torture: Use correct path for Kconfig fragment for duplicates
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
64db4cff 60
4102adab 61#include "tree.h"
29c00b4a 62#include "rcu.h"
9f77da9f 63
4102adab
PM
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f7f7bac9
SRRH
71/*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
a8a29b3b
AB
79#ifdef CONFIG_TRACING
80# define DEFINE_RCU_TPS(sname) \
f7f7bac9 81static char sname##_varname[] = #sname; \
a8a29b3b
AB
82static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83# define RCU_STATE_NAME(sname) sname##_varname
84#else
85# define DEFINE_RCU_TPS(sname)
86# define RCU_STATE_NAME(sname) __stringify(sname)
87#endif
88
89#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90DEFINE_RCU_TPS(sname) \
c92fb057 91static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 92struct rcu_state sname##_state = { \
6c90cc7b 93 .level = { &sname##_state.node[0] }, \
2723249a 94 .rda = &sname##_data, \
037b64ed 95 .call = cr, \
77f81fe0 96 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
7b2e6011 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 103 .name = RCU_STATE_NAME(sname), \
a4889858 104 .abbr = sabbr, \
f6a12f34 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 107}
64db4cff 108
a41bfeb2
SRRH
109RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 111
b28a7c01 112static struct rcu_state *const rcu_state_p;
6ce75a23 113LIST_HEAD(rcu_struct_flavors);
27f4d280 114
a3dc2948
PM
115/* Dump rcu_node combining tree at boot to verify correct setup. */
116static bool dump_tree;
117module_param(dump_tree, bool, 0444);
7fa27001
PM
118/* Control rcu_node-tree auto-balancing at boot time. */
119static bool rcu_fanout_exact;
120module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
121/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 123module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 124int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
125/* Number of rcu_nodes at specified level. */
126static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
128/* panic() on RCU Stall sysctl. */
129int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 130
b0d30417 131/*
52d7e48b
PM
132 * The rcu_scheduler_active variable is initialized to the value
133 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
134 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
135 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 136 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
137 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
138 * to detect real grace periods. This variable is also used to suppress
139 * boot-time false positives from lockdep-RCU error checking. Finally, it
140 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
141 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 142 */
bbad9379
PM
143int rcu_scheduler_active __read_mostly;
144EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145
b0d30417
PM
146/*
147 * The rcu_scheduler_fully_active variable transitions from zero to one
148 * during the early_initcall() processing, which is after the scheduler
149 * is capable of creating new tasks. So RCU processing (for example,
150 * creating tasks for RCU priority boosting) must be delayed until after
151 * rcu_scheduler_fully_active transitions from zero to one. We also
152 * currently delay invocation of any RCU callbacks until after this point.
153 *
154 * It might later prove better for people registering RCU callbacks during
155 * early boot to take responsibility for these callbacks, but one step at
156 * a time.
157 */
158static int rcu_scheduler_fully_active __read_mostly;
159
0aa04b05
PM
160static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 162static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
163static void invoke_rcu_core(void);
164static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
165static void rcu_report_exp_rdp(struct rcu_state *rsp,
166 struct rcu_data *rdp, bool wake);
3549c2bc 167static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 168
a94844b2 169/* rcuc/rcub kthread realtime priority */
26730f55 170#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 171static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
172#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
173static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
174#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
175module_param(kthread_prio, int, 0644);
176
8d7dc928 177/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
178
179#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
180static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
181module_param(gp_preinit_delay, int, 0644);
182#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183static const int gp_preinit_delay;
184#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
185
8d7dc928
PM
186#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
187static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 188module_param(gp_init_delay, int, 0644);
8d7dc928
PM
189#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190static const int gp_init_delay;
191#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 192
0f41c0dd
PM
193#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
194static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
195module_param(gp_cleanup_delay, int, 0644);
196#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197static const int gp_cleanup_delay;
198#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
199
eab128e8
PM
200/*
201 * Number of grace periods between delays, normalized by the duration of
202 * the delay. The longer the the delay, the more the grace periods between
203 * each delay. The reason for this normalization is that it means that,
204 * for non-zero delays, the overall slowdown of grace periods is constant
205 * regardless of the duration of the delay. This arrangement balances
206 * the need for long delays to increase some race probabilities with the
207 * need for fast grace periods to increase other race probabilities.
