rcu: Fix grace-period hangs due to race with CPU offline
[linux-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
b17b0153 30#include <linux/sched/debug.h>
62ab7072 31#include <linux/smpboot.h>
78634061 32#include <linux/sched/isolation.h>
ae7e81c0 33#include <uapi/linux/sched/types.h>
4102adab 34#include "../time/tick-internal.h"
f41d911f 35
5b61b0ba 36#ifdef CONFIG_RCU_BOOST
61cfd097 37
abaa93d9 38#include "../locking/rtmutex_common.h"
21871d7e 39
61cfd097
PM
40/*
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
43 */
44static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47DEFINE_PER_CPU(char, rcu_cpu_has_work);
48
727b705b
PM
49#else /* #ifdef CONFIG_RCU_BOOST */
50
51/*
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
56 */
57#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
b8869781 58#define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
727b705b
PM
59
60#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 61
3fbfbf7a
PM
62#ifdef CONFIG_RCU_NOCB_CPU
63static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 64static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
65#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
66
26845c28
PM
67/*
68 * Check the RCU kernel configuration parameters and print informative
699d4035 69 * messages about anything out of the ordinary.
26845c28
PM
70 */
71static void __init rcu_bootup_announce_oddness(void)
72{
ab6f5bd6 73 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 74 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
75 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
76 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
ab6f5bd6 77 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
05c5df31 78 RCU_FANOUT);
7fa27001 79 if (rcu_fanout_exact)
ab6f5bd6
PM
80 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
81 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
82 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 83 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 84 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 87 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
9a5739d7 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 92 if (nr_cpu_ids != NR_CPUS)
9b130ad5 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b
PM
94#ifdef CONFIG_RCU_BOOST
95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
96#endif
97 if (blimit != DEFAULT_RCU_BLIMIT)
98 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
99 if (qhimark != DEFAULT_RCU_QHIMARK)
100 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
101 if (qlowmark != DEFAULT_RCU_QLOMARK)
102 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
103 if (jiffies_till_first_fqs != ULONG_MAX)
104 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
105 if (jiffies_till_next_fqs != ULONG_MAX)
106 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
107 if (rcu_kick_kthreads)
108 pr_info("\tKick kthreads if too-long grace period.\n");
109 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
110 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 111 if (gp_preinit_delay)
17c7798b 112 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 113 if (gp_init_delay)
17c7798b 114 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 115 if (gp_cleanup_delay)
17c7798b
PM
116 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
117 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
118 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 119 rcupdate_announce_bootup_oddness();
26845c28
PM
120}
121
28f6569a 122#ifdef CONFIG_PREEMPT_RCU
f41d911f 123
a41bfeb2 124RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
b28a7c01 125static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
2927a689 126static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
f41d911f 127
d19fb8d1
PM
128static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
129 bool wake);
d9a3da06 130
f41d911f
PM
131/*
132 * Tell them what RCU they are running.
133 */
0e0fc1c2 134static void __init rcu_bootup_announce(void)
f41d911f 135{
efc151c3 136 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 137 rcu_bootup_announce_oddness();
f41d911f
PM
138}
139
8203d6d0
PM
140/* Flags for rcu_preempt_ctxt_queue() decision table. */
141#define RCU_GP_TASKS 0x8
142#define RCU_EXP_TASKS 0x4
143#define RCU_GP_BLKD 0x2
144#define RCU_EXP_BLKD 0x1
145
146/*
147 * Queues a task preempted within an RCU-preempt read-side critical
148 * section into the appropriate location within the ->blkd_tasks list,
149 * depending on the states of any ongoing normal and expedited grace
150 * periods. The ->gp_tasks pointer indicates which element the normal
151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
152 * indicates which element the expedited grace period is waiting on (again,
153 * NULL if none). If a grace period is waiting on a given element in the
154 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
155 * adding a task to the tail of the list blocks any grace period that is
156 * already waiting on one of the elements. In contrast, adding a task
157 * to the head of the list won't block any grace period that is already
158 * waiting on one of the elements.
159 *
160 * This queuing is imprecise, and can sometimes make an ongoing grace
161 * period wait for a task that is not strictly speaking blocking it.
162 * Given the choice, we needlessly block a normal grace period rather than
163 * blocking an expedited grace period.
164 *
165 * Note that an endless sequence of expedited grace periods still cannot
166 * indefinitely postpone a normal grace period. Eventually, all of the
167 * fixed number of preempted tasks blocking the normal grace period that are
168 * not also blocking the expedited grace period will resume and complete
169 * their RCU read-side critical sections. At that point, the ->gp_tasks
170 * pointer will equal the ->exp_tasks pointer, at which point the end of
171 * the corresponding expedited grace period will also be the end of the
172 * normal grace period.
173 */
46a5d164
PM
174static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
175 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
176{
177 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
178 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
179 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
180 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
181 struct task_struct *t = current;
182
a32e01ee 183 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 184 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 185 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
ea9b0c8a 186
8203d6d0
PM
187 /*
188 * Decide where to queue the newly blocked task. In theory,
189 * this could be an if-statement. In practice, when I tried
190 * that, it was quite messy.
191 */
192 switch (blkd_state) {
193 case 0:
194 case RCU_EXP_TASKS:
195 case RCU_EXP_TASKS + RCU_GP_BLKD:
196 case RCU_GP_TASKS:
197 case RCU_GP_TASKS + RCU_EXP_TASKS:
198
199 /*
200 * Blocking neither GP, or first task blocking the normal
201 * GP but not blocking the already-waiting expedited GP.
202 * Queue at the head of the list to avoid unnecessarily
203 * blocking the already-waiting GPs.
204 */
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 break;
207
208 case RCU_EXP_BLKD:
209 case RCU_GP_BLKD:
210 case RCU_GP_BLKD + RCU_EXP_BLKD:
211 case RCU_GP_TASKS + RCU_EXP_BLKD:
212 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
213 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
214
215 /*
216 * First task arriving that blocks either GP, or first task
217 * arriving that blocks the expedited GP (with the normal
218 * GP already waiting), or a task arriving that blocks
219 * both GPs with both GPs already waiting. Queue at the
220 * tail of the list to avoid any GP waiting on any of the
221 * already queued tasks that are not blocking it.
222 */
223 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
224 break;
225
226 case RCU_EXP_TASKS + RCU_EXP_BLKD:
227 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
228 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
229
230 /*
231 * Second or subsequent task blocking the expedited GP.
232 * The task either does not block the normal GP, or is the
233 * first task blocking the normal GP. Queue just after
234 * the first task blocking the expedited GP.
235 */
236 list_add(&t->rcu_node_entry, rnp->exp_tasks);
237 break;
238
239 case RCU_GP_TASKS + RCU_GP_BLKD:
240 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
241
242 /*
243 * Second or subsequent task blocking the normal GP.
244 * The task does not block the expedited GP. Queue just
245 * after the first task blocking the normal GP.
246 */
247 list_add(&t->rcu_node_entry, rnp->gp_tasks);
248 break;
249
250 default:
251
252 /* Yet another exercise in excessive paranoia. */
253 WARN_ON_ONCE(1);
254 break;
255 }
256
257 /*
258 * We have now queued the task. If it was the first one to
259 * block either grace period, update the ->gp_tasks and/or
260 * ->exp_tasks pointers, respectively, to reference the newly
261 * blocked tasks.
262 */
4bc8d555 263 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
8203d6d0 264 rnp->gp_tasks = &t->rcu_node_entry;
d43a5d32 265 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 266 }
8203d6d0
PM
267 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
268 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
269 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
270 !(rnp->qsmask & rdp->grpmask));
271 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
272 !(rnp->expmask & rdp->grpmask));
67c583a7 273 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
274
275 /*
276 * Report the quiescent state for the expedited GP. This expedited
277 * GP should not be able to end until we report, so there should be
278 * no need to check for a subsequent expedited GP. (Though we are
279 * still in a quiescent state in any case.)
280 */
281 if (blkd_state & RCU_EXP_BLKD &&
282 t->rcu_read_unlock_special.b.exp_need_qs) {
283 t->rcu_read_unlock_special.b.exp_need_qs = false;
284 rcu_report_exp_rdp(rdp->rsp, rdp, true);
285 } else {
286 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
287 }
8203d6d0
PM
288}
289
f41d911f 290/*
6cc68793 291 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
292 * that this just means that the task currently running on the CPU is
293 * not in a quiescent state. There might be any number of tasks blocked
294 * while in an RCU read-side critical section.
25502a6c 295 *
1d082fd0
PM
296 * As with the other rcu_*_qs() functions, callers to this function
297 * must disable preemption.
f41d911f 298 */
284a8c93 299static void rcu_preempt_qs(void)
f41d911f 300{
ea9b0c8a 301 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
5b74c458 302 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
284a8c93 303 trace_rcu_grace_period(TPS("rcu_preempt"),
477351f7 304 __this_cpu_read(rcu_data_p->gp_seq),
284a8c93 305 TPS("cpuqs"));
5b74c458 306 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
284a8c93
PM
307 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
308 current->rcu_read_unlock_special.b.need_qs = false;
309 }
f41d911f
PM
310}
311
312/*
c3422bea
PM
313 * We have entered the scheduler, and the current task might soon be
314 * context-switched away from. If this task is in an RCU read-side
315 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
316 * record that fact, so we enqueue the task on the blkd_tasks list.
317 * The task will dequeue itself when it exits the outermost enclosing
318 * RCU read-side critical section. Therefore, the current grace period
319 * cannot be permitted to complete until the blkd_tasks list entries
320 * predating the current grace period drain, in other words, until
321 * rnp->gp_tasks becomes NULL.
c3422bea 322 *
46a5d164 323 * Caller must disable interrupts.
f41d911f 324 */
5b72f964 325static void rcu_preempt_note_context_switch(bool preempt)
f41d911f
PM
326{
327 struct task_struct *t = current;
f41d911f
PM
328 struct rcu_data *rdp;
329 struct rcu_node *rnp;
330
b04db8e1 331 lockdep_assert_irqs_disabled();
5b72f964 332 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
10f39bb1 333 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 334 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
335
336 /* Possibly blocking in an RCU read-side critical section. */
e63c887c 337 rdp = this_cpu_ptr(rcu_state_p->rda);
f41d911f 338 rnp = rdp->mynode;
46a5d164 339 raw_spin_lock_rcu_node(rnp);
1d082fd0 340 t->rcu_read_unlock_special.b.blocked = true;
86848966 341 t->rcu_blocked_node = rnp;
f41d911f
PM
342
343 /*
8203d6d0
PM
344 * Verify the CPU's sanity, trace the preemption, and
345 * then queue the task as required based on the states
346 * of any ongoing and expedited grace periods.
f41d911f 347 */
0aa04b05 348 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 349 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
d4c08f2a
PM
350 trace_rcu_preempt_task(rdp->rsp->name,
351 t->pid,
352 (rnp->qsmask & rdp->grpmask)
598ce094
PM
353 ? rnp->gp_seq
354 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 355 rcu_preempt_ctxt_queue(rnp, rdp);
10f39bb1 356 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 357 t->rcu_read_unlock_special.s) {
10f39bb1
PM
358
359 /*
360 * Complete exit from RCU read-side critical section on
361 * behalf of preempted instance of __rcu_read_unlock().
