rcu: Force DEFAULT_RCU_BLIMIT to 1000 for strict RCU GPs
[linux-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
22e40925 1/* SPDX-License-Identifier: GPL-2.0+ */
f41d911f
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
6cc68793 5 * or preemptible semantics.
f41d911f 6 *
f41d911f
PM
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
22e40925 11 * Paul E. McKenney <paulmck@linux.ibm.com>
f41d911f
PM
12 */
13
abaa93d9 14#include "../locking/rtmutex_common.h"
5b61b0ba 15
3fbfbf7a
PM
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 18static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
26845c28
PM
21/*
22 * Check the RCU kernel configuration parameters and print informative
699d4035 23 * messages about anything out of the ordinary.
26845c28
PM
24 */
25static void __init rcu_bootup_announce_oddness(void)
26{
ab6f5bd6 27 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 28 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
7fa27001 33 if (rcu_fanout_exact)
ab6f5bd6
PM
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 37 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 38 pr_info("\tRCU lockdep checking is enabled.\n");
8cbd0e38
PM
39 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
42621697
AG
41 if (RCU_NUM_LVLS >= 4)
42 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 43 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 44 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
45 RCU_FANOUT_LEAF);
46 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
47 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
48 rcu_fanout_leaf);
cca6f393 49 if (nr_cpu_ids != NR_CPUS)
9b130ad5 50 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 51#ifdef CONFIG_RCU_BOOST
a7538352
JP
52 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
54#endif
55 if (blimit != DEFAULT_RCU_BLIMIT)
56 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
57 if (qhimark != DEFAULT_RCU_QHIMARK)
58 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
59 if (qlowmark != DEFAULT_RCU_QLOMARK)
60 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
b2b00ddf 61 if (qovld != DEFAULT_RCU_QOVLD)
aa96a93b 62 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
17c7798b
PM
63 if (jiffies_till_first_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
65 if (jiffies_till_next_fqs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
c06aed0e
PM
67 if (jiffies_till_sched_qs != ULONG_MAX)
68 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
17c7798b
PM
69 if (rcu_kick_kthreads)
70 pr_info("\tKick kthreads if too-long grace period.\n");
71 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
72 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 73 if (gp_preinit_delay)
17c7798b 74 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 75 if (gp_init_delay)
17c7798b 76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 77 if (gp_cleanup_delay)
17c7798b 78 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
48d07c04
SAS
79 if (!use_softirq)
80 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
17c7798b
PM
81 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
82 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 83 rcupdate_announce_bootup_oddness();
26845c28
PM
84}
85
28f6569a 86#ifdef CONFIG_PREEMPT_RCU
f41d911f 87
63d4c8c9 88static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
3949fa9b 89static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 90
f41d911f
PM
91/*
92 * Tell them what RCU they are running.
93 */
0e0fc1c2 94static void __init rcu_bootup_announce(void)
f41d911f 95{
efc151c3 96 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 97 rcu_bootup_announce_oddness();
f41d911f
PM
98}
99
8203d6d0
PM
100/* Flags for rcu_preempt_ctxt_queue() decision table. */
101#define RCU_GP_TASKS 0x8
102#define RCU_EXP_TASKS 0x4
103#define RCU_GP_BLKD 0x2
104#define RCU_EXP_BLKD 0x1
105
106/*
107 * Queues a task preempted within an RCU-preempt read-side critical
108 * section into the appropriate location within the ->blkd_tasks list,
109 * depending on the states of any ongoing normal and expedited grace
110 * periods. The ->gp_tasks pointer indicates which element the normal
111 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112 * indicates which element the expedited grace period is waiting on (again,
113 * NULL if none). If a grace period is waiting on a given element in the
114 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
115 * adding a task to the tail of the list blocks any grace period that is
116 * already waiting on one of the elements. In contrast, adding a task
117 * to the head of the list won't block any grace period that is already
118 * waiting on one of the elements.
119 *
120 * This queuing is imprecise, and can sometimes make an ongoing grace
121 * period wait for a task that is not strictly speaking blocking it.
122 * Given the choice, we needlessly block a normal grace period rather than
123 * blocking an expedited grace period.
124 *
125 * Note that an endless sequence of expedited grace periods still cannot
126 * indefinitely postpone a normal grace period. Eventually, all of the
127 * fixed number of preempted tasks blocking the normal grace period that are
128 * not also blocking the expedited grace period will resume and complete
129 * their RCU read-side critical sections. At that point, the ->gp_tasks
130 * pointer will equal the ->exp_tasks pointer, at which point the end of
131 * the corresponding expedited grace period will also be the end of the
132 * normal grace period.
133 */
46a5d164
PM
134static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
135 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
136{
137 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
138 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
139 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
140 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
141 struct task_struct *t = current;
142
a32e01ee 143 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 144 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 145 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
146 /* RCU better not be waiting on newly onlined CPUs! */
147 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
148 rdp->grpmask);
ea9b0c8a 149
8203d6d0
PM
150 /*
151 * Decide where to queue the newly blocked task. In theory,
152 * this could be an if-statement. In practice, when I tried
153 * that, it was quite messy.
154 */
155 switch (blkd_state) {
156 case 0:
157 case RCU_EXP_TASKS:
158 case RCU_EXP_TASKS + RCU_GP_BLKD:
159 case RCU_GP_TASKS:
160 case RCU_GP_TASKS + RCU_EXP_TASKS:
161
162 /*
163 * Blocking neither GP, or first task blocking the normal
164 * GP but not blocking the already-waiting expedited GP.
165 * Queue at the head of the list to avoid unnecessarily
166 * blocking the already-waiting GPs.
167 */
168 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
169 break;
170
171 case RCU_EXP_BLKD:
172 case RCU_GP_BLKD:
173 case RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_BLKD:
175 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
176 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177
178 /*
179 * First task arriving that blocks either GP, or first task
180 * arriving that blocks the expedited GP (with the normal
181 * GP already waiting), or a task arriving that blocks
182 * both GPs with both GPs already waiting. Queue at the
183 * tail of the list to avoid any GP waiting on any of the
184 * already queued tasks that are not blocking it.
185 */
186 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
187 break;
188
189 case RCU_EXP_TASKS + RCU_EXP_BLKD:
190 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
191 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
192
193 /*
194 * Second or subsequent task blocking the expedited GP.
195 * The task either does not block the normal GP, or is the
196 * first task blocking the normal GP. Queue just after
197 * the first task blocking the expedited GP.
198 */
199 list_add(&t->rcu_node_entry, rnp->exp_tasks);
200 break;
201
202 case RCU_GP_TASKS + RCU_GP_BLKD:
203 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204
205 /*
206 * Second or subsequent task blocking the normal GP.
207 * The task does not block the expedited GP. Queue just
208 * after the first task blocking the normal GP.
209 */
210 list_add(&t->rcu_node_entry, rnp->gp_tasks);
211 break;
212
213 default:
214
215 /* Yet another exercise in excessive paranoia. */
216 WARN_ON_ONCE(1);
217 break;
218 }
219
220 /*
221 * We have now queued the task. If it was the first one to
222 * block either grace period, update the ->gp_tasks and/or
223 * ->exp_tasks pointers, respectively, to reference the newly
224 * blocked tasks.
225 */
4bc8d555 226 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
6935c398 227 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
d43a5d32 228 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 229 }
8203d6d0 230 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
314eeb43 231 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
2dee9404
PM
232 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
233 !(rnp->qsmask & rdp->grpmask));
234 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
235 !(rnp->expmask & rdp->grpmask));
67c583a7 236 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
237
238 /*
239 * Report the quiescent state for the expedited GP. This expedited
240 * GP should not be able to end until we report, so there should be
241 * no need to check for a subsequent expedited GP. (Though we are
242 * still in a quiescent state in any case.)
243 */
1bb33644 244 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
63d4c8c9 245 rcu_report_exp_rdp(rdp);
fcc878e4 246 else
1bb33644 247 WARN_ON_ONCE(rdp->exp_deferred_qs);
8203d6d0
PM
248}
249
f41d911f 250/*
c7037ff5
PM
251 * Record a preemptible-RCU quiescent state for the specified CPU.
252 * Note that this does not necessarily mean that the task currently running
253 * on the CPU is in a quiescent state: Instead, it means that the current
254 * grace period need not wait on any RCU read-side critical section that
255 * starts later on this CPU. It also means that if the current task is
256 * in an RCU read-side critical section, it has already added itself to
257 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
258 * current task, there might be any number of other tasks blocked while
259 * in an RCU read-side critical section.
25502a6c 260 *
c7037ff5 261 * Callers to this function must disable preemption.
f41d911f 262 */
45975c7d 263static void rcu_qs(void)
f41d911f 264{
45975c7d 265 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 266 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 267 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 268 __this_cpu_read(rcu_data.gp_seq),
284a8c93 269 TPS("cpuqs"));
2280ee5a 270 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
c98cac60 271 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
add0d37b 272 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
284a8c93 273 }
f41d911f
PM
274}
275
276/*
c3422bea
PM
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
c3422bea 286 *
46a5d164 287 * Caller must disable interrupts.
f41d911f 288 */
45975c7d 289void rcu_note_context_switch(bool preempt)
f41d911f
PM
290{
291 struct task_struct *t = current;
da1df50d 292 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
293 struct rcu_node *rnp;
294
45975c7d 295 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 296 lockdep_assert_irqs_disabled();
77339e61
LJ
297 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298 if (rcu_preempt_depth() > 0 &&
1d082fd0 299 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
300
301 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 302 rnp = rdp->mynode;
46a5d164 303 raw_spin_lock_rcu_node(rnp);
1d082fd0 304 t->rcu_read_unlock_special.b.blocked = true;
86848966 305 t->rcu_blocked_node = rnp;
f41d911f
PM
306
307 /*
8203d6d0
PM
308 * Verify the CPU's sanity, trace the preemption, and
309 * then queue the task as required based on the states
310 * of any ongoing and expedited grace periods.
f41d911f 311 */
0aa04b05 312 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 313 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
88d1bead 314 trace_rcu_preempt_task(rcu_state.name,
d4c08f2a
PM
315 t->pid,
316 (rnp->qsmask & rdp->grpmask)
598ce094
PM
317 ? rnp->gp_seq
318 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 319 rcu_preempt_ctxt_queue(rnp, rdp);
3e310098
PM
320 } else {
321 rcu_preempt_deferred_qs(t);
f41d911f
PM
322 }
323
324 /*
325 * Either we were not in an RCU read-side critical section to
326 * begin with, or we have now recorded that critical section
327 * globally. Either way, we can now note a quiescent state
328 * for this CPU. Again, if we were in an RCU read-side critical
329 * section, and if that critical section was blocking the current
330 * grace period, then the fact that the task has been enqueued
331 * means that we continue to block the current grace period.
