rcu: Fold rcu_eqs_exit_common() into rcu_eqs_exit()
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7be7f0be 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 101 .name = RCU_STATE_NAME(sname), \
a4889858 102 .abbr = sabbr, \
f6a12f34 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 105}
64db4cff 106
a41bfeb2
SRRH
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 109
b28a7c01 110static struct rcu_state *const rcu_state_p;
6ce75a23 111LIST_HEAD(rcu_struct_flavors);
27f4d280 112
a3dc2948
PM
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
7fa27001
PM
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 121module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 123/* Number of rcu_nodes at specified level. */
e95d68d2 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 128
b0d30417 129/*
52d7e48b
PM
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 134 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
0aa04b05
PM
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
3549c2bc 165static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 166
a94844b2 167/* rcuc/rcub kthread realtime priority */
26730f55 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
169module_param(kthread_prio, int, 0644);
170
8d7dc928 171/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 172
90040c9e
PM
173static int gp_preinit_delay;
174module_param(gp_preinit_delay, int, 0444);
175static int gp_init_delay;
176module_param(gp_init_delay, int, 0444);
177static int gp_cleanup_delay;
178module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 179
eab128e8
PM
180/*
181 * Number of grace periods between delays, normalized by the duration of
bfd090be 182 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
188 */
189#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 190
4a298656
PM
191/*
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
199 */
200unsigned long rcutorture_testseq;
201unsigned long rcutorture_vernum;
202
0aa04b05
PM
203/*
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
208 */
209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210{
7d0ae808 211 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
212}
213
fc2219d4 214/*
7d0ae808 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
218 */
219static int rcu_gp_in_progress(struct rcu_state *rsp)
220{
7d0ae808 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
222}
223
b1f77b05 224/*
d6714c22 225 * Note a quiescent state. Because we do not need to know
b1f77b05 226 * how many quiescent states passed, just if there was at least
d6714c22 227 * one since the start of the grace period, this just sets a flag.
e4cc1f22 228 * The caller must have disabled preemption.
b1f77b05 229 */
284a8c93 230void rcu_sched_qs(void)
b1f77b05 231{
f4687d26 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
46a5d164
PM
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
244}
245
284a8c93 246void rcu_bh_qs(void)
b1f77b05 247{
f4687d26 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
5b74c458 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 254 }
b1f77b05 255}
64db4cff 256
b8c17e66
PM
257/*
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
260 */
261#define RCU_DYNTICK_CTRL_MASK 0x1
262#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263#ifndef rcu_eqs_special_exit
264#define rcu_eqs_special_exit() do { } while (0)
265#endif
4a81e832
PM
266
267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
51a1fd30 268 .dynticks_nesting = 1,
58721f5d 269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
b8c17e66 270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
271};
272
2625d469
PM
273/*
274 * Record entry into an extended quiescent state. This is only to be
275 * called when not already in an extended quiescent state.
276 */
277static void rcu_dynticks_eqs_enter(void)
278{
279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 280 int seq;
2625d469
PM
281
282 /*
b8c17e66 283 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
284 * critical sections, and we also must force ordering with the
285 * next idle sojourn.
286 */
b8c17e66
PM
287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
288 /* Better be in an extended quiescent state! */
289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
290 (seq & RCU_DYNTICK_CTRL_CTR));
291 /* Better not have special action (TLB flush) pending! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
294}
295
296/*
297 * Record exit from an extended quiescent state. This is only to be
298 * called from an extended quiescent state.
299 */
300static void rcu_dynticks_eqs_exit(void)
301{
302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 303 int seq;
2625d469
PM
304
305 /*
b8c17e66 306 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
307 * and we also must force ordering with the next RCU read-side
308 * critical section.
309 */
b8c17e66
PM
310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
312 !(seq & RCU_DYNTICK_CTRL_CTR));
313 if (seq & RCU_DYNTICK_CTRL_MASK) {
314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
315 smp_mb__after_atomic(); /* _exit after clearing mask. */
316 /* Prefer duplicate flushes to losing a flush. */
317 rcu_eqs_special_exit();
318 }
2625d469
PM
319}
320
321/*
322 * Reset the current CPU's ->dynticks counter to indicate that the
323 * newly onlined CPU is no longer in an extended quiescent state.
324 * This will either leave the counter unchanged, or increment it
325 * to the next non-quiescent value.
326 *
327 * The non-atomic test/increment sequence works because the upper bits
328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
329 * or when the corresponding CPU is offline.
330 */
331static void rcu_dynticks_eqs_online(void)
332{
333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
334
b8c17e66 335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 336 return;
b8c17e66 337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
338}
339
02a5c550
PM
340/*
341 * Is the current CPU in an extended quiescent state?
342 *
343 * No ordering, as we are sampling CPU-local information.
344 */
345bool rcu_dynticks_curr_cpu_in_eqs(void)
346{
347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
348
b8c17e66 349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
350}
351
8b2f63ab
PM
352/*
353 * Snapshot the ->dynticks counter with full ordering so as to allow
354 * stable comparison of this counter with past and future snapshots.
355 */
02a5c550 356int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
357{
358 int snap = atomic_add_return(0, &rdtp->dynticks);
359
b8c17e66 360 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
361}
362
02a5c550
PM
363/*
364 * Return true if the snapshot returned from rcu_dynticks_snap()
365 * indicates that RCU is in an extended quiescent state.
366 */
367static bool rcu_dynticks_in_eqs(int snap)
368{
b8c17e66 369 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
370}
371
372/*
373 * Return true if the CPU corresponding to the specified rcu_dynticks
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
376 */
377static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
378{
379 return snap != rcu_dynticks_snap(rdtp);
380}
381
6563de9d
PM
382/*
383 * Do a double-increment of the ->dynticks counter to emulate a
384 * momentary idle-CPU quiescent state.
385 */
386static void rcu_dynticks_momentary_idle(void)
387{
388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
390 &rdtp->dynticks);
6563de9d
PM
391
392 /* It is illegal to call this from idle state. */
b8c17e66 393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
394}
395
b8c17e66
PM
396/*
397 * Set the special (bottom) bit of the specified CPU so that it
398 * will take special action (such as flushing its TLB) on the
399 * next exit from an extended quiescent state. Returns true if
400 * the bit was successfully set, or false if the CPU was not in
401 * an extended quiescent state.
402 */
403bool rcu_eqs_special_set(int cpu)
404{
405 int old;
406 int new;
407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
408
409 do {
410 old = atomic_read(&rdtp->dynticks);
411 if (old & RCU_DYNTICK_CTRL_CTR)
412 return false;
413 new = old | RCU_DYNTICK_CTRL_MASK;
414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
415 return true;
6563de9d 416}
5cd37193 417
4a81e832
PM
418/*
419 * Let the RCU core know that this CPU has gone through the scheduler,
420 * which is a quiescent state. This is called when the need for a
421 * quiescent state is urgent, so we burn an atomic operation and full
422 * memory barriers to let the RCU core know about it, regardless of what
423 * this CPU might (or might not) do in the near future.
424 *
0f9be8ca 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
426 *
427 * The caller must have disabled interrupts.
4a81e832
PM
428 */
429static void rcu_momentary_dyntick_idle(void)
430{
0f9be8ca
PM
431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
432 rcu_dynticks_momentary_idle();
4a81e832
PM
433}
434
25502a6c
PM
435/*
436 * Note a context switch. This is a quiescent state for RCU-sched,
437 * and requires special handling for preemptible RCU.
46a5d164 438 * The caller must have disabled interrupts.
25502a6c 439 */
bcbfdd01 440void rcu_note_context_switch(bool preempt)
25502a6c 441{
bb73c52b 442 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 443 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 444 rcu_sched_qs();
5b72f964 445 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
446 /* Load rcu_urgent_qs before other flags. */
447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
448 goto out;
449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 451 rcu_momentary_dyntick_idle();
9226b10d 452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
453 if (!preempt)
454 rcu_note_voluntary_context_switch_lite(current);
9226b10d 455out:
f7f7bac9 456 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 457 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 458}
29ce8310 459EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 460
5cd37193 461/*
1925d196 462 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 465 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
466 * be none of them). Either way, do a lightweight quiescent state for
467 * all RCU flavors.
bb73c52b
BF
468 *
469 * The barrier() calls are redundant in the common case when this is
470 * called externally, but just in case this is called from within this
471 * file.
472 *
5cd37193
PM
473 */
474void rcu_all_qs(void)
475{
46a5d164
PM
476 unsigned long flags;
477
9226b10d
PM
478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
479 return;
480 preempt_disable();
481 /* Load rcu_urgent_qs before other flags. */
482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
483 preempt_enable();
484 return;
485 }
486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 487 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 489 local_irq_save(flags);
5cd37193 490 rcu_momentary_dyntick_idle();
46a5d164
PM
491 local_irq_restore(flags);
492 }
9226b10d 493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 494 rcu_sched_qs();
9577df9a 495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 496 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 497 preempt_enable();
5cd37193
PM
498}
499EXPORT_SYMBOL_GPL(rcu_all_qs);
500
17c7798b
PM
501#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
502static long blimit = DEFAULT_RCU_BLIMIT;
503#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504static long qhimark = DEFAULT_RCU_QHIMARK;
505#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
506static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 507
878d7439
ED
508module_param(blimit, long, 0444);
509module_param(qhimark, long, 0444);
510module_param(qlowmark, long, 0444);
3d76c082 511
026ad283
PM
512static ulong jiffies_till_first_fqs = ULONG_MAX;
513static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 514static bool rcu_kick_kthreads;
d40011f6
PM
515
516module_param(jiffies_till_first_fqs, ulong, 0644);
517module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 518module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 519
4a81e832
PM
520/*
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
523 */
f79c3ad6
PM
524static ulong jiffies_till_sched_qs = HZ / 10;
525module_param(jiffies_till_sched_qs, ulong, 0444);
4a81e832 526
48a7639c 527static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 528 struct rcu_data *rdp);
fe5ac724 529static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 530static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 531static int rcu_pending(void);
64db4cff
PM
532
533/*
917963d0 534 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 535 */
917963d0
PM
536unsigned long rcu_batches_started(void)
537{
538 return rcu_state_p->gpnum;
539}
540EXPORT_SYMBOL_GPL(rcu_batches_started);
541
542/*
543 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 544 */
917963d0
PM
545unsigned long rcu_batches_started_sched(void)
546{
547 return rcu_sched_state.gpnum;
548}
549EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
550
551/*
552 * Return the number of RCU BH batches started thus far for debug & stats.
553 */
554unsigned long rcu_batches_started_bh(void)
555{
556 return rcu_bh_state.gpnum;
557}
558EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
559
560/*
561 * Return the number of RCU batches completed thus far for debug & stats.
562 */
563unsigned long rcu_batches_completed(void)
564{
565 return rcu_state_p->completed;
566}
567EXPORT_SYMBOL_GPL(rcu_batches_completed);
568
569/*
570 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 571 */
9733e4f0 572unsigned long rcu_batches_completed_sched(void)
64db4cff 573{
d6714c22 574 return rcu_sched_state.completed;
64db4cff 575}
d6714c22 576EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
577
578/*
917963d0 579 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 580 */
9733e4f0 581unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
582{
583 return rcu_bh_state.completed;
584}
585EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
586
291783b8
PM
587/*
588 * Return the number of RCU expedited batches completed thus far for
589 * debug & stats. Odd numbers mean that a batch is in progress, even
590 * numbers mean idle. The value returned will thus be roughly double
591 * the cumulative batches since boot.
592 */
593unsigned long rcu_exp_batches_completed(void)
594{
595 return rcu_state_p->expedited_sequence;
596}
597EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
598
599/*
600 * Return the number of RCU-sched expedited batches completed thus far
601 * for debug & stats. Similar to rcu_exp_batches_completed().
602 */
603unsigned long rcu_exp_batches_completed_sched(void)
604{
605 return rcu_sched_state.expedited_sequence;
606}
607EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
608
a381d757
ACB
609/*
610 * Force a quiescent state.
611 */
612void rcu_force_quiescent_state(void)
613{
e534165b 614 force_quiescent_state(rcu_state_p);
a381d757
ACB
615}
616EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
617
bf66f18e
PM
618/*
619 * Force a quiescent state for RCU BH.
620 */
621void rcu_bh_force_quiescent_state(void)
622{
4cdfc175 623 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
624}
625EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
626
e7580f33
PM
627/*
628 * Force a quiescent state for RCU-sched.
629 */
630void rcu_sched_force_quiescent_state(void)
631{
632 force_quiescent_state(&rcu_sched_state);
633}
634EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
635
afea227f
PM
636/*
637 * Show the state of the grace-period kthreads.
638 */
639void show_rcu_gp_kthreads(void)
640{
641 struct rcu_state *rsp;
642
643 for_each_rcu_flavor(rsp) {
644 pr_info("%s: wait state: %d ->state: %#lx\n",
645 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
646 /* sched_show_task(rsp->gp_kthread); */
647 }
648}
649EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
650
4a298656
PM
651/*
652 * Record the number of times rcutorture tests have been initiated and
653 * terminated. This information allows the debugfs tracing stats to be
654 * correlated to the rcutorture messages, even when the rcutorture module
655 * is being repeatedly loaded and unloaded. In other words, we cannot
656 * store this state in rcutorture itself.
657 */
658void rcutorture_record_test_transition(void)
659{
660 rcutorture_testseq++;
661 rcutorture_vernum = 0;
662}
663EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
664
ad0dc7f9
PM
665/*
666 * Send along grace-period-related data for rcutorture diagnostics.
667 */
668void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 unsigned long *gpnum, unsigned long *completed)
670{
671 struct rcu_state *rsp = NULL;
672
673 switch (test_type) {
674 case RCU_FLAVOR:
e534165b 675 rsp = rcu_state_p;
ad0dc7f9
PM
676 break;
677 case RCU_BH_FLAVOR:
678 rsp = &rcu_bh_state;
679 break;
680 case RCU_SCHED_FLAVOR:
681 rsp = &rcu_sched_state;
682 break;
683 default:
684 break;
685 }
7f6733c3 686 if (rsp == NULL)
ad0dc7f9 687 return;
7f6733c3
PM
688 *flags = READ_ONCE(rsp->gp_flags);
689 *gpnum = READ_ONCE(rsp->gpnum);
690 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
691}
692EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
693
4a298656
PM
694/*
695 * Record the number of writer passes through the current rcutorture test.
696 * This is also used to correlate debugfs tracing stats with the rcutorture
697 * messages.
698 */
699void rcutorture_record_progress(unsigned long vernum)
700{
701 rcutorture_vernum++;
702}
703EXPORT_SYMBOL_GPL(rcutorture_record_progress);
704
365187fb
PM
705/*
706 * Return the root node of the specified rcu_state structure.
707 */
708static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
709{
710 return &rsp->node[0];
711}
712
713/*
714 * Is there any need for future grace periods?
715 * Interrupts must be disabled. If the caller does not hold the root
716 * rnp_node structure's ->lock, the results are advisory only.
717 */
718static int rcu_future_needs_gp(struct rcu_state *rsp)
719{
720 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 721 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
722 int *fp = &rnp->need_future_gp[idx];
723
b04db8e1 724 lockdep_assert_irqs_disabled();
7d0ae808 725 return READ_ONCE(*fp);
365187fb
PM
726}
727
64db4cff 728/*
dc35c893
PM
729 * Does the current CPU require a not-yet-started grace period?
730 * The caller must have disabled interrupts to prevent races with
731 * normal callback registry.
64db4cff 732 */
d117c8aa 733static bool
64db4cff
PM
734cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
735{
b04db8e1 736 lockdep_assert_irqs_disabled();
dc35c893 737 if (rcu_gp_in_progress(rsp))
d117c8aa 738 return false; /* No, a grace period is already in progress. */
365187fb 739 if (rcu_future_needs_gp(rsp))
d117c8aa 740 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 741 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 742 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 743 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 744 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
745 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
746 READ_ONCE(rsp->completed)))
747 return true; /* Yes, CBs for future grace period. */
d117c8aa 748 return false; /* No grace period needed. */
64db4cff
PM
749}
750
9b2e4f18 751/*
215bba9f
PM
752 * Enter an RCU extended quiescent state, which can be either the
753 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 754 *
215bba9f
PM
755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
756 * the possibility of usermode upcalls having messed up our count
757 * of interrupt nesting level during the prior busy period.