362 */
363 rcu_read_unlock_special(t);
f41d911f
PM
364 }
365
366 /*
367 * Either we were not in an RCU read-side critical section to
368 * begin with, or we have now recorded that critical section
369 * globally. Either way, we can now note a quiescent state
370 * for this CPU. Again, if we were in an RCU read-side critical
371 * section, and if that critical section was blocking the current
372 * grace period, then the fact that the task has been enqueued
373 * means that we continue to block the current grace period.
374 */
284a8c93 375 rcu_preempt_qs();
f41d911f
PM
376}
377
fc2219d4
PM
378/*
379 * Check for preempted RCU readers blocking the current grace period
380 * for the specified rcu_node structure. If the caller needs a reliable
381 * answer, it must hold the rcu_node's ->lock.
382 */
27f4d280 383static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 384{
12f5f524 385 return rnp->gp_tasks != NULL;
fc2219d4
PM
386}
387
0e5da22e
PM
388/*
389 * Preemptible RCU implementation for rcu_read_lock().
390 * Just increment ->rcu_read_lock_nesting, shared state will be updated
391 * if we block.
392 */
393void __rcu_read_lock(void)
394{
395 current->rcu_read_lock_nesting++;
396 barrier(); /* critical section after entry code. */
397}
398EXPORT_SYMBOL_GPL(__rcu_read_lock);
399
400/*
401 * Preemptible RCU implementation for rcu_read_unlock().
402 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
403 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
404 * invoke rcu_read_unlock_special() to clean up after a context switch
405 * in an RCU read-side critical section and other special cases.
406 */
407void __rcu_read_unlock(void)
408{
409 struct task_struct *t = current;
410
411 if (t->rcu_read_lock_nesting != 1) {
412 --t->rcu_read_lock_nesting;
413 } else {
414 barrier(); /* critical section before exit code. */
415 t->rcu_read_lock_nesting = INT_MIN;
416 barrier(); /* assign before ->rcu_read_unlock_special load */
417 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
418 rcu_read_unlock_special(t);
419 barrier(); /* ->rcu_read_unlock_special load before assign */
420 t->rcu_read_lock_nesting = 0;
421 }
422#ifdef CONFIG_PROVE_LOCKING
423 {
424 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
425
426 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
427 }
428#endif /* #ifdef CONFIG_PROVE_LOCKING */
429}
430EXPORT_SYMBOL_GPL(__rcu_read_unlock);
431
12f5f524
PM
432/*
433 * Advance a ->blkd_tasks-list pointer to the next entry, instead
434 * returning NULL if at the end of the list.
435 */
436static struct list_head *rcu_next_node_entry(struct task_struct *t,
437 struct rcu_node *rnp)
438{
439 struct list_head *np;
440
441 np = t->rcu_node_entry.next;
442 if (np == &rnp->blkd_tasks)
443 np = NULL;
444 return np;
445}
446
8af3a5e7
PM
447/*
448 * Return true if the specified rcu_node structure has tasks that were
449 * preempted within an RCU read-side critical section.
450 */
451static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
452{
453 return !list_empty(&rnp->blkd_tasks);
454}
455
b668c9cf
PM
456/*
457 * Handle special cases during rcu_read_unlock(), such as needing to
458 * notify RCU core processing or task having blocked during the RCU
459 * read-side critical section.
460 */
2a3fa843 461void rcu_read_unlock_special(struct task_struct *t)
f41d911f 462{
b6a932d1
PM
463 bool empty_exp;
464 bool empty_norm;
465 bool empty_exp_now;
f41d911f 466 unsigned long flags;
12f5f524 467 struct list_head *np;
abaa93d9 468 bool drop_boost_mutex = false;
8203d6d0 469 struct rcu_data *rdp;
f41d911f 470 struct rcu_node *rnp;
1d082fd0 471 union rcu_special special;
f41d911f
PM
472
473 /* NMI handlers cannot block and cannot safely manipulate state. */
474 if (in_nmi())
475 return;
476
477 local_irq_save(flags);
478
479 /*
8203d6d0
PM
480 * If RCU core is waiting for this CPU to exit its critical section,
481 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 482 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
483 */
484 special = t->rcu_read_unlock_special;
1d082fd0 485 if (special.b.need_qs) {
284a8c93 486 rcu_preempt_qs();
c0135d07 487 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 488 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
489 local_irq_restore(flags);
490 return;
491 }
f41d911f
PM
492 }
493
8203d6d0
PM
494 /*
495 * Respond to a request for an expedited grace period, but only if
496 * we were not preempted, meaning that we were running on the same
497 * CPU throughout. If we were preempted, the exp_need_qs flag
498 * would have been cleared at the time of the first preemption,
499 * and the quiescent state would be reported when we were dequeued.
500 */
501 if (special.b.exp_need_qs) {
502 WARN_ON_ONCE(special.b.blocked);
503 t->rcu_read_unlock_special.b.exp_need_qs = false;
504 rdp = this_cpu_ptr(rcu_state_p->rda);
505 rcu_report_exp_rdp(rcu_state_p, rdp, true);
506 if (!t->rcu_read_unlock_special.s) {
507 local_irq_restore(flags);
508 return;
509 }
510 }
511
79a62f95 512 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
513 if (in_irq() || in_serving_softirq()) {
514 lockdep_rcu_suspicious(__FILE__, __LINE__,
515 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
8203d6d0 516 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
d24209bb
PM
517 t->rcu_read_unlock_special.s,
518 t->rcu_read_unlock_special.b.blocked,
8203d6d0 519 t->rcu_read_unlock_special.b.exp_need_qs,
d24209bb 520 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
521 local_irq_restore(flags);
522 return;
523 }
524
525 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
526 if (special.b.blocked) {
527 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 528
dd5d19ba 529 /*
0a0ba1c9 530 * Remove this task from the list it blocked on. The task
8ba9153b
PM
531 * now remains queued on the rcu_node corresponding to the
532 * CPU it first blocked on, so there is no longer any need
533 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 534 */
8ba9153b
PM
535 rnp = t->rcu_blocked_node;
536 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
537 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 538 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 539 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 540 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 541 (!empty_norm || rnp->qsmask));
8203d6d0 542 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 543 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 544 np = rcu_next_node_entry(t, rnp);
f41d911f 545 list_del_init(&t->rcu_node_entry);
82e78d80 546 t->rcu_blocked_node = NULL;
f7f7bac9 547 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 548 rnp->gp_seq, t->pid);
12f5f524
PM
549 if (&t->rcu_node_entry == rnp->gp_tasks)
550 rnp->gp_tasks = np;
551 if (&t->rcu_node_entry == rnp->exp_tasks)
552 rnp->exp_tasks = np;
727b705b 553 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
554 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
555 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
556 if (&t->rcu_node_entry == rnp->boost_tasks)
557 rnp->boost_tasks = np;
727b705b 558 }
f41d911f
PM
559
560 /*
561 * If this was the last task on the current list, and if
562 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
563 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
564 * so we must take a snapshot of the expedited state.
f41d911f 565 */
8203d6d0 566 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 567 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 568 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 569 rnp->gp_seq,
d4c08f2a
PM
570 0, rnp->qsmask,
571 rnp->level,
572 rnp->grplo,
573 rnp->grphi,
574 !!rnp->gp_tasks);
e63c887c 575 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
c701d5d9 576 } else {
67c583a7 577 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 578 }
d9a3da06 579
27f4d280 580 /* Unboost if we were boosted. */
727b705b 581 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 582 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 583
d9a3da06
PM
584 /*
585 * If this was the last task on the expedited lists,
586 * then we need to report up the rcu_node hierarchy.
587 */
389abd48 588 if (!empty_exp && empty_exp_now)
e63c887c 589 rcu_report_exp_rnp(rcu_state_p, rnp, true);
b668c9cf
PM
590 } else {
591 local_irq_restore(flags);
f41d911f 592 }
f41d911f
PM
593}
594
1ed509a2
PM
595/*
596 * Dump detailed information for all tasks blocking the current RCU
597 * grace period on the specified rcu_node structure.
598 */
599static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
600{
601 unsigned long flags;
1ed509a2
PM
602 struct task_struct *t;
603
6cf10081 604 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5fd4dc06 605 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 606 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5fd4dc06
PM
607 return;
608 }
82efed06 609 t = list_entry(rnp->gp_tasks->prev,
12f5f524 610 struct task_struct, rcu_node_entry);
3caa973b
TH
611 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
612 /*
613 * We could be printing a lot while holding a spinlock.
614 * Avoid triggering hard lockup.
615 */
616 touch_nmi_watchdog();
12f5f524 617 sched_show_task(t);
3caa973b 618 }
67c583a7 619 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1ed509a2
PM
620}
621
622/*
623 * Dump detailed information for all tasks blocking the current RCU
624 * grace period.
625 */
626static void rcu_print_detail_task_stall(struct rcu_state *rsp)
627{
628 struct rcu_node *rnp = rcu_get_root(rsp);
629
630 rcu_print_detail_task_stall_rnp(rnp);
631 rcu_for_each_leaf_node(rsp, rnp)
632 rcu_print_detail_task_stall_rnp(rnp);
633}
634
a858af28
PM
635static void rcu_print_task_stall_begin(struct rcu_node *rnp)
636{
efc151c3 637 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
638 rnp->level, rnp->grplo, rnp->grphi);
639}
640
641static void rcu_print_task_stall_end(void)
642{
efc151c3 643 pr_cont("\n");
a858af28
PM
644}
645
f41d911f
PM
646/*
647 * Scan the current list of tasks blocked within RCU read-side critical
648 * sections, printing out the tid of each.
649 */
9bc8b558 650static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 651{
f41d911f 652 struct task_struct *t;
9bc8b558 653 int ndetected = 0;
f41d911f 654
27f4d280 655 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 656 return 0;
a858af28 657 rcu_print_task_stall_begin(rnp);
82efed06 658 t = list_entry(rnp->gp_tasks->prev,
12f5f524 659 struct task_struct, rcu_node_entry);
9bc8b558 660 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 661 pr_cont(" P%d", t->pid);
9bc8b558
PM
662 ndetected++;
663 }
a858af28 664 rcu_print_task_stall_end();
9bc8b558 665 return ndetected;
f41d911f
PM
666}
667
74611ecb
PM
668/*
669 * Scan the current list of tasks blocked within RCU read-side critical
670 * sections, printing out the tid of each that is blocking the current
671 * expedited grace period.