332 */
45975c7d 333 rcu_qs();
1bb33644 334 if (rdp->exp_deferred_qs)
63d4c8c9 335 rcu_report_exp_rdp(rdp);
43766c3e 336 rcu_tasks_qs(current, preempt);
45975c7d 337 trace_rcu_utilization(TPS("End context switch"));
f41d911f 338}
45975c7d 339EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 340
fc2219d4
PM
341/*
342 * Check for preempted RCU readers blocking the current grace period
343 * for the specified rcu_node structure. If the caller needs a reliable
344 * answer, it must hold the rcu_node's ->lock.
345 */
27f4d280 346static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 347{
6935c398 348 return READ_ONCE(rnp->gp_tasks) != NULL;
fc2219d4
PM
349}
350
5f5fa7ea 351/* limit value for ->rcu_read_lock_nesting. */
5f1a6ef3
PM
352#define RCU_NEST_PMAX (INT_MAX / 2)
353
77339e61
LJ
354static void rcu_preempt_read_enter(void)
355{
356 current->rcu_read_lock_nesting++;
357}
358
5f5fa7ea 359static int rcu_preempt_read_exit(void)
77339e61 360{
5f5fa7ea 361 return --current->rcu_read_lock_nesting;
77339e61
LJ
362}
363
364static void rcu_preempt_depth_set(int val)
365{
366 current->rcu_read_lock_nesting = val;
367}
368
0e5da22e
PM
369/*
370 * Preemptible RCU implementation for rcu_read_lock().
371 * Just increment ->rcu_read_lock_nesting, shared state will be updated
372 * if we block.
373 */
374void __rcu_read_lock(void)
375{
77339e61 376 rcu_preempt_read_enter();
5f1a6ef3 377 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
77339e61 378 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
0e5da22e
PM
379 barrier(); /* critical section after entry code. */
380}
381EXPORT_SYMBOL_GPL(__rcu_read_lock);
382
383/*
384 * Preemptible RCU implementation for rcu_read_unlock().
385 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
386 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
387 * invoke rcu_read_unlock_special() to clean up after a context switch
388 * in an RCU read-side critical section and other special cases.
389 */
390void __rcu_read_unlock(void)
391{
392 struct task_struct *t = current;
393
5f5fa7ea 394 if (rcu_preempt_read_exit() == 0) {
0e5da22e 395 barrier(); /* critical section before exit code. */
0e5da22e
PM
396 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
397 rcu_read_unlock_special(t);
0e5da22e 398 }
5f1a6ef3 399 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
77339e61 400 int rrln = rcu_preempt_depth();
0e5da22e 401
5f5fa7ea 402 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
0e5da22e 403 }
0e5da22e
PM
404}
405EXPORT_SYMBOL_GPL(__rcu_read_unlock);
406
12f5f524
PM
407/*
408 * Advance a ->blkd_tasks-list pointer to the next entry, instead
409 * returning NULL if at the end of the list.
410 */
411static struct list_head *rcu_next_node_entry(struct task_struct *t,
412 struct rcu_node *rnp)
413{
414 struct list_head *np;
415
416 np = t->rcu_node_entry.next;
417 if (np == &rnp->blkd_tasks)
418 np = NULL;
419 return np;
420}
421
8af3a5e7
PM
422/*
423 * Return true if the specified rcu_node structure has tasks that were
424 * preempted within an RCU read-side critical section.
425 */
426static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
427{
428 return !list_empty(&rnp->blkd_tasks);
429}
430
b668c9cf 431/*
3e310098
PM
432 * Report deferred quiescent states. The deferral time can
433 * be quite short, for example, in the case of the call from
434 * rcu_read_unlock_special().
b668c9cf 435 */
3e310098
PM
436static void
437rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 438{
b6a932d1
PM
439 bool empty_exp;
440 bool empty_norm;
441 bool empty_exp_now;
12f5f524 442 struct list_head *np;
abaa93d9 443 bool drop_boost_mutex = false;
8203d6d0 444 struct rcu_data *rdp;
f41d911f 445 struct rcu_node *rnp;
1d082fd0 446 union rcu_special special;
f41d911f 447
f41d911f 448 /*
8203d6d0
PM
449 * If RCU core is waiting for this CPU to exit its critical section,
450 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 451 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
452 */
453 special = t->rcu_read_unlock_special;
da1df50d 454 rdp = this_cpu_ptr(&rcu_data);
1bb33644 455 if (!special.s && !rdp->exp_deferred_qs) {
3e310098
PM
456 local_irq_restore(flags);
457 return;
458 }
3717e1e9
LJ
459 t->rcu_read_unlock_special.s = 0;
460 if (special.b.need_qs)
45975c7d 461 rcu_qs();
f41d911f 462
8203d6d0 463 /*
3e310098
PM
464 * Respond to a request by an expedited grace period for a
465 * quiescent state from this CPU. Note that requests from
466 * tasks are handled when removing the task from the
467 * blocked-tasks list below.
8203d6d0 468 */
3717e1e9 469 if (rdp->exp_deferred_qs)
63d4c8c9 470 rcu_report_exp_rdp(rdp);
8203d6d0 471
f41d911f 472 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0 473 if (special.b.blocked) {
f41d911f 474
dd5d19ba 475 /*
0a0ba1c9 476 * Remove this task from the list it blocked on. The task
8ba9153b
PM
477 * now remains queued on the rcu_node corresponding to the
478 * CPU it first blocked on, so there is no longer any need
479 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 480 */
8ba9153b
PM
481 rnp = t->rcu_blocked_node;
482 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 484 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 485 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 486 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 487 (!empty_norm || rnp->qsmask));
6c7d7dbf 488 empty_exp = sync_rcu_exp_done(rnp);
d9a3da06 489 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 490 np = rcu_next_node_entry(t, rnp);
f41d911f 491 list_del_init(&t->rcu_node_entry);
82e78d80 492 t->rcu_blocked_node = NULL;
f7f7bac9 493 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 494 rnp->gp_seq, t->pid);
12f5f524 495 if (&t->rcu_node_entry == rnp->gp_tasks)
6935c398 496 WRITE_ONCE(rnp->gp_tasks, np);
12f5f524 497 if (&t->rcu_node_entry == rnp->exp_tasks)
314eeb43 498 WRITE_ONCE(rnp->exp_tasks, np);
727b705b 499 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
500 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404 502 if (&t->rcu_node_entry == rnp->boost_tasks)
5822b812 503 WRITE_ONCE(rnp->boost_tasks, np);
727b705b 504 }
f41d911f
PM
505
506 /*
507 * If this was the last task on the current list, and if
508 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
509 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510 * so we must take a snapshot of the expedited state.
f41d911f 511 */
6c7d7dbf 512 empty_exp_now = sync_rcu_exp_done(rnp);
74e871ac 513 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 514 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 515 rnp->gp_seq,
d4c08f2a
PM
516 0, rnp->qsmask,
517 rnp->level,
518 rnp->grplo,
519 rnp->grphi,
520 !!rnp->gp_tasks);
139ad4da 521 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 522 } else {
67c583a7 523 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 524 }
d9a3da06 525
27f4d280 526 /* Unboost if we were boosted. */
727b705b 527 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 528 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 529
d9a3da06
PM
530 /*
531 * If this was the last task on the expedited lists,
532 * then we need to report up the rcu_node hierarchy.
533 */
389abd48 534 if (!empty_exp && empty_exp_now)
63d4c8c9 535 rcu_report_exp_rnp(rnp, true);
b668c9cf
PM
536 } else {
537 local_irq_restore(flags);
f41d911f 538 }
f41d911f
PM
539}
540
3e310098
PM
541/*
542 * Is a deferred quiescent-state pending, and are we also not in
543 * an RCU read-side critical section? It is the caller's responsibility
544 * to ensure it is otherwise safe to report any deferred quiescent
545 * states. The reason for this is that it is safe to report a
546 * quiescent state during context switch even though preemption
547 * is disabled. This function cannot be expected to understand these
548 * nuances, so the caller must handle them.
549 */
550static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
551{
1bb33644 552 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
3e310098 553 READ_ONCE(t->rcu_read_unlock_special.s)) &&
5f5fa7ea 554 rcu_preempt_depth() == 0;
3e310098
PM
555}
556
557/*
558 * Report a deferred quiescent state if needed and safe to do so.
559 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
560 * not being in an RCU read-side critical section. The caller must
561 * evaluate safety in terms of interrupt, softirq, and preemption
562 * disabling.
563 */
564static void rcu_preempt_deferred_qs(struct task_struct *t)
565{
566 unsigned long flags;
3e310098
PM
567
568 if (!rcu_preempt_need_deferred_qs(t))
569 return;
3e310098
PM
570 local_irq_save(flags);
571 rcu_preempt_deferred_qs_irqrestore(t, flags);
3e310098
PM
572}
573
0864f057
PM
574/*
575 * Minimal handler to give the scheduler a chance to re-evaluate.
576 */
577static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
578{
579 struct rcu_data *rdp;
580
581 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
582 rdp->defer_qs_iw_pending = false;
583}
584
3e310098
PM
585/*
586 * Handle special cases during rcu_read_unlock(), such as needing to
587 * notify RCU core processing or task having blocked during the RCU
588 * read-side critical section.
589 */
590static void rcu_read_unlock_special(struct task_struct *t)
591{
592 unsigned long flags;
593 bool preempt_bh_were_disabled =
594 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
595 bool irqs_were_disabled;
596
597 /* NMI handlers cannot block and cannot safely manipulate state. */
598 if (in_nmi())
599 return;
600
601 local_irq_save(flags);
602 irqs_were_disabled = irqs_disabled_flags(flags);
05f41571 603 if (preempt_bh_were_disabled || irqs_were_disabled) {
25102de6
PM
604 bool exp;
605 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
606 struct rcu_node *rnp = rdp->mynode;
607
e4453d8a
PM
608 exp = (t->rcu_blocked_node &&
609 READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
610 (rdp->grpmask & READ_ONCE(rnp->expmask));
23634ebc 611 // Need to defer quiescent state until everything is enabled.
e4453d8a
PM
612 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
613 // Using softirq, safe to awaken, and either the
614 // wakeup is free or there is an expedited GP.
05f41571
PM
615 raise_softirq_irqoff(RCU_SOFTIRQ);
616 } else {
23634ebc 617 // Enabling BH or preempt does reschedule, so...
e4453d8a
PM
618 // Also if no expediting, slow is OK.
619 // Plus nohz_full CPUs eventually get tick enabled.
05f41571
PM
620 set_tsk_need_resched(current);
621 set_preempt_need_resched();
d143b3d1 622 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
0864f057
PM
623 !rdp->defer_qs_iw_pending && exp) {
624 // Get scheduler to re-evaluate and call hooks.
625 // If !IRQ_WORK, FQS scan will eventually IPI.
626 init_irq_work(&rdp->defer_qs_iw,
627 rcu_preempt_deferred_qs_handler);
628 rdp->defer_qs_iw_pending = true;
629 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
630 }
05f41571 631 }
3e310098
PM
632 local_irq_restore(flags);
633 return;
634 }
635 rcu_preempt_deferred_qs_irqrestore(t, flags);
636}
637
b0e165c0
PM
638/*
639 * Check that the list of blocked tasks for the newly completed grace
640 * period is in fact empty. It is a serious bug to complete a grace
641 * period that still has RCU readers blocked! This function must be
03bd2983 642 * invoked -before- updating this rnp's ->gp_seq.