208 */
209#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 210
4a298656
PM
211/*
212 * Track the rcutorture test sequence number and the update version
213 * number within a given test. The rcutorture_testseq is incremented
214 * on every rcutorture module load and unload, so has an odd value
215 * when a test is running. The rcutorture_vernum is set to zero
216 * when rcutorture starts and is incremented on each rcutorture update.
217 * These variables enable correlating rcutorture output with the
218 * RCU tracing information.
219 */
220unsigned long rcutorture_testseq;
221unsigned long rcutorture_vernum;
222
0aa04b05
PM
223/*
224 * Compute the mask of online CPUs for the specified rcu_node structure.
225 * This will not be stable unless the rcu_node structure's ->lock is
226 * held, but the bit corresponding to the current CPU will be stable
227 * in most contexts.
228 */
229unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
230{
7d0ae808 231 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
232}
233
fc2219d4 234/*
7d0ae808 235 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
236 * permit this function to be invoked without holding the root rcu_node
237 * structure's ->lock, but of course results can be subject to change.
238 */
239static int rcu_gp_in_progress(struct rcu_state *rsp)
240{
7d0ae808 241 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
242}
243
b1f77b05 244/*
d6714c22 245 * Note a quiescent state. Because we do not need to know
b1f77b05 246 * how many quiescent states passed, just if there was at least
d6714c22 247 * one since the start of the grace period, this just sets a flag.
e4cc1f22 248 * The caller must have disabled preemption.
b1f77b05 249 */
284a8c93 250void rcu_sched_qs(void)
b1f77b05 251{
fecbf6f0
PM
252 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
253 return;
254 trace_rcu_grace_period(TPS("rcu_sched"),
255 __this_cpu_read(rcu_sched_data.gpnum),
256 TPS("cpuqs"));
257 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
258 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
259 return;
46a5d164
PM
260 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 rcu_report_exp_rdp(&rcu_sched_state,
262 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
263}
264
284a8c93 265void rcu_bh_qs(void)
b1f77b05 266{
5b74c458 267 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
268 trace_rcu_grace_period(TPS("rcu_bh"),
269 __this_cpu_read(rcu_bh_data.gpnum),
270 TPS("cpuqs"));
5b74c458 271 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 272 }
b1f77b05 273}
64db4cff 274
4a81e832
PM
275static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
276
277static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
278 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
279 .dynticks = ATOMIC_INIT(1),
280#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
281 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
282 .dynticks_idle = ATOMIC_INIT(1),
283#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
284};
285
2625d469
PM
286/*
287 * Record entry into an extended quiescent state. This is only to be
288 * called when not already in an extended quiescent state.
289 */
290static void rcu_dynticks_eqs_enter(void)
291{
292 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 int special;
294
295 /*
296 * CPUs seeing atomic_inc_return() must see prior RCU read-side
297 * critical sections, and we also must force ordering with the
298 * next idle sojourn.
299 */
300 special = atomic_inc_return(&rdtp->dynticks);
301 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && special & 0x1);
302}
303
304/*
305 * Record exit from an extended quiescent state. This is only to be
306 * called from an extended quiescent state.
307 */
308static void rcu_dynticks_eqs_exit(void)
309{
310 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
311 int special;
312
313 /*
314 * CPUs seeing atomic_inc_return() must see prior idle sojourns,
315 * and we also must force ordering with the next RCU read-side
316 * critical section.
317 */
318 special = atomic_inc_return(&rdtp->dynticks);
319 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(special & 0x1));
320}
321
322/*
323 * Reset the current CPU's ->dynticks counter to indicate that the
324 * newly onlined CPU is no longer in an extended quiescent state.
325 * This will either leave the counter unchanged, or increment it
326 * to the next non-quiescent value.
327 *
328 * The non-atomic test/increment sequence works because the upper bits
329 * of the ->dynticks counter are manipulated only by the corresponding CPU,
330 * or when the corresponding CPU is offline.
331 */
332static void rcu_dynticks_eqs_online(void)
333{
334 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
335
336 if (atomic_read(&rdtp->dynticks) & 0x1)
337 return;
338 atomic_add(0x1, &rdtp->dynticks);
339}
340
02a5c550
PM
341/*
342 * Is the current CPU in an extended quiescent state?
343 *
344 * No ordering, as we are sampling CPU-local information.
