68793 1012 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1013 * tasks blocked within RCU read-side critical sections.
1014 */
9bc8b558 1015static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1016{
9bc8b558 1017 return 0;
f41d911f
PM
1018}
1019
74611ecb
PM
1020/*
1021 * Because preemptible RCU does not exist, we never have to check for
1022 * tasks blocked within RCU read-side critical sections that are
1023 * blocking the current expedited grace period.
1024 */
1025static int rcu_print_task_exp_stall(struct rcu_node *rnp)
1026{
1027 return 0;
1028}
1029
b0e165c0 1030/*
6cc68793 1031 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1032 * so there is no need to check for blocked tasks. So check only for
1033 * bogus qsmask values.
b0e165c0 1034 */
81ab59a3 1035static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 1036{
49e29126 1037 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1038}
1039
f41d911f 1040/*
45975c7d
PM
1041 * Check to see if this CPU is in a non-context-switch quiescent state
1042 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1043 * Also schedule RCU core processing.
1044 *
1045 * This function must be called from hardirq context. It is normally
1046 * invoked from the scheduling-clock interrupt.
f41d911f 1047 */
45975c7d 1048static void rcu_flavor_check_callbacks(int user)
f41d911f 1049{
45975c7d 1050 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 1051
45975c7d
PM
1052 /*
1053 * Get here if this CPU took its interrupt from user
1054 * mode or from the idle loop, and if this is not a
1055 * nested interrupt. In this case, the CPU is in
1056 * a quiescent state, so note it.
1057 *
1058 * No memory barrier is required here because rcu_qs()
1059 * references only CPU-local variables that other CPUs
1060 * neither access nor modify, at least not while the
1061 * corresponding CPU is online.
1062 */
1063
1064 rcu_qs();
1065 }
e74f4c45 1066}
e74f4c45 1067
45975c7d
PM
1068/* PREEMPT=n implementation of synchronize_rcu(). */
1069void synchronize_rcu(void)
1eba8f84 1070{
45975c7d
PM
1071 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
1072 lock_is_held(&rcu_lock_map) ||
1073 lock_is_held(&rcu_sched_lock_map),
1074 "Illegal synchronize_rcu() in RCU-sched read-side critical section");
1075 if (rcu_blocking_is_gp())
1076 return;
1077 if (rcu_gp_is_expedited())
1078 synchronize_rcu_expedited();
1079 else
1080 wait_rcu_gp(call_rcu);
1eba8f84 1081}
45975c7d 1082EXPORT_SYMBOL_GPL(synchronize_rcu);
1eba8f84 1083
2439b696
PM
1084/*
1085 * Because preemptible RCU does not exist, tasks cannot possibly exit
1086 * while in preemptible RCU read-side critical sections.
1087 */
1088void exit_rcu(void)
1089{
1090}
1091
4bc8d555
PM
1092/*
1093 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
1094 */
57738942 1095static void
81ab59a3 1096dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
1097{
1098 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1099}
1100
28f6569a 1101#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 1102
27f4d280
PM
1103#ifdef CONFIG_RCU_BOOST
1104
5d01bbd1
TG
1105static void rcu_wake_cond(struct task_struct *t, int status)
1106{
1107 /*
1108 * If the thread is yielding, only wake it when this
1109 * is invoked from idle
1110 */
1111 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1112 wake_up_process(t);
1113}
1114
27f4d280
PM
1115/*
1116 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1117 * or ->boost_tasks, advancing the pointer to the next task in the
1118 * ->blkd_tasks list.
1119 *
1120 * Note that irqs must be enabled: boosting the task can block.
1121 * Returns 1 if there are more tasks needing to be boosted.
1122 */
1123static int rcu_boost(struct rcu_node *rnp)
1124{
1125 unsigned long flags;
27f4d280
PM
1126 struct task_struct *t;
1127 struct list_head *tb;
1128
7d0ae808
PM
1129 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1130 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
1131 return 0; /* Nothing left to boost. */
1132
2a67e741 1133 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
1134
1135 /*
1136 * Recheck under the lock: all tasks in need of boosting
1137 * might exit their RCU read-side critical sections on their own.
1138 */
1139 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 1140 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1141 return 0;
1142 }
1143
1144 /*
1145 * Preferentially boost tasks blocking expedited grace periods.
1146 * This cannot starve the normal grace periods because a second
1147 * expedited grace period must boost all blocked tasks, including
1148 * those blocking the pre-existing normal grace period.
1149 */
bec06785 1150 if (rnp->exp_tasks != NULL)
27f4d280 1151 tb = rnp->exp_tasks;
bec06785 1152 else
27f4d280
PM
1153 tb = rnp->boost_tasks;
1154
1155 /*
1156 * We boost task t by manufacturing an rt_mutex that appears to
1157 * be held by task t. We leave a pointer to that rt_mutex where
1158 * task t can find it, and task t will release the mutex when it
1159 * exits its outermost RCU read-side critical section. Then
1160 * simply acquiring this artificial rt_mutex will boost task
1161 * t's priority. (Thanks to tglx for suggesting this approach!)
1162 *
1163 * Note that task t must acquire rnp->lock to remove itself from
1164 * the ->blkd_tasks list, which it will do from exit() if from
1165 * nowhere else. We therefore are guaranteed that task t will
1166 * stay around at least until we drop rnp->lock. Note that
1167 * rnp->lock also resolves races between our priority boosting
1168 * and task t's exiting its outermost RCU read-side critical
1169 * section.
1170 */
1171 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1172 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1173 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1174 /* Lock only for side effect: boosts task t's priority. */
1175 rt_mutex_lock(&rnp->boost_mtx);
1176 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1177
7d0ae808
PM
1178 return READ_ONCE(rnp->exp_tasks) != NULL ||
1179 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1180}
1181
27f4d280 1182/*
bc17ea10 1183 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1184 */
1185static int rcu_boost_kthread(void *arg)
1186{
1187 struct rcu_node *rnp = (struct rcu_node *)arg;
1188 int spincnt = 0;
1189 int more2boost;
1190
f7f7bac9 1191 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1192 for (;;) {
d71df90e 1193 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1194 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1195 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1196 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1197 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1198 more2boost = rcu_boost(rnp);
1199 if (more2boost)
1200 spincnt++;
1201 else
1202 spincnt = 0;
1203 if (spincnt > 10) {
5d01bbd1 1204 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1205 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1206 schedule_timeout_interruptible(2);
f7f7bac9 1207 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1208 spincnt = 0;
1209 }
1210 }
1217ed1b 1211 /* NOTREACHED */
f7f7bac9 1212 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1213 return 0;
1214}
1215
1216/*
1217 * Check to see if it is time to start boosting RCU readers that are
1218 * blocking the current grace period, and, if so, tell the per-rcu_node
1219 * kthread to start boosting them. If there is an expedited grace
1220 * period in progress, it is always time to boost.
