Commit | Line | Data |
---|---|---|
22e40925 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
64db4cff | 2 | /* |
65bb0dc4 | 3 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) |
64db4cff | 4 | * |
64db4cff PM |
5 | * Copyright IBM Corporation, 2008 |
6 | * | |
7 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | |
8 | * Manfred Spraul <manfred@colorfullife.com> | |
65bb0dc4 | 9 | * Paul E. McKenney <paulmck@linux.ibm.com> |
64db4cff | 10 | * |
22e40925 | 11 | * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> |
64db4cff PM |
12 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
13 | * | |
14 | * For detailed explanation of Read-Copy Update mechanism see - | |
a71fca58 | 15 | * Documentation/RCU |
64db4cff | 16 | */ |
a7538352 JP |
17 | |
18 | #define pr_fmt(fmt) "rcu: " fmt | |
19 | ||
64db4cff PM |
20 | #include <linux/types.h> |
21 | #include <linux/kernel.h> | |
22 | #include <linux/init.h> | |
23 | #include <linux/spinlock.h> | |
24 | #include <linux/smp.h> | |
f9411ebe | 25 | #include <linux/rcupdate_wait.h> |
64db4cff PM |
26 | #include <linux/interrupt.h> |
27 | #include <linux/sched.h> | |
b17b0153 | 28 | #include <linux/sched/debug.h> |
c1dc0b9c | 29 | #include <linux/nmi.h> |
8826f3b0 | 30 | #include <linux/atomic.h> |
64db4cff | 31 | #include <linux/bitops.h> |
9984de1a | 32 | #include <linux/export.h> |
64db4cff | 33 | #include <linux/completion.h> |
5f98fd03 | 34 | #include <linux/kmemleak.h> |
64db4cff | 35 | #include <linux/moduleparam.h> |
f39650de AS |
36 | #include <linux/panic.h> |
37 | #include <linux/panic_notifier.h> | |
64db4cff PM |
38 | #include <linux/percpu.h> |
39 | #include <linux/notifier.h> | |
40 | #include <linux/cpu.h> | |
41 | #include <linux/mutex.h> | |
42 | #include <linux/time.h> | |
bbad9379 | 43 | #include <linux/kernel_stat.h> |
a26ac245 PM |
44 | #include <linux/wait.h> |
45 | #include <linux/kthread.h> | |
ae7e81c0 | 46 | #include <uapi/linux/sched/types.h> |
268bb0ce | 47 | #include <linux/prefetch.h> |
3d3b7db0 | 48 | #include <linux/delay.h> |
661a85dc | 49 | #include <linux/random.h> |
af658dca | 50 | #include <linux/trace_events.h> |
d1d74d14 | 51 | #include <linux/suspend.h> |
a278d471 | 52 | #include <linux/ftrace.h> |
d3052109 | 53 | #include <linux/tick.h> |
2ccaff10 | 54 | #include <linux/sysrq.h> |
c13324a5 | 55 | #include <linux/kprobes.h> |
48d07c04 SAS |
56 | #include <linux/gfp.h> |
57 | #include <linux/oom.h> | |
58 | #include <linux/smpboot.h> | |
59 | #include <linux/jiffies.h> | |
77a40f97 | 60 | #include <linux/slab.h> |
48d07c04 | 61 | #include <linux/sched/isolation.h> |
cfcdef5e | 62 | #include <linux/sched/clock.h> |
5f3c8d62 URS |
63 | #include <linux/vmalloc.h> |
64 | #include <linux/mm.h> | |
26e760c9 | 65 | #include <linux/kasan.h> |
17211455 | 66 | #include <linux/context_tracking.h> |
48d07c04 | 67 | #include "../time/tick-internal.h" |
64db4cff | 68 | |
4102adab | 69 | #include "tree.h" |
29c00b4a | 70 | #include "rcu.h" |
9f77da9f | 71 | |
4102adab PM |
72 | #ifdef MODULE_PARAM_PREFIX |
73 | #undef MODULE_PARAM_PREFIX | |
74 | #endif | |
75 | #define MODULE_PARAM_PREFIX "rcutree." | |
76 | ||
64db4cff | 77 | /* Data structures. */ |
988f569a | 78 | static void rcu_sr_normal_gp_cleanup_work(struct work_struct *); |
64db4cff | 79 | |
4c5273bf | 80 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { |
a5d1b0b6 | 81 | .gpwrap = true, |
4c5273bf | 82 | }; |
aafe12f9 JF |
83 | |
84 | int rcu_get_gpwrap_count(int cpu) | |
85 | { | |
86 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | |
87 | ||
88 | return READ_ONCE(rdp->gpwrap_count); | |
89 | } | |
90 | EXPORT_SYMBOL_GPL(rcu_get_gpwrap_count); | |
91 | ||
c30fe541 | 92 | static struct rcu_state rcu_state = { |
358be2d3 | 93 | .level = { &rcu_state.node[0] }, |
358be2d3 PM |
94 | .gp_state = RCU_GP_IDLE, |
95 | .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, | |
96 | .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), | |
80b3fd47 | 97 | .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), |
358be2d3 PM |
98 | .name = RCU_NAME, |
99 | .abbr = RCU_ABBR, | |
100 | .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), | |
101 | .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), | |
82980b16 | 102 | .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, |
988f569a URS |
103 | .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work, |
104 | rcu_sr_normal_gp_cleanup_work), | |
6f948568 | 105 | .srs_cleanups_pending = ATOMIC_INIT(0), |
7121dd91 FW |
106 | #ifdef CONFIG_RCU_NOCB_CPU |
107 | .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex), | |
108 | #endif | |
358be2d3 | 109 | }; |
27f4d280 | 110 | |
a3dc2948 PM |
111 | /* Dump rcu_node combining tree at boot to verify correct setup. */ |
112 | static bool dump_tree; | |
113 | module_param(dump_tree, bool, 0444); | |
48d07c04 | 114 | /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ |
8b9a0ecc SW |
115 | static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); |
116 | #ifndef CONFIG_PREEMPT_RT | |
48d07c04 | 117 | module_param(use_softirq, bool, 0444); |
8b9a0ecc | 118 | #endif |
7fa27001 PM |
119 | /* Control rcu_node-tree auto-balancing at boot time. */ |
120 | static bool rcu_fanout_exact; | |
121 | module_param(rcu_fanout_exact, bool, 0444); | |
47d631af PM |
122 | /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ |
123 | static int rcu_fanout_leaf = RCU_FANOUT_LEAF; | |
7e5c2dfb | 124 | module_param(rcu_fanout_leaf, int, 0444); |
f885b7f2 | 125 | int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; |
cb007102 | 126 | /* Number of rcu_nodes at specified level. */ |
e95d68d2 | 127 | int num_rcu_lvl[] = NUM_RCU_LVL_INIT; |
f885b7f2 PM |
128 | int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ |
129 | ||
b0d30417 | 130 | /* |
52d7e48b PM |
131 | * The rcu_scheduler_active variable is initialized to the value |
132 | * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the | |
133 | * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, | |
134 | * RCU can assume that there is but one task, allowing RCU to (for example) | |
0d95092c | 135 | * optimize synchronize_rcu() to a simple barrier(). When this variable |
52d7e48b PM |
136 | * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required |
137 | * to detect real grace periods. This variable is also used to suppress | |
138 | * boot-time false positives from lockdep-RCU error checking. Finally, it | |
139 | * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU | |
140 | * is fully initialized, including all of its kthreads having been spawned. | |
b0d30417 | 141 | */ |
bbad9379 PM |
142 | int rcu_scheduler_active __read_mostly; |
143 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); | |
144 | ||
b0d30417 PM |
145 | /* |
146 | * The rcu_scheduler_fully_active variable transitions from zero to one | |
147 | * during the early_initcall() processing, which is after the scheduler | |
148 | * is capable of creating new tasks. So RCU processing (for example, | |
149 | * creating tasks for RCU priority boosting) must be delayed until after | |
150 | * rcu_scheduler_fully_active transitions from zero to one. We also | |
151 | * currently delay invocation of any RCU callbacks until after this point. | |
152 | * | |
153 | * It might later prove better for people registering RCU callbacks during | |
154 | * early boot to take responsibility for these callbacks, but one step at | |
155 | * a time. | |
156 | */ | |
157 | static int rcu_scheduler_fully_active __read_mostly; | |
158 | ||
b50912d0 PM |
159 | static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, |
160 | unsigned long gps, unsigned long flags); | |
a46e0899 | 161 | static void invoke_rcu_core(void); |
63d4c8c9 | 162 | static void rcu_report_exp_rdp(struct rcu_data *rdp); |
3549c2bc | 163 | static void sync_sched_exp_online_cleanup(int cpu); |
b2b00ddf | 164 | static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); |
3820b513 | 165 | static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); |
5a04848d PM |
166 | static bool rcu_rdp_cpu_online(struct rcu_data *rdp); |
167 | static bool rcu_init_invoked(void); | |
168 | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); | |
169 | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); | |
a26ac245 | 170 | |
8f489b4d URS |
171 | /* |
172 | * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" | |
173 | * real-time priority(enabling/disabling) is controlled by | |
174 | * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. | |
175 | */ | |
26730f55 | 176 | static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; |
3ffe3d1a | 177 | module_param(kthread_prio, int, 0444); |
a94844b2 | 178 | |
8d7dc928 | 179 | /* Delay in jiffies for grace-period initialization delays, debug only. */ |
0f41c0dd | 180 | |
90040c9e PM |
181 | static int gp_preinit_delay; |
182 | module_param(gp_preinit_delay, int, 0444); | |
183 | static int gp_init_delay; | |
184 | module_param(gp_init_delay, int, 0444); | |
185 | static int gp_cleanup_delay; | |
186 | module_param(gp_cleanup_delay, int, 0444); | |
68d124b0 PM |
187 | static int nohz_full_patience_delay; |
188 | module_param(nohz_full_patience_delay, int, 0444); | |
189 | static int nohz_full_patience_delay_jiffies; | |
0f41c0dd | 190 | |
aa40c138 PM |
191 | // Add delay to rcu_read_unlock() for strict grace periods. |
192 | static int rcu_unlock_delay; | |
193 | #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD | |
194 | module_param(rcu_unlock_delay, int, 0444); | |
195 | #endif | |
196 | ||
4cf439a2 | 197 | /* Retrieve RCU kthreads priority for rcutorture */ |
4babd855 JFG |
198 | int rcu_get_gp_kthreads_prio(void) |
199 | { | |
200 | return kthread_prio; | |
201 | } | |
202 | EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); | |
203 | ||
eab128e8 PM |
204 | /* |
205 | * Number of grace periods between delays, normalized by the duration of | |
bfd090be | 206 | * the delay. The longer the delay, the more the grace periods between |
eab128e8 PM |
207 | * each delay. The reason for this normalization is that it means that, |
208 | * for non-zero delays, the overall slowdown of grace periods is constant | |
209 | * regardless of the duration of the delay. This arrangement balances | |
210 | * the need for long delays to increase some race probabilities with the | |
211 | * need for fast grace periods to increase other race probabilities. | |
212 | */ | |
277ffe1b | 213 | #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ |
37745d28 | 214 | |
fc2219d4 | 215 | /* |
7d0ae808 | 216 | * Return true if an RCU grace period is in progress. The READ_ONCE()s |
fc2219d4 PM |
217 | * permit this function to be invoked without holding the root rcu_node |
218 | * structure's ->lock, but of course results can be subject to change. | |
219 | */ | |
de8e8730 | 220 | static int rcu_gp_in_progress(void) |
fc2219d4 | 221 | { |
de8e8730 | 222 | return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); |
b1f77b05 IM |
223 | } |
224 | ||
903ee83d PM |
225 | /* |
226 | * Return the number of callbacks queued on the specified CPU. | |
227 | * Handles both the nocbs and normal cases. | |
228 | */ | |
229 | static long rcu_get_n_cbs_cpu(int cpu) | |
230 | { | |
231 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | |
232 | ||
c035280f | 233 | if (rcu_segcblist_is_enabled(&rdp->cblist)) |
903ee83d | 234 | return rcu_segcblist_n_cbs(&rdp->cblist); |
c035280f | 235 | return 0; |
903ee83d PM |
236 | } |
237 | ||
3183059a PM |
238 | /** |
239 | * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing | |
240 | * | |
241 | * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU. | |
242 | * This is a special-purpose function to be used in the softirq | |
243 | * infrastructure and perhaps the occasional long-running softirq | |
244 | * handler. | |
245 | * | |
246 | * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is | |
247 | * equivalent to momentarily completely enabling preemption. For | |
248 | * example, given this code:: | |
249 | * | |
250 | * local_bh_disable(); | |
251 | * do_something(); | |
252 | * rcu_softirq_qs(); // A | |
253 | * do_something_else(); | |
254 | * local_bh_enable(); // B | |
255 | * | |
256 | * A call to synchronize_rcu() that began concurrently with the | |
257 | * call to do_something() would be guaranteed to wait only until | |
258 | * execution reached statement A. Without that rcu_softirq_qs(), | |
259 | * that same synchronize_rcu() would instead be guaranteed to wait | |
260 | * until execution reached statement B. | |
261 | */ | |
d28139c4 | 262 | void rcu_softirq_qs(void) |
b1f77b05 | 263 | { |
3183059a PM |
264 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
265 | lock_is_held(&rcu_lock_map) || | |
266 | lock_is_held(&rcu_sched_lock_map), | |
267 | "Illegal rcu_softirq_qs() in RCU read-side critical section"); | |
45975c7d | 268 | rcu_qs(); |
d28139c4 | 269 | rcu_preempt_deferred_qs(current); |
cf868c2a | 270 | rcu_tasks_qs(current, false); |
b1f77b05 | 271 | } |
64db4cff | 272 | |
2625d469 | 273 | /* |
654b578e | 274 | * Reset the current CPU's RCU_WATCHING counter to indicate that the |
2625d469 PM |
275 | * newly onlined CPU is no longer in an extended quiescent state. |
276 | * This will either leave the counter unchanged, or increment it | |
277 | * to the next non-quiescent value. | |
278 | * | |
279 | * The non-atomic test/increment sequence works because the upper bits | |
654b578e | 280 | * of the ->state variable are manipulated only by the corresponding CPU, |
2625d469 PM |
281 | * or when the corresponding CPU is offline. |
282 | */ | |
654b578e | 283 | static void rcu_watching_online(void) |
2625d469 | 284 | { |
a4a7921e | 285 | if (ct_rcu_watching() & CT_RCU_WATCHING) |
2625d469 | 286 | return; |
4aa35e0d | 287 | ct_state_inc(CT_RCU_WATCHING); |
02a5c550 PM |
288 | } |
289 | ||
02a5c550 | 290 | /* |
9629936d | 291 | * Return true if the snapshot returned from ct_rcu_watching() |
02a5c550 PM |
292 | * indicates that RCU is in an extended quiescent state. |
293 | */ | |
9629936d | 294 | static bool rcu_watching_snap_in_eqs(int snap) |
02a5c550 | 295 | { |
4aa35e0d | 296 | return !(snap & CT_RCU_WATCHING); |
02a5c550 PM |
297 | } |
298 | ||
3116a32e VS |
299 | /** |
300 | * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU | |
301 | * since the specified @snap? | |
302 | * | |
303 | * @rdp: The rcu_data corresponding to the CPU for which to check EQS. | |
304 | * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS. | |
305 | * | |
306 | * Returns true if the CPU corresponding to @rdp has spent some time in an | |
307 | * extended quiescent state since @snap. Note that this doesn't check if it | |
308 | * /still/ is in an EQS, just that it went through one since @snap. | |
309 | * | |
310 | * This is meant to be used in a loop waiting for a CPU to go through an EQS. | |
02a5c550 | 311 | */ |
3116a32e | 312 | static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap) |
02a5c550 | 313 | { |
0a5e9bd3 FW |
314 | /* |
315 | * The first failing snapshot is already ordered against the accesses | |
316 | * performed by the remote CPU after it exits idle. | |
317 | * | |
318 | * The second snapshot therefore only needs to order against accesses | |
319 | * performed by the remote CPU prior to entering idle and therefore can | |
320 | * rely solely on acquire semantics. | |
321 | */ | |
3116a32e VS |
322 | if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap))) |
323 | return true; | |
324 | ||
125716c3 | 325 | return snap != ct_rcu_watching_cpu_acquire(rdp->cpu); |
02a5c550 PM |
326 | } |
327 | ||
7d0c9c50 PM |
328 | /* |
329 | * Return true if the referenced integer is zero while the specified | |
330 | * CPU remains within a single extended quiescent state. | |
331 | */ | |
fc1096ab | 332 | bool rcu_watching_zero_in_eqs(int cpu, int *vp) |
7d0c9c50 | 333 | { |
7d0c9c50 PM |
334 | int snap; |
335 | ||
336 | // If not quiescent, force back to earlier extended quiescent state. | |
a9fde9d1 VS |
337 | snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING; |
338 | smp_rmb(); // Order CT state and *vp reads. | |
7d0c9c50 PM |
339 | if (READ_ONCE(*vp)) |
340 | return false; // Non-zero, so report failure; | |
a9fde9d1 | 341 | smp_rmb(); // Order *vp read and CT state re-read. |
7d0c9c50 PM |
342 | |
343 | // If still in the same extended quiescent state, we are good! | |
a9fde9d1 | 344 | return snap == ct_rcu_watching_cpu(cpu); |
6563de9d | 345 | } |
5cd37193 | 346 | |
4a81e832 PM |
347 | /* |
348 | * Let the RCU core know that this CPU has gone through the scheduler, | |
349 | * which is a quiescent state. This is called when the need for a | |
350 | * quiescent state is urgent, so we burn an atomic operation and full | |
351 | * memory barriers to let the RCU core know about it, regardless of what | |
352 | * this CPU might (or might not) do in the near future. | |
353 | * | |
0f9be8ca | 354 | * We inform the RCU core by emulating a zero-duration dyntick-idle period. |
46a5d164 | 355 | * |
3b57a399 | 356 | * The caller must have disabled interrupts and must not be idle. |
4a81e832 | 357 | */ |
32a9f26e | 358 | notrace void rcu_momentary_eqs(void) |
4a81e832 | 359 | { |
2be57f73 | 360 | int seq; |
3b57a399 | 361 | |
2dba13f0 | 362 | raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); |
4aa35e0d | 363 | seq = ct_state_inc(2 * CT_RCU_WATCHING); |
3b57a399 | 364 | /* It is illegal to call this from idle state. */ |
4aa35e0d | 365 | WARN_ON_ONCE(!(seq & CT_RCU_WATCHING)); |
3e310098 | 366 | rcu_preempt_deferred_qs(current); |
4a81e832 | 367 | } |
32a9f26e | 368 | EXPORT_SYMBOL_GPL(rcu_momentary_eqs); |
4a81e832 | 369 | |
45975c7d | 370 | /** |
806f04e9 | 371 | * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle |
bb73c52b | 372 | * |
eddded80 | 373 | * If the current CPU is idle and running at a first-level (not nested) |
806f04e9 PZ |
374 | * interrupt, or directly, from idle, return true. |
375 | * | |
376 | * The caller must have at least disabled IRQs. | |
5cd37193 | 377 | */ |
45975c7d | 378 | static int rcu_is_cpu_rrupt_from_idle(void) |
5cd37193 | 379 | { |
806f04e9 PZ |
380 | long nesting; |
381 | ||
382 | /* | |
383 | * Usually called from the tick; but also used from smp_function_call() | |
384 | * for expedited grace periods. This latter can result in running from | |
385 | * the idle task, instead of an actual IPI. | |
386 | */ | |
387 | lockdep_assert_irqs_disabled(); | |
eddded80 JFG |
388 | |
389 | /* Check for counter underflows */ | |
1089c007 | 390 | RCU_LOCKDEP_WARN(ct_nesting() < 0, |
bf664719 | 391 | "RCU nesting counter underflow!"); |
8375cb26 | 392 | RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0, |
dc5fface | 393 | "RCU nmi_nesting counter underflow/zero!"); |
eddded80 JFG |
394 | |
395 | /* Are we at first interrupt nesting level? */ | |
8375cb26 | 396 | nesting = ct_nmi_nesting(); |
806f04e9 | 397 | if (nesting > 1) |
eddded80 JFG |
398 | return false; |
399 | ||
806f04e9 PZ |
400 | /* |
401 | * If we're not in an interrupt, we must be in the idle task! | |
402 | */ | |
403 | WARN_ON_ONCE(!nesting && !is_idle_task(current)); | |
404 | ||
eddded80 | 405 | /* Does CPU appear to be idle from an RCU standpoint? */ |
1089c007 | 406 | return ct_nesting() == 0; |
5cd37193 | 407 | } |
5cd37193 | 408 | |
29fc5f93 PM |
409 | #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) |
410 | // Maximum callbacks per rcu_do_batch ... | |
411 | #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. | |
17c7798b | 412 | static long blimit = DEFAULT_RCU_BLIMIT; |
29fc5f93 | 413 | #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. |
17c7798b | 414 | static long qhimark = DEFAULT_RCU_QHIMARK; |
29fc5f93 | 415 | #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. |
17c7798b | 416 | static long qlowmark = DEFAULT_RCU_QLOMARK; |
b2b00ddf PM |
417 | #define DEFAULT_RCU_QOVLD_MULT 2 |
418 | #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) | |
29fc5f93 PM |
419 | static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. |
420 | static long qovld_calc = -1; // No pre-initialization lock acquisitions! | |
64db4cff | 421 | |
878d7439 ED |
422 | module_param(blimit, long, 0444); |
423 | module_param(qhimark, long, 0444); | |
424 | module_param(qlowmark, long, 0444); | |
b2b00ddf | 425 | module_param(qovld, long, 0444); |
3d76c082 | 426 | |
aecd34b9 | 427 | static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; |
026ad283 | 428 | static ulong jiffies_till_next_fqs = ULONG_MAX; |
8c7c4829 | 429 | static bool rcu_kick_kthreads; |
cfcdef5e ED |
430 | static int rcu_divisor = 7; |
431 | module_param(rcu_divisor, int, 0644); | |
432 | ||
433 | /* Force an exit from rcu_do_batch() after 3 milliseconds. */ | |
434 | static long rcu_resched_ns = 3 * NSEC_PER_MSEC; | |
435 | module_param(rcu_resched_ns, long, 0644); | |
d40011f6 | 436 | |
c06aed0e PM |
437 | /* |
438 | * How long the grace period must be before we start recruiting | |
439 | * quiescent-state help from rcu_note_context_switch(). | |
440 | */ | |
441 | static ulong jiffies_till_sched_qs = ULONG_MAX; | |
442 | module_param(jiffies_till_sched_qs, ulong, 0444); | |
85f2b60c | 443 | static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ |
c06aed0e PM |
444 | module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ |
445 | ||
446 | /* | |
447 | * Make sure that we give the grace-period kthread time to detect any | |
448 | * idle CPUs before taking active measures to force quiescent states. | |
449 | * However, don't go below 100 milliseconds, adjusted upwards for really | |
450 | * large systems. | |
451 | */ | |
452 | static void adjust_jiffies_till_sched_qs(void) | |
453 | { | |
454 | unsigned long j; | |
455 | ||
456 | /* If jiffies_till_sched_qs was specified, respect the request. */ | |
457 | if (jiffies_till_sched_qs != ULONG_MAX) { | |
458 | WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); | |
459 | return; | |
460 | } | |
85f2b60c | 461 | /* Otherwise, set to third fqs scan, but bound below on large system. */ |
c06aed0e PM |
462 | j = READ_ONCE(jiffies_till_first_fqs) + |
463 | 2 * READ_ONCE(jiffies_till_next_fqs); | |
464 | if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) | |
465 | j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; | |
466 | pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); | |
467 | WRITE_ONCE(jiffies_to_sched_qs, j); | |
468 | } | |
469 | ||
67abb96c BP |
470 | static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) |
471 | { | |
472 | ulong j; | |
473 | int ret = kstrtoul(val, 0, &j); | |
474 | ||
c06aed0e | 475 | if (!ret) { |
67abb96c | 476 | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); |
c06aed0e PM |
477 | adjust_jiffies_till_sched_qs(); |
478 | } | |
67abb96c BP |
479 | return ret; |
480 | } | |
481 | ||
482 | static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) | |
483 | { | |
484 | ulong j; | |
485 | int ret = kstrtoul(val, 0, &j); | |
486 | ||
c06aed0e | 487 | if (!ret) { |
67abb96c | 488 | WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); |
c06aed0e PM |
489 | adjust_jiffies_till_sched_qs(); |
490 | } | |
67abb96c BP |
491 | return ret; |
492 | } | |
493 | ||
7c47ee5a | 494 | static const struct kernel_param_ops first_fqs_jiffies_ops = { |
67abb96c BP |
495 | .set = param_set_first_fqs_jiffies, |
496 | .get = param_get_ulong, | |
497 | }; | |
498 | ||
7c47ee5a | 499 | static const struct kernel_param_ops next_fqs_jiffies_ops = { |
67abb96c BP |
500 | .set = param_set_next_fqs_jiffies, |
501 | .get = param_get_ulong, | |
502 | }; | |
503 | ||
504 | module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); | |
505 | module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); | |
8c7c4829 | 506 | module_param(rcu_kick_kthreads, bool, 0644); |
d40011f6 | 507 | |
8ff0b907 | 508 | static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); |
dd7dafd1 | 509 | static int rcu_pending(int user); |
64db4cff PM |
510 | |
511 | /* | |
17ef2fe9 | 512 | * Return the number of RCU GPs completed thus far for debug & stats. |
64db4cff | 513 | */ |
17ef2fe9 | 514 | unsigned long rcu_get_gp_seq(void) |
917963d0 | 515 | { |
16fc9c60 | 516 | return READ_ONCE(rcu_state.gp_seq); |
917963d0 | 517 | } |
17ef2fe9 | 518 | EXPORT_SYMBOL_GPL(rcu_get_gp_seq); |
917963d0 | 519 | |
291783b8 PM |
520 | /* |
521 | * Return the number of RCU expedited batches completed thus far for | |
522 | * debug & stats. Odd numbers mean that a batch is in progress, even | |
523 | * numbers mean idle. The value returned will thus be roughly double | |
524 | * the cumulative batches since boot. | |
525 | */ | |
526 | unsigned long rcu_exp_batches_completed(void) | |
527 | { | |
16fc9c60 | 528 | return rcu_state.expedited_sequence; |
291783b8 PM |
529 | } |
530 | EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); | |
531 | ||
fd897573 PM |
532 | /* |
533 | * Return the root node of the rcu_state structure. | |
534 | */ | |
535 | static struct rcu_node *rcu_get_root(void) | |
536 | { | |
537 | return &rcu_state.node[0]; | |
538 | } | |
539 | ||
ad0dc7f9 PM |
540 | /* |
541 | * Send along grace-period-related data for rcutorture diagnostics. | |
542 | */ | |
dddcddef | 543 | void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq) |
ad0dc7f9 | 544 | { |
dddcddef Z |
545 | *flags = READ_ONCE(rcu_state.gp_flags); |
546 | *gp_seq = rcu_seq_current(&rcu_state.gp_seq); | |
ad0dc7f9 PM |
547 | } |
548 | EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); | |
549 | ||
84ae9101 | 550 | /* Gather grace-period sequence numbers for rcutorture diagnostics. */ |
2db7ab8c | 551 | unsigned long long rcutorture_gather_gp_seqs(void) |
84ae9101 | 552 | { |
2db7ab8c PM |
553 | return ((READ_ONCE(rcu_state.gp_seq) & 0xffffULL) << 40) | |
554 | ((READ_ONCE(rcu_state.expedited_sequence) & 0xffffffULL) << 16) | | |
555 | (READ_ONCE(rcu_state.gp_seq_polled) & 0xffffULL); | |
84ae9101 PM |
556 | } |
557 | EXPORT_SYMBOL_GPL(rcutorture_gather_gp_seqs); | |
558 | ||
559 | /* Format grace-period sequence numbers for rcutorture diagnostics. */ | |
7acc2d90 | 560 | void rcutorture_format_gp_seqs(unsigned long long seqs, char *cp, size_t len) |
84ae9101 | 561 | { |
2db7ab8c PM |
562 | unsigned int egp = (seqs >> 16) & 0xffffffULL; |
563 | unsigned int ggp = (seqs >> 40) & 0xffffULL; | |
564 | unsigned int pgp = seqs & 0xffffULL; | |
84ae9101 | 565 | |
7acc2d90 | 566 | snprintf(cp, len, "g%04x:e%06x:p%04x", ggp, egp, pgp); |
84ae9101 PM |
567 | } |
568 | EXPORT_SYMBOL_GPL(rcutorture_format_gp_seqs); | |
569 | ||
17211455 | 570 | #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) |
f8bb5cae FW |
571 | /* |
572 | * An empty function that will trigger a reschedule on | |
4ae7dc97 | 573 | * IRQ tail once IRQs get re-enabled on userspace/guest resume. |
f8bb5cae FW |
574 | */ |
575 | static void late_wakeup_func(struct irq_work *work) | |
576 | { | |
577 | } | |
578 | ||
579 | static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = | |
580 | IRQ_WORK_INIT(late_wakeup_func); | |
581 | ||
4ae7dc97 FW |
582 | /* |
583 | * If either: | |
584 | * | |
585 | * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work | |
586 | * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. | |
587 | * | |
588 | * In these cases the late RCU wake ups aren't supported in the resched loops and our | |
589 | * last resort is to fire a local irq_work that will trigger a reschedule once IRQs | |
590 | * get re-enabled again. | |
591 | */ | |
56450649 | 592 | noinstr void rcu_irq_work_resched(void) |
4ae7dc97 FW |
593 | { |
594 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | |
595 | ||
596 | if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) | |
597 | return; | |
598 | ||
599 | if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) | |
600 | return; | |
601 | ||
602 | instrumentation_begin(); | |
603 | if (do_nocb_deferred_wakeup(rdp) && need_resched()) { | |
604 | irq_work_queue(this_cpu_ptr(&late_wakeup_work)); | |
605 | } | |
606 | instrumentation_end(); | |
607 | } | |
17211455 | 608 | #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ |
7c9906ca | 609 | |
07325d4a TG |
610 | #ifdef CONFIG_PROVE_RCU |
611 | /** | |
612 | * rcu_irq_exit_check_preempt - Validate that scheduling is possible | |
613 | */ | |
614 | void rcu_irq_exit_check_preempt(void) | |
615 | { | |
616 | lockdep_assert_irqs_disabled(); | |
617 | ||
1089c007 | 618 | RCU_LOCKDEP_WARN(ct_nesting() <= 0, |
bf664719 | 619 | "RCU nesting counter underflow/zero!"); |
8375cb26 | 620 | RCU_LOCKDEP_WARN(ct_nmi_nesting() != |