9b2e4f18 758 */
215bba9f 759static void rcu_eqs_enter(bool user)
9b2e4f18 760{
96d3fd0d
PM
761 struct rcu_state *rsp;
762 struct rcu_data *rdp;
215bba9f
PM
763 struct rcu_dynticks *rdtp;
764
765 rdtp = this_cpu_ptr(&rcu_dynticks);
766 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
767 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
768 rdtp->dynticks_nesting == 0);
769 if (rdtp->dynticks_nesting != 1) {
770 rdtp->dynticks_nesting--;
771 return;
772 }
96d3fd0d 773
b04db8e1 774 lockdep_assert_irqs_disabled();
dec98900 775 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
1ce46ee5
PM
776 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
777 !user && !is_idle_task(current)) {
289828e6
PM
778 struct task_struct *idle __maybe_unused =
779 idle_task(smp_processor_id());
0989cb46 780
dec98900 781 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
274529ba 782 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
783 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
784 current->pid, current->comm,
785 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 786 }
96d3fd0d
PM
787 for_each_rcu_flavor(rsp) {
788 rdp = this_cpu_ptr(rsp->rda);
789 do_nocb_deferred_wakeup(rdp);
790 }
198bbf81 791 rcu_prepare_for_idle();
2342172f 792 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 793 rcu_dynticks_eqs_enter();
176f8f7a 794 rcu_dynticks_task_enter();
9b2e4f18 795}
64db4cff 796
adf5091e
FW
797/**
798 * rcu_idle_enter - inform RCU that current CPU is entering idle
799 *
800 * Enter idle mode, in other words, -leave- the mode in which RCU
801 * read-side critical sections can occur. (Though RCU read-side
802 * critical sections can occur in irq handlers in idle, a possibility
803 * handled by irq_enter() and irq_exit().)
804 *
c0da313e
PM
805 * If you add or remove a call to rcu_idle_enter(), be sure to test with
806 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
807 */
808void rcu_idle_enter(void)
809{
b04db8e1 810 lockdep_assert_irqs_disabled();
cb349ca9 811 rcu_eqs_enter(false);
adf5091e 812}
64db4cff 813
d1ec4c34 814#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
815/**
816 * rcu_user_enter - inform RCU that we are resuming userspace.
817 *
818 * Enter RCU idle mode right before resuming userspace. No use of RCU
819 * is permitted between this call and rcu_user_exit(). This way the
820 * CPU doesn't need to maintain the tick for RCU maintenance purposes
821 * when the CPU runs in userspace.
c0da313e
PM
822 *
823 * If you add or remove a call to rcu_user_enter(), be sure to test with
824 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
825 */
826void rcu_user_enter(void)
827{
b04db8e1 828 lockdep_assert_irqs_disabled();
d4db30af 829 rcu_eqs_enter(true);
adf5091e 830}
d1ec4c34 831#endif /* CONFIG_NO_HZ_FULL */
19dd1591 832
fd581a91
PM
833/**
834 * rcu_nmi_exit - inform RCU of exit from NMI context
835 *
836 * If we are returning from the outermost NMI handler that interrupted an
837 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
838 * to let the RCU grace-period handling know that the CPU is back to
839 * being RCU-idle.
840 *
841 * If you add or remove a call to rcu_nmi_exit(), be sure to test
842 * with CONFIG_RCU_EQS_DEBUG=y.
843 */
844void rcu_nmi_exit(void)
845{
846 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
847
848 /*
849 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
850 * (We are exiting an NMI handler, so RCU better be paying attention
851 * to us!)
852 */
853 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
854 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
855
856 /*
857 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
858 * leave it in non-RCU-idle state.
859 */
860 if (rdtp->dynticks_nmi_nesting != 1) {
dec98900 861 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
fd581a91
PM
862 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
863 rdtp->dynticks_nmi_nesting - 2);
864 return;
865 }
866
867 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dec98900 868 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
fd581a91
PM
869 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
870 rcu_dynticks_eqs_enter();
871}
872
9b2e4f18
PM
873/**
874 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
875 *
876 * Exit from an interrupt handler, which might possibly result in entering
877 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 878 * sections can occur. The caller must have disabled interrupts.
64db4cff 879 *
9b2e4f18
PM
880 * This code assumes that the idle loop never does anything that might
881 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
882 * architecture's idle loop violates this assumption, RCU will give you what
883 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
884 *
885 * Use things like work queues to work around this limitation.
886 *
887 * You have been warned.
c0da313e
PM
888 *
889 * If you add or remove a call to rcu_irq_exit(), be sure to test with
890 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 891 */
9b2e4f18 892void rcu_irq_exit(void)
64db4cff 893{
58721f5d 894 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 895
b04db8e1 896 lockdep_assert_irqs_disabled();
58721f5d
PM
897 if (rdtp->dynticks_nmi_nesting == 1)
898 rcu_prepare_for_idle();
899 rcu_nmi_exit();
900 if (rdtp->dynticks_nmi_nesting == 0)
901 rcu_dynticks_task_enter();
7c9906ca
PM
902}
903
904/*
905 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
906 *
907 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
908 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
909 */
910void rcu_irq_exit_irqson(void)
911{
912 unsigned long flags;
913
914 local_irq_save(flags);
915 rcu_irq_exit();
9b2e4f18
PM
916 local_irq_restore(flags);
917}
918
adf5091e
FW
919/*
920 * Exit an RCU extended quiescent state, which can be either the
921 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
922 *
923 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
924 * allow for the possibility of usermode upcalls messing up our count of
925 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 926 */
adf5091e 927static void rcu_eqs_exit(bool user)
9b2e4f18 928{
9b2e4f18 929 struct rcu_dynticks *rdtp;
84585aa8 930 long oldval;
9b2e4f18 931
b04db8e1 932 lockdep_assert_irqs_disabled();
c9d4b0af 933 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 934 oldval = rdtp->dynticks_nesting;
1ce46ee5 935 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30
PM
936 if (oldval) {
937 rdtp->dynticks_nesting++;
9dd238e2
PM
938 return;
939 }
940 rcu_dynticks_task_exit();
941 rcu_dynticks_eqs_exit();
942 rcu_cleanup_after_idle();
943 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
944 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
945 !user && !is_idle_task(current)) {
946 struct task_struct *idle __maybe_unused =
947 idle_task(smp_processor_id());
948
949 trace_rcu_dyntick(TPS("Error on exit: not idle task"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
950 rcu_ftrace_dump(DUMP_ORIG);
951 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
952 current->pid, current->comm,
953 idle->pid, idle->comm); /* must be idle task! */
3a592405 954 }
9dd238e2
PM
955 WRITE_ONCE(rdtp->dynticks_nesting, 1);
956 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 957}
adf5091e
FW
958
959/**
960 * rcu_idle_exit - inform RCU that current CPU is leaving idle
961 *
962 * Exit idle mode, in other words, -enter- the mode in which RCU
963 * read-side critical sections can occur.
964 *
c0da313e
PM
965 * If you add or remove a call to rcu_idle_exit(), be sure to test with
966 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
967 */
968void rcu_idle_exit(void)
969{
c5d900bf
FW
970 unsigned long flags;
971
972 local_irq_save(flags);
cb349ca9 973 rcu_eqs_exit(false);
c5d900bf 974 local_irq_restore(flags);
adf5091e 975}
9b2e4f18 976
d1ec4c34 977#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
978/**
979 * rcu_user_exit - inform RCU that we are exiting userspace.
980 *
981 * Exit RCU idle mode while entering the kernel because it can
982 * run a RCU read side critical section anytime.
c0da313e
PM
983 *
984 * If you add or remove a call to rcu_user_exit(), be sure to test with
985 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
986 */
987void rcu_user_exit(void)
988{
91d1aa43 989 rcu_eqs_exit(1);
adf5091e 990}
d1ec4c34 991#endif /* CONFIG_NO_HZ_FULL */
19dd1591 992
fd581a91
PM
993/**
994 * rcu_nmi_enter - inform RCU of entry to NMI context
995 *
996 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
997 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
998 * that the CPU is active. This implementation permits nested NMIs, as
999 * long as the nesting level does not overflow an int. (You will probably
1000 * run out of stack space first.)
1001 *
1002 * If you add or remove a call to rcu_nmi_enter(), be sure to test
1003 * with CONFIG_RCU_EQS_DEBUG=y.
1004 */
1005void rcu_nmi_enter(void)
1006{
1007 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
84585aa8 1008 long incby = 2;
fd581a91
PM
1009
1010 /* Complain about underflow. */
1011 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1012
1013 /*
1014 * If idle from RCU viewpoint, atomically increment ->dynticks
1015 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1016 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1017 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1018 * to be in the outermost NMI handler that interrupted an RCU-idle
1019 * period (observation due to Andy Lutomirski).
1020 */
1021 if (rcu_dynticks_curr_cpu_in_eqs()) {
1022 rcu_dynticks_eqs_exit();
1023 incby = 1;
1024 }
bd2b879a
PM
1025 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1026 rdtp->dynticks_nmi_nesting,
dec98900 1027 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
fd581a91
PM
1028 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1029 rdtp->dynticks_nmi_nesting + incby);
1030 barrier();
1031}
1032
9b2e4f18
PM
1033/**
1034 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1035 *
1036 * Enter an interrupt handler, which might possibly result in exiting
1037 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1038 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1039 *
1040 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
1041 * handler that it never exits, for example when doing upcalls to user mode!
1042 * This code assumes that the idle loop never does upcalls to user mode.
1043 * If your architecture's idle loop does do upcalls to user mode (or does
1044 * anything else that results in unbalanced calls to the irq_enter() and
1045 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1046 * But very infrequently and irreproducibly.
9b2e4f18
PM
1047 *
1048 * Use things like work queues to work around this limitation.
1049 *
1050 * You have been warned.
c0da313e
PM
1051 *
1052 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1053 * CONFIG_RCU_EQS_DEBUG=y.
9b2e4f18
PM
1054 */
1055void rcu_irq_enter(void)
1056{
58721f5d 1057 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 1058
b04db8e1 1059 lockdep_assert_irqs_disabled();
58721f5d
PM
1060 if (rdtp->dynticks_nmi_nesting == 0)
1061 rcu_dynticks_task_exit();
1062 rcu_nmi_enter();
1063 if (rdtp->dynticks_nmi_nesting == 1)
1064 rcu_cleanup_after_idle();
7c9906ca
PM
1065}
1066
1067/*
1068 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
1069 *
1070 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1071 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
1072 */
1073void rcu_irq_enter_irqson(void)
1074{
1075 unsigned long flags;
1076
1077 local_irq_save(flags);
1078 rcu_irq_enter();
64db4cff 1079 local_irq_restore(flags);
64db4cff
PM
1080}
1081
5c173eb8
PM
1082/**
1083 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1084 *
791875d1
PM
1085 * Return true if RCU is watching the running CPU, which means that this
1086 * CPU can safely enter RCU read-side critical sections. In other words,
1087 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 1088 * or NMI handler, return true.
64db4cff 1089 */
9418fb20 1090bool notrace rcu_is_watching(void)
64db4cff 1091{
f534ed1f 1092 bool ret;
34240697 1093
46f00d18 1094 preempt_disable_notrace();
791875d1 1095 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1096 preempt_enable_notrace();
34240697 1097 return ret;
64db4cff 1098}
5c173eb8 1099EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1100
bcbfdd01
PM
1101/*
1102 * If a holdout task is actually running, request an urgent quiescent
1103 * state from its CPU. This is unsynchronized, so migrations can cause
1104 * the request to go to the wrong CPU. Which is OK, all that will happen
1105 * is that the CPU's next context switch will be a bit slower and next
1106 * time around this task will generate another request.
1107 */
1108void rcu_request_urgent_qs_task(struct task_struct *t)
1109{
1110 int cpu;
1111
1112 barrier();
1113 cpu = task_cpu(t);
1114 if (!task_curr(t))
1115 return; /* This task is not running on that CPU. */
1116 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1117}
1118
62fde6ed 1119#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1120
1121/*
1122 * Is the current CPU online? Disable preemption to avoid false positives
1123 * that could otherwise happen due to the current CPU number being sampled,
1124 * this task being preempted, its old CPU being taken offline, resuming
1125 * on some other CPU, then determining that its old CPU is now offline.
1126 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1127 * the check for rcu_scheduler_fully_active. Note also that it is OK
1128 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1129 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1130 * offline to continue to use RCU for one jiffy after marking itself
1131 * offline in the cpu_online_mask. This leniency is necessary given the
1132 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1133 * the fact that a CPU enters the scheduler after completing the teardown
1134 * of the CPU.
2036d94a 1135 *
4df83742
TG
1136 * This is also why RCU internally marks CPUs online during in the
1137 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1138 *
1139 * Disable checking if in an NMI handler because we cannot safely report
1140 * errors from NMI handlers anyway.
1141 */
1142bool rcu_lockdep_current_cpu_online(void)
1143{
2036d94a
PM
1144 struct rcu_data *rdp;
1145 struct rcu_node *rnp;
c0d6d01b
PM
1146 bool ret;
1147
1148 if (in_nmi())
f6f7ee9a 1149 return true;
c0d6d01b 1150 preempt_disable();
c9d4b0af 1151 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1152 rnp = rdp->mynode;
0aa04b05 1153 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1154 !rcu_scheduler_fully_active;
1155 preempt_enable();
1156 return ret;
1157}
1158EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1159
62fde6ed 1160#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1161
64db4cff 1162/**
9b2e4f18 1163 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1164 *
9b2e4f18
PM
1165 * If the current CPU is idle or running at a first-level (not nested)
1166 * interrupt from idle, return true. The caller must have at least
1167 * disabled preemption.
64db4cff 1168 */
62e3cb14 1169static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1170{
51a1fd30
PM
1171 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1172 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
64db4cff
PM
1173}
1174
9b9500da
PM
1175/*
1176 * We are reporting a quiescent state on behalf of some other CPU, so
1177 * it is our responsibility to check for and handle potential overflow
1178 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1179 * After all, the CPU might be in deep idle state, and thus executing no
1180 * code whatsoever.
1181 */
1182static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1183{
1184 lockdep_assert_held(&rnp->lock);
1185 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1186 WRITE_ONCE(rdp->gpwrap, true);
1187 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1188 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1189}
1190
64db4cff
PM
1191/*
1192 * Snapshot the specified CPU's dynticks counter so that we can later
1193 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1194 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1195 */
fe5ac724 1196static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1197{
8b2f63ab 1198 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1199 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1200 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
9b9500da 1201 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1202 return 1;
7941dbde 1203 }
23a9bacd 1204 return 0;
64db4cff
PM
1205}
1206
9b9500da
PM
1207/*
1208 * Handler for the irq_work request posted when a grace period has
1209 * gone on for too long, but not yet long enough for an RCU CPU
1210 * stall warning. Set state appropriately, but just complain if
1211 * there is unexpected state on entry.
1212 */
1213static void rcu_iw_handler(struct irq_work *iwp)
1214{
1215 struct rcu_data *rdp;
1216 struct rcu_node *rnp;
1217
1218 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1219 rnp = rdp->mynode;
1220 raw_spin_lock_rcu_node(rnp);
1221 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1222 rdp->rcu_iw_gpnum = rnp->gpnum;
1223 rdp->rcu_iw_pending = false;
1224 }
1225 raw_spin_unlock_rcu_node(rnp);
1226}
1227
64db4cff
PM
1228/*
1229 * Return true if the specified CPU has passed through a quiescent
1230 * state by virtue of being in or having passed through an dynticks
1231 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1232 * for this same CPU, or by virtue of having been offline.
64db4cff 1233 */
fe5ac724 1234static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1235{
3a19b46a 1236 unsigned long jtsq;
0f9be8ca 1237 bool *rnhqp;
9226b10d 1238 bool *ruqp;
9b9500da 1239 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1240
1241 /*
1242 * If the CPU passed through or entered a dynticks idle phase with
1243 * no active irq/NMI handlers, then we can safely pretend that the CPU
1244 * already acknowledged the request to pass through a quiescent
1245 * state. Either way, that CPU cannot possibly be in an RCU
1246 * read-side critical section that started before the beginning
1247 * of the current RCU grace period.