1221 *
b065a853
PM
1222 * The caller must hold rnp->lock, which this function releases.
1223 * The ->boost_kthread_task is immortal, so we don't need to worry
1224 * about it going away.
27f4d280 1225 */
1217ed1b 1226static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1227 __releases(rnp->lock)
27f4d280
PM
1228{
1229 struct task_struct *t;
1230
a32e01ee 1231 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1232 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1233 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1234 return;
0ea1f2eb 1235 }
27f4d280
PM
1236 if (rnp->exp_tasks != NULL ||
1237 (rnp->gp_tasks != NULL &&
1238 rnp->boost_tasks == NULL &&
1239 rnp->qsmask == 0 &&
1240 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1241 if (rnp->exp_tasks == NULL)
1242 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1243 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1244 t = rnp->boost_kthread_task;
5d01bbd1
TG
1245 if (t)
1246 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1247 } else {
67c583a7 1248 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1249 }
27f4d280
PM
1250}
1251
a46e0899
PM
1252/*
1253 * Wake up the per-CPU kthread to invoke RCU callbacks.
1254 */
1255static void invoke_rcu_callbacks_kthread(void)
1256{
1257 unsigned long flags;
1258
1259 local_irq_save(flags);
1260 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1261 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1262 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1263 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1264 __this_cpu_read(rcu_cpu_kthread_status));
1265 }
a46e0899
PM
1266 local_irq_restore(flags);
1267}
1268
dff1672d
PM
1269/*
1270 * Is the current CPU running the RCU-callbacks kthread?
1271 * Caller must have preemption disabled.
1272 */
1273static bool rcu_is_callbacks_kthread(void)
1274{
c9d4b0af 1275 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1276}
1277
27f4d280
PM
1278#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1279
1280/*
1281 * Do priority-boost accounting for the start of a new grace period.
1282 */
1283static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1284{
1285 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1286}
1287
27f4d280
PM
1288/*
1289 * Create an RCU-boost kthread for the specified node if one does not
1290 * already exist. We only create this kthread for preemptible RCU.
1291 * Returns zero if all is well, a negated errno otherwise.
1292 */
6dbfdc14 1293static int rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1294{
6dbfdc14 1295 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1296 unsigned long flags;
1297 struct sched_param sp;
1298 struct task_struct *t;
1299
6dbfdc14 1300 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
27f4d280 1301 return 0;
5d01bbd1 1302
0aa04b05 1303 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1304 return 0;
1305
6dbfdc14 1306 rcu_state.boost = 1;
27f4d280
PM
1307 if (rnp->boost_kthread_task != NULL)
1308 return 0;
1309 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1310 "rcub/%d", rnp_index);
27f4d280
PM
1311 if (IS_ERR(t))
1312 return PTR_ERR(t);
2a67e741 1313 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1314 rnp->boost_kthread_task = t;
67c583a7 1315 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1316 sp.sched_priority = kthread_prio;
27f4d280 1317 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1318 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1319 return 0;
1320}
1321
f8b7fc6b
PM
1322static void rcu_kthread_do_work(void)
1323{
5bb5d09c 1324 rcu_do_batch(this_cpu_ptr(&rcu_data));
f8b7fc6b
PM
1325}
1326
62ab7072 1327static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1328{
f8b7fc6b 1329 struct sched_param sp;
f8b7fc6b 1330
21871d7e 1331 sp.sched_priority = kthread_prio;
62ab7072 1332 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1333}
1334
62ab7072 1335static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1336{
62ab7072 1337 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1338}
1339
62ab7072 1340static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1341{
c9d4b0af 1342 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1343}
1344
1345/*
1346 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1347 * RCU softirq used in flavors and configurations of RCU that do not
1348 * support RCU priority boosting.
f8b7fc6b 1349 */
62ab7072 1350static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1351{
c9d4b0af
CL
1352 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1353 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1354 int spincnt;
f8b7fc6b 1355
62ab7072 1356 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1357 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1358 local_bh_disable();
f8b7fc6b 1359 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1360 this_cpu_inc(rcu_cpu_kthread_loops);
1361 local_irq_disable();
f8b7fc6b
PM
1362 work = *workp;
1363 *workp = 0;
62ab7072 1364 local_irq_enable();
f8b7fc6b
PM
1365 if (work)
1366 rcu_kthread_do_work();
1367 local_bh_enable();
62ab7072 1368 if (*workp == 0) {
f7f7bac9 1369 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1370 *statusp = RCU_KTHREAD_WAITING;
1371 return;
f8b7fc6b
PM
1372 }
1373 }
62ab7072 1374 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1375 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1376 schedule_timeout_interruptible(2);
f7f7bac9 1377 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1378 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1379}
1380
1381/*
1382 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1383 * served by the rcu_node in question. The CPU hotplug lock is still
1384 * held, so the value of rnp->qsmaskinit will be stable.
1385 *
1386 * We don't include outgoingcpu in the affinity set, use -1 if there is
1387 * no outgoing CPU. If there are no CPUs left in the affinity set,
1388 * this function allows the kthread to execute on any CPU.
1389 */
5d01bbd1 1390static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1391{
5d01bbd1 1392 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1393 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1394 cpumask_var_t cm;
1395 int cpu;
f8b7fc6b 1396
5d01bbd1 1397 if (!t)
f8b7fc6b 1398 return;
5d01bbd1 1399 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1400 return;
bc75e999
MR
1401 for_each_leaf_node_possible_cpu(rnp, cpu)
1402 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1403 cpu != outgoingcpu)
f8b7fc6b 1404 cpumask_set_cpu(cpu, cm);
5d0b0249 1405 if (cpumask_weight(cm) == 0)
f8b7fc6b 1406 cpumask_setall(cm);
5d01bbd1 1407 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1408 free_cpumask_var(cm);
1409}
1410
62ab7072
PM
1411static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1412 .store = &rcu_cpu_kthread_task,
1413 .thread_should_run = rcu_cpu_kthread_should_run,
1414 .thread_fn = rcu_cpu_kthread,
1415 .thread_comm = "rcuc/%u",
1416 .setup = rcu_cpu_kthread_setup,
1417 .park = rcu_cpu_kthread_park,
1418};
f8b7fc6b
PM
1419
1420/*
9386c0b7 1421 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1422 */
9386c0b7 1423static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1424{
f8b7fc6b 1425 struct rcu_node *rnp;
5d01bbd1 1426 int cpu;
f8b7fc6b 1427
62ab7072 1428 for_each_possible_cpu(cpu)
f8b7fc6b 1429 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1430 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
16fc9c60 1431 rcu_for_each_leaf_node(&rcu_state, rnp)
6dbfdc14 1432 (void)rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1433}
f8b7fc6b 1434
49fb4c62 1435static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1436{
da1df50d 1437 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1438 struct rcu_node *rnp = rdp->mynode;
1439
1440 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1441 if (rcu_scheduler_fully_active)
6dbfdc14 1442 (void)rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1443}
1444
27f4d280
PM
1445#else /* #ifdef CONFIG_RCU_BOOST */
1446
1217ed1b 1447static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1448 __releases(rnp->lock)
27f4d280 1449{
67c583a7 1450 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1451}
1452
a46e0899 1453static void invoke_rcu_callbacks_kthread(void)
27f4d280 1454{
a46e0899 1455 WARN_ON_ONCE(1);
27f4d280
PM
1456}
1457
dff1672d
PM
1458static bool rcu_is_callbacks_kthread(void)
1459{
1460 return false;
1461}
1462
27f4d280
PM
1463static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1464{
1465}
1466
5d01bbd1 1467static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1468{
1469}
1470
9386c0b7 1471static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1472{
b0d30417 1473}
b0d30417 1474
49fb4c62 1475static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1476{
1477}
1478
27f4d280
PM
1479#endif /* #else #ifdef CONFIG_RCU_BOOST */
1480
8bd93a2c
PM
1481#if !defined(CONFIG_RCU_FAST_NO_HZ)
1482
1483/*
1484 * Check to see if any future RCU-related work will need to be done
1485 * by the current CPU, even if none need be done immediately, returning
1486 * 1 if so. This function is part of the RCU implementation; it is -not-
1487 * an exported member of the RCU API.