12f5f524
PM
643 *
644 * Also, if there are blocked tasks on the list, they automatically
645 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 646 */
81ab59a3 647static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 648{
c5ebe66c
PM
649 struct task_struct *t;
650
ea9b0c8a 651 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
03bd2983 652 raw_lockdep_assert_held_rcu_node(rnp);
4bc8d555 653 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 654 dump_blkd_tasks(rnp, 10);
0b107d24
PM
655 if (rcu_preempt_has_tasks(rnp) &&
656 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
6935c398 657 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
c5ebe66c
PM
658 t = container_of(rnp->gp_tasks, struct task_struct,
659 rcu_node_entry);
660 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 661 rnp->gp_seq, t->pid);
c5ebe66c 662 }
28ecd580 663 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
664}
665
f41d911f 666/*
c98cac60
PM
667 * Check for a quiescent state from the current CPU, including voluntary
668 * context switches for Tasks RCU. When a task blocks, the task is
669 * recorded in the corresponding CPU's rcu_node structure, which is checked
670 * elsewhere, hence this function need only check for quiescent states
671 * related to the current CPU, not to those related to tasks.
f41d911f 672 */
c98cac60 673static void rcu_flavor_sched_clock_irq(int user)
f41d911f
PM
674{
675 struct task_struct *t = current;
676
45975c7d
PM
677 if (user || rcu_is_cpu_rrupt_from_idle()) {
678 rcu_note_voluntary_context_switch(current);
679 }
77339e61 680 if (rcu_preempt_depth() > 0 ||
3e310098
PM
681 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
682 /* No QS, force context switch if deferred. */
fced9c8c
PM
683 if (rcu_preempt_need_deferred_qs(t)) {
684 set_tsk_need_resched(t);
685 set_preempt_need_resched();
686 }
3e310098
PM
687 } else if (rcu_preempt_need_deferred_qs(t)) {
688 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
689 return;
5f5fa7ea 690 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
45975c7d 691 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
692 return;
693 }
3e310098
PM
694
695 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
77339e61 696 if (rcu_preempt_depth() > 0 &&
2280ee5a
PM
697 __this_cpu_read(rcu_data.core_needs_qs) &&
698 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201 699 !t->rcu_read_unlock_special.b.need_qs &&
564a9ae6 700 time_after(jiffies, rcu_state.gp_start + HZ))
1d082fd0 701 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
702}
703
2439b696
PM
704/*
705 * Check for a task exiting while in a preemptible-RCU read-side
884157ce
PM
706 * critical section, clean up if so. No need to issue warnings, as
707 * debug_check_no_locks_held() already does this if lockdep is enabled.
708 * Besides, if this function does anything other than just immediately
709 * return, there was a bug of some sort. Spewing warnings from this
710 * function is like as not to simply obscure important prior warnings.
2439b696
PM
711 */
712void exit_rcu(void)
713{
714 struct task_struct *t = current;
715
884157ce 716 if (unlikely(!list_empty(&current->rcu_node_entry))) {
77339e61 717 rcu_preempt_depth_set(1);
884157ce 718 barrier();
add0d37b 719 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
77339e61
LJ
720 } else if (unlikely(rcu_preempt_depth())) {
721 rcu_preempt_depth_set(1);
884157ce 722 } else {
2439b696 723 return;
884157ce 724 }
2439b696 725 __rcu_read_unlock();
3e310098 726 rcu_preempt_deferred_qs(current);
2439b696
PM
727}
728
4bc8d555
PM
729/*
730 * Dump the blocked-tasks state, but limit the list dump to the
731 * specified number of elements.
732 */
57738942 733static void
81ab59a3 734dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 735{
57738942 736 int cpu;
4bc8d555
PM
737 int i;
738 struct list_head *lhp;
57738942
PM
739 bool onl;
740 struct rcu_data *rdp;
ff3cee39 741 struct rcu_node *rnp1;
4bc8d555 742
ce11fae8 743 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 744 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 745 __func__, rnp->grplo, rnp->grphi, rnp->level,
8ff37290 746 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
ff3cee39
PM
747 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
748 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
749 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf 750 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
065a6db1 751 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
314eeb43 752 READ_ONCE(rnp->exp_tasks));
77cfc7bf 753 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
754 i = 0;
755 list_for_each(lhp, &rnp->blkd_tasks) {
756 pr_cont(" %p", lhp);
cd6d17b4 757 if (++i >= ncheck)
4bc8d555
PM
758 break;
759 }
760 pr_cont("\n");
57738942 761 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 762 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
763 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
764 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
765 cpu, ".o"[onl],
766 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
767 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
768 }
4bc8d555
PM
769}
770
28f6569a 771#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
772
773/*
774 * Tell them what RCU they are running.
775 */
0e0fc1c2 776static void __init rcu_bootup_announce(void)
f41d911f 777{
efc151c3 778 pr_info("Hierarchical RCU implementation.\n");
26845c28 779 rcu_bootup_announce_oddness();
f41d911f
PM
780}
781
45975c7d 782/*
90326f05 783 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
45975c7d
PM
784 * how many quiescent states passed, just if there was at least one since
785 * the start of the grace period, this just sets a flag. The caller must
786 * have disabled preemption.
787 */
788static void rcu_qs(void)
d28139c4 789{
45975c7d
PM
790 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
791 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
792 return;
793 trace_rcu_grace_period(TPS("rcu_sched"),
794 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
795 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
796 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
797 return;
798 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
63d4c8c9 799 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
d28139c4
PM
800}
801
395a2f09
PM
802/*
803 * Register an urgently needed quiescent state. If there is an
804 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
805 * dyntick-idle quiescent state visible to other CPUs, which will in
806 * some cases serve for expedited as well as normal grace periods.
807 * Either way, register a lightweight quiescent state.
395a2f09
PM
808 */
809void rcu_all_qs(void)
810{
811 unsigned long flags;
812
2dba13f0 813 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
395a2f09
PM
814 return;
815 preempt_disable();
816 /* Load rcu_urgent_qs before other flags. */
2dba13f0 817 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
395a2f09
PM
818 preempt_enable();
819 return;
820 }
2dba13f0 821 this_cpu_write(rcu_data.rcu_urgent_qs, false);
2dba13f0 822 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
395a2f09
PM
823 local_irq_save(flags);
824 rcu_momentary_dyntick_idle();
825 local_irq_restore(flags);
826 }
7e28c5af 827 rcu_qs();
395a2f09
PM
828 preempt_enable();
829}
830EXPORT_SYMBOL_GPL(rcu_all_qs);
831
cba6d0d6 832/*
90326f05 833 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
cba6d0d6 834 */
45975c7d 835void rcu_note_context_switch(bool preempt)
cba6d0d6 836{
45975c7d
PM
837 trace_rcu_utilization(TPS("Start context switch"));
838 rcu_qs();
839 /* Load rcu_urgent_qs before other flags. */
2dba13f0 840 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
45975c7d 841 goto out;
2dba13f0
PM
842 this_cpu_write(rcu_data.rcu_urgent_qs, false);
843 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
45975c7d 844 rcu_momentary_dyntick_idle();
43766c3e 845 rcu_tasks_qs(current, preempt);
45975c7d
PM
846out:
847 trace_rcu_utilization(TPS("End context switch"));
cba6d0d6 848}
45975c7d 849EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 850
fc2219d4 851/*
6cc68793 852 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
853 * RCU readers.
854 */
27f4d280 855static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
856{
857 return 0;
858}
859
8af3a5e7
PM
860/*
861 * Because there is no preemptible RCU, there can be no readers blocked.
862 */
863static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 864{
8af3a5e7 865 return false;
b668c9cf
PM
866}
867
3e310098
PM
868/*
869 * Because there is no preemptible RCU, there can be no deferred quiescent
870 * states.
871 */
872static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
873{
874 return false;
875}
876static void rcu_preempt_deferred_qs(struct task_struct *t) { }
877
b0e165c0 878/*
6cc68793 879 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
880 * so there is no need to check for blocked tasks. So check only for
881 * bogus qsmask values.
b0e165c0 882 */
81ab59a3 883static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 884{
49e29126 885 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
886}
887
f41d911f 888/*
c98cac60
PM
889 * Check to see if this CPU is in a non-context-switch quiescent state,
890 * namely user mode and idle loop.
f41d911f 891 */
c98cac60 892static void rcu_flavor_sched_clock_irq(int user)
f41d911f 893{
45975c7d 894 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 895
45975c7d
PM
896 /*
897 * Get here if this CPU took its interrupt from user
898 * mode or from the idle loop, and if this is not a
899 * nested interrupt. In this case, the CPU is in
900 * a quiescent state, so note it.
901 *
902 * No memory barrier is required here because rcu_qs()
903 * references only CPU-local variables that other CPUs
904 * neither access nor modify, at least not while the
905 * corresponding CPU is online.
906 */
907
908 rcu_qs();
909 }
e74f4c45 910}
e74f4c45 911
2439b696
PM
912/*
913 * Because preemptible RCU does not exist, tasks cannot possibly exit
914 * while in preemptible RCU read-side critical sections.
915 */
916void exit_rcu(void)
917{
918}
919
4bc8d555
PM
920/*
921 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
922 */
57738942 923static void
81ab59a3 924dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
925{
926 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
927}
928
28f6569a 929#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 930
48d07c04
SAS
931/*
932 * If boosting, set rcuc kthreads to realtime priority.
933 */
934static void rcu_cpu_kthread_setup(unsigned int cpu)
935{
27f4d280 936#ifdef CONFIG_RCU_BOOST
48d07c04 937 struct sched_param sp;
27f4d280 938
48d07c04
SAS
939 sp.sched_priority = kthread_prio;
940 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
941#endif /* #ifdef CONFIG_RCU_BOOST */
5d01bbd1
TG
942}
943
48d07c04
SAS
944#ifdef CONFIG_RCU_BOOST
945
27f4d280
PM
946/*
947 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
948 * or ->boost_tasks, advancing the pointer to the next task in the
949 * ->blkd_tasks list.
950 *
951 * Note that irqs must be enabled: boosting the task can block.
952 * Returns 1 if there are more tasks needing to be boosted.
953 */
954static int rcu_boost(struct rcu_node *rnp)
955{
956 unsigned long flags;
27f4d280
PM
957 struct task_struct *t;
958 struct list_head *tb;
959
7d0ae808
PM
960 if (READ_ONCE(rnp->exp_tasks) == NULL &&
961 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
962 return 0; /* Nothing left to boost. */
963
2a67e741 964 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
965
966 /*
967 * Recheck under the lock: all tasks in need of boosting
968 * might exit their RCU read-side critical sections on their own.
969 */
970 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 971 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
972 return 0;
973 }
974
975 /*
976 * Preferentially boost tasks blocking expedited grace periods.