1248 */
02a5c550 1249 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1250 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff 1251 rdp->dynticks_fqs++;
9b9500da 1252 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1253 return 1;
1254 }
1255
a82dcc76 1256 /*
3a19b46a
PM
1257 * Has this CPU encountered a cond_resched_rcu_qs() since the
1258 * beginning of the grace period? For this to be the case,
1259 * the CPU has to have noticed the current grace period. This
1260 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1261 */
f79c3ad6 1262 jtsq = jiffies_till_sched_qs;
9226b10d 1263 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1264 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1265 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1266 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1267 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
9b9500da 1268 rcu_gpnum_ovf(rnp, rdp);
3a19b46a 1269 return 1;
f79c3ad6 1270 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
9226b10d
PM
1271 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1272 smp_store_release(ruqp, true);
3a19b46a
PM
1273 }
1274
38d30b33
PM
1275 /* Check for the CPU being offline. */
1276 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1277 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76 1278 rdp->offline_fqs++;
9b9500da 1279 rcu_gpnum_ovf(rnp, rdp);
a82dcc76
PM
1280 return 1;
1281 }
65d798f0
PM
1282
1283 /*
4a81e832
PM
1284 * A CPU running for an extended time within the kernel can
1285 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1286 * even context-switching back and forth between a pair of
1287 * in-kernel CPU-bound tasks cannot advance grace periods.
1288 * So if the grace period is old enough, make the CPU pay attention.
1289 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1290 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1291 * bits can be lost, but they will be set again on the next
1292 * force-quiescent-state pass. So lost bit sets do not result
1293 * in incorrect behavior, merely in a grace period lasting
1294 * a few jiffies longer than it might otherwise. Because
1295 * there are at most four threads involved, and because the
1296 * updates are only once every few jiffies, the probability of
1297 * lossage (and thus of slight grace-period extension) is
1298 * quite low.
6193c76a 1299 */
0f9be8ca
PM
1300 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1301 if (!READ_ONCE(*rnhqp) &&
1302 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1303 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1304 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1305 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1306 smp_store_release(ruqp, true);
f79c3ad6 1307 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
6193c76a
PM
1308 }
1309
28053bc7 1310 /*
9b9500da
PM
1311 * If more than halfway to RCU CPU stall-warning time, do a
1312 * resched_cpu() to try to loosen things up a bit. Also check to
1313 * see if the CPU is getting hammered with interrupts, but only
1314 * once per grace period, just to keep the IPIs down to a dull roar.
28053bc7 1315 */
9b9500da 1316 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
28053bc7 1317 resched_cpu(rdp->cpu);
9b9500da
PM
1318 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1319 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1320 (rnp->ffmask & rdp->grpmask)) {
1321 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1322 rdp->rcu_iw_pending = true;
1323 rdp->rcu_iw_gpnum = rnp->gpnum;
1324 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1325 }
1326 }
4914950a 1327
a82dcc76 1328 return 0;
64db4cff
PM
1329}
1330
64db4cff
PM
1331static void record_gp_stall_check_time(struct rcu_state *rsp)
1332{
cb1e78cf 1333 unsigned long j = jiffies;
6193c76a 1334 unsigned long j1;
26cdfedf
PM
1335
1336 rsp->gp_start = j;
1337 smp_wmb(); /* Record start time before stall time. */
6193c76a 1338 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1339 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1340 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1341 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1342}
1343
6b50e119
PM
1344/*
1345 * Convert a ->gp_state value to a character string.
1346 */
1347static const char *gp_state_getname(short gs)
1348{
1349 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1350 return "???";
1351 return gp_state_names[gs];
1352}
1353
fb81a44b
PM
1354/*
1355 * Complain about starvation of grace-period kthread.
1356 */
1357static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1358{
1359 unsigned long gpa;
1360 unsigned long j;
1361
1362 j = jiffies;
7d0ae808 1363 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1364 if (j - gpa > 2 * HZ) {
96036c43 1365 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
81e701e4 1366 rsp->name, j - gpa,
319362c9 1367 rsp->gpnum, rsp->completed,
6b50e119
PM
1368 rsp->gp_flags,
1369 gp_state_getname(rsp->gp_state), rsp->gp_state,
96036c43
PM
1370 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1371 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
86057b80 1372 if (rsp->gp_kthread) {
b1adb3e2 1373 sched_show_task(rsp->gp_kthread);
86057b80
PM
1374 wake_up_process(rsp->gp_kthread);
1375 }
b1adb3e2 1376 }
64db4cff
PM
1377}
1378
b637a328 1379/*
7aa92230
PM
1380 * Dump stacks of all tasks running on stalled CPUs. First try using
1381 * NMIs, but fall back to manual remote stack tracing on architectures
1382 * that don't support NMI-based stack dumps. The NMI-triggered stack
1383 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1384 */
1385static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1386{
1387 int cpu;
1388 unsigned long flags;
1389 struct rcu_node *rnp;
1390
1391 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1392 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1393 for_each_leaf_node_possible_cpu(rnp, cpu)
1394 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1395 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1396 dump_cpu_task(cpu);
67c583a7 1397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1398 }
1399}
1400
8c7c4829
PM
1401/*
1402 * If too much time has passed in the current grace period, and if
1403 * so configured, go kick the relevant kthreads.
1404 */
1405static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1406{
1407 unsigned long j;
1408
1409 if (!rcu_kick_kthreads)
1410 return;
1411 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1412 if (time_after(jiffies, j) && rsp->gp_kthread &&
1413 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1414 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1415 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1416 wake_up_process(rsp->gp_kthread);
1417 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1418 }
1419}
1420
088e9d25
DBO
1421static inline void panic_on_rcu_stall(void)
1422{
1423 if (sysctl_panic_on_rcu_stall)
1424 panic("RCU Stall\n");
1425}
1426
6ccd2ecd 1427static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1428{
1429 int cpu;
1430 long delta;
1431 unsigned long flags;
6ccd2ecd
PM
1432 unsigned long gpa;
1433 unsigned long j;
285fe294 1434 int ndetected = 0;
64db4cff 1435 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1436 long totqlen = 0;
64db4cff 1437
8c7c4829
PM
1438 /* Kick and suppress, if so configured. */
1439 rcu_stall_kick_kthreads(rsp);
1440 if (rcu_cpu_stall_suppress)
1441 return;
1442
64db4cff
PM
1443 /* Only let one CPU complain about others per time interval. */
1444
6cf10081 1445 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1446 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1447 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1448 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1449 return;
1450 }
7d0ae808
PM
1451 WRITE_ONCE(rsp->jiffies_stall,
1452 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1454
8cdd32a9
PM
1455 /*
1456 * OK, time to rat on our buddy...
1457 * See Documentation/RCU/stallwarn.txt for info on how to debug
1458 * RCU CPU stall warnings.
1459 */
d7f3e207 1460 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1461 rsp->name);
a858af28 1462 print_cpu_stall_info_begin();
a0b6c9a7 1463 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1464 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1465 ndetected += rcu_print_task_stall(rnp);
c8020a67 1466 if (rnp->qsmask != 0) {
bc75e999
MR
1467 for_each_leaf_node_possible_cpu(rnp, cpu)
1468 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1469 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1470 ndetected++;
1471 }
1472 }
67c583a7 1473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1474 }
a858af28 1475
a858af28 1476 print_cpu_stall_info_end();
53bb857c 1477 for_each_possible_cpu(cpu)
15fecf89
PM
1478 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1479 cpu)->cblist);
83ebe63e 1480 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1481 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1482 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1483 if (ndetected) {
b637a328 1484 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1485
1486 /* Complain about tasks blocking the grace period. */
1487 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1488 } else {
7d0ae808
PM
1489 if (READ_ONCE(rsp->gpnum) != gpnum ||
1490 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1491 pr_err("INFO: Stall ended before state dump start\n");
1492 } else {
1493 j = jiffies;
7d0ae808 1494 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1495 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1496 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1497 jiffies_till_next_fqs,
1498 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1499 /* In this case, the current CPU might be at fault. */
1500 sched_show_task(current);
1501 }
1502 }
c1dc0b9c 1503
fb81a44b
PM
1504 rcu_check_gp_kthread_starvation(rsp);
1505
088e9d25
DBO
1506 panic_on_rcu_stall();
1507
4cdfc175 1508 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1509}
1510
1511static void print_cpu_stall(struct rcu_state *rsp)
1512{
53bb857c 1513 int cpu;
64db4cff 1514 unsigned long flags;
9b9500da 1515 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1516 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1517 long totqlen = 0;
64db4cff 1518
8c7c4829
PM
1519 /* Kick and suppress, if so configured. */
1520 rcu_stall_kick_kthreads(rsp);
1521 if (rcu_cpu_stall_suppress)
1522 return;
1523
8cdd32a9
PM
1524 /*
1525 * OK, time to rat on ourselves...
1526 * See Documentation/RCU/stallwarn.txt for info on how to debug
1527 * RCU CPU stall warnings.
1528 */
d7f3e207 1529 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28 1530 print_cpu_stall_info_begin();
9b9500da 1531 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
a858af28 1532 print_cpu_stall_info(rsp, smp_processor_id());
9b9500da 1533 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1534 print_cpu_stall_info_end();
53bb857c 1535 for_each_possible_cpu(cpu)
15fecf89
PM
1536 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1537 cpu)->cblist);
83ebe63e
PM
1538 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1539 jiffies - rsp->gp_start,
1540 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1541
1542 rcu_check_gp_kthread_starvation(rsp);
1543
bc1dce51 1544 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1545
6cf10081 1546 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1547 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1548 WRITE_ONCE(rsp->jiffies_stall,
1549 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1550 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1551
088e9d25
DBO
1552 panic_on_rcu_stall();
1553
b021fe3e
PZ
1554 /*
1555 * Attempt to revive the RCU machinery by forcing a context switch.
1556 *
1557 * A context switch would normally allow the RCU state machine to make
1558 * progress and it could be we're stuck in kernel space without context
1559 * switches for an entirely unreasonable amount of time.
1560 */
1561 resched_cpu(smp_processor_id());
64db4cff
PM
1562}
1563
1564static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1565{
26cdfedf
PM
1566 unsigned long completed;
1567 unsigned long gpnum;
1568 unsigned long gps;
bad6e139
PM
1569 unsigned long j;
1570 unsigned long js;
64db4cff
PM
1571 struct rcu_node *rnp;
1572
8c7c4829
PM
1573 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1574 !rcu_gp_in_progress(rsp))
c68de209 1575 return;
8c7c4829 1576 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1577 j = jiffies;
26cdfedf
PM
1578
1579 /*
1580 * Lots of memory barriers to reject false positives.
1581 *
1582 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1583 * then rsp->gp_start, and finally rsp->completed. These values
1584 * are updated in the opposite order with memory barriers (or
1585 * equivalent) during grace-period initialization and cleanup.
1586 * Now, a false positive can occur if we get an new value of
1587 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1588 * the memory barriers, the only way that this can happen is if one
1589 * grace period ends and another starts between these two fetches.
1590 * Detect this by comparing rsp->completed with the previous fetch
1591 * from rsp->gpnum.
1592 *
1593 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1594 * and rsp->gp_start suffice to forestall false positives.
1595 */
7d0ae808 1596 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1597 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1598 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1599 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1600 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1601 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1602 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1603 if (ULONG_CMP_GE(completed, gpnum) ||
1604 ULONG_CMP_LT(j, js) ||
1605 ULONG_CMP_GE(gps, js))
1606 return; /* No stall or GP completed since entering function. */
64db4cff 1607 rnp = rdp->mynode;
c96ea7cf 1608 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1609 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1610
1611 /* We haven't checked in, so go dump stack. */
1612 print_cpu_stall(rsp);
1613
bad6e139
PM
1614 } else if (rcu_gp_in_progress(rsp) &&
1615 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1616
bad6e139 1617 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1618 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1619 }
1620}
1621
53d84e00
PM
1622/**
1623 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1624 *
1625 * Set the stall-warning timeout way off into the future, thus preventing
1626 * any RCU CPU stall-warning messages from appearing in the current set of
1627 * RCU grace periods.
1628 *
1629 * The caller must disable hard irqs.
1630 */
1631void rcu_cpu_stall_reset(void)
1632{
6ce75a23
PM
1633 struct rcu_state *rsp;
1634
1635 for_each_rcu_flavor(rsp)
7d0ae808 1636 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1637}
1638
dc35c893
PM
1639/*
1640 * Determine the value that ->completed will have at the end of the
1641 * next subsequent grace period. This is used to tag callbacks so that
1642 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1643 * been dyntick-idle for an extended period with callbacks under the
1644 * influence of RCU_FAST_NO_HZ.
1645 *
1646 * The caller must hold rnp->lock with interrupts disabled.
1647 */
1648static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1649 struct rcu_node *rnp)
1650{
c0b334c5
PM
1651 lockdep_assert_held(&rnp->lock);
1652
dc35c893
PM
1653 /*
1654 * If RCU is idle, we just wait for the next grace period.
1655 * But we can only be sure that RCU is idle if we are looking
1656 * at the root rcu_node structure -- otherwise, a new grace
1657 * period might have started, but just not yet gotten around
1658 * to initializing the current non-root rcu_node structure.
1659 */
1660 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1661 return rnp->completed + 1;
1662
1663 /*
1664 * Otherwise, wait for a possible partial grace period and
1665 * then the subsequent full grace period.
1666 */
1667 return rnp->completed + 2;
1668}
1669
0446be48
PM
1670/*
1671 * Trace-event helper function for rcu_start_future_gp() and
1672 * rcu_nocb_wait_gp().
1673 */
1674static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1675 unsigned long c, const char *s)
0446be48
PM
1676{
1677 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1678 rnp->completed, c, rnp->level,
1679 rnp->grplo, rnp->grphi, s);
1680}
1681
1682/*
1683 * Start some future grace period, as needed to handle newly arrived
1684 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1685 * rcu_node structure's ->need_future_gp field. Returns true if there
1686 * is reason to awaken the grace-period kthread.
0446be48
PM
1687 *
1688 * The caller must hold the specified rcu_node structure's ->lock.
1689 */
48a7639c
PM
1690static bool __maybe_unused
1691rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1692 unsigned long *c_out)
0446be48
PM
1693{
1694 unsigned long c;
48a7639c 1695 bool ret = false;
0446be48
PM
1696 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1697
c0b334c5
PM
1698 lockdep_assert_held(&rnp->lock);
1699
0446be48
PM
1700 /*
1701 * Pick up grace-period number for new callbacks. If this
1702 * grace period is already marked as needed, return to the caller.
1703 */
1704 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1705 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1706 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1707 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1708 goto out;
0446be48
PM
1709 }
1710
1711 /*
1712 * If either this rcu_node structure or the root rcu_node structure
1713 * believe that a grace period is in progress, then we must wait
1714 * for the one following, which is in "c". Because our request
1715 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1716 * need to explicitly start one. We only do the lockless check
1717 * of rnp_root's fields if the current rcu_node structure thinks
1718 * there is no grace period in flight, and because we hold rnp->lock,
1719 * the only possible change is when rnp_root's two fields are
1720 * equal, in which case rnp_root->gpnum might be concurrently
1721 * incremented. But that is OK, as it will just result in our
1722 * doing some extra useless work.
0446be48
PM
1723 */
1724 if (rnp->gpnum != rnp->completed ||
7d0ae808 1725 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1726 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1727 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1728 goto out;
0446be48
PM
1729 }
1730
1731 /*
1732 * There might be no grace period in progress. If we don't already
1733 * hold it, acquire the root rcu_node structure's lock in order to
1734 * start one (if needed).
1735 */
2a67e741
PZ
1736 if (rnp != rnp_root)
1737 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1738
1739 /*
1740 * Get a new grace-period number. If there really is no grace
1741 * period in progress, it will be smaller than the one we obtained
15fecf89 1742 * earlier. Adjust callbacks as needed.