1488 *
7cb92499
PM
1489 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1490 * any flavor of RCU.
8bd93a2c 1491 */
c1ad348b 1492int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1493{
c1ad348b 1494 *nextevt = KTIME_MAX;
44c65ff2 1495 return rcu_cpu_has_callbacks(NULL);
7cb92499
PM
1496}
1497
1498/*
1499 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1500 * after it.
1501 */
8fa7845d 1502static void rcu_cleanup_after_idle(void)
7cb92499
PM
1503{
1504}
1505
aea1b35e 1506/*
a858af28 1507 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1508 * is nothing.
1509 */
198bbf81 1510static void rcu_prepare_for_idle(void)
aea1b35e
PM
1511{
1512}
1513
c57afe80
PM
1514/*
1515 * Don't bother keeping a running count of the number of RCU callbacks
1516 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1517 */
1518static void rcu_idle_count_callbacks_posted(void)
1519{
1520}
1521
8bd93a2c
PM
1522#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1523
f23f7fa1
PM
1524/*
1525 * This code is invoked when a CPU goes idle, at which point we want
1526 * to have the CPU do everything required for RCU so that it can enter
1527 * the energy-efficient dyntick-idle mode. This is handled by a
1528 * state machine implemented by rcu_prepare_for_idle() below.
1529 *
1530 * The following three proprocessor symbols control this state machine:
1531 *
f23f7fa1
PM
1532 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1533 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1534 * is sized to be roughly one RCU grace period. Those energy-efficiency
1535 * benchmarkers who might otherwise be tempted to set this to a large
1536 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1537 * system. And if you are -that- concerned about energy efficiency,
1538 * just power the system down and be done with it!
778d250a
PM
1539 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1540 * permitted to sleep in dyntick-idle mode with only lazy RCU
1541 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1542 *
1543 * The values below work well in practice. If future workloads require
1544 * adjustment, they can be converted into kernel config parameters, though
1545 * making the state machine smarter might be a better option.
1546 */
e84c48ae 1547#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1548#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1549
5e44ce35
PM
1550static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1551module_param(rcu_idle_gp_delay, int, 0644);
1552static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1553module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1554
486e2593 1555/*
c229828c
PM
1556 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1557 * only if it has been awhile since the last time we did so. Afterwards,
1558 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1559 */
f1f399d1 1560static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1561{
c0f4dfd4
PM
1562 bool cbs_ready = false;
1563 struct rcu_data *rdp;
c229828c 1564 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1565 struct rcu_node *rnp;
1566 struct rcu_state *rsp;
486e2593 1567
c229828c
PM
1568 /* Exit early if we advanced recently. */
1569 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1570 return false;
c229828c
PM
1571 rdtp->last_advance_all = jiffies;
1572
c0f4dfd4 1573 for_each_rcu_flavor(rsp) {
da1df50d 1574 rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1575 rnp = rdp->mynode;
486e2593 1576
c0f4dfd4
PM
1577 /*
1578 * Don't bother checking unless a grace period has
1579 * completed since we last checked and there are
1580 * callbacks not yet ready to invoke.
1581 */
03c8cb76
PM
1582 if ((rcu_seq_completed_gp(rdp->gp_seq,
1583 rcu_seq_current(&rnp->gp_seq)) ||
7d0ae808 1584 unlikely(READ_ONCE(rdp->gpwrap))) &&
15fecf89 1585 rcu_segcblist_pend_cbs(&rdp->cblist))
15cabdff 1586 note_gp_changes(rdp);
486e2593 1587
15fecf89 1588 if (rcu_segcblist_ready_cbs(&rdp->cblist))
c0f4dfd4
PM
1589 cbs_ready = true;
1590 }
1591 return cbs_ready;
486e2593
PM
1592}
1593
aa9b1630 1594/*
c0f4dfd4
PM
1595 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1596 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1597 * caller to set the timeout based on whether or not there are non-lazy
1598 * callbacks.
aa9b1630 1599 *
c0f4dfd4 1600 * The caller must have disabled interrupts.
aa9b1630 1601 */
c1ad348b 1602int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1603{
aa6da514 1604 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c1ad348b 1605 unsigned long dj;
aa9b1630 1606
b04db8e1 1607 lockdep_assert_irqs_disabled();
3382adbc 1608
c0f4dfd4
PM
1609 /* Snapshot to detect later posting of non-lazy callback. */
1610 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1611
aa9b1630 1612 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1613 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c1ad348b 1614 *nextevt = KTIME_MAX;
aa9b1630
PM
1615 return 0;
1616 }
c0f4dfd4
PM
1617
1618 /* Attempt to advance callbacks. */
1619 if (rcu_try_advance_all_cbs()) {
1620 /* Some ready to invoke, so initiate later invocation. */
1621 invoke_rcu_core();
aa9b1630
PM
1622 return 1;
1623 }
c0f4dfd4
PM
1624 rdtp->last_accelerate = jiffies;
1625
1626 /* Request timer delay depending on laziness, and round. */
6faf7283 1627 if (!rdtp->all_lazy) {
c1ad348b 1628 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1629 rcu_idle_gp_delay) - jiffies;
e84c48ae 1630 } else {
c1ad348b 1631 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1632 }
c1ad348b 1633 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1634 return 0;
1635}
1636
21e52e15 1637/*
c0f4dfd4
PM
1638 * Prepare a CPU for idle from an RCU perspective. The first major task
1639 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1640 * The second major task is to check to see if a non-lazy callback has
1641 * arrived at a CPU that previously had only lazy callbacks. The third
1642 * major task is to accelerate (that is, assign grace-period numbers to)
1643 * any recently arrived callbacks.
aea1b35e
PM
1644 *
1645 * The caller must have disabled interrupts.