977 * This cannot starve the normal grace periods because a second
978 * expedited grace period must boost all blocked tasks, including
979 * those blocking the pre-existing normal grace period.
980 */
bec06785 981 if (rnp->exp_tasks != NULL)
27f4d280 982 tb = rnp->exp_tasks;
bec06785 983 else
27f4d280
PM
984 tb = rnp->boost_tasks;
985
986 /*
987 * We boost task t by manufacturing an rt_mutex that appears to
988 * be held by task t. We leave a pointer to that rt_mutex where
989 * task t can find it, and task t will release the mutex when it
990 * exits its outermost RCU read-side critical section. Then
991 * simply acquiring this artificial rt_mutex will boost task
992 * t's priority. (Thanks to tglx for suggesting this approach!)
993 *
994 * Note that task t must acquire rnp->lock to remove itself from
995 * the ->blkd_tasks list, which it will do from exit() if from
996 * nowhere else. We therefore are guaranteed that task t will
997 * stay around at least until we drop rnp->lock. Note that
998 * rnp->lock also resolves races between our priority boosting
999 * and task t's exiting its outermost RCU read-side critical
1000 * section.
1001 */
1002 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1003 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1004 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1005 /* Lock only for side effect: boosts task t's priority. */
1006 rt_mutex_lock(&rnp->boost_mtx);
1007 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1008
7d0ae808
PM
1009 return READ_ONCE(rnp->exp_tasks) != NULL ||
1010 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1011}
1012
27f4d280 1013/*
bc17ea10 1014 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1015 */
1016static int rcu_boost_kthread(void *arg)
1017{
1018 struct rcu_node *rnp = (struct rcu_node *)arg;
1019 int spincnt = 0;
1020 int more2boost;
1021
f7f7bac9 1022 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1023 for (;;) {
3ca3b0e2 1024 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
f7f7bac9 1025 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
065a6db1
PM
1026 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1027 READ_ONCE(rnp->exp_tasks));
f7f7bac9 1028 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
3ca3b0e2 1029 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
27f4d280
PM
1030 more2boost = rcu_boost(rnp);
1031 if (more2boost)
1032 spincnt++;
1033 else
1034 spincnt = 0;
1035 if (spincnt > 10) {
3ca3b0e2 1036 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
f7f7bac9 1037 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
a9352f72 1038 schedule_timeout_idle(2);
f7f7bac9 1039 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1040 spincnt = 0;
1041 }
1042 }
1217ed1b 1043 /* NOTREACHED */
f7f7bac9 1044 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1045 return 0;
1046}
1047
1048/*
1049 * Check to see if it is time to start boosting RCU readers that are
1050 * blocking the current grace period, and, if so, tell the per-rcu_node
1051 * kthread to start boosting them. If there is an expedited grace
1052 * period in progress, it is always time to boost.
1053 *
b065a853
PM
1054 * The caller must hold rnp->lock, which this function releases.
1055 * The ->boost_kthread_task is immortal, so we don't need to worry
1056 * about it going away.
27f4d280 1057 */
1217ed1b 1058static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1059 __releases(rnp->lock)
27f4d280 1060{
a32e01ee 1061 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1062 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1063 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1064 return;
0ea1f2eb 1065 }
27f4d280
PM
1066 if (rnp->exp_tasks != NULL ||
1067 (rnp->gp_tasks != NULL &&
1068 rnp->boost_tasks == NULL &&
1069 rnp->qsmask == 0 &&
7b241311 1070 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
27f4d280 1071 if (rnp->exp_tasks == NULL)
5822b812 1072 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
67c583a7 1073 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
a2badefa 1074 rcu_wake_cond(rnp->boost_kthread_task,
3ca3b0e2 1075 READ_ONCE(rnp->boost_kthread_status));
1217ed1b 1076 } else {
67c583a7 1077 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1078 }
27f4d280
PM
1079}
1080
dff1672d
PM
1081/*
1082 * Is the current CPU running the RCU-callbacks kthread?
1083 * Caller must have preemption disabled.
1084 */
1085static bool rcu_is_callbacks_kthread(void)
1086{
37f62d7c 1087 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
dff1672d
PM
1088}
1089
27f4d280
PM
1090#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1091
1092/*
1093 * Do priority-boost accounting for the start of a new grace period.
1094 */
1095static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1096{
1097 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1098}
1099
27f4d280
PM
1100/*
1101 * Create an RCU-boost kthread for the specified node if one does not
1102 * already exist. We only create this kthread for preemptible RCU.
1103 * Returns zero if all is well, a negated errno otherwise.
1104 */
3545832f 1105static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1106{
6dbfdc14 1107 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1108 unsigned long flags;
1109 struct sched_param sp;
1110 struct task_struct *t;
1111
6dbfdc14 1112 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
3545832f 1113 return;
5d01bbd1 1114
0aa04b05 1115 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
3545832f 1116 return;
5d01bbd1 1117
6dbfdc14 1118 rcu_state.boost = 1;
3545832f 1119
27f4d280 1120 if (rnp->boost_kthread_task != NULL)
3545832f
BP
1121 return;
1122
27f4d280 1123 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1124 "rcub/%d", rnp_index);
3545832f
BP
1125 if (WARN_ON_ONCE(IS_ERR(t)))
1126 return;
1127
2a67e741 1128 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1129 rnp->boost_kthread_task = t;
67c583a7 1130 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1131 sp.sched_priority = kthread_prio;
27f4d280 1132 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1133 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1134}
1135
f8b7fc6b
PM
1136/*
1137 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1138 * served by the rcu_node in question. The CPU hotplug lock is still
1139 * held, so the value of rnp->qsmaskinit will be stable.
1140 *
1141 * We don't include outgoingcpu in the affinity set, use -1 if there is
1142 * no outgoing CPU. If there are no CPUs left in the affinity set,
1143 * this function allows the kthread to execute on any CPU.
1144 */
5d01bbd1 1145static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1146{
5d01bbd1 1147 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1148 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1149 cpumask_var_t cm;
1150 int cpu;
f8b7fc6b 1151
5d01bbd1 1152 if (!t)
f8b7fc6b 1153 return;
5d01bbd1 1154 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1155 return;
bc75e999
MR
1156 for_each_leaf_node_possible_cpu(rnp, cpu)
1157 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1158 cpu != outgoingcpu)
f8b7fc6b 1159 cpumask_set_cpu(cpu, cm);
5d0b0249 1160 if (cpumask_weight(cm) == 0)
f8b7fc6b 1161 cpumask_setall(cm);
5d01bbd1 1162 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1163 free_cpumask_var(cm);
1164}
1165
f8b7fc6b 1166/*
9386c0b7 1167 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1168 */
9386c0b7 1169static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1170{
f8b7fc6b
PM
1171 struct rcu_node *rnp;
1172
aedf4ba9 1173 rcu_for_each_leaf_node(rnp)
3545832f 1174 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1175}
f8b7fc6b 1176
49fb4c62 1177static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1178{
da1df50d 1179 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1180 struct rcu_node *rnp = rdp->mynode;
1181
1182 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1183 if (rcu_scheduler_fully_active)
3545832f 1184 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1185}
1186
27f4d280
PM
1187#else /* #ifdef CONFIG_RCU_BOOST */
1188
1217ed1b 1189static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1190 __releases(rnp->lock)
27f4d280 1191{
67c583a7 1192 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1193}
1194
dff1672d
PM
1195static bool rcu_is_callbacks_kthread(void)
1196{
1197 return false;
1198}
1199
27f4d280
PM
1200static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1201{
1202}
1203
5d01bbd1 1204static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1205{
1206}
1207
9386c0b7 1208static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1209{
b0d30417 1210}
b0d30417 1211
49fb4c62 1212static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1213{
1214}
1215
27f4d280
PM
1216#endif /* #else #ifdef CONFIG_RCU_BOOST */
1217
8bd93a2c
PM
1218#if !defined(CONFIG_RCU_FAST_NO_HZ)
1219
1220/*
0bd55c69
PM
1221 * Check to see if any future non-offloaded RCU-related work will need
1222 * to be done by the current CPU, even if none need be done immediately,
1223 * returning 1 if so. This function is part of the RCU implementation;
1224 * it is -not- an exported member of the RCU API.
8bd93a2c 1225 *
0ae86a27
PM
1226 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1227 * CPU has RCU callbacks queued.
8bd93a2c 1228 */
c1ad348b 1229int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1230{
c1ad348b 1231 *nextevt = KTIME_MAX;
0bd55c69
PM
1232 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1233 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
7cb92499
PM
1234}
1235
1236/*
1237 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1238 * after it.
1239 */
8fa7845d 1240static void rcu_cleanup_after_idle(void)
7cb92499
PM
1241{
1242}
1243
aea1b35e 1244/*
a858af28 1245 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1246 * is nothing.
1247 */
198bbf81 1248static void rcu_prepare_for_idle(void)
aea1b35e
PM
1249{
1250}
1251
8bd93a2c
PM
1252#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1253
f23f7fa1
PM
1254/*
1255 * This code is invoked when a CPU goes idle, at which point we want
1256 * to have the CPU do everything required for RCU so that it can enter
77a40f97 1257 * the energy-efficient dyntick-idle mode.
f23f7fa1 1258 *
77a40f97 1259 * The following preprocessor symbol controls this:
f23f7fa1 1260 *
f23f7fa1
PM
1261 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1262 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1263 * is sized to be roughly one RCU grace period. Those energy-efficiency
1264 * benchmarkers who might otherwise be tempted to set this to a large
1265 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1266 * system. And if you are -that- concerned about energy efficiency,
1267 * just power the system down and be done with it!
1268 *
77a40f97 1269 * The value below works well in practice. If future workloads require
f23f7fa1
PM
1270 * adjustment, they can be converted into kernel config parameters, though
1271 * making the state machine smarter might be a better option.
1272 */
e84c48ae 1273#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
f23f7fa1 1274
5e44ce35
PM
1275static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1276module_param(rcu_idle_gp_delay, int, 0644);
486e2593 1277
486e2593 1278/*
0ae86a27
PM
1279 * Try to advance callbacks on the current CPU, but only if it has been
1280 * awhile since the last time we did so. Afterwards, if there are any
1281 * callbacks ready for immediate invocation, return true.
486e2593 1282 */
f1f399d1 1283static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1284{
c0f4dfd4 1285 bool cbs_ready = false;
5998a75a 1286 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1287 struct rcu_node *rnp;
486e2593 1288
c229828c 1289 /* Exit early if we advanced recently. */
5998a75a 1290 if (jiffies == rdp->last_advance_all)
d0bc90fd 1291 return false;
5998a75a 1292 rdp->last_advance_all = jiffies;
c229828c 1293
b97d23c5 1294 rnp = rdp->mynode;
486e2593 1295
b97d23c5
PM
1296 /*
1297 * Don't bother checking unless a grace period has
1298 * completed since we last checked and there are
1299 * callbacks not yet ready to invoke.