672 */
673static int rcu_print_task_exp_stall(struct rcu_node *rnp)
674{
675 struct task_struct *t;
676 int ndetected = 0;
677
678 if (!rnp->exp_tasks)
679 return 0;
680 t = list_entry(rnp->exp_tasks->prev,
681 struct task_struct, rcu_node_entry);
682 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
683 pr_cont(" P%d", t->pid);
684 ndetected++;
685 }
686 return ndetected;
687}
688
b0e165c0
PM
689/*
690 * Check that the list of blocked tasks for the newly completed grace
691 * period is in fact empty. It is a serious bug to complete a grace
692 * period that still has RCU readers blocked! This function must be
ff3bb6f4 693 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
b0e165c0 694 * must be held by the caller.
12f5f524
PM
695 *
696 * Also, if there are blocked tasks on the list, they automatically
697 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
698 */
699static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
700{
c5ebe66c
PM
701 struct task_struct *t;
702
ea9b0c8a 703 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
4bc8d555
PM
704 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
705 dump_blkd_tasks(rnp, 10);
0b107d24
PM
706 if (rcu_preempt_has_tasks(rnp) &&
707 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
12f5f524 708 rnp->gp_tasks = rnp->blkd_tasks.next;
c5ebe66c
PM
709 t = container_of(rnp->gp_tasks, struct task_struct,
710 rcu_node_entry);
711 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 712 rnp->gp_seq, t->pid);
c5ebe66c 713 }
28ecd580 714 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
715}
716
f41d911f
PM
717/*
718 * Check for a quiescent state from the current CPU. When a task blocks,
719 * the task is recorded in the corresponding CPU's rcu_node structure,
720 * which is checked elsewhere.
721 *
722 * Caller must disable hard irqs.
723 */
86aea0e6 724static void rcu_preempt_check_callbacks(void)
f41d911f
PM
725{
726 struct task_struct *t = current;
727
728 if (t->rcu_read_lock_nesting == 0) {
284a8c93 729 rcu_preempt_qs();
f41d911f
PM
730 return;
731 }
10f39bb1 732 if (t->rcu_read_lock_nesting > 0 &&
97c668b8 733 __this_cpu_read(rcu_data_p->core_needs_qs) &&
5b74c458 734 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
1d082fd0 735 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
736}
737
a68a2bb2
PM
738/**
739 * call_rcu() - Queue an RCU callback for invocation after a grace period.
740 * @head: structure to be used for queueing the RCU updates.
741 * @func: actual callback function to be invoked after the grace period
742 *
743 * The callback function will be invoked some time after a full grace
744 * period elapses, in other words after all pre-existing RCU read-side
745 * critical sections have completed. However, the callback function
746 * might well execute concurrently with RCU read-side critical sections
747 * that started after call_rcu() was invoked. RCU read-side critical
748 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
749 * and may be nested.
750 *
751 * Note that all CPUs must agree that the grace period extended beyond
752 * all pre-existing RCU read-side critical section. On systems with more
753 * than one CPU, this means that when "func()" is invoked, each CPU is
754 * guaranteed to have executed a full memory barrier since the end of its
755 * last RCU read-side critical section whose beginning preceded the call
756 * to call_rcu(). It also means that each CPU executing an RCU read-side
757 * critical section that continues beyond the start of "func()" must have
758 * executed a memory barrier after the call_rcu() but before the beginning
759 * of that RCU read-side critical section. Note that these guarantees
760 * include CPUs that are offline, idle, or executing in user mode, as
761 * well as CPUs that are executing in the kernel.
762 *
763 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
764 * resulting RCU callback function "func()", then both CPU A and CPU B are
765 * guaranteed to execute a full memory barrier during the time interval
766 * between the call to call_rcu() and the invocation of "func()" -- even
767 * if CPU A and CPU B are the same CPU (but again only if the system has
768 * more than one CPU).
f41d911f 769 */
b6a4ae76 770void call_rcu(struct rcu_head *head, rcu_callback_t func)
f41d911f 771{
e63c887c 772 __call_rcu(head, func, rcu_state_p, -1, 0);
f41d911f
PM
773}
774EXPORT_SYMBOL_GPL(call_rcu);
775
6ebb237b
PM
776/**
777 * synchronize_rcu - wait until a grace period has elapsed.
778 *
779 * Control will return to the caller some time after a full grace
780 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
781 * read-side critical sections have completed. Note, however, that
782 * upon return from synchronize_rcu(), the caller might well be executing
783 * concurrently with new RCU read-side critical sections that began while
784 * synchronize_rcu() was waiting. RCU read-side critical sections are
785 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2 786 *
e28371c8
PM
787 * See the description of synchronize_sched() for more detailed
788 * information on memory-ordering guarantees. However, please note
789 * that -only- the memory-ordering guarantees apply. For example,
790 * synchronize_rcu() is -not- guaranteed to wait on things like code
791 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
792 * guaranteed to wait on RCU read-side critical sections, that is, sections
793 * of code protected by rcu_read_lock().
6ebb237b
PM
794 */
795void synchronize_rcu(void)
796{
f78f5b90
PM
797 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
798 lock_is_held(&rcu_lock_map) ||
799 lock_is_held(&rcu_sched_lock_map),
800 "Illegal synchronize_rcu() in RCU read-side critical section");
52d7e48b 801 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
6ebb237b 802 return;
5afff48b 803 if (rcu_gp_is_expedited())
3705b88d
AM
804 synchronize_rcu_expedited();
805 else
806 wait_rcu_gp(call_rcu);
6ebb237b
PM
807}
808EXPORT_SYMBOL_GPL(synchronize_rcu);
809
e74f4c45
PM
810/**
811 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
812 *
813 * Note that this primitive does not necessarily wait for an RCU grace period
814 * to complete. For example, if there are no RCU callbacks queued anywhere
815 * in the system, then rcu_barrier() is within its rights to return
816 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
817 */
818void rcu_barrier(void)
819{
e63c887c 820 _rcu_barrier(rcu_state_p);
e74f4c45
PM
821}
822EXPORT_SYMBOL_GPL(rcu_barrier);
823
1eba8f84 824/*
6cc68793 825 * Initialize preemptible RCU's state structures.
1eba8f84
PM
826 */
827static void __init __rcu_init_preempt(void)
828{
a87f203e 829 rcu_init_one(rcu_state_p);
1eba8f84
PM
830}
831
2439b696
PM
832/*
833 * Check for a task exiting while in a preemptible-RCU read-side
834 * critical section, clean up if so. No need to issue warnings,
835 * as debug_check_no_locks_held() already does this if lockdep
836 * is enabled.
837 */
838void exit_rcu(void)
839{
840 struct task_struct *t = current;
841
842 if (likely(list_empty(&current->rcu_node_entry)))
843 return;
844 t->rcu_read_lock_nesting = 1;
845 barrier();
1d082fd0 846 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
847 __rcu_read_unlock();
848}
849
4bc8d555
PM
850/*
851 * Dump the blocked-tasks state, but limit the list dump to the
852 * specified number of elements.
853 */
854static void dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
855{
856 int i;
857 struct list_head *lhp;
858
ce11fae8 859 raw_lockdep_assert_held_rcu_node(rnp);
77cfc7bf
PM
860 pr_info("%s: grp: %d-%d level: %d ->gp_seq %#lx ->completedqs %#lx\n",
861 __func__, rnp->grplo, rnp->grphi, rnp->level,
862 rnp->gp_seq, rnp->completedqs);
863 pr_info("%s: ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
864 __func__, rnp->qsmask, rnp->qsmaskinit, rnp->qsmaskinitnext);
865 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
866 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
867 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
868 i = 0;
869 list_for_each(lhp, &rnp->blkd_tasks) {
870 pr_cont(" %p", lhp);
871 if (++i >= 10)
872 break;
873 }
874 pr_cont("\n");
875}
876
28f6569a 877#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 878
b28a7c01 879static struct rcu_state *const rcu_state_p = &rcu_sched_state;
27f4d280 880
f41d911f
PM
881/*
882 * Tell them what RCU they are running.
883 */
0e0fc1c2 884static void __init rcu_bootup_announce(void)
f41d911f 885{
efc151c3 886 pr_info("Hierarchical RCU implementation.\n");
26845c28 887 rcu_bootup_announce_oddness();
f41d911f
PM
888}
889
cba6d0d6
PM
890/*
891 * Because preemptible RCU does not exist, we never have to check for
892 * CPUs being in quiescent states.
893 */
5b72f964 894static void rcu_preempt_note_context_switch(bool preempt)
cba6d0d6
PM
895{
896}
897
fc2219d4 898/*
6cc68793 899 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
900 * RCU readers.
901 */
27f4d280 902static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
903{
904 return 0;
905}
906
8af3a5e7
PM
907/*
908 * Because there is no preemptible RCU, there can be no readers blocked.
909 */
910static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 911{
8af3a5e7 912 return false;
b668c9cf
PM
913}
914
1ed509a2 915/*
6cc68793 916 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
917 * tasks blocked within RCU read-side critical sections.
918 */
919static void rcu_print_detail_task_stall(struct rcu_state *rsp)
920{
921}
922
f41d911f 923/*
6cc68793 924 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
925 * tasks blocked within RCU read-side critical sections.
926 */
9bc8b558 927static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 928{
9bc8b558 929 return 0;
f41d911f
PM
930}
931
74611ecb
PM
932/*
933 * Because preemptible RCU does not exist, we never have to check for
934 * tasks blocked within RCU read-side critical sections that are
935 * blocking the current expedited grace period.
936 */
937static int rcu_print_task_exp_stall(struct rcu_node *rnp)
938{
939 return 0;
940}
941
b0e165c0 942/*
6cc68793 943 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
944 * so there is no need to check for blocked tasks. So check only for
945 * bogus qsmask values.
b0e165c0
PM
946 */
947static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
948{
49e29126 949 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
950}
951
f41d911f 952/*
6cc68793 953 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
954 * to check.
955 */
86aea0e6 956static void rcu_preempt_check_callbacks(void)
f41d911f
PM
957{
958}
959
e74f4c45 960/*
6cc68793 961 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
962 * another name for rcu_barrier_sched().
963 */
964void rcu_barrier(void)
965{
966 rcu_barrier_sched();
967}
968EXPORT_SYMBOL_GPL(rcu_barrier);
969
1eba8f84 970/*
6cc68793 971 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
972 */
973static void __init __rcu_init_preempt(void)
974{
975}
976
2439b696
PM
977/*
978 * Because preemptible RCU does not exist, tasks cannot possibly exit
979 * while in preemptible RCU read-side critical sections.
980 */
981void exit_rcu(void)
982{
983}
984
4bc8d555
PM
985/*
986 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
987 */
988static void dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
989{
990 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
991}
992
28f6569a 993#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 994
27f4d280
PM
995#ifdef CONFIG_RCU_BOOST
996
5d01bbd1
TG
997static void rcu_wake_cond(struct task_struct *t, int status)
998{
999 /*
1000 * If the thread is yielding, only wake it when this
1001 * is invoked from idle
1002 */
1003 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1004 wake_up_process(t);
1005}
1006
27f4d280
PM
1007/*
1008 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1009 * or ->boost_tasks, advancing the pointer to the next task in the
1010 * ->blkd_tasks list.