8bd93a2c 1646 */
198bbf81 1647static void rcu_prepare_for_idle(void)
8bd93a2c 1648{
48a7639c 1649 bool needwake;
c0f4dfd4 1650 struct rcu_data *rdp;
198bbf81 1651 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1652 struct rcu_node *rnp;
1653 struct rcu_state *rsp;
9d2ad243
PM
1654 int tne;
1655
b04db8e1 1656 lockdep_assert_irqs_disabled();
44c65ff2 1657 if (rcu_is_nocb_cpu(smp_processor_id()))
3382adbc
PM
1658 return;
1659
9d2ad243 1660 /* Handle nohz enablement switches conservatively. */
7d0ae808 1661 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1662 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1663 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1664 invoke_rcu_core(); /* force nohz to see update. */
1665 rdtp->tick_nohz_enabled_snap = tne;
1666 return;
1667 }
1668 if (!tne)
1669 return;
f511fc62 1670
c57afe80 1671 /*
c0f4dfd4
PM
1672 * If a non-lazy callback arrived at a CPU having only lazy
1673 * callbacks, invoke RCU core for the side-effect of recalculating
1674 * idle duration on re-entry to idle.
c57afe80 1675 */
c0f4dfd4
PM
1676 if (rdtp->all_lazy &&
1677 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1678 rdtp->all_lazy = false;
1679 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1680 invoke_rcu_core();
c57afe80
PM
1681 return;
1682 }
c57afe80 1683
3084f2f8 1684 /*
c0f4dfd4
PM
1685 * If we have not yet accelerated this jiffy, accelerate all
1686 * callbacks on this CPU.
3084f2f8 1687 */
c0f4dfd4 1688 if (rdtp->last_accelerate == jiffies)
aea1b35e 1689 return;
c0f4dfd4
PM
1690 rdtp->last_accelerate = jiffies;
1691 for_each_rcu_flavor(rsp) {
da1df50d 1692 rdp = this_cpu_ptr(&rcu_data);
135bd1a2 1693 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
c0f4dfd4
PM
1694 continue;
1695 rnp = rdp->mynode;
2a67e741 1696 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1697 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1698 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1699 if (needwake)
532c00c9 1700 rcu_gp_kthread_wake();
77e38ed3 1701 }
c0f4dfd4 1702}
3084f2f8 1703
c0f4dfd4
PM
1704/*
1705 * Clean up for exit from idle. Attempt to advance callbacks based on
1706 * any grace periods that elapsed while the CPU was idle, and if any
1707 * callbacks are now ready to invoke, initiate invocation.
1708 */
8fa7845d 1709static void rcu_cleanup_after_idle(void)
c0f4dfd4 1710{
b04db8e1 1711 lockdep_assert_irqs_disabled();
44c65ff2 1712 if (rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1713 return;
7a497c96
PM
1714 if (rcu_try_advance_all_cbs())
1715 invoke_rcu_core();
8bd93a2c
PM
1716}
1717
c57afe80 1718/*
98248a0e
PM
1719 * Keep a running count of the number of non-lazy callbacks posted
1720 * on this CPU. This running counter (which is never decremented) allows
1721 * rcu_prepare_for_idle() to detect when something out of the idle loop
1722 * posts a callback, even if an equal number of callbacks are invoked.
1723 * Of course, callbacks should only be posted from within a trace event
1724 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1725 */
1726static void rcu_idle_count_callbacks_posted(void)
1727{
5955f7ee 1728 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1729}
1730
8bd93a2c 1731#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1732
a858af28
PM
1733#ifdef CONFIG_RCU_FAST_NO_HZ
1734
1735static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1736{
5955f7ee 1737 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1738 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1739
c0f4dfd4
PM
1740 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1741 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1742 ulong2long(nlpd),
1743 rdtp->all_lazy ? 'L' : '.',
1744 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1745}
1746
1747#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1748
1749static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1750{
1c17e4d4 1751 *cp = '\0';
a858af28
PM
1752}
1753
1754#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1755
1756/* Initiate the stall-info list. */
1757static void print_cpu_stall_info_begin(void)
1758{
efc151c3 1759 pr_cont("\n");
a858af28
PM
1760}
1761
1762/*
1763 * Print out diagnostic information for the specified stalled CPU.
1764 *
1765 * If the specified CPU is aware of the current RCU grace period
1766 * (flavor specified by rsp), then print the number of scheduling
1767 * clock interrupts the CPU has taken during the time that it has
1768 * been aware. Otherwise, print the number of RCU grace periods
1769 * that this CPU is ignorant of, for example, "1" if the CPU was
1770 * aware of the previous grace period.
1771 *
1772 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1773 */
b21ebed9 1774static void print_cpu_stall_info(int cpu)
a858af28 1775{
9b9500da 1776 unsigned long delta;
a858af28 1777 char fast_no_hz[72];
da1df50d 1778 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
a858af28
PM
1779 struct rcu_dynticks *rdtp = rdp->dynticks;
1780 char *ticks_title;
1781 unsigned long ticks_value;
1782
3caa973b
TH
1783 /*
1784 * We could be printing a lot while holding a spinlock. Avoid
1785 * triggering hard lockup.
1786 */
1787 touch_nmi_watchdog();
1788
b21ebed9 1789 ticks_value = rcu_seq_ctr(rcu_state.gp_seq - rdp->gp_seq);
471f87c3
PM
1790 if (ticks_value) {
1791 ticks_title = "GPs behind";
1792 } else {
a858af28
PM
1793 ticks_title = "ticks this GP";
1794 ticks_value = rdp->ticks_this_gp;
a858af28
PM
1795 }
1796 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
8aa670cd 1797 delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
89b4cd4b 1798 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
7f21aeef
PM
1799 cpu,
1800 "O."[!!cpu_online(cpu)],
1801 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1802 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
9b9500da
PM
1803 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1804 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1805 "!."[!delta],
7f21aeef 1806 ticks_value, ticks_title,
02a5c550 1807 rcu_dynticks_snap(rdtp) & 0xfff,
a858af28 1808 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1809 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
b21ebed9 1810 READ_ONCE(rcu_state.n_force_qs) - rcu_state.n_force_qs_gpstart,
a858af28
PM
1811 fast_no_hz);
1812}
1813
1814/* Terminate the stall-info list. */
1815static void print_cpu_stall_info_end(void)
1816{
efc151c3 1817 pr_err("\t");
a858af28
PM
1818}
1819
1820/* Zero ->ticks_this_gp for all flavors of RCU. */
1821static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1822{
1823 rdp->ticks_this_gp = 0;
6231069b 1824 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1825}
1826
1827/* Increment ->ticks_this_gp for all flavors of RCU. */
1828static void increment_cpu_stall_ticks(void)
1829{
115f7a7c
PM
1830 struct rcu_state *rsp;
1831
1832 for_each_rcu_flavor(rsp)
da1df50d 1833 raw_cpu_inc(rcu_data.ticks_this_gp);
a858af28
PM
1834}
1835
3fbfbf7a
PM
1836#ifdef CONFIG_RCU_NOCB_CPU
1837
1838/*
1839 * Offload callback processing from the boot-time-specified set of CPUs
1840 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1841 * kthread created that pulls the callbacks from the corresponding CPU,
1842 * waits for a grace period to elapse, and invokes the callbacks.