1300 */
1301 if ((rcu_seq_completed_gp(rdp->gp_seq,
1302 rcu_seq_current(&rnp->gp_seq)) ||
1303 unlikely(READ_ONCE(rdp->gpwrap))) &&
1304 rcu_segcblist_pend_cbs(&rdp->cblist))
1305 note_gp_changes(rdp);
1306
1307 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1308 cbs_ready = true;
c0f4dfd4 1309 return cbs_ready;
486e2593
PM
1310}
1311
aa9b1630 1312/*
c0f4dfd4
PM
1313 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1314 * to invoke. If the CPU has callbacks, try to advance them. Tell the
77a40f97 1315 * caller about what to set the timeout.
aa9b1630 1316 *
c0f4dfd4 1317 * The caller must have disabled interrupts.
aa9b1630 1318 */
c1ad348b 1319int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1320{
5998a75a 1321 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c1ad348b 1322 unsigned long dj;
aa9b1630 1323
b04db8e1 1324 lockdep_assert_irqs_disabled();
3382adbc 1325
0bd55c69
PM
1326 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1327 if (rcu_segcblist_empty(&rdp->cblist) ||
1328 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
c1ad348b 1329 *nextevt = KTIME_MAX;
aa9b1630
PM
1330 return 0;
1331 }
c0f4dfd4
PM
1332
1333 /* Attempt to advance callbacks. */
1334 if (rcu_try_advance_all_cbs()) {
1335 /* Some ready to invoke, so initiate later invocation. */
1336 invoke_rcu_core();
aa9b1630
PM
1337 return 1;
1338 }
5998a75a 1339 rdp->last_accelerate = jiffies;
c0f4dfd4 1340
77a40f97
JFG
1341 /* Request timer and round. */
1342 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1343
c1ad348b 1344 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1345 return 0;
1346}
1347
21e52e15 1348/*
77a40f97
JFG
1349 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1350 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1351 * major task is to accelerate (that is, assign grace-period numbers to) any
1352 * recently arrived callbacks.
aea1b35e
PM
1353 *
1354 * The caller must have disabled interrupts.
8bd93a2c 1355 */
198bbf81 1356static void rcu_prepare_for_idle(void)
8bd93a2c 1357{
48a7639c 1358 bool needwake;
0fd79e75 1359 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1360 struct rcu_node *rnp;
9d2ad243
PM
1361 int tne;
1362
b04db8e1 1363 lockdep_assert_irqs_disabled();
ce5215c1 1364 if (rcu_segcblist_is_offloaded(&rdp->cblist))
3382adbc
PM
1365 return;
1366
9d2ad243 1367 /* Handle nohz enablement switches conservatively. */
7d0ae808 1368 tne = READ_ONCE(tick_nohz_active);
0fd79e75 1369 if (tne != rdp->tick_nohz_enabled_snap) {
260e1e4f 1370 if (!rcu_segcblist_empty(&rdp->cblist))
9d2ad243 1371 invoke_rcu_core(); /* force nohz to see update. */
0fd79e75 1372 rdp->tick_nohz_enabled_snap = tne;
9d2ad243
PM
1373 return;
1374 }
1375 if (!tne)
1376 return;
f511fc62 1377
3084f2f8 1378 /*
c0f4dfd4
PM
1379 * If we have not yet accelerated this jiffy, accelerate all
1380 * callbacks on this CPU.
3084f2f8 1381 */
5998a75a 1382 if (rdp->last_accelerate == jiffies)
aea1b35e 1383 return;
5998a75a 1384 rdp->last_accelerate = jiffies;
b97d23c5 1385 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
c0f4dfd4 1386 rnp = rdp->mynode;
2a67e741 1387 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1388 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1389 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1390 if (needwake)
532c00c9 1391 rcu_gp_kthread_wake();
77e38ed3 1392 }
c0f4dfd4 1393}
3084f2f8 1394
c0f4dfd4
PM
1395/*
1396 * Clean up for exit from idle. Attempt to advance callbacks based on
1397 * any grace periods that elapsed while the CPU was idle, and if any
1398 * callbacks are now ready to invoke, initiate invocation.
1399 */
8fa7845d 1400static void rcu_cleanup_after_idle(void)
c0f4dfd4 1401{
ce5215c1
PM
1402 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1403
b04db8e1 1404 lockdep_assert_irqs_disabled();
ce5215c1 1405 if (rcu_segcblist_is_offloaded(&rdp->cblist))
aea1b35e 1406 return;
7a497c96
PM
1407 if (rcu_try_advance_all_cbs())
1408 invoke_rcu_core();
8bd93a2c
PM
1409}
1410
1411#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1412
3fbfbf7a
PM
1413#ifdef CONFIG_RCU_NOCB_CPU
1414
1415/*
1416 * Offload callback processing from the boot-time-specified set of CPUs
a9fefdb2
PM
1417 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1418 * created that pull the callbacks from the corresponding CPU, wait for
1419 * a grace period to elapse, and invoke the callbacks. These kthreads
6484fe54
PM
1420 * are organized into GP kthreads, which manage incoming callbacks, wait for
1421 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1422 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1423 * do a wake_up() on their GP kthread when they insert a callback into any
a9fefdb2
PM
1424 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1425 * in which case each kthread actively polls its CPU. (Which isn't so great
1426 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
3fbfbf7a
PM
1427 *
1428 * This is intended to be used in conjunction with Frederic Weisbecker's
1429 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1430 * running CPU-bound user-mode computations.
1431 *
a9fefdb2
PM
1432 * Offloading of callbacks can also be used as an energy-efficiency
1433 * measure because CPUs with no RCU callbacks queued are more aggressive
1434 * about entering dyntick-idle mode.
3fbfbf7a
PM
1435 */
1436
1437
497e4260
PM
1438/*
1439 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1440 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1441 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1442 * given, a warning is emitted and all CPUs are offloaded.
1443 */
3fbfbf7a
PM
1444static int __init rcu_nocb_setup(char *str)
1445{
1446 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
da8739f2
PM
1447 if (!strcasecmp(str, "all"))
1448 cpumask_setall(rcu_nocb_mask);
1449 else
497e4260
PM
1450 if (cpulist_parse(str, rcu_nocb_mask)) {
1451 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1452 cpumask_setall(rcu_nocb_mask);
1453 }
3fbfbf7a
PM
1454 return 1;
1455}
1456__setup("rcu_nocbs=", rcu_nocb_setup);
1457
1b0048a4
PG
1458static int __init parse_rcu_nocb_poll(char *arg)
1459{
5455a7f6 1460 rcu_nocb_poll = true;
1b0048a4
PG
1461 return 0;
1462}
1463early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1464
5d6742b3 1465/*
d1b222c6
PM
1466 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1467 * After all, the main point of bypassing is to avoid lock contention
1468 * on ->nocb_lock, which only can happen at high call_rcu() rates.
5d6742b3 1469 */
d1b222c6
PM
1470int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1471module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1472
1473/*
1474 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1475 * lock isn't immediately available, increment ->nocb_lock_contended to
1476 * flag the contention.
1477 */
1478static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
9ced4548 1479 __acquires(&rdp->nocb_bypass_lock)
5d6742b3 1480{
81c0b3d7 1481 lockdep_assert_irqs_disabled();
d1b222c6 1482 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
81c0b3d7
PM
1483 return;
1484 atomic_inc(&rdp->nocb_lock_contended);
6aacd88d 1485 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
81c0b3d7 1486 smp_mb__after_atomic(); /* atomic_inc() before lock. */
d1b222c6 1487 raw_spin_lock(&rdp->nocb_bypass_lock);
81c0b3d7
PM
1488 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1489 atomic_dec(&rdp->nocb_lock_contended);
1490}
1491
1492/*
1493 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1494 * not contended. Please note that this is extremely special-purpose,
1495 * relying on the fact that at most two kthreads and one CPU contend for
1496 * this lock, and also that the two kthreads are guaranteed to have frequent
1497 * grace-period-duration time intervals between successive acquisitions
1498 * of the lock. This allows us to use an extremely simple throttling
1499 * mechanism, and further to apply it only to the CPU doing floods of
1500 * call_rcu() invocations. Don't try this at home!
1501 */
1502static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1503{
6aacd88d
PM
1504 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1505 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
81c0b3d7 1506 cpu_relax();
5d6742b3
PM
1507}
1508
d1b222c6
PM
1509/*
1510 * Conditionally acquire the specified rcu_data structure's
1511 * ->nocb_bypass_lock.
1512 */
1513static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1514{
1515 lockdep_assert_irqs_disabled();
1516 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1517}
1518
1519/*
1520 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1521 */
1522static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
92c0b889 1523 __releases(&rdp->nocb_bypass_lock)
d1b222c6
PM
1524{
1525 lockdep_assert_irqs_disabled();
1526 raw_spin_unlock(&rdp->nocb_bypass_lock);
1527}
1528
1529/*
1530 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1531 * if it corresponds to a no-CBs CPU.
1532 */
1533static void rcu_nocb_lock(struct rcu_data *rdp)
1534{
1535 lockdep_assert_irqs_disabled();
1536 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1537 return;
1538 raw_spin_lock(&rdp->nocb_lock);
1539}
1540
5d6742b3
PM
1541/*
1542 * Release the specified rcu_data structure's ->nocb_lock, but only
1543 * if it corresponds to a no-CBs CPU.
1544 */
1545static void rcu_nocb_unlock(struct rcu_data *rdp)
1546{
1547 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1548 lockdep_assert_irqs_disabled();
1549 raw_spin_unlock(&rdp->nocb_lock);
1550 }
1551}
1552
1553/*
1554 * Release the specified rcu_data structure's ->nocb_lock and restore
1555 * interrupts, but only if it corresponds to a no-CBs CPU.
1556 */
1557static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1558 unsigned long flags)
1559{
1560 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1561 lockdep_assert_irqs_disabled();
1562 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1563 } else {
1564 local_irq_restore(flags);
1565 }
1566}
1567
d1b222c6
PM
1568/* Lockdep check that ->cblist may be safely accessed. */
1569static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1570{
1571 lockdep_assert_irqs_disabled();
13817dd5 1572 if (rcu_segcblist_is_offloaded(&rdp->cblist))
d1b222c6
PM
1573 lockdep_assert_held(&rdp->nocb_lock);
1574}
1575
dae6e64d 1576/*
0446be48
PM
1577 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1578 * grace period.
dae6e64d 1579 */
abedf8e2 1580static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1581{
abedf8e2 1582 swake_up_all(sq);
dae6e64d
PM
1583}
1584
abedf8e2 1585static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1586{
e0da2374 1587 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1588}
1589
dae6e64d 1590static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1591{
abedf8e2
PG
1592 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1593 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1594}
1595
24342c96 1596/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1597bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1598{
84b12b75 1599 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1600 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1601 return false;
1602}
1603
fbce7497 1604/*
6484fe54 1605 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
8be6e1b1 1606 * and this function releases it.
fbce7497 1607 */
5d6742b3 1608static void wake_nocb_gp(struct rcu_data *rdp, bool force,
5f675ba6 1609 unsigned long flags)
8be6e1b1 1610 __releases(rdp->nocb_lock)
fbce7497 1611{
d1b222c6 1612 bool needwake = false;
5f675ba6 1613 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
fbce7497 1614
8be6e1b1 1615 lockdep_assert_held(&rdp->nocb_lock);
5f675ba6 1616 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
d1b222c6
PM
1617 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1618 TPS("AlreadyAwake"));
81c0b3d7 1619 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497 1620 return;
8be6e1b1 1621 }
d1b222c6
PM
1622 del_timer(&rdp->nocb_timer);
1623 rcu_nocb_unlock_irqrestore(rdp, flags);
1624 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1625 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
5d6742b3 1626 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
d1b222c6
PM
1627 needwake = true;
1628 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
fbce7497 1629 }
d1b222c6
PM
1630 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1631 if (needwake)
1632 wake_up_process(rdp_gp->nocb_gp_kthread);
fbce7497
PM
1633}
1634
8be6e1b1 1635/*
6484fe54
PM
1636 * Arrange to wake the GP kthread for this NOCB group at some future
1637 * time when it is safe to do so.