1011 *
1012 * Note that irqs must be enabled: boosting the task can block.
1013 * Returns 1 if there are more tasks needing to be boosted.
1014 */
1015static int rcu_boost(struct rcu_node *rnp)
1016{
1017 unsigned long flags;
27f4d280
PM
1018 struct task_struct *t;
1019 struct list_head *tb;
1020
7d0ae808
PM
1021 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1022 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
1023 return 0; /* Nothing left to boost. */
1024
2a67e741 1025 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
1026
1027 /*
1028 * Recheck under the lock: all tasks in need of boosting
1029 * might exit their RCU read-side critical sections on their own.
1030 */
1031 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 1032 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1033 return 0;
1034 }
1035
1036 /*
1037 * Preferentially boost tasks blocking expedited grace periods.
1038 * This cannot starve the normal grace periods because a second
1039 * expedited grace period must boost all blocked tasks, including
1040 * those blocking the pre-existing normal grace period.
1041 */
bec06785 1042 if (rnp->exp_tasks != NULL)
27f4d280 1043 tb = rnp->exp_tasks;
bec06785 1044 else
27f4d280
PM
1045 tb = rnp->boost_tasks;
1046
1047 /*
1048 * We boost task t by manufacturing an rt_mutex that appears to
1049 * be held by task t. We leave a pointer to that rt_mutex where
1050 * task t can find it, and task t will release the mutex when it
1051 * exits its outermost RCU read-side critical section. Then
1052 * simply acquiring this artificial rt_mutex will boost task
1053 * t's priority. (Thanks to tglx for suggesting this approach!)
1054 *
1055 * Note that task t must acquire rnp->lock to remove itself from
1056 * the ->blkd_tasks list, which it will do from exit() if from
1057 * nowhere else. We therefore are guaranteed that task t will
1058 * stay around at least until we drop rnp->lock. Note that
1059 * rnp->lock also resolves races between our priority boosting
1060 * and task t's exiting its outermost RCU read-side critical
1061 * section.
1062 */
1063 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1064 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1065 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1066 /* Lock only for side effect: boosts task t's priority. */
1067 rt_mutex_lock(&rnp->boost_mtx);
1068 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1069
7d0ae808
PM
1070 return READ_ONCE(rnp->exp_tasks) != NULL ||
1071 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1072}
1073
27f4d280 1074/*
bc17ea10 1075 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1076 */
1077static int rcu_boost_kthread(void *arg)
1078{
1079 struct rcu_node *rnp = (struct rcu_node *)arg;
1080 int spincnt = 0;
1081 int more2boost;
1082
f7f7bac9 1083 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1084 for (;;) {
d71df90e 1085 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1086 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1087 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1088 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1089 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1090 more2boost = rcu_boost(rnp);
1091 if (more2boost)
1092 spincnt++;
1093 else
1094 spincnt = 0;
1095 if (spincnt > 10) {
5d01bbd1 1096 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1097 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1098 schedule_timeout_interruptible(2);
f7f7bac9 1099 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1100 spincnt = 0;
1101 }
1102 }
1217ed1b 1103 /* NOTREACHED */
f7f7bac9 1104 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1105 return 0;
1106}
1107
1108/*
1109 * Check to see if it is time to start boosting RCU readers that are
1110 * blocking the current grace period, and, if so, tell the per-rcu_node
1111 * kthread to start boosting them. If there is an expedited grace
1112 * period in progress, it is always time to boost.
1113 *
b065a853
PM
1114 * The caller must hold rnp->lock, which this function releases.
1115 * The ->boost_kthread_task is immortal, so we don't need to worry
1116 * about it going away.
27f4d280 1117 */
1217ed1b 1118static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1119 __releases(rnp->lock)
27f4d280
PM
1120{
1121 struct task_struct *t;
1122
a32e01ee 1123 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1124 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1125 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1126 return;
0ea1f2eb 1127 }
27f4d280
PM
1128 if (rnp->exp_tasks != NULL ||
1129 (rnp->gp_tasks != NULL &&
1130 rnp->boost_tasks == NULL &&
1131 rnp->qsmask == 0 &&
1132 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1133 if (rnp->exp_tasks == NULL)
1134 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1135 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1136 t = rnp->boost_kthread_task;
5d01bbd1
TG
1137 if (t)
1138 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1139 } else {
67c583a7 1140 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1141 }
27f4d280
PM
1142}
1143
a46e0899
PM
1144/*
1145 * Wake up the per-CPU kthread to invoke RCU callbacks.
1146 */
1147static void invoke_rcu_callbacks_kthread(void)
1148{
1149 unsigned long flags;
1150
1151 local_irq_save(flags);
1152 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1153 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1154 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1155 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1156 __this_cpu_read(rcu_cpu_kthread_status));
1157 }
a46e0899
PM
1158 local_irq_restore(flags);
1159}
1160
dff1672d
PM
1161/*
1162 * Is the current CPU running the RCU-callbacks kthread?
1163 * Caller must have preemption disabled.
1164 */
1165static bool rcu_is_callbacks_kthread(void)
1166{
c9d4b0af 1167 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1168}
1169
27f4d280
PM
1170#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1171
1172/*
1173 * Do priority-boost accounting for the start of a new grace period.
1174 */
1175static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1176{
1177 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1178}
1179
27f4d280
PM
1180/*
1181 * Create an RCU-boost kthread for the specified node if one does not
1182 * already exist. We only create this kthread for preemptible RCU.
1183 * Returns zero if all is well, a negated errno otherwise.
1184 */
49fb4c62 1185static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
0aa04b05 1186 struct rcu_node *rnp)
27f4d280 1187{
5d01bbd1 1188 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1189 unsigned long flags;
1190 struct sched_param sp;
1191 struct task_struct *t;
1192
e63c887c 1193 if (rcu_state_p != rsp)
27f4d280 1194 return 0;
5d01bbd1 1195
0aa04b05 1196 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1197 return 0;
1198
a46e0899 1199 rsp->boost = 1;
27f4d280
PM
1200 if (rnp->boost_kthread_task != NULL)
1201 return 0;
1202 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1203 "rcub/%d", rnp_index);
27f4d280
PM
1204 if (IS_ERR(t))
1205 return PTR_ERR(t);
2a67e741 1206 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1207 rnp->boost_kthread_task = t;
67c583a7 1208 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1209 sp.sched_priority = kthread_prio;
27f4d280 1210 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1211 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1212 return 0;
1213}
1214
f8b7fc6b
PM
1215static void rcu_kthread_do_work(void)
1216{
c9d4b0af
CL
1217 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1218 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
be01b4ca 1219 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
f8b7fc6b
PM
1220}
1221
62ab7072 1222static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1223{
f8b7fc6b 1224 struct sched_param sp;
f8b7fc6b 1225
21871d7e 1226 sp.sched_priority = kthread_prio;
62ab7072 1227 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1228}
1229
62ab7072 1230static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1231{
62ab7072 1232 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1233}
1234
62ab7072 1235static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1236{
c9d4b0af 1237 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1238}
1239
1240/*
1241 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1242 * RCU softirq used in flavors and configurations of RCU that do not
1243 * support RCU priority boosting.
f8b7fc6b 1244 */
62ab7072 1245static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1246{
c9d4b0af
CL
1247 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1248 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1249 int spincnt;
f8b7fc6b 1250
62ab7072 1251 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1252 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1253 local_bh_disable();
f8b7fc6b 1254 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1255 this_cpu_inc(rcu_cpu_kthread_loops);
1256 local_irq_disable();
f8b7fc6b
PM
1257 work = *workp;
1258 *workp = 0;
62ab7072 1259 local_irq_enable();
f8b7fc6b
PM
1260 if (work)
1261 rcu_kthread_do_work();
1262 local_bh_enable();
62ab7072 1263 if (*workp == 0) {
f7f7bac9 1264 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1265 *statusp = RCU_KTHREAD_WAITING;
1266 return;
f8b7fc6b
PM
1267 }
1268 }
62ab7072 1269 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1270 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1271 schedule_timeout_interruptible(2);
f7f7bac9 1272 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1273 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1274}
1275
1276/*
1277 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1278 * served by the rcu_node in question. The CPU hotplug lock is still
1279 * held, so the value of rnp->qsmaskinit will be stable.
1280 *
1281 * We don't include outgoingcpu in the affinity set, use -1 if there is
1282 * no outgoing CPU. If there are no CPUs left in the affinity set,
1283 * this function allows the kthread to execute on any CPU.
1284 */
5d01bbd1 1285static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1286{
5d01bbd1 1287 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1288 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1289 cpumask_var_t cm;
1290 int cpu;
f8b7fc6b 1291
5d01bbd1 1292 if (!t)
f8b7fc6b 1293 return;
5d01bbd1 1294 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1295 return;
bc75e999
MR
1296 for_each_leaf_node_possible_cpu(rnp, cpu)
1297 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1298 cpu != outgoingcpu)
f8b7fc6b 1299 cpumask_set_cpu(cpu, cm);
5d0b0249 1300 if (cpumask_weight(cm) == 0)
f8b7fc6b 1301 cpumask_setall(cm);
5d01bbd1 1302 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1303 free_cpumask_var(cm);
1304}
1305
62ab7072
PM
1306static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1307 .store = &rcu_cpu_kthread_task,
1308 .thread_should_run = rcu_cpu_kthread_should_run,
1309 .thread_fn = rcu_cpu_kthread,
1310 .thread_comm = "rcuc/%u",
1311 .setup = rcu_cpu_kthread_setup,
1312 .park = rcu_cpu_kthread_park,
1313};
f8b7fc6b
PM
1314
1315/*
9386c0b7 1316 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1317 */
9386c0b7 1318static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1319{
f8b7fc6b 1320 struct rcu_node *rnp;
5d01bbd1 1321 int cpu;
f8b7fc6b 1322
62ab7072 1323 for_each_possible_cpu(cpu)
f8b7fc6b 1324 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1325 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1326 rcu_for_each_leaf_node(rcu_state_p, rnp)
1327 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1328}
f8b7fc6b 1329
49fb4c62 1330static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1331{
e534165b 1332 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1333 struct rcu_node *rnp = rdp->mynode;
1334
1335 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1336 if (rcu_scheduler_fully_active)
e534165b 1337 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1338}
1339
27f4d280
PM
1340#else /* #ifdef CONFIG_RCU_BOOST */
1341
1217ed1b 1342static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1343 __releases(rnp->lock)
27f4d280 1344{
67c583a7 1345 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1346}
1347
a46e0899 1348static void invoke_rcu_callbacks_kthread(void)
27f4d280 1349{
a46e0899 1350 WARN_ON_ONCE(1);
27f4d280
PM
1351}
1352
dff1672d
PM
1353static bool rcu_is_callbacks_kthread(void)
1354{
1355 return false;
1356}
1357
27f4d280
PM
1358static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1359{
1360}
1361
5d01bbd1 1362static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1363{
1364}
1365
9386c0b7 1366static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1367{
b0d30417 1368}
b0d30417 1369
49fb4c62 1370static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1371{
1372}
1373
27f4d280
PM
1374#endif /* #else #ifdef CONFIG_RCU_BOOST */
1375
8bd93a2c
PM
1376#if !defined(CONFIG_RCU_FAST_NO_HZ)
1377
1378/*
1379 * Check to see if any future RCU-related work will need to be done
1380 * by the current CPU, even if none need be done immediately, returning
1381 * 1 if so. This function is part of the RCU implementation; it is -not-
1382 * an exported member of the RCU API.