1843 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1844 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1845 * has been specified, in which case each kthread actively polls its
1846 * CPU. (Which isn't so great for energy efficiency, but which does
1847 * reduce RCU's overhead on that CPU.)
1848 *
1849 * This is intended to be used in conjunction with Frederic Weisbecker's
1850 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1851 * running CPU-bound user-mode computations.
1852 *
1853 * Offloading of callback processing could also in theory be used as
1854 * an energy-efficiency measure because CPUs with no RCU callbacks
1855 * queued are more aggressive about entering dyntick-idle mode.
1856 */
1857
1858
1859/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1860static int __init rcu_nocb_setup(char *str)
1861{
1862 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
3fbfbf7a
PM
1863 cpulist_parse(str, rcu_nocb_mask);
1864 return 1;
1865}
1866__setup("rcu_nocbs=", rcu_nocb_setup);
1867
1b0048a4
PG
1868static int __init parse_rcu_nocb_poll(char *arg)
1869{
5455a7f6 1870 rcu_nocb_poll = true;
1b0048a4
PG
1871 return 0;
1872}
1873early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1874
dae6e64d 1875/*
0446be48
PM
1876 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1877 * grace period.
dae6e64d 1878 */
abedf8e2 1879static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1880{
abedf8e2 1881 swake_up_all(sq);
dae6e64d
PM
1882}
1883
abedf8e2 1884static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1885{
e0da2374 1886 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1887}
1888
dae6e64d 1889static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1890{
abedf8e2
PG
1891 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1892 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1893}
1894
24342c96 1895/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1896bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1897{
84b12b75 1898 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1899 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1900 return false;
1901}
1902
fbce7497 1903/*
8be6e1b1
PM
1904 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1905 * and this function releases it.
fbce7497 1906 */
8be6e1b1
PM
1907static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1908 unsigned long flags)
1909 __releases(rdp->nocb_lock)
fbce7497
PM
1910{
1911 struct rcu_data *rdp_leader = rdp->nocb_leader;
1912
8be6e1b1
PM
1913 lockdep_assert_held(&rdp->nocb_lock);
1914 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1915 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 1916 return;
8be6e1b1
PM
1917 }
1918 if (rdp_leader->nocb_leader_sleep || force) {
39953dfd 1919 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1920 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
8be6e1b1
PM
1921 del_timer(&rdp->nocb_timer);
1922 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
b3dae109
PZ
1923 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1924 swake_up_one(&rdp_leader->nocb_wq);
8be6e1b1
PM
1925 } else {
1926 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497
PM
1927 }
1928}
1929
8be6e1b1
PM
1930/*
1931 * Kick the leader kthread for this NOCB group, but caller has not
1932 * acquired locks.
1933 */
1934static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1935{
1936 unsigned long flags;
1937
1938 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1939 __wake_nocb_leader(rdp, force, flags);
1940}
1941
1942/*
1943 * Arrange to wake the leader kthread for this NOCB group at some
1944 * future time when it is safe to do so.
1945 */
1946static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1947 const char *reason)
1948{
1949 unsigned long flags;
1950
1951 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1952 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1953 mod_timer(&rdp->nocb_timer, jiffies + 1);
1954 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1955 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1956 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1957}
1958
d7e29933
PM
1959/*
1960 * Does the specified CPU need an RCU callback for the specified flavor
1961 * of rcu_barrier()?
1962 */
4580b054 1963static bool rcu_nocb_cpu_needs_barrier(int cpu)
d7e29933 1964{
da1df50d 1965 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
41050a00
PM
1966 unsigned long ret;
1967#ifdef CONFIG_PROVE_RCU
d7e29933 1968 struct rcu_head *rhp;
41050a00 1969#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1970
41050a00
PM
1971 /*
1972 * Check count of all no-CBs callbacks awaiting invocation.
1973 * There needs to be a barrier before this function is called,
1974 * but associated with a prior determination that no more
1975 * callbacks would be posted. In the worst case, the first
1976 * barrier in _rcu_barrier() suffices (but the caller cannot
1977 * necessarily rely on this, not a substitute for the caller
1978 * getting the concurrency design right!). There must also be
1979 * a barrier between the following load an posting of a callback
1980 * (if a callback is in fact needed). This is associated with an
1981 * atomic_inc() in the caller.
1982 */
1983 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1984
41050a00 1985#ifdef CONFIG_PROVE_RCU
7d0ae808 1986 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1987 if (!rhp)
7d0ae808 1988 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1989 if (!rhp)
7d0ae808 1990 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1991
1992 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1993 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1994 rcu_scheduler_fully_active) {
d7e29933
PM
1995 /* RCU callback enqueued before CPU first came online??? */
1996 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1997 cpu, rhp->func);
1998 WARN_ON_ONCE(1);
1999 }
41050a00 2000#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 2001
41050a00 2002 return !!ret;
d7e29933
PM
2003}
2004
3fbfbf7a
PM
2005/*
2006 * Enqueue the specified string of rcu_head structures onto the specified
2007 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2008 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2009 * counts are supplied by rhcount and rhcount_lazy.
2010 *
2011 * If warranted, also wake up the kthread servicing this CPUs queues.
2012 */
2013static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2014 struct rcu_head *rhp,
2015 struct rcu_head **rhtp,
96d3fd0d
PM
2016 int rhcount, int rhcount_lazy,
2017 unsigned long flags)
3fbfbf7a
PM
2018{
2019 int len;
2020 struct rcu_head **old_rhpp;
2021 struct task_struct *t;
2022
2023 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
2024 atomic_long_add(rhcount, &rdp->nocb_q_count);
2025 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 2026 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 2027 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 2028 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 2029 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
2030
2031 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 2032 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 2033 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2034 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2035 TPS("WakeNotPoll"));
3fbfbf7a 2036 return;
9261dd0d 2037 }
3fbfbf7a
PM
2038 len = atomic_long_read(&rdp->nocb_q_count);
2039 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2040 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2041 /* ... if queue was empty ... */
2042 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2043 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2044 TPS("WakeEmpty"));
2045 } else {
8be6e1b1
PM
2046 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
2047 TPS("WakeEmptyIsDeferred"));
96d3fd0d 2048 }
3fbfbf7a
PM
2049 rdp->qlen_last_fqs_check = 0;
2050 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 2051 /* ... or if many callbacks queued. */
9fdd3bc9
PM
2052 if (!irqs_disabled_flags(flags)) {
2053 wake_nocb_leader(rdp, true);
2054 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2055 TPS("WakeOvf"));
2056 } else {
efcd2d54 2057 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
8be6e1b1 2058 TPS("WakeOvfIsDeferred"));
9fdd3bc9 2059 }
3fbfbf7a 2060 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2061 } else {
2062 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2063 }
2064 return;
2065}
2066
2067/*
2068 * This is a helper for __call_rcu(), which invokes this when the normal
2069 * callback queue is inoperable. If this is not a no-CBs CPU, this
2070 * function returns failure back to __call_rcu(), which can complain
2071 * appropriately.