345 */
346bool rcu_dynticks_curr_cpu_in_eqs(void)
347{
348 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
349
350 return !(atomic_read(&rdtp->dynticks) & 0x1);
351}
352
8b2f63ab
PM
353/*
354 * Snapshot the ->dynticks counter with full ordering so as to allow
355 * stable comparison of this counter with past and future snapshots.
356 */
02a5c550 357int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
358{
359 int snap = atomic_add_return(0, &rdtp->dynticks);
360
361 return snap;
362}
363
02a5c550
PM
364/*
365 * Return true if the snapshot returned from rcu_dynticks_snap()
366 * indicates that RCU is in an extended quiescent state.
367 */
368static bool rcu_dynticks_in_eqs(int snap)
369{
370 return !(snap & 0x1);
371}
372
373/*
374 * Return true if the CPU corresponding to the specified rcu_dynticks
375 * structure has spent some time in an extended quiescent state since
376 * rcu_dynticks_snap() returned the specified snapshot.
377 */
378static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
379{
380 return snap != rcu_dynticks_snap(rdtp);
381}
382
6563de9d
PM
383/*
384 * Do a double-increment of the ->dynticks counter to emulate a
385 * momentary idle-CPU quiescent state.
386 */
387static void rcu_dynticks_momentary_idle(void)
388{
389 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
390 int special = atomic_add_return(2, &rdtp->dynticks);
391
392 /* It is illegal to call this from idle state. */
393 WARN_ON_ONCE(!(special & 0x1));
394}
395
5cd37193
PM
396DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
397EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
398
4a81e832
PM
399/*
400 * Let the RCU core know that this CPU has gone through the scheduler,
401 * which is a quiescent state. This is called when the need for a
402 * quiescent state is urgent, so we burn an atomic operation and full
403 * memory barriers to let the RCU core know about it, regardless of what
404 * this CPU might (or might not) do in the near future.
405 *
406 * We inform the RCU core by emulating a zero-duration dyntick-idle
407 * period, which we in turn do by incrementing the ->dynticks counter
408 * by two.
46a5d164
PM
409 *
410 * The caller must have disabled interrupts.
4a81e832
PM
411 */
412static void rcu_momentary_dyntick_idle(void)
413{
4a81e832 414 struct rcu_data *rdp;
4a81e832
PM
415 int resched_mask;
416 struct rcu_state *rsp;
417
4a81e832
PM
418 /*
419 * Yes, we can lose flag-setting operations. This is OK, because
420 * the flag will be set again after some delay.
421 */
422 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
423 raw_cpu_write(rcu_sched_qs_mask, 0);
424
425 /* Find the flavor that needs a quiescent state. */
426 for_each_rcu_flavor(rsp) {
427 rdp = raw_cpu_ptr(rsp->rda);
428 if (!(resched_mask & rsp->flavor_mask))
429 continue;
430 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
431 if (READ_ONCE(rdp->mynode->completed) !=
432 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
433 continue;
434
435 /*
436 * Pretend to be momentarily idle for the quiescent state.
437 * This allows the grace-period kthread to record the
438 * quiescent state, with no need for this CPU to do anything
439 * further.
440 */
6563de9d 441 rcu_dynticks_momentary_idle();
4a81e832
PM
442 break;
443 }
4a81e832
PM
444}
445
25502a6c
PM
446/*
447 * Note a context switch. This is a quiescent state for RCU-sched,
448 * and requires special handling for preemptible RCU.
46a5d164 449 * The caller must have disabled interrupts.
25502a6c 450 */
38200cf2 451void rcu_note_context_switch(void)
25502a6c 452{
bb73c52b 453 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 454 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 455 rcu_sched_qs();
38200cf2 456 rcu_preempt_note_context_switch();
4a81e832
PM
457 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
458 rcu_momentary_dyntick_idle();
f7f7bac9 459 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 460 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 461}
29ce8310 462EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 463
5cd37193 464/*
1925d196 465 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
466 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
467 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 468 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
469 * be none of them). Either way, do a lightweight quiescent state for
470 * all RCU flavors.
bb73c52b
BF
471 *
472 * The barrier() calls are redundant in the common case when this is
473 * called externally, but just in case this is called from within this
474 * file.