1383 *
7cb92499
PM
1384 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1385 * any flavor of RCU.
8bd93a2c 1386 */
c1ad348b 1387int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1388{
c1ad348b 1389 *nextevt = KTIME_MAX;
44c65ff2 1390 return rcu_cpu_has_callbacks(NULL);
7cb92499
PM
1391}
1392
1393/*
1394 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1395 * after it.
1396 */
8fa7845d 1397static void rcu_cleanup_after_idle(void)
7cb92499
PM
1398{
1399}
1400
aea1b35e 1401/*
a858af28 1402 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1403 * is nothing.
1404 */
198bbf81 1405static void rcu_prepare_for_idle(void)
aea1b35e
PM
1406{
1407}
1408
c57afe80
PM
1409/*
1410 * Don't bother keeping a running count of the number of RCU callbacks
1411 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1412 */
1413static void rcu_idle_count_callbacks_posted(void)
1414{
1415}
1416
8bd93a2c
PM
1417#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1418
f23f7fa1
PM
1419/*
1420 * This code is invoked when a CPU goes idle, at which point we want
1421 * to have the CPU do everything required for RCU so that it can enter
1422 * the energy-efficient dyntick-idle mode. This is handled by a
1423 * state machine implemented by rcu_prepare_for_idle() below.
1424 *
1425 * The following three proprocessor symbols control this state machine:
1426 *
f23f7fa1
PM
1427 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1428 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1429 * is sized to be roughly one RCU grace period. Those energy-efficiency
1430 * benchmarkers who might otherwise be tempted to set this to a large
1431 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1432 * system. And if you are -that- concerned about energy efficiency,
1433 * just power the system down and be done with it!
778d250a
PM
1434 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1435 * permitted to sleep in dyntick-idle mode with only lazy RCU
1436 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1437 *
1438 * The values below work well in practice. If future workloads require
1439 * adjustment, they can be converted into kernel config parameters, though
1440 * making the state machine smarter might be a better option.
1441 */
e84c48ae 1442#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1443#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1444
5e44ce35
PM
1445static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1446module_param(rcu_idle_gp_delay, int, 0644);
1447static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1448module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1449
486e2593 1450/*
c229828c
PM
1451 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1452 * only if it has been awhile since the last time we did so. Afterwards,
1453 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1454 */
f1f399d1 1455static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1456{
c0f4dfd4
PM
1457 bool cbs_ready = false;
1458 struct rcu_data *rdp;
c229828c 1459 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1460 struct rcu_node *rnp;
1461 struct rcu_state *rsp;
486e2593 1462
c229828c
PM
1463 /* Exit early if we advanced recently. */
1464 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1465 return false;
c229828c
PM
1466 rdtp->last_advance_all = jiffies;
1467
c0f4dfd4
PM
1468 for_each_rcu_flavor(rsp) {
1469 rdp = this_cpu_ptr(rsp->rda);
1470 rnp = rdp->mynode;
486e2593 1471
c0f4dfd4
PM
1472 /*
1473 * Don't bother checking unless a grace period has
1474 * completed since we last checked and there are
1475 * callbacks not yet ready to invoke.
1476 */
03c8cb76
PM
1477 if ((rcu_seq_completed_gp(rdp->gp_seq,
1478 rcu_seq_current(&rnp->gp_seq)) ||
7d0ae808 1479 unlikely(READ_ONCE(rdp->gpwrap))) &&
15fecf89 1480 rcu_segcblist_pend_cbs(&rdp->cblist))
470716fc 1481 note_gp_changes(rsp, rdp);
486e2593 1482
15fecf89 1483 if (rcu_segcblist_ready_cbs(&rdp->cblist))
c0f4dfd4
PM
1484 cbs_ready = true;
1485 }
1486 return cbs_ready;
486e2593
PM
1487}
1488
aa9b1630 1489/*
c0f4dfd4
PM
1490 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1491 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1492 * caller to set the timeout based on whether or not there are non-lazy
1493 * callbacks.
aa9b1630 1494 *
c0f4dfd4 1495 * The caller must have disabled interrupts.
aa9b1630 1496 */
c1ad348b 1497int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1498{
aa6da514 1499 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c1ad348b 1500 unsigned long dj;
aa9b1630 1501
b04db8e1 1502 lockdep_assert_irqs_disabled();
3382adbc 1503
c0f4dfd4
PM
1504 /* Snapshot to detect later posting of non-lazy callback. */
1505 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1506
aa9b1630 1507 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1508 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c1ad348b 1509 *nextevt = KTIME_MAX;
aa9b1630
PM
1510 return 0;
1511 }
c0f4dfd4
PM
1512
1513 /* Attempt to advance callbacks. */
1514 if (rcu_try_advance_all_cbs()) {
1515 /* Some ready to invoke, so initiate later invocation. */
1516 invoke_rcu_core();
aa9b1630
PM
1517 return 1;
1518 }
c0f4dfd4
PM
1519 rdtp->last_accelerate = jiffies;
1520
1521 /* Request timer delay depending on laziness, and round. */
6faf7283 1522 if (!rdtp->all_lazy) {
c1ad348b 1523 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1524 rcu_idle_gp_delay) - jiffies;
e84c48ae 1525 } else {
c1ad348b 1526 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1527 }
c1ad348b 1528 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1529 return 0;
1530}
1531
21e52e15 1532/*
c0f4dfd4
PM
1533 * Prepare a CPU for idle from an RCU perspective. The first major task
1534 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1535 * The second major task is to check to see if a non-lazy callback has
1536 * arrived at a CPU that previously had only lazy callbacks. The third
1537 * major task is to accelerate (that is, assign grace-period numbers to)
1538 * any recently arrived callbacks.
aea1b35e
PM
1539 *
1540 * The caller must have disabled interrupts.
8bd93a2c 1541 */
198bbf81 1542static void rcu_prepare_for_idle(void)
8bd93a2c 1543{
48a7639c 1544 bool needwake;
c0f4dfd4 1545 struct rcu_data *rdp;
198bbf81 1546 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1547 struct rcu_node *rnp;
1548 struct rcu_state *rsp;
9d2ad243
PM
1549 int tne;
1550
b04db8e1 1551 lockdep_assert_irqs_disabled();
44c65ff2 1552 if (rcu_is_nocb_cpu(smp_processor_id()))
3382adbc
PM
1553 return;
1554
9d2ad243 1555 /* Handle nohz enablement switches conservatively. */
7d0ae808 1556 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1557 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1558 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1559 invoke_rcu_core(); /* force nohz to see update. */
1560 rdtp->tick_nohz_enabled_snap = tne;
1561 return;
1562 }
1563 if (!tne)
1564 return;
f511fc62 1565
c57afe80 1566 /*
c0f4dfd4
PM
1567 * If a non-lazy callback arrived at a CPU having only lazy
1568 * callbacks, invoke RCU core for the side-effect of recalculating
1569 * idle duration on re-entry to idle.
c57afe80 1570 */
c0f4dfd4
PM
1571 if (rdtp->all_lazy &&
1572 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1573 rdtp->all_lazy = false;
1574 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1575 invoke_rcu_core();
c57afe80
PM
1576 return;
1577 }
c57afe80 1578
3084f2f8 1579 /*
c0f4dfd4
PM
1580 * If we have not yet accelerated this jiffy, accelerate all
1581 * callbacks on this CPU.
3084f2f8 1582 */
c0f4dfd4 1583 if (rdtp->last_accelerate == jiffies)
aea1b35e 1584 return;
c0f4dfd4
PM
1585 rdtp->last_accelerate = jiffies;
1586 for_each_rcu_flavor(rsp) {
198bbf81 1587 rdp = this_cpu_ptr(rsp->rda);
135bd1a2 1588 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
c0f4dfd4
PM
1589 continue;
1590 rnp = rdp->mynode;
2a67e741 1591 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
48a7639c 1592 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
67c583a7 1593 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c
PM
1594 if (needwake)
1595 rcu_gp_kthread_wake(rsp);
77e38ed3 1596 }
c0f4dfd4 1597}
3084f2f8 1598
c0f4dfd4
PM
1599/*
1600 * Clean up for exit from idle. Attempt to advance callbacks based on
1601 * any grace periods that elapsed while the CPU was idle, and if any
1602 * callbacks are now ready to invoke, initiate invocation.
1603 */
8fa7845d 1604static void rcu_cleanup_after_idle(void)
c0f4dfd4 1605{
b04db8e1 1606 lockdep_assert_irqs_disabled();
44c65ff2 1607 if (rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1608 return;
7a497c96
PM
1609 if (rcu_try_advance_all_cbs())
1610 invoke_rcu_core();
8bd93a2c
PM
1611}
1612
c57afe80 1613/*
98248a0e
PM
1614 * Keep a running count of the number of non-lazy callbacks posted
1615 * on this CPU. This running counter (which is never decremented) allows
1616 * rcu_prepare_for_idle() to detect when something out of the idle loop
1617 * posts a callback, even if an equal number of callbacks are invoked.
1618 * Of course, callbacks should only be posted from within a trace event
1619 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1620 */
1621static void rcu_idle_count_callbacks_posted(void)
1622{
5955f7ee 1623 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1624}
1625
b626c1b6
PM
1626/*
1627 * Data for flushing lazy RCU callbacks at OOM time.
1628 */
1629static atomic_t oom_callback_count;
1630static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1631
1632/*
1633 * RCU OOM callback -- decrement the outstanding count and deliver the
1634 * wake-up if we are the last one.
1635 */
1636static void rcu_oom_callback(struct rcu_head *rhp)
1637{
1638 if (atomic_dec_and_test(&oom_callback_count))
1639 wake_up(&oom_callback_wq);
1640}
1641
1642/*
1643 * Post an rcu_oom_notify callback on the current CPU if it has at
1644 * least one lazy callback. This will unnecessarily post callbacks
1645 * to CPUs that already have a non-lazy callback at the end of their
1646 * callback list, but this is an infrequent operation, so accept some
1647 * extra overhead to keep things simple.