2072 *
2073 * Otherwise, this function queues the callback where the corresponding
2074 * "rcuo" kthread can find it.
2075 */
2076static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2077 bool lazy, unsigned long flags)
3fbfbf7a
PM
2078{
2079
d1e43fa5 2080 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2081 return false;
96d3fd0d 2082 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2083 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2084 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2085 (unsigned long)rhp->func,
756cbf6b
PM
2086 -atomic_long_read(&rdp->nocb_q_count_lazy),
2087 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2088 else
2089 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2090 -atomic_long_read(&rdp->nocb_q_count_lazy),
2091 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2092
2093 /*
2094 * If called from an extended quiescent state with interrupts
2095 * disabled, invoke the RCU core in order to allow the idle-entry
2096 * deferred-wakeup check to function.
2097 */
2098 if (irqs_disabled_flags(flags) &&
2099 !rcu_is_watching() &&
2100 cpu_online(smp_processor_id()))
2101 invoke_rcu_core();
2102
c271d3a9 2103 return true;
3fbfbf7a
PM
2104}
2105
2106/*
2107 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2108 * not a no-CBs CPU.
2109 */
b1a2d79f 2110static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
96d3fd0d
PM
2111 struct rcu_data *rdp,
2112 unsigned long flags)
3fbfbf7a 2113{
b04db8e1 2114 lockdep_assert_irqs_disabled();
d1e43fa5 2115 if (!rcu_is_nocb_cpu(smp_processor_id()))
b1a2d79f
PM
2116 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2117 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2118 rcu_segcblist_tail(&rdp->cblist),
2119 rcu_segcblist_n_cbs(&rdp->cblist),
2120 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2121 rcu_segcblist_init(&rdp->cblist);
2122 rcu_segcblist_disable(&rdp->cblist);
0a9e1e11 2123 return true;
3fbfbf7a
PM
2124}
2125
2126/*
34ed6246
PM
2127 * If necessary, kick off a new grace period, and either way wait
2128 * for a subsequent grace period to complete.
3fbfbf7a 2129 */
34ed6246 2130static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2131{
34ed6246 2132 unsigned long c;
dae6e64d 2133 bool d;
34ed6246 2134 unsigned long flags;
48a7639c 2135 bool needwake;
34ed6246
PM
2136 struct rcu_node *rnp = rdp->mynode;
2137
ab5e869c 2138 local_irq_save(flags);
29365e56 2139 c = rcu_seq_snap(&rdp->rsp->gp_seq);
ab5e869c
PM
2140 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2141 local_irq_restore(flags);
2142 } else {
2143 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2144 needwake = rcu_start_this_gp(rnp, rdp, c);
2145 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2146 if (needwake)
532c00c9 2147 rcu_gp_kthread_wake();
ab5e869c 2148 }
3fbfbf7a
PM
2149
2150 /*
34ed6246
PM
2151 * Wait for the grace period. Do so interruptibly to avoid messing
2152 * up the load average.
3fbfbf7a 2153 */
41e80595 2154 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2155 for (;;) {
b3dae109 2156 swait_event_interruptible_exclusive(
29365e56
PM
2157 rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2158 (d = rcu_seq_done(&rnp->gp_seq, c)));
dae6e64d 2159 if (likely(d))
34ed6246 2160 break;
73a860cd 2161 WARN_ON(signal_pending(current));
41e80595 2162 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2163 }
41e80595 2164 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2165 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2166}
2167
fbce7497
PM
2168/*
2169 * Leaders come here to wait for additional callbacks to show up.
2170 * This function does not return until callbacks appear.
2171 */
2172static void nocb_leader_wait(struct rcu_data *my_rdp)
2173{
2174 bool firsttime = true;
8be6e1b1 2175 unsigned long flags;
fbce7497
PM
2176 bool gotcbs;
2177 struct rcu_data *rdp;
2178 struct rcu_head **tail;
2179
2180wait_again:
2181
2182 /* Wait for callbacks to appear. */
2183 if (!rcu_nocb_poll) {
bedbb648 2184 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
b3dae109 2185 swait_event_interruptible_exclusive(my_rdp->nocb_wq,
7d0ae808 2186 !READ_ONCE(my_rdp->nocb_leader_sleep));
8be6e1b1
PM
2187 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2188 my_rdp->nocb_leader_sleep = true;
2189 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2190 del_timer(&my_rdp->nocb_timer);
2191 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
fbce7497
PM
2192 } else if (firsttime) {
2193 firsttime = false; /* Don't drown trace log with "Poll"! */
bedbb648 2194 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
fbce7497
PM
2195 }
2196
2197 /*
2198 * Each pass through the following loop checks a follower for CBs.
2199 * We are our own first follower. Any CBs found are moved to
2200 * nocb_gp_head, where they await a grace period.
2201 */
2202 gotcbs = false;
8be6e1b1 2203 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
fbce7497 2204 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2205 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2206 if (!rdp->nocb_gp_head)
2207 continue; /* No CBs here, try next follower. */
2208
2209 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2210 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2211 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2212 gotcbs = true;
2213 }
2214
8be6e1b1 2215 /* No callbacks? Sleep a bit if polling, and go retry. */
fbce7497 2216 if (unlikely(!gotcbs)) {
73a860cd 2217 WARN_ON(signal_pending(current));
8be6e1b1
PM
2218 if (rcu_nocb_poll) {
2219 schedule_timeout_interruptible(1);
2220 } else {
fbce7497 2221 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
bedbb648 2222 TPS("WokeEmpty"));
8be6e1b1 2223 }
fbce7497
PM
2224 goto wait_again;
2225 }
2226
2227 /* Wait for one grace period. */
2228 rcu_nocb_wait_gp(my_rdp);
2229
fbce7497
PM
2230 /* Each pass through the following loop wakes a follower, if needed. */
2231 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
8be6e1b1
PM
2232 if (!rcu_nocb_poll &&
2233 READ_ONCE(rdp->nocb_head) &&
2234 READ_ONCE(my_rdp->nocb_leader_sleep)) {
2235 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
11ed7f93 2236 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
8be6e1b1
PM
2237 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2238 }
fbce7497
PM
2239 if (!rdp->nocb_gp_head)
2240 continue; /* No CBs, so no need to wake follower. */
2241
2242 /* Append callbacks to follower's "done" list. */
8be6e1b1
PM
2243 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2244 tail = rdp->nocb_follower_tail;
2245 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
fbce7497 2246 *tail = rdp->nocb_gp_head;
8be6e1b1 2247 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 2248 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
8be6e1b1 2249 /* List was empty, so wake up the follower. */
b3dae109 2250 swake_up_one(&rdp->nocb_wq);
fbce7497
PM
2251 }
2252 }
2253
2254 /* If we (the leader) don't have CBs, go wait some more. */
2255 if (!my_rdp->nocb_follower_head)
2256 goto wait_again;
2257}
2258
2259/*
2260 * Followers come here to wait for additional callbacks to show up.