0446be48
PM
1743 */
1744 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1745 if (!rcu_is_nocb_cpu(rdp->cpu))
1746 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1747
1748 /*
1749 * If the needed for the required grace period is already
1750 * recorded, trace and leave.
1751 */
1752 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1753 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1754 goto unlock_out;
1755 }
1756
1757 /* Record the need for the future grace period. */
1758 rnp_root->need_future_gp[c & 0x1]++;
1759
1760 /* If a grace period is not already in progress, start one. */
1761 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1762 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1763 } else {
f7f7bac9 1764 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1765 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1766 }
1767unlock_out:
1768 if (rnp != rnp_root)
67c583a7 1769 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1770out:
1771 if (c_out != NULL)
1772 *c_out = c;
1773 return ret;
0446be48
PM
1774}
1775
1776/*
1777 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1778 * whether any additional grace periods have been requested.
0446be48
PM
1779 */
1780static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1781{
1782 int c = rnp->completed;
1783 int needmore;
1784 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1785
0446be48
PM
1786 rnp->need_future_gp[c & 0x1] = 0;
1787 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1788 trace_rcu_future_gp(rnp, rdp, c,
1789 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1790 return needmore;
1791}
1792
48a7639c
PM
1793/*
1794 * Awaken the grace-period kthread for the specified flavor of RCU.
1795 * Don't do a self-awaken, and don't bother awakening when there is
1796 * nothing for the grace-period kthread to do (as in several CPUs
1797 * raced to awaken, and we lost), and finally don't try to awaken
1798 * a kthread that has not yet been created.
1799 */
1800static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1801{
1802 if (current == rsp->gp_kthread ||
7d0ae808 1803 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1804 !rsp->gp_kthread)
1805 return;
abedf8e2 1806 swake_up(&rsp->gp_wq);
48a7639c
PM
1807}
1808
dc35c893
PM
1809/*
1810 * If there is room, assign a ->completed number to any callbacks on
1811 * this CPU that have not already been assigned. Also accelerate any
1812 * callbacks that were previously assigned a ->completed number that has
1813 * since proven to be too conservative, which can happen if callbacks get
1814 * assigned a ->completed number while RCU is idle, but with reference to
1815 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1816 * not hurt to call it repeatedly. Returns an flag saying that we should
1817 * awaken the RCU grace-period kthread.
dc35c893
PM
1818 *
1819 * The caller must hold rnp->lock with interrupts disabled.
1820 */
48a7639c 1821static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1822 struct rcu_data *rdp)
1823{
15fecf89 1824 bool ret = false;
dc35c893 1825
c0b334c5
PM
1826 lockdep_assert_held(&rnp->lock);
1827
15fecf89
PM
1828 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1829 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1830 return false;
dc35c893
PM
1831
1832 /*
15fecf89
PM
1833 * Callbacks are often registered with incomplete grace-period
1834 * information. Something about the fact that getting exact
1835 * information requires acquiring a global lock... RCU therefore
1836 * makes a conservative estimate of the grace period number at which
1837 * a given callback will become ready to invoke. The following
1838 * code checks this estimate and improves it when possible, thus
1839 * accelerating callback invocation to an earlier grace-period
1840 * number.
dc35c893 1841 */
15fecf89
PM
1842 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1843 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1844
1845 /* Trace depending on how much we were able to accelerate. */
15fecf89 1846 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1847 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1848 else
f7f7bac9 1849 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1850 return ret;
dc35c893
PM
1851}
1852
1853/*
1854 * Move any callbacks whose grace period has completed to the
1855 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1856 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1857 * sublist. This function is idempotent, so it does not hurt to
1858 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1859 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1860 *
1861 * The caller must hold rnp->lock with interrupts disabled.
1862 */
48a7639c 1863static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1864 struct rcu_data *rdp)
1865{
c0b334c5
PM
1866 lockdep_assert_held(&rnp->lock);
1867
15fecf89
PM
1868 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1869 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1870 return false;
dc35c893
PM
1871
1872 /*
1873 * Find all callbacks whose ->completed numbers indicate that they
1874 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1875 */
15fecf89 1876 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1877
1878 /* Classify any remaining callbacks. */
48a7639c 1879 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1880}
1881
d09b62df 1882/*
ba9fbe95
PM
1883 * Update CPU-local rcu_data state to record the beginnings and ends of
1884 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1885 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1886 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1887 */
48a7639c
PM
1888static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1889 struct rcu_data *rdp)
d09b62df 1890{
48a7639c 1891 bool ret;
3563a438 1892 bool need_gp;
48a7639c 1893
c0b334c5
PM
1894 lockdep_assert_held(&rnp->lock);
1895
ba9fbe95 1896 /* Handle the ends of any preceding grace periods first. */
e3663b10 1897 if (rdp->completed == rnp->completed &&
7d0ae808 1898 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1899
ba9fbe95 1900 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1901 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1902
dc35c893
PM
1903 } else {
1904
1905 /* Advance callbacks. */
48a7639c 1906 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1907
1908 /* Remember that we saw this grace-period completion. */
1909 rdp->completed = rnp->completed;
f7f7bac9 1910 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1911 }
398ebe60 1912
7d0ae808 1913 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1914 /*
1915 * If the current grace period is waiting for this CPU,
1916 * set up to detect a quiescent state, otherwise don't
1917 * go looking for one.
1918 */
1919 rdp->gpnum = rnp->gpnum;
f7f7bac9 1920 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1921 need_gp = !!(rnp->qsmask & rdp->grpmask);
1922 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1923 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1924 rdp->core_needs_qs = need_gp;
6eaef633 1925 zero_cpu_stall_ticks(rdp);
7d0ae808 1926 WRITE_ONCE(rdp->gpwrap, false);
9b9500da 1927 rcu_gpnum_ovf(rnp, rdp);
6eaef633 1928 }
48a7639c 1929 return ret;
6eaef633
PM
1930}
1931
d34ea322 1932static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1933{
1934 unsigned long flags;
48a7639c 1935 bool needwake;
6eaef633
PM
1936 struct rcu_node *rnp;
1937
1938 local_irq_save(flags);
1939 rnp = rdp->mynode;
7d0ae808
PM
1940 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1941 rdp->completed == READ_ONCE(rnp->completed) &&
1942 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1943 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1944 local_irq_restore(flags);
1945 return;
1946 }
48a7639c 1947 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1948 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1949 if (needwake)
1950 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1951}
1952
0f41c0dd
PM
1953static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1954{
1955 if (delay > 0 &&
1956 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1957 schedule_timeout_uninterruptible(delay);
1958}
1959
b3dbec76 1960/*
45fed3e7 1961 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1962 */
45fed3e7 1963static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1964{
0aa04b05 1965 unsigned long oldmask;
b3dbec76 1966 struct rcu_data *rdp;
7fdefc10 1967 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1968
7d0ae808 1969 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1970 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1971 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1972 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1973 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1974 return false;
f7be8209 1975 }
7d0ae808 1976 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1977
f7be8209
PM
1978 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1979 /*
1980 * Grace period already in progress, don't start another.
1981 * Not supposed to be able to happen.
1982 */
67c583a7 1983 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1984 return false;
7fdefc10
PM
1985 }
1986
7fdefc10 1987 /* Advance to a new grace period and initialize state. */
26cdfedf 1988 record_gp_stall_check_time(rsp);
765a3f4f
PM
1989 /* Record GP times before starting GP, hence smp_store_release(). */
1990 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1991 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1992 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1993
0aa04b05
PM
1994 /*
1995 * Apply per-leaf buffered online and offline operations to the
1996 * rcu_node tree. Note that this new grace period need not wait
1997 * for subsequent online CPUs, and that quiescent-state forcing
1998 * will handle subsequent offline CPUs.
1999 */
2000 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2001 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2002 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2003 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2004 !rnp->wait_blkd_tasks) {
2005 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2006 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2007 continue;
2008 }
2009
2010 /* Record old state, apply changes to ->qsmaskinit field. */
2011 oldmask = rnp->qsmaskinit;
2012 rnp->qsmaskinit = rnp->qsmaskinitnext;
2013
2014 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2015 if (!oldmask != !rnp->qsmaskinit) {
2016 if (!oldmask) /* First online CPU for this rcu_node. */
2017 rcu_init_new_rnp(rnp);
2018 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2019 rnp->wait_blkd_tasks = true;
2020 else /* Last offline CPU and can propagate. */
2021 rcu_cleanup_dead_rnp(rnp);
2022 }
2023
2024 /*
2025 * If all waited-on tasks from prior grace period are
2026 * done, and if all this rcu_node structure's CPUs are
2027 * still offline, propagate up the rcu_node tree and
2028 * clear ->wait_blkd_tasks. Otherwise, if one of this
2029 * rcu_node structure's CPUs has since come back online,
2030 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2031 * checks for this, so just call it unconditionally).
2032 */
2033 if (rnp->wait_blkd_tasks &&
2034 (!rcu_preempt_has_tasks(rnp) ||
2035 rnp->qsmaskinit)) {
2036 rnp->wait_blkd_tasks = false;
2037 rcu_cleanup_dead_rnp(rnp);
2038 }
2039
67c583a7 2040 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2041 }
7fdefc10
PM
2042
2043 /*
2044 * Set the quiescent-state-needed bits in all the rcu_node
2045 * structures for all currently online CPUs in breadth-first order,
2046 * starting from the root rcu_node structure, relying on the layout
2047 * of the tree within the rsp->node[] array. Note that other CPUs
2048 * will access only the leaves of the hierarchy, thus seeing that no
2049 * grace period is in progress, at least until the corresponding
590d1757 2050 * leaf node has been initialized.
7fdefc10
PM
2051 *
2052 * The grace period cannot complete until the initialization
2053 * process finishes, because this kthread handles both.
2054 */
2055 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2056 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2057 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2058 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2059 rcu_preempt_check_blocked_tasks(rnp);
2060 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2061 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2062 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2063 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2064 if (rnp == rdp->mynode)
48a7639c 2065 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2066 rcu_preempt_boost_start_gp(rnp);
2067 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2068 rnp->level, rnp->grplo,
2069 rnp->grphi, rnp->qsmask);
67c583a7 2070 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2071 cond_resched_rcu_qs();
7d0ae808 2072 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2073 }
b3dbec76 2074
45fed3e7 2075 return true;
7fdefc10 2076}
b3dbec76 2077
b9a425cf 2078/*
d5374226
LR
2079 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2080 * time.
b9a425cf
PM
2081 */
2082static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2083{
2084 struct rcu_node *rnp = rcu_get_root(rsp);
2085
2086 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2087 *gfp = READ_ONCE(rsp->gp_flags);
2088 if (*gfp & RCU_GP_FLAG_FQS)
2089 return true;
2090
2091 /* The current grace period has completed. */
2092 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2093 return true;
2094
2095 return false;
2096}
2097
4cdfc175
PM
2098/*
2099 * Do one round of quiescent-state forcing.
2100 */
77f81fe0 2101static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2102{
4cdfc175
PM
2103 struct rcu_node *rnp = rcu_get_root(rsp);
2104
7d0ae808 2105 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2106 rsp->n_force_qs++;
77f81fe0 2107 if (first_time) {
4cdfc175 2108 /* Collect dyntick-idle snapshots. */
fe5ac724 2109 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2110 } else {
2111 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2112 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2113 }
2114 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2115 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2116 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2117 WRITE_ONCE(rsp->gp_flags,
2118 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2119 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2120 }
4cdfc175
PM
2121}
2122
7fdefc10
PM
2123/*
2124 * Clean up after the old grace period.
2125 */
4cdfc175 2126static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2127{
2128 unsigned long gp_duration;
48a7639c 2129 bool needgp = false;
dae6e64d 2130 int nocb = 0;
7fdefc10
PM
2131 struct rcu_data *rdp;
2132 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2133 struct swait_queue_head *sq;
b3dbec76 2134
7d0ae808 2135 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2136 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2137 gp_duration = jiffies - rsp->gp_start;
2138 if (gp_duration > rsp->gp_max)
2139 rsp->gp_max = gp_duration;
b3dbec76 2140
7fdefc10
PM
2141 /*
2142 * We know the grace period is complete, but to everyone else
2143 * it appears to still be ongoing. But it is also the case
2144 * that to everyone else it looks like there is nothing that
2145 * they can do to advance the grace period. It is therefore
2146 * safe for us to drop the lock in order to mark the grace
2147 * period as completed in all of the rcu_node structures.
7fdefc10 2148 */
67c583a7 2149 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2150
5d4b8659
PM
2151 /*
2152 * Propagate new ->completed value to rcu_node structures so
2153 * that other CPUs don't have to wait until the start of the next
2154 * grace period to process their callbacks. This also avoids
2155 * some nasty RCU grace-period initialization races by forcing
2156 * the end of the current grace period to be completely recorded in
2157 * all of the rcu_node structures before the beginning of the next
2158 * grace period is recorded in any of the rcu_node structures.
2159 */
2160 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2161 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2162 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2163 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2164 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2165 rdp = this_cpu_ptr(rsp->rda);
2166 if (rnp == rdp->mynode)
48a7639c 2167 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2168 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2169 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2170 sq = rcu_nocb_gp_get(rnp);
67c583a7 2171 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2172 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2173 cond_resched_rcu_qs();
7d0ae808 2174 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2175 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2176 }
5d4b8659 2177 rnp = rcu_get_root(rsp);
2a67e741 2178 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2179 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2180
765a3f4f 2181 /* Declare grace period done. */
7d0ae808 2182 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2183 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2184 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2185 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2186 /* Advance CBs to reduce false positives below. */
2187 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2188 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2189 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2190 trace_rcu_grace_period(rsp->name,
7d0ae808 2191 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2192 TPS("newreq"));
2193 }
67c583a7 2194 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2195}
2196
2197/*
2198 * Body of kthread that handles grace periods.