e1de4383 | 621 | CT_NESTING_IRQ_NONIDLE, |
dc5fface | 622 | "Bad RCU nmi_nesting counter\n"); |
fda70207 | 623 | RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), |
07325d4a TG |
624 | "RCU in extended quiescent state!"); |
625 | } | |
626 | #endif /* #ifdef CONFIG_PROVE_RCU */ | |
627 | ||
d1ec4c34 | 628 | #ifdef CONFIG_NO_HZ_FULL |
aaf2bc50 PM |
629 | /** |
630 | * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. | |
631 | * | |
632 | * The scheduler tick is not normally enabled when CPUs enter the kernel | |
633 | * from nohz_full userspace execution. After all, nohz_full userspace | |
634 | * execution is an RCU quiescent state and the time executing in the kernel | |
635 | * is quite short. Except of course when it isn't. And it is not hard to | |
636 | * cause a large system to spend tens of seconds or even minutes looping | |
637 | * in the kernel, which can cause a number of problems, include RCU CPU | |
638 | * stall warnings. | |
639 | * | |
640 | * Therefore, if a nohz_full CPU fails to report a quiescent state | |
641 | * in a timely manner, the RCU grace-period kthread sets that CPU's | |
642 | * ->rcu_urgent_qs flag with the expectation that the next interrupt or | |
643 | * exception will invoke this function, which will turn on the scheduler | |
644 | * tick, which will enable RCU to detect that CPU's quiescent states, | |
645 | * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. | |
646 | * The tick will be disabled once a quiescent state is reported for | |
647 | * this CPU. | |
648 | * | |
649 | * Of course, in carefully tuned systems, there might never be an | |
650 | * interrupt or exception. In that case, the RCU grace-period kthread | |
651 | * will eventually cause one to happen. However, in less carefully | |
652 | * controlled environments, this function allows RCU to get what it | |
653 | * needs without creating otherwise useless interruptions. | |
654 | */ | |
655 | void __rcu_irq_enter_check_tick(void) | |
656 | { | |
657 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | |
658 | ||
6dbce04d PZ |
659 | // If we're here from NMI there's nothing to do. |
660 | if (in_nmi()) | |
aaf2bc50 PM |
661 | return; |
662 | ||
fda70207 | 663 | RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(), |
aaf2bc50 PM |
664 | "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); |
665 | ||
666 | if (!tick_nohz_full_cpu(rdp->cpu) || | |
667 | !READ_ONCE(rdp->rcu_urgent_qs) || | |
668 | READ_ONCE(rdp->rcu_forced_tick)) { | |
669 | // RCU doesn't need nohz_full help from this CPU, or it is | |
670 | // already getting that help. | |
671 | return; | |
672 | } | |
673 | ||
674 | // We get here only when not in an extended quiescent state and | |
675 | // from interrupts (as opposed to NMIs). Therefore, (1) RCU is | |
676 | // already watching and (2) The fact that we are in an interrupt | |
677 | // handler and that the rcu_node lock is an irq-disabled lock | |
678 | // prevents self-deadlock. So we can safely recheck under the lock. | |
679 | // Note that the nohz_full state currently cannot change. | |
680 | raw_spin_lock_rcu_node(rdp->mynode); | |
343640cb | 681 | if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { |
aaf2bc50 PM |
682 | // A nohz_full CPU is in the kernel and RCU needs a |
683 | // quiescent state. Turn on the tick! | |
684 | WRITE_ONCE(rdp->rcu_forced_tick, true); | |
685 | tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); | |
686 | } | |
687 | raw_spin_unlock_rcu_node(rdp->mynode); | |
688 | } | |
7a29fb4a | 689 | NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); |
d1ec4c34 | 690 | #endif /* CONFIG_NO_HZ_FULL */ |
19dd1591 | 691 | |
bc849e91 PM |
692 | /* |
693 | * Check to see if any future non-offloaded RCU-related work will need | |
694 | * to be done by the current CPU, even if none need be done immediately, | |
695 | * returning 1 if so. This function is part of the RCU implementation; | |
696 | * it is -not- an exported member of the RCU API. This is used by | |
697 | * the idle-entry code to figure out whether it is safe to disable the | |
698 | * scheduler-clock interrupt. | |
699 | * | |
700 | * Just check whether or not this CPU has non-offloaded RCU callbacks | |
701 | * queued. | |
702 | */ | |
29845399 | 703 | int rcu_needs_cpu(void) |
bc849e91 | 704 | { |
bc849e91 PM |
705 | return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && |
706 | !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); | |
707 | } | |
708 | ||
66e4c33b | 709 | /* |
516e5ae0 JFG |
710 | * If any sort of urgency was applied to the current CPU (for example, |
711 | * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order | |
712 | * to get to a quiescent state, disable it. | |
66e4c33b | 713 | */ |
516e5ae0 | 714 | static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) |
66e4c33b | 715 | { |
5b14557b | 716 | raw_lockdep_assert_held_rcu_node(rdp->mynode); |
516e5ae0 JFG |
717 | WRITE_ONCE(rdp->rcu_urgent_qs, false); |
718 | WRITE_ONCE(rdp->rcu_need_heavy_qs, false); | |
66e4c33b PM |
719 | if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { |
720 | tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); | |
2a2ae872 | 721 | WRITE_ONCE(rdp->rcu_forced_tick, false); |
66e4c33b PM |
722 | } |
723 | } | |
724 | ||
5c173eb8 | 725 | /** |
c924bf5a | 726 | * rcu_is_watching - RCU read-side critical sections permitted on current CPU? |
64db4cff | 727 | * |
c924bf5a PM |
728 | * Return @true if RCU is watching the running CPU and @false otherwise. |
729 | * An @true return means that this CPU can safely enter RCU read-side | |
730 | * critical sections. | |
731 | * | |
732 | * Although calls to rcu_is_watching() from most parts of the kernel | |
733 | * will return @true, there are important exceptions. For example, if the | |
734 | * current CPU is deep within its idle loop, in kernel entry/exit code, | |
735 | * or offline, rcu_is_watching() will return @false. | |
d2098b44 PZ |
736 | * |
737 | * Make notrace because it can be called by the internal functions of | |
738 | * ftrace, and making this notrace removes unnecessary recursion calls. | |
64db4cff | 739 | */ |
d2098b44 | 740 | notrace bool rcu_is_watching(void) |
64db4cff | 741 | { |
f534ed1f | 742 | bool ret; |
34240697 | 743 | |
46f00d18 | 744 | preempt_disable_notrace(); |
fda70207 | 745 | ret = rcu_is_watching_curr_cpu(); |
46f00d18 | 746 | preempt_enable_notrace(); |
34240697 | 747 | return ret; |
64db4cff | 748 | } |
5c173eb8 | 749 | EXPORT_SYMBOL_GPL(rcu_is_watching); |
64db4cff | 750 | |
bcbfdd01 PM |
751 | /* |
752 | * If a holdout task is actually running, request an urgent quiescent | |
753 | * state from its CPU. This is unsynchronized, so migrations can cause | |
754 | * the request to go to the wrong CPU. Which is OK, all that will happen | |
755 | * is that the CPU's next context switch will be a bit slower and next | |
756 | * time around this task will generate another request. | |
757 | */ | |
758 | void rcu_request_urgent_qs_task(struct task_struct *t) | |
759 | { | |
760 | int cpu; | |
761 | ||
762 | barrier(); | |
763 | cpu = task_cpu(t); | |
764 | if (!task_curr(t)) | |
765 | return; /* This task is not running on that CPU. */ | |
2dba13f0 | 766 | smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); |
bcbfdd01 PM |
767 | } |
768 | ||
aafe12f9 JF |
769 | static unsigned long seq_gpwrap_lag = ULONG_MAX / 4; |
770 | ||
771 | /** | |
772 | * rcu_set_gpwrap_lag - Set RCU GP sequence overflow lag value. | |
773 | * @lag_gps: Set overflow lag to this many grace period worth of counters | |
774 | * which is used by rcutorture to quickly force a gpwrap situation. | |
775 | * @lag_gps = 0 means we reset it back to the boot-time value. | |
776 | */ | |
777 | void rcu_set_gpwrap_lag(unsigned long lag_gps) | |
778 | { | |
779 | unsigned long lag_seq_count; | |
780 | ||
781 | lag_seq_count = (lag_gps == 0) | |
782 | ? ULONG_MAX / 4 | |
783 | : lag_gps << RCU_SEQ_CTR_SHIFT; | |
784 | WRITE_ONCE(seq_gpwrap_lag, lag_seq_count); | |
785 | } | |
786 | EXPORT_SYMBOL_GPL(rcu_set_gpwrap_lag); | |
787 | ||
9b9500da | 788 | /* |
277ffe1b | 789 | * When trying to report a quiescent state on behalf of some other CPU, |
9b9500da | 790 | * it is our responsibility to check for and handle potential overflow |
a66ae8ae | 791 | * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. |
9b9500da PM |
792 | * After all, the CPU might be in deep idle state, and thus executing no |
793 | * code whatsoever. | |
794 | */ | |
795 | static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) | |
796 | { | |
a32e01ee | 797 | raw_lockdep_assert_held_rcu_node(rnp); |
aafe12f9 JF |
798 | if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + seq_gpwrap_lag, |
799 | rnp->gp_seq)) { | |
9b9500da | 800 | WRITE_ONCE(rdp->gpwrap, true); |
aafe12f9 JF |
801 | WRITE_ONCE(rdp->gpwrap_count, READ_ONCE(rdp->gpwrap_count) + 1); |
802 | } | |
8aa670cd PM |
803 | if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) |
804 | rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; | |
9b9500da PM |
805 | } |
806 | ||
64db4cff | 807 | /* |
49f82c64 | 808 | * Snapshot the specified CPU's RCU_WATCHING counter so that we can later |
64db4cff | 809 | * credit them with an implicit quiescent state. Return 1 if this CPU |
1eba8f84 | 810 | * is in dynticks idle mode, which is an extended quiescent state. |
64db4cff | 811 | */ |
49f82c64 | 812 | static int rcu_watching_snap_save(struct rcu_data *rdp) |
64db4cff | 813 | { |
9a7e73c9 FW |
814 | /* |
815 | * Full ordering between remote CPU's post idle accesses and updater's | |
816 | * accesses prior to current GP (and also the started GP sequence number) | |
817 | * is enforced by rcu_seq_start() implicit barrier and even further by | |
818 | * smp_mb__after_unlock_lock() barriers chained all the way throughout the | |
819 | * rnp locking tree since rcu_gp_init() and up to the current leaf rnp | |
820 | * locking. | |
821 | * | |
822 | * Ordering between remote CPU's pre idle accesses and post grace period | |
823 | * updater's accesses is enforced by the below acquire semantic. | |
824 | */ | |
2dba2230 VS |
825 | rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu); |
826 | if (rcu_watching_snap_in_eqs(rdp->watching_snap)) { | |
88d1bead | 827 | trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); |
9b9500da | 828 | rcu_gpnum_ovf(rdp->mynode, rdp); |
23a9bacd | 829 | return 1; |
7941dbde | 830 | } |
23a9bacd | 831 | return 0; |
64db4cff PM |
832 | } |
833 | ||
da6b8559 YG |
834 | #ifndef arch_irq_stat_cpu |
835 | #define arch_irq_stat_cpu(cpu) 0 | |
836 | #endif | |
837 | ||
64db4cff | 838 | /* |
85d68222 PZ |
839 | * Returns positive if the specified CPU has passed through a quiescent state |
840 | * by virtue of being in or having passed through an dynticks idle state since | |
49f82c64 | 841 | * the last call to rcu_watching_snap_save() for this same CPU, or by |
85d68222 PZ |
842 | * virtue of having been offline. |
843 | * | |
844 | * Returns negative if the specified CPU needs a force resched. | |
845 | * | |
846 | * Returns zero otherwise. | |
64db4cff | 847 | */ |
3b18eb3f | 848 | static int rcu_watching_snap_recheck(struct rcu_data *rdp) |
64db4cff | 849 | { |
3a19b46a | 850 | unsigned long jtsq; |
85d68222 | 851 | int ret = 0; |
9b9500da | 852 | struct rcu_node *rnp = rdp->mynode; |
64db4cff PM |
853 | |
854 | /* | |
855 | * If the CPU passed through or entered a dynticks idle phase with | |
856 | * no active irq/NMI handlers, then we can safely pretend that the CPU | |
857 | * already acknowledged the request to pass through a quiescent | |
858 | * state. Either way, that CPU cannot possibly be in an RCU | |
859 | * read-side critical section that started before the beginning | |
860 | * of the current RCU grace period. | |
861 | */ | |
2dba2230 | 862 | if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) { |
88d1bead | 863 | trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); |
9b9500da | 864 | rcu_gpnum_ovf(rnp, rdp); |
3a19b46a PM |
865 | return 1; |
866 | } | |
867 | ||
666ca290 JFG |
868 | /* |
869 | * Complain if a CPU that is considered to be offline from RCU's | |
870 | * perspective has not yet reported a quiescent state. After all, | |
871 | * the offline CPU should have reported a quiescent state during | |
872 | * the CPU-offline process, or, failing that, by rcu_gp_init() | |
873 | * if it ran concurrently with either the CPU going offline or the | |
874 | * last task on a leaf rcu_node structure exiting its RCU read-side | |
875 | * critical section while all CPUs corresponding to that structure | |
876 | * are offline. This added warning detects bugs in any of these | |
877 | * code paths. | |
878 | * | |
879 | * The rcu_node structure's ->lock is held here, which excludes | |
880 | * the relevant portions the CPU-hotplug code, the grace-period | |
881 | * initialization code, and the rcu_read_unlock() code paths. | |
882 | * | |
883 | * For more detail, please refer to the "Hotplug CPU" section | |
884 | * of RCU's Requirements documentation. | |
885 | */ | |
5ae0f1b5 | 886 | if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { |
f2e2df59 PM |
887 | struct rcu_node *rnp1; |
888 | ||
f2e2df59 PM |
889 | pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", |
890 | __func__, rnp->grplo, rnp->grphi, rnp->level, | |
891 | (long)rnp->gp_seq, (long)rnp->completedqs); | |
892 | for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) | |
893 | pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", | |
894 | __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); | |
f2e2df59 | 895 | pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", |
5ae0f1b5 | 896 | __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], |
ae2b217a PM |
897 | (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state, |
898 | (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state); | |
f2e2df59 PM |
899 | return 1; /* Break things loose after complaining. */ |
900 | } | |
901 | ||
65d798f0 | 902 | /* |
4a81e832 | 903 | * A CPU running for an extended time within the kernel can |
c06aed0e PM |
904 | * delay RCU grace periods: (1) At age jiffies_to_sched_qs, |
905 | * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set | |
7e28c5af PM |
906 | * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the |
907 | * unsynchronized assignments to the per-CPU rcu_need_heavy_qs | |
908 | * variable are safe because the assignments are repeated if this | |
909 | * CPU failed to pass through a quiescent state. This code | |
c06aed0e | 910 | * also checks .jiffies_resched in case jiffies_to_sched_qs |
7e28c5af | 911 | * is set way high. |
6193c76a | 912 | */ |
c06aed0e | 913 | jtsq = READ_ONCE(jiffies_to_sched_qs); |
88ee23ef | 914 | if (!READ_ONCE(rdp->rcu_need_heavy_qs) && |
7e28c5af | 915 | (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || |
b2b00ddf PM |
916 | time_after(jiffies, rcu_state.jiffies_resched) || |
917 | rcu_state.cbovld)) { | |
88ee23ef | 918 | WRITE_ONCE(rdp->rcu_need_heavy_qs, true); |
9226b10d | 919 | /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ |
9424b867 | 920 | smp_store_release(&rdp->rcu_urgent_qs, true); |
7e28c5af | 921 | } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { |
9424b867 | 922 | WRITE_ONCE(rdp->rcu_urgent_qs, true); |
6193c76a PM |
923 | } |
924 | ||
28053bc7 | 925 | /* |
c98cac60 | 926 | * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! |
d3052109 PM |
927 | * The above code handles this, but only for straight cond_resched(). |
928 | * And some in-kernel loops check need_resched() before calling | |
929 | * cond_resched(), which defeats the above code for CPUs that are | |
930 | * running in-kernel with scheduling-clock interrupts disabled. | |
931 | * So hit them over the head with the resched_cpu() hammer! | |
28053bc7 | 932 | */ |
d3052109 | 933 | if (tick_nohz_full_cpu(rdp->cpu) && |
b2b00ddf PM |
934 | (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || |
935 | rcu_state.cbovld)) { | |
9424b867 | 936 | WRITE_ONCE(rdp->rcu_urgent_qs, true); |
d3052109 | 937 | WRITE_ONCE(rdp->last_fqs_resched, jiffies); |
85d68222 | 938 | ret = -1; |
d3052109 PM |
939 | } |
940 | ||
941 | /* | |
942 | * If more than halfway to RCU CPU stall-warning time, invoke | |
943 | * resched_cpu() more frequently to try to loosen things up a bit. | |
944 | * Also check to see if the CPU is getting hammered with interrupts, | |
945 | * but only once per grace period, just to keep the IPIs down to | |
946 | * a dull roar. | |
947 | */ | |
948 | if (time_after(jiffies, rcu_state.jiffies_resched)) { | |
949 | if (time_after(jiffies, | |
950 | READ_ONCE(rdp->last_fqs_resched) + jtsq)) { | |
d3052109 | 951 | WRITE_ONCE(rdp->last_fqs_resched, jiffies); |
85d68222 | 952 | ret = -1; |
d3052109 | 953 | } |
9b9500da | 954 | if (IS_ENABLED(CONFIG_IRQ_WORK) && |
8aa670cd | 955 | !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && |
9b9500da | 956 | (rnp->ffmask & rdp->grpmask)) { |
9b9500da | 957 | rdp->rcu_iw_pending = true; |
8aa670cd | 958 | rdp->rcu_iw_gp_seq = rnp->gp_seq; |
9b9500da PM |
959 | irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); |
960 | } | |
be42f00b ZL |
961 | |
962 | if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { | |
963 | int cpu = rdp->cpu; | |
964 | struct rcu_snap_record *rsrp; | |
965 | struct kernel_cpustat *kcsp; | |
966 | ||
967 | kcsp = &kcpustat_cpu(cpu); | |
968 | ||
969 | rsrp = &rdp->snap_record; | |
970 | rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); | |
971 | rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); | |
972 | rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); | |
da6b8559 YG |
973 | rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu); |
974 | rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu); | |
975 | rsrp->nr_csw = nr_context_switches_cpu(cpu); | |
be42f00b ZL |
976 | rsrp->jiffies = jiffies; |
977 | rsrp->gp_seq = rdp->gp_seq; | |
978 | } | |
9b9500da | 979 | } |
4914950a | 980 | |
85d68222 | 981 | return ret; |
64db4cff PM |
982 | } |
983 | ||
41e80595 PM |
984 | /* Trace-event wrapper function for trace_rcu_future_grace_period. */ |
985 | static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, | |
b73de91d | 986 | unsigned long gp_seq_req, const char *s) |
0446be48 | 987 | { |
0937d045 PM |
988 | trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), |
989 | gp_seq_req, rnp->level, | |
990 | rnp->grplo, rnp->grphi, s); | |
0446be48 PM |
991 | } |
992 | ||
993 | /* | |
b73de91d | 994 | * rcu_start_this_gp - Request the start of a particular grace period |
df2bf8f7 | 995 | * @rnp_start: The leaf node of the CPU from which to start. |
b73de91d JF |
996 | * @rdp: The rcu_data corresponding to the CPU from which to start. |
997 | * @gp_seq_req: The gp_seq of the grace period to start. | |
998 | * | |
41e80595 | 999 | * Start the specified grace period, as needed to handle newly arrived |
0446be48 | 1000 | * callbacks. The required future grace periods are recorded in each |
7a1d0f23 | 1001 | * rcu_node structure's ->gp_seq_needed field. Returns true if there |
48a7639c | 1002 | * is reason to awaken the grace-period kthread. |
0446be48 | 1003 | * |
d5cd9685 PM |
1004 | * The caller must hold the specified rcu_node structure's ->lock, which |
1005 | * is why the caller is responsible for waking the grace-period kthread. | |
b73de91d JF |
1006 | * |
1007 | * Returns true if the GP thread needs to be awakened else false. | |
0446be48 | 1008 | */ |
df2bf8f7 | 1009 | static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, |
b73de91d | 1010 | unsigned long gp_seq_req) |
0446be48 | 1011 | { |
48a7639c | 1012 | bool ret = false; |
df2bf8f7 | 1013 | struct rcu_node *rnp; |
0446be48 PM |
1014 | |
1015 | /* | |
360e0da6 PM |
1016 | * Use funnel locking to either acquire the root rcu_node |
1017 | * structure's lock or bail out if the need for this grace period | |
df2bf8f7 JFG |
1018 | * has already been recorded -- or if that grace period has in |
1019 | * fact already started. If there is already a grace period in | |
1020 | * progress in a non-leaf node, no recording is needed because the | |
1021 | * end of the grace period will scan the leaf rcu_node structures. | |
1022 | * Note that rnp_start->lock must not be released. | |
0446be48 | 1023 | */ |
df2bf8f7 JFG |
1024 | raw_lockdep_assert_held_rcu_node(rnp_start); |
1025 | trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); | |
1026 | for (rnp = rnp_start; 1; rnp = rnp->parent) { | |
1027 | if (rnp != rnp_start) | |
1028 | raw_spin_lock_rcu_node(rnp); | |
1029 | if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || | |
1030 | rcu_seq_started(&rnp->gp_seq, gp_seq_req) || | |
1031 | (rnp != rnp_start && | |
1032 | rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { | |
1033 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, | |
b73de91d | 1034 | TPS("Prestarted")); |
360e0da6 PM |
1035 | goto unlock_out; |
1036 | } | |
8ff37290 | 1037 | WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); |
226ca5e7 | 1038 | if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { |
a2165e41 | 1039 | /* |
226ca5e7 JFG |
1040 | * We just marked the leaf or internal node, and a |
1041 | * grace period is in progress, which means that | |
1042 | * rcu_gp_cleanup() will see the marking. Bail to | |
1043 | * reduce contention. | |
a2165e41 | 1044 | */ |
df2bf8f7 | 1045 | trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, |
b73de91d | 1046 | TPS("Startedleaf")); |
a2165e41 PM |
1047 | goto unlock_out; |
1048 | } | |
df2bf8f7 JFG |
1049 | if (rnp != rnp_start && rnp->parent != NULL) |
1050 | raw_spin_unlock_rcu_node(rnp); | |
1051 | if (!rnp->parent) | |
360e0da6 | 1052 | break; /* At root, and perhaps also leaf. */ |
0446be48 PM |
1053 | } |
1054 | ||
360e0da6 | 1055 | /* If GP already in progress, just leave, otherwise start one. */ |
de8e8730 | 1056 | if (rcu_gp_in_progress()) { |
df2bf8f7 | 1057 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); |
0446be48 PM |
1058 | goto unlock_out; |
1059 | } | |
df2bf8f7 | 1060 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); |
9cbc5b97 | 1061 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); |
2906d215 | 1062 | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); |
5648d659 | 1063 | if (!READ_ONCE(rcu_state.gp_kthread)) { |
df2bf8f7 | 1064 | trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); |
360e0da6 | 1065 | goto unlock_out; |
0446be48 | 1066 | } |
62ae1951 | 1067 | trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); |
360e0da6 | 1068 | ret = true; /* Caller must wake GP kthread. */ |
0446be48 | 1069 | unlock_out: |
ab5e869c | 1070 | /* Push furthest requested GP to leaf node and rcu_data structure. */ |
df2bf8f7 | 1071 | if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { |
8ff37290 PM |
1072 | WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); |
1073 | WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); | |
ab5e869c | 1074 | } |
df2bf8f7 JFG |
1075 | if (rnp != rnp_start) |
1076 | raw_spin_unlock_rcu_node(rnp); | |
48a7639c | 1077 | return ret; |
0446be48 PM |
1078 | } |
1079 | ||
1080 | /* | |
1081 | * Clean up any old requests for the just-ended grace period. Also return | |
d1e4f01d | 1082 | * whether any additional grace periods have been requested. |
0446be48 | 1083 | */ |
3481f2ea | 1084 | static bool rcu_future_gp_cleanup(struct rcu_node *rnp) |
0446be48 | 1085 | { |
fb31340f | 1086 | bool needmore; |
da1df50d | 1087 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
0446be48 | 1088 | |
7a1d0f23 PM |
1089 | needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); |
1090 | if (!needmore) | |
1091 | rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ | |
b73de91d | 1092 | trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, |
41e80595 | 1093 | needmore ? TPS("CleanupMore") : TPS("Cleanup")); |
0446be48 PM |
1094 | return needmore; |
1095 | } | |
1096 | ||
48a7639c | 1097 | /* |
5648d659 PM |
1098 | * Awaken the grace-period kthread. Don't do a self-awaken (unless in an |
1099 | * interrupt or softirq handler, in which case we just might immediately | |
1100 | * sleep upon return, resulting in a grace-period hang), and don't bother | |
1101 | * awakening when there is nothing for the grace-period kthread to do | |
1102 | * (as in several CPUs raced to awaken, we lost), and finally don't try | |
1103 | * to awaken a kthread that has not yet been created. If all those checks | |
1104 | * are passed, track some debug information and awaken. | |
1d1f898d ZJ |
1105 | * |
1106 | * So why do the self-wakeup when in an interrupt or softirq handler | |
1107 | * in the grace-period kthread's context? Because the kthread might have | |
1108 | * been interrupted just as it was going to sleep, and just after the final | |
1109 | * pre-sleep check of the awaken condition. In this case, a wakeup really | |
1110 | * is required, and is therefore supplied. | |
48a7639c | 1111 | */ |
532c00c9 | 1112 | static void rcu_gp_kthread_wake(void) |
48a7639c | 1113 | { |
5648d659 PM |
1114 | struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); |
1115 | ||
2407a64f | 1116 | if ((current == t && !in_hardirq() && !in_serving_softirq()) || |
5648d659 | 1117 | !READ_ONCE(rcu_state.gp_flags) || !t) |
48a7639c | 1118 | return; |
fd897573 PM |
1119 | WRITE_ONCE(rcu_state.gp_wake_time, jiffies); |
1120 | WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); | |
0999f615 | 1121 | swake_up_one(&rcu_state.gp_wq); |
48a7639c PM |
1122 | } |
1123 | ||
dc35c893 | 1124 | /* |
29365e56 PM |
1125 | * If there is room, assign a ->gp_seq number to any callbacks on this |
1126 | * CPU that have not already been assigned. Also accelerate any callbacks | |
1127 | * that were previously assigned a ->gp_seq number that has since proven | |
1128 | * to be too conservative, which can happen if callbacks get assigned a | |
1129 | * ->gp_seq number while RCU is idle, but with reference to a non-root | |
1130 | * rcu_node structure. This function is idempotent, so it does not hurt | |
1131 | * to call it repeatedly. Returns an flag saying that we should awaken | |
1132 | * the RCU grace-period kthread. | |
dc35c893 PM |
1133 | * |
1134 | * The caller must hold rnp->lock with interrupts disabled. | |
1135 | */ | |
02f50142 | 1136 | static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) |
dc35c893 | 1137 | { |
b73de91d | 1138 | unsigned long gp_seq_req; |
15fecf89 | 1139 | bool ret = false; |
dc35c893 | 1140 | |
d1b222c6 | 1141 | rcu_lockdep_assert_cblist_protected(rdp); |
a32e01ee | 1142 | raw_lockdep_assert_held_rcu_node(rnp); |
c0b334c5 | 1143 | |
15fecf89 PM |
1144 | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ |
1145 | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) | |
48a7639c | 1146 | return false; |
dc35c893 | 1147 | |
3afe7fa5 JFG |
1148 | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); |
1149 | ||
dc35c893 | 1150 | /* |
15fecf89 PM |
1151 | * Callbacks are often registered with incomplete grace-period |
1152 | * information. Something about the fact that getting exact | |
1153 | * information requires acquiring a global lock... RCU therefore | |
1154 | * makes a conservative estimate of the grace period number at which | |
1155 | * a given callback will become ready to invoke. The following | |
1156 | * code checks this estimate and improves it when possible, thus | |
1157 | * accelerating callback invocation to an earlier grace-period | |
1158 | * number. | |
dc35c893 | 1159 | */ |
9cbc5b97 | 1160 | gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); |
b73de91d JF |
1161 | if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) |
1162 | ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); | |
6d4b418c PM |
1163 | |
1164 | /* Trace depending on how much we were able to accelerate. */ | |
15fecf89 | 1165 | if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) |
a7886e89 | 1166 | trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); |
6d4b418c | 1167 | else |
a7886e89 JFG |
1168 | trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); |
1169 | ||
3afe7fa5 JFG |
1170 | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); |
1171 | ||
48a7639c | 1172 | return ret; |
dc35c893 PM |
1173 | } |
1174 | ||
e44e73ca PM |
1175 | /* |
1176 | * Similar to rcu_accelerate_cbs(), but does not require that the leaf | |
1177 | * rcu_node structure's ->lock be held. It consults the cached value | |
1178 | * of ->gp_seq_needed in the rcu_data structure, and if that indicates | |