475 *
5cd37193
PM
476 */
477void rcu_all_qs(void)
478{
46a5d164
PM
479 unsigned long flags;
480
bb73c52b 481 barrier(); /* Avoid RCU read-side critical sections leaking down. */
46a5d164
PM
482 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
483 local_irq_save(flags);
5cd37193 484 rcu_momentary_dyntick_idle();
46a5d164
PM
485 local_irq_restore(flags);
486 }
a1e12248
PM
487 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
488 /*
489 * Yes, we just checked a per-CPU variable with preemption
490 * enabled, so we might be migrated to some other CPU at
491 * this point. That is OK because in that case, the
492 * migration will supply the needed quiescent state.
493 * We might end up needlessly disabling preemption and
494 * invoking rcu_sched_qs() on the destination CPU, but
495 * the probability and cost are both quite low, so this
496 * should not be a problem in practice.
497 */
498 preempt_disable();
499 rcu_sched_qs();
500 preempt_enable();
501 }
5cd37193 502 this_cpu_inc(rcu_qs_ctr);
bb73c52b 503 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
504}
505EXPORT_SYMBOL_GPL(rcu_all_qs);
506
878d7439
ED
507static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
508static long qhimark = 10000; /* If this many pending, ignore blimit. */
509static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 510
878d7439
ED
511module_param(blimit, long, 0444);
512module_param(qhimark, long, 0444);
513module_param(qlowmark, long, 0444);
3d76c082 514
026ad283
PM
515static ulong jiffies_till_first_fqs = ULONG_MAX;
516static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 517static bool rcu_kick_kthreads;
d40011f6
PM
518
519module_param(jiffies_till_first_fqs, ulong, 0644);
520module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 521module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 522
4a81e832
PM
523/*
524 * How long the grace period must be before we start recruiting
525 * quiescent-state help from rcu_note_context_switch().
526 */
527static ulong jiffies_till_sched_qs = HZ / 20;
528module_param(jiffies_till_sched_qs, ulong, 0644);
529
48a7639c 530static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 531 struct rcu_data *rdp);
217af2a2
PM
532static void force_qs_rnp(struct rcu_state *rsp,
533 int (*f)(struct rcu_data *rsp, bool *isidle,
534 unsigned long *maxj),
535 bool *isidle, unsigned long *maxj);
4cdfc175 536static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 537static int rcu_pending(void);
64db4cff
PM
538
539/*
917963d0 540 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 541 */
917963d0
PM
542unsigned long rcu_batches_started(void)
543{
544 return rcu_state_p->gpnum;
545}
546EXPORT_SYMBOL_GPL(rcu_batches_started);
547
548/*
549 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 550 */
917963d0
PM
551unsigned long rcu_batches_started_sched(void)
552{
553 return rcu_sched_state.gpnum;
554}
555EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
556
557/*
558 * Return the number of RCU BH batches started thus far for debug & stats.
559 */
560unsigned long rcu_batches_started_bh(void)
561{
562 return rcu_bh_state.gpnum;
563}
564EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
565
566/*
567 * Return the number of RCU batches completed thus far for debug & stats.
568 */
569unsigned long rcu_batches_completed(void)
570{
571 return rcu_state_p->completed;
572}
573EXPORT_SYMBOL_GPL(rcu_batches_completed);
574
575/*
576 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 577 */
9733e4f0 578unsigned long rcu_batches_completed_sched(void)
64db4cff 579{
d6714c22 580 return rcu_sched_state.completed;
64db4cff 581}
d6714c22 582EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
583
584/*
917963d0 585 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 586 */
9733e4f0 587unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
588{
589 return rcu_bh_state.completed;
590}
591EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
592
291783b8
PM
593/*
594 * Return the number of RCU expedited batches completed thus far for
595 * debug & stats. Odd numbers mean that a batch is in progress, even
596 * numbers mean idle. The value returned will thus be roughly double
597 * the cumulative batches since boot.
598 */
599unsigned long rcu_exp_batches_completed(void)
600{
601 return rcu_state_p->expedited_sequence;
602}
603EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
604
605/*
606 * Return the number of RCU-sched expedited batches completed thus far
607 * for debug & stats. Similar to rcu_exp_batches_completed().
608 */
609unsigned long rcu_exp_batches_completed_sched(void)
610{
611 return rcu_sched_state.expedited_sequence;
612}
613EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
614
a381d757
ACB
615/*
616 * Force a quiescent state.
617 */
618void rcu_force_quiescent_state(void)
619{
e534165b 620 force_quiescent_state(rcu_state_p);
a381d757
ACB
621}
622EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
623
bf66f18e
PM
624/*
625 * Force a quiescent state for RCU BH.