8be6e1b1 1638 */
0d52a665
PM
1639static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1640 const char *reason)
8be6e1b1 1641{
8be6e1b1
PM
1642 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1643 mod_timer(&rdp->nocb_timer, jiffies + 1);
383e1332
PM
1644 if (rdp->nocb_defer_wakeup < waketype)
1645 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
88d1bead 1646 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
d7e29933
PM
1647}
1648
d1b222c6
PM
1649/*
1650 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1651 * However, if there is a callback to be enqueued and if ->nocb_bypass
1652 * proves to be initially empty, just return false because the no-CB GP
1653 * kthread may need to be awakened in this case.
1654 *
1655 * Note that this function always returns true if rhp is NULL.
1656 */
1657static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1658 unsigned long j)
1659{
1660 struct rcu_cblist rcl;
1661
1662 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1663 rcu_lockdep_assert_cblist_protected(rdp);
1664 lockdep_assert_held(&rdp->nocb_bypass_lock);
1665 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1666 raw_spin_unlock(&rdp->nocb_bypass_lock);
1667 return false;
1668 }
1669 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1670 if (rhp)
1671 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1672 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1673 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1674 WRITE_ONCE(rdp->nocb_bypass_first, j);
1675 rcu_nocb_bypass_unlock(rdp);
1676 return true;
1677}
1678
1679/*
1680 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1681 * However, if there is a callback to be enqueued and if ->nocb_bypass
1682 * proves to be initially empty, just return false because the no-CB GP
1683 * kthread may need to be awakened in this case.
1684 *
1685 * Note that this function always returns true if rhp is NULL.
1686 */
1687static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1688 unsigned long j)
1689{
1690 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1691 return true;
1692 rcu_lockdep_assert_cblist_protected(rdp);
1693 rcu_nocb_bypass_lock(rdp);
1694 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1695}
1696
1697/*
1698 * If the ->nocb_bypass_lock is immediately available, flush the
1699 * ->nocb_bypass queue into ->cblist.
1700 */
1701static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1702{
1703 rcu_lockdep_assert_cblist_protected(rdp);
1704 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1705 !rcu_nocb_bypass_trylock(rdp))
1706 return;
1707 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1708}
1709
1710/*
1711 * See whether it is appropriate to use the ->nocb_bypass list in order
1712 * to control contention on ->nocb_lock. A limited number of direct
1713 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1714 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1715 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1716 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1717 * used if ->cblist is empty, because otherwise callbacks can be stranded
1718 * on ->nocb_bypass because we cannot count on the current CPU ever again
1719 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1720 * non-empty, the corresponding no-CBs grace-period kthread must not be
1721 * in an indefinite sleep state.
1722 *
1723 * Finally, it is not permitted to use the bypass during early boot,
1724 * as doing so would confuse the auto-initialization code. Besides
1725 * which, there is no point in worrying about lock contention while
1726 * there is only one CPU in operation.
1727 */
1728static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1729 bool *was_alldone, unsigned long flags)
1730{
1731 unsigned long c;
1732 unsigned long cur_gp_seq;
1733 unsigned long j = jiffies;
1734 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1735
1736 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1737 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1738 return false; /* Not offloaded, no bypassing. */
1739 }
1740 lockdep_assert_irqs_disabled();
1741
1742 // Don't use ->nocb_bypass during early boot.
1743 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1744 rcu_nocb_lock(rdp);
1745 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1746 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1747 return false;
1748 }
1749
1750 // If we have advanced to a new jiffy, reset counts to allow
1751 // moving back from ->nocb_bypass to ->cblist.
1752 if (j == rdp->nocb_nobypass_last) {
1753 c = rdp->nocb_nobypass_count + 1;
1754 } else {
1755 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1756 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1757 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1758 nocb_nobypass_lim_per_jiffy))
1759 c = 0;
1760 else if (c > nocb_nobypass_lim_per_jiffy)
1761 c = nocb_nobypass_lim_per_jiffy;
1762 }
1763 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1764
1765 // If there hasn't yet been all that many ->cblist enqueues
1766 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1767 // ->nocb_bypass first.
1768 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1769 rcu_nocb_lock(rdp);
1770 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1771 if (*was_alldone)
1772 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1773 TPS("FirstQ"));
1774 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1775 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1776 return false; // Caller must enqueue the callback.
1777 }
1778
1779 // If ->nocb_bypass has been used too long or is too full,
1780 // flush ->nocb_bypass to ->cblist.
1781 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1782 ncbs >= qhimark) {
1783 rcu_nocb_lock(rdp);
1784 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1785 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1786 if (*was_alldone)
1787 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1788 TPS("FirstQ"));
1789 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1790 return false; // Caller must enqueue the callback.
1791 }
1792 if (j != rdp->nocb_gp_adv_time &&
1793 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1794 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1795 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1796 rdp->nocb_gp_adv_time = j;
1797 }
1798 rcu_nocb_unlock_irqrestore(rdp, flags);
1799 return true; // Callback already enqueued.
1800 }
1801
1802 // We need to use the bypass.
1803 rcu_nocb_wait_contended(rdp);
1804 rcu_nocb_bypass_lock(rdp);
1805 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1806 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1807 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1808 if (!ncbs) {
1809 WRITE_ONCE(rdp->nocb_bypass_first, j);
1810 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1811 }
1812 rcu_nocb_bypass_unlock(rdp);
1813 smp_mb(); /* Order enqueue before wake. */
1814 if (ncbs) {
1815 local_irq_restore(flags);
1816 } else {
1817 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1818 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1819 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1820 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1821 TPS("FirstBQwake"));
1822 __call_rcu_nocb_wake(rdp, true, flags);
1823 } else {
1824 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1825 TPS("FirstBQnoWake"));
1826 rcu_nocb_unlock_irqrestore(rdp, flags);
1827 }
1828 }
1829 return true; // Callback already enqueued.
1830}
1831
3fbfbf7a 1832/*
5d6742b3
PM
1833 * Awaken the no-CBs grace-period kthead if needed, either due to it
1834 * legitimately being asleep or due to overload conditions.
3fbfbf7a
PM
1835 *
1836 * If warranted, also wake up the kthread servicing this CPUs queues.
1837 */
5d6742b3
PM
1838static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1839 unsigned long flags)
1840 __releases(rdp->nocb_lock)
3fbfbf7a 1841{
296181d7
PM
1842 unsigned long cur_gp_seq;
1843 unsigned long j;
ce0a825e 1844 long len;
3fbfbf7a
PM
1845 struct task_struct *t;
1846
5d6742b3 1847 // If we are being polled or there is no kthread, just leave.
12f54c3a 1848 t = READ_ONCE(rdp->nocb_gp_kthread);
25e03a74 1849 if (rcu_nocb_poll || !t) {
88d1bead 1850 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
9261dd0d 1851 TPS("WakeNotPoll"));
5d6742b3 1852 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1853 return;
9261dd0d 1854 }
5d6742b3
PM
1855 // Need to actually to a wakeup.
1856 len = rcu_segcblist_n_cbs(&rdp->cblist);
1857 if (was_alldone) {
aeeacd9d 1858 rdp->qlen_last_fqs_check = len;
96d3fd0d 1859 if (!irqs_disabled_flags(flags)) {
fbce7497 1860 /* ... if queue was empty ... */
5d6742b3 1861 wake_nocb_gp(rdp, false, flags);
88d1bead 1862 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
96d3fd0d
PM
1863 TPS("WakeEmpty"));
1864 } else {
0d52a665
PM
1865 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1866 TPS("WakeEmptyIsDeferred"));
5d6742b3 1867 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1868 }
3fbfbf7a 1869 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1870 /* ... or if many callbacks queued. */
aeeacd9d 1871 rdp->qlen_last_fqs_check = len;
296181d7
PM
1872 j = jiffies;
1873 if (j != rdp->nocb_gp_adv_time &&
1874 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1875 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
faca5c25 1876 rcu_advance_cbs_nowake(rdp->mynode, rdp);
296181d7
PM
1877 rdp->nocb_gp_adv_time = j;
1878 }
f48fe4c5
PM
1879 smp_mb(); /* Enqueue before timer_pending(). */
1880 if ((rdp->nocb_cb_sleep ||
1881 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1882 !timer_pending(&rdp->nocb_bypass_timer))
273f0340
PM
1883 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1884 TPS("WakeOvfIsDeferred"));
273f0340 1885 rcu_nocb_unlock_irqrestore(rdp, flags);
9261dd0d 1886 } else {
88d1bead 1887 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
5d6742b3 1888 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a
PM
1889 }
1890 return;
1891}
1892
d1b222c6
PM
1893/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1894static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1895{
1896 unsigned long flags;
1897 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1898
1899 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1900 rcu_nocb_lock_irqsave(rdp, flags);
f48fe4c5 1901 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
d1b222c6
PM
1902 __call_rcu_nocb_wake(rdp, true, flags);
1903}
1904
3fbfbf7a 1905/*
5d6742b3
PM
1906 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1907 * or for grace periods to end.
fbce7497 1908 */
12f54c3a 1909static void nocb_gp_wait(struct rcu_data *my_rdp)
fbce7497 1910{
d1b222c6
PM
1911 bool bypass = false;
1912 long bypass_ncbs;
5d6742b3
PM
1913 int __maybe_unused cpu = my_rdp->cpu;
1914 unsigned long cur_gp_seq;
8be6e1b1 1915 unsigned long flags;
b8889c9c 1916 bool gotcbs = false;
d1b222c6 1917 unsigned long j = jiffies;
969974e5 1918 bool needwait_gp = false; // This prevents actual uninitialized use.