1179 | * that a new grace-period request be made, invokes rcu_accelerate_cbs() | |
1180 | * while holding the leaf rcu_node structure's ->lock. | |
1181 | */ | |
c6e09b97 | 1182 | static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, |
e44e73ca PM |
1183 | struct rcu_data *rdp) |
1184 | { | |
1185 | unsigned long c; | |
1186 | bool needwake; | |
1187 | ||
d1b222c6 | 1188 | rcu_lockdep_assert_cblist_protected(rdp); |
c6e09b97 | 1189 | c = rcu_seq_snap(&rcu_state.gp_seq); |
a5b89501 | 1190 | if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { |
e44e73ca PM |
1191 | /* Old request still live, so mark recent callbacks. */ |
1192 | (void)rcu_segcblist_accelerate(&rdp->cblist, c); | |
1193 | return; | |
1194 | } | |
1195 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | |
02f50142 | 1196 | needwake = rcu_accelerate_cbs(rnp, rdp); |
e44e73ca PM |
1197 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
1198 | if (needwake) | |
532c00c9 | 1199 | rcu_gp_kthread_wake(); |
e44e73ca PM |
1200 | } |
1201 | ||
dc35c893 PM |
1202 | /* |
1203 | * Move any callbacks whose grace period has completed to the | |
1204 | * RCU_DONE_TAIL sublist, then compact the remaining sublists and | |
29365e56 | 1205 | * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL |
dc35c893 PM |
1206 | * sublist. This function is idempotent, so it does not hurt to |
1207 | * invoke it repeatedly. As long as it is not invoked -too- often... | |
48a7639c | 1208 | * Returns true if the RCU grace-period kthread needs to be awakened. |
dc35c893 PM |
1209 | * |
1210 | * The caller must hold rnp->lock with interrupts disabled. | |
1211 | */ | |
834f56bf | 1212 | static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) |
dc35c893 | 1213 | { |
d1b222c6 | 1214 | rcu_lockdep_assert_cblist_protected(rdp); |
a32e01ee | 1215 | raw_lockdep_assert_held_rcu_node(rnp); |
c0b334c5 | 1216 | |
15fecf89 PM |
1217 | /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ |
1218 | if (!rcu_segcblist_pend_cbs(&rdp->cblist)) | |
48a7639c | 1219 | return false; |
dc35c893 PM |
1220 | |
1221 | /* | |
29365e56 | 1222 | * Find all callbacks whose ->gp_seq numbers indicate that they |
dc35c893 PM |
1223 | * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. |
1224 | */ | |
29365e56 | 1225 | rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); |
dc35c893 PM |
1226 | |
1227 | /* Classify any remaining callbacks. */ | |
02f50142 | 1228 | return rcu_accelerate_cbs(rnp, rdp); |
dc35c893 PM |
1229 | } |
1230 | ||
7f36ef82 PM |
1231 | /* |
1232 | * Move and classify callbacks, but only if doing so won't require | |
1233 | * that the RCU grace-period kthread be awakened. | |
1234 | */ | |
1235 | static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, | |
1236 | struct rcu_data *rdp) | |
1237 | { | |
d1b222c6 | 1238 | rcu_lockdep_assert_cblist_protected(rdp); |
614ddad1 | 1239 | if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) |
7f36ef82 | 1240 | return; |
614ddad1 PM |
1241 | // The grace period cannot end while we hold the rcu_node lock. |
1242 | if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) | |
1243 | WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); | |
6608c3a0 | 1244 | raw_spin_unlock_rcu_node(rnp); |
7f36ef82 PM |
1245 | } |
1246 | ||
1a2f5d57 PM |
1247 | /* |
1248 | * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a | |
1249 | * quiescent state. This is intended to be invoked when the CPU notices | |
1250 | * a new grace period. | |
1251 | */ | |
1252 | static void rcu_strict_gp_check_qs(void) | |
1253 | { | |
1254 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { | |
1255 | rcu_read_lock(); | |
1256 | rcu_read_unlock(); | |
1257 | } | |
1258 | } | |
1259 | ||
d09b62df | 1260 | /* |
ba9fbe95 PM |
1261 | * Update CPU-local rcu_data state to record the beginnings and ends of |
1262 | * grace periods. The caller must hold the ->lock of the leaf rcu_node | |
1263 | * structure corresponding to the current CPU, and must have irqs disabled. | |
48a7639c | 1264 | * Returns true if the grace-period kthread needs to be awakened. |
d09b62df | 1265 | */ |
c7e48f7b | 1266 | static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) |
d09b62df | 1267 | { |
5d6742b3 | 1268 | bool ret = false; |
b5ea0370 | 1269 | bool need_qs; |
3820b513 | 1270 | const bool offloaded = rcu_rdp_is_offloaded(rdp); |
48a7639c | 1271 | |
a32e01ee | 1272 | raw_lockdep_assert_held_rcu_node(rnp); |
c0b334c5 | 1273 | |
67e14c1e PM |
1274 | if (rdp->gp_seq == rnp->gp_seq) |
1275 | return false; /* Nothing to do. */ | |
d09b62df | 1276 | |
67e14c1e PM |
1277 | /* Handle the ends of any preceding grace periods first. */ |
1278 | if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || | |
764f6a81 | 1279 | unlikely(rdp->gpwrap)) { |
5d6742b3 PM |
1280 | if (!offloaded) |
1281 | ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ | |
b5ea0370 | 1282 | rdp->core_needs_qs = false; |
9cbc5b97 | 1283 | trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); |
67e14c1e | 1284 | } else { |
5d6742b3 PM |
1285 | if (!offloaded) |
1286 | ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ | |
b5ea0370 PM |
1287 | if (rdp->core_needs_qs) |
1288 | rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); | |
d09b62df | 1289 | } |
398ebe60 | 1290 | |
67e14c1e PM |
1291 | /* Now handle the beginnings of any new-to-this-CPU grace periods. */ |
1292 | if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || | |
764f6a81 | 1293 | unlikely(rdp->gpwrap)) { |
6eaef633 PM |
1294 | /* |
1295 | * If the current grace period is waiting for this CPU, | |
1296 | * set up to detect a quiescent state, otherwise don't | |
1297 | * go looking for one. | |
1298 | */ | |
9cbc5b97 | 1299 | trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); |
b5ea0370 PM |
1300 | need_qs = !!(rnp->qsmask & rdp->grpmask); |
1301 | rdp->cpu_no_qs.b.norm = need_qs; | |
1302 | rdp->core_needs_qs = need_qs; | |
6eaef633 PM |
1303 | zero_cpu_stall_ticks(rdp); |
1304 | } | |
67e14c1e | 1305 | rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ |
13dc7d0c | 1306 | if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) |
8ff37290 | 1307 | WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); |
764f6a81 | 1308 | if (IS_ENABLED(CONFIG_PROVE_RCU) && rdp->gpwrap) |
c708b08c | 1309 | WRITE_ONCE(rdp->last_sched_clock, jiffies); |
3d18469a PM |
1310 | WRITE_ONCE(rdp->gpwrap, false); |
1311 | rcu_gpnum_ovf(rnp, rdp); | |
48a7639c | 1312 | return ret; |
6eaef633 PM |
1313 | } |
1314 | ||
15cabdff | 1315 | static void note_gp_changes(struct rcu_data *rdp) |
6eaef633 PM |
1316 | { |
1317 | unsigned long flags; | |
48a7639c | 1318 | bool needwake; |
6eaef633 PM |
1319 | struct rcu_node *rnp; |
1320 | ||
1321 | local_irq_save(flags); | |
1322 | rnp = rdp->mynode; | |
67e14c1e | 1323 | if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && |
7d0ae808 | 1324 | !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ |
2a67e741 | 1325 | !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ |
6eaef633 PM |
1326 | local_irq_restore(flags); |
1327 | return; | |
1328 | } | |
c7e48f7b | 1329 | needwake = __note_gp_changes(rnp, rdp); |
67c583a7 | 1330 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
1a2f5d57 | 1331 | rcu_strict_gp_check_qs(); |
48a7639c | 1332 | if (needwake) |
532c00c9 | 1333 | rcu_gp_kthread_wake(); |
6eaef633 PM |
1334 | } |
1335 | ||
99d6a2ac PM |
1336 | static atomic_t *rcu_gp_slow_suppress; |
1337 | ||
1338 | /* Register a counter to suppress debugging grace-period delays. */ | |
1339 | void rcu_gp_slow_register(atomic_t *rgssp) | |
1340 | { | |
1341 | WARN_ON_ONCE(rcu_gp_slow_suppress); | |
1342 | ||
1343 | WRITE_ONCE(rcu_gp_slow_suppress, rgssp); | |
1344 | } | |
1345 | EXPORT_SYMBOL_GPL(rcu_gp_slow_register); | |
1346 | ||
1347 | /* Unregister a counter, with NULL for not caring which. */ | |
1348 | void rcu_gp_slow_unregister(atomic_t *rgssp) | |
1349 | { | |
0ae9942f | 1350 | WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL); |
99d6a2ac PM |
1351 | |
1352 | WRITE_ONCE(rcu_gp_slow_suppress, NULL); | |
1353 | } | |
1354 | EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); | |
1355 | ||
1356 | static bool rcu_gp_slow_is_suppressed(void) | |
1357 | { | |
1358 | atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); | |
1359 | ||
1360 | return rgssp && atomic_read(rgssp); | |
1361 | } | |
1362 | ||
22212332 | 1363 | static void rcu_gp_slow(int delay) |
0f41c0dd | 1364 | { |
99d6a2ac PM |
1365 | if (!rcu_gp_slow_is_suppressed() && delay > 0 && |
1366 | !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) | |
77865dea | 1367 | schedule_timeout_idle(delay); |
0f41c0dd PM |
1368 | } |
1369 | ||
55b2dcf5 PM |
1370 | static unsigned long sleep_duration; |
1371 | ||
1372 | /* Allow rcutorture to stall the grace-period kthread. */ | |
1373 | void rcu_gp_set_torture_wait(int duration) | |
1374 | { | |
1375 | if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) | |
1376 | WRITE_ONCE(sleep_duration, duration); | |
1377 | } | |
1378 | EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); | |
1379 | ||
1380 | /* Actually implement the aforementioned wait. */ | |
1381 | static void rcu_gp_torture_wait(void) | |
1382 | { | |
1383 | unsigned long duration; | |
1384 | ||
1385 | if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) | |
1386 | return; | |
1387 | duration = xchg(&sleep_duration, 0UL); | |
1388 | if (duration > 0) { | |
1389 | pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); | |
77865dea | 1390 | schedule_timeout_idle(duration); |
55b2dcf5 PM |
1391 | pr_alert("%s: Wait complete\n", __func__); |
1392 | } | |
1393 | } | |
1394 | ||
933ada2c PM |
1395 | /* |
1396 | * Handler for on_each_cpu() to invoke the target CPU's RCU core | |
1397 | * processing. | |
1398 | */ | |
1399 | static void rcu_strict_gp_boundary(void *unused) | |
1400 | { | |
1401 | invoke_rcu_core(); | |
1402 | } | |
1403 | ||
bf95b2bc PM |
1404 | // Make the polled API aware of the beginning of a grace period. |
1405 | static void rcu_poll_gp_seq_start(unsigned long *snap) | |
1406 | { | |
1407 | struct rcu_node *rnp = rcu_get_root(); | |
1408 | ||
3f6c3d29 | 1409 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
bf95b2bc PM |
1410 | raw_lockdep_assert_held_rcu_node(rnp); |
1411 | ||
1412 | // If RCU was idle, note beginning of GP. | |
1413 | if (!rcu_seq_state(rcu_state.gp_seq_polled)) | |
1414 | rcu_seq_start(&rcu_state.gp_seq_polled); | |
1415 | ||
1416 | // Either way, record current state. | |
1417 | *snap = rcu_state.gp_seq_polled; | |
1418 | } | |
1419 | ||
1420 | // Make the polled API aware of the end of a grace period. | |
1421 | static void rcu_poll_gp_seq_end(unsigned long *snap) | |
1422 | { | |
1423 | struct rcu_node *rnp = rcu_get_root(); | |
1424 | ||
3f6c3d29 | 1425 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
bf95b2bc PM |
1426 | raw_lockdep_assert_held_rcu_node(rnp); |
1427 | ||
1428 | // If the previously noted GP is still in effect, record the | |
1429 | // end of that GP. Either way, zero counter to avoid counter-wrap | |
1430 | // problems. | |
1431 | if (*snap && *snap == rcu_state.gp_seq_polled) { | |
1432 | rcu_seq_end(&rcu_state.gp_seq_polled); | |
1433 | rcu_state.gp_seq_polled_snap = 0; | |
dd041405 | 1434 | rcu_state.gp_seq_polled_exp_snap = 0; |
bf95b2bc PM |
1435 | } else { |
1436 | *snap = 0; | |
1437 | } | |
1438 | } | |
1439 | ||
1440 | // Make the polled API aware of the beginning of a grace period, but | |
1441 | // where caller does not hold the root rcu_node structure's lock. | |
1442 | static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) | |
1443 | { | |
31d8aaa8 | 1444 | unsigned long flags; |
bf95b2bc PM |
1445 | struct rcu_node *rnp = rcu_get_root(); |
1446 | ||
1447 | if (rcu_init_invoked()) { | |
3f6c3d29 PM |
1448 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
1449 | lockdep_assert_irqs_enabled(); | |
31d8aaa8 | 1450 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
bf95b2bc PM |
1451 | } |
1452 | rcu_poll_gp_seq_start(snap); | |
1453 | if (rcu_init_invoked()) | |
31d8aaa8 | 1454 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
bf95b2bc PM |
1455 | } |
1456 | ||
1457 | // Make the polled API aware of the end of a grace period, but where | |
1458 | // caller does not hold the root rcu_node structure's lock. | |
1459 | static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) | |
1460 | { | |
31d8aaa8 | 1461 | unsigned long flags; |
bf95b2bc PM |
1462 | struct rcu_node *rnp = rcu_get_root(); |
1463 | ||
1464 | if (rcu_init_invoked()) { | |
3f6c3d29 PM |
1465 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) |
1466 | lockdep_assert_irqs_enabled(); | |
31d8aaa8 | 1467 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
bf95b2bc PM |
1468 | } |
1469 | rcu_poll_gp_seq_end(snap); | |
1470 | if (rcu_init_invoked()) | |
31d8aaa8 | 1471 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
bf95b2bc PM |
1472 | } |
1473 | ||
988f569a URS |
1474 | /* |
1475 | * There is a single llist, which is used for handling | |
1476 | * synchronize_rcu() users' enqueued rcu_synchronize nodes. | |
1477 | * Within this llist, there are two tail pointers: | |
1478 | * | |
1479 | * wait tail: Tracks the set of nodes, which need to | |
1480 | * wait for the current GP to complete. | |
1481 | * done tail: Tracks the set of nodes, for which grace | |
1482 | * period has elapsed. These nodes processing | |
1483 | * will be done as part of the cleanup work | |
1484 | * execution by a kworker. | |
1485 | * | |
1486 | * At every grace period init, a new wait node is added | |
1487 | * to the llist. This wait node is used as wait tail | |
1488 | * for this new grace period. Given that there are a fixed | |
1489 | * number of wait nodes, if all wait nodes are in use | |
1490 | * (which can happen when kworker callback processing | |
1491 | * is delayed) and additional grace period is requested. | |
1492 | * This means, a system is slow in processing callbacks. | |
1493 | * | |
1494 | * TODO: If a slow processing is detected, a first node | |
1495 | * in the llist should be used as a wait-tail for this | |
1496 | * grace period, therefore users which should wait due | |
1497 | * to a slow process are handled by _this_ grace period | |
1498 | * and not next. | |
1499 | * | |
1500 | * Below is an illustration of how the done and wait | |
1501 | * tail pointers move from one set of rcu_synchronize nodes | |
1502 | * to the other, as grace periods start and finish and | |
1503 | * nodes are processed by kworker. | |
1504 | * | |
1505 | * | |
1506 | * a. Initial llist callbacks list: | |
1507 | * | |
1508 | * +----------+ +--------+ +-------+ | |
1509 | * | | | | | | | |
1510 | * | head |---------> | cb2 |--------->| cb1 | | |
1511 | * | | | | | | | |
1512 | * +----------+ +--------+ +-------+ | |
1513 | * | |
1514 | * | |
1515 | * | |
1516 | * b. New GP1 Start: | |
1517 | * | |
1518 | * WAIT TAIL | |
1519 | * | | |
1520 | * | | |
1521 | * v | |
1522 | * +----------+ +--------+ +--------+ +-------+ | |
1523 | * | | | | | | | | | |
1524 | * | head ------> wait |------> cb2 |------> | cb1 | | |
1525 | * | | | head1 | | | | | | |
1526 | * +----------+ +--------+ +--------+ +-------+ | |
1527 | * | |
1528 | * | |
1529 | * | |
1530 | * c. GP completion: | |
1531 | * | |
1532 | * WAIT_TAIL == DONE_TAIL | |
1533 | * | |
1534 | * DONE TAIL | |
1535 | * | | |
1536 | * | | |
1537 | * v | |
1538 | * +----------+ +--------+ +--------+ +-------+ | |
1539 | * | | | | | | | | | |
1540 | * | head ------> wait |------> cb2 |------> | cb1 | | |
1541 | * | | | head1 | | | | | | |
1542 | * +----------+ +--------+ +--------+ +-------+ | |
1543 | * | |
1544 | * | |
1545 | * | |
1546 | * d. New callbacks and GP2 start: | |
1547 | * | |
1548 | * WAIT TAIL DONE TAIL | |
1549 | * | | | |
1550 | * | | | |
1551 | * v v | |
1552 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ | |
1553 | * | | | | | | | | | | | | | | | |
1554 | * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | | |
1555 | * | | | head2| | | | | |head1| | | | | | |
1556 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ | |
1557 | * | |
1558 | * | |
1559 | * | |
1560 | * e. GP2 completion: | |
1561 | * | |
1562 | * WAIT_TAIL == DONE_TAIL | |
1563 | * DONE TAIL | |
1564 | * | | |
1565 | * | | |
1566 | * v | |
1567 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ | |
1568 | * | | | | | | | | | | | | | | | |
1569 | * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 | | |
1570 | * | | | head2| | | | | |head1| | | | | | |
1571 | * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+ | |
1572 | * | |
1573 | * | |
1574 | * While the llist state transitions from d to e, a kworker | |
1575 | * can start executing rcu_sr_normal_gp_cleanup_work() and | |
1576 | * can observe either the old done tail (@c) or the new | |
1577 | * done tail (@e). So, done tail updates and reads need | |
1578 | * to use the rel-acq semantics. If the concurrent kworker | |
1579 | * observes the old done tail, the newly queued work | |
1580 | * execution will process the updated done tail. If the | |
1581 | * concurrent kworker observes the new done tail, then | |
1582 | * the newly queued work will skip processing the done | |
1583 | * tail, as workqueue semantics guarantees that the new | |
1584 | * work is executed only after the previous one completes. | |
1585 | * | |
1586 | * f. kworker callbacks processing complete: | |
1587 | * | |
1588 | * | |
1589 | * DONE TAIL | |
1590 | * | | |
1591 | * | | |
1592 | * v | |
1593 | * +----------+ +--------+ | |
1594 | * | | | | | |
1595 | * | head ------> wait | | |
1596 | * | | | head2 | | |
1597 | * +----------+ +--------+ | |
1598 | * | |
1599 | */ | |
1600 | static bool rcu_sr_is_wait_head(struct llist_node *node) | |
1601 | { | |
1602 | return &(rcu_state.srs_wait_nodes)[0].node <= node && | |
1603 | node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node; | |
1604 | } | |
1605 | ||
1606 | static struct llist_node *rcu_sr_get_wait_head(void) | |
1607 | { | |
1608 | struct sr_wait_node *sr_wn; | |
1609 | int i; | |
1610 | ||
1611 | for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) { | |
1612 | sr_wn = &(rcu_state.srs_wait_nodes)[i]; | |
1613 | ||
1614 | if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1)) | |
1615 | return &sr_wn->node; | |
1616 | } | |
1617 | ||
1618 | return NULL; | |
1619 | } | |
1620 | ||
1621 | static void rcu_sr_put_wait_head(struct llist_node *node) | |
1622 | { | |
1623 | struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node); | |
1624 | ||
1625 | atomic_set_release(&sr_wn->inuse, 0); | |
1626 | } | |
1627 | ||
1628 | /* Disabled by default. */ | |
1629 | static int rcu_normal_wake_from_gp; | |
1630 | module_param(rcu_normal_wake_from_gp, int, 0644); | |
0fd210ba | 1631 | static struct workqueue_struct *sync_wq; |
988f569a URS |
1632 | |
1633 | static void rcu_sr_normal_complete(struct llist_node *node) | |
1634 | { | |
1635 | struct rcu_synchronize *rs = container_of( | |
1636 | (struct rcu_head *) node, struct rcu_synchronize, head); | |
988f569a URS |
1637 | |
1638 | WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && | |
5a562b8b URS |
1639 | !poll_state_synchronize_rcu_full(&rs->oldstate), |
1640 | "A full grace period is not passed yet!\n"); | |
988f569a URS |
1641 | |
1642 | /* Finally. */ | |
1643 | complete(&rs->completion); | |
1644 | } | |
1645 | ||
1646 | static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work) | |
1647 | { | |
1648 | struct llist_node *done, *rcu, *next, *head; | |
1649 | ||
1650 | /* | |
1651 | * This work execution can potentially execute | |
1652 | * while a new done tail is being updated by | |
1653 | * grace period kthread in rcu_sr_normal_gp_cleanup(). | |
1654 | * So, read and updates of done tail need to | |
1655 | * follow acq-rel semantics. | |
1656 | * | |
1657 | * Given that wq semantics guarantees that a single work | |
1658 | * cannot execute concurrently by multiple kworkers, | |
1659 | * the done tail list manipulations are protected here. | |
1660 | */ | |
1661 | done = smp_load_acquire(&rcu_state.srs_done_tail); | |
3471e96b | 1662 | if (WARN_ON_ONCE(!done)) |
988f569a URS |
1663 | return; |
1664 | ||
1665 | WARN_ON_ONCE(!rcu_sr_is_wait_head(done)); | |
1666 | head = done->next; | |
1667 | done->next = NULL; | |
1668 | ||
1669 | /* | |
1670 | * The dummy node, which is pointed to by the | |
1671 | * done tail which is acq-read above is not removed | |
1672 | * here. This allows lockless additions of new | |
1673 | * rcu_synchronize nodes in rcu_sr_normal_add_req(), | |
1674 | * while the cleanup work executes. The dummy | |
1675 | * nodes is removed, in next round of cleanup | |
1676 | * work execution. | |
1677 | */ | |
1678 | llist_for_each_safe(rcu, next, head) { | |
1679 | if (!rcu_sr_is_wait_head(rcu)) { | |
1680 | rcu_sr_normal_complete(rcu); | |
1681 | continue; | |
1682 | } | |
1683 | ||
1684 | rcu_sr_put_wait_head(rcu); | |
1685 | } | |
6f948568 JFG |
1686 | |
1687 | /* Order list manipulations with atomic access. */ | |
1688 | atomic_dec_return_release(&rcu_state.srs_cleanups_pending); | |
988f569a URS |
1689 | } |
1690 | ||
1691 | /* | |
1692 | * Helper function for rcu_gp_cleanup(). | |
1693 | */ | |
1694 | static void rcu_sr_normal_gp_cleanup(void) | |
1695 | { | |
6f948568 | 1696 | struct llist_node *wait_tail, *next = NULL, *rcu = NULL; |
462df2f5 | 1697 | int done = 0; |
988f569a URS |
1698 | |
1699 | wait_tail = rcu_state.srs_wait_tail; | |
1700 | if (wait_tail == NULL) | |
1701 | return; | |
1702 | ||
1703 | rcu_state.srs_wait_tail = NULL; | |
1704 | ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); | |
462df2f5 URS |
1705 | WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail)); |
1706 | ||
1707 | /* | |
1708 | * Process (a) and (d) cases. See an illustration. | |
1709 | */ | |
1710 | llist_for_each_safe(rcu, next, wait_tail->next) { | |
1711 | if (rcu_sr_is_wait_head(rcu)) | |
1712 | break; | |
1713 | ||
1714 | rcu_sr_normal_complete(rcu); | |
1715 | // It can be last, update a next on this step. | |
1716 | wait_tail->next = next; | |
1717 | ||
1718 | if (++done == SR_MAX_USERS_WAKE_FROM_GP) | |
1719 | break; | |
1720 | } | |
988f569a | 1721 | |
6f948568 JFG |
1722 | /* |
1723 | * Fast path, no more users to process except putting the second last | |
1724 | * wait head if no inflight-workers. If there are in-flight workers, | |
1725 | * they will remove the last wait head. | |
1726 | * | |
1727 | * Note that the ACQUIRE orders atomic access with list manipulation. | |
1728 | */ | |
1729 | if (wait_tail->next && wait_tail->next->next == NULL && | |
1730 | rcu_sr_is_wait_head(wait_tail->next) && | |
1731 | !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) { | |
1732 | rcu_sr_put_wait_head(wait_tail->next); | |
1733 | wait_tail->next = NULL; | |
1734 | } | |
1735 | ||
1736 | /* Concurrent sr_normal_gp_cleanup work might observe this update. */ | |
988f569a | 1737 | ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail); |
6f948568 | 1738 | smp_store_release(&rcu_state.srs_done_tail, wait_tail); |
988f569a | 1739 | |
462df2f5 URS |
1740 | /* |
1741 | * We schedule a work in order to perform a final processing | |
1742 | * of outstanding users(if still left) and releasing wait-heads | |
1743 | * added by rcu_sr_normal_gp_init() call. | |
1744 | */ | |
6f948568 JFG |
1745 | if (wait_tail->next) { |
1746 | atomic_inc(&rcu_state.srs_cleanups_pending); | |
1747 | if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work)) | |
1748 | atomic_dec(&rcu_state.srs_cleanups_pending); | |
1749 | } | |
988f569a URS |
1750 | } |
1751 | ||
1752 | /* | |
1753 | * Helper function for rcu_gp_init(). | |
1754 | */ | |
1755 | static bool rcu_sr_normal_gp_init(void) | |
1756 | { | |
1757 | struct llist_node *first; | |
1758 | struct llist_node *wait_head; | |
1759 | bool start_new_poll = false; | |
1760 | ||
1761 | first = READ_ONCE(rcu_state.srs_next.first); | |
1762 | if (!first || rcu_sr_is_wait_head(first)) | |
1763 | return start_new_poll; | |
1764 | ||
1765 | wait_head = rcu_sr_get_wait_head(); | |
1766 | if (!wait_head) { | |
1767 | // Kick another GP to retry. | |
1768 | start_new_poll = true; | |
1769 | return start_new_poll; | |
1770 | } | |
1771 | ||
1772 | /* Inject a wait-dummy-node. */ | |
1773 | llist_add(wait_head, &rcu_state.srs_next); | |
1774 | ||
1775 | /* | |
1776 | * A waiting list of rcu_synchronize nodes should be empty on | |
1777 | * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(), | |
1778 | * rolls it over. If not, it is a BUG, warn a user. | |
1779 | */ | |
1780 | WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL); | |
1781 | rcu_state.srs_wait_tail = wait_head; | |
1782 | ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail); | |
1783 | ||
1784 | return start_new_poll; | |
1785 | } | |
1786 | ||
1787 | static void rcu_sr_normal_add_req(struct rcu_synchronize *rs) | |
1788 | { | |
1789 | llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next); | |
1790 | } | |
1791 | ||
b3dbec76 | 1792 | /* |
45fed3e7 | 1793 | * Initialize a new grace period. Return false if no grace period required. |
b3dbec76 | 1794 | */ |
f74126dc | 1795 | static noinline_for_stack bool rcu_gp_init(void) |
b3dbec76 | 1796 | { |
ec2c2976 | 1797 | unsigned long flags; |
0aa04b05 | 1798 | unsigned long oldmask; |
ec2c2976 | 1799 | unsigned long mask; |
b3dbec76 | 1800 | struct rcu_data *rdp; |
336a4f6c | 1801 | struct rcu_node *rnp = rcu_get_root(); |
988f569a | 1802 | bool start_new_poll; |
4aa6e94c | 1803 | unsigned long old_gp_seq; |
b3dbec76 | 1804 | |
9cbc5b97 | 1805 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
2a67e741 | 1806 | raw_spin_lock_irq_rcu_node(rnp); |
62bb24c4 | 1807 | if (!rcu_state.gp_flags) { |
f7be8209 | 1808 | /* Spurious wakeup, tell caller to go back to sleep. */ |
67c583a7 | 1809 | raw_spin_unlock_irq_rcu_node(rnp); |
45fed3e7 | 1810 | return false; |
f7be8209 | 1811 | } |
9cbc5b97 | 1812 | WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ |
b3dbec76 | 1813 | |
de8e8730 | 1814 | if (WARN_ON_ONCE(rcu_gp_in_progress())) { |
f7be8209 PM |
1815 | /* |
1816 | * Grace period already in progress, don't start another. | |
1817 | * Not supposed to be able to happen. | |
1818 | */ | |
67c583a7 | 1819 | raw_spin_unlock_irq_rcu_node(rnp); |
45fed3e7 | 1820 | return false; |
7fdefc10 PM |
1821 | } |
1822 | ||
7fdefc10 | 1823 | /* Advance to a new grace period and initialize state. */ |
ad3832e9 | 1824 | record_gp_stall_check_time(); |
85aad7cc PM |
1825 | /* |
1826 | * A new wait segment must be started before gp_seq advanced, so | |
1827 | * that previous gp waiters won't observe the new gp_seq. | |
1828 | */ | |
1829 | start_new_poll = rcu_sr_normal_gp_init(); | |
ff3bb6f4 | 1830 | /* Record GP times before starting GP, hence rcu_seq_start(). */ |
4aa6e94c | 1831 | old_gp_seq = rcu_state.gp_seq; |
9cbc5b97 | 1832 | rcu_seq_start(&rcu_state.gp_seq); |
4aa6e94c JF |
1833 | /* Ensure that rcu_seq_done_exact() guardband doesn't give false positives. */ |
1834 | WARN_ON_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && | |
1835 | rcu_seq_done_exact(&old_gp_seq, rcu_seq_snap(&rcu_state.gp_seq))); | |
1836 | ||
62ae1951 | 1837 | ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); |
9cbc5b97 | 1838 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); |
bf95b2bc | 1839 | rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); |
67c583a7 | 1840 | raw_spin_unlock_irq_rcu_node(rnp); |
7fdefc10 | 1841 | |
988f569a URS |
1842 | /* |
1843 | * The "start_new_poll" is set to true, only when this GP is not able | |
1844 | * to handle anything and there are outstanding users. It happens when | |
1845 | * the rcu_sr_normal_gp_init() function was not able to insert a dummy | |
1846 | * separator to the llist, because there were no left any dummy-nodes. | |
1847 | * | |
1848 | * Number of dummy-nodes is fixed, it could be that we are run out of | |
1849 | * them, if so we start a new pool request to repeat a try. It is rare | |
1850 | * and it means that a system is doing a slow processing of callbacks. | |
1851 | */ | |
1852 | if (start_new_poll) | |
1853 | (void) start_poll_synchronize_rcu(); | |
1854 | ||
0aa04b05 | 1855 | /* |
f37599e6 JFG |
1856 | * Apply per-leaf buffered online and offline operations to |
1857 | * the rcu_node tree. Note that this new grace period need not | |
1858 | * wait for subsequent online CPUs, and that RCU hooks in the CPU | |
1859 | * offlining path, when combined with checks in this function, | |