2199 */
2200static int __noreturn rcu_gp_kthread(void *arg)
2201{
77f81fe0 2202 bool first_gp_fqs;
88d6df61 2203 int gf;
d40011f6 2204 unsigned long j;
4cdfc175 2205 int ret;
7fdefc10
PM
2206 struct rcu_state *rsp = arg;
2207 struct rcu_node *rnp = rcu_get_root(rsp);
2208
5871968d 2209 rcu_bind_gp_kthread();
7fdefc10
PM
2210 for (;;) {
2211
2212 /* Handle grace-period start. */
2213 for (;;) {
63c4db78 2214 trace_rcu_grace_period(rsp->name,
7d0ae808 2215 READ_ONCE(rsp->gpnum),
63c4db78 2216 TPS("reqwait"));
afea227f 2217 rsp->gp_state = RCU_GP_WAIT_GPS;
d5374226
LR
2218 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2219 RCU_GP_FLAG_INIT);
319362c9 2220 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2221 /* Locking provides needed memory barrier. */
f7be8209 2222 if (rcu_gp_init(rsp))
7fdefc10 2223 break;
bde6c3aa 2224 cond_resched_rcu_qs();
7d0ae808 2225 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2226 WARN_ON(signal_pending(current));
63c4db78 2227 trace_rcu_grace_period(rsp->name,
7d0ae808 2228 READ_ONCE(rsp->gpnum),
63c4db78 2229 TPS("reqwaitsig"));
7fdefc10 2230 }
cabc49c1 2231
4cdfc175 2232 /* Handle quiescent-state forcing. */
77f81fe0 2233 first_gp_fqs = true;
d40011f6
PM
2234 j = jiffies_till_first_fqs;
2235 if (j > HZ) {
2236 j = HZ;
2237 jiffies_till_first_fqs = HZ;
2238 }
88d6df61 2239 ret = 0;
cabc49c1 2240 for (;;) {
8c7c4829 2241 if (!ret) {
88d6df61 2242 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2243 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2244 jiffies + 3 * j);
2245 }
63c4db78 2246 trace_rcu_grace_period(rsp->name,
7d0ae808 2247 READ_ONCE(rsp->gpnum),
63c4db78 2248 TPS("fqswait"));
afea227f 2249 rsp->gp_state = RCU_GP_WAIT_FQS;
d5374226 2250 ret = swait_event_idle_timeout(rsp->gp_wq,
b9a425cf 2251 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2252 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2253 /* Locking provides needed memory barriers. */
4cdfc175 2254 /* If grace period done, leave loop. */
7d0ae808 2255 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2256 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2257 break;
4cdfc175 2258 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2259 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2260 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2261 trace_rcu_grace_period(rsp->name,
7d0ae808 2262 READ_ONCE(rsp->gpnum),
63c4db78 2263 TPS("fqsstart"));
77f81fe0
PM
2264 rcu_gp_fqs(rsp, first_gp_fqs);
2265 first_gp_fqs = false;
63c4db78 2266 trace_rcu_grace_period(rsp->name,
7d0ae808 2267 READ_ONCE(rsp->gpnum),
63c4db78 2268 TPS("fqsend"));
bde6c3aa 2269 cond_resched_rcu_qs();
7d0ae808 2270 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2271 ret = 0; /* Force full wait till next FQS. */
2272 j = jiffies_till_next_fqs;
2273 if (j > HZ) {
2274 j = HZ;
2275 jiffies_till_next_fqs = HZ;
2276 } else if (j < 1) {
2277 j = 1;
2278 jiffies_till_next_fqs = 1;
2279 }
4cdfc175
PM
2280 } else {
2281 /* Deal with stray signal. */
bde6c3aa 2282 cond_resched_rcu_qs();
7d0ae808 2283 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2284 WARN_ON(signal_pending(current));
63c4db78 2285 trace_rcu_grace_period(rsp->name,
7d0ae808 2286 READ_ONCE(rsp->gpnum),
63c4db78 2287 TPS("fqswaitsig"));
fcfd0a23
PM
2288 ret = 1; /* Keep old FQS timing. */
2289 j = jiffies;
2290 if (time_after(jiffies, rsp->jiffies_force_qs))
2291 j = 1;
2292 else
2293 j = rsp->jiffies_force_qs - j;
d40011f6 2294 }
cabc49c1 2295 }
4cdfc175
PM
2296
2297 /* Handle grace-period end. */
319362c9 2298 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2299 rcu_gp_cleanup(rsp);
319362c9 2300 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2301 }
b3dbec76
PM
2302}
2303
64db4cff
PM
2304/*
2305 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2306 * in preparation for detecting the next grace period. The caller must hold
b8462084 2307 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2308 *
2309 * Note that it is legal for a dying CPU (which is marked as offline) to
2310 * invoke this function. This can happen when the dying CPU reports its
2311 * quiescent state.
48a7639c
PM
2312 *
2313 * Returns true if the grace-period kthread must be awakened.
64db4cff 2314 */
48a7639c 2315static bool
910ee45d
PM
2316rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2317 struct rcu_data *rdp)
64db4cff 2318{
c0b334c5 2319 lockdep_assert_held(&rnp->lock);
b8462084 2320 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2321 /*
b3dbec76 2322 * Either we have not yet spawned the grace-period
62da1921
PM
2323 * task, this CPU does not need another grace period,
2324 * or a grace period is already in progress.
b3dbec76 2325 * Either way, don't start a new grace period.
afe24b12 2326 */
48a7639c 2327 return false;
afe24b12 2328 }
7d0ae808
PM
2329 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2330 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2331 TPS("newreq"));
62da1921 2332
016a8d5b
SR
2333 /*
2334 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2335 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2336 * the wakeup to our caller.
016a8d5b 2337 */
48a7639c 2338 return true;
64db4cff
PM
2339}
2340
910ee45d
PM
2341/*
2342 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2343 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2344 * is invoked indirectly from rcu_advance_cbs(), which would result in
2345 * endless recursion -- or would do so if it wasn't for the self-deadlock
2346 * that is encountered beforehand.
48a7639c
PM
2347 *
2348 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2349 */
48a7639c 2350static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2351{
2352 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2353 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2354 bool ret = false;
910ee45d
PM
2355
2356 /*
2357 * If there is no grace period in progress right now, any
2358 * callbacks we have up to this point will be satisfied by the
2359 * next grace period. Also, advancing the callbacks reduces the
2360 * probability of false positives from cpu_needs_another_gp()
2361 * resulting in pointless grace periods. So, advance callbacks
2362 * then start the grace period!
2363 */
48a7639c
PM
2364 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2365 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2366 return ret;
910ee45d
PM
2367}
2368
f41d911f 2369/*
8994515c
PM
2370 * Report a full set of quiescent states to the specified rcu_state data
2371 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2372 * kthread if another grace period is required. Whether we wake
2373 * the grace-period kthread or it awakens itself for the next round
2374 * of quiescent-state forcing, that kthread will clean up after the
2375 * just-completed grace period. Note that the caller must hold rnp->lock,
2376 * which is released before return.
f41d911f 2377 */
d3f6bad3 2378static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2379 __releases(rcu_get_root(rsp)->lock)
f41d911f 2380{
c0b334c5 2381 lockdep_assert_held(&rcu_get_root(rsp)->lock);
fc2219d4 2382 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2383 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2384 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2385 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2386}
2387
64db4cff 2388/*
d3f6bad3
PM
2389 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2390 * Allows quiescent states for a group of CPUs to be reported at one go
2391 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2392 * must be represented by the same rcu_node structure (which need not be a
2393 * leaf rcu_node structure, though it often will be). The gps parameter
2394 * is the grace-period snapshot, which means that the quiescent states
2395 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2396 * must be held upon entry, and it is released before return.
64db4cff
PM
2397 */
2398static void
d3f6bad3 2399rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2400 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2401 __releases(rnp->lock)
2402{
654e9533 2403 unsigned long oldmask = 0;
28ecd580
PM
2404 struct rcu_node *rnp_c;
2405
c0b334c5
PM
2406 lockdep_assert_held(&rnp->lock);
2407
64db4cff
PM
2408 /* Walk up the rcu_node hierarchy. */
2409 for (;;) {
654e9533 2410 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2411
654e9533
PM
2412 /*
2413 * Our bit has already been cleared, or the
2414 * relevant grace period is already over, so done.
2415 */
67c583a7 2416 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2417 return;
2418 }
654e9533 2419 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2dee9404
PM
2420 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2421 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2422 rnp->qsmask &= ~mask;
d4c08f2a
PM
2423 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2424 mask, rnp->qsmask, rnp->level,
2425 rnp->grplo, rnp->grphi,
2426 !!rnp->gp_tasks);
27f4d280 2427 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2428
2429 /* Other bits still set at this level, so done. */
67c583a7 2430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2431 return;
2432 }
2433 mask = rnp->grpmask;
2434 if (rnp->parent == NULL) {
2435
2436 /* No more levels. Exit loop holding root lock. */
2437
2438 break;
2439 }
67c583a7 2440 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2441 rnp_c = rnp;
64db4cff 2442 rnp = rnp->parent;
2a67e741 2443 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2444 oldmask = rnp_c->qsmask;
64db4cff
PM
2445 }
2446
2447 /*
2448 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2449 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2450 * to clean up and start the next grace period if one is needed.
64db4cff 2451 */
d3f6bad3 2452 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2453}
2454
cc99a310
PM
2455/*
2456 * Record a quiescent state for all tasks that were previously queued
2457 * on the specified rcu_node structure and that were blocking the current
2458 * RCU grace period. The caller must hold the specified rnp->lock with
2459 * irqs disabled, and this lock is released upon return, but irqs remain
2460 * disabled.
2461 */
0aa04b05 2462static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2463 struct rcu_node *rnp, unsigned long flags)
2464 __releases(rnp->lock)
2465{
654e9533 2466 unsigned long gps;
cc99a310
PM
2467 unsigned long mask;
2468 struct rcu_node *rnp_p;
2469
c0b334c5 2470 lockdep_assert_held(&rnp->lock);
a77da14c
PM
2471 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2472 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2474 return; /* Still need more quiescent states! */
2475 }
2476
2477 rnp_p = rnp->parent;
2478 if (rnp_p == NULL) {
2479 /*
a77da14c
PM
2480 * Only one rcu_node structure in the tree, so don't
2481 * try to report up to its nonexistent parent!
cc99a310
PM
2482 */
2483 rcu_report_qs_rsp(rsp, flags);
2484 return;
2485 }
2486
654e9533
PM
2487 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2488 gps = rnp->gpnum;
cc99a310 2489 mask = rnp->grpmask;
67c583a7 2490 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2491 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2492 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2493}
2494
64db4cff 2495/*
d3f6bad3 2496 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2497 * structure. This must be called from the specified CPU.
64db4cff
PM
2498 */
2499static void
d7d6a11e 2500rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2501{
2502 unsigned long flags;
2503 unsigned long mask;
48a7639c 2504 bool needwake;
64db4cff
PM
2505 struct rcu_node *rnp;
2506
2507 rnp = rdp->mynode;
2a67e741 2508 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2509 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2510 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2511
2512 /*
e4cc1f22
PM
2513 * The grace period in which this quiescent state was
2514 * recorded has ended, so don't report it upwards.
2515 * We will instead need a new quiescent state that lies
2516 * within the current grace period.
64db4cff 2517 */
5b74c458 2518 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2519 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2520 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2521 return;
2522 }
2523 mask = rdp->grpmask;
2524 if ((rnp->qsmask & mask) == 0) {
67c583a7 2525 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2526 } else {
bb53e416 2527 rdp->core_needs_qs = false;
64db4cff
PM
2528
2529 /*
2530 * This GP can't end until cpu checks in, so all of our
2531 * callbacks can be processed during the next GP.
2532 */
48a7639c 2533 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2534
654e9533
PM
2535 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2536 /* ^^^ Released rnp->lock */
48a7639c
PM
2537 if (needwake)
2538 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2539 }
2540}
2541
2542/*
2543 * Check to see if there is a new grace period of which this CPU
2544 * is not yet aware, and if so, set up local rcu_data state for it.
2545 * Otherwise, see if this CPU has just passed through its first
2546 * quiescent state for this grace period, and record that fact if so.
2547 */
2548static void
2549rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2550{
05eb552b
PM
2551 /* Check for grace-period ends and beginnings. */
2552 note_gp_changes(rsp, rdp);
64db4cff
PM
2553
2554 /*
2555 * Does this CPU still need to do its part for current grace period?
2556 * If no, return and let the other CPUs do their part as well.
2557 */
97c668b8 2558 if (!rdp->core_needs_qs)
64db4cff
PM
2559 return;
2560
2561 /*
2562 * Was there a quiescent state since the beginning of the grace
2563 * period? If no, then exit and wait for the next call.
2564 */
3a19b46a 2565 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2566 return;
2567
d3f6bad3
PM
2568 /*
2569 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2570 * judge of that).
2571 */
d7d6a11e 2572 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2573}
2574
b1420f1c
PM
2575/*
2576 * Trace the fact that this CPU is going offline.
2577 */
2578static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2579{
88a4976d
PM
2580 RCU_TRACE(unsigned long mask;)
2581 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2582 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2583
ea46351c
PM
2584 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2585 return;
2586
88a4976d 2587 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2588 trace_rcu_grace_period(rsp->name,
2589 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2590 TPS("cpuofl"));
64db4cff
PM
2591}
2592
8af3a5e7
PM
2593/*
2594 * All CPUs for the specified rcu_node structure have gone offline,
2595 * and all tasks that were preempted within an RCU read-side critical
2596 * section while running on one of those CPUs have since exited their RCU
2597 * read-side critical section. Some other CPU is reporting this fact with
2598 * the specified rcu_node structure's ->lock held and interrupts disabled.
2599 * This function therefore goes up the tree of rcu_node structures,
2600 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2601 * the leaf rcu_node structure's ->qsmaskinit field has already been
2602 * updated
2603 *
2604 * This function does check that the specified rcu_node structure has
2605 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2606 * prematurely. That said, invoking it after the fact will cost you
2607 * a needless lock acquisition. So once it has done its work, don't
2608 * invoke it again.
2609 */
2610static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2611{
2612 long mask;
2613 struct rcu_node *rnp = rnp_leaf;
2614
c0b334c5 2615 lockdep_assert_held(&rnp->lock);
ea46351c
PM
2616 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2617 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2618 return;
2619 for (;;) {
2620 mask = rnp->grpmask;
2621 rnp = rnp->parent;
2622 if (!rnp)
2623 break;
2a67e741 2624 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2625 rnp->qsmaskinit &= ~mask;
0aa04b05 2626 rnp->qsmask &= ~mask;
8af3a5e7 2627 if (rnp->qsmaskinit) {
67c583a7
BF
2628 raw_spin_unlock_rcu_node(rnp);
2629 /* irqs remain disabled. */
8af3a5e7
PM
2630 return;
2631 }
67c583a7 2632 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2633 }
2634}
2635
64db4cff 2636/*
e5601400 2637 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2638 * this fact from process context. Do the remainder of the cleanup.
2639 * There can only be one CPU hotplug operation at a time, so no need for
2640 * explicit locking.
64db4cff 2641 */
e5601400 2642static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2643{
e5601400 2644 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2645 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2646
ea46351c
PM
2647 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2648 return;
2649
2036d94a 2650 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2651 rcu_boost_kthread_setaffinity(rnp, -1);
64db4cff
PM
2652}
2653
64db4cff
PM
2654/*
2655 * Invoke any RCU callbacks that have made it to the end of their grace
2656 * period. Thottle as specified by rdp->blimit.
2657 */
37c72e56 2658static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2659{
2660 unsigned long flags;
15fecf89
PM
2661 struct rcu_head *rhp;
2662 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2663 long bl, count;
64db4cff 2664
dc35c893 2665 /* If no callbacks are ready, just return. */
15fecf89
PM
2666 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2667 trace_rcu_batch_start(rsp->name,
2668 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2669 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2670 trace_rcu_batch_end(rsp->name, 0,
2671 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2672 need_resched(), is_idle_task(current),
2673 rcu_is_callbacks_kthread());
64db4cff 2674 return;
29c00b4a 2675 }
64db4cff
PM
2676
2677 /*
2678 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2679 * races with call_rcu() from interrupt handlers. Leave the
2680 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2681 */
2682 local_irq_save(flags);
8146c4e2 2683 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2684 bl = rdp->blimit;
15fecf89
PM
2685 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2686 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2687 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2688 local_irq_restore(flags);
2689
2690 /* Invoke callbacks. */
15fecf89
PM
2691 rhp = rcu_cblist_dequeue(&rcl);
2692 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2693 debug_rcu_head_unqueue(rhp);
2694 if (__rcu_reclaim(rsp->name, rhp))
2695 rcu_cblist_dequeued_lazy(&rcl);
2696 /*
2697 * Stop only if limit reached and CPU has something to do.
2698 * Note: The rcl structure counts down from zero.
2699 */
4b27f20b 2700 if (-rcl.len >= bl &&
dff1672d
PM
2701 (need_resched() ||
2702 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2703 break;
2704 }
2705
2706 local_irq_save(flags);
4b27f20b 2707 count = -rcl.len;
8ef0f37e
PM
2708 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2709 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2710
15fecf89
PM
2711 /* Update counts and requeue any remaining callbacks. */
2712 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2713 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2714 rdp->n_cbs_invoked += count;
15fecf89 2715 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2716
2717 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2718 count = rcu_segcblist_n_cbs(&rdp->cblist);
2719 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2720 rdp->blimit = blimit;
2721
37c72e56 2722 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2723 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2724 rdp->qlen_last_fqs_check = 0;
2725 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2726 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2727 rdp->qlen_last_fqs_check = count;
2728 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2729
64db4cff
PM
2730 local_irq_restore(flags);
2731
e0f23060 2732 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2733 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2734 invoke_rcu_core();
64db4cff
PM
2735}
2736
2737/*
2738 * Check to see if this CPU is in a non-context-switch quiescent state
2739 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2740 * Also schedule RCU core processing.
64db4cff 2741 *
9b2e4f18 2742 * This function must be called from hardirq context. It is normally
5403d367 2743 * invoked from the scheduling-clock interrupt.