5d6742b3
PM
1919 bool needwake;
1920 bool needwake_gp;
fbce7497 1921 struct rcu_data *rdp;
5d6742b3 1922 struct rcu_node *rnp;
969974e5 1923 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
3d05031a 1924 bool wasempty = false;
fbce7497
PM
1925
1926 /*
5d6742b3
PM
1927 * Each pass through the following loop checks for CBs and for the
1928 * nearest grace period (if any) to wait for next. The CB kthreads
1929 * and the global grace-period kthread are awakened if needed.
fbce7497 1930 */
58bf6f77 1931 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
d1b222c6
PM
1932 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1933 rcu_nocb_lock_irqsave(rdp, flags);
1934 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1935 if (bypass_ncbs &&
1936 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1937 bypass_ncbs > 2 * qhimark)) {
1938 // Bypass full or old, so flush it.
1939 (void)rcu_nocb_try_flush_bypass(rdp, j);
1940 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1941 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1942 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1943 continue; /* No callbacks here, try next. */
d1b222c6
PM
1944 }
1945 if (bypass_ncbs) {
1946 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1947 TPS("Bypass"));
1948 bypass = true;
1949 }
5d6742b3 1950 rnp = rdp->mynode;
d1b222c6
PM
1951 if (bypass) { // Avoid race with first bypass CB.
1952 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1953 RCU_NOCB_WAKE_NOT);
1954 del_timer(&my_rdp->nocb_timer);
1955 }
1956 // Advance callbacks if helpful and low contention.
1957 needwake_gp = false;
1958 if (!rcu_segcblist_restempty(&rdp->cblist,
1959 RCU_NEXT_READY_TAIL) ||
1960 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1961 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1962 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1963 needwake_gp = rcu_advance_cbs(rnp, rdp);
3d05031a
PM
1964 wasempty = rcu_segcblist_restempty(&rdp->cblist,
1965 RCU_NEXT_READY_TAIL);
d1b222c6
PM
1966 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1967 }
5d6742b3 1968 // Need to wait on some grace period?
3d05031a
PM
1969 WARN_ON_ONCE(wasempty &&
1970 !rcu_segcblist_restempty(&rdp->cblist,
d1b222c6 1971 RCU_NEXT_READY_TAIL));
5d6742b3
PM
1972 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1973 if (!needwait_gp ||
1974 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1975 wait_gp_seq = cur_gp_seq;
1976 needwait_gp = true;
d1b222c6
PM
1977 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1978 TPS("NeedWaitGP"));
8be6e1b1 1979 }
5d6742b3
PM
1980 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1981 needwake = rdp->nocb_cb_sleep;
1982 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1983 smp_mb(); /* CB invocation -after- GP end. */
1984 } else {
1985 needwake = false;
8be6e1b1 1986 }
81c0b3d7 1987 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1988 if (needwake) {
12f54c3a 1989 swake_up_one(&rdp->nocb_cb_wq);
5d6742b3 1990 gotcbs = true;
fbce7497 1991 }
5d6742b3
PM
1992 if (needwake_gp)
1993 rcu_gp_kthread_wake();
1994 }
1995
f7a81b12
PM
1996 my_rdp->nocb_gp_bypass = bypass;
1997 my_rdp->nocb_gp_gp = needwait_gp;
1998 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
d1b222c6
PM
1999 if (bypass && !rcu_nocb_poll) {
2000 // At least one child with non-empty ->nocb_bypass, so set
2001 // timer in order to avoid stranding its callbacks.
2002 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2003 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2004 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2005 }
5d6742b3
PM
2006 if (rcu_nocb_poll) {
2007 /* Polling, so trace if first poll in the series. */
2008 if (gotcbs)
2009 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
f5ca3464 2010 schedule_timeout_idle(1);
5d6742b3
PM
2011 } else if (!needwait_gp) {
2012 /* Wait for callbacks to appear. */
2013 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2014 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2015 !READ_ONCE(my_rdp->nocb_gp_sleep));
d1b222c6 2016 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
5d6742b3
PM
2017 } else {
2018 rnp = my_rdp->mynode;
2019 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2020 swait_event_interruptible_exclusive(
2021 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2022 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2023 !READ_ONCE(my_rdp->nocb_gp_sleep));
2024 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2025 }
2026 if (!rcu_nocb_poll) {
4fd8c5f1 2027 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
d1b222c6
PM
2028 if (bypass)
2029 del_timer(&my_rdp->nocb_bypass_timer);
5d6742b3 2030 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
4fd8c5f1 2031 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
fbce7497 2032 }
f7a81b12 2033 my_rdp->nocb_gp_seq = -1;
5d6742b3 2034 WARN_ON(signal_pending(current));
12f54c3a 2035}
fbce7497 2036
12f54c3a
PM
2037/*
2038 * No-CBs grace-period-wait kthread. There is one of these per group
2039 * of CPUs, but only once at least one CPU in that group has come online
2040 * at least once since boot. This kthread checks for newly posted
2041 * callbacks from any of the CPUs it is responsible for, waits for a
2042 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2043 * that then have callback-invocation work to do.
2044 */
2045static int rcu_nocb_gp_kthread(void *arg)
2046{
2047 struct rcu_data *rdp = arg;
2048
5d6742b3 2049 for (;;) {
f7a81b12 2050 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
12f54c3a 2051 nocb_gp_wait(rdp);
5d6742b3
PM
2052 cond_resched_tasks_rcu_qs();
2053 }
12f54c3a 2054 return 0;
fbce7497
PM
2055}
2056
2057/*
5d6742b3
PM
2058 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2059 * then, if there are no more, wait for more to appear.
fbce7497 2060 */
5d6742b3 2061static void nocb_cb_wait(struct rcu_data *rdp)
fbce7497 2062{
1d5a81c1 2063 unsigned long cur_gp_seq;
5d6742b3
PM
2064 unsigned long flags;
2065 bool needwake_gp = false;
2066 struct rcu_node *rnp = rdp->mynode;
2067
2068 local_irq_save(flags);
2069 rcu_momentary_dyntick_idle();
2070 local_irq_restore(flags);
2071 local_bh_disable();
2072 rcu_do_batch(rdp);
2073 local_bh_enable();
2074 lockdep_assert_irqs_enabled();
81c0b3d7 2075 rcu_nocb_lock_irqsave(rdp, flags);
1d5a81c1
PM
2076 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2077 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2078 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
523bddd5
PM
2079 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2080 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2081 }
5d6742b3 2082 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
81c0b3d7 2083 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2084 if (needwake_gp)
2085 rcu_gp_kthread_wake();
2086 return;
2087 }
2088
f7c9a9b6 2089 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
5d6742b3 2090 WRITE_ONCE(rdp->nocb_cb_sleep, true);
81c0b3d7 2091 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2092 if (needwake_gp)
2093 rcu_gp_kthread_wake();
12f54c3a 2094 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
5d6742b3
PM
2095 !READ_ONCE(rdp->nocb_cb_sleep));
2096 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2097 /* ^^^ Ensure CB invocation follows _sleep test. */
2098 return;
fbce7497 2099 }
12f54c3a
PM
2100 WARN_ON(signal_pending(current));
2101 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2102}
2103
3fbfbf7a 2104/*
5d6742b3
PM
2105 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2106 * nocb_cb_wait() to do the dirty work.
3fbfbf7a 2107 */
12f54c3a 2108static int rcu_nocb_cb_kthread(void *arg)
3fbfbf7a 2109{
3fbfbf7a
PM
2110 struct rcu_data *rdp = arg;
2111
5d6742b3
PM
2112 // Each pass through this loop does one callback batch, and,
2113 // if there are no more ready callbacks, waits for them.
3fbfbf7a 2114 for (;;) {
5d6742b3
PM
2115 nocb_cb_wait(rdp);
2116 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2117 }
2118 return 0;
2119}
2120
96d3fd0d 2121/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2122static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2123{
7d0ae808 2124 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2125}
2126
2127/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2128static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2129{
8be6e1b1 2130 unsigned long flags;
9fdd3bc9
PM
2131 int ndw;
2132
81c0b3d7 2133 rcu_nocb_lock_irqsave(rdp, flags);
8be6e1b1 2134 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
81c0b3d7 2135 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 2136 return;
8be6e1b1 2137 }
7d0ae808 2138 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2139 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
5d6742b3 2140 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
88d1bead 2141 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2142}
2143
8be6e1b1 2144/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2145static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2146{
fd30b717
KC
2147 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2148
2149 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2150}
2151
2152/*
2153 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2154 * This means we do an inexact common-case check. Note that if
2155 * we miss, ->nocb_timer will eventually clean things up.
2156 */
2157static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2158{
2159 if (rcu_nocb_need_deferred_wakeup(rdp))
2160 do_nocb_deferred_wakeup_common(rdp);
2161}
2162
f4579fc5
PM
2163void __init rcu_init_nohz(void)
2164{
2165 int cpu;
ef126206 2166 bool need_rcu_nocb_mask = false;
e83e73f5 2167 struct rcu_data *rdp;
f4579fc5 2168
f4579fc5
PM
2169#if defined(CONFIG_NO_HZ_FULL)
2170 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2171 need_rcu_nocb_mask = true;
2172#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2173
84b12b75 2174 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2175 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2176 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2177 return;
2178 }
f4579fc5 2179 }
84b12b75 2180 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2181 return;
2182
f4579fc5
PM
2183#if defined(CONFIG_NO_HZ_FULL)
2184 if (tick_nohz_full_running)
2185 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2186#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2187
2188 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2189 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2190 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2191 rcu_nocb_mask);
2192 }
3016611e
PM
2193 if (cpumask_empty(rcu_nocb_mask))
2194 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2195 else
2196 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2197 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2198 if (rcu_nocb_poll)
2199 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2200
e83e73f5
PM
2201 for_each_cpu(cpu, rcu_nocb_mask) {
2202 rdp = per_cpu_ptr(&rcu_data, cpu);
2203 if (rcu_segcblist_empty(&rdp->cblist))
2204 rcu_segcblist_init(&rdp->cblist);
2205 rcu_segcblist_offload(&rdp->cblist);
2206 }
b97d23c5 2207 rcu_organize_nocb_kthreads();
96d3fd0d
PM
2208}
2209
3fbfbf7a
PM
2210/* Initialize per-rcu_data variables for no-CBs CPUs. */
2211static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2212{
12f54c3a
PM
2213 init_swait_queue_head(&rdp->nocb_cb_wq);
2214 init_swait_queue_head(&rdp->nocb_gp_wq);
8be6e1b1 2215 raw_spin_lock_init(&rdp->nocb_lock);
d1b222c6 2216 raw_spin_lock_init(&rdp->nocb_bypass_lock);
4fd8c5f1 2217 raw_spin_lock_init(&rdp->nocb_gp_lock);
fd30b717 2218 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
d1b222c6
PM
2219 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2220 rcu_cblist_init(&rdp->nocb_bypass);
3fbfbf7a
PM
2221}
2222
35ce7f29
PM
2223/*
2224 * If the specified CPU is a no-CBs CPU that does not already have its
12f54c3a
PM
2225 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2226 * for this CPU's group has not yet been created, spawn it as well.