1860 | * will handle CPUs that are currently going offline or that will | |
1861 | * go offline later. Please also refer to "Hotplug CPU" section | |
1862 | * of RCU's Requirements documentation. | |
0aa04b05 | 1863 | */ |
683954e5 | 1864 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); |
82980b16 | 1865 | /* Exclude CPU hotplug operations. */ |
aedf4ba9 | 1866 | rcu_for_each_leaf_node(rnp) { |
51cace13 | 1867 | local_irq_disable(); |
82980b16 DW |
1868 | arch_spin_lock(&rcu_state.ofl_lock); |
1869 | raw_spin_lock_rcu_node(rnp); | |
0aa04b05 PM |
1870 | if (rnp->qsmaskinit == rnp->qsmaskinitnext && |
1871 | !rnp->wait_blkd_tasks) { | |
1872 | /* Nothing to do on this leaf rcu_node structure. */ | |
82980b16 DW |
1873 | raw_spin_unlock_rcu_node(rnp); |
1874 | arch_spin_unlock(&rcu_state.ofl_lock); | |
51cace13 | 1875 | local_irq_enable(); |
0aa04b05 PM |
1876 | continue; |
1877 | } | |
1878 | ||
1879 | /* Record old state, apply changes to ->qsmaskinit field. */ | |
1880 | oldmask = rnp->qsmaskinit; | |
1881 | rnp->qsmaskinit = rnp->qsmaskinitnext; | |
1882 | ||
1883 | /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ | |
1884 | if (!oldmask != !rnp->qsmaskinit) { | |
962aff03 PM |
1885 | if (!oldmask) { /* First online CPU for rcu_node. */ |
1886 | if (!rnp->wait_blkd_tasks) /* Ever offline? */ | |
1887 | rcu_init_new_rnp(rnp); | |
1888 | } else if (rcu_preempt_has_tasks(rnp)) { | |
1889 | rnp->wait_blkd_tasks = true; /* blocked tasks */ | |
1890 | } else { /* Last offline CPU and can propagate. */ | |
0aa04b05 | 1891 | rcu_cleanup_dead_rnp(rnp); |
962aff03 | 1892 | } |
0aa04b05 PM |
1893 | } |
1894 | ||
1895 | /* | |
1896 | * If all waited-on tasks from prior grace period are | |
1897 | * done, and if all this rcu_node structure's CPUs are | |
1898 | * still offline, propagate up the rcu_node tree and | |
1899 | * clear ->wait_blkd_tasks. Otherwise, if one of this | |
1900 | * rcu_node structure's CPUs has since come back online, | |
962aff03 | 1901 | * simply clear ->wait_blkd_tasks. |
0aa04b05 PM |
1902 | */ |
1903 | if (rnp->wait_blkd_tasks && | |
962aff03 | 1904 | (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { |
0aa04b05 | 1905 | rnp->wait_blkd_tasks = false; |
962aff03 PM |
1906 | if (!rnp->qsmaskinit) |
1907 | rcu_cleanup_dead_rnp(rnp); | |
0aa04b05 PM |
1908 | } |
1909 | ||
82980b16 DW |
1910 | raw_spin_unlock_rcu_node(rnp); |
1911 | arch_spin_unlock(&rcu_state.ofl_lock); | |
51cace13 | 1912 | local_irq_enable(); |
0aa04b05 | 1913 | } |
22212332 | 1914 | rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ |
7fdefc10 PM |
1915 | |
1916 | /* | |
1917 | * Set the quiescent-state-needed bits in all the rcu_node | |
9cbc5b97 PM |
1918 | * structures for all currently online CPUs in breadth-first |
1919 | * order, starting from the root rcu_node structure, relying on the | |
1920 | * layout of the tree within the rcu_state.node[] array. Note that | |
1921 | * other CPUs will access only the leaves of the hierarchy, thus | |
1922 | * seeing that no grace period is in progress, at least until the | |
1923 | * corresponding leaf node has been initialized. | |
7fdefc10 PM |
1924 | * |
1925 | * The grace period cannot complete until the initialization | |
1926 | * process finishes, because this kthread handles both. | |
1927 | */ | |
683954e5 | 1928 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); |
aedf4ba9 | 1929 | rcu_for_each_node_breadth_first(rnp) { |
22212332 | 1930 | rcu_gp_slow(gp_init_delay); |
ec2c2976 | 1931 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
da1df50d | 1932 | rdp = this_cpu_ptr(&rcu_data); |
81ab59a3 | 1933 | rcu_preempt_check_blocked_tasks(rnp); |
7fdefc10 | 1934 | rnp->qsmask = rnp->qsmaskinit; |
9cbc5b97 | 1935 | WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); |
7fdefc10 | 1936 | if (rnp == rdp->mynode) |
c7e48f7b | 1937 | (void)__note_gp_changes(rnp, rdp); |
7fdefc10 | 1938 | rcu_preempt_boost_start_gp(rnp); |
9cbc5b97 | 1939 | trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, |
7fdefc10 PM |
1940 | rnp->level, rnp->grplo, |
1941 | rnp->grphi, rnp->qsmask); | |
ec2c2976 PM |
1942 | /* Quiescent states for tasks on any now-offline CPUs. */ |
1943 | mask = rnp->qsmask & ~rnp->qsmaskinitnext; | |
f2e2df59 | 1944 | rnp->rcu_gp_init_mask = mask; |
ec2c2976 | 1945 | if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) |
b50912d0 | 1946 | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); |
ec2c2976 PM |
1947 | else |
1948 | raw_spin_unlock_irq_rcu_node(rnp); | |
cee43939 | 1949 | cond_resched_tasks_rcu_qs(); |
9cbc5b97 | 1950 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
7fdefc10 | 1951 | } |
b3dbec76 | 1952 | |
933ada2c PM |
1953 | // If strict, make all CPUs aware of new grace period. |
1954 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | |
1955 | on_each_cpu(rcu_strict_gp_boundary, NULL, 0); | |
1956 | ||
45fed3e7 | 1957 | return true; |
7fdefc10 | 1958 | } |
b3dbec76 | 1959 | |
b9a425cf | 1960 | /* |
b3dae109 | 1961 | * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state |
d5374226 | 1962 | * time. |
b9a425cf | 1963 | */ |
0854a05c | 1964 | static bool rcu_gp_fqs_check_wake(int *gfp) |
b9a425cf | 1965 | { |
336a4f6c | 1966 | struct rcu_node *rnp = rcu_get_root(); |
b9a425cf | 1967 | |
1fca4d12 PM |
1968 | // If under overload conditions, force an immediate FQS scan. |
1969 | if (*gfp & RCU_GP_FLAG_OVLD) | |
1970 | return true; | |
1971 | ||
1972 | // Someone like call_rcu() requested a force-quiescent-state scan. | |
0854a05c | 1973 | *gfp = READ_ONCE(rcu_state.gp_flags); |
b9a425cf PM |
1974 | if (*gfp & RCU_GP_FLAG_FQS) |
1975 | return true; | |
1976 | ||
1fca4d12 | 1977 | // The current grace period has completed. |
b9a425cf PM |
1978 | if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) |
1979 | return true; | |
1980 | ||
1981 | return false; | |
1982 | } | |
1983 | ||
4cdfc175 PM |
1984 | /* |
1985 | * Do one round of quiescent-state forcing. | |
1986 | */ | |
0854a05c | 1987 | static void rcu_gp_fqs(bool first_time) |
4cdfc175 | 1988 | { |
b96e7a5f | 1989 | int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); |
336a4f6c | 1990 | struct rcu_node *rnp = rcu_get_root(); |
4cdfc175 | 1991 | |
9cbc5b97 | 1992 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
2431774f | 1993 | WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); |
b96e7a5f JFG |
1994 | |
1995 | WARN_ON_ONCE(nr_fqs > 3); | |
1996 | /* Only countdown nr_fqs for stall purposes if jiffies moves. */ | |
1997 | if (nr_fqs) { | |
1998 | if (nr_fqs == 1) { | |
1999 | WRITE_ONCE(rcu_state.jiffies_stall, | |
2000 | jiffies + rcu_jiffies_till_stall_check()); | |
2001 | } | |
2002 | WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); | |
2003 | } | |
2004 | ||
77f81fe0 | 2005 | if (first_time) { |
4cdfc175 | 2006 | /* Collect dyntick-idle snapshots. */ |
49f82c64 | 2007 | force_qs_rnp(rcu_watching_snap_save); |
4cdfc175 PM |
2008 | } else { |
2009 | /* Handle dyntick-idle and offline CPUs. */ | |
3b18eb3f | 2010 | force_qs_rnp(rcu_watching_snap_recheck); |
4cdfc175 PM |
2011 | } |
2012 | /* Clear flag to prevent immediate re-entry. */ | |
9cbc5b97 | 2013 | if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { |
2a67e741 | 2014 | raw_spin_lock_irq_rcu_node(rnp); |
62bb24c4 | 2015 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS); |
67c583a7 | 2016 | raw_spin_unlock_irq_rcu_node(rnp); |
4cdfc175 | 2017 | } |
4cdfc175 PM |
2018 | } |
2019 | ||
c3854a05 PM |
2020 | /* |
2021 | * Loop doing repeated quiescent-state forcing until the grace period ends. | |
2022 | */ | |
f74126dc | 2023 | static noinline_for_stack void rcu_gp_fqs_loop(void) |
c3854a05 | 2024 | { |
9bdb5b3a | 2025 | bool first_gp_fqs = true; |
1fca4d12 | 2026 | int gf = 0; |
c3854a05 PM |
2027 | unsigned long j; |
2028 | int ret; | |
2029 | struct rcu_node *rnp = rcu_get_root(); | |
2030 | ||
c06aed0e | 2031 | j = READ_ONCE(jiffies_till_first_fqs); |
1fca4d12 PM |
2032 | if (rcu_state.cbovld) |
2033 | gf = RCU_GP_FLAG_OVLD; | |
c3854a05 PM |
2034 | ret = 0; |
2035 | for (;;) { | |
fb77dccf PM |
2036 | if (rcu_state.cbovld) { |
2037 | j = (j + 2) / 3; | |
2038 | if (j <= 0) | |
2039 | j = 1; | |
2040 | } | |
2041 | if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { | |
683954e5 NU |
2042 | WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); |
2043 | /* | |
2044 | * jiffies_force_qs before RCU_GP_WAIT_FQS state | |
2045 | * update; required for stall checks. | |
2046 | */ | |
2047 | smp_wmb(); | |
c3854a05 | 2048 | WRITE_ONCE(rcu_state.jiffies_kick_kthreads, |
9cf422a8 | 2049 | jiffies + (j ? 3 * j : 2)); |
c3854a05 | 2050 | } |
0f11ad32 | 2051 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, |
c3854a05 | 2052 | TPS("fqswait")); |
683954e5 | 2053 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); |
eb880949 LS |
2054 | (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, |
2055 | rcu_gp_fqs_check_wake(&gf), j); | |
55b2dcf5 | 2056 | rcu_gp_torture_wait(); |
683954e5 | 2057 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); |
c3854a05 | 2058 | /* Locking provides needed memory barriers. */ |
a03ae49c NU |
2059 | /* |
2060 | * Exit the loop if the root rcu_node structure indicates that the grace period | |
2061 | * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check | |
2062 | * is required only for single-node rcu_node trees because readers blocking | |
2063 | * the current grace period are queued only on leaf rcu_node structures. | |
2064 | * For multi-node trees, checking the root node's ->qsmask suffices, because a | |
2065 | * given root node's ->qsmask bit is cleared only when all CPUs and tasks from | |
2066 | * the corresponding leaf nodes have passed through their quiescent state. | |
2067 | */ | |
c3854a05 PM |
2068 | if (!READ_ONCE(rnp->qsmask) && |
2069 | !rcu_preempt_blocked_readers_cgp(rnp)) | |
2070 | break; | |
2071 | /* If time for quiescent-state forcing, do it. */ | |
29ffebc5 | 2072 | if (!time_after(rcu_state.jiffies_force_qs, jiffies) || |
9c392453 | 2073 | (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { |
0f11ad32 | 2074 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, |
c3854a05 PM |
2075 | TPS("fqsstart")); |
2076 | rcu_gp_fqs(first_gp_fqs); | |
1fca4d12 PM |
2077 | gf = 0; |
2078 | if (first_gp_fqs) { | |
2079 | first_gp_fqs = false; | |
2080 | gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; | |
2081 | } | |
0f11ad32 | 2082 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, |
c3854a05 PM |
2083 | TPS("fqsend")); |
2084 | cond_resched_tasks_rcu_qs(); | |
2085 | WRITE_ONCE(rcu_state.gp_activity, jiffies); | |
2086 | ret = 0; /* Force full wait till next FQS. */ | |
c06aed0e | 2087 | j = READ_ONCE(jiffies_till_next_fqs); |
c3854a05 PM |
2088 | } else { |
2089 | /* Deal with stray signal. */ | |
2090 | cond_resched_tasks_rcu_qs(); | |
2091 | WRITE_ONCE(rcu_state.gp_activity, jiffies); | |
2092 | WARN_ON(signal_pending(current)); | |
0f11ad32 | 2093 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, |
c3854a05 PM |
2094 | TPS("fqswaitsig")); |
2095 | ret = 1; /* Keep old FQS timing. */ | |
2096 | j = jiffies; | |
2097 | if (time_after(jiffies, rcu_state.jiffies_force_qs)) | |
2098 | j = 1; | |
2099 | else | |
2100 | j = rcu_state.jiffies_force_qs - j; | |
1fca4d12 | 2101 | gf = 0; |
c3854a05 PM |
2102 | } |
2103 | } | |
2104 | } | |
2105 | ||
7fdefc10 PM |
2106 | /* |
2107 | * Clean up after the old grace period. | |
2108 | */ | |
2f20de99 | 2109 | static noinline void rcu_gp_cleanup(void) |
7fdefc10 | 2110 | { |
b2b00ddf | 2111 | int cpu; |
48a7639c | 2112 | bool needgp = false; |
b2b00ddf | 2113 | unsigned long gp_duration; |
de30ad51 | 2114 | unsigned long new_gp_seq; |
5d6742b3 | 2115 | bool offloaded; |
7fdefc10 | 2116 | struct rcu_data *rdp; |
336a4f6c | 2117 | struct rcu_node *rnp = rcu_get_root(); |
abedf8e2 | 2118 | struct swait_queue_head *sq; |
b3dbec76 | 2119 | |
9cbc5b97 | 2120 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
2a67e741 | 2121 | raw_spin_lock_irq_rcu_node(rnp); |
c51d7b5e PM |
2122 | rcu_state.gp_end = jiffies; |
2123 | gp_duration = rcu_state.gp_end - rcu_state.gp_start; | |
9cbc5b97 PM |
2124 | if (gp_duration > rcu_state.gp_max) |
2125 | rcu_state.gp_max = gp_duration; | |
b3dbec76 | 2126 | |
7fdefc10 PM |
2127 | /* |
2128 | * We know the grace period is complete, but to everyone else | |
2129 | * it appears to still be ongoing. But it is also the case | |
2130 | * that to everyone else it looks like there is nothing that | |
2131 | * they can do to advance the grace period. It is therefore | |
2132 | * safe for us to drop the lock in order to mark the grace | |
2133 | * period as completed in all of the rcu_node structures. | |
7fdefc10 | 2134 | */ |
bf95b2bc | 2135 | rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); |
67c583a7 | 2136 | raw_spin_unlock_irq_rcu_node(rnp); |
b3dbec76 | 2137 | |
5d4b8659 | 2138 | /* |
ff3bb6f4 PM |
2139 | * Propagate new ->gp_seq value to rcu_node structures so that |
2140 | * other CPUs don't have to wait until the start of the next grace | |
2141 | * period to process their callbacks. This also avoids some nasty | |
2142 | * RCU grace-period initialization races by forcing the end of | |
2143 | * the current grace period to be completely recorded in all of | |
2144 | * the rcu_node structures before the beginning of the next grace | |
2145 | * period is recorded in any of the rcu_node structures. | |
5d4b8659 | 2146 | */ |
9cbc5b97 | 2147 | new_gp_seq = rcu_state.gp_seq; |
de30ad51 | 2148 | rcu_seq_end(&new_gp_seq); |
aedf4ba9 | 2149 | rcu_for_each_node_breadth_first(rnp) { |
2a67e741 | 2150 | raw_spin_lock_irq_rcu_node(rnp); |
4bc8d555 | 2151 | if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) |
81ab59a3 | 2152 | dump_blkd_tasks(rnp, 10); |
5c60d25f | 2153 | WARN_ON_ONCE(rnp->qsmask); |
de30ad51 | 2154 | WRITE_ONCE(rnp->gp_seq, new_gp_seq); |
3fdefca9 PM |
2155 | if (!rnp->parent) |
2156 | smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). | |
da1df50d | 2157 | rdp = this_cpu_ptr(&rcu_data); |
b11cc576 | 2158 | if (rnp == rdp->mynode) |
c7e48f7b | 2159 | needgp = __note_gp_changes(rnp, rdp) || needgp; |
78e4bc34 | 2160 | /* smp_mb() provided by prior unlock-lock pair. */ |
3481f2ea | 2161 | needgp = rcu_future_gp_cleanup(rnp) || needgp; |
b2b00ddf PM |
2162 | // Reset overload indication for CPUs no longer overloaded |
2163 | if (rcu_is_leaf_node(rnp)) | |
2164 | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { | |
2165 | rdp = per_cpu_ptr(&rcu_data, cpu); | |
2166 | check_cb_ovld_locked(rdp, rnp); | |
2167 | } | |
065bb78c | 2168 | sq = rcu_nocb_gp_get(rnp); |
67c583a7 | 2169 | raw_spin_unlock_irq_rcu_node(rnp); |
065bb78c | 2170 | rcu_nocb_gp_cleanup(sq); |
cee43939 | 2171 | cond_resched_tasks_rcu_qs(); |
9cbc5b97 | 2172 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
22212332 | 2173 | rcu_gp_slow(gp_cleanup_delay); |
7fdefc10 | 2174 | } |
336a4f6c | 2175 | rnp = rcu_get_root(); |
9cbc5b97 | 2176 | raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ |
7fdefc10 | 2177 | |
0a89e5a4 | 2178 | /* Declare grace period done, trace first to use old GP number. */ |
9cbc5b97 | 2179 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); |
0a89e5a4 | 2180 | rcu_seq_end(&rcu_state.gp_seq); |
62ae1951 | 2181 | ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); |
683954e5 | 2182 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); |
fb31340f | 2183 | /* Check for GP requests since above loop. */ |
da1df50d | 2184 | rdp = this_cpu_ptr(&rcu_data); |
5b55072f | 2185 | if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { |
abd13fdd | 2186 | trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, |
41e80595 | 2187 | TPS("CleanupMore")); |
fb31340f PM |
2188 | needgp = true; |
2189 | } | |
48a7639c | 2190 | /* Advance CBs to reduce false positives below. */ |
3820b513 | 2191 | offloaded = rcu_rdp_is_offloaded(rdp); |
5d6742b3 | 2192 | if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { |
75182a4e PM |
2193 | |
2194 | // We get here if a grace period was needed (“needgp”) | |
2195 | // and the above call to rcu_accelerate_cbs() did not set | |
2196 | // the RCU_GP_FLAG_INIT bit in ->gp_state (which records | |
2197 | // the need for another grace period). The purpose | |
2198 | // of the “offloaded” check is to avoid invoking | |
2199 | // rcu_accelerate_cbs() on an offloaded CPU because we do not | |
2200 | // hold the ->nocb_lock needed to safely access an offloaded | |
2201 | // ->cblist. We do not want to acquire that lock because | |
2202 | // it can be heavily contended during callback floods. | |
2203 | ||
9cbc5b97 | 2204 | WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); |
2906d215 | 2205 | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); |
75182a4e | 2206 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); |
18390aea | 2207 | } else { |
75182a4e PM |
2208 | |
2209 | // We get here either if there is no need for an | |
2210 | // additional grace period or if rcu_accelerate_cbs() has | |
2211 | // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. | |
2212 | // So all we need to do is to clear all of the other | |
2213 | // ->gp_flags bits. | |
2214 | ||
2215 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); | |
bb311ecc | 2216 | } |
67c583a7 | 2217 | raw_spin_unlock_irq_rcu_node(rnp); |
4e025f52 | 2218 | |
988f569a URS |
2219 | // Make synchronize_rcu() users aware of the end of old grace period. |
2220 | rcu_sr_normal_gp_cleanup(); | |
2221 | ||
4e025f52 PM |
2222 | // If strict, make all CPUs aware of the end of the old grace period. |
2223 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | |
2224 | on_each_cpu(rcu_strict_gp_boundary, NULL, 0); | |
7fdefc10 PM |
2225 | } |
2226 | ||
2227 | /* | |
2228 | * Body of kthread that handles grace periods. | |
2229 | */ | |
0854a05c | 2230 | static int __noreturn rcu_gp_kthread(void *unused) |
7fdefc10 | 2231 | { |
5871968d | 2232 | rcu_bind_gp_kthread(); |
7fdefc10 PM |
2233 | for (;;) { |
2234 | ||
2235 | /* Handle grace-period start. */ | |
2236 | for (;;) { | |
0f11ad32 | 2237 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, |
63c4db78 | 2238 | TPS("reqwait")); |
683954e5 | 2239 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); |
9cbc5b97 PM |
2240 | swait_event_idle_exclusive(rcu_state.gp_wq, |
2241 | READ_ONCE(rcu_state.gp_flags) & | |
2242 | RCU_GP_FLAG_INIT); | |
55b2dcf5 | 2243 | rcu_gp_torture_wait(); |
683954e5 | 2244 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); |
78e4bc34 | 2245 | /* Locking provides needed memory barrier. */ |
0854a05c | 2246 | if (rcu_gp_init()) |
7fdefc10 | 2247 | break; |
cee43939 | 2248 | cond_resched_tasks_rcu_qs(); |
9cbc5b97 | 2249 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
73a860cd | 2250 | WARN_ON(signal_pending(current)); |
0f11ad32 | 2251 | trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, |
63c4db78 | 2252 | TPS("reqwaitsig")); |
7fdefc10 | 2253 | } |
cabc49c1 | 2254 | |
4cdfc175 | 2255 | /* Handle quiescent-state forcing. */ |
c3854a05 | 2256 | rcu_gp_fqs_loop(); |
4cdfc175 PM |
2257 | |
2258 | /* Handle grace-period end. */ | |
683954e5 | 2259 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); |
0854a05c | 2260 | rcu_gp_cleanup(); |
683954e5 | 2261 | WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); |
b3dbec76 | 2262 | } |
b3dbec76 PM |
2263 | } |
2264 | ||
f41d911f | 2265 | /* |
49918a54 PM |
2266 | * Report a full set of quiescent states to the rcu_state data structure. |
2267 | * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if | |
2268 | * another grace period is required. Whether we wake the grace-period | |
2269 | * kthread or it awakens itself for the next round of quiescent-state | |
2270 | * forcing, that kthread will clean up after the just-completed grace | |
2271 | * period. Note that the caller must hold rnp->lock, which is released | |
2272 | * before return. | |
f41d911f | 2273 | */ |
aff4e9ed | 2274 | static void rcu_report_qs_rsp(unsigned long flags) |
336a4f6c | 2275 | __releases(rcu_get_root()->lock) |
f41d911f | 2276 | { |
336a4f6c | 2277 | raw_lockdep_assert_held_rcu_node(rcu_get_root()); |
de8e8730 | 2278 | WARN_ON_ONCE(!rcu_gp_in_progress()); |
62bb24c4 | 2279 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); |
336a4f6c | 2280 | raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); |
532c00c9 | 2281 | rcu_gp_kthread_wake(); |
f41d911f PM |
2282 | } |
2283 | ||
64db4cff | 2284 | /* |
d3f6bad3 PM |
2285 | * Similar to rcu_report_qs_rdp(), for which it is a helper function. |
2286 | * Allows quiescent states for a group of CPUs to be reported at one go | |
2287 | * to the specified rcu_node structure, though all the CPUs in the group | |
654e9533 PM |
2288 | * must be represented by the same rcu_node structure (which need not be a |
2289 | * leaf rcu_node structure, though it often will be). The gps parameter | |
2290 | * is the grace-period snapshot, which means that the quiescent states | |
c9a24e2d | 2291 | * are valid only if rnp->gp_seq is equal to gps. That structure's lock |
654e9533 | 2292 | * must be held upon entry, and it is released before return. |
ec2c2976 PM |
2293 | * |
2294 | * As a special case, if mask is zero, the bit-already-cleared check is | |
2295 | * disabled. This allows propagating quiescent state due to resumed tasks | |
2296 | * during grace-period initialization. | |
64db4cff | 2297 | */ |
b50912d0 PM |
2298 | static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, |
2299 | unsigned long gps, unsigned long flags) | |
64db4cff PM |
2300 | __releases(rnp->lock) |
2301 | { | |
654e9533 | 2302 | unsigned long oldmask = 0; |
28ecd580 PM |
2303 | struct rcu_node *rnp_c; |
2304 | ||
a32e01ee | 2305 | raw_lockdep_assert_held_rcu_node(rnp); |
c0b334c5 | 2306 | |
64db4cff PM |
2307 | /* Walk up the rcu_node hierarchy. */ |
2308 | for (;;) { | |
ec2c2976 | 2309 | if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { |
64db4cff | 2310 | |
654e9533 PM |
2311 | /* |
2312 | * Our bit has already been cleared, or the | |
2313 | * relevant grace period is already over, so done. | |
2314 | */ | |
67c583a7 | 2315 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
64db4cff PM |
2316 | return; |
2317 | } | |
654e9533 | 2318 | WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ |
5b4c11d5 | 2319 | WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && |
2dee9404 | 2320 | rcu_preempt_blocked_readers_cgp(rnp)); |
7672d647 | 2321 | WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); |
67a0edbf | 2322 | trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, |
d4c08f2a PM |
2323 | mask, rnp->qsmask, rnp->level, |
2324 | rnp->grplo, rnp->grphi, | |
2325 | !!rnp->gp_tasks); | |
27f4d280 | 2326 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { |
64db4cff PM |
2327 | |
2328 | /* Other bits still set at this level, so done. */ | |
67c583a7 | 2329 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
64db4cff PM |
2330 | return; |
2331 | } | |
d43a5d32 | 2332 | rnp->completedqs = rnp->gp_seq; |
64db4cff PM |
2333 | mask = rnp->grpmask; |
2334 | if (rnp->parent == NULL) { | |
2335 | ||
2336 | /* No more levels. Exit loop holding root lock. */ | |
2337 | ||
2338 | break; | |
2339 | } | |
67c583a7 | 2340 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
28ecd580 | 2341 | rnp_c = rnp; |
64db4cff | 2342 | rnp = rnp->parent; |
2a67e741 | 2343 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
0937d045 | 2344 | oldmask = READ_ONCE(rnp_c->qsmask); |
64db4cff PM |
2345 | } |
2346 | ||
2347 | /* | |
2348 | * Get here if we are the last CPU to pass through a quiescent | |
d3f6bad3 | 2349 | * state for this grace period. Invoke rcu_report_qs_rsp() |
f41d911f | 2350 | * to clean up and start the next grace period if one is needed. |
64db4cff | 2351 | */ |
aff4e9ed | 2352 | rcu_report_qs_rsp(flags); /* releases rnp->lock. */ |
64db4cff PM |
2353 | } |
2354 | ||
cc99a310 PM |
2355 | /* |
2356 | * Record a quiescent state for all tasks that were previously queued | |
2357 | * on the specified rcu_node structure and that were blocking the current | |
49918a54 | 2358 | * RCU grace period. The caller must hold the corresponding rnp->lock with |
cc99a310 PM |
2359 | * irqs disabled, and this lock is released upon return, but irqs remain |
2360 | * disabled. | |
2361 | */ | |
17a8212b | 2362 | static void __maybe_unused |
139ad4da | 2363 | rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) |
cc99a310 PM |
2364 | __releases(rnp->lock) |
2365 | { | |
654e9533 | 2366 | unsigned long gps; |
cc99a310 PM |
2367 | unsigned long mask; |
2368 | struct rcu_node *rnp_p; | |
2369 | ||
a32e01ee | 2370 | raw_lockdep_assert_held_rcu_node(rnp); |
c130d2dc | 2371 | if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || |
c74859d1 PM |
2372 | WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || |
2373 | rnp->qsmask != 0) { | |
67c583a7 | 2374 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
cc99a310 PM |
2375 | return; /* Still need more quiescent states! */ |
2376 | } | |
2377 | ||
77cfc7bf | 2378 | rnp->completedqs = rnp->gp_seq; |
cc99a310 PM |
2379 | rnp_p = rnp->parent; |
2380 | if (rnp_p == NULL) { | |
2381 | /* | |
a77da14c PM |
2382 | * Only one rcu_node structure in the tree, so don't |
2383 | * try to report up to its nonexistent parent! | |
cc99a310 | 2384 | */ |
aff4e9ed | 2385 | rcu_report_qs_rsp(flags); |
cc99a310 PM |
2386 | return; |
2387 | } | |
2388 | ||
c9a24e2d PM |
2389 | /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ |
2390 | gps = rnp->gp_seq; | |
cc99a310 | 2391 | mask = rnp->grpmask; |
67c583a7 | 2392 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
2a67e741 | 2393 | raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ |
b50912d0 | 2394 | rcu_report_qs_rnp(mask, rnp_p, gps, flags); |
cc99a310 PM |
2395 | } |
2396 | ||
64db4cff | 2397 | /* |
d3f6bad3 | 2398 | * Record a quiescent state for the specified CPU to that CPU's rcu_data |
4b455dc3 | 2399 | * structure. This must be called from the specified CPU. |
64db4cff PM |
2400 | */ |
2401 | static void | |
cfeac397 | 2402 | rcu_report_qs_rdp(struct rcu_data *rdp) |
64db4cff PM |
2403 | { |
2404 | unsigned long flags; | |
2405 | unsigned long mask; | |
2406 | struct rcu_node *rnp; | |
2407 | ||
cfeac397 | 2408 | WARN_ON_ONCE(rdp->cpu != smp_processor_id()); |
64db4cff | 2409 | rnp = rdp->mynode; |
2a67e741 | 2410 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
c9a24e2d PM |
2411 | if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || |
2412 | rdp->gpwrap) { | |
64db4cff PM |
2413 | |
2414 | /* | |
e4cc1f22 PM |
2415 | * The grace period in which this quiescent state was |
2416 | * recorded has ended, so don't report it upwards. | |
2417 | * We will instead need a new quiescent state that lies | |
2418 | * within the current grace period. | |
64db4cff | 2419 | */ |
5b74c458 | 2420 | rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ |
67c583a7 | 2421 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
64db4cff PM |
2422 | return; |
2423 | } | |
2424 | mask = rdp->grpmask; | |
cfeac397 | 2425 | rdp->core_needs_qs = false; |
64db4cff | 2426 | if ((rnp->qsmask & mask) == 0) { |
67c583a7 | 2427 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
64db4cff | 2428 | } else { |
64db4cff PM |
2429 | /* |
2430 | * This GP can't end until cpu checks in, so all of our | |
2431 | * callbacks can be processed during the next GP. | |
24ee940d | 2432 | * |
b3bb02fe | 2433 | * NOCB kthreads have their own way to deal with that... |
64db4cff | 2434 | */ |
b3bb02fe | 2435 | if (!rcu_rdp_is_offloaded(rdp)) { |
46103fe0 Z |
2436 | /* |
2437 | * The current GP has not yet ended, so it | |
2438 | * should not be possible for rcu_accelerate_cbs() | |
2439 | * to return true. So complain, but don't awaken. | |
2440 | */ | |
2441 | WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); | |
b3bb02fe | 2442 | } |
64db4cff | 2443 | |
516e5ae0 | 2444 | rcu_disable_urgency_upon_qs(rdp); |
b50912d0 | 2445 | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); |
654e9533 | 2446 | /* ^^^ Released rnp->lock */ |
64db4cff PM |
2447 | } |
2448 | } | |
2449 | ||
2450 | /* | |
2451 | * Check to see if there is a new grace period of which this CPU | |
2452 | * is not yet aware, and if so, set up local rcu_data state for it. | |
2453 | * Otherwise, see if this CPU has just passed through its first | |
2454 | * quiescent state for this grace period, and record that fact if so. | |
2455 | */ | |
2456 | static void | |