64db4cff 2744 */
c3377c2d 2745void rcu_check_callbacks(int user)
64db4cff 2746{
f7f7bac9 2747 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2748 increment_cpu_stall_ticks();
9b2e4f18 2749 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2750
2751 /*
2752 * Get here if this CPU took its interrupt from user
2753 * mode or from the idle loop, and if this is not a
2754 * nested interrupt. In this case, the CPU is in
d6714c22 2755 * a quiescent state, so note it.
64db4cff
PM
2756 *
2757 * No memory barrier is required here because both
d6714c22
PM
2758 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2759 * variables that other CPUs neither access nor modify,
2760 * at least not while the corresponding CPU is online.
64db4cff
PM
2761 */
2762
284a8c93
PM
2763 rcu_sched_qs();
2764 rcu_bh_qs();
64db4cff
PM
2765
2766 } else if (!in_softirq()) {
2767
2768 /*
2769 * Get here if this CPU did not take its interrupt from
2770 * softirq, in other words, if it is not interrupting
2771 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2772 * critical section, so note it.
64db4cff
PM
2773 */
2774
284a8c93 2775 rcu_bh_qs();
64db4cff 2776 }
86aea0e6 2777 rcu_preempt_check_callbacks();
e3950ecd 2778 if (rcu_pending())
a46e0899 2779 invoke_rcu_core();
8315f422
PM
2780 if (user)
2781 rcu_note_voluntary_context_switch(current);
f7f7bac9 2782 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2783}
2784
64db4cff
PM
2785/*
2786 * Scan the leaf rcu_node structures, processing dyntick state for any that
2787 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2788 * Also initiate boosting for any threads blocked on the root rcu_node.
2789 *
ee47eb9f 2790 * The caller must have suppressed start of new grace periods.
64db4cff 2791 */
fe5ac724 2792static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2793{
64db4cff
PM
2794 int cpu;
2795 unsigned long flags;
2796 unsigned long mask;
a0b6c9a7 2797 struct rcu_node *rnp;
64db4cff 2798
a0b6c9a7 2799 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2800 cond_resched_rcu_qs();
64db4cff 2801 mask = 0;
2a67e741 2802 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2803 if (rnp->qsmask == 0) {
a77da14c
PM
2804 if (rcu_state_p == &rcu_sched_state ||
2805 rsp != rcu_state_p ||
2806 rcu_preempt_blocked_readers_cgp(rnp)) {
2807 /*
2808 * No point in scanning bits because they
2809 * are all zero. But we might need to
2810 * priority-boost blocked readers.
2811 */
2812 rcu_initiate_boost(rnp, flags);
2813 /* rcu_initiate_boost() releases rnp->lock */
2814 continue;
2815 }
2816 if (rnp->parent &&
2817 (rnp->parent->qsmask & rnp->grpmask)) {
2818 /*
2819 * Race between grace-period
2820 * initialization and task exiting RCU
2821 * read-side critical section: Report.
2822 */
2823 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2824 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2825 continue;
2826 }
64db4cff 2827 }
bc75e999
MR
2828 for_each_leaf_node_possible_cpu(rnp, cpu) {
2829 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2830 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2831 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2832 mask |= bit;
2833 }
64db4cff 2834 }
45f014c5 2835 if (mask != 0) {
654e9533
PM
2836 /* Idle/offline CPUs, report (releases rnp->lock. */
2837 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2838 } else {
2839 /* Nothing to do here, so just drop the lock. */
67c583a7 2840 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2841 }
64db4cff 2842 }
64db4cff
PM
2843}
2844
2845/*
2846 * Force quiescent states on reluctant CPUs, and also detect which
2847 * CPUs are in dyntick-idle mode.
2848 */
4cdfc175 2849static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2850{
2851 unsigned long flags;
394f2769
PM
2852 bool ret;
2853 struct rcu_node *rnp;
2854 struct rcu_node *rnp_old = NULL;
2855
2856 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2857 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2858 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2859 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2860 !raw_spin_trylock(&rnp->fqslock);
2861 if (rnp_old != NULL)
2862 raw_spin_unlock(&rnp_old->fqslock);
2863 if (ret) {
a792563b 2864 rsp->n_force_qs_lh++;
394f2769
PM
2865 return;
2866 }
2867 rnp_old = rnp;
2868 }
2869 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2870
394f2769 2871 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2872 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2873 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2874 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2875 rsp->n_force_qs_lh++;
67c583a7 2876 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2877 return; /* Someone beat us to it. */
46a1e34e 2878 }
7d0ae808 2879 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2880 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2881 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2882}
2883
64db4cff 2884/*
e0f23060
PM
2885 * This does the RCU core processing work for the specified rcu_state
2886 * and rcu_data structures. This may be called only from the CPU to
2887 * whom the rdp belongs.
64db4cff
PM
2888 */
2889static void
1bca8cf1 2890__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2891{
2892 unsigned long flags;
48a7639c 2893 bool needwake;
fa07a58f 2894 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2895
50dc7def 2896 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2897
64db4cff
PM
2898 /* Update RCU state based on any recent quiescent states. */
2899 rcu_check_quiescent_state(rsp, rdp);
2900
2901 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2902 local_irq_save(flags);
64db4cff 2903 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2904 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2905 needwake = rcu_start_gp(rsp);
67c583a7 2906 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
2907 if (needwake)
2908 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2909 } else {
2910 local_irq_restore(flags);
64db4cff
PM
2911 }
2912
2913 /* If there are callbacks ready, invoke them. */
15fecf89 2914 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2915 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2916
2917 /* Do any needed deferred wakeups of rcuo kthreads. */
2918 do_nocb_deferred_wakeup(rdp);
09223371
SL
2919}
2920
64db4cff 2921/*
e0f23060 2922 * Do RCU core processing for the current CPU.
64db4cff 2923 */
0766f788 2924static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2925{
6ce75a23
PM
2926 struct rcu_state *rsp;
2927
bfa00b4c
PM
2928 if (cpu_is_offline(smp_processor_id()))
2929 return;
f7f7bac9 2930 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2931 for_each_rcu_flavor(rsp)
2932 __rcu_process_callbacks(rsp);
f7f7bac9 2933 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2934}
2935
a26ac245 2936/*
e0f23060
PM
2937 * Schedule RCU callback invocation. If the specified type of RCU
2938 * does not support RCU priority boosting, just do a direct call,
2939 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2940 * are running on the current CPU with softirqs disabled, the
e0f23060 2941 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2942 */
a46e0899 2943static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2944{
7d0ae808 2945 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2946 return;
a46e0899
PM
2947 if (likely(!rsp->boost)) {
2948 rcu_do_batch(rsp, rdp);
a26ac245
PM
2949 return;
2950 }
a46e0899 2951 invoke_rcu_callbacks_kthread();
a26ac245
PM
2952}
2953
a46e0899 2954static void invoke_rcu_core(void)
09223371 2955{
b0f74036
PM
2956 if (cpu_online(smp_processor_id()))
2957 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2958}
2959
29154c57
PM
2960/*
2961 * Handle any core-RCU processing required by a call_rcu() invocation.
2962 */
2963static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2964 struct rcu_head *head, unsigned long flags)
64db4cff 2965{
48a7639c
PM
2966 bool needwake;
2967
62fde6ed
PM
2968 /*
2969 * If called from an extended quiescent state, invoke the RCU
2970 * core in order to force a re-evaluation of RCU's idleness.
2971 */
9910affa 2972 if (!rcu_is_watching())
62fde6ed
PM
2973 invoke_rcu_core();
2974
a16b7a69 2975 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2976 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2977 return;
64db4cff 2978
37c72e56
PM
2979 /*
2980 * Force the grace period if too many callbacks or too long waiting.
2981 * Enforce hysteresis, and don't invoke force_quiescent_state()
2982 * if some other CPU has recently done so. Also, don't bother
2983 * invoking force_quiescent_state() if the newly enqueued callback
2984 * is the only one waiting for a grace period to complete.
2985 */
15fecf89
PM
2986 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2987 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2988
2989 /* Are we ignoring a completed grace period? */
470716fc 2990 note_gp_changes(rsp, rdp);
b52573d2
PM
2991
2992 /* Start a new grace period if one not already started. */
2993 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2994 struct rcu_node *rnp_root = rcu_get_root(rsp);
2995
2a67e741 2996 raw_spin_lock_rcu_node(rnp_root);
48a7639c 2997 needwake = rcu_start_gp(rsp);
67c583a7 2998 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
2999 if (needwake)
3000 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3001 } else {
3002 /* Give the grace period a kick. */
3003 rdp->blimit = LONG_MAX;
3004 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 3005 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 3006 force_quiescent_state(rsp);
b52573d2 3007 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 3008 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 3009 }
4cdfc175 3010 }
29154c57
PM
3011}
3012
ae150184
PM
3013/*
3014 * RCU callback function to leak a callback.
3015 */
3016static void rcu_leak_callback(struct rcu_head *rhp)
3017{
3018}
3019
3fbfbf7a
PM
3020/*
3021 * Helper function for call_rcu() and friends. The cpu argument will
3022 * normally be -1, indicating "currently running CPU". It may specify
3023 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3024 * is expected to specify a CPU.
3025 */
64db4cff 3026static void
b6a4ae76 3027__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3028 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3029{
3030 unsigned long flags;
3031 struct rcu_data *rdp;
3032
b8f2ed53
PM
3033 /* Misaligned rcu_head! */
3034 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3035
ae150184 3036 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
3037 /*
3038 * Probable double call_rcu(), so leak the callback.
3039 * Use rcu:rcu_callback trace event to find the previous
3040 * time callback was passed to __call_rcu().
3041 */
3042 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3043 head, head->func);
7d0ae808 3044 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3045 return;
3046 }
64db4cff
PM
3047 head->func = func;
3048 head->next = NULL;
64db4cff 3049 local_irq_save(flags);
394f99a9 3050 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3051
3052 /* Add the callback to our list. */
15fecf89 3053 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3054 int offline;
3055
3056 if (cpu != -1)
3057 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3058 if (likely(rdp->mynode)) {
3059 /* Post-boot, so this should be for a no-CBs CPU. */
3060 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3061 WARN_ON_ONCE(offline);
3062 /* Offline CPU, _call_rcu() illegal, leak callback. */
3063 local_irq_restore(flags);
3064 return;
3065 }
3066 /*
3067 * Very early boot, before rcu_init(). Initialize if needed
3068 * and then drop through to queue the callback.
3069 */
3070 BUG_ON(cpu != -1);
34404ca8 3071 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3072 if (rcu_segcblist_empty(&rdp->cblist))
3073 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3074 }
15fecf89
PM
3075 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3076 if (!lazy)
c57afe80 3077 rcu_idle_count_callbacks_posted();
2655d57e 3078
d4c08f2a
PM
3079 if (__is_kfree_rcu_offset((unsigned long)func))
3080 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3081 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3082 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3083 else
15fecf89
PM
3084 trace_rcu_callback(rsp->name, head,
3085 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3086 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3087
29154c57
PM
3088 /* Go handle any RCU core processing required. */
3089 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3090 local_irq_restore(flags);
3091}
3092
a68a2bb2
PM
3093/**
3094 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3095 * @head: structure to be used for queueing the RCU updates.
3096 * @func: actual callback function to be invoked after the grace period
3097 *
3098 * The callback function will be invoked some time after a full grace
3099 * period elapses, in other words after all currently executing RCU
3100 * read-side critical sections have completed. call_rcu_sched() assumes
3101 * that the read-side critical sections end on enabling of preemption
3102 * or on voluntary preemption.
27fdb35f
PM
3103 * RCU read-side critical sections are delimited by:
3104 *
3105 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3106 * - anything that disables preemption.
a68a2bb2
PM
3107 *
3108 * These may be nested.
3109 *
3110 * See the description of call_rcu() for more detailed information on
3111 * memory ordering guarantees.
64db4cff 3112 */
b6a4ae76 3113void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3114{
3fbfbf7a 3115 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3116}
d6714c22 3117EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3118
a68a2bb2
PM
3119/**
3120 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3121 * @head: structure to be used for queueing the RCU updates.
3122 * @func: actual callback function to be invoked after the grace period
3123 *
3124 * The callback function will be invoked some time after a full grace
3125 * period elapses, in other words after all currently executing RCU
3126 * read-side critical sections have completed. call_rcu_bh() assumes
3127 * that the read-side critical sections end on completion of a softirq
3128 * handler. This means that read-side critical sections in process
3129 * context must not be interrupted by softirqs. This interface is to be
3130 * used when most of the read-side critical sections are in softirq context.
27fdb35f
PM
3131 * RCU read-side critical sections are delimited by:
3132 *
3133 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3134 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3135 *
3136 * These may be nested.
a68a2bb2
PM
3137 *
3138 * See the description of call_rcu() for more detailed information on
3139 * memory ordering guarantees.
64db4cff 3140 */
b6a4ae76 3141void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3142{
3fbfbf7a 3143 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3144}
3145EXPORT_SYMBOL_GPL(call_rcu_bh);
3146
495aa969
ACB
3147/*
3148 * Queue an RCU callback for lazy invocation after a grace period.
3149 * This will likely be later named something like "call_rcu_lazy()",
3150 * but this change will require some way of tagging the lazy RCU
3151 * callbacks in the list of pending callbacks. Until then, this
3152 * function may only be called from __kfree_rcu().
3153 */
3154void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3155 rcu_callback_t func)
495aa969 3156{
e534165b 3157 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3158}
3159EXPORT_SYMBOL_GPL(kfree_call_rcu);
3160
6d813391
PM
3161/*
3162 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3163 * any blocking grace-period wait automatically implies a grace period
3164 * if there is only one CPU online at any point time during execution
3165 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3166 * occasionally incorrectly indicate that there are multiple CPUs online
3167 * when there was in fact only one the whole time, as this just adds
3168 * some overhead: RCU still operates correctly.
6d813391
PM
3169 */
3170static inline int rcu_blocking_is_gp(void)
3171{
95f0c1de
PM
3172 int ret;
3173
6d813391 3174 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3175 preempt_disable();
3176 ret = num_online_cpus() <= 1;
3177 preempt_enable();
3178 return ret;
6d813391
PM
3179}
3180
6ebb237b
PM
3181/**
3182 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3183 *
3184 * Control will return to the caller some time after a full rcu-sched
3185 * grace period has elapsed, in other words after all currently executing
3186 * rcu-sched read-side critical sections have completed. These read-side
3187 * critical sections are delimited by rcu_read_lock_sched() and
3188 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3189 * local_irq_disable(), and so on may be used in place of
3190 * rcu_read_lock_sched().
3191 *
3192 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3193 * non-threaded hardware-interrupt handlers, in progress on entry will
3194 * have completed before this primitive returns. However, this does not
3195 * guarantee that softirq handlers will have completed, since in some
3196 * kernels, these handlers can run in process context, and can block.
3197 *
3198 * Note that this guarantee implies further memory-ordering guarantees.
3199 * On systems with more than one CPU, when synchronize_sched() returns,
3200 * each CPU is guaranteed to have executed a full memory barrier since the
3201 * end of its last RCU-sched read-side critical section whose beginning
3202 * preceded the call to synchronize_sched(). In addition, each CPU having
3203 * an RCU read-side critical section that extends beyond the return from
3204 * synchronize_sched() is guaranteed to have executed a full memory barrier
3205 * after the beginning of synchronize_sched() and before the beginning of
3206 * that RCU read-side critical section. Note that these guarantees include
3207 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3208 * that are executing in the kernel.
3209 *
3210 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3211 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3212 * to have executed a full memory barrier during the execution of
3213 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3214 * again only if the system has more than one CPU).
6ebb237b
PM
3215 */
3216void synchronize_sched(void)
3217{
f78f5b90
PM
3218 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3219 lock_is_held(&rcu_lock_map) ||
3220 lock_is_held(&rcu_sched_lock_map),
3221 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3222 if (rcu_blocking_is_gp())
3223 return;
5afff48b 3224 if (rcu_gp_is_expedited())
3705b88d
AM
3225 synchronize_sched_expedited();
3226 else
3227 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3228}
3229EXPORT_SYMBOL_GPL(synchronize_sched);
3230
3231/**
3232 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3233 *
3234 * Control will return to the caller some time after a full rcu_bh grace
3235 * period has elapsed, in other words after all currently executing rcu_bh
3236 * read-side critical sections have completed. RCU read-side critical
3237 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3238 * and may be nested.
f0a0e6f2
PM
3239 *
3240 * See the description of synchronize_sched() for more detailed information
3241 * on memory ordering guarantees.