2261 * This function does not return until callbacks appear.
2262 */
2263static void nocb_follower_wait(struct rcu_data *rdp)
2264{
fbce7497 2265 for (;;) {
bedbb648 2266 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
b3dae109 2267 swait_event_interruptible_exclusive(rdp->nocb_wq,
8be6e1b1 2268 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2269 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2270 /* ^^^ Ensure CB invocation follows _head test. */
2271 return;
2272 }
73a860cd 2273 WARN_ON(signal_pending(current));
bedbb648 2274 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2275 }
2276}
2277
3fbfbf7a
PM
2278/*
2279 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2280 * callbacks queued by the corresponding no-CBs CPU, however, there is
2281 * an optional leader-follower relationship so that the grace-period
2282 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2283 */
2284static int rcu_nocb_kthread(void *arg)
2285{
2286 int c, cl;
8be6e1b1 2287 unsigned long flags;
3fbfbf7a
PM
2288 struct rcu_head *list;
2289 struct rcu_head *next;
2290 struct rcu_head **tail;
2291 struct rcu_data *rdp = arg;
2292
2293 /* Each pass through this loop invokes one batch of callbacks */
2294 for (;;) {
fbce7497
PM
2295 /* Wait for callbacks. */
2296 if (rdp->nocb_leader == rdp)
2297 nocb_leader_wait(rdp);
2298 else
2299 nocb_follower_wait(rdp);
2300
2301 /* Pull the ready-to-invoke callbacks onto local list. */
8be6e1b1
PM
2302 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2303 list = rdp->nocb_follower_head;
2304 rdp->nocb_follower_head = NULL;
2305 tail = rdp->nocb_follower_tail;
2306 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2307 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 2308 BUG_ON(!list);
bedbb648 2309 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
3fbfbf7a
PM
2310
2311 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2312 trace_rcu_batch_start(rdp->rsp->name,
2313 atomic_long_read(&rdp->nocb_q_count_lazy),
2314 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2315 c = cl = 0;
2316 while (list) {
2317 next = list->next;
2318 /* Wait for enqueuing to complete, if needed. */
2319 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2320 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2321 TPS("WaitQueue"));
3fbfbf7a 2322 schedule_timeout_interruptible(1);
69a79bb1
PM
2323 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2324 TPS("WokeQueue"));
3fbfbf7a
PM
2325 next = list->next;
2326 }
2327 debug_rcu_head_unqueue(list);
2328 local_bh_disable();
2329 if (__rcu_reclaim(rdp->rsp->name, list))
2330 cl++;
2331 c++;
2332 local_bh_enable();
cee43939 2333 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2334 list = next;
2335 }
2336 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2337 smp_mb__before_atomic(); /* _add after CB invocation. */
2338 atomic_long_add(-c, &rdp->nocb_q_count);
2339 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
3fbfbf7a
PM
2340 }
2341 return 0;
2342}
2343
96d3fd0d 2344/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2345static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2346{
7d0ae808 2347 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2348}
2349
2350/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2351static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2352{
8be6e1b1 2353 unsigned long flags;
9fdd3bc9
PM
2354 int ndw;
2355
8be6e1b1
PM
2356 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2357 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2358 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
96d3fd0d 2359 return;
8be6e1b1 2360 }
7d0ae808 2361 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2362 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
8be6e1b1 2363 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
9fdd3bc9 2364 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2365}
2366
8be6e1b1 2367/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2368static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2369{
fd30b717
KC
2370 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2371
2372 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2373}
2374
2375/*
2376 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2377 * This means we do an inexact common-case check. Note that if
2378 * we miss, ->nocb_timer will eventually clean things up.
2379 */
2380static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2381{
2382 if (rcu_nocb_need_deferred_wakeup(rdp))
2383 do_nocb_deferred_wakeup_common(rdp);
2384}
2385
f4579fc5
PM
2386void __init rcu_init_nohz(void)
2387{
2388 int cpu;
ef126206 2389 bool need_rcu_nocb_mask = false;
f4579fc5
PM
2390 struct rcu_state *rsp;
2391
f4579fc5
PM
2392#if defined(CONFIG_NO_HZ_FULL)
2393 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2394 need_rcu_nocb_mask = true;
2395#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2396
84b12b75 2397 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2398 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2399 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2400 return;
2401 }
f4579fc5 2402 }
84b12b75 2403 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2404 return;
2405
f4579fc5
PM
2406#if defined(CONFIG_NO_HZ_FULL)
2407 if (tick_nohz_full_running)
2408 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2409#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2410
2411 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2412 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2413 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2414 rcu_nocb_mask);
2415 }
3016611e
PM
2416 if (cpumask_empty(rcu_nocb_mask))
2417 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2418 else
2419 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2420 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2421 if (rcu_nocb_poll)
2422 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2423
2424 for_each_rcu_flavor(rsp) {
34404ca8 2425 for_each_cpu(cpu, rcu_nocb_mask)
da1df50d 2426 init_nocb_callback_list(per_cpu_ptr(&rcu_data, cpu));
4580b054 2427 rcu_organize_nocb_kthreads();
f4579fc5 2428 }
96d3fd0d
PM
2429}
2430
3fbfbf7a
PM
2431/* Initialize per-rcu_data variables for no-CBs CPUs. */
2432static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2433{
2434 rdp->nocb_tail = &rdp->nocb_head;
abedf8e2 2435 init_swait_queue_head(&rdp->nocb_wq);
fbce7497 2436 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
8be6e1b1 2437 raw_spin_lock_init(&rdp->nocb_lock);
fd30b717 2438 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
3fbfbf7a
PM
2439}
2440
35ce7f29
PM
2441/*
2442 * If the specified CPU is a no-CBs CPU that does not already have its
2443 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2444 * brought online out of order, this can require re-organizing the
2445 * leader-follower relationships.
2446 */
4580b054 2447static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29
PM
2448{
2449 struct rcu_data *rdp;
2450 struct rcu_data *rdp_last;
2451 struct rcu_data *rdp_old_leader;
da1df50d 2452 struct rcu_data *rdp_spawn = per_cpu_ptr(&rcu_data, cpu);
35ce7f29
PM
2453 struct task_struct *t;
2454
2455 /*
2456 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2457 * then nothing to do.