8087d3e3 | 2457 | rcu_check_quiescent_state(struct rcu_data *rdp) |
64db4cff | 2458 | { |
05eb552b | 2459 | /* Check for grace-period ends and beginnings. */ |
15cabdff | 2460 | note_gp_changes(rdp); |
64db4cff PM |
2461 | |
2462 | /* | |
2463 | * Does this CPU still need to do its part for current grace period? | |
2464 | * If no, return and let the other CPUs do their part as well. | |
2465 | */ | |
97c668b8 | 2466 | if (!rdp->core_needs_qs) |
64db4cff PM |
2467 | return; |
2468 | ||
2469 | /* | |
2470 | * Was there a quiescent state since the beginning of the grace | |
2471 | * period? If no, then exit and wait for the next call. | |
2472 | */ | |
3a19b46a | 2473 | if (rdp->cpu_no_qs.b.norm) |
64db4cff PM |
2474 | return; |
2475 | ||
d3f6bad3 PM |
2476 | /* |
2477 | * Tell RCU we are done (but rcu_report_qs_rdp() will be the | |
2478 | * judge of that). | |
2479 | */ | |
cfeac397 | 2480 | rcu_report_qs_rdp(rdp); |
64db4cff PM |
2481 | } |
2482 | ||
fea1c1f0 | 2483 | /* Return true if callback-invocation time limit exceeded. */ |
f51164a8 PM |
2484 | static bool rcu_do_batch_check_time(long count, long tlimit, |
2485 | bool jlimit_check, unsigned long jlimit) | |
fea1c1f0 PM |
2486 | { |
2487 | // Invoke local_clock() only once per 32 consecutive callbacks. | |
f51164a8 PM |
2488 | return unlikely(tlimit) && |
2489 | (!likely(count & 31) || | |
2490 | (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && | |
2491 | jlimit_check && time_after(jiffies, jlimit))) && | |
2492 | local_clock() >= tlimit; | |
fea1c1f0 PM |
2493 | } |
2494 | ||
64db4cff PM |
2495 | /* |
2496 | * Invoke any RCU callbacks that have made it to the end of their grace | |
a616aec9 | 2497 | * period. Throttle as specified by rdp->blimit. |
64db4cff | 2498 | */ |
5bb5d09c | 2499 | static void rcu_do_batch(struct rcu_data *rdp) |
64db4cff | 2500 | { |
f51164a8 PM |
2501 | long bl; |
2502 | long count = 0; | |
b5374b2d | 2503 | int div; |
b4e6039e | 2504 | bool __maybe_unused empty; |
64db4cff | 2505 | unsigned long flags; |
f51164a8 PM |
2506 | unsigned long jlimit; |
2507 | bool jlimit_check = false; | |
2508 | long pending; | |
15fecf89 | 2509 | struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); |
f51164a8 PM |
2510 | struct rcu_head *rhp; |
2511 | long tlimit = 0; | |
64db4cff | 2512 | |
dc35c893 | 2513 | /* If no callbacks are ready, just return. */ |
15fecf89 | 2514 | if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { |
3c779dfe | 2515 | trace_rcu_batch_start(rcu_state.name, |
15fecf89 | 2516 | rcu_segcblist_n_cbs(&rdp->cblist), 0); |
3c779dfe | 2517 | trace_rcu_batch_end(rcu_state.name, 0, |
15fecf89 | 2518 | !rcu_segcblist_empty(&rdp->cblist), |
4968c300 | 2519 | need_resched(), is_idle_task(current), |
51038506 | 2520 | rcu_is_callbacks_kthread(rdp)); |
64db4cff | 2521 | return; |
29c00b4a | 2522 | } |
64db4cff PM |
2523 | |
2524 | /* | |
7b65dfa3 | 2525 | * Extract the list of ready callbacks, disabling IRQs to prevent |
15fecf89 PM |
2526 | * races with call_rcu() from interrupt handlers. Leave the |
2527 | * callback counts, as rcu_barrier() needs to be conservative. | |
1e8e6951 FW |
2528 | * |
2529 | * Callbacks execution is fully ordered against preceding grace period | |
2530 | * completion (materialized by rnp->gp_seq update) thanks to the | |
2531 | * smp_mb__after_unlock_lock() upon node locking required for callbacks | |
2532 | * advancing. In NOCB mode this ordering is then further relayed through | |
2533 | * the nocb locking that protects both callbacks advancing and extraction. | |
64db4cff | 2534 | */ |
7b65dfa3 | 2535 | rcu_nocb_lock_irqsave(rdp, flags); |
8146c4e2 | 2536 | WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); |
253cbbff | 2537 | pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); |
b5374b2d PM |
2538 | div = READ_ONCE(rcu_divisor); |
2539 | div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; | |
2540 | bl = max(rdp->blimit, pending >> div); | |
fea1c1f0 | 2541 | if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && |
f51164a8 PM |
2542 | (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { |
2543 | const long npj = NSEC_PER_SEC / HZ; | |
a2b354b9 PM |
2544 | long rrn = READ_ONCE(rcu_resched_ns); |
2545 | ||
2546 | rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; | |
2547 | tlimit = local_clock() + rrn; | |
f51164a8 PM |
2548 | jlimit = jiffies + (rrn + npj + 1) / npj; |
2549 | jlimit_check = true; | |
a2b354b9 | 2550 | } |
3c779dfe | 2551 | trace_rcu_batch_start(rcu_state.name, |
15fecf89 PM |
2552 | rcu_segcblist_n_cbs(&rdp->cblist), bl); |
2553 | rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); | |
344e219d | 2554 | if (rcu_rdp_is_offloaded(rdp)) |
7f36ef82 | 2555 | rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); |
3afe7fa5 JFG |
2556 | |
2557 | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); | |
5d6742b3 | 2558 | rcu_nocb_unlock_irqrestore(rdp, flags); |
64db4cff PM |
2559 | |
2560 | /* Invoke callbacks. */ | |
6a949b7a | 2561 | tick_dep_set_task(current, TICK_DEP_BIT_RCU); |
15fecf89 | 2562 | rhp = rcu_cblist_dequeue(&rcl); |
3afe7fa5 | 2563 | |
15fecf89 | 2564 | for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { |
77a40f97 JFG |
2565 | rcu_callback_t f; |
2566 | ||
6bc33582 | 2567 | count++; |
15fecf89 | 2568 | debug_rcu_head_unqueue(rhp); |
77a40f97 JFG |
2569 | |
2570 | rcu_lock_acquire(&rcu_callback_map); | |
2571 | trace_rcu_invoke_callback(rcu_state.name, rhp); | |
2572 | ||
2573 | f = rhp->func; | |
2cbc482d | 2574 | debug_rcu_head_callback(rhp); |
77a40f97 JFG |
2575 | WRITE_ONCE(rhp->func, (rcu_callback_t)0L); |
2576 | f(rhp); | |
2577 | ||
2578 | rcu_lock_release(&rcu_callback_map); | |
2579 | ||
15fecf89 PM |
2580 | /* |
2581 | * Stop only if limit reached and CPU has something to do. | |
15fecf89 | 2582 | */ |
3e61e95e FW |
2583 | if (in_serving_softirq()) { |
2584 | if (count >= bl && (need_resched() || !is_idle_task(current))) | |
2585 | break; | |
a554ba28 FW |
2586 | /* |
2587 | * Make sure we don't spend too much time here and deprive other | |
2588 | * softirq vectors of CPU cycles. | |
2589 | */ | |
f51164a8 | 2590 | if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) |
a554ba28 | 2591 | break; |
3e61e95e | 2592 | } else { |
fea1c1f0 PM |
2593 | // In rcuc/rcuoc context, so no worries about |
2594 | // depriving other softirq vectors of CPU cycles. | |
5d6742b3 PM |
2595 | local_bh_enable(); |
2596 | lockdep_assert_irqs_enabled(); | |
2597 | cond_resched_tasks_rcu_qs(); | |
2598 | lockdep_assert_irqs_enabled(); | |
2599 | local_bh_disable(); | |
fea1c1f0 PM |
2600 | // But rcuc kthreads can delay quiescent-state |
2601 | // reporting, so check time limits for them. | |
2602 | if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && | |
f51164a8 | 2603 | rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { |
fea1c1f0 PM |
2604 | rdp->rcu_cpu_has_work = 1; |
2605 | break; | |
2606 | } | |
5d6742b3 | 2607 | } |
64db4cff PM |
2608 | } |
2609 | ||
7b65dfa3 | 2610 | rcu_nocb_lock_irqsave(rdp, flags); |
e816d56f | 2611 | rdp->n_cbs_invoked += count; |
3c779dfe | 2612 | trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), |
51038506 | 2613 | is_idle_task(current), rcu_is_callbacks_kthread(rdp)); |
64db4cff | 2614 | |
15fecf89 PM |
2615 | /* Update counts and requeue any remaining callbacks. */ |
2616 | rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); | |
6bc33582 | 2617 | rcu_segcblist_add_len(&rdp->cblist, -count); |
64db4cff PM |
2618 | |
2619 | /* Reinstate batch limit if we have worked down the excess. */ | |
15fecf89 | 2620 | count = rcu_segcblist_n_cbs(&rdp->cblist); |
d5a9a8c3 | 2621 | if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) |
64db4cff PM |
2622 | rdp->blimit = blimit; |
2623 | ||
37c72e56 | 2624 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ |
15fecf89 | 2625 | if (count == 0 && rdp->qlen_last_fqs_check != 0) { |
37c72e56 | 2626 | rdp->qlen_last_fqs_check = 0; |
2431774f | 2627 | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); |
15fecf89 PM |
2628 | } else if (count < rdp->qlen_last_fqs_check - qhimark) |
2629 | rdp->qlen_last_fqs_check = count; | |
efd88b02 PM |
2630 | |
2631 | /* | |
2632 | * The following usually indicates a double call_rcu(). To track | |
2633 | * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. | |
2634 | */ | |
b4e6039e JFG |
2635 | empty = rcu_segcblist_empty(&rdp->cblist); |
2636 | WARN_ON_ONCE(count == 0 && !empty); | |
d1b222c6 | 2637 | WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && |
b4e6039e JFG |
2638 | count != 0 && empty); |
2639 | WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); | |
2640 | WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); | |
37c72e56 | 2641 | |
5d6742b3 | 2642 | rcu_nocb_unlock_irqrestore(rdp, flags); |
64db4cff | 2643 | |
6a949b7a | 2644 | tick_dep_clear_task(current, TICK_DEP_BIT_RCU); |
64db4cff PM |
2645 | } |
2646 | ||
2647 | /* | |
c98cac60 PM |
2648 | * This function is invoked from each scheduling-clock interrupt, |
2649 | * and checks to see if this CPU is in a non-context-switch quiescent | |
2650 | * state, for example, user mode or idle loop. It also schedules RCU | |
2651 | * core processing. If the current grace period has gone on too long, | |
2652 | * it will ask the scheduler to manufacture a context switch for the sole | |
277ffe1b | 2653 | * purpose of providing the needed quiescent state. |
64db4cff | 2654 | */ |
c98cac60 | 2655 | void rcu_sched_clock_irq(int user) |
64db4cff | 2656 | { |
c708b08c PM |
2657 | unsigned long j; |
2658 | ||
2659 | if (IS_ENABLED(CONFIG_PROVE_RCU)) { | |
2660 | j = jiffies; | |
2661 | WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); | |
2662 | __this_cpu_write(rcu_data.last_sched_clock, j); | |
2663 | } | |
f7f7bac9 | 2664 | trace_rcu_utilization(TPS("Start scheduler-tick")); |
a649d25d | 2665 | lockdep_assert_irqs_disabled(); |
4e95020c | 2666 | raw_cpu_inc(rcu_data.ticks_this_gp); |
92aa39e9 | 2667 | /* The load-acquire pairs with the store-release setting to true. */ |
2dba13f0 | 2668 | if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { |
92aa39e9 | 2669 | /* Idle and userspace execution already are quiescent states. */ |
a0ef9ec2 | 2670 | if (!rcu_is_cpu_rrupt_from_idle() && !user) { |
92aa39e9 PM |
2671 | set_tsk_need_resched(current); |
2672 | set_preempt_need_resched(); | |
2673 | } | |
2dba13f0 | 2674 | __this_cpu_write(rcu_data.rcu_urgent_qs, false); |
64db4cff | 2675 | } |
c98cac60 | 2676 | rcu_flavor_sched_clock_irq(user); |
dd7dafd1 | 2677 | if (rcu_pending(user)) |
a46e0899 | 2678 | invoke_rcu_core(); |
528262f5 Z |
2679 | if (user || rcu_is_cpu_rrupt_from_idle()) |
2680 | rcu_note_voluntary_context_switch(current); | |
a649d25d | 2681 | lockdep_assert_irqs_disabled(); |
07f27570 | 2682 | |
f7f7bac9 | 2683 | trace_rcu_utilization(TPS("End scheduler-tick")); |
64db4cff PM |
2684 | } |
2685 | ||
64db4cff | 2686 | /* |
5d8a752e ZZ |
2687 | * Scan the leaf rcu_node structures. For each structure on which all |
2688 | * CPUs have reported a quiescent state and on which there are tasks | |
2689 | * blocking the current grace period, initiate RCU priority boosting. | |
2690 | * Otherwise, invoke the specified function to check dyntick state for | |
2691 | * each CPU that has not yet reported a quiescent state. | |
64db4cff | 2692 | */ |
8ff0b907 | 2693 | static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) |
64db4cff | 2694 | { |
64db4cff PM |
2695 | int cpu; |
2696 | unsigned long flags; | |
a0b6c9a7 | 2697 | struct rcu_node *rnp; |
64db4cff | 2698 | |
b2b00ddf PM |
2699 | rcu_state.cbovld = rcu_state.cbovldnext; |
2700 | rcu_state.cbovldnext = false; | |
aedf4ba9 | 2701 | rcu_for_each_leaf_node(rnp) { |
85d68222 PZ |
2702 | unsigned long mask = 0; |
2703 | unsigned long rsmask = 0; | |
2704 | ||
cee43939 | 2705 | cond_resched_tasks_rcu_qs(); |
2a67e741 | 2706 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
b2b00ddf | 2707 | rcu_state.cbovldnext |= !!rnp->cbovldmask; |
a0b6c9a7 | 2708 | if (rnp->qsmask == 0) { |
9b1ce0ac | 2709 | if (rcu_preempt_blocked_readers_cgp(rnp)) { |
a77da14c PM |
2710 | /* |
2711 | * No point in scanning bits because they | |
2712 | * are all zero. But we might need to | |
2713 | * priority-boost blocked readers. | |
2714 | */ | |
2715 | rcu_initiate_boost(rnp, flags); | |
2716 | /* rcu_initiate_boost() releases rnp->lock */ | |
2717 | continue; | |
2718 | } | |
92816435 PM |
2719 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
2720 | continue; | |
64db4cff | 2721 | } |
7441e766 | 2722 | for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { |
85d68222 PZ |
2723 | struct rcu_data *rdp; |
2724 | int ret; | |
2725 | ||
7441e766 | 2726 | rdp = per_cpu_ptr(&rcu_data, cpu); |
85d68222 PZ |
2727 | ret = f(rdp); |
2728 | if (ret > 0) { | |
7441e766 PM |
2729 | mask |= rdp->grpmask; |
2730 | rcu_disable_urgency_upon_qs(rdp); | |
0edd1b17 | 2731 | } |
85d68222 PZ |
2732 | if (ret < 0) |
2733 | rsmask |= rdp->grpmask; | |
64db4cff | 2734 | } |
45f014c5 | 2735 | if (mask != 0) { |
c9a24e2d | 2736 | /* Idle/offline CPUs, report (releases rnp->lock). */ |
b50912d0 | 2737 | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); |
0aa04b05 PM |
2738 | } else { |
2739 | /* Nothing to do here, so just drop the lock. */ | |
67c583a7 | 2740 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
64db4cff | 2741 | } |
85d68222 PZ |
2742 | |
2743 | for_each_leaf_node_cpu_mask(rnp, cpu, rsmask) | |
2744 | resched_cpu(cpu); | |
64db4cff | 2745 | } |
64db4cff PM |
2746 | } |
2747 | ||
2748 | /* | |
2749 | * Force quiescent states on reluctant CPUs, and also detect which | |
2750 | * CPUs are in dyntick-idle mode. | |
2751 | */ | |
cd920e5a | 2752 | void rcu_force_quiescent_state(void) |
64db4cff PM |
2753 | { |
2754 | unsigned long flags; | |
394f2769 PM |
2755 | bool ret; |
2756 | struct rcu_node *rnp; | |
2757 | struct rcu_node *rnp_old = NULL; | |
2758 | ||
dee39c0c Z |
2759 | if (!rcu_gp_in_progress()) |
2760 | return; | |
394f2769 | 2761 | /* Funnel through hierarchy to reduce memory contention. */ |
ceb1c8c9 | 2762 | rnp = raw_cpu_read(rcu_data.mynode); |
394f2769 | 2763 | for (; rnp != NULL; rnp = rnp->parent) { |
67a0edbf | 2764 | ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || |
66e4c33b | 2765 | !raw_spin_trylock(&rnp->fqslock); |
394f2769 PM |
2766 | if (rnp_old != NULL) |
2767 | raw_spin_unlock(&rnp_old->fqslock); | |
d62df573 | 2768 | if (ret) |
394f2769 | 2769 | return; |
394f2769 PM |
2770 | rnp_old = rnp; |
2771 | } | |
336a4f6c | 2772 | /* rnp_old == rcu_get_root(), rnp == NULL. */ |
64db4cff | 2773 | |
394f2769 | 2774 | /* Reached the root of the rcu_node tree, acquire lock. */ |
2a67e741 | 2775 | raw_spin_lock_irqsave_rcu_node(rnp_old, flags); |
394f2769 | 2776 | raw_spin_unlock(&rnp_old->fqslock); |
67a0edbf | 2777 | if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { |
67c583a7 | 2778 | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); |
4cdfc175 | 2779 | return; /* Someone beat us to it. */ |
46a1e34e | 2780 | } |
62bb24c4 | 2781 | WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS); |
67c583a7 | 2782 | raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); |
532c00c9 | 2783 | rcu_gp_kthread_wake(); |
64db4cff | 2784 | } |
cd920e5a | 2785 | EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); |
64db4cff | 2786 | |
a657f261 PM |
2787 | // Workqueue handler for an RCU reader for kernels enforcing struct RCU |
2788 | // grace periods. | |
2789 | static void strict_work_handler(struct work_struct *work) | |
2790 | { | |
2791 | rcu_read_lock(); | |
2792 | rcu_read_unlock(); | |
2793 | } | |
2794 | ||
fb60e533 | 2795 | /* Perform RCU core processing work for the current CPU. */ |
48d07c04 | 2796 | static __latent_entropy void rcu_core(void) |
64db4cff PM |
2797 | { |
2798 | unsigned long flags; | |
da1df50d | 2799 | struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); |
26d950a9 | 2800 | struct rcu_node *rnp = rdp->mynode; |
64db4cff | 2801 | |
b049fdf8 PM |
2802 | if (cpu_is_offline(smp_processor_id())) |
2803 | return; | |
2804 | trace_rcu_utilization(TPS("Start RCU core")); | |
50dc7def | 2805 | WARN_ON_ONCE(!rdp->beenonline); |
2e597558 | 2806 | |
3e310098 | 2807 | /* Report any deferred quiescent states if preemption enabled. */ |
790da248 | 2808 | if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { |
3e310098 | 2809 | rcu_preempt_deferred_qs(current); |
fced9c8c PM |
2810 | } else if (rcu_preempt_need_deferred_qs(current)) { |
2811 | set_tsk_need_resched(current); | |
2812 | set_preempt_need_resched(); | |
2813 | } | |
3e310098 | 2814 | |
64db4cff | 2815 | /* Update RCU state based on any recent quiescent states. */ |
8087d3e3 | 2816 | rcu_check_quiescent_state(rdp); |
64db4cff | 2817 | |
bd7af846 | 2818 | /* No grace period and unregistered callbacks? */ |
de8e8730 | 2819 | if (!rcu_gp_in_progress() && |
df7c249a FW |
2820 | rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) { |
2821 | local_irq_save(flags); | |
e44e73ca | 2822 | if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) |
c6e09b97 | 2823 | rcu_accelerate_cbs_unlocked(rnp, rdp); |
df7c249a | 2824 | local_irq_restore(flags); |
64db4cff PM |
2825 | } |
2826 | ||
791416c4 | 2827 | rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); |
26d950a9 | 2828 | |
64db4cff | 2829 | /* If there are callbacks ready, invoke them. */ |
df7c249a | 2830 | if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) && |
0598a4d4 | 2831 | likely(READ_ONCE(rcu_scheduler_fully_active))) { |
43e903ad | 2832 | rcu_do_batch(rdp); |
0598a4d4 FW |
2833 | /* Re-invoke RCU core processing if there are callbacks remaining. */ |
2834 | if (rcu_segcblist_ready_cbs(&rdp->cblist)) | |
2835 | invoke_rcu_core(); | |
2836 | } | |
96d3fd0d PM |
2837 | |
2838 | /* Do any needed deferred wakeups of rcuo kthreads. */ | |
2839 | do_nocb_deferred_wakeup(rdp); | |
f7f7bac9 | 2840 | trace_rcu_utilization(TPS("End RCU core")); |
a657f261 PM |
2841 | |
2842 | // If strict GPs, schedule an RCU reader in a clean environment. | |
2843 | if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) | |
2844 | queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); | |
64db4cff PM |
2845 | } |
2846 | ||
e68ac2b4 | 2847 | static void rcu_core_si(void) |
48d07c04 SAS |
2848 | { |
2849 | rcu_core(); | |
2850 | } | |
2851 | ||
2852 | static void rcu_wake_cond(struct task_struct *t, int status) | |
2853 | { | |
2854 | /* | |
2855 | * If the thread is yielding, only wake it when this | |
2856 | * is invoked from idle | |
2857 | */ | |
2858 | if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) | |
2859 | wake_up_process(t); | |
2860 | } | |
2861 | ||
2862 | static void invoke_rcu_core_kthread(void) | |
2863 | { | |
2864 | struct task_struct *t; | |
2865 | unsigned long flags; | |
2866 | ||
2867 | local_irq_save(flags); | |
2868 | __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); | |
2869 | t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); | |
2870 | if (t != NULL && t != current) | |
2871 | rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); | |
2872 | local_irq_restore(flags); | |
2873 | } | |
2874 | ||
48d07c04 SAS |
2875 | /* |
2876 | * Wake up this CPU's rcuc kthread to do RCU core processing. | |
2877 | */ | |
a46e0899 | 2878 | static void invoke_rcu_core(void) |
09223371 | 2879 | { |
48d07c04 SAS |
2880 | if (!cpu_online(smp_processor_id())) |
2881 | return; | |
2882 | if (use_softirq) | |
b0f74036 | 2883 | raise_softirq(RCU_SOFTIRQ); |
48d07c04 SAS |
2884 | else |
2885 | invoke_rcu_core_kthread(); | |
2886 | } | |
2887 | ||
2888 | static void rcu_cpu_kthread_park(unsigned int cpu) | |
2889 | { | |
2890 | per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; | |
2891 | } | |
2892 | ||
2893 | static int rcu_cpu_kthread_should_run(unsigned int cpu) | |
2894 | { | |
2895 | return __this_cpu_read(rcu_data.rcu_cpu_has_work); | |
2896 | } | |
2897 | ||
2898 | /* | |
2899 | * Per-CPU kernel thread that invokes RCU callbacks. This replaces | |
2900 | * the RCU softirq used in configurations of RCU that do not support RCU | |
2901 | * priority boosting. | |
2902 | */ | |
2903 | static void rcu_cpu_kthread(unsigned int cpu) | |
2904 | { | |
2905 | unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); | |
2906 | char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); | |
c9515875 | 2907 | unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); |
48d07c04 SAS |
2908 | int spincnt; |
2909 | ||
2488a5e6 | 2910 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); |
48d07c04 | 2911 | for (spincnt = 0; spincnt < 10; spincnt++) { |
c9515875 | 2912 | WRITE_ONCE(*j, jiffies); |
48d07c04 SAS |
2913 | local_bh_disable(); |
2914 | *statusp = RCU_KTHREAD_RUNNING; | |
2915 | local_irq_disable(); | |
2916 | work = *workp; | |
a24c1aab | 2917 | WRITE_ONCE(*workp, 0); |
48d07c04 SAS |
2918 | local_irq_enable(); |
2919 | if (work) | |
2920 | rcu_core(); | |
2921 | local_bh_enable(); | |
a24c1aab | 2922 | if (!READ_ONCE(*workp)) { |
48d07c04 SAS |
2923 | trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); |
2924 | *statusp = RCU_KTHREAD_WAITING; | |
2925 | return; | |
2926 | } | |
2927 | } | |
2928 | *statusp = RCU_KTHREAD_YIELDING; | |
2929 | trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); | |
77865dea | 2930 | schedule_timeout_idle(2); |
48d07c04 SAS |
2931 | trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); |
2932 | *statusp = RCU_KTHREAD_WAITING; | |
c9515875 | 2933 | WRITE_ONCE(*j, jiffies); |
48d07c04 SAS |
2934 | } |
2935 | ||
2936 | static struct smp_hotplug_thread rcu_cpu_thread_spec = { | |
2937 | .store = &rcu_data.rcu_cpu_kthread_task, | |
2938 | .thread_should_run = rcu_cpu_kthread_should_run, | |
2939 | .thread_fn = rcu_cpu_kthread, | |
2940 | .thread_comm = "rcuc/%u", | |
2941 | .setup = rcu_cpu_kthread_setup, | |
2942 | .park = rcu_cpu_kthread_park, | |
2943 | }; | |
2944 | ||
2945 | /* | |
2946 | * Spawn per-CPU RCU core processing kthreads. | |
2947 | */ | |
2948 | static int __init rcu_spawn_core_kthreads(void) | |
2949 | { | |
2950 | int cpu; | |
2951 | ||
2952 | for_each_possible_cpu(cpu) | |
2953 | per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; | |
4b4399b2 | 2954 | if (use_softirq) |
48d07c04 SAS |
2955 | return 0; |
2956 | WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), | |
2957 | "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); | |
2958 | return 0; | |
09223371 SL |
2959 | } |
2960 | ||
afd4e696 FW |
2961 | static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func) |
2962 | { | |
2963 | rcu_segcblist_enqueue(&rdp->cblist, head); | |
7f4b19ef VB |
2964 | trace_rcu_callback(rcu_state.name, head, |
2965 | rcu_segcblist_n_cbs(&rdp->cblist)); | |
afd4e696 FW |
2966 | trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); |
2967 | } | |
2968 | ||
29154c57 PM |
2969 | /* |
2970 | * Handle any core-RCU processing required by a call_rcu() invocation. | |
2971 | */ | |
afd4e696 FW |
2972 | static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, |
2973 | rcu_callback_t func, unsigned long flags) | |
64db4cff | 2974 | { |
afd4e696 | 2975 | rcutree_enqueue(rdp, head, func); |
62fde6ed PM |
2976 | /* |
2977 | * If called from an extended quiescent state, invoke the RCU | |
2978 | * core in order to force a re-evaluation of RCU's idleness. | |
2979 | */ | |
9910affa | 2980 | if (!rcu_is_watching()) |
62fde6ed PM |
2981 | invoke_rcu_core(); |
2982 | ||
a16b7a69 | 2983 | /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ |
29154c57 | 2984 | if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) |
2655d57e | 2985 | return; |
64db4cff | 2986 | |
37c72e56 PM |
2987 | /* |
2988 | * Force the grace period if too many callbacks or too long waiting. | |
cd920e5a | 2989 | * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() |
37c72e56 | 2990 | * if some other CPU has recently done so. Also, don't bother |
cd920e5a | 2991 | * invoking rcu_force_quiescent_state() if the newly enqueued callback |
37c72e56 PM |
2992 | * is the only one waiting for a grace period to complete. |
2993 | */ | |
15fecf89 PM |
2994 | if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > |
2995 | rdp->qlen_last_fqs_check + qhimark)) { | |
b52573d2 PM |
2996 | |
2997 | /* Are we ignoring a completed grace period? */ | |
15cabdff | 2998 | note_gp_changes(rdp); |
b52573d2 PM |
2999 | |
3000 | /* Start a new grace period if one not already started. */ | |
de8e8730 | 3001 | if (!rcu_gp_in_progress()) { |
c6e09b97 | 3002 | rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); |
b52573d2 PM |
3003 | } else { |
3004 | /* Give the grace period a kick. */ | |
d5a9a8c3 | 3005 | rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; |
2431774f | 3006 | if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && |
15fecf89 | 3007 | rcu_segcblist_first_pend_cb(&rdp->cblist) != head) |
cd920e5a | 3008 | rcu_force_quiescent_state(); |
2431774f | 3009 | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); |
15fecf89 | 3010 | rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); |
b52573d2 | 3011 | } |
4cdfc175 | 3012 | } |
29154c57 PM |
3013 | } |
3014 | ||
ae150184 PM |
3015 | /* |
3016 | * RCU callback function to leak a callback. | |
3017 | */ | |
3018 | static void rcu_leak_callback(struct rcu_head *rhp) | |
3019 | { | |
3020 | } | |
3021 | ||
3fbfbf7a | 3022 | /* |
b2b00ddf PM |
3023 | * Check and if necessary update the leaf rcu_node structure's |
3024 | * ->cbovldmask bit corresponding to the current CPU based on that CPU's | |
3025 | * number of queued RCU callbacks. The caller must hold the leaf rcu_node | |
3026 | * structure's ->lock. | |
3fbfbf7a | 3027 | */ |
b2b00ddf PM |
3028 | static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) |
3029 | { | |
3030 | raw_lockdep_assert_held_rcu_node(rnp); | |
3031 | if (qovld_calc <= 0) | |
3032 | return; // Early boot and wildcard value set. | |
3033 | if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) | |
3034 | WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); | |
3035 | else | |
3036 | WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); | |
3037 | } | |
3038 | ||
3039 | /* | |
3040 | * Check and if necessary update the leaf rcu_node structure's | |
3041 | * ->cbovldmask bit corresponding to the current CPU based on that CPU's | |
3042 | * number of queued RCU callbacks. No locks need be held, but the | |
3043 | * caller must have disabled interrupts. | |
3044 | * | |
3045 | * Note that this function ignores the possibility that there are a lot | |
3046 | * of callbacks all of which have already seen the end of their respective | |
3047 | * grace periods. This omission is due to the need for no-CBs CPUs to | |
3048 | * be holding ->nocb_lock to do this check, which is too heavy for a | |
3049 | * common-case operation. | |
3fbfbf7a | 3050 | */ |
b2b00ddf PM |
3051 | static void check_cb_ovld(struct rcu_data *rdp) |
3052 | { | |
3053 | struct rcu_node *const rnp = rdp->mynode; | |
3054 | ||
3055 | if (qovld_calc <= 0 || | |
3056 | ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == | |
3057 | !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) | |
3058 | return; // Early boot wildcard value or already set correctly. | |
3059 | raw_spin_lock_rcu_node(rnp); | |
3060 | check_cb_ovld_locked(rdp, rnp); | |
3061 | raw_spin_unlock_rcu_node(rnp); | |
3062 | } | |
3063 | ||
3cb278e7 | 3064 | static void |
cf7066b9 | 3065 | __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) |
64db4cff | 3066 | { |
b4b7914a | 3067 | static atomic_t doublefrees; |
64db4cff | 3068 | unsigned long flags; |
cf7066b9 | 3069 | bool lazy; |
64db4cff PM |
3070 | struct rcu_data *rdp; |
3071 | ||
b8f2ed53 PM |
3072 | /* Misaligned rcu_head! */ |
3073 | WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); | |
3074 | ||
33b6a1f1 URS |
3075 | /* Avoid NULL dereference if callback is NULL. */ |
3076 | if (WARN_ON_ONCE(!func)) | |
3077 | return; | |
3078 | ||
ae150184 | 3079 | if (debug_rcu_head_queue(head)) { |
fa3c6647 PM |
3080 | /* |
3081 | * Probable double call_rcu(), so leak the callback. | |
3082 | * Use rcu:rcu_callback trace event to find the previous | |
1fe09ebe | 3083 | * time callback was passed to call_rcu(). |
fa3c6647 | 3084 | */ |
b4b7914a PM |
3085 | if (atomic_inc_return(&doublefrees) < 4) { |
3086 | pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); | |
3087 | mem_dump_obj(head); | |
3088 | } | |
7d0ae808 | 3089 | WRITE_ONCE(head->func, rcu_leak_callback); |
ae150184 PM |
3090 | return; |
3091 | } | |