6ebb237b
PM
3242 */
3243void synchronize_rcu_bh(void)
3244{
f78f5b90
PM
3245 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3246 lock_is_held(&rcu_lock_map) ||
3247 lock_is_held(&rcu_sched_lock_map),
3248 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3249 if (rcu_blocking_is_gp())
3250 return;
5afff48b 3251 if (rcu_gp_is_expedited())
3705b88d
AM
3252 synchronize_rcu_bh_expedited();
3253 else
3254 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3255}
3256EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3257
765a3f4f
PM
3258/**
3259 * get_state_synchronize_rcu - Snapshot current RCU state
3260 *
3261 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3262 * to determine whether or not a full grace period has elapsed in the
3263 * meantime.
3264 */
3265unsigned long get_state_synchronize_rcu(void)
3266{
3267 /*
3268 * Any prior manipulation of RCU-protected data must happen
3269 * before the load from ->gpnum.
3270 */
3271 smp_mb(); /* ^^^ */
3272
3273 /*
3274 * Make sure this load happens before the purportedly
3275 * time-consuming work between get_state_synchronize_rcu()
3276 * and cond_synchronize_rcu().
3277 */
e534165b 3278 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3279}
3280EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3281
3282/**
3283 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3284 *
3285 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3286 *
3287 * If a full RCU grace period has elapsed since the earlier call to
3288 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3289 * synchronize_rcu() to wait for a full grace period.
3290 *
3291 * Yes, this function does not take counter wrap into account. But
3292 * counter wrap is harmless. If the counter wraps, we have waited for
3293 * more than 2 billion grace periods (and way more on a 64-bit system!),
3294 * so waiting for one additional grace period should be just fine.
3295 */
3296void cond_synchronize_rcu(unsigned long oldstate)
3297{
3298 unsigned long newstate;
3299
3300 /*
3301 * Ensure that this load happens before any RCU-destructive
3302 * actions the caller might carry out after we return.
3303 */
e534165b 3304 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3305 if (ULONG_CMP_GE(oldstate, newstate))
3306 synchronize_rcu();
3307}
3308EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3309
24560056
PM
3310/**
3311 * get_state_synchronize_sched - Snapshot current RCU-sched state
3312 *
3313 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3314 * to determine whether or not a full grace period has elapsed in the
3315 * meantime.
3316 */
3317unsigned long get_state_synchronize_sched(void)
3318{
3319 /*
3320 * Any prior manipulation of RCU-protected data must happen
3321 * before the load from ->gpnum.
3322 */
3323 smp_mb(); /* ^^^ */
3324
3325 /*
3326 * Make sure this load happens before the purportedly
3327 * time-consuming work between get_state_synchronize_sched()
3328 * and cond_synchronize_sched().
3329 */
3330 return smp_load_acquire(&rcu_sched_state.gpnum);
3331}
3332EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3333
3334/**
3335 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3336 *
3337 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3338 *
3339 * If a full RCU-sched grace period has elapsed since the earlier call to
3340 * get_state_synchronize_sched(), just return. Otherwise, invoke
3341 * synchronize_sched() to wait for a full grace period.
3342 *
3343 * Yes, this function does not take counter wrap into account. But
3344 * counter wrap is harmless. If the counter wraps, we have waited for
3345 * more than 2 billion grace periods (and way more on a 64-bit system!),
3346 * so waiting for one additional grace period should be just fine.
3347 */
3348void cond_synchronize_sched(unsigned long oldstate)
3349{
3350 unsigned long newstate;
3351
3352 /*
3353 * Ensure that this load happens before any RCU-destructive
3354 * actions the caller might carry out after we return.
3355 */
3356 newstate = smp_load_acquire(&rcu_sched_state.completed);
3357 if (ULONG_CMP_GE(oldstate, newstate))
3358 synchronize_sched();
3359}
3360EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3361
64db4cff
PM
3362/*
3363 * Check to see if there is any immediate RCU-related work to be done
3364 * by the current CPU, for the specified type of RCU, returning 1 if so.
3365 * The checks are in order of increasing expense: checks that can be
3366 * carried out against CPU-local state are performed first. However,
3367 * we must check for CPU stalls first, else we might not get a chance.
3368 */
3369static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3370{
2f51f988
PM
3371 struct rcu_node *rnp = rdp->mynode;
3372
64db4cff
PM
3373 rdp->n_rcu_pending++;
3374
3375 /* Check for CPU stalls, if enabled. */
3376 check_cpu_stall(rsp, rdp);
3377
a096932f
PM
3378 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3379 if (rcu_nohz_full_cpu(rsp))
3380 return 0;
3381
64db4cff 3382 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3383 if (rcu_scheduler_fully_active &&
5b74c458 3384 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3385 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3386 rdp->n_rp_core_needs_qs++;
3a19b46a 3387 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3388 rdp->n_rp_report_qs++;
64db4cff 3389 return 1;
7ba5c840 3390 }
64db4cff
PM
3391
3392 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3393 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3394 rdp->n_rp_cb_ready++;
64db4cff 3395 return 1;
7ba5c840 3396 }
64db4cff
PM
3397
3398 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3399 if (cpu_needs_another_gp(rsp, rdp)) {
3400 rdp->n_rp_cpu_needs_gp++;
64db4cff 3401 return 1;
7ba5c840 3402 }
64db4cff
PM
3403
3404 /* Has another RCU grace period completed? */
7d0ae808 3405 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3406 rdp->n_rp_gp_completed++;
64db4cff 3407 return 1;
7ba5c840 3408 }
64db4cff
PM
3409
3410 /* Has a new RCU grace period started? */
7d0ae808
PM
3411 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3412 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3413 rdp->n_rp_gp_started++;
64db4cff 3414 return 1;
7ba5c840 3415 }
64db4cff 3416
96d3fd0d
PM
3417 /* Does this CPU need a deferred NOCB wakeup? */
3418 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3419 rdp->n_rp_nocb_defer_wakeup++;
3420 return 1;
3421 }
3422
64db4cff 3423 /* nothing to do */
7ba5c840 3424 rdp->n_rp_need_nothing++;
64db4cff
PM
3425 return 0;
3426}
3427
3428/*
3429 * Check to see if there is any immediate RCU-related work to be done
3430 * by the current CPU, returning 1 if so. This function is part of the
3431 * RCU implementation; it is -not- an exported member of the RCU API.
3432 */
e3950ecd 3433static int rcu_pending(void)
64db4cff 3434{
6ce75a23
PM
3435 struct rcu_state *rsp;
3436
3437 for_each_rcu_flavor(rsp)
e3950ecd 3438 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3439 return 1;
3440 return 0;
64db4cff
PM
3441}
3442
3443/*
c0f4dfd4
PM
3444 * Return true if the specified CPU has any callback. If all_lazy is
3445 * non-NULL, store an indication of whether all callbacks are lazy.
3446 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3447 */
82072c4f 3448static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3449{
c0f4dfd4
PM
3450 bool al = true;
3451 bool hc = false;
3452 struct rcu_data *rdp;
6ce75a23
PM
3453 struct rcu_state *rsp;
3454
c0f4dfd4 3455 for_each_rcu_flavor(rsp) {
aa6da514 3456 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3457 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3458 continue;
3459 hc = true;
15fecf89 3460 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3461 al = false;
69c8d28c
PM
3462 break;
3463 }
c0f4dfd4
PM
3464 }
3465 if (all_lazy)
3466 *all_lazy = al;
3467 return hc;
64db4cff
PM
3468}
3469
a83eff0a
PM
3470/*
3471 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3472 * the compiler is expected to optimize this away.
3473 */
e66c33d5 3474static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3475 int cpu, unsigned long done)
3476{
3477 trace_rcu_barrier(rsp->name, s, cpu,
3478 atomic_read(&rsp->barrier_cpu_count), done);
3479}
3480
b1420f1c
PM
3481/*
3482 * RCU callback function for _rcu_barrier(). If we are last, wake
3483 * up the task executing _rcu_barrier().
3484 */
24ebbca8 3485static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3486{
24ebbca8
PM
3487 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3488 struct rcu_state *rsp = rdp->rsp;
3489
a83eff0a 3490 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
d8db2e86
PM
3491 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3492 rsp->barrier_sequence);
7db74df8 3493 complete(&rsp->barrier_completion);
a83eff0a 3494 } else {
d8db2e86 3495 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
a83eff0a 3496 }
d0ec774c
PM
3497}
3498
3499/*
3500 * Called with preemption disabled, and from cross-cpu IRQ context.
3501 */
3502static void rcu_barrier_func(void *type)
3503{
037b64ed 3504 struct rcu_state *rsp = type;
fa07a58f 3505 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3506
d8db2e86 3507 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
f92c734f
PM
3508 rdp->barrier_head.func = rcu_barrier_callback;
3509 debug_rcu_head_queue(&rdp->barrier_head);
3510 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3511 atomic_inc(&rsp->barrier_cpu_count);
3512 } else {
3513 debug_rcu_head_unqueue(&rdp->barrier_head);
d8db2e86
PM
3514 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3515 rsp->barrier_sequence);
f92c734f 3516 }
d0ec774c
PM
3517}
3518
d0ec774c
PM
3519/*
3520 * Orchestrate the specified type of RCU barrier, waiting for all
3521 * RCU callbacks of the specified type to complete.
3522 */
037b64ed 3523static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3524{
b1420f1c 3525 int cpu;
b1420f1c 3526 struct rcu_data *rdp;
4f525a52 3527 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3528
d8db2e86 3529 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
b1420f1c 3530
e74f4c45 3531 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3532 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3533
4f525a52
PM
3534 /* Did someone else do our work for us? */
3535 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
d8db2e86
PM
3536 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3537 rsp->barrier_sequence);
cf3a9c48
PM
3538 smp_mb(); /* caller's subsequent code after above check. */
3539 mutex_unlock(&rsp->barrier_mutex);
3540 return;
3541 }
3542
4f525a52
PM
3543 /* Mark the start of the barrier operation. */
3544 rcu_seq_start(&rsp->barrier_sequence);
d8db2e86 3545 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
b1420f1c 3546
d0ec774c 3547 /*
b1420f1c
PM
3548 * Initialize the count to one rather than to zero in order to
3549 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3550 * (or preemption of this task). Exclude CPU-hotplug operations
3551 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3552 */
7db74df8 3553 init_completion(&rsp->barrier_completion);
24ebbca8 3554 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3555 get_online_cpus();
b1420f1c
PM
3556
3557 /*
1331e7a1
PM
3558 * Force each CPU with callbacks to register a new callback.
3559 * When that callback is invoked, we will know that all of the
3560 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3561 */
3fbfbf7a 3562 for_each_possible_cpu(cpu) {
d1e43fa5 3563 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3564 continue;
b1420f1c 3565 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3566 if (rcu_is_nocb_cpu(cpu)) {
d7e29933 3567 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
d8db2e86 3568 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
4f525a52 3569 rsp->barrier_sequence);
d7e29933 3570 } else {
d8db2e86 3571 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
4f525a52 3572 rsp->barrier_sequence);
41050a00 3573 smp_mb__before_atomic();
d7e29933
PM
3574 atomic_inc(&rsp->barrier_cpu_count);
3575 __call_rcu(&rdp->barrier_head,
3576 rcu_barrier_callback, rsp, cpu, 0);
3577 }
15fecf89 3578 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
d8db2e86 3579 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
4f525a52 3580 rsp->barrier_sequence);
037b64ed 3581 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3582 } else {
d8db2e86 3583 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
4f525a52 3584 rsp->barrier_sequence);
b1420f1c
PM
3585 }
3586 }
1331e7a1 3587 put_online_cpus();
b1420f1c
PM
3588
3589 /*
3590 * Now that we have an rcu_barrier_callback() callback on each
3591 * CPU, and thus each counted, remove the initial count.
3592 */
24ebbca8 3593 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3594 complete(&rsp->barrier_completion);
b1420f1c
PM
3595
3596 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3597 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3598
4f525a52 3599 /* Mark the end of the barrier operation. */
d8db2e86 3600 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
4f525a52
PM
3601 rcu_seq_end(&rsp->barrier_sequence);
3602
b1420f1c 3603 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3604 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3605}
d0ec774c
PM
3606
3607/**
3608 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3609 */
3610void rcu_barrier_bh(void)
3611{
037b64ed 3612 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3613}
3614EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3615
3616/**
3617 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3618 */
3619void rcu_barrier_sched(void)
3620{
037b64ed 3621 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3622}
3623EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3624
0aa04b05
PM
3625/*
3626 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3627 * first CPU in a given leaf rcu_node structure coming online. The caller
3628 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3629 * disabled.
3630 */
3631static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3632{
3633 long mask;
3634 struct rcu_node *rnp = rnp_leaf;
3635
c0b334c5 3636 lockdep_assert_held(&rnp->lock);
0aa04b05
PM
3637 for (;;) {
3638 mask = rnp->grpmask;
3639 rnp = rnp->parent;
3640 if (rnp == NULL)
3641 return;
6cf10081 3642 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3643 rnp->qsmaskinit |= mask;
67c583a7 3644 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3645 }
3646}
3647
64db4cff 3648/*
27569620 3649 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3650 */
27569620
PM
3651static void __init
3652rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3653{
3654 unsigned long flags;
394f99a9 3655 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3656 struct rcu_node *rnp = rcu_get_root(rsp);
3657
3658 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3659 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3660 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3661 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
51a1fd30 3662 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
02a5c550 3663 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3664 rdp->cpu = cpu;
d4c08f2a 3665 rdp->rsp = rsp;
3fbfbf7a 3666 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3667 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3668}
3669
3670/*
3671 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3672 * offline event can be happening at a given time. Note also that we
3673 * can accept some slop in the rsp->completed access due to the fact
3674 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3675 */
49fb4c62 3676static void
9b67122a 3677rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3678{
3679 unsigned long flags;
394f99a9 3680 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3681 struct rcu_node *rnp = rcu_get_root(rsp);
3682
3683 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3684 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3685 rdp->qlen_last_fqs_check = 0;
3686 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3687 rdp->blimit = blimit;
15fecf89
PM
3688 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3689 !init_nocb_callback_list(rdp))
3690 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
2342172f 3691 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3692 rcu_dynticks_eqs_online();
67c583a7 3693 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3694
0aa04b05
PM
3695 /*
3696 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3697 * propagation up the rcu_node tree will happen at the beginning
3698 * of the next grace period.
3699 */
64db4cff 3700 rnp = rdp->mynode;
2a67e741 3701 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3702 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3703 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3704 rdp->completed = rnp->completed;
5b74c458 3705 rdp->cpu_no_qs.b.norm = true;
9577df9a 3706 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3707 rdp->core_needs_qs = false;
9b9500da
PM
3708 rdp->rcu_iw_pending = false;
3709 rdp->rcu_iw_gpnum = rnp->gpnum - 1;
0aa04b05 3710 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3711 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3712}
3713
deb34f36
PM
3714/*
3715 * Invoked early in the CPU-online process, when pretty much all
3716 * services are available. The incoming CPU is not present.
3717 */
4df83742 3718int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3719{
6ce75a23
PM
3720 struct rcu_state *rsp;
3721
3722 for_each_rcu_flavor(rsp)
9b67122a 3723 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3724
3725 rcu_prepare_kthreads(cpu);
3726 rcu_spawn_all_nocb_kthreads(cpu);
3727
3728 return 0;
3729}
3730
deb34f36
PM
3731/*
3732 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3733 */
4df83742
TG
3734static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3735{
3736 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3737
3738 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3739}
3740
deb34f36
PM
3741/*
3742 * Near the end of the CPU-online process. Pretty much all services
3743 * enabled, and the CPU is now very much alive.