2458 */
2459 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2460 return;
2461
2462 /* If we didn't spawn the leader first, reorganize! */
2463 rdp_old_leader = rdp_spawn->nocb_leader;
2464 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2465 rdp_last = NULL;
2466 rdp = rdp_old_leader;
2467 do {
2468 rdp->nocb_leader = rdp_spawn;
2469 if (rdp_last && rdp != rdp_spawn)
2470 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2471 if (rdp == rdp_spawn) {
2472 rdp = rdp->nocb_next_follower;
2473 } else {
2474 rdp_last = rdp;
2475 rdp = rdp->nocb_next_follower;
2476 rdp_last->nocb_next_follower = NULL;
2477 }
35ce7f29
PM
2478 } while (rdp);
2479 rdp_spawn->nocb_next_follower = rdp_old_leader;
2480 }
2481
2482 /* Spawn the kthread for this CPU and RCU flavor. */
2483 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
4580b054 2484 "rcuo%c/%d", rcu_state.abbr, cpu);
35ce7f29 2485 BUG_ON(IS_ERR(t));
7d0ae808 2486 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2487}
2488
2489/*
2490 * If the specified CPU is a no-CBs CPU that does not already have its
2491 * rcuo kthreads, spawn them.
2492 */
2493static void rcu_spawn_all_nocb_kthreads(int cpu)
2494{
2495 struct rcu_state *rsp;
2496
2497 if (rcu_scheduler_fully_active)
2498 for_each_rcu_flavor(rsp)
4580b054 2499 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
2500}
2501
2502/*
2503 * Once the scheduler is running, spawn rcuo kthreads for all online
2504 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2505 * non-boot CPUs come online -- if this changes, we will need to add
2506 * some mutual exclusion.
2507 */
2508static void __init rcu_spawn_nocb_kthreads(void)
2509{
2510 int cpu;
2511
2512 for_each_online_cpu(cpu)
2513 rcu_spawn_all_nocb_kthreads(cpu);
2514}
2515
fbce7497
PM
2516/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2517static int rcu_nocb_leader_stride = -1;
2518module_param(rcu_nocb_leader_stride, int, 0444);
2519
2520/*
35ce7f29 2521 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2522 */
4580b054 2523static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2524{
2525 int cpu;
fbce7497
PM
2526 int ls = rcu_nocb_leader_stride;
2527 int nl = 0; /* Next leader. */
3fbfbf7a 2528 struct rcu_data *rdp;
fbce7497
PM
2529 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2530 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2531
84b12b75 2532 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2533 return;
fbce7497
PM
2534 if (ls == -1) {
2535 ls = int_sqrt(nr_cpu_ids);
2536 rcu_nocb_leader_stride = ls;
2537 }
2538
2539 /*
9831ce3b
PM
2540 * Each pass through this loop sets up one rcu_data structure.
2541 * Should the corresponding CPU come online in the future, then
2542 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2543 */
3fbfbf7a 2544 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2545 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497
PM
2546 if (rdp->cpu >= nl) {
2547 /* New leader, set up for followers & next leader. */
2548 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2549 rdp->nocb_leader = rdp;
2550 rdp_leader = rdp;
2551 } else {
2552 /* Another follower, link to previous leader. */
2553 rdp->nocb_leader = rdp_leader;
2554 rdp_prev->nocb_next_follower = rdp;
2555 }
2556 rdp_prev = rdp;
3fbfbf7a
PM
2557 }
2558}
2559
2560/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2561static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2562{
22c2f669 2563 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2564 return false;
22c2f669 2565
34404ca8 2566 /* If there are early-boot callbacks, move them to nocb lists. */
15fecf89
PM
2567 if (!rcu_segcblist_empty(&rdp->cblist)) {
2568 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2569 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2570 atomic_long_set(&rdp->nocb_q_count,
2571 rcu_segcblist_n_cbs(&rdp->cblist));
2572 atomic_long_set(&rdp->nocb_q_count_lazy,
2573 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2574 rcu_segcblist_init(&rdp->cblist);
34404ca8 2575 }
15fecf89 2576 rcu_segcblist_disable(&rdp->cblist);
34ed6246 2577 return true;
3fbfbf7a
PM
2578}
2579
34ed6246
PM
2580#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2581
4580b054 2582static bool rcu_nocb_cpu_needs_barrier(int cpu)
d7e29933
PM
2583{
2584 WARN_ON_ONCE(1); /* Should be dead code. */
2585 return false;
2586}
2587
abedf8e2 2588static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2589{
3fbfbf7a
PM
2590}
2591
abedf8e2 2592static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2593{
2594 return NULL;
2595}
2596
dae6e64d
PM
2597static void rcu_init_one_nocb(struct rcu_node *rnp)
2598{
2599}
3fbfbf7a 2600
3fbfbf7a 2601static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2602 bool lazy, unsigned long flags)
3fbfbf7a 2603{
4afc7e26 2604 return false;
3fbfbf7a
PM
2605}
2606
b1a2d79f 2607static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
96d3fd0d
PM
2608 struct rcu_data *rdp,
2609 unsigned long flags)
3fbfbf7a 2610{
f4aa84ba 2611 return false;
3fbfbf7a
PM
2612}
2613
3fbfbf7a
PM
2614static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2615{
2616}
2617
9fdd3bc9 2618static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2619{
2620 return false;
2621}
2622
2623static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2624{
2625}
2626
35ce7f29
PM
2627static void rcu_spawn_all_nocb_kthreads(int cpu)
2628{
2629}
2630
2631static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2632{
2633}
2634
34ed6246 2635static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2636{
34ed6246 2637 return false;
3fbfbf7a
PM
2638}
2639
2640#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2641
a096932f
PM
2642/*
2643 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2644 * grace-period kthread will do force_quiescent_state() processing?
2645 * The idea is to avoid waking up RCU core processing on such a
2646 * CPU unless the grace period has extended for too long.
2647 *
2648 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2649 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2650 */
4580b054 2651static bool rcu_nohz_full_cpu(void)
a096932f
PM
2652{
2653#ifdef CONFIG_NO_HZ_FULL
2654 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2655 (!rcu_gp_in_progress() ||
4580b054 2656 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2657 return true;
a096932f 2658#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2659 return false;
a096932f 2660}
5057f55e
PM
2661
2662/*
265f5f28 2663 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2664 */
2665static void rcu_bind_gp_kthread(void)
2666{
c0f489d2 2667 if (!tick_nohz_full_enabled())
5057f55e 2668 return;
de201559 2669 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2670}
176f8f7a
PM
2671
2672/* Record the current task on dyntick-idle entry. */
2673static void rcu_dynticks_task_enter(void)
2674{
2675#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2676 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2677#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2678}
2679
2680/* Record no current task on dyntick-idle exit. */
2681static void rcu_dynticks_task_exit(void)
2682{
2683#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2684 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2685#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2686}