64db4cff PM |
3092 | head->func = func; |
3093 | head->next = NULL; | |
d40797d6 | 3094 | kasan_record_aux_stack(head); |
049dfe96 | 3095 | |
d818cc76 | 3096 | local_irq_save(flags); |
da1df50d | 3097 | rdp = this_cpu_ptr(&rcu_data); |
049dfe96 FW |
3098 | RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!"); |
3099 | ||
cf7066b9 | 3100 | lazy = lazy_in && !rcu_async_should_hurry(); |
64db4cff PM |
3101 | |
3102 | /* Add the callback to our list. */ | |
5d6742b3 PM |
3103 | if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { |
3104 | // This can trigger due to call_rcu() from offline CPU: | |
3105 | WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); | |
34404ca8 | 3106 | WARN_ON_ONCE(!rcu_is_watching()); |
5d6742b3 PM |
3107 | // Very early boot, before rcu_init(). Initialize if needed |
3108 | // and then drop through to queue the callback. | |
15fecf89 PM |
3109 | if (rcu_segcblist_empty(&rdp->cblist)) |
3110 | rcu_segcblist_init(&rdp->cblist); | |
0d8ee37e | 3111 | } |
77a40f97 | 3112 | |
b2b00ddf | 3113 | check_cb_ovld(rdp); |
d4c08f2a | 3114 | |
afd4e696 FW |
3115 | if (unlikely(rcu_rdp_is_offloaded(rdp))) |
3116 | call_rcu_nocb(rdp, head, func, flags, lazy); | |
3117 | else | |
3118 | call_rcu_core(rdp, head, func, flags); | |
b913c3fe | 3119 | local_irq_restore(flags); |
64db4cff | 3120 | } |
64db4cff | 3121 | |
3cb278e7 | 3122 | #ifdef CONFIG_RCU_LAZY |
7f66f099 QY |
3123 | static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF); |
3124 | module_param(enable_rcu_lazy, bool, 0444); | |
3125 | ||
3cb278e7 JFG |
3126 | /** |
3127 | * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and | |
3128 | * flush all lazy callbacks (including the new one) to the main ->cblist while | |
3129 | * doing so. | |
3130 | * | |
3131 | * @head: structure to be used for queueing the RCU updates. | |
3132 | * @func: actual callback function to be invoked after the grace period | |
3133 | * | |
3134 | * The callback function will be invoked some time after a full grace | |
3135 | * period elapses, in other words after all pre-existing RCU read-side | |
3136 | * critical sections have completed. | |
3137 | * | |
3138 | * Use this API instead of call_rcu() if you don't want the callback to be | |
21ef2498 | 3139 | * delayed for very long periods of time, which can happen on systems without |
3cb278e7 JFG |
3140 | * memory pressure and on systems which are lightly loaded or mostly idle. |
3141 | * This function will cause callbacks to be invoked sooner than later at the | |
3142 | * expense of extra power. Other than that, this function is identical to, and | |
3143 | * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory | |
3144 | * ordering and other functionality. | |
3145 | */ | |
3146 | void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) | |
3147 | { | |
4502138a | 3148 | __call_rcu_common(head, func, false); |
3cb278e7 JFG |
3149 | } |
3150 | EXPORT_SYMBOL_GPL(call_rcu_hurry); | |
7f66f099 QY |
3151 | #else |
3152 | #define enable_rcu_lazy false | |
3cb278e7 JFG |
3153 | #endif |
3154 | ||
3155 | /** | |
3156 | * call_rcu() - Queue an RCU callback for invocation after a grace period. | |
3157 | * By default the callbacks are 'lazy' and are kept hidden from the main | |
3158 | * ->cblist to prevent starting of grace periods too soon. | |
3159 | * If you desire grace periods to start very soon, use call_rcu_hurry(). | |
3160 | * | |
3161 | * @head: structure to be used for queueing the RCU updates. | |
3162 | * @func: actual callback function to be invoked after the grace period | |
3163 | * | |
3164 | * The callback function will be invoked some time after a full grace | |
3165 | * period elapses, in other words after all pre-existing RCU read-side | |
3166 | * critical sections have completed. However, the callback function | |
3167 | * might well execute concurrently with RCU read-side critical sections | |
3168 | * that started after call_rcu() was invoked. | |
3169 | * | |
21ef2498 PM |
3170 | * It is perfectly legal to repost an RCU callback, potentially with |
3171 | * a different callback function, from within its callback function. | |
3172 | * The specified function will be invoked after another full grace period | |
3173 | * has elapsed. This use case is similar in form to the common practice | |
3174 | * of reposting a timer from within its own handler. | |
3175 | * | |
3cb278e7 JFG |
3176 | * RCU read-side critical sections are delimited by rcu_read_lock() |
3177 | * and rcu_read_unlock(), and may be nested. In addition, but only in | |
3178 | * v5.0 and later, regions of code across which interrupts, preemption, | |
3179 | * or softirqs have been disabled also serve as RCU read-side critical | |
3180 | * sections. This includes hardware interrupt handlers, softirq handlers, | |
3181 | * and NMI handlers. | |
3182 | * | |
3183 | * Note that all CPUs must agree that the grace period extended beyond | |
3184 | * all pre-existing RCU read-side critical section. On systems with more | |
3185 | * than one CPU, this means that when "func()" is invoked, each CPU is | |
3186 | * guaranteed to have executed a full memory barrier since the end of its | |
3187 | * last RCU read-side critical section whose beginning preceded the call | |
3188 | * to call_rcu(). It also means that each CPU executing an RCU read-side | |
3189 | * critical section that continues beyond the start of "func()" must have | |
3190 | * executed a memory barrier after the call_rcu() but before the beginning | |
3191 | * of that RCU read-side critical section. Note that these guarantees | |
3192 | * include CPUs that are offline, idle, or executing in user mode, as | |
3193 | * well as CPUs that are executing in the kernel. | |
3194 | * | |
3195 | * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the | |
3196 | * resulting RCU callback function "func()", then both CPU A and CPU B are | |
3197 | * guaranteed to execute a full memory barrier during the time interval | |
3198 | * between the call to call_rcu() and the invocation of "func()" -- even | |
3199 | * if CPU A and CPU B are the same CPU (but again only if the system has | |
3200 | * more than one CPU). | |
3201 | * | |
3202 | * Implementation of these memory-ordering guarantees is described here: | |
3203 | * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. | |
053ca725 PM |
3204 | * |
3205 | * Specific to call_rcu() (as opposed to the other call_rcu*() functions), | |
3206 | * in kernels built with CONFIG_RCU_LAZY=y, call_rcu() might delay for many | |
3207 | * seconds before starting the grace period needed by the corresponding | |
3208 | * callback. This delay can significantly improve energy-efficiency | |
3209 | * on low-utilization battery-powered devices. To avoid this delay, | |
3210 | * in latency-sensitive kernel code, use call_rcu_hurry(). | |
3cb278e7 JFG |
3211 | */ |
3212 | void call_rcu(struct rcu_head *head, rcu_callback_t func) | |
3213 | { | |
7f66f099 | 3214 | __call_rcu_common(head, func, enable_rcu_lazy); |
3cb278e7 JFG |
3215 | } |
3216 | EXPORT_SYMBOL_GPL(call_rcu); | |
a35d1690 | 3217 | |
e5bc3af7 PM |
3218 | /* |
3219 | * During early boot, any blocking grace-period wait automatically | |
258f887a | 3220 | * implies a grace period. |
e5bc3af7 | 3221 | * |
258f887a PM |
3222 | * Later on, this could in theory be the case for kernels built with |
3223 | * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this | |
3224 | * is not a common case. Furthermore, this optimization would cause | |
3225 | * the rcu_gp_oldstate structure to expand by 50%, so this potential | |
3226 | * grace-period optimization is ignored once the scheduler is running. | |
e5bc3af7 PM |
3227 | */ |
3228 | static int rcu_blocking_is_gp(void) | |
3229 | { | |
3d1adf7a Z |
3230 | if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { |
3231 | might_sleep(); | |
258f887a | 3232 | return false; |
3d1adf7a | 3233 | } |
258f887a | 3234 | return true; |
e5bc3af7 PM |
3235 | } |
3236 | ||
988f569a URS |
3237 | /* |
3238 | * Helper function for the synchronize_rcu() API. | |
3239 | */ | |
3240 | static void synchronize_rcu_normal(void) | |
3241 | { | |
3242 | struct rcu_synchronize rs; | |
3243 | ||
2053937a URS |
3244 | trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request")); |
3245 | ||
988f569a URS |
3246 | if (!READ_ONCE(rcu_normal_wake_from_gp)) { |
3247 | wait_rcu_gp(call_rcu_hurry); | |
2053937a | 3248 | goto trace_complete_out; |
988f569a URS |
3249 | } |
3250 | ||
3251 | init_rcu_head_on_stack(&rs.head); | |
3252 | init_completion(&rs.completion); | |
3253 | ||
3254 | /* | |
3255 | * This code might be preempted, therefore take a GP | |
3256 | * snapshot before adding a request. | |
3257 | */ | |
3258 | if (IS_ENABLED(CONFIG_PROVE_RCU)) | |
5a562b8b | 3259 | get_state_synchronize_rcu_full(&rs.oldstate); |
988f569a URS |
3260 | |
3261 | rcu_sr_normal_add_req(&rs); | |
3262 | ||
3263 | /* Kick a GP and start waiting. */ | |
3264 | (void) start_poll_synchronize_rcu(); | |
3265 | ||
3266 | /* Now we can wait. */ | |
3267 | wait_for_completion(&rs.completion); | |
3268 | destroy_rcu_head_on_stack(&rs.head); | |
2053937a URS |
3269 | |
3270 | trace_complete_out: | |
3271 | trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete")); | |
988f569a URS |
3272 | } |
3273 | ||
e5bc3af7 PM |
3274 | /** |
3275 | * synchronize_rcu - wait until a grace period has elapsed. | |
3276 | * | |
3277 | * Control will return to the caller some time after a full grace | |
3278 | * period has elapsed, in other words after all currently executing RCU | |
3279 | * read-side critical sections have completed. Note, however, that | |
3280 | * upon return from synchronize_rcu(), the caller might well be executing | |
3281 | * concurrently with new RCU read-side critical sections that began while | |
1893afd6 PM |
3282 | * synchronize_rcu() was waiting. |
3283 | * | |
3284 | * RCU read-side critical sections are delimited by rcu_read_lock() | |
3285 | * and rcu_read_unlock(), and may be nested. In addition, but only in | |
3286 | * v5.0 and later, regions of code across which interrupts, preemption, | |
3287 | * or softirqs have been disabled also serve as RCU read-side critical | |
e5bc3af7 PM |
3288 | * sections. This includes hardware interrupt handlers, softirq handlers, |
3289 | * and NMI handlers. | |
3290 | * | |
3291 | * Note that this guarantee implies further memory-ordering guarantees. | |
3292 | * On systems with more than one CPU, when synchronize_rcu() returns, | |
3293 | * each CPU is guaranteed to have executed a full memory barrier since | |
3294 | * the end of its last RCU read-side critical section whose beginning | |
3295 | * preceded the call to synchronize_rcu(). In addition, each CPU having | |
3296 | * an RCU read-side critical section that extends beyond the return from | |
3297 | * synchronize_rcu() is guaranteed to have executed a full memory barrier | |
3298 | * after the beginning of synchronize_rcu() and before the beginning of | |
3299 | * that RCU read-side critical section. Note that these guarantees include | |
3300 | * CPUs that are offline, idle, or executing in user mode, as well as CPUs | |
3301 | * that are executing in the kernel. | |
3302 | * | |
3303 | * Furthermore, if CPU A invoked synchronize_rcu(), which returned | |
3304 | * to its caller on CPU B, then both CPU A and CPU B are guaranteed | |
3305 | * to have executed a full memory barrier during the execution of | |
3306 | * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but | |
3307 | * again only if the system has more than one CPU). | |
3d3a0d1b PM |
3308 | * |
3309 | * Implementation of these memory-ordering guarantees is described here: | |
3310 | * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. | |
e5bc3af7 PM |
3311 | */ |
3312 | void synchronize_rcu(void) | |
3313 | { | |
910e1209 PM |
3314 | unsigned long flags; |
3315 | struct rcu_node *rnp; | |
3316 | ||
e5bc3af7 PM |
3317 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || |
3318 | lock_is_held(&rcu_lock_map) || | |
3319 | lock_is_held(&rcu_sched_lock_map), | |
3320 | "Illegal synchronize_rcu() in RCU read-side critical section"); | |
910e1209 PM |
3321 | if (!rcu_blocking_is_gp()) { |
3322 | if (rcu_gp_is_expedited()) | |
3323 | synchronize_rcu_expedited(); | |
3324 | else | |
988f569a | 3325 | synchronize_rcu_normal(); |
910e1209 | 3326 | return; |
bf95b2bc | 3327 | } |
910e1209 PM |
3328 | |
3329 | // Context allows vacuous grace periods. | |
3330 | // Note well that this code runs with !PREEMPT && !SMP. | |
3331 | // In addition, all code that advances grace periods runs at | |
3332 | // process level. Therefore, this normal GP overlaps with other | |
3333 | // normal GPs only by being fully nested within them, which allows | |
3334 | // reuse of ->gp_seq_polled_snap. | |
3335 | rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); | |
3336 | rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); | |
3337 | ||
d761de8a PM |
3338 | // Update the normal grace-period counters to record |
3339 | // this grace period, but only those used by the boot CPU. | |
3340 | // The rcu_scheduler_starting() will take care of the rest of | |
3341 | // these counters. | |
910e1209 PM |
3342 | local_irq_save(flags); |
3343 | WARN_ON_ONCE(num_online_cpus() > 1); | |
3344 | rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); | |
d761de8a | 3345 | for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) |
910e1209 PM |
3346 | rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; |
3347 | local_irq_restore(flags); | |
e5bc3af7 PM |
3348 | } |
3349 | EXPORT_SYMBOL_GPL(synchronize_rcu); | |
3350 | ||
91a967fd PM |
3351 | /** |
3352 | * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie | |
3353 | * @rgosp: Place to put state cookie | |
3354 | * | |
3355 | * Stores into @rgosp a value that will always be treated by functions | |
3356 | * like poll_state_synchronize_rcu_full() as a cookie whose grace period | |
3357 | * has already completed. | |
3358 | */ | |
3359 | void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | |
3360 | { | |
3361 | rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; | |
3362 | rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; | |
91a967fd PM |
3363 | } |
3364 | EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); | |
3365 | ||
765a3f4f PM |
3366 | /** |
3367 | * get_state_synchronize_rcu - Snapshot current RCU state | |
3368 | * | |
3369 | * Returns a cookie that is used by a later call to cond_synchronize_rcu() | |
7abb18bd PM |
3370 | * or poll_state_synchronize_rcu() to determine whether or not a full |
3371 | * grace period has elapsed in the meantime. | |
765a3f4f PM |
3372 | */ |
3373 | unsigned long get_state_synchronize_rcu(void) | |
3374 | { | |
3375 | /* | |
3376 | * Any prior manipulation of RCU-protected data must happen | |
e4be81a2 | 3377 | * before the load from ->gp_seq. |
765a3f4f PM |
3378 | */ |
3379 | smp_mb(); /* ^^^ */ | |
bf95b2bc | 3380 | return rcu_seq_snap(&rcu_state.gp_seq_polled); |
765a3f4f PM |
3381 | } |
3382 | EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); | |
3383 | ||
7abb18bd | 3384 | /** |
3fdefca9 PM |
3385 | * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited |
3386 | * @rgosp: location to place combined normal/expedited grace-period state | |
7abb18bd | 3387 | * |
3fdefca9 PM |
3388 | * Places the normal and expedited grace-period states in @rgosp. This |
3389 | * state value can be passed to a later call to cond_synchronize_rcu_full() | |
3390 | * or poll_state_synchronize_rcu_full() to determine whether or not a | |
3391 | * grace period (whether normal or expedited) has elapsed in the meantime. | |
3392 | * The rcu_gp_oldstate structure takes up twice the memory of an unsigned | |
3393 | * long, but is guaranteed to see all grace periods. In contrast, the | |
3394 | * combined state occupies less memory, but can sometimes fail to take | |
3395 | * grace periods into account. | |
7abb18bd | 3396 | * |
3fdefca9 PM |
3397 | * This does not guarantee that the needed grace period will actually |
3398 | * start. | |
7abb18bd | 3399 | */ |
3fdefca9 PM |
3400 | void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) |
3401 | { | |
3fdefca9 PM |
3402 | /* |
3403 | * Any prior manipulation of RCU-protected data must happen | |
3404 | * before the loads from ->gp_seq and ->expedited_sequence. | |
3405 | */ | |
3406 | smp_mb(); /* ^^^ */ | |
85aad7cc PM |
3407 | |
3408 | // Yes, rcu_state.gp_seq, not rnp_root->gp_seq, the latter's use | |
3409 | // in poll_state_synchronize_rcu_full() notwithstanding. Use of | |
3410 | // the latter here would result in too-short grace periods due to | |
3411 | // interactions with newly onlined CPUs. | |
3412 | rgosp->rgos_norm = rcu_seq_snap(&rcu_state.gp_seq); | |
3fdefca9 | 3413 | rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); |
3fdefca9 PM |
3414 | } |
3415 | EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); | |
3416 | ||
76ea3641 PM |
3417 | /* |
3418 | * Helper function for start_poll_synchronize_rcu() and | |
3419 | * start_poll_synchronize_rcu_full(). | |
7abb18bd | 3420 | */ |
76ea3641 | 3421 | static void start_poll_synchronize_rcu_common(void) |
7abb18bd PM |
3422 | { |
3423 | unsigned long flags; | |
7abb18bd PM |
3424 | bool needwake; |
3425 | struct rcu_data *rdp; | |
3426 | struct rcu_node *rnp; | |
3427 | ||
7abb18bd PM |
3428 | local_irq_save(flags); |
3429 | rdp = this_cpu_ptr(&rcu_data); | |
3430 | rnp = rdp->mynode; | |
3431 | raw_spin_lock_rcu_node(rnp); // irqs already disabled. | |
bf95b2bc PM |
3432 | // Note it is possible for a grace period to have elapsed between |
3433 | // the above call to get_state_synchronize_rcu() and the below call | |
3434 | // to rcu_seq_snap. This is OK, the worst that happens is that we | |
3435 | // get a grace period that no one needed. These accesses are ordered | |
3436 | // by smp_mb(), and we are accessing them in the opposite order | |
3437 | // from which they are updated at grace-period start, as required. | |
3438 | needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); | |
7abb18bd PM |
3439 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
3440 | if (needwake) | |
3441 | rcu_gp_kthread_wake(); | |
76ea3641 PM |
3442 | } |
3443 | ||
3444 | /** | |
3445 | * start_poll_synchronize_rcu - Snapshot and start RCU grace period | |
3446 | * | |
3447 | * Returns a cookie that is used by a later call to cond_synchronize_rcu() | |
3448 | * or poll_state_synchronize_rcu() to determine whether or not a full | |
3449 | * grace period has elapsed in the meantime. If the needed grace period | |
3450 | * is not already slated to start, notifies RCU core of the need for that | |
3451 | * grace period. | |
76ea3641 PM |
3452 | */ |
3453 | unsigned long start_poll_synchronize_rcu(void) | |
3454 | { | |
3455 | unsigned long gp_seq = get_state_synchronize_rcu(); | |
3456 | ||
3457 | start_poll_synchronize_rcu_common(); | |
7abb18bd PM |
3458 | return gp_seq; |
3459 | } | |
3460 | EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); | |
3461 | ||
3462 | /** | |
76ea3641 PM |
3463 | * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period |
3464 | * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() | |
7abb18bd | 3465 | * |
76ea3641 PM |
3466 | * Places the normal and expedited grace-period states in *@rgos. This |
3467 | * state value can be passed to a later call to cond_synchronize_rcu_full() | |
3468 | * or poll_state_synchronize_rcu_full() to determine whether or not a | |
3469 | * grace period (whether normal or expedited) has elapsed in the meantime. | |
3470 | * If the needed grace period is not already slated to start, notifies | |
3471 | * RCU core of the need for that grace period. | |
76ea3641 PM |
3472 | */ |
3473 | void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | |
3474 | { | |
3475 | get_state_synchronize_rcu_full(rgosp); | |
3476 | ||
3477 | start_poll_synchronize_rcu_common(); | |
3478 | } | |
3479 | EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); | |
3480 | ||
7abb18bd | 3481 | /** |
91a967fd | 3482 | * poll_state_synchronize_rcu - Has the specified RCU grace period completed? |
3d3a0d1b | 3483 | * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() |
7abb18bd PM |
3484 | * |
3485 | * If a full RCU grace period has elapsed since the earlier call from | |
f21e0143 | 3486 | * which @oldstate was obtained, return @true, otherwise return @false. |
a616aec9 | 3487 | * If @false is returned, it is the caller's responsibility to invoke this |
7abb18bd PM |
3488 | * function later on until it does return @true. Alternatively, the caller |
3489 | * can explicitly wait for a grace period, for example, by passing @oldstate | |
95ff24ee PM |
3490 | * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() |
3491 | * on the one hand or by directly invoking either synchronize_rcu() or | |
3492 | * synchronize_rcu_expedited() on the other. | |
7abb18bd PM |
3493 | * |
3494 | * Yes, this function does not take counter wrap into account. | |
3495 | * But counter wrap is harmless. If the counter wraps, we have waited for | |
2403e804 | 3496 | * more than a billion grace periods (and way more on a 64-bit system!). |
f21e0143 | 3497 | * Those needing to keep old state values for very long time periods |
91a967fd PM |
3498 | * (many hours even on 32-bit systems) should check them occasionally and |
3499 | * either refresh them or set a flag indicating that the grace period has | |
3500 | * completed. Alternatively, they can use get_completed_synchronize_rcu() | |
3501 | * to get a guaranteed-completed grace-period state. | |
3d3a0d1b | 3502 | * |
95ff24ee PM |
3503 | * In addition, because oldstate compresses the grace-period state for |
3504 | * both normal and expedited grace periods into a single unsigned long, | |
3505 | * it can miss a grace period when synchronize_rcu() runs concurrently | |
3506 | * with synchronize_rcu_expedited(). If this is unacceptable, please | |
3507 | * instead use the _full() variant of these polling APIs. | |
3508 | * | |
3d3a0d1b PM |
3509 | * This function provides the same memory-ordering guarantees that |
3510 | * would be provided by a synchronize_rcu() that was invoked at the call | |
3511 | * to the function that provided @oldstate, and that returned at the end | |
3512 | * of this function. | |
7abb18bd PM |
3513 | */ |
3514 | bool poll_state_synchronize_rcu(unsigned long oldstate) | |
3515 | { | |
414c1238 | 3516 | if (oldstate == RCU_GET_STATE_COMPLETED || |
bf95b2bc | 3517 | rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { |
7abb18bd PM |
3518 | smp_mb(); /* Ensure GP ends before subsequent accesses. */ |
3519 | return true; | |
3520 | } | |
3521 | return false; | |
3522 | } | |
3523 | EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); | |
3524 | ||
765a3f4f | 3525 | /** |
91a967fd PM |
3526 | * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? |
3527 | * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() | |
765a3f4f | 3528 | * |
91a967fd PM |
3529 | * If a full RCU grace period has elapsed since the earlier call from |
3530 | * which *rgosp was obtained, return @true, otherwise return @false. | |
3531 | * If @false is returned, it is the caller's responsibility to invoke this | |
3532 | * function later on until it does return @true. Alternatively, the caller | |
3533 | * can explicitly wait for a grace period, for example, by passing @rgosp | |
3534 | * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). | |
3535 | * | |
3536 | * Yes, this function does not take counter wrap into account. | |
3537 | * But counter wrap is harmless. If the counter wraps, we have waited | |
3538 | * for more than a billion grace periods (and way more on a 64-bit | |
3539 | * system!). Those needing to keep rcu_gp_oldstate values for very | |
3540 | * long time periods (many hours even on 32-bit systems) should check | |
3541 | * them occasionally and either refresh them or set a flag indicating | |
3542 | * that the grace period has completed. Alternatively, they can use | |
3543 | * get_completed_synchronize_rcu_full() to get a guaranteed-completed | |
3544 | * grace-period state. | |
765a3f4f | 3545 | * |
91a967fd PM |
3546 | * This function provides the same memory-ordering guarantees that would |
3547 | * be provided by a synchronize_rcu() that was invoked at the call to | |
3548 | * the function that provided @rgosp, and that returned at the end of this | |
3549 | * function. And this guarantee requires that the root rcu_node structure's | |
3550 | * ->gp_seq field be checked instead of that of the rcu_state structure. | |
3551 | * The problem is that the just-ending grace-period's callbacks can be | |
3552 | * invoked between the time that the root rcu_node structure's ->gp_seq | |
3553 | * field is updated and the time that the rcu_state structure's ->gp_seq | |
3554 | * field is updated. Therefore, if a single synchronize_rcu() is to | |
3555 | * cause a subsequent poll_state_synchronize_rcu_full() to return @true, | |
3556 | * then the root rcu_node structure is the one that needs to be polled. | |
3557 | */ | |
3558 | bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | |
3559 | { | |
3560 | struct rcu_node *rnp = rcu_get_root(); | |
3561 | ||
3562 | smp_mb(); // Order against root rcu_node structure grace-period cleanup. | |
3563 | if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || | |
3564 | rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || | |
3565 | rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || | |
7ecef087 | 3566 | rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { |
91a967fd PM |
3567 | smp_mb(); /* Ensure GP ends before subsequent accesses. */ |
3568 | return true; | |
3569 | } | |
3570 | return false; | |
3571 | } | |
3572 | EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); | |
3573 | ||
765a3f4f PM |
3574 | /** |
3575 | * cond_synchronize_rcu - Conditionally wait for an RCU grace period | |
d96c52fe | 3576 | * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() |
765a3f4f PM |
3577 | * |
3578 | * If a full RCU grace period has elapsed since the earlier call to | |
7abb18bd PM |
3579 | * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. |
3580 | * Otherwise, invoke synchronize_rcu() to wait for a full grace period. | |
765a3f4f | 3581 | * |
d96c52fe PM |
3582 | * Yes, this function does not take counter wrap into account. |
3583 | * But counter wrap is harmless. If the counter wraps, we have waited for | |
765a3f4f | 3584 | * more than 2 billion grace periods (and way more on a 64-bit system!), |
d96c52fe | 3585 | * so waiting for a couple of additional grace periods should be just fine. |
3d3a0d1b PM |
3586 | * |
3587 | * This function provides the same memory-ordering guarantees that | |
3588 | * would be provided by a synchronize_rcu() that was invoked at the call | |
d96c52fe | 3589 | * to the function that provided @oldstate and that returned at the end |
3d3a0d1b | 3590 | * of this function. |
765a3f4f PM |
3591 | */ |
3592 | void cond_synchronize_rcu(unsigned long oldstate) | |
3593 | { | |
7abb18bd | 3594 | if (!poll_state_synchronize_rcu(oldstate)) |
765a3f4f PM |
3595 | synchronize_rcu(); |
3596 | } | |
3597 | EXPORT_SYMBOL_GPL(cond_synchronize_rcu); | |
3598 | ||
b6fe4917 PM |
3599 | /** |
3600 | * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period | |
3601 | * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() | |
3602 | * | |
3603 | * If a full RCU grace period has elapsed since the call to | |
3604 | * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), | |
3605 | * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was | |
3606 | * obtained, just return. Otherwise, invoke synchronize_rcu() to wait | |
3607 | * for a full grace period. | |
3608 | * | |
3609 | * Yes, this function does not take counter wrap into account. | |
3610 | * But counter wrap is harmless. If the counter wraps, we have waited for | |
3611 | * more than 2 billion grace periods (and way more on a 64-bit system!), | |
3612 | * so waiting for a couple of additional grace periods should be just fine. | |
3613 | * | |
3614 | * This function provides the same memory-ordering guarantees that | |
3615 | * would be provided by a synchronize_rcu() that was invoked at the call | |
3616 | * to the function that provided @rgosp and that returned at the end of | |
3617 | * this function. | |
3618 | */ | |
3619 | void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) | |
3620 | { | |
3621 | if (!poll_state_synchronize_rcu_full(rgosp)) | |