1648 */
1649static void rcu_oom_notify_cpu(void *unused)
1650{
1651 struct rcu_state *rsp;
1652 struct rcu_data *rdp;
1653
1654 for_each_rcu_flavor(rsp) {
fa07a58f 1655 rdp = raw_cpu_ptr(rsp->rda);
15fecf89 1656 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
b626c1b6
PM
1657 atomic_inc(&oom_callback_count);
1658 rsp->call(&rdp->oom_head, rcu_oom_callback);
1659 }
1660 }
1661}
1662
1663/*
1664 * If low on memory, ensure that each CPU has a non-lazy callback.
1665 * This will wake up CPUs that have only lazy callbacks, in turn
1666 * ensuring that they free up the corresponding memory in a timely manner.
1667 * Because an uncertain amount of memory will be freed in some uncertain
1668 * timeframe, we do not claim to have freed anything.
1669 */
1670static int rcu_oom_notify(struct notifier_block *self,
1671 unsigned long notused, void *nfreed)
1672{
1673 int cpu;
1674
1675 /* Wait for callbacks from earlier instance to complete. */
1676 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1677 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1678
1679 /*
1680 * Prevent premature wakeup: ensure that all increments happen
1681 * before there is a chance of the counter reaching zero.
1682 */
1683 atomic_set(&oom_callback_count, 1);
1684
b626c1b6
PM
1685 for_each_online_cpu(cpu) {
1686 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
cee43939 1687 cond_resched_tasks_rcu_qs();
b626c1b6 1688 }
b626c1b6
PM
1689
1690 /* Unconditionally decrement: no need to wake ourselves up. */
1691 atomic_dec(&oom_callback_count);
1692
1693 return NOTIFY_OK;
1694}
1695
1696static struct notifier_block rcu_oom_nb = {
1697 .notifier_call = rcu_oom_notify
1698};
1699
1700static int __init rcu_register_oom_notifier(void)
1701{
1702 register_oom_notifier(&rcu_oom_nb);
1703 return 0;
1704}
1705early_initcall(rcu_register_oom_notifier);
1706
8bd93a2c 1707#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1708
a858af28
PM
1709#ifdef CONFIG_RCU_FAST_NO_HZ
1710
1711static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1712{
5955f7ee 1713 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1714 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1715
c0f4dfd4
PM
1716 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1717 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1718 ulong2long(nlpd),
1719 rdtp->all_lazy ? 'L' : '.',
1720 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1721}
1722
1723#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1724
1725static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1726{
1c17e4d4 1727 *cp = '\0';
a858af28
PM
1728}
1729
1730#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1731
1732/* Initiate the stall-info list. */
1733static void print_cpu_stall_info_begin(void)
1734{
efc151c3 1735 pr_cont("\n");
a858af28
PM
1736}
1737
1738/*
1739 * Print out diagnostic information for the specified stalled CPU.
1740 *
1741 * If the specified CPU is aware of the current RCU grace period
1742 * (flavor specified by rsp), then print the number of scheduling
1743 * clock interrupts the CPU has taken during the time that it has
1744 * been aware. Otherwise, print the number of RCU grace periods
1745 * that this CPU is ignorant of, for example, "1" if the CPU was
1746 * aware of the previous grace period.
1747 *
1748 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1749 */
1750static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1751{
9b9500da 1752 unsigned long delta;
a858af28
PM
1753 char fast_no_hz[72];
1754 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1755 struct rcu_dynticks *rdtp = rdp->dynticks;
1756 char *ticks_title;
1757 unsigned long ticks_value;
1758
3caa973b
TH
1759 /*
1760 * We could be printing a lot while holding a spinlock. Avoid
1761 * triggering hard lockup.
1762 */
1763 touch_nmi_watchdog();
1764
471f87c3
PM
1765 ticks_value = rcu_seq_ctr(rsp->gp_seq - rdp->gp_seq);
1766 if (ticks_value) {
1767 ticks_title = "GPs behind";
1768 } else {
a858af28
PM
1769 ticks_title = "ticks this GP";
1770 ticks_value = rdp->ticks_this_gp;
a858af28
PM
1771 }
1772 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
8aa670cd 1773 delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
84585aa8 1774 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
7f21aeef
PM
1775 cpu,
1776 "O."[!!cpu_online(cpu)],
1777 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1778 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
9b9500da
PM
1779 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1780 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1781 "!."[!delta],
7f21aeef 1782 ticks_value, ticks_title,
02a5c550 1783 rcu_dynticks_snap(rdtp) & 0xfff,
a858af28 1784 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1785 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
7d0ae808 1786 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1787 fast_no_hz);
1788}
1789
1790/* Terminate the stall-info list. */
1791static void print_cpu_stall_info_end(void)
1792{
efc151c3 1793 pr_err("\t");
a858af28
PM
1794}
1795
1796/* Zero ->ticks_this_gp for all flavors of RCU. */
1797static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1798{
1799 rdp->ticks_this_gp = 0;
6231069b 1800 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1801}
1802
1803/* Increment ->ticks_this_gp for all flavors of RCU. */
1804static void increment_cpu_stall_ticks(void)
1805{
115f7a7c
PM
1806 struct rcu_state *rsp;
1807
1808 for_each_rcu_flavor(rsp)
fa07a58f 1809 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1810}
1811
3fbfbf7a
PM
1812#ifdef CONFIG_RCU_NOCB_CPU
1813
1814/*
1815 * Offload callback processing from the boot-time-specified set of CPUs
1816 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1817 * kthread created that pulls the callbacks from the corresponding CPU,
1818 * waits for a grace period to elapse, and invokes the callbacks.
1819 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1820 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1821 * has been specified, in which case each kthread actively polls its
1822 * CPU. (Which isn't so great for energy efficiency, but which does
1823 * reduce RCU's overhead on that CPU.)
1824 *
1825 * This is intended to be used in conjunction with Frederic Weisbecker's
1826 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1827 * running CPU-bound user-mode computations.
1828 *
1829 * Offloading of callback processing could also in theory be used as
1830 * an energy-efficiency measure because CPUs with no RCU callbacks
1831 * queued are more aggressive about entering dyntick-idle mode.
1832 */
1833
1834
1835/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1836static int __init rcu_nocb_setup(char *str)
1837{
1838 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
3fbfbf7a
PM
1839 cpulist_parse(str, rcu_nocb_mask);
1840 return 1;
1841}
1842__setup("rcu_nocbs=", rcu_nocb_setup);
1843
1b0048a4
PG
1844static int __init parse_rcu_nocb_poll(char *arg)
1845{
5455a7f6 1846 rcu_nocb_poll = true;
1b0048a4
PG
1847 return 0;
1848}
1849early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1850
dae6e64d 1851/*
0446be48
PM
1852 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1853 * grace period.
dae6e64d 1854 */
abedf8e2 1855static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1856{
abedf8e2 1857 swake_up_all(sq);
dae6e64d
PM
1858}
1859
abedf8e2 1860static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1861{
e0da2374 1862 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1863}
1864
dae6e64d 1865static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1866{
abedf8e2
PG
1867 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1868 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1869}
1870
24342c96 1871/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1872bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1873{
84b12b75 1874 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1875 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1876 return false;
1877}
1878
fbce7497 1879/*
8be6e1b1
PM
1880 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1881 * and this function releases it.
fbce7497 1882 */
8be6e1b1
PM
1883static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1884 unsigned long flags)
1885 __releases(rdp->nocb_lock)
fbce7497
PM
1886{
1887 struct rcu_data *rdp_leader = rdp->nocb_leader;
1888
8be6e1b1
PM
1889 lockdep_assert_held(&rdp->nocb_lock);
1890 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1891 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 1892 return;
8be6e1b1
PM
1893 }
1894 if (rdp_leader->nocb_leader_sleep || force) {
39953dfd 1895 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1896 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
8be6e1b1
PM
1897 del_timer(&rdp->nocb_timer);
1898 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
6b5fc3a1 1899 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
abedf8e2 1900 swake_up(&rdp_leader->nocb_wq);
8be6e1b1
PM
1901 } else {
1902 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497
PM
1903 }
1904}
1905
8be6e1b1
PM
1906/*
1907 * Kick the leader kthread for this NOCB group, but caller has not
1908 * acquired locks.
1909 */
1910static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1911{
1912 unsigned long flags;
1913
1914 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1915 __wake_nocb_leader(rdp, force, flags);
1916}
1917
1918/*
1919 * Arrange to wake the leader kthread for this NOCB group at some
1920 * future time when it is safe to do so.
1921 */
1922static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1923 const char *reason)
1924{
1925 unsigned long flags;
1926
1927 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1928 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1929 mod_timer(&rdp->nocb_timer, jiffies + 1);
1930 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1931 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1932 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1933}
1934
d7e29933
PM
1935/*
1936 * Does the specified CPU need an RCU callback for the specified flavor
1937 * of rcu_barrier()?
1938 */
1939static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1940{
1941 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1942 unsigned long ret;
1943#ifdef CONFIG_PROVE_RCU
d7e29933 1944 struct rcu_head *rhp;
41050a00 1945#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1946
41050a00
PM
1947 /*
1948 * Check count of all no-CBs callbacks awaiting invocation.
1949 * There needs to be a barrier before this function is called,
1950 * but associated with a prior determination that no more
1951 * callbacks would be posted. In the worst case, the first
1952 * barrier in _rcu_barrier() suffices (but the caller cannot
1953 * necessarily rely on this, not a substitute for the caller
1954 * getting the concurrency design right!). There must also be
1955 * a barrier between the following load an posting of a callback
1956 * (if a callback is in fact needed). This is associated with an
1957 * atomic_inc() in the caller.
1958 */
1959 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1960
41050a00 1961#ifdef CONFIG_PROVE_RCU
7d0ae808 1962 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1963 if (!rhp)
7d0ae808 1964 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1965 if (!rhp)
7d0ae808 1966 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1967
1968 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1969 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1970 rcu_scheduler_fully_active) {
d7e29933
PM
1971 /* RCU callback enqueued before CPU first came online??? */
1972 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1973 cpu, rhp->func);
1974 WARN_ON_ONCE(1);
1975 }
41050a00 1976#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1977
41050a00 1978 return !!ret;
d7e29933
PM
1979}
1980
3fbfbf7a
PM
1981/*
1982 * Enqueue the specified string of rcu_head structures onto the specified
1983 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1984 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1985 * counts are supplied by rhcount and rhcount_lazy.
1986 *
1987 * If warranted, also wake up the kthread servicing this CPUs queues.