626 */
627void rcu_bh_force_quiescent_state(void)
628{
4cdfc175 629 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
630}
631EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
632
e7580f33
PM
633/*
634 * Force a quiescent state for RCU-sched.
635 */
636void rcu_sched_force_quiescent_state(void)
637{
638 force_quiescent_state(&rcu_sched_state);
639}
640EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
641
afea227f
PM
642/*
643 * Show the state of the grace-period kthreads.
644 */
645void show_rcu_gp_kthreads(void)
646{
647 struct rcu_state *rsp;
648
649 for_each_rcu_flavor(rsp) {
650 pr_info("%s: wait state: %d ->state: %#lx\n",
651 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
652 /* sched_show_task(rsp->gp_kthread); */
653 }
654}
655EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
656
4a298656
PM
657/*
658 * Record the number of times rcutorture tests have been initiated and
659 * terminated. This information allows the debugfs tracing stats to be
660 * correlated to the rcutorture messages, even when the rcutorture module
661 * is being repeatedly loaded and unloaded. In other words, we cannot
662 * store this state in rcutorture itself.
663 */
664void rcutorture_record_test_transition(void)
665{
666 rcutorture_testseq++;
667 rcutorture_vernum = 0;
668}
669EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
670
ad0dc7f9
PM
671/*
672 * Send along grace-period-related data for rcutorture diagnostics.
673 */
674void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
675 unsigned long *gpnum, unsigned long *completed)
676{
677 struct rcu_state *rsp = NULL;
678
679 switch (test_type) {
680 case RCU_FLAVOR:
e534165b 681 rsp = rcu_state_p;
ad0dc7f9
PM
682 break;
683 case RCU_BH_FLAVOR:
684 rsp = &rcu_bh_state;
685 break;
686 case RCU_SCHED_FLAVOR:
687 rsp = &rcu_sched_state;
688 break;
689 default:
690 break;
691 }
692 if (rsp != NULL) {
7d0ae808
PM
693 *flags = READ_ONCE(rsp->gp_flags);
694 *gpnum = READ_ONCE(rsp->gpnum);
695 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
696 return;
697 }
698 *flags = 0;
699 *gpnum = 0;
700 *completed = 0;
701}
702EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
703
4a298656
PM
704/*
705 * Record the number of writer passes through the current rcutorture test.
706 * This is also used to correlate debugfs tracing stats with the rcutorture
707 * messages.
708 */
709void rcutorture_record_progress(unsigned long vernum)
710{
711 rcutorture_vernum++;
712}
713EXPORT_SYMBOL_GPL(rcutorture_record_progress);
714
64db4cff
PM
715/*
716 * Does the CPU have callbacks ready to be invoked?
717 */
718static int
719cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
720{
3fbfbf7a 721 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
630c7ed9 722 rdp->nxttail[RCU_NEXT_TAIL] != NULL;
64db4cff
PM
723}
724
365187fb
PM
725/*
726 * Return the root node of the specified rcu_state structure.
727 */
728static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
729{
730 return &rsp->node[0];
731}
732
733/*
734 * Is there any need for future grace periods?
735 * Interrupts must be disabled. If the caller does not hold the root
736 * rnp_node structure's ->lock, the results are advisory only.
737 */
738static int rcu_future_needs_gp(struct rcu_state *rsp)
739{
740 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 741 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
742 int *fp = &rnp->need_future_gp[idx];
743
7d0ae808 744 return READ_ONCE(*fp);
365187fb
PM
745}
746
64db4cff 747/*
dc35c893
PM
748 * Does the current CPU require a not-yet-started grace period?
749 * The caller must have disabled interrupts to prevent races with
750 * normal callback registry.
64db4cff 751 */
d117c8aa 752static bool
64db4cff
PM
753cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
754{
dc35c893 755 int i;
3fbfbf7a 756
dc35c893 757 if (rcu_gp_in_progress(rsp))
d117c8aa 758 return false; /* No, a grace period is already in progress. */
365187fb 759 if (rcu_future_needs_gp(rsp))
d117c8aa 760 return true; /* Yes, a no-CBs CPU needs one. */
dc35c893 761 if (!rdp->nxttail[RCU_NEXT_TAIL])
d117c8aa 762 return false; /* No, this is a no-CBs (or offline) CPU. */
dc35c893 763 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
d117c8aa 764 return true; /* Yes, CPU has newly registered callbacks. */
dc35c893
PM
765 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
766 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 767 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893 768 rdp->nxtcompleted[i]))
d117c8aa
PM
769 return true; /* Yes, CBs for future grace period. */
770 return false; /* No grace period needed. */
64db4cff
PM
771}
772
9b2e4f18 773/*
adf5091e 774 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
775 *
776 * If the new value of the ->dynticks_nesting counter now is zero,
777 * we really have entered idle, and must do the appropriate accounting.