3622 | synchronize_rcu(); | |
3623 | } | |
3624 | EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); | |
3625 | ||
64db4cff | 3626 | /* |
98ece508 | 3627 | * Check to see if there is any immediate RCU-related work to be done by |
49918a54 PM |
3628 | * the current CPU, returning 1 if so and zero otherwise. The checks are |
3629 | * in order of increasing expense: checks that can be carried out against | |
3630 | * CPU-local state are performed first. However, we must check for CPU | |
3631 | * stalls first, else we might not get a chance. | |
64db4cff | 3632 | */ |
dd7dafd1 | 3633 | static int rcu_pending(int user) |
64db4cff | 3634 | { |
ed93dfc6 | 3635 | bool gp_in_progress; |
98ece508 | 3636 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
2f51f988 PM |
3637 | struct rcu_node *rnp = rdp->mynode; |
3638 | ||
a649d25d PM |
3639 | lockdep_assert_irqs_disabled(); |
3640 | ||
64db4cff | 3641 | /* Check for CPU stalls, if enabled. */ |
ea12ff2b | 3642 | check_cpu_stall(rdp); |
64db4cff | 3643 | |
85f69b32 | 3644 | /* Does this CPU need a deferred NOCB wakeup? */ |
87090516 | 3645 | if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) |
85f69b32 PM |
3646 | return 1; |
3647 | ||
dd7dafd1 | 3648 | /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ |
68d124b0 PM |
3649 | gp_in_progress = rcu_gp_in_progress(); |
3650 | if ((user || rcu_is_cpu_rrupt_from_idle() || | |
3651 | (gp_in_progress && | |
3652 | time_before(jiffies, READ_ONCE(rcu_state.gp_start) + | |
3653 | nohz_full_patience_delay_jiffies))) && | |
3654 | rcu_nohz_full_cpu()) | |
a096932f PM |
3655 | return 0; |
3656 | ||
64db4cff | 3657 | /* Is the RCU core waiting for a quiescent state from this CPU? */ |
ed93dfc6 | 3658 | if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) |
64db4cff PM |
3659 | return 1; |
3660 | ||
3661 | /* Does this CPU have callbacks ready to invoke? */ | |
3820b513 | 3662 | if (!rcu_rdp_is_offloaded(rdp) && |
bd56e0a4 | 3663 | rcu_segcblist_ready_cbs(&rdp->cblist)) |
64db4cff PM |
3664 | return 1; |
3665 | ||
3666 | /* Has RCU gone idle with this CPU needing another grace period? */ | |
ed93dfc6 | 3667 | if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && |
3820b513 | 3668 | !rcu_rdp_is_offloaded(rdp) && |
c1935209 | 3669 | !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) |
64db4cff PM |
3670 | return 1; |
3671 | ||
67e14c1e PM |
3672 | /* Have RCU grace period completed or started? */ |
3673 | if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || | |
01c495f7 | 3674 | unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ |
64db4cff PM |
3675 | return 1; |
3676 | ||
64db4cff PM |
3677 | /* nothing to do */ |
3678 | return 0; | |
3679 | } | |
3680 | ||
a83eff0a | 3681 | /* |
dd46a788 | 3682 | * Helper function for rcu_barrier() tracing. If tracing is disabled, |
a83eff0a PM |
3683 | * the compiler is expected to optimize this away. |
3684 | */ | |
dd46a788 | 3685 | static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) |
a83eff0a | 3686 | { |
8344b871 PM |
3687 | trace_rcu_barrier(rcu_state.name, s, cpu, |
3688 | atomic_read(&rcu_state.barrier_cpu_count), done); | |
a83eff0a PM |
3689 | } |
3690 | ||
b1420f1c | 3691 | /* |
dd46a788 PM |
3692 | * RCU callback function for rcu_barrier(). If we are last, wake |
3693 | * up the task executing rcu_barrier(). | |
aa24f937 PM |
3694 | * |
3695 | * Note that the value of rcu_state.barrier_sequence must be captured | |
3696 | * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, | |
3697 | * other CPUs might count the value down to zero before this CPU gets | |
3698 | * around to invoking rcu_barrier_trace(), which might result in bogus | |
3699 | * data from the next instance of rcu_barrier(). | |
b1420f1c | 3700 | */ |
24ebbca8 | 3701 | static void rcu_barrier_callback(struct rcu_head *rhp) |
d0ec774c | 3702 | { |
aa24f937 PM |
3703 | unsigned long __maybe_unused s = rcu_state.barrier_sequence; |
3704 | ||
0616f7e9 | 3705 | rhp->next = rhp; // Mark the callback as having been invoked. |
ec9f5835 | 3706 | if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { |
aa24f937 | 3707 | rcu_barrier_trace(TPS("LastCB"), -1, s); |
ec9f5835 | 3708 | complete(&rcu_state.barrier_completion); |
a83eff0a | 3709 | } else { |
aa24f937 | 3710 | rcu_barrier_trace(TPS("CB"), -1, s); |
a83eff0a | 3711 | } |
d0ec774c PM |
3712 | } |
3713 | ||
3714 | /* | |
a16578dd | 3715 | * If needed, entrain an rcu_barrier() callback on rdp->cblist. |
d0ec774c | 3716 | */ |
a16578dd | 3717 | static void rcu_barrier_entrain(struct rcu_data *rdp) |
d0ec774c | 3718 | { |
a16578dd PM |
3719 | unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); |
3720 | unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); | |
b8f7aca3 FW |
3721 | bool wake_nocb = false; |
3722 | bool was_alldone = false; | |
d0ec774c | 3723 | |
80b3fd47 | 3724 | lockdep_assert_held(&rcu_state.barrier_lock); |
a16578dd PM |
3725 | if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) |
3726 | return; | |
dd46a788 | 3727 | rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); |
f92c734f PM |
3728 | rdp->barrier_head.func = rcu_barrier_callback; |
3729 | debug_rcu_head_queue(&rdp->barrier_head); | |
5d6742b3 | 3730 | rcu_nocb_lock(rdp); |
b8f7aca3 FW |
3731 | /* |
3732 | * Flush bypass and wakeup rcuog if we add callbacks to an empty regular | |
3733 | * queue. This way we don't wait for bypass timer that can reach seconds | |
3734 | * if it's fully lazy. | |
3735 | */ | |
3736 | was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); | |
3cb278e7 | 3737 | WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); |
b8f7aca3 | 3738 | wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); |
77a40f97 | 3739 | if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { |
ec9f5835 | 3740 | atomic_inc(&rcu_state.barrier_cpu_count); |
f92c734f PM |
3741 | } else { |
3742 | debug_rcu_head_unqueue(&rdp->barrier_head); | |
a16578dd | 3743 | rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); |
f92c734f | 3744 | } |
5d6742b3 | 3745 | rcu_nocb_unlock(rdp); |
b8f7aca3 FW |
3746 | if (wake_nocb) |
3747 | wake_nocb_gp(rdp, false); | |
a16578dd PM |
3748 | smp_store_release(&rdp->barrier_seq_snap, gseq); |
3749 | } | |
3750 | ||
3751 | /* | |
3752 | * Called with preemption disabled, and from cross-cpu IRQ context. | |
3753 | */ | |
3754 | static void rcu_barrier_handler(void *cpu_in) | |
3755 | { | |
3756 | uintptr_t cpu = (uintptr_t)cpu_in; | |
3757 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | |
3758 | ||
3759 | lockdep_assert_irqs_disabled(); | |
3760 | WARN_ON_ONCE(cpu != rdp->cpu); | |
3761 | WARN_ON_ONCE(cpu != smp_processor_id()); | |
80b3fd47 | 3762 | raw_spin_lock(&rcu_state.barrier_lock); |
a16578dd | 3763 | rcu_barrier_entrain(rdp); |
80b3fd47 | 3764 | raw_spin_unlock(&rcu_state.barrier_lock); |
d0ec774c PM |
3765 | } |
3766 | ||
dd46a788 PM |
3767 | /** |
3768 | * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. | |
3769 | * | |
3770 | * Note that this primitive does not necessarily wait for an RCU grace period | |
3771 | * to complete. For example, if there are no RCU callbacks queued anywhere | |
3772 | * in the system, then rcu_barrier() is within its rights to return | |
3773 | * immediately, without waiting for anything, much less an RCU grace period. | |
d0ec774c | 3774 | */ |
dd46a788 | 3775 | void rcu_barrier(void) |
d0ec774c | 3776 | { |
127e2981 | 3777 | uintptr_t cpu; |
a16578dd PM |
3778 | unsigned long flags; |
3779 | unsigned long gseq; | |
b1420f1c | 3780 | struct rcu_data *rdp; |
ec9f5835 | 3781 | unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); |
b1420f1c | 3782 | |
dd46a788 | 3783 | rcu_barrier_trace(TPS("Begin"), -1, s); |
b1420f1c | 3784 | |
e74f4c45 | 3785 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ |
ec9f5835 | 3786 | mutex_lock(&rcu_state.barrier_mutex); |
b1420f1c | 3787 | |
4f525a52 | 3788 | /* Did someone else do our work for us? */ |
ec9f5835 | 3789 | if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { |
0cabb47a | 3790 | rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); |
cf3a9c48 | 3791 | smp_mb(); /* caller's subsequent code after above check. */ |
ec9f5835 | 3792 | mutex_unlock(&rcu_state.barrier_mutex); |
cf3a9c48 PM |
3793 | return; |
3794 | } | |
3795 | ||
4f525a52 | 3796 | /* Mark the start of the barrier operation. */ |
80b3fd47 | 3797 | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); |
ec9f5835 | 3798 | rcu_seq_start(&rcu_state.barrier_sequence); |
a16578dd | 3799 | gseq = rcu_state.barrier_sequence; |
dd46a788 | 3800 | rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); |
b1420f1c | 3801 | |
d0ec774c | 3802 | /* |
127e2981 PM |
3803 | * Initialize the count to two rather than to zero in order |
3804 | * to avoid a too-soon return to zero in case of an immediate | |
3805 | * invocation of the just-enqueued callback (or preemption of | |
3806 | * this task). Exclude CPU-hotplug operations to ensure that no | |
3807 | * offline non-offloaded CPU has callbacks queued. | |
d0ec774c | 3808 | */ |
ec9f5835 | 3809 | init_completion(&rcu_state.barrier_completion); |
127e2981 | 3810 | atomic_set(&rcu_state.barrier_cpu_count, 2); |
80b3fd47 | 3811 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
b1420f1c PM |
3812 | |
3813 | /* | |
1331e7a1 PM |
3814 | * Force each CPU with callbacks to register a new callback. |
3815 | * When that callback is invoked, we will know that all of the | |
3816 | * corresponding CPU's preceding callbacks have been invoked. | |
b1420f1c | 3817 | */ |
3fbfbf7a | 3818 | for_each_possible_cpu(cpu) { |
da1df50d | 3819 | rdp = per_cpu_ptr(&rcu_data, cpu); |
a16578dd PM |
3820 | retry: |
3821 | if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) | |
ce5215c1 | 3822 | continue; |
80b3fd47 | 3823 | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); |
0cabb47a | 3824 | if (!rcu_segcblist_n_cbs(&rdp->cblist)) { |
a16578dd | 3825 | WRITE_ONCE(rdp->barrier_seq_snap, gseq); |
80b3fd47 | 3826 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
0cabb47a | 3827 | rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); |
ce5215c1 | 3828 | continue; |
0cabb47a | 3829 | } |
a16578dd PM |
3830 | if (!rcu_rdp_cpu_online(rdp)) { |
3831 | rcu_barrier_entrain(rdp); | |
3832 | WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); | |
80b3fd47 | 3833 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
0cabb47a | 3834 | rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); |
a16578dd | 3835 | continue; |
b1420f1c | 3836 | } |
80b3fd47 | 3837 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); |
a16578dd PM |
3838 | if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { |
3839 | schedule_timeout_uninterruptible(1); | |
3840 | goto retry; | |
b1420f1c | 3841 | } |
a16578dd PM |
3842 | WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); |
3843 | rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); | |
b1420f1c | 3844 | } |
b1420f1c PM |
3845 | |
3846 | /* | |
3847 | * Now that we have an rcu_barrier_callback() callback on each | |
3848 | * CPU, and thus each counted, remove the initial count. | |
3849 | */ | |
127e2981 | 3850 | if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) |
ec9f5835 | 3851 | complete(&rcu_state.barrier_completion); |
b1420f1c PM |
3852 | |
3853 | /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ | |
ec9f5835 | 3854 | wait_for_completion(&rcu_state.barrier_completion); |
b1420f1c | 3855 | |
4f525a52 | 3856 | /* Mark the end of the barrier operation. */ |
dd46a788 | 3857 | rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); |
ec9f5835 | 3858 | rcu_seq_end(&rcu_state.barrier_sequence); |
a16578dd PM |
3859 | gseq = rcu_state.barrier_sequence; |
3860 | for_each_possible_cpu(cpu) { | |
3861 | rdp = per_cpu_ptr(&rcu_data, cpu); | |
3862 | ||
3863 | WRITE_ONCE(rdp->barrier_seq_snap, gseq); | |
3864 | } | |
4f525a52 | 3865 | |
b1420f1c | 3866 | /* Other rcu_barrier() invocations can now safely proceed. */ |
ec9f5835 | 3867 | mutex_unlock(&rcu_state.barrier_mutex); |
d0ec774c | 3868 | } |
45975c7d | 3869 | EXPORT_SYMBOL_GPL(rcu_barrier); |
d0ec774c | 3870 | |
16128b1f PM |
3871 | static unsigned long rcu_barrier_last_throttle; |
3872 | ||
3873 | /** | |
3874 | * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second | |
3875 | * | |
3876 | * This can be thought of as guard rails around rcu_barrier() that | |
3877 | * permits unrestricted userspace use, at least assuming the hardware's | |
3878 | * try_cmpxchg() is robust. There will be at most one call per second to | |
3879 | * rcu_barrier() system-wide from use of this function, which means that | |
3880 | * callers might needlessly wait a second or three. | |
3881 | * | |
3882 | * This is intended for use by test suites to avoid OOM by flushing RCU | |
3883 | * callbacks from the previous test before starting the next. See the | |
3884 | * rcutree.do_rcu_barrier module parameter for more information. | |
3885 | * | |
3886 | * Why not simply make rcu_barrier() more scalable? That might be | |
3887 | * the eventual endpoint, but let's keep it simple for the time being. | |
3888 | * Note that the module parameter infrastructure serializes calls to a | |
3889 | * given .set() function, but should concurrent .set() invocation ever be | |
3890 | * possible, we are ready! | |
3891 | */ | |
3892 | static void rcu_barrier_throttled(void) | |
3893 | { | |
3894 | unsigned long j = jiffies; | |
3895 | unsigned long old = READ_ONCE(rcu_barrier_last_throttle); | |
3896 | unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); | |
3897 | ||
3898 | while (time_in_range(j, old, old + HZ / 16) || | |
3899 | !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) { | |
3900 | schedule_timeout_idle(HZ / 16); | |
3901 | if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { | |
3902 | smp_mb(); /* caller's subsequent code after above check. */ | |
3903 | return; | |
3904 | } | |
3905 | j = jiffies; | |
3906 | old = READ_ONCE(rcu_barrier_last_throttle); | |
3907 | } | |
3908 | rcu_barrier(); | |
3909 | } | |
3910 | ||
3911 | /* | |
3912 | * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier | |
3913 | * request arrives. We insist on a true value to allow for possible | |
3914 | * future expansion. | |
3915 | */ | |
3916 | static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp) | |
3917 | { | |
3918 | bool b; | |
3919 | int ret; | |
3920 | ||
3921 | if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) | |
3922 | return -EAGAIN; | |
3923 | ret = kstrtobool(val, &b); | |
3924 | if (!ret && b) { | |
3925 | atomic_inc((atomic_t *)kp->arg); | |
3926 | rcu_barrier_throttled(); | |
3927 | atomic_dec((atomic_t *)kp->arg); | |
3928 | } | |
3929 | return ret; | |
3930 | } | |
3931 | ||
3932 | /* | |
3933 | * Output the number of outstanding rcutree.do_rcu_barrier requests. | |
3934 | */ | |
3935 | static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp) | |
3936 | { | |
3937 | return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg)); | |
3938 | } | |
3939 | ||
3940 | static const struct kernel_param_ops do_rcu_barrier_ops = { | |
3941 | .set = param_set_do_rcu_barrier, | |
3942 | .get = param_get_do_rcu_barrier, | |
3943 | }; | |
3944 | static atomic_t do_rcu_barrier; | |
3945 | module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644); | |
3946 | ||
5a04848d PM |
3947 | /* |
3948 | * Compute the mask of online CPUs for the specified rcu_node structure. | |
3949 | * This will not be stable unless the rcu_node structure's ->lock is | |
3950 | * held, but the bit corresponding to the current CPU will be stable | |
3951 | * in most contexts. | |
3952 | */ | |
3953 | static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) | |
3954 | { | |
3955 | return READ_ONCE(rnp->qsmaskinitnext); | |
3956 | } | |
3957 | ||
3958 | /* | |
3959 | * Is the CPU corresponding to the specified rcu_data structure online | |
3960 | * from RCU's perspective? This perspective is given by that structure's | |
3961 | * ->qsmaskinitnext field rather than by the global cpu_online_mask. | |
3962 | */ | |
3963 | static bool rcu_rdp_cpu_online(struct rcu_data *rdp) | |
3964 | { | |
3965 | return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); | |
3966 | } | |
3967 | ||
2be4686d FW |
3968 | bool rcu_cpu_online(int cpu) |
3969 | { | |
3970 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | |
3971 | ||
3972 | return rcu_rdp_cpu_online(rdp); | |
3973 | } | |
3974 | ||
5a04848d PM |
3975 | #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) |
3976 | ||
3977 | /* | |
3978 | * Is the current CPU online as far as RCU is concerned? | |
3979 | * | |
3980 | * Disable preemption to avoid false positives that could otherwise | |
3981 | * happen due to the current CPU number being sampled, this task being | |
3982 | * preempted, its old CPU being taken offline, resuming on some other CPU, | |
3983 | * then determining that its old CPU is now offline. | |
3984 | * | |
3985 | * Disable checking if in an NMI handler because we cannot safely | |
3986 | * report errors from NMI handlers anyway. In addition, it is OK to use | |
3987 | * RCU on an offline processor during initial boot, hence the check for | |
3988 | * rcu_scheduler_fully_active. | |
3989 | */ | |
3990 | bool rcu_lockdep_current_cpu_online(void) | |
3991 | { | |
3992 | struct rcu_data *rdp; | |
3993 | bool ret = false; | |
3994 | ||
3995 | if (in_nmi() || !rcu_scheduler_fully_active) | |
3996 | return true; | |
3997 | preempt_disable_notrace(); | |
3998 | rdp = this_cpu_ptr(&rcu_data); | |
3999 | /* | |
4000 | * Strictly, we care here about the case where the current CPU is | |
448e9f34 | 4001 | * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask |
5a04848d PM |
4002 | * not being up to date. So arch_spin_is_locked() might have a |
4003 | * false positive if it's held by some *other* CPU, but that's | |
4004 | * OK because that just means a false *negative* on the warning. | |
4005 | */ | |
4006 | if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) | |
4007 | ret = true; | |
4008 | preempt_enable_notrace(); | |
4009 | return ret; | |
4010 | } | |
4011 | EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); | |
4012 | ||
4013 | #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ | |
4014 | ||
4015 | // Has rcu_init() been invoked? This is used (for example) to determine | |
4016 | // whether spinlocks may be acquired safely. | |
4017 | static bool rcu_init_invoked(void) | |
4018 | { | |
09e077cf | 4019 | return !!READ_ONCE(rcu_state.n_online_cpus); |
5a04848d PM |
4020 | } |
4021 | ||
5a04848d PM |
4022 | /* |
4023 | * All CPUs for the specified rcu_node structure have gone offline, | |
4024 | * and all tasks that were preempted within an RCU read-side critical | |
4025 | * section while running on one of those CPUs have since exited their RCU | |
4026 | * read-side critical section. Some other CPU is reporting this fact with | |
4027 | * the specified rcu_node structure's ->lock held and interrupts disabled. | |
4028 | * This function therefore goes up the tree of rcu_node structures, | |
4029 | * clearing the corresponding bits in the ->qsmaskinit fields. Note that | |
4030 | * the leaf rcu_node structure's ->qsmaskinit field has already been | |
4031 | * updated. | |
4032 | * | |
4033 | * This function does check that the specified rcu_node structure has | |
4034 | * all CPUs offline and no blocked tasks, so it is OK to invoke it | |
4035 | * prematurely. That said, invoking it after the fact will cost you | |
4036 | * a needless lock acquisition. So once it has done its work, don't | |
4037 | * invoke it again. | |
4038 | */ | |
4039 | static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) | |
4040 | { | |
4041 | long mask; | |
4042 | struct rcu_node *rnp = rnp_leaf; | |
4043 | ||
4044 | raw_lockdep_assert_held_rcu_node(rnp_leaf); | |
4045 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || | |
4046 | WARN_ON_ONCE(rnp_leaf->qsmaskinit) || | |
4047 | WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) | |
4048 | return; | |
4049 | for (;;) { | |
4050 | mask = rnp->grpmask; | |
4051 | rnp = rnp->parent; | |
4052 | if (!rnp) | |
4053 | break; | |
4054 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | |
4055 | rnp->qsmaskinit &= ~mask; | |
4056 | /* Between grace periods, so better already be zero! */ | |
4057 | WARN_ON_ONCE(rnp->qsmask); | |
4058 | if (rnp->qsmaskinit) { | |
4059 | raw_spin_unlock_rcu_node(rnp); | |
4060 | /* irqs remain disabled. */ | |
4061 | return; | |
4062 | } | |
4063 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ | |
4064 | } | |
4065 | } | |
4066 | ||
0aa04b05 PM |
4067 | /* |
4068 | * Propagate ->qsinitmask bits up the rcu_node tree to account for the | |
4069 | * first CPU in a given leaf rcu_node structure coming online. The caller | |
a616aec9 | 4070 | * must hold the corresponding leaf rcu_node ->lock with interrupts |
0aa04b05 PM |
4071 | * disabled. |
4072 | */ | |
4073 | static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) | |
4074 | { | |
4075 | long mask; | |
8d672fa6 | 4076 | long oldmask; |
0aa04b05 PM |
4077 | struct rcu_node *rnp = rnp_leaf; |
4078 | ||
8d672fa6 | 4079 | raw_lockdep_assert_held_rcu_node(rnp_leaf); |
962aff03 | 4080 | WARN_ON_ONCE(rnp->wait_blkd_tasks); |
0aa04b05 PM |
4081 | for (;;) { |
4082 | mask = rnp->grpmask; | |
4083 | rnp = rnp->parent; | |
4084 | if (rnp == NULL) | |
4085 | return; | |
6cf10081 | 4086 | raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ |
8d672fa6 | 4087 | oldmask = rnp->qsmaskinit; |
0aa04b05 | 4088 | rnp->qsmaskinit |= mask; |
67c583a7 | 4089 | raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ |
8d672fa6 PM |
4090 | if (oldmask) |
4091 | return; | |
0aa04b05 PM |
4092 | } |
4093 | } | |
4094 | ||
64db4cff | 4095 | /* |
27569620 | 4096 | * Do boot-time initialization of a CPU's per-CPU RCU data. |
64db4cff | 4097 | */ |
27569620 | 4098 | static void __init |
53b46303 | 4099 | rcu_boot_init_percpu_data(int cpu) |
64db4cff | 4100 | { |
904e600e | 4101 | struct context_tracking *ct = this_cpu_ptr(&context_tracking); |
da1df50d | 4102 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
27569620 PM |
4103 | |
4104 | /* Set up local state, ensuring consistent view of global state. */ | |
bc75e999 | 4105 | rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); |
a657f261 | 4106 | INIT_WORK(&rdp->strict_work, strict_work_handler); |
bf664719 | 4107 | WARN_ON_ONCE(ct->nesting != 1); |
9629936d | 4108 | WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu))); |
a16578dd | 4109 | rdp->barrier_seq_snap = rcu_state.barrier_sequence; |
53b46303 | 4110 | rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; |
ae2b217a | 4111 | rdp->rcu_ofl_gp_state = RCU_GP_CLEANED; |
53b46303 | 4112 | rdp->rcu_onl_gp_seq = rcu_state.gp_seq; |
ae2b217a | 4113 | rdp->rcu_onl_gp_state = RCU_GP_CLEANED; |
c708b08c | 4114 | rdp->last_sched_clock = jiffies; |
27569620 | 4115 | rdp->cpu = cpu; |
3fbfbf7a | 4116 | rcu_boot_init_nocb_percpu_data(rdp); |
27569620 PM |
4117 | } |
4118 | ||
8044c589 FW |
4119 | static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp) |
4120 | { | |
4121 | cpumask_var_t affinity; | |
4122 | int cpu; | |
4123 | ||
4124 | if (!zalloc_cpumask_var(&affinity, GFP_KERNEL)) | |
4125 | return; | |
4126 | ||
4127 | for_each_leaf_node_possible_cpu(rnp, cpu) | |
4128 | cpumask_set_cpu(cpu, affinity); | |
4129 | ||
4130 | kthread_affine_preferred(t, affinity); | |
4131 | ||
4132 | free_cpumask_var(affinity); | |
4133 | } | |
4134 | ||
c19e5d3b | 4135 | struct kthread_worker *rcu_exp_gp_kworker; |
c19e5d3b | 4136 | |
8e5e6215 | 4137 | static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp) |
c19e5d3b | 4138 | { |
8e5e6215 FW |
4139 | struct kthread_worker *kworker; |
4140 | const char *name = "rcu_exp_par_gp_kthread_worker/%d"; | |
c19e5d3b | 4141 | struct sched_param param = { .sched_priority = kthread_prio }; |
8e5e6215 | 4142 | int rnp_index = rnp - rcu_get_root(); |
c19e5d3b | 4143 | |
8e5e6215 FW |
4144 | if (rnp->exp_kworker) |
4145 | return; | |
4146 | ||
4147 | kworker = kthread_create_worker(0, name, rnp_index); | |
4148 | if (IS_ERR_OR_NULL(kworker)) { | |
4149 | pr_err("Failed to create par gp kworker on %d/%d\n", | |
4150 | rnp->grplo, rnp->grphi); | |
c19e5d3b FW |
4151 | return; |
4152 | } | |
8e5e6215 | 4153 | WRITE_ONCE(rnp->exp_kworker, kworker); |
23da2ad6 FW |
4154 | |
4155 | if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) | |
4156 | sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m); | |
c19e5d3b | 4157 | |
8044c589 FW |
4158 | rcu_thread_affine_rnp(kworker->task, rnp); |
4159 | wake_up_process(kworker->task); | |
b67cffcb FW |
4160 | } |
4161 | ||
8e5e6215 FW |
4162 | static void __init rcu_start_exp_gp_kworker(void) |
4163 | { | |
4164 | const char *name = "rcu_exp_gp_kthread_worker"; | |
4165 | struct sched_param param = { .sched_priority = kthread_prio }; | |
4166 | ||
b04e317b | 4167 | rcu_exp_gp_kworker = kthread_run_worker(0, name); |
8e5e6215 FW |
4168 | if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { |
4169 | pr_err("Failed to create %s!\n", name); | |
c19e5d3b FW |
4170 | rcu_exp_gp_kworker = NULL; |
4171 | return; | |
4172 | } | |
c19e5d3b | 4173 | |
23da2ad6 FW |
4174 | if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD)) |
4175 | sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); | |
c19e5d3b | 4176 | } |
c19e5d3b | 4177 | |
8e5e6215 FW |
4178 | static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp) |
4179 | { | |
23da2ad6 | 4180 | if (rcu_scheduler_fully_active) { |
8e5e6215 FW |
4181 | mutex_lock(&rnp->kthread_mutex); |
4182 | rcu_spawn_one_boost_kthread(rnp); | |
4183 | rcu_spawn_exp_par_gp_kworker(rnp); | |
4184 | mutex_unlock(&rnp->kthread_mutex); | |
4185 | } | |
4186 | } | |
4187 | ||
27569620 | 4188 | /* |
53b46303 PM |
4189 | * Invoked early in the CPU-online process, when pretty much all services |
4190 | * are available. The incoming CPU is not present. | |
4191 | * | |
4192 | * Initializes a CPU's per-CPU RCU data. Note that only one online or | |
ff3bb6f4 PM |
4193 | * offline event can be happening at a given time. Note also that we can |
4194 | * accept some slop in the rsp->gp_seq access due to the fact that this | |
e83e73f5 PM |
4195 | * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. |
4196 | * And any offloaded callbacks are being numbered elsewhere. | |
64db4cff | 4197 | */ |
53b46303 | 4198 | int rcutree_prepare_cpu(unsigned int cpu) |
64db4cff PM |
4199 | { |
4200 | unsigned long flags; | |
904e600e | 4201 | struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); |
da1df50d | 4202 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
336a4f6c | 4203 | struct rcu_node *rnp = rcu_get_root(); |
64db4cff PM |
4204 | |
4205 | /* Set up local state, ensuring consistent view of global state. */ | |
6cf10081 | 4206 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
37c72e56 | 4207 | rdp->qlen_last_fqs_check = 0; |
2431774f | 4208 | rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); |
64db4cff | 4209 | rdp->blimit = blimit; |
bf664719 | 4210 | ct->nesting = 1; /* CPU not up, no tearing. */ |
67c583a7 | 4211 | raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ |
ec711bc1 | 4212 | |
126d9d49 | 4213 | /* |
ec711bc1 FW |
4214 | * Only non-NOCB CPUs that didn't have early-boot callbacks need to be |
4215 | * (re-)initialized. | |
126d9d49 | 4216 | */ |
ec711bc1 | 4217 | if (!rcu_segcblist_is_enabled(&rdp->cblist)) |
126d9d49 | 4218 | rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ |
64db4cff | 4219 | |
0aa04b05 PM |
4220 | /* |
4221 | * Add CPU to leaf rcu_node pending-online bitmask. Any needed | |
4222 | * propagation up the rcu_node tree will happen at the beginning | |
4223 | * of the next grace period. | |
4224 | */ | |
64db4cff | 4225 | rnp = rdp->mynode; |
2a67e741 | 4226 | raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ |
8ff37290 PM |
4227 | rdp->gp_seq = READ_ONCE(rnp->gp_seq); |
4228 | rdp->gp_seq_needed = rdp->gp_seq; | |
5b74c458 | 4229 | rdp->cpu_no_qs.b.norm = true; |
97c668b8 | 4230 | rdp->core_needs_qs = false; |
9b9500da | 4231 | rdp->rcu_iw_pending = false; |
7a9f50a0 | 4232 | rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); |
8ff37290 | 4233 | rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; |
53b46303 | 4234 | trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); |
67c583a7 | 4235 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
8e5e6215 | 4236 | rcu_spawn_rnp_kthreads(rnp); |