3744 */
4df83742
TG
3745int rcutree_online_cpu(unsigned int cpu)
3746{
9b9500da
PM
3747 unsigned long flags;
3748 struct rcu_data *rdp;
3749 struct rcu_node *rnp;
3750 struct rcu_state *rsp;
3751
3752 for_each_rcu_flavor(rsp) {
3753 rdp = per_cpu_ptr(rsp->rda, cpu);
3754 rnp = rdp->mynode;
3755 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3756 rnp->ffmask |= rdp->grpmask;
3757 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3758 }
da915ad5
PM
3759 if (IS_ENABLED(CONFIG_TREE_SRCU))
3760 srcu_online_cpu(cpu);
9b9500da
PM
3761 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3762 return 0; /* Too early in boot for scheduler work. */
3763 sync_sched_exp_online_cleanup(cpu);
3764 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3765 return 0;
3766}
3767
deb34f36
PM
3768/*
3769 * Near the beginning of the process. The CPU is still very much alive
3770 * with pretty much all services enabled.
3771 */
4df83742
TG
3772int rcutree_offline_cpu(unsigned int cpu)
3773{
9b9500da
PM
3774 unsigned long flags;
3775 struct rcu_data *rdp;
3776 struct rcu_node *rnp;
3777 struct rcu_state *rsp;
3778
3779 for_each_rcu_flavor(rsp) {
3780 rdp = per_cpu_ptr(rsp->rda, cpu);
3781 rnp = rdp->mynode;
3782 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3783 rnp->ffmask &= ~rdp->grpmask;
3784 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3785 }
3786
4df83742 3787 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3788 if (IS_ENABLED(CONFIG_TREE_SRCU))
3789 srcu_offline_cpu(cpu);
4df83742
TG
3790 return 0;
3791}
3792
deb34f36
PM
3793/*
3794 * Near the end of the offline process. We do only tracing here.
3795 */
4df83742
TG
3796int rcutree_dying_cpu(unsigned int cpu)
3797{
3798 struct rcu_state *rsp;
3799
3800 for_each_rcu_flavor(rsp)
3801 rcu_cleanup_dying_cpu(rsp);
3802 return 0;
3803}
3804
deb34f36
PM
3805/*
3806 * The outgoing CPU is gone and we are running elsewhere.
3807 */
4df83742
TG
3808int rcutree_dead_cpu(unsigned int cpu)
3809{
3810 struct rcu_state *rsp;
3811
3812 for_each_rcu_flavor(rsp) {
3813 rcu_cleanup_dead_cpu(cpu, rsp);
3814 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3815 }
3816 return 0;
64db4cff
PM
3817}
3818
7ec99de3
PM
3819/*
3820 * Mark the specified CPU as being online so that subsequent grace periods
3821 * (both expedited and normal) will wait on it. Note that this means that
3822 * incoming CPUs are not allowed to use RCU read-side critical sections
3823 * until this function is called. Failing to observe this restriction
3824 * will result in lockdep splats.
deb34f36
PM
3825 *
3826 * Note that this function is special in that it is invoked directly
3827 * from the incoming CPU rather than from the cpuhp_step mechanism.
3828 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3829 */
3830void rcu_cpu_starting(unsigned int cpu)
3831{
3832 unsigned long flags;
3833 unsigned long mask;
313517fc
PM
3834 int nbits;
3835 unsigned long oldmask;
7ec99de3
PM
3836 struct rcu_data *rdp;
3837 struct rcu_node *rnp;
3838 struct rcu_state *rsp;
3839
3840 for_each_rcu_flavor(rsp) {
fdbb9b31 3841 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3842 rnp = rdp->mynode;
3843 mask = rdp->grpmask;
3844 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3845 rnp->qsmaskinitnext |= mask;
313517fc 3846 oldmask = rnp->expmaskinitnext;
7ec99de3 3847 rnp->expmaskinitnext |= mask;
313517fc
PM
3848 oldmask ^= rnp->expmaskinitnext;
3849 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3850 /* Allow lockless access for expedited grace periods. */
3851 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
7ec99de3
PM
3852 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3853 }
313517fc 3854 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3855}
3856
27d50c7e
TG
3857#ifdef CONFIG_HOTPLUG_CPU
3858/*
3859 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3860 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3861 * bit masks.
3862 */
3863static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3864{
3865 unsigned long flags;
3866 unsigned long mask;
3867 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3868 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3869
27d50c7e
TG
3870 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3871 mask = rdp->grpmask;
3872 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3873 rnp->qsmaskinitnext &= ~mask;
710d60cb 3874 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3875}
3876
deb34f36
PM
3877/*
3878 * The outgoing function has no further need of RCU, so remove it from
3879 * the list of CPUs that RCU must track.
3880 *
3881 * Note that this function is special in that it is invoked directly
3882 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3883 * This is because this function must be invoked at a precise location.
3884 */
27d50c7e
TG
3885void rcu_report_dead(unsigned int cpu)
3886{
3887 struct rcu_state *rsp;
3888
3889 /* QS for any half-done expedited RCU-sched GP. */
3890 preempt_disable();
3891 rcu_report_exp_rdp(&rcu_sched_state,
3892 this_cpu_ptr(rcu_sched_state.rda), true);
3893 preempt_enable();
3894 for_each_rcu_flavor(rsp)
3895 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3896}
a58163d8 3897
f2dbe4a5 3898/* Migrate the dead CPU's callbacks to the current CPU. */
a58163d8
PM
3899static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3900{
3901 unsigned long flags;
b1a2d79f 3902 struct rcu_data *my_rdp;
a58163d8 3903 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
9fa46fb8 3904 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
a58163d8 3905
95335c03
PM
3906 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3907 return; /* No callbacks to migrate. */
3908
b1a2d79f
PM
3909 local_irq_save(flags);
3910 my_rdp = this_cpu_ptr(rsp->rda);
3911 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3912 local_irq_restore(flags);
3913 return;
3914 }
9fa46fb8
PM
3915 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3916 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
21cc2483 3917 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
f2dbe4a5 3918 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3919 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3920 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3921 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
a58163d8
PM
3922 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3923 !rcu_segcblist_empty(&rdp->cblist),
3924 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3925 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3926 rcu_segcblist_first_cb(&rdp->cblist));
3927}
3928
3929/*
3930 * The outgoing CPU has just passed through the dying-idle state,
3931 * and we are being invoked from the CPU that was IPIed to continue the
3932 * offline operation. We need to migrate the outgoing CPU's callbacks.
3933 */
3934void rcutree_migrate_callbacks(int cpu)
3935{
3936 struct rcu_state *rsp;
3937
3938 for_each_rcu_flavor(rsp)
3939 rcu_migrate_callbacks(cpu, rsp);
3940}
27d50c7e
TG
3941#endif
3942
deb34f36
PM
3943/*
3944 * On non-huge systems, use expedited RCU grace periods to make suspend
3945 * and hibernation run faster.
3946 */
d1d74d14
BP
3947static int rcu_pm_notify(struct notifier_block *self,
3948 unsigned long action, void *hcpu)
3949{
3950 switch (action) {
3951 case PM_HIBERNATION_PREPARE:
3952 case PM_SUSPEND_PREPARE:
3953 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3954 rcu_expedite_gp();
d1d74d14
BP
3955 break;
3956 case PM_POST_HIBERNATION:
3957 case PM_POST_SUSPEND:
5afff48b
PM
3958 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3959 rcu_unexpedite_gp();
d1d74d14
BP
3960 break;
3961 default:
3962 break;
3963 }
3964 return NOTIFY_OK;
3965}
3966
b3dbec76 3967/*
9386c0b7 3968 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3969 */
3970static int __init rcu_spawn_gp_kthread(void)
3971{
3972 unsigned long flags;
a94844b2 3973 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3974 struct rcu_node *rnp;
3975 struct rcu_state *rsp;
a94844b2 3976 struct sched_param sp;
b3dbec76
PM
3977 struct task_struct *t;
3978
a94844b2
PM
3979 /* Force priority into range. */
3980 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3981 kthread_prio = 1;
3982 else if (kthread_prio < 0)
3983 kthread_prio = 0;
3984 else if (kthread_prio > 99)
3985 kthread_prio = 99;
3986 if (kthread_prio != kthread_prio_in)
3987 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3988 kthread_prio, kthread_prio_in);
3989
9386c0b7 3990 rcu_scheduler_fully_active = 1;
b3dbec76 3991 for_each_rcu_flavor(rsp) {
a94844b2 3992 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3993 BUG_ON(IS_ERR(t));
3994 rnp = rcu_get_root(rsp);
6cf10081 3995 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3996 rsp->gp_kthread = t;
a94844b2
PM
3997 if (kthread_prio) {
3998 sp.sched_priority = kthread_prio;
3999 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4000 }
67c583a7 4001 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4002 wake_up_process(t);
b3dbec76 4003 }
35ce7f29 4004 rcu_spawn_nocb_kthreads();
9386c0b7 4005 rcu_spawn_boost_kthreads();
b3dbec76
PM
4006 return 0;
4007}
4008early_initcall(rcu_spawn_gp_kthread);
4009
bbad9379 4010/*
52d7e48b
PM
4011 * This function is invoked towards the end of the scheduler's
4012 * initialization process. Before this is called, the idle task might
4013 * contain synchronous grace-period primitives (during which time, this idle
4014 * task is booting the system, and such primitives are no-ops). After this
4015 * function is called, any synchronous grace-period primitives are run as
4016 * expedited, with the requesting task driving the grace period forward.
900b1028 4017 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4018 * runtime RCU functionality.
bbad9379
PM
4019 */
4020void rcu_scheduler_starting(void)
4021{
4022 WARN_ON(num_online_cpus() != 1);
4023 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4024 rcu_test_sync_prims();
4025 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4026 rcu_test_sync_prims();
bbad9379
PM
4027}
4028
64db4cff
PM
4029/*
4030 * Helper function for rcu_init() that initializes one rcu_state structure.
4031 */
a87f203e 4032static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4033{
cb007102
AG
4034 static const char * const buf[] = RCU_NODE_NAME_INIT;
4035 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4036 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4037 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4038
199977bf 4039 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4040 int cpustride = 1;
4041 int i;
4042 int j;
4043 struct rcu_node *rnp;
4044
05b84aec 4045 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4046
3eaaaf6c
PM
4047 /* Silence gcc 4.8 false positive about array index out of range. */
4048 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4049 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4050
64db4cff
PM
4051 /* Initialize the level-tracking arrays. */
4052
f885b7f2 4053 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4054 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4055 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4056
4057 /* Initialize the elements themselves, starting from the leaves. */
4058
f885b7f2 4059 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4060 cpustride *= levelspread[i];
64db4cff 4061 rnp = rsp->level[i];
41f5c631 4062 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4063 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4064 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4065 &rcu_node_class[i], buf[i]);
394f2769
PM
4066 raw_spin_lock_init(&rnp->fqslock);
4067 lockdep_set_class_and_name(&rnp->fqslock,
4068 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4069 rnp->gpnum = rsp->gpnum;
4070 rnp->completed = rsp->completed;
64db4cff
PM
4071 rnp->qsmask = 0;
4072 rnp->qsmaskinit = 0;
4073 rnp->grplo = j * cpustride;
4074 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4075 if (rnp->grphi >= nr_cpu_ids)
4076 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4077 if (i == 0) {
4078 rnp->grpnum = 0;
4079 rnp->grpmask = 0;
4080 rnp->parent = NULL;
4081 } else {
199977bf 4082 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4083 rnp->grpmask = 1UL << rnp->grpnum;
4084 rnp->parent = rsp->level[i - 1] +
199977bf 4085 j / levelspread[i - 1];
64db4cff
PM
4086 }
4087 rnp->level = i;
12f5f524 4088 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4089 rcu_init_one_nocb(rnp);
f6a12f34
PM
4090 init_waitqueue_head(&rnp->exp_wq[0]);
4091 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4092 init_waitqueue_head(&rnp->exp_wq[2]);
4093 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4094 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4095 }
4096 }
0c34029a 4097
abedf8e2
PG
4098 init_swait_queue_head(&rsp->gp_wq);
4099 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4100 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4101 for_each_possible_cpu(i) {
4a90a068 4102 while (i > rnp->grphi)
0c34029a 4103 rnp++;
394f99a9 4104 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4105 rcu_boot_init_percpu_data(i, rsp);
4106 }
6ce75a23 4107 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4108}
4109
f885b7f2
PM
4110/*
4111 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4112 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4113 * the ->node array in the rcu_state structure.
4114 */
4115static void __init rcu_init_geometry(void)
4116{
026ad283 4117 ulong d;
f885b7f2 4118 int i;
05b84aec 4119 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4120
026ad283
PM
4121 /*
4122 * Initialize any unspecified boot parameters.
4123 * The default values of jiffies_till_first_fqs and
4124 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4125 * value, which is a function of HZ, then adding one for each
4126 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4127 */
4128 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4129 if (jiffies_till_first_fqs == ULONG_MAX)
4130 jiffies_till_first_fqs = d;
4131 if (jiffies_till_next_fqs == ULONG_MAX)
4132 jiffies_till_next_fqs = d;
4133
f885b7f2 4134 /* If the compile-time values are accurate, just leave. */
47d631af 4135 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4136 nr_cpu_ids == NR_CPUS)
f885b7f2 4137 return;
9b130ad5 4138 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 4139 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4140
f885b7f2 4141 /*
ee968ac6
PM
4142 * The boot-time rcu_fanout_leaf parameter must be at least two
4143 * and cannot exceed the number of bits in the rcu_node masks.
4144 * Complain and fall back to the compile-time values if this
4145 * limit is exceeded.
f885b7f2 4146 */
ee968ac6 4147 if (rcu_fanout_leaf < 2 ||
75cf15a4 4148 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4149 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4150 WARN_ON(1);
4151 return;
4152 }
4153
f885b7f2
PM
4154 /*
4155 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4156 * with the given number of levels.
f885b7f2 4157 */
9618138b 4158 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4159 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4160 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4161
4162 /*
75cf15a4 4163 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4164 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4165 */
ee968ac6
PM
4166 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4167 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4168 WARN_ON(1);
4169 return;
4170 }
f885b7f2 4171
679f9858 4172 /* Calculate the number of levels in the tree. */
9618138b 4173 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4174 }
9618138b 4175 rcu_num_lvls = i + 1;
679f9858 4176
f885b7f2 4177 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4178 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4179 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4180 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4181 }
f885b7f2
PM
4182
4183 /* Calculate the total number of rcu_node structures. */
4184 rcu_num_nodes = 0;
679f9858 4185 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4186 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4187}
4188
a3dc2948
PM
4189/*
4190 * Dump out the structure of the rcu_node combining tree associated
4191 * with the rcu_state structure referenced by rsp.
4192 */
4193static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4194{
4195 int level = 0;
4196 struct rcu_node *rnp;
4197
4198 pr_info("rcu_node tree layout dump\n");
4199 pr_info(" ");
4200 rcu_for_each_node_breadth_first(rsp, rnp) {
4201 if (rnp->level != level) {
4202 pr_cont("\n");
4203 pr_info(" ");
4204 level = rnp->level;
4205 }
4206 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4207 }
4208 pr_cont("\n");
4209}
4210
9f680ab4 4211void __init rcu_init(void)
64db4cff 4212{
017c4261 4213 int cpu;
9f680ab4 4214
47627678
PM
4215 rcu_early_boot_tests();
4216
f41d911f 4217 rcu_bootup_announce();
f885b7f2 4218 rcu_init_geometry();
a87f203e
PM
4219 rcu_init_one(&rcu_bh_state);
4220 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4221 if (dump_tree)
4222 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4223 __rcu_init_preempt();
b5b39360 4224 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4225
4226 /*
4227 * We don't need protection against CPU-hotplug here because
4228 * this is called early in boot, before either interrupts
4229 * or the scheduler are operational.
4230 */
d1d74d14 4231 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4232 for_each_online_cpu(cpu) {
4df83742 4233 rcutree_prepare_cpu(cpu);
7ec99de3 4234 rcu_cpu_starting(cpu);
9b9500da 4235 rcutree_online_cpu(cpu);
7ec99de3 4236 }
64db4cff
PM
4237}
4238
3549c2bc 4239#include "tree_exp.h"
4102adab 4240#include "tree_plugin.h"