778 * The caller must have disabled interrupts.
779 */
28ced795 780static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 781{
96d3fd0d
PM
782 struct rcu_state *rsp;
783 struct rcu_data *rdp;
2625d469 784 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
96d3fd0d 785
f7f7bac9 786 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
787 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
788 !user && !is_idle_task(current)) {
289828e6
PM
789 struct task_struct *idle __maybe_unused =
790 idle_task(smp_processor_id());
0989cb46 791
f7f7bac9 792 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
274529ba 793 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
794 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
795 current->pid, current->comm,
796 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 797 }
96d3fd0d
PM
798 for_each_rcu_flavor(rsp) {
799 rdp = this_cpu_ptr(rsp->rda);
800 do_nocb_deferred_wakeup(rdp);
801 }
198bbf81 802 rcu_prepare_for_idle();
2625d469 803 rcu_dynticks_eqs_enter();
176f8f7a 804 rcu_dynticks_task_enter();
c44e2cdd
PM
805
806 /*
adf5091e 807 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
808 * in an RCU read-side critical section.
809 */
f78f5b90
PM
810 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
811 "Illegal idle entry in RCU read-side critical section.");
812 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
813 "Illegal idle entry in RCU-bh read-side critical section.");
814 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
815 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 816}
64db4cff 817
adf5091e
FW
818/*
819 * Enter an RCU extended quiescent state, which can be either the
820 * idle loop or adaptive-tickless usermode execution.
64db4cff 821 */
adf5091e 822static void rcu_eqs_enter(bool user)
64db4cff 823{
4145fa7f 824 long long oldval;
64db4cff
PM
825 struct rcu_dynticks *rdtp;
826
c9d4b0af 827 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 828 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
829 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
830 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 831 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 832 rdtp->dynticks_nesting = 0;
28ced795 833 rcu_eqs_enter_common(oldval, user);
3a592405 834 } else {
29e37d81 835 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 836 }
64db4cff 837}
adf5091e
FW
838
839/**
840 * rcu_idle_enter - inform RCU that current CPU is entering idle
841 *
842 * Enter idle mode, in other words, -leave- the mode in which RCU
843 * read-side critical sections can occur. (Though RCU read-side
844 * critical sections can occur in irq handlers in idle, a possibility
845 * handled by irq_enter() and irq_exit().)
846 *
847 * We crowbar the ->dynticks_nesting field to zero to allow for
848 * the possibility of usermode upcalls having messed up our count
849 * of interrupt nesting level during the prior busy period.
850 */
851void rcu_idle_enter(void)
852{
c5d900bf
FW
853 unsigned long flags;
854
855 local_irq_save(flags);
cb349ca9 856 rcu_eqs_enter(false);
28ced795 857 rcu_sysidle_enter(0);
c5d900bf 858 local_irq_restore(flags);
adf5091e 859}
8a2ecf47 860EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 861
d1ec4c34 862#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
863/**
864 * rcu_user_enter - inform RCU that we are resuming userspace.
865 *
866 * Enter RCU idle mode right before resuming userspace. No use of RCU
867 * is permitted between this call and rcu_user_exit(). This way the
868 * CPU doesn't need to maintain the tick for RCU maintenance purposes
869 * when the CPU runs in userspace.
870 */
871void rcu_user_enter(void)
872{
91d1aa43 873 rcu_eqs_enter(1);
adf5091e 874}
d1ec4c34 875#endif /* CONFIG_NO_HZ_FULL */
19dd1591 876
9b2e4f18
PM
877/**
878 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
879 *
880 * Exit from an interrupt handler, which might possibly result in entering
881 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 882 * sections can occur. The caller must have disabled interrupts.
64db4cff 883 *
9b2e4f18
PM
884 * This code assumes that the idle loop never does anything that might
885 * result in unbalanced calls to irq_enter() and irq_exit(). If your
886 * architecture violates this assumption, RCU will give you what you
887 * deserve, good and hard. But very infrequently and irreproducibly.