1988 */
1989static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1990 struct rcu_head *rhp,
1991 struct rcu_head **rhtp,
96d3fd0d
PM
1992 int rhcount, int rhcount_lazy,
1993 unsigned long flags)
3fbfbf7a
PM
1994{
1995 int len;
1996 struct rcu_head **old_rhpp;
1997 struct task_struct *t;
1998
1999 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
2000 atomic_long_add(rhcount, &rdp->nocb_q_count);
2001 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 2002 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 2003 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 2004 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 2005 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
2006
2007 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 2008 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 2009 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2010 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2011 TPS("WakeNotPoll"));
3fbfbf7a 2012 return;
9261dd0d 2013 }
3fbfbf7a
PM
2014 len = atomic_long_read(&rdp->nocb_q_count);
2015 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2016 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2017 /* ... if queue was empty ... */
2018 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2019 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2020 TPS("WakeEmpty"));
2021 } else {
8be6e1b1
PM
2022 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
2023 TPS("WakeEmptyIsDeferred"));
96d3fd0d 2024 }
3fbfbf7a
PM
2025 rdp->qlen_last_fqs_check = 0;
2026 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 2027 /* ... or if many callbacks queued. */
9fdd3bc9
PM
2028 if (!irqs_disabled_flags(flags)) {
2029 wake_nocb_leader(rdp, true);
2030 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2031 TPS("WakeOvf"));
2032 } else {
efcd2d54 2033 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
8be6e1b1 2034 TPS("WakeOvfIsDeferred"));
9fdd3bc9 2035 }
3fbfbf7a 2036 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2037 } else {
2038 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2039 }
2040 return;
2041}
2042
2043/*
2044 * This is a helper for __call_rcu(), which invokes this when the normal
2045 * callback queue is inoperable. If this is not a no-CBs CPU, this
2046 * function returns failure back to __call_rcu(), which can complain
2047 * appropriately.
2048 *
2049 * Otherwise, this function queues the callback where the corresponding
2050 * "rcuo" kthread can find it.
2051 */
2052static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2053 bool lazy, unsigned long flags)
3fbfbf7a
PM
2054{
2055
d1e43fa5 2056 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2057 return false;
96d3fd0d 2058 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2059 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2060 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2061 (unsigned long)rhp->func,
756cbf6b
PM
2062 -atomic_long_read(&rdp->nocb_q_count_lazy),
2063 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2064 else
2065 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2066 -atomic_long_read(&rdp->nocb_q_count_lazy),
2067 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2068
2069 /*
2070 * If called from an extended quiescent state with interrupts
2071 * disabled, invoke the RCU core in order to allow the idle-entry
2072 * deferred-wakeup check to function.
2073 */
2074 if (irqs_disabled_flags(flags) &&
2075 !rcu_is_watching() &&
2076 cpu_online(smp_processor_id()))
2077 invoke_rcu_core();
2078
c271d3a9 2079 return true;
3fbfbf7a
PM
2080}
2081
2082/*
2083 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2084 * not a no-CBs CPU.
2085 */
b1a2d79f 2086static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
96d3fd0d
PM
2087 struct rcu_data *rdp,
2088 unsigned long flags)
3fbfbf7a 2089{
b04db8e1 2090 lockdep_assert_irqs_disabled();
d1e43fa5 2091 if (!rcu_is_nocb_cpu(smp_processor_id()))
b1a2d79f
PM
2092 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2093 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2094 rcu_segcblist_tail(&rdp->cblist),
2095 rcu_segcblist_n_cbs(&rdp->cblist),
2096 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2097 rcu_segcblist_init(&rdp->cblist);
2098 rcu_segcblist_disable(&rdp->cblist);
0a9e1e11 2099 return true;
3fbfbf7a
PM
2100}
2101
2102/*
34ed6246
PM
2103 * If necessary, kick off a new grace period, and either way wait
2104 * for a subsequent grace period to complete.
3fbfbf7a 2105 */
34ed6246 2106static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2107{
34ed6246 2108 unsigned long c;
dae6e64d 2109 bool d;
34ed6246 2110 unsigned long flags;
48a7639c 2111 bool needwake;
34ed6246
PM
2112 struct rcu_node *rnp = rdp->mynode;
2113
ab5e869c 2114 local_irq_save(flags);
29365e56 2115 c = rcu_seq_snap(&rdp->rsp->gp_seq);
ab5e869c
PM
2116 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2117 local_irq_restore(flags);
2118 } else {
2119 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2120 needwake = rcu_start_this_gp(rnp, rdp, c);
2121 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2122 if (needwake)
2123 rcu_gp_kthread_wake(rdp->rsp);
2124 }
3fbfbf7a
PM
2125
2126 /*
34ed6246
PM
2127 * Wait for the grace period. Do so interruptibly to avoid messing
2128 * up the load average.
3fbfbf7a 2129 */
41e80595 2130 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2131 for (;;) {
abedf8e2 2132 swait_event_interruptible(
29365e56
PM
2133 rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2134 (d = rcu_seq_done(&rnp->gp_seq, c)));
dae6e64d 2135 if (likely(d))
34ed6246 2136 break;
73a860cd 2137 WARN_ON(signal_pending(current));
41e80595 2138 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2139 }
41e80595 2140 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2141 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2142}
2143
fbce7497
PM
2144/*
2145 * Leaders come here to wait for additional callbacks to show up.
2146 * This function does not return until callbacks appear.
2147 */
2148static void nocb_leader_wait(struct rcu_data *my_rdp)
2149{
2150 bool firsttime = true;
8be6e1b1 2151 unsigned long flags;
fbce7497
PM
2152 bool gotcbs;
2153 struct rcu_data *rdp;
2154 struct rcu_head **tail;
2155
2156wait_again:
2157
2158 /* Wait for callbacks to appear. */
2159 if (!rcu_nocb_poll) {
bedbb648 2160 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
abedf8e2 2161 swait_event_interruptible(my_rdp->nocb_wq,
7d0ae808 2162 !READ_ONCE(my_rdp->nocb_leader_sleep));
8be6e1b1
PM
2163 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2164 my_rdp->nocb_leader_sleep = true;
2165 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2166 del_timer(&my_rdp->nocb_timer);
2167 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
fbce7497
PM
2168 } else if (firsttime) {
2169 firsttime = false; /* Don't drown trace log with "Poll"! */
bedbb648 2170 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
fbce7497
PM
2171 }
2172
2173 /*
2174 * Each pass through the following loop checks a follower for CBs.
2175 * We are our own first follower. Any CBs found are moved to
2176 * nocb_gp_head, where they await a grace period.
2177 */
2178 gotcbs = false;
8be6e1b1 2179 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
fbce7497 2180 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2181 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2182 if (!rdp->nocb_gp_head)
2183 continue; /* No CBs here, try next follower. */
2184
2185 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2186 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2187 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2188 gotcbs = true;
2189 }
2190
8be6e1b1 2191 /* No callbacks? Sleep a bit if polling, and go retry. */
fbce7497 2192 if (unlikely(!gotcbs)) {
73a860cd 2193 WARN_ON(signal_pending(current));
8be6e1b1
PM
2194 if (rcu_nocb_poll) {
2195 schedule_timeout_interruptible(1);
2196 } else {
fbce7497 2197 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
bedbb648 2198 TPS("WokeEmpty"));
8be6e1b1 2199 }
fbce7497
PM
2200 goto wait_again;
2201 }
2202
2203 /* Wait for one grace period. */
2204 rcu_nocb_wait_gp(my_rdp);
2205
fbce7497
PM
2206 /* Each pass through the following loop wakes a follower, if needed. */
2207 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
8be6e1b1
PM
2208 if (!rcu_nocb_poll &&
2209 READ_ONCE(rdp->nocb_head) &&
2210 READ_ONCE(my_rdp->nocb_leader_sleep)) {
2211 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
11ed7f93 2212 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
8be6e1b1
PM
2213 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2214 }
fbce7497
PM
2215 if (!rdp->nocb_gp_head)
2216 continue; /* No CBs, so no need to wake follower. */
2217
2218 /* Append callbacks to follower's "done" list. */
8be6e1b1
PM
2219 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2220 tail = rdp->nocb_follower_tail;
2221 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
fbce7497 2222 *tail = rdp->nocb_gp_head;
8be6e1b1 2223 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 2224 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
8be6e1b1 2225 /* List was empty, so wake up the follower. */
abedf8e2 2226 swake_up(&rdp->nocb_wq);
fbce7497
PM
2227 }
2228 }
2229
2230 /* If we (the leader) don't have CBs, go wait some more. */
2231 if (!my_rdp->nocb_follower_head)
2232 goto wait_again;
2233}
2234
2235/*
2236 * Followers come here to wait for additional callbacks to show up.
2237 * This function does not return until callbacks appear.
2238 */
2239static void nocb_follower_wait(struct rcu_data *rdp)
2240{
fbce7497 2241 for (;;) {
bedbb648 2242 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
8be6e1b1
PM
2243 swait_event_interruptible(rdp->nocb_wq,
2244 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2245 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2246 /* ^^^ Ensure CB invocation follows _head test. */
2247 return;
2248 }
73a860cd 2249 WARN_ON(signal_pending(current));
bedbb648 2250 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2251 }
2252}
2253
3fbfbf7a
PM
2254/*
2255 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2256 * callbacks queued by the corresponding no-CBs CPU, however, there is
2257 * an optional leader-follower relationship so that the grace-period
2258 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2259 */
2260static int rcu_nocb_kthread(void *arg)
2261{
2262 int c, cl;
8be6e1b1 2263 unsigned long flags;
3fbfbf7a
PM
2264 struct rcu_head *list;
2265 struct rcu_head *next;
2266 struct rcu_head **tail;
2267 struct rcu_data *rdp = arg;
2268
2269 /* Each pass through this loop invokes one batch of callbacks */
2270 for (;;) {
fbce7497
PM
2271 /* Wait for callbacks. */
2272 if (rdp->nocb_leader == rdp)
2273 nocb_leader_wait(rdp);
2274 else
2275 nocb_follower_wait(rdp);
2276
2277 /* Pull the ready-to-invoke callbacks onto local list. */
8be6e1b1
PM
2278 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2279 list = rdp->nocb_follower_head;
2280 rdp->nocb_follower_head = NULL;
2281 tail = rdp->nocb_follower_tail;
2282 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2283 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 2284 BUG_ON(!list);
bedbb648 2285 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
3fbfbf7a
PM
2286
2287 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2288 trace_rcu_batch_start(rdp->rsp->name,
2289 atomic_long_read(&rdp->nocb_q_count_lazy),
2290 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2291 c = cl = 0;
2292 while (list) {
2293 next = list->next;
2294 /* Wait for enqueuing to complete, if needed. */
2295 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2296 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2297 TPS("WaitQueue"));
3fbfbf7a 2298 schedule_timeout_interruptible(1);
69a79bb1
PM
2299 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2300 TPS("WokeQueue"));
3fbfbf7a
PM
2301 next = list->next;
2302 }
2303 debug_rcu_head_unqueue(list);
2304 local_bh_disable();
2305 if (__rcu_reclaim(rdp->rsp->name, list))
2306 cl++;
2307 c++;
2308 local_bh_enable();
cee43939 2309 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2310 list = next;
2311 }
2312 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2313 smp_mb__before_atomic(); /* _add after CB invocation. */
2314 atomic_long_add(-c, &rdp->nocb_q_count);
2315 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
3fbfbf7a
PM
2316 }
2317 return 0;
2318}
2319
96d3fd0d 2320/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2321static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2322{
7d0ae808 2323 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2324}
2325
2326/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2327static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2328{
8be6e1b1 2329 unsigned long flags;
9fdd3bc9
PM
2330 int ndw;
2331
8be6e1b1
PM
2332 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2333 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2334 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
96d3fd0d 2335 return;
8be6e1b1 2336 }
7d0ae808 2337 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2338 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
8be6e1b1 2339 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
9fdd3bc9 2340 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2341}
2342
8be6e1b1 2343/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2344static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2345{
fd30b717
KC
2346 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2347
2348 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2349}
2350
2351/*
2352 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2353 * This means we do an inexact common-case check. Note that if
2354 * we miss, ->nocb_timer will eventually clean things up.