ad368d15 | 4237 | rcu_spawn_cpu_nocb_kthread(cpu); |
09e077cf | 4238 | ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); |
ed73860c | 4239 | WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); |
4df83742 TG |
4240 | |
4241 | return 0; | |
4242 | } | |
4243 | ||
401b0de3 PM |
4244 | /* |
4245 | * Has the specified (known valid) CPU ever been fully online? | |
4246 | */ | |
4247 | bool rcu_cpu_beenfullyonline(int cpu) | |
4248 | { | |
4249 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | |
4250 | ||
4251 | return smp_load_acquire(&rdp->beenonline); | |
4252 | } | |
4253 | ||
deb34f36 PM |
4254 | /* |
4255 | * Near the end of the CPU-online process. Pretty much all services | |
4256 | * enabled, and the CPU is now very much alive. | |
4257 | */ | |
4df83742 TG |
4258 | int rcutree_online_cpu(unsigned int cpu) |
4259 | { | |
9b9500da PM |
4260 | unsigned long flags; |
4261 | struct rcu_data *rdp; | |
4262 | struct rcu_node *rnp; | |
9b9500da | 4263 | |
b97d23c5 PM |
4264 | rdp = per_cpu_ptr(&rcu_data, cpu); |
4265 | rnp = rdp->mynode; | |
4266 | raw_spin_lock_irqsave_rcu_node(rnp, flags); | |
4267 | rnp->ffmask |= rdp->grpmask; | |
4268 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | |
9b9500da PM |
4269 | if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) |
4270 | return 0; /* Too early in boot for scheduler work. */ | |
4271 | sync_sched_exp_online_cleanup(cpu); | |
96926686 PM |
4272 | |
4273 | // Stop-machine done, so allow nohz_full to disable tick. | |
4274 | tick_dep_clear(TICK_DEP_BIT_RCU); | |
4df83742 TG |
4275 | return 0; |
4276 | } | |
4277 | ||
7ec99de3 PM |
4278 | /* |
4279 | * Mark the specified CPU as being online so that subsequent grace periods | |
4280 | * (both expedited and normal) will wait on it. Note that this means that | |
4281 | * incoming CPUs are not allowed to use RCU read-side critical sections | |
4282 | * until this function is called. Failing to observe this restriction | |
4283 | * will result in lockdep splats. | |
deb34f36 PM |
4284 | * |
4285 | * Note that this function is special in that it is invoked directly | |
4286 | * from the incoming CPU rather than from the cpuhp_step mechanism. | |
4287 | * This is because this function must be invoked at a precise location. | |
15d44dfa | 4288 | * This incoming CPU must not have enabled interrupts yet. |
448e9f34 FW |
4289 | * |
4290 | * This mirrors the effects of rcutree_report_cpu_dead(). | |
7ec99de3 | 4291 | */ |
448e9f34 | 4292 | void rcutree_report_cpu_starting(unsigned int cpu) |
7ec99de3 | 4293 | { |
7ec99de3 PM |
4294 | unsigned long mask; |
4295 | struct rcu_data *rdp; | |
4296 | struct rcu_node *rnp; | |
abfce041 | 4297 | bool newcpu; |
7ec99de3 | 4298 | |
15d44dfa | 4299 | lockdep_assert_irqs_disabled(); |
c0f97f20 PM |
4300 | rdp = per_cpu_ptr(&rcu_data, cpu); |
4301 | if (rdp->cpu_started) | |
f64c6013 | 4302 | return; |
c0f97f20 | 4303 | rdp->cpu_started = true; |
f64c6013 | 4304 | |
b97d23c5 PM |
4305 | rnp = rdp->mynode; |
4306 | mask = rdp->grpmask; | |
82980b16 | 4307 | arch_spin_lock(&rcu_state.ofl_lock); |
654b578e | 4308 | rcu_watching_online(); |
80b3fd47 | 4309 | raw_spin_lock(&rcu_state.barrier_lock); |
82980b16 | 4310 | raw_spin_lock_rcu_node(rnp); |
105abf82 | 4311 | WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); |
80b3fd47 | 4312 | raw_spin_unlock(&rcu_state.barrier_lock); |
abfce041 | 4313 | newcpu = !(rnp->expmaskinitnext & mask); |
b97d23c5 | 4314 | rnp->expmaskinitnext |= mask; |
b97d23c5 | 4315 | /* Allow lockless access for expedited grace periods. */ |
abfce041 | 4316 | smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ |
2f084695 | 4317 | ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); |
b97d23c5 | 4318 | rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ |
eb7a6653 | 4319 | rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); |
ae2b217a | 4320 | rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state); |
9f866dac JFG |
4321 | |
4322 | /* An incoming CPU should never be blocking a grace period. */ | |
4323 | if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ | |
82980b16 | 4324 | /* rcu_report_qs_rnp() *really* wants some flags to restore */ |
15d44dfa | 4325 | unsigned long flags; |
82980b16 | 4326 | |
15d44dfa | 4327 | local_irq_save(flags); |
516e5ae0 | 4328 | rcu_disable_urgency_upon_qs(rdp); |
b97d23c5 | 4329 | /* Report QS -after- changing ->qsmaskinitnext! */ |
15d44dfa | 4330 | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); |
b97d23c5 | 4331 | } else { |
82980b16 | 4332 | raw_spin_unlock_rcu_node(rnp); |
7ec99de3 | 4333 | } |
82980b16 | 4334 | arch_spin_unlock(&rcu_state.ofl_lock); |
401b0de3 | 4335 | smp_store_release(&rdp->beenonline, true); |
313517fc | 4336 | smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ |
7ec99de3 PM |
4337 | } |
4338 | ||
27d50c7e | 4339 | /* |
53b46303 PM |
4340 | * The outgoing function has no further need of RCU, so remove it from |
4341 | * the rcu_node tree's ->qsmaskinitnext bit masks. | |
4342 | * | |
4343 | * Note that this function is special in that it is invoked directly | |
4344 | * from the outgoing CPU rather than from the cpuhp_step mechanism. | |
4345 | * This is because this function must be invoked at a precise location. | |
448e9f34 FW |
4346 | * |
4347 | * This mirrors the effect of rcutree_report_cpu_starting(). | |
27d50c7e | 4348 | */ |
448e9f34 | 4349 | void rcutree_report_cpu_dead(void) |
27d50c7e | 4350 | { |
358662a9 | 4351 | unsigned long flags; |
27d50c7e | 4352 | unsigned long mask; |
c964c1f5 | 4353 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
27d50c7e TG |
4354 | struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ |
4355 | ||
358662a9 FW |
4356 | /* |
4357 | * IRQS must be disabled from now on and until the CPU dies, or an interrupt | |
4358 | * may introduce a new READ-side while it is actually off the QS masks. | |
4359 | */ | |
4360 | lockdep_assert_irqs_disabled(); | |
147c6852 PM |
4361 | // Do any dangling deferred wakeups. |
4362 | do_nocb_deferred_wakeup(rdp); | |
4363 | ||
53b46303 PM |
4364 | rcu_preempt_deferred_qs(current); |
4365 | ||
27d50c7e TG |
4366 | /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ |
4367 | mask = rdp->grpmask; | |
82980b16 | 4368 | arch_spin_lock(&rcu_state.ofl_lock); |
27d50c7e | 4369 | raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ |
53b46303 | 4370 | rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); |
ae2b217a | 4371 | rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state); |
fece2776 PM |
4372 | if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ |
4373 | /* Report quiescent state -before- changing ->qsmaskinitnext! */ | |
e2bb1288 | 4374 | rcu_disable_urgency_upon_qs(rdp); |
b50912d0 | 4375 | rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); |
fece2776 PM |
4376 | raw_spin_lock_irqsave_rcu_node(rnp, flags); |
4377 | } | |
105abf82 | 4378 | WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); |
710d60cb | 4379 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
82980b16 | 4380 | arch_spin_unlock(&rcu_state.ofl_lock); |
c0f97f20 | 4381 | rdp->cpu_started = false; |
27d50c7e | 4382 | } |
a58163d8 | 4383 | |
04e613de | 4384 | #ifdef CONFIG_HOTPLUG_CPU |
53b46303 PM |
4385 | /* |
4386 | * The outgoing CPU has just passed through the dying-idle state, and we | |
4387 | * are being invoked from the CPU that was IPIed to continue the offline | |
4388 | * operation. Migrate the outgoing CPU's callbacks to the current CPU. | |
4389 | */ | |
4390 | void rcutree_migrate_callbacks(int cpu) | |
a58163d8 PM |
4391 | { |
4392 | unsigned long flags; | |
b1a2d79f | 4393 | struct rcu_data *my_rdp; |
c00045be | 4394 | struct rcu_node *my_rnp; |
da1df50d | 4395 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); |
ec4eacce | 4396 | bool needwake; |
a58163d8 | 4397 | |
55d4669e FW |
4398 | if (rcu_rdp_is_offloaded(rdp)) |
4399 | return; | |
95335c03 | 4400 | |
80b3fd47 | 4401 | raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); |
55d4669e FW |
4402 | if (rcu_segcblist_empty(&rdp->cblist)) { |
4403 | raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); | |
4404 | return; /* No callbacks to migrate. */ | |
4405 | } | |
4406 | ||
a16578dd PM |
4407 | WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); |
4408 | rcu_barrier_entrain(rdp); | |
da1df50d | 4409 | my_rdp = this_cpu_ptr(&rcu_data); |
c00045be | 4410 | my_rnp = my_rdp->mynode; |
5d6742b3 | 4411 | rcu_nocb_lock(my_rdp); /* irqs already disabled. */ |
3cb278e7 | 4412 | WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); |
c00045be | 4413 | raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ |
ec4eacce | 4414 | /* Leverage recent GPs and set GP for new callbacks. */ |
c00045be PM |
4415 | needwake = rcu_advance_cbs(my_rnp, rdp) || |
4416 | rcu_advance_cbs(my_rnp, my_rdp); | |
f2dbe4a5 | 4417 | rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); |
80b3fd47 | 4418 | raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ |
23651d9b | 4419 | needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); |
c035280f | 4420 | rcu_segcblist_disable(&rdp->cblist); |
a16578dd | 4421 | WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); |
52c1d81e | 4422 | check_cb_ovld_locked(my_rdp, my_rnp); |
3820b513 | 4423 | if (rcu_rdp_is_offloaded(my_rdp)) { |
5d6742b3 PM |
4424 | raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ |
4425 | __call_rcu_nocb_wake(my_rdp, true, flags); | |
4426 | } else { | |
4427 | rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ | |
b913c3fe | 4428 | raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ |
5d6742b3 | 4429 | } |
b913c3fe | 4430 | local_irq_restore(flags); |
ec4eacce | 4431 | if (needwake) |
532c00c9 | 4432 | rcu_gp_kthread_wake(); |
5d6742b3 | 4433 | lockdep_assert_irqs_enabled(); |
a58163d8 PM |
4434 | WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || |
4435 | !rcu_segcblist_empty(&rdp->cblist), | |
4436 | "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", | |
4437 | cpu, rcu_segcblist_n_cbs(&rdp->cblist), | |
4438 | rcu_segcblist_first_cb(&rdp->cblist)); | |
4439 | } | |
2cb1f6e9 FW |
4440 | |
4441 | /* | |
4442 | * The CPU has been completely removed, and some other CPU is reporting | |
4443 | * this fact from process context. Do the remainder of the cleanup. | |
4444 | * There can only be one CPU hotplug operation at a time, so no need for | |
4445 | * explicit locking. | |
4446 | */ | |
4447 | int rcutree_dead_cpu(unsigned int cpu) | |
4448 | { | |
09e077cf | 4449 | ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus); |
2cb1f6e9 FW |
4450 | WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); |
4451 | // Stop-machine done, so allow nohz_full to disable tick. | |
4452 | tick_dep_clear(TICK_DEP_BIT_RCU); | |
4453 | return 0; | |
4454 | } | |
4455 | ||
4456 | /* | |
4457 | * Near the end of the offline process. Trace the fact that this CPU | |
4458 | * is going offline. | |
4459 | */ | |
4460 | int rcutree_dying_cpu(unsigned int cpu) | |
4461 | { | |
4462 | bool blkd; | |
4463 | struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | |
4464 | struct rcu_node *rnp = rdp->mynode; | |
4465 | ||
4466 | blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); | |
4467 | trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), | |
4468 | blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); | |
4469 | return 0; | |
4470 | } | |
4471 | ||
4472 | /* | |
4473 | * Near the beginning of the process. The CPU is still very much alive | |
4474 | * with pretty much all services enabled. | |
4475 | */ | |
4476 | int rcutree_offline_cpu(unsigned int cpu) | |
4477 | { | |
4478 | unsigned long flags; | |
4479 | struct rcu_data *rdp; | |
4480 | struct rcu_node *rnp; | |
4481 | ||
4482 | rdp = per_cpu_ptr(&rcu_data, cpu); | |
4483 | rnp = rdp->mynode; | |
4484 | raw_spin_lock_irqsave_rcu_node(rnp, flags); | |
4485 | rnp->ffmask &= ~rdp->grpmask; | |
4486 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | |
4487 | ||
2cb1f6e9 FW |
4488 | // nohz_full CPUs need the tick for stop-machine to work quickly |
4489 | tick_dep_set(TICK_DEP_BIT_RCU); | |
4490 | return 0; | |
4491 | } | |
4492 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | |
27d50c7e | 4493 | |
deb34f36 PM |
4494 | /* |
4495 | * On non-huge systems, use expedited RCU grace periods to make suspend | |
4496 | * and hibernation run faster. | |
4497 | */ | |
d1d74d14 BP |
4498 | static int rcu_pm_notify(struct notifier_block *self, |
4499 | unsigned long action, void *hcpu) | |
4500 | { | |
4501 | switch (action) { | |
4502 | case PM_HIBERNATION_PREPARE: | |
4503 | case PM_SUSPEND_PREPARE: | |
6efdda8b | 4504 | rcu_async_hurry(); |
e85e6a21 | 4505 | rcu_expedite_gp(); |
d1d74d14 BP |
4506 | break; |
4507 | case PM_POST_HIBERNATION: | |
4508 | case PM_POST_SUSPEND: | |
e85e6a21 | 4509 | rcu_unexpedite_gp(); |
6efdda8b | 4510 | rcu_async_relax(); |
d1d74d14 BP |
4511 | break; |
4512 | default: | |
4513 | break; | |
4514 | } | |
4515 | return NOTIFY_OK; | |
4516 | } | |
4517 | ||
b3dbec76 | 4518 | /* |
49918a54 | 4519 | * Spawn the kthreads that handle RCU's grace periods. |
b3dbec76 PM |
4520 | */ |
4521 | static int __init rcu_spawn_gp_kthread(void) | |
4522 | { | |
4523 | unsigned long flags; | |
4524 | struct rcu_node *rnp; | |
a94844b2 | 4525 | struct sched_param sp; |
b3dbec76 | 4526 | struct task_struct *t; |
3352911f | 4527 | struct rcu_data *rdp = this_cpu_ptr(&rcu_data); |
b3dbec76 | 4528 | |
9386c0b7 | 4529 | rcu_scheduler_fully_active = 1; |
b97d23c5 | 4530 | t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); |
08543bda PM |
4531 | if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) |
4532 | return 0; | |
b97d23c5 PM |
4533 | if (kthread_prio) { |
4534 | sp.sched_priority = kthread_prio; | |
4535 | sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | |
b3dbec76 | 4536 | } |
b97d23c5 PM |
4537 | rnp = rcu_get_root(); |
4538 | raw_spin_lock_irqsave_rcu_node(rnp, flags); | |
5648d659 PM |
4539 | WRITE_ONCE(rcu_state.gp_activity, jiffies); |
4540 | WRITE_ONCE(rcu_state.gp_req_activity, jiffies); | |
4541 | // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. | |
4542 | smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ | |
b97d23c5 PM |
4543 | raw_spin_unlock_irqrestore_rcu_node(rnp, flags); |
4544 | wake_up_process(t); | |
3352911f FW |
4545 | /* This is a pre-SMP initcall, we expect a single CPU */ |
4546 | WARN_ON(num_online_cpus() > 1); | |
87c5adf0 FW |
4547 | /* |
4548 | * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() | |
4549 | * due to rcu_scheduler_fully_active. | |
4550 | */ | |
4551 | rcu_spawn_cpu_nocb_kthread(smp_processor_id()); | |
8e5e6215 | 4552 | rcu_spawn_rnp_kthreads(rdp->mynode); |
8e4b1d2b | 4553 | rcu_spawn_core_kthreads(); |
9621fbee | 4554 | /* Create kthread worker for expedited GPs */ |
8e5e6215 | 4555 | rcu_start_exp_gp_kworker(); |
b3dbec76 PM |
4556 | return 0; |
4557 | } | |
4558 | early_initcall(rcu_spawn_gp_kthread); | |
4559 | ||
bbad9379 | 4560 | /* |
52d7e48b PM |
4561 | * This function is invoked towards the end of the scheduler's |
4562 | * initialization process. Before this is called, the idle task might | |
4563 | * contain synchronous grace-period primitives (during which time, this idle | |
4564 | * task is booting the system, and such primitives are no-ops). After this | |
4565 | * function is called, any synchronous grace-period primitives are run as | |
4566 | * expedited, with the requesting task driving the grace period forward. | |
900b1028 | 4567 | * A later core_initcall() rcu_set_runtime_mode() will switch to full |
52d7e48b | 4568 | * runtime RCU functionality. |
bbad9379 PM |
4569 | */ |
4570 | void rcu_scheduler_starting(void) | |
4571 | { | |
d761de8a PM |
4572 | unsigned long flags; |
4573 | struct rcu_node *rnp; | |
4574 | ||
bbad9379 PM |
4575 | WARN_ON(num_online_cpus() != 1); |
4576 | WARN_ON(nr_context_switches() > 0); | |
52d7e48b | 4577 | rcu_test_sync_prims(); |
d761de8a PM |
4578 | |
4579 | // Fix up the ->gp_seq counters. | |
4580 | local_irq_save(flags); | |
4581 | rcu_for_each_node_breadth_first(rnp) | |
4582 | rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; | |
4583 | local_irq_restore(flags); | |
4584 | ||
4585 | // Switch out of early boot mode. | |
52d7e48b PM |
4586 | rcu_scheduler_active = RCU_SCHEDULER_INIT; |
4587 | rcu_test_sync_prims(); | |
bbad9379 PM |
4588 | } |
4589 | ||
64db4cff | 4590 | /* |
49918a54 | 4591 | * Helper function for rcu_init() that initializes the rcu_state structure. |
64db4cff | 4592 | */ |
b8bb1f63 | 4593 | static void __init rcu_init_one(void) |
64db4cff | 4594 | { |
cb007102 AG |
4595 | static const char * const buf[] = RCU_NODE_NAME_INIT; |
4596 | static const char * const fqs[] = RCU_FQS_NAME_INIT; | |
3dc5dbe9 PM |
4597 | static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; |
4598 | static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; | |
199977bf | 4599 | |
199977bf | 4600 | int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ |
64db4cff PM |
4601 | int cpustride = 1; |
4602 | int i; | |
4603 | int j; | |
4604 | struct rcu_node *rnp; | |
4605 | ||
05b84aec | 4606 | BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ |
b6407e86 | 4607 | |
3eaaaf6c PM |
4608 | /* Silence gcc 4.8 false positive about array index out of range. */ |
4609 | if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) | |
4610 | panic("rcu_init_one: rcu_num_lvls out of range"); | |
4930521a | 4611 | |
64db4cff PM |
4612 | /* Initialize the level-tracking arrays. */ |
4613 | ||
f885b7f2 | 4614 | for (i = 1; i < rcu_num_lvls; i++) |
eb7a6653 PM |
4615 | rcu_state.level[i] = |
4616 | rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; | |
41f5c631 | 4617 | rcu_init_levelspread(levelspread, num_rcu_lvl); |
64db4cff PM |
4618 | |
4619 | /* Initialize the elements themselves, starting from the leaves. */ | |
4620 | ||
f885b7f2 | 4621 | for (i = rcu_num_lvls - 1; i >= 0; i--) { |
199977bf | 4622 | cpustride *= levelspread[i]; |
eb7a6653 | 4623 | rnp = rcu_state.level[i]; |
41f5c631 | 4624 | for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { |
67c583a7 BF |
4625 | raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); |
4626 | lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), | |
b6407e86 | 4627 | &rcu_node_class[i], buf[i]); |
394f2769 PM |
4628 | raw_spin_lock_init(&rnp->fqslock); |
4629 | lockdep_set_class_and_name(&rnp->fqslock, | |
4630 | &rcu_fqs_class[i], fqs[i]); | |
eb7a6653 PM |
4631 | rnp->gp_seq = rcu_state.gp_seq; |
4632 | rnp->gp_seq_needed = rcu_state.gp_seq; | |
4633 | rnp->completedqs = rcu_state.gp_seq; | |
64db4cff PM |
4634 | rnp->qsmask = 0; |
4635 | rnp->qsmaskinit = 0; | |
4636 | rnp->grplo = j * cpustride; | |
4637 | rnp->grphi = (j + 1) * cpustride - 1; | |
595f3900 HS |
4638 | if (rnp->grphi >= nr_cpu_ids) |
4639 | rnp->grphi = nr_cpu_ids - 1; | |
64db4cff PM |
4640 | if (i == 0) { |
4641 | rnp->grpnum = 0; | |
4642 | rnp->grpmask = 0; | |
4643 | rnp->parent = NULL; | |
4644 | } else { | |
199977bf | 4645 | rnp->grpnum = j % levelspread[i - 1]; |
df63fa5b | 4646 | rnp->grpmask = BIT(rnp->grpnum); |
eb7a6653 | 4647 | rnp->parent = rcu_state.level[i - 1] + |
199977bf | 4648 | j / levelspread[i - 1]; |
64db4cff PM |
4649 | } |
4650 | rnp->level = i; | |
12f5f524 | 4651 | INIT_LIST_HEAD(&rnp->blkd_tasks); |
dae6e64d | 4652 | rcu_init_one_nocb(rnp); |
f6a12f34 PM |
4653 | init_waitqueue_head(&rnp->exp_wq[0]); |
4654 | init_waitqueue_head(&rnp->exp_wq[1]); | |
3b5f668e PM |
4655 | init_waitqueue_head(&rnp->exp_wq[2]); |
4656 | init_waitqueue_head(&rnp->exp_wq[3]); | |
f6a12f34 | 4657 | spin_lock_init(&rnp->exp_lock); |
7836b270 | 4658 | mutex_init(&rnp->kthread_mutex); |
d96c52fe PM |
4659 | raw_spin_lock_init(&rnp->exp_poll_lock); |
4660 | rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; | |
4661 | INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); | |
64db4cff PM |
4662 | } |
4663 | } | |
0c34029a | 4664 | |
eb7a6653 PM |
4665 | init_swait_queue_head(&rcu_state.gp_wq); |
4666 | init_swait_queue_head(&rcu_state.expedited_wq); | |
aedf4ba9 | 4667 | rnp = rcu_first_leaf_node(); |
0c34029a | 4668 | for_each_possible_cpu(i) { |
4a90a068 | 4669 | while (i > rnp->grphi) |
0c34029a | 4670 | rnp++; |
da1df50d | 4671 | per_cpu_ptr(&rcu_data, i)->mynode = rnp; |
0616f7e9 PM |
4672 | per_cpu_ptr(&rcu_data, i)->barrier_head.next = |
4673 | &per_cpu_ptr(&rcu_data, i)->barrier_head; | |
53b46303 | 4674 | rcu_boot_init_percpu_data(i); |
0c34029a | 4675 | } |
64db4cff PM |
4676 | } |
4677 | ||
c8db27dd AC |
4678 | /* |
4679 | * Force priority from the kernel command-line into range. | |
4680 | */ | |
4681 | static void __init sanitize_kthread_prio(void) | |
4682 | { | |
4683 | int kthread_prio_in = kthread_prio; | |
4684 | ||
4685 | if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 | |
4686 | && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) | |
4687 | kthread_prio = 2; | |
4688 | else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) | |
4689 | kthread_prio = 1; | |
4690 | else if (kthread_prio < 0) | |
4691 | kthread_prio = 0; | |
4692 | else if (kthread_prio > 99) | |
4693 | kthread_prio = 99; | |
4694 | ||
4695 | if (kthread_prio != kthread_prio_in) | |
4696 | pr_alert("%s: Limited prio to %d from %d\n", | |
4697 | __func__, kthread_prio, kthread_prio_in); | |
4698 | } | |
4699 | ||
f885b7f2 PM |
4700 | /* |
4701 | * Compute the rcu_node tree geometry from kernel parameters. This cannot | |
4102adab | 4702 | * replace the definitions in tree.h because those are needed to size |
f885b7f2 PM |
4703 | * the ->node array in the rcu_state structure. |
4704 | */ | |
b5befe84 | 4705 | void rcu_init_geometry(void) |
f885b7f2 | 4706 | { |
026ad283 | 4707 | ulong d; |
f885b7f2 | 4708 | int i; |
b5befe84 | 4709 | static unsigned long old_nr_cpu_ids; |
05b84aec | 4710 | int rcu_capacity[RCU_NUM_LVLS]; |
b5befe84 FW |
4711 | static bool initialized; |
4712 | ||
4713 | if (initialized) { | |
4714 | /* | |
4715 | * Warn if setup_nr_cpu_ids() had not yet been invoked, | |
4716 | * unless nr_cpus_ids == NR_CPUS, in which case who cares? | |
4717 | */ | |
4718 | WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); | |
4719 | return; | |
4720 | } | |
4721 | ||
4722 | old_nr_cpu_ids = nr_cpu_ids; | |
4723 | initialized = true; | |
f885b7f2 | 4724 | |
026ad283 PM |
4725 | /* |
4726 | * Initialize any unspecified boot parameters. | |
4727 | * The default values of jiffies_till_first_fqs and | |
4728 | * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS | |
4729 | * value, which is a function of HZ, then adding one for each | |
4730 | * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. | |
4731 | */ | |
4732 | d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; | |
4733 | if (jiffies_till_first_fqs == ULONG_MAX) | |
4734 | jiffies_till_first_fqs = d; | |
4735 | if (jiffies_till_next_fqs == ULONG_MAX) | |
4736 | jiffies_till_next_fqs = d; | |
6973032a | 4737 | adjust_jiffies_till_sched_qs(); |
026ad283 | 4738 | |
f885b7f2 | 4739 | /* If the compile-time values are accurate, just leave. */ |
47d631af | 4740 | if (rcu_fanout_leaf == RCU_FANOUT_LEAF && |
b17c7035 | 4741 | nr_cpu_ids == NR_CPUS) |
f885b7f2 | 4742 | return; |
a7538352 | 4743 | pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", |
39479098 | 4744 | rcu_fanout_leaf, nr_cpu_ids); |
f885b7f2 | 4745 | |
f885b7f2 | 4746 | /* |
ee968ac6 PM |
4747 | * The boot-time rcu_fanout_leaf parameter must be at least two |
4748 | * and cannot exceed the number of bits in the rcu_node masks. | |
4749 | * Complain and fall back to the compile-time values if this | |
4750 | * limit is exceeded. | |
f885b7f2 | 4751 | */ |
5d2501f4 | 4752 | if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) { |
13bd6494 | 4753 | rcu_fanout_leaf = RCU_FANOUT_LEAF; |
f885b7f2 PM |
4754 | WARN_ON(1); |
4755 | return; | |
4756 | } | |
4757 | ||
f885b7f2 PM |
4758 | /* |
4759 | * Compute number of nodes that can be handled an rcu_node tree | |
9618138b | 4760 | * with the given number of levels. |
f885b7f2 | 4761 | */ |
9618138b | 4762 | rcu_capacity[0] = rcu_fanout_leaf; |
05b84aec | 4763 | for (i = 1; i < RCU_NUM_LVLS; i++) |
05c5df31 | 4764 | rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; |
f885b7f2 PM |
4765 | |
4766 | /* | |
75cf15a4 | 4767 | * The tree must be able to accommodate the configured number of CPUs. |
ee968ac6 | 4768 | * If this limit is exceeded, fall back to the compile-time values. |
f885b7f2 | 4769 | */ |
ee968ac6 PM |
4770 | if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { |
4771 | rcu_fanout_leaf = RCU_FANOUT_LEAF; | |
4772 | WARN_ON(1); | |
4773 | return; | |
4774 | } | |
f885b7f2 | 4775 | |
679f9858 | 4776 | /* Calculate the number of levels in the tree. */ |
9618138b | 4777 | for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { |
679f9858 | 4778 | } |
9618138b | 4779 | rcu_num_lvls = i + 1; |
679f9858 | 4780 | |
f885b7f2 | 4781 | /* Calculate the number of rcu_nodes at each level of the tree. */ |
679f9858 | 4782 | for (i = 0; i < rcu_num_lvls; i++) { |
9618138b | 4783 | int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; |
679f9858 AG |
4784 | num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); |
4785 | } | |
f885b7f2 PM |
4786 | |
4787 | /* Calculate the total number of rcu_node structures. */ | |
4788 | rcu_num_nodes = 0; | |
679f9858 | 4789 | for (i = 0; i < rcu_num_lvls; i++) |
f885b7f2 | 4790 | rcu_num_nodes += num_rcu_lvl[i]; |
f885b7f2 PM |
4791 | } |
4792 | ||
a3dc2948 PM |
4793 | /* |
4794 | * Dump out the structure of the rcu_node combining tree associated | |
49918a54 | 4795 | * with the rcu_state structure. |
a3dc2948 | 4796 | */ |
b8bb1f63 | 4797 | static void __init rcu_dump_rcu_node_tree(void) |
a3dc2948 PM |
4798 | { |
4799 | int level = 0; | |
4800 | struct rcu_node *rnp; | |
4801 | ||
4802 | pr_info("rcu_node tree layout dump\n"); | |
4803 | pr_info(" "); | |
aedf4ba9 | 4804 | rcu_for_each_node_breadth_first(rnp) { |
a3dc2948 PM |
4805 | if (rnp->level != level) { |
4806 | pr_cont("\n"); | |
4807 | pr_info(" "); | |
4808 | level = rnp->level; | |
4809 | } | |
4810 | pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); | |
4811 | } | |
4812 | pr_cont("\n"); | |
4813 | } | |
4814 | ||
ad7c946b PM |
4815 | struct workqueue_struct *rcu_gp_wq; |
4816 | ||
9f680ab4 | 4817 | void __init rcu_init(void) |
64db4cff | 4818 | { |
2eed973a | 4819 | int cpu = smp_processor_id(); |
9f680ab4 | 4820 | |
47627678 PM |
4821 | rcu_early_boot_tests(); |
4822 | ||
f41d911f | 4823 | rcu_bootup_announce(); |
c8db27dd | 4824 | sanitize_kthread_prio(); |
f885b7f2 | 4825 | rcu_init_geometry(); |
b8bb1f63 | 4826 | rcu_init_one(); |
a3dc2948 | 4827 | if (dump_tree) |
b8bb1f63 | 4828 | rcu_dump_rcu_node_tree(); |
48d07c04 SAS |
4829 | if (use_softirq) |
4830 | open_softirq(RCU_SOFTIRQ, rcu_core_si); | |
9f680ab4 PM |
4831 | |
4832 | /* | |
4833 | * We don't need protection against CPU-hotplug here because | |
4834 | * this is called early in boot, before either interrupts | |
4835 | * or the scheduler are operational. | |
4836 | */ | |
d1d74d14 | 4837 | pm_notifier(rcu_pm_notify, 0); |
2eed973a FW |
4838 | WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. |
4839 | rcutree_prepare_cpu(cpu); | |
448e9f34 | 4840 | rcutree_report_cpu_starting(cpu); |
2eed973a | 4841 | rcutree_online_cpu(cpu); |
ad7c946b | 4842 | |
277ffe1b | 4843 | /* Create workqueue for Tree SRCU and for expedited GPs. */ |
ad7c946b PM |
4844 | rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); |
4845 | WARN_ON(!rcu_gp_wq); | |
b2b00ddf | 4846 | |
0fd210ba URS |
4847 | sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0); |
4848 | WARN_ON(!sync_wq); | |
4849 | ||
b2b00ddf PM |
4850 | /* Fill in default value for rcutree.qovld boot parameter. */ |
4851 | /* -After- the rcu_node ->lock fields are initialized! */ | |
4852 | if (qovld < 0) | |
4853 | qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; | |
4854 | else | |
4855 | qovld_calc = qovld; | |
d96c52fe | 4856 | |
7ea91307 Z |
4857 | // Kick-start in case any polled grace periods started early. |
4858 | (void)start_poll_synchronize_rcu_expedited(); | |
748bf47a PM |
4859 | |
4860 | rcu_test_sync_prims(); | |
30ef0963 PM |
4861 | |
4862 | tasks_cblist_init_generic(); | |
64db4cff PM |
4863 | } |
4864 | ||
10462d6f | 4865 | #include "tree_stall.h" |
3549c2bc | 4866 | #include "tree_exp.h" |
dfcb2754 | 4867 | #include "tree_nocb.h" |
4102adab | 4868 | #include "tree_plugin.h" |