888 *
889 * Use things like work queues to work around this limitation.
890 *
891 * You have been warned.
64db4cff 892 */
9b2e4f18 893void rcu_irq_exit(void)
64db4cff 894{
4145fa7f 895 long long oldval;
64db4cff
PM
896 struct rcu_dynticks *rdtp;
897
7c9906ca 898 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 899 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 900 oldval = rdtp->dynticks_nesting;
9b2e4f18 901 rdtp->dynticks_nesting--;
1ce46ee5
PM
902 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
903 rdtp->dynticks_nesting < 0);
b6fc6020 904 if (rdtp->dynticks_nesting)
f7f7bac9 905 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 906 else
28ced795
CL
907 rcu_eqs_enter_common(oldval, true);
908 rcu_sysidle_enter(1);
7c9906ca
PM
909}
910
911/*
912 * Wrapper for rcu_irq_exit() where interrupts are enabled.
913 */
914void rcu_irq_exit_irqson(void)
915{
916 unsigned long flags;
917
918 local_irq_save(flags);
919 rcu_irq_exit();
9b2e4f18
PM
920 local_irq_restore(flags);
921}
922
923/*
adf5091e 924 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
925 *
926 * If the new value of the ->dynticks_nesting counter was previously zero,
927 * we really have exited idle, and must do the appropriate accounting.
928 * The caller must have disabled interrupts.
929 */
28ced795 930static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 931{
2625d469 932 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 933
176f8f7a 934 rcu_dynticks_task_exit();
2625d469 935 rcu_dynticks_eqs_exit();
8fa7845d 936 rcu_cleanup_after_idle();
f7f7bac9 937 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
938 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
939 !user && !is_idle_task(current)) {
289828e6
PM
940 struct task_struct *idle __maybe_unused =
941 idle_task(smp_processor_id());
0989cb46 942
f7f7bac9 943 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 944 oldval, rdtp->dynticks_nesting);
274529ba 945 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
946 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
947 current->pid, current->comm,
948 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
949 }
950}
951
adf5091e
FW
952/*
953 * Exit an RCU extended quiescent state, which can be either the
954 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 955 */
adf5091e 956static void rcu_eqs_exit(bool user)
9b2e4f18 957{
9b2e4f18
PM
958 struct rcu_dynticks *rdtp;
959 long long oldval;
960
c9d4b0af 961 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 962 oldval = rdtp->dynticks_nesting;
1ce46ee5 963 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 964 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 965 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 966 } else {
29e37d81 967 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 968 rcu_eqs_exit_common(oldval, user);
3a592405 969 }
9b2e4f18 970}
adf5091e
FW
971
972/**
973 * rcu_idle_exit - inform RCU that current CPU is leaving idle
974 *
975 * Exit idle mode, in other words, -enter- the mode in which RCU
976 * read-side critical sections can occur.
977 *
978 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
979 * allow for the possibility of usermode upcalls messing up our count
980 * of interrupt nesting level during the busy period that is just
981 * now starting.
982 */
983void rcu_idle_exit(void)
984{
c5d900bf
FW
985 unsigned long flags;
986
987 local_irq_save(flags);
cb349ca9 988 rcu_eqs_exit(false);
28ced795 989 rcu_sysidle_exit(0);
c5d900bf 990 local_irq_restore(flags);
adf5091e 991}
8a2ecf47 992EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 993
d1ec4c34 994#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
995/**
996 * rcu_user_exit - inform RCU that we are exiting userspace.
997 *
998 * Exit RCU idle mode while entering the kernel because it can
999 * run a RCU read side critical section anytime.
1000 */
1001void rcu_user_exit(void)
1002{
91d1aa43 1003 rcu_eqs_exit(1);
adf5091e 1004}
d1ec4c34 1005#endif /* CONFIG_NO_HZ_FULL */
19dd1591 1006
9b2e4f18
PM
1007/**
1008 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1009 *
1010 * Enter an interrupt handler, which might possibly result in exiting
1011 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1012 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1013 *
1014 * Note that the Linux kernel is fully capable of entering an interrupt
1015 * handler that it never exits, for example when doing upcalls to
1016 * user mode! This code assumes that the idle loop never does upcalls to
1017 * user mode. If your architecture does do upcalls from the idle loop (or
1018 * does anything else that results in unbalanced calls to the irq_enter()
1019 * and irq_exit() functions), RCU will give you what you deserve, good
1020 * and hard. But very infrequently and irreproducibly.