2355 */
2356static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2357{
2358 if (rcu_nocb_need_deferred_wakeup(rdp))
2359 do_nocb_deferred_wakeup_common(rdp);
2360}
2361
f4579fc5
PM
2362void __init rcu_init_nohz(void)
2363{
2364 int cpu;
ef126206 2365 bool need_rcu_nocb_mask = false;
f4579fc5
PM
2366 struct rcu_state *rsp;
2367
f4579fc5
PM
2368#if defined(CONFIG_NO_HZ_FULL)
2369 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2370 need_rcu_nocb_mask = true;
2371#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2372
84b12b75 2373 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2374 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2375 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2376 return;
2377 }
f4579fc5 2378 }
84b12b75 2379 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2380 return;
2381
f4579fc5
PM
2382#if defined(CONFIG_NO_HZ_FULL)
2383 if (tick_nohz_full_running)
2384 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2385#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2386
2387 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2388 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2389 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2390 rcu_nocb_mask);
2391 }
3016611e
PM
2392 if (cpumask_empty(rcu_nocb_mask))
2393 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2394 else
2395 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2396 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2397 if (rcu_nocb_poll)
2398 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2399
2400 for_each_rcu_flavor(rsp) {
34404ca8
PM
2401 for_each_cpu(cpu, rcu_nocb_mask)
2402 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
35ce7f29 2403 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2404 }
96d3fd0d
PM
2405}
2406
3fbfbf7a
PM
2407/* Initialize per-rcu_data variables for no-CBs CPUs. */
2408static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2409{
2410 rdp->nocb_tail = &rdp->nocb_head;
abedf8e2 2411 init_swait_queue_head(&rdp->nocb_wq);
fbce7497 2412 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
8be6e1b1 2413 raw_spin_lock_init(&rdp->nocb_lock);
fd30b717 2414 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
3fbfbf7a
PM
2415}
2416
35ce7f29
PM
2417/*
2418 * If the specified CPU is a no-CBs CPU that does not already have its
2419 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2420 * brought online out of order, this can require re-organizing the
2421 * leader-follower relationships.
2422 */
2423static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2424{
2425 struct rcu_data *rdp;
2426 struct rcu_data *rdp_last;
2427 struct rcu_data *rdp_old_leader;
2428 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2429 struct task_struct *t;
2430
2431 /*
2432 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2433 * then nothing to do.
2434 */
2435 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2436 return;
2437
2438 /* If we didn't spawn the leader first, reorganize! */
2439 rdp_old_leader = rdp_spawn->nocb_leader;
2440 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2441 rdp_last = NULL;
2442 rdp = rdp_old_leader;
2443 do {
2444 rdp->nocb_leader = rdp_spawn;
2445 if (rdp_last && rdp != rdp_spawn)
2446 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2447 if (rdp == rdp_spawn) {
2448 rdp = rdp->nocb_next_follower;
2449 } else {
2450 rdp_last = rdp;
2451 rdp = rdp->nocb_next_follower;
2452 rdp_last->nocb_next_follower = NULL;
2453 }
35ce7f29
PM
2454 } while (rdp);
2455 rdp_spawn->nocb_next_follower = rdp_old_leader;
2456 }
2457
2458 /* Spawn the kthread for this CPU and RCU flavor. */
2459 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2460 "rcuo%c/%d", rsp->abbr, cpu);
2461 BUG_ON(IS_ERR(t));
7d0ae808 2462 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2463}
2464
2465/*
2466 * If the specified CPU is a no-CBs CPU that does not already have its
2467 * rcuo kthreads, spawn them.
2468 */
2469static void rcu_spawn_all_nocb_kthreads(int cpu)
2470{
2471 struct rcu_state *rsp;
2472
2473 if (rcu_scheduler_fully_active)
2474 for_each_rcu_flavor(rsp)
2475 rcu_spawn_one_nocb_kthread(rsp, cpu);
2476}
2477
2478/*
2479 * Once the scheduler is running, spawn rcuo kthreads for all online
2480 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2481 * non-boot CPUs come online -- if this changes, we will need to add
2482 * some mutual exclusion.
2483 */
2484static void __init rcu_spawn_nocb_kthreads(void)
2485{
2486 int cpu;
2487
2488 for_each_online_cpu(cpu)
2489 rcu_spawn_all_nocb_kthreads(cpu);
2490}
2491
fbce7497
PM
2492/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2493static int rcu_nocb_leader_stride = -1;
2494module_param(rcu_nocb_leader_stride, int, 0444);
2495
2496/*
35ce7f29 2497 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2498 */
35ce7f29 2499static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2500{
2501 int cpu;
fbce7497
PM
2502 int ls = rcu_nocb_leader_stride;
2503 int nl = 0; /* Next leader. */
3fbfbf7a 2504 struct rcu_data *rdp;
fbce7497
PM
2505 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2506 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2507
84b12b75 2508 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2509 return;
fbce7497
PM
2510 if (ls == -1) {
2511 ls = int_sqrt(nr_cpu_ids);
2512 rcu_nocb_leader_stride = ls;
2513 }
2514
2515 /*
9831ce3b
PM
2516 * Each pass through this loop sets up one rcu_data structure.
2517 * Should the corresponding CPU come online in the future, then
2518 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2519 */
3fbfbf7a
PM
2520 for_each_cpu(cpu, rcu_nocb_mask) {
2521 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2522 if (rdp->cpu >= nl) {
2523 /* New leader, set up for followers & next leader. */
2524 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2525 rdp->nocb_leader = rdp;
2526 rdp_leader = rdp;
2527 } else {
2528 /* Another follower, link to previous leader. */
2529 rdp->nocb_leader = rdp_leader;
2530 rdp_prev->nocb_next_follower = rdp;
2531 }
2532 rdp_prev = rdp;
3fbfbf7a
PM
2533 }
2534}
2535
2536/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2537static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2538{
22c2f669 2539 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2540 return false;
22c2f669 2541
34404ca8 2542 /* If there are early-boot callbacks, move them to nocb lists. */
15fecf89
PM
2543 if (!rcu_segcblist_empty(&rdp->cblist)) {
2544 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2545 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2546 atomic_long_set(&rdp->nocb_q_count,
2547 rcu_segcblist_n_cbs(&rdp->cblist));
2548 atomic_long_set(&rdp->nocb_q_count_lazy,
2549 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2550 rcu_segcblist_init(&rdp->cblist);
34404ca8 2551 }
15fecf89 2552 rcu_segcblist_disable(&rdp->cblist);
34ed6246 2553 return true;
3fbfbf7a
PM
2554}
2555
34ed6246
PM
2556#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2557
d7e29933
PM
2558static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2559{
2560 WARN_ON_ONCE(1); /* Should be dead code. */
2561 return false;
2562}
2563
abedf8e2 2564static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2565{
3fbfbf7a
PM
2566}
2567
abedf8e2 2568static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2569{
2570 return NULL;
2571}
2572
dae6e64d
PM
2573static void rcu_init_one_nocb(struct rcu_node *rnp)
2574{
2575}
3fbfbf7a 2576
3fbfbf7a 2577static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2578 bool lazy, unsigned long flags)
3fbfbf7a 2579{
4afc7e26 2580 return false;
3fbfbf7a
PM
2581}
2582
b1a2d79f 2583static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
96d3fd0d
PM
2584 struct rcu_data *rdp,
2585 unsigned long flags)
3fbfbf7a 2586{
f4aa84ba 2587 return false;
3fbfbf7a
PM
2588}
2589
3fbfbf7a
PM
2590static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2591{
2592}
2593
9fdd3bc9 2594static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2595{
2596 return false;
2597}
2598
2599static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2600{
2601}
2602
35ce7f29
PM
2603static void rcu_spawn_all_nocb_kthreads(int cpu)
2604{
2605}
2606
2607static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2608{
2609}
2610
34ed6246 2611static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2612{
34ed6246 2613 return false;
3fbfbf7a
PM
2614}
2615
2616#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2617
2618/*
2619 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2620 * arbitrarily long period of time with the scheduling-clock tick turned
2621 * off. RCU will be paying attention to this CPU because it is in the
2622 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2623 * machine because the scheduling-clock tick has been disabled. Therefore,
2624 * if an adaptive-ticks CPU is failing to respond to the current grace
2625 * period and has not be idle from an RCU perspective, kick it.
2626 */
4a81e832 2627static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2628{
2629#ifdef CONFIG_NO_HZ_FULL
2630 if (tick_nohz_full_cpu(cpu))
2631 smp_send_reschedule(cpu);
2632#endif /* #ifdef CONFIG_NO_HZ_FULL */
2633}
2333210b 2634
a096932f
PM
2635/*
2636 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2637 * grace-period kthread will do force_quiescent_state() processing?
2638 * The idea is to avoid waking up RCU core processing on such a
2639 * CPU unless the grace period has extended for too long.
2640 *
2641 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2642 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
2643 */
2644static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2645{
2646#ifdef CONFIG_NO_HZ_FULL
2647 if (tick_nohz_full_cpu(smp_processor_id()) &&
2648 (!rcu_gp_in_progress(rsp) ||
7d0ae808 2649 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
5ce035fb 2650 return true;
a096932f 2651#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2652 return false;
a096932f 2653}
5057f55e
PM
2654
2655/*
265f5f28 2656 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2657 */
2658static void rcu_bind_gp_kthread(void)
2659{
c0f489d2 2660 int __maybe_unused cpu;
5057f55e 2661
c0f489d2 2662 if (!tick_nohz_full_enabled())
5057f55e 2663 return;
de201559 2664 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2665}
176f8f7a
PM
2666
2667/* Record the current task on dyntick-idle entry. */
2668static void rcu_dynticks_task_enter(void)
2669{
2670#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2671 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2672#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2673}
2674
2675/* Record no current task on dyntick-idle exit. */
2676static void rcu_dynticks_task_exit(void)
2677{
2678#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2679 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2680#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2681}