35ce7f29 2227 */
4580b054 2228static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29 2229{
12f54c3a
PM
2230 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2231 struct rcu_data *rdp_gp;
35ce7f29
PM
2232 struct task_struct *t;
2233
2234 /*
2235 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2236 * then nothing to do.
2237 */
12f54c3a 2238 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
35ce7f29
PM
2239 return;
2240
6484fe54 2241 /* If we didn't spawn the GP kthread first, reorganize! */
12f54c3a
PM
2242 rdp_gp = rdp->nocb_gp_rdp;
2243 if (!rdp_gp->nocb_gp_kthread) {
2244 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2245 "rcuog/%d", rdp_gp->cpu);
2246 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2247 return;
2248 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
35ce7f29
PM
2249 }
2250
0ae86a27 2251 /* Spawn the kthread for this CPU. */
12f54c3a 2252 t = kthread_run(rcu_nocb_cb_kthread, rdp,
4580b054 2253 "rcuo%c/%d", rcu_state.abbr, cpu);
12f54c3a 2254 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
9213784b 2255 return;
12f54c3a
PM
2256 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2257 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
35ce7f29
PM
2258}
2259
2260/*
2261 * If the specified CPU is a no-CBs CPU that does not already have its
ad368d15 2262 * rcuo kthread, spawn it.
35ce7f29 2263 */
ad368d15 2264static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29 2265{
35ce7f29 2266 if (rcu_scheduler_fully_active)
b97d23c5 2267 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
2268}
2269
2270/*
2271 * Once the scheduler is running, spawn rcuo kthreads for all online
2272 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2273 * non-boot CPUs come online -- if this changes, we will need to add
2274 * some mutual exclusion.
2275 */
2276static void __init rcu_spawn_nocb_kthreads(void)
2277{
2278 int cpu;
2279
2280 for_each_online_cpu(cpu)
ad368d15 2281 rcu_spawn_cpu_nocb_kthread(cpu);
35ce7f29
PM
2282}
2283
6484fe54 2284/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
f7c612b0
PM
2285static int rcu_nocb_gp_stride = -1;
2286module_param(rcu_nocb_gp_stride, int, 0444);
fbce7497
PM
2287
2288/*
6484fe54 2289 * Initialize GP-CB relationships for all no-CBs CPU.
fbce7497 2290 */
4580b054 2291static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2292{
2293 int cpu;
18cd8c93 2294 bool firsttime = true;
610dea36
SR
2295 bool gotnocbs = false;
2296 bool gotnocbscbs = true;
f7c612b0 2297 int ls = rcu_nocb_gp_stride;
6484fe54 2298 int nl = 0; /* Next GP kthread. */
3fbfbf7a 2299 struct rcu_data *rdp;
0bdc33da 2300 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
fbce7497 2301 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2302
84b12b75 2303 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2304 return;
fbce7497 2305 if (ls == -1) {
9fcb09bd 2306 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
f7c612b0 2307 rcu_nocb_gp_stride = ls;
fbce7497
PM
2308 }
2309
2310 /*
9831ce3b
PM
2311 * Each pass through this loop sets up one rcu_data structure.
2312 * Should the corresponding CPU come online in the future, then
2313 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2314 */
3fbfbf7a 2315 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2316 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497 2317 if (rdp->cpu >= nl) {
6484fe54 2318 /* New GP kthread, set up for CBs & next GP. */
610dea36 2319 gotnocbs = true;
fbce7497 2320 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
58bf6f77 2321 rdp->nocb_gp_rdp = rdp;
0bdc33da 2322 rdp_gp = rdp;
610dea36
SR
2323 if (dump_tree) {
2324 if (!firsttime)
2325 pr_cont("%s\n", gotnocbscbs
2326 ? "" : " (self only)");
2327 gotnocbscbs = false;
2328 firsttime = false;
2329 pr_alert("%s: No-CB GP kthread CPU %d:",
2330 __func__, cpu);
2331 }
fbce7497 2332 } else {
6484fe54 2333 /* Another CB kthread, link to previous GP kthread. */
610dea36 2334 gotnocbscbs = true;
0bdc33da 2335 rdp->nocb_gp_rdp = rdp_gp;
58bf6f77 2336 rdp_prev->nocb_next_cb_rdp = rdp;
610dea36
SR
2337 if (dump_tree)
2338 pr_cont(" %d", cpu);
fbce7497
PM
2339 }
2340 rdp_prev = rdp;
3fbfbf7a 2341 }
610dea36
SR
2342 if (gotnocbs && dump_tree)
2343 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
3fbfbf7a
PM
2344}
2345
5ab7ab83
PM
2346/*
2347 * Bind the current task to the offloaded CPUs. If there are no offloaded
2348 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2349 */
2350void rcu_bind_current_to_nocb(void)
2351{
2352 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2353 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2354}
2355EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2356
f7a81b12
PM
2357/*
2358 * Dump out nocb grace-period kthread state for the specified rcu_data
2359 * structure.
2360 */
2361static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2362{
2363 struct rcu_node *rnp = rdp->mynode;
2364
2365 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2366 rdp->cpu,
2367 "kK"[!!rdp->nocb_gp_kthread],
2368 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2369 "dD"[!!rdp->nocb_defer_wakeup],
2370 "tT"[timer_pending(&rdp->nocb_timer)],
2371 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2372 "sS"[!!rdp->nocb_gp_sleep],
2373 ".W"[swait_active(&rdp->nocb_gp_wq)],
2374 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2375 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2376 ".B"[!!rdp->nocb_gp_bypass],
2377 ".G"[!!rdp->nocb_gp_gp],
2378 (long)rdp->nocb_gp_seq,
2379 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2380}
2381
2382/* Dump out nocb kthread state for the specified rcu_data structure. */
2383static void show_rcu_nocb_state(struct rcu_data *rdp)
2384{
2385 struct rcu_segcblist *rsclp = &rdp->cblist;
2386 bool waslocked;
2387 bool wastimer;
2388 bool wassleep;
2389
2390 if (rdp->nocb_gp_rdp == rdp)
2391 show_rcu_nocb_gp_state(rdp);
2392
2393 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2394 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2395 "kK"[!!rdp->nocb_cb_kthread],
2396 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2397 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2398 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2399 "sS"[!!rdp->nocb_cb_sleep],
2400 ".W"[swait_active(&rdp->nocb_cb_wq)],
2401 jiffies - rdp->nocb_bypass_first,
2402 jiffies - rdp->nocb_nobypass_last,
2403 rdp->nocb_nobypass_count,
2404 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2405 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2406 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2407 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2408 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2409 rcu_segcblist_n_cbs(&rdp->cblist));
2410
2411 /* It is OK for GP kthreads to have GP state. */
2412 if (rdp->nocb_gp_rdp == rdp)
2413 return;
2414
2415 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2416 wastimer = timer_pending(&rdp->nocb_timer);
2417 wassleep = swait_active(&rdp->nocb_gp_wq);
2418 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2419 !waslocked && !wastimer && !wassleep)
2420 return; /* Nothing untowards. */
2421
2422 pr_info(" !!! %c%c%c%c %c\n",
2423 "lL"[waslocked],
2424 "dD"[!!rdp->nocb_defer_wakeup],
2425 "tT"[wastimer],
2426 "sS"[!!rdp->nocb_gp_sleep],
2427 ".W"[wassleep]);
2428}
2429
34ed6246
PM
2430#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2431
5d6742b3
PM
2432/* No ->nocb_lock to acquire. */
2433static void rcu_nocb_lock(struct rcu_data *rdp)
d7e29933 2434{
5d6742b3
PM
2435}
2436
2437/* No ->nocb_lock to release. */
2438static void rcu_nocb_unlock(struct rcu_data *rdp)
2439{
2440}
2441
2442/* No ->nocb_lock to release. */
2443static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2444 unsigned long flags)
2445{
2446 local_irq_restore(flags);
d7e29933
PM
2447}
2448
d1b222c6
PM
2449/* Lockdep check that ->cblist may be safely accessed. */
2450static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2451{
2452 lockdep_assert_irqs_disabled();
2453}
2454
abedf8e2 2455static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2456{
3fbfbf7a
PM
2457}
2458
abedf8e2 2459static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2460{
2461 return NULL;
2462}
2463
dae6e64d
PM
2464static void rcu_init_one_nocb(struct rcu_node *rnp)
2465{
2466}
3fbfbf7a 2467
d1b222c6
PM
2468static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2469 unsigned long j)
2470{
2471 return true;
2472}
2473
2474static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2475 bool *was_alldone, unsigned long flags)
2476{
2477 return false;
2478}
2479
5d6742b3
PM
2480static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2481 unsigned long flags)
3fbfbf7a 2482{
5d6742b3 2483 WARN_ON_ONCE(1); /* Should be dead code! */
3fbfbf7a
PM
2484}
2485
3fbfbf7a
PM
2486static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2487{
2488}
2489
9fdd3bc9 2490static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2491{
2492 return false;
2493}
2494
2495static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2496{
2497}
2498
ad368d15 2499static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29
PM
2500{
2501}
2502
2503static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2504{
2505}
2506
f7a81b12
PM
2507static void show_rcu_nocb_state(struct rcu_data *rdp)
2508{
2509}
2510
3fbfbf7a 2511#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2512
a096932f
PM
2513/*
2514 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2515 * grace-period kthread will do force_quiescent_state() processing?
2516 * The idea is to avoid waking up RCU core processing on such a
2517 * CPU unless the grace period has extended for too long.
2518 *
2519 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2520 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2521 */
4580b054 2522static bool rcu_nohz_full_cpu(void)
a096932f
PM
2523{
2524#ifdef CONFIG_NO_HZ_FULL
2525 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2526 (!rcu_gp_in_progress() ||
e2f3ccfa 2527 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2528 return true;
a096932f 2529#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2530 return false;
a096932f 2531}
5057f55e
PM
2532
2533/*
265f5f28 2534 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2535 */
2536static void rcu_bind_gp_kthread(void)
2537{
c0f489d2 2538 if (!tick_nohz_full_enabled())
5057f55e 2539 return;
de201559 2540 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2541}
176f8f7a
PM
2542
2543/* Record the current task on dyntick-idle entry. */
ff5c4f5c 2544static void noinstr rcu_dynticks_task_enter(void)
176f8f7a
PM
2545{
2546#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2547 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2548#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2549}
2550
2551/* Record no current task on dyntick-idle exit. */
ff5c4f5c 2552static void noinstr rcu_dynticks_task_exit(void)
176f8f7a
PM
2553{
2554#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2555 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2556#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2557}
7d0c9c50
PM
2558
2559/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2560static void rcu_dynticks_task_trace_enter(void)
2561{
2562#ifdef CONFIG_TASKS_RCU_TRACE
2563 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2564 current->trc_reader_special.b.need_mb = true;
2565#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2566}
2567
2568/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2569static void rcu_dynticks_task_trace_exit(void)
2570{
2571#ifdef CONFIG_TASKS_RCU_TRACE
2572 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2573 current->trc_reader_special.b.need_mb = false;
2574#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2575}