1021 *
1022 * Use things like work queues to work around this limitation.
1023 *
1024 * You have been warned.
1025 */
1026void rcu_irq_enter(void)
1027{
9b2e4f18
PM
1028 struct rcu_dynticks *rdtp;
1029 long long oldval;
1030
7c9906ca 1031 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1032 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1033 oldval = rdtp->dynticks_nesting;
1034 rdtp->dynticks_nesting++;
1ce46ee5
PM
1035 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1036 rdtp->dynticks_nesting == 0);
b6fc6020 1037 if (oldval)
f7f7bac9 1038 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1039 else
28ced795
CL
1040 rcu_eqs_exit_common(oldval, true);
1041 rcu_sysidle_exit(1);
7c9906ca
PM
1042}
1043
1044/*
1045 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1046 */
1047void rcu_irq_enter_irqson(void)
1048{
1049 unsigned long flags;
1050
1051 local_irq_save(flags);
1052 rcu_irq_enter();
64db4cff 1053 local_irq_restore(flags);
64db4cff
PM
1054}
1055
1056/**
1057 * rcu_nmi_enter - inform RCU of entry to NMI context
1058 *
734d1680
PM
1059 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1060 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1061 * that the CPU is active. This implementation permits nested NMIs, as
1062 * long as the nesting level does not overflow an int. (You will probably
1063 * run out of stack space first.)
64db4cff
PM
1064 */
1065void rcu_nmi_enter(void)
1066{
c9d4b0af 1067 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1068 int incby = 2;
64db4cff 1069
734d1680
PM
1070 /* Complain about underflow. */
1071 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1072
1073 /*
1074 * If idle from RCU viewpoint, atomically increment ->dynticks
1075 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1076 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1077 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1078 * to be in the outermost NMI handler that interrupted an RCU-idle
1079 * period (observation due to Andy Lutomirski).
1080 */
02a5c550 1081 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1082 rcu_dynticks_eqs_exit();
734d1680
PM
1083 incby = 1;
1084 }
1085 rdtp->dynticks_nmi_nesting += incby;
1086 barrier();
64db4cff
PM
1087}
1088
1089/**
1090 * rcu_nmi_exit - inform RCU of exit from NMI context
1091 *
734d1680
PM
1092 * If we are returning from the outermost NMI handler that interrupted an
1093 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1094 * to let the RCU grace-period handling know that the CPU is back to
1095 * being RCU-idle.
64db4cff
PM
1096 */
1097void rcu_nmi_exit(void)
1098{
c9d4b0af 1099 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1100
734d1680
PM
1101 /*
1102 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1103 * (We are exiting an NMI handler, so RCU better be paying attention
1104 * to us!)
1105 */
1106 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1107 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1108
1109 /*
1110 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1111 * leave it in non-RCU-idle state.
1112 */
1113 if (rdtp->dynticks_nmi_nesting != 1) {
1114 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1115 return;
734d1680
PM
1116 }
1117
1118 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1119 rdtp->dynticks_nmi_nesting = 0;
2625d469 1120 rcu_dynticks_eqs_enter();
64db4cff
PM
1121}
1122
1123/**
5c173eb8
PM
1124 * __rcu_is_watching - are RCU read-side critical sections safe?
1125 *
1126 * Return true if RCU is watching the running CPU, which means that
1127 * this CPU can safely enter RCU read-side critical sections. Unlike
1128 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1129 * least disabled preemption.
1130 */
9418fb20 1131bool notrace __rcu_is_watching(void)
5c173eb8 1132{
02a5c550 1133 return !rcu_dynticks_curr_cpu_in_eqs();
5c173eb8
PM
1134}
1135
1136/**
1137 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1138 *
9b2e4f18 1139 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1140 * or NMI handler, return true.
64db4cff 1141 */
9418fb20 1142bool notrace rcu_is_watching(void)
64db4cff 1143{
f534ed1f 1144 bool ret;
34240697 1145
46f00d18 1146 preempt_disable_notrace();
5c173eb8 1147 ret = __rcu_is_watching();
46f00d18 1148 preempt_enable_notrace();
34240697 1149 return ret;
64db4cff 1150}
5c173eb8 1151EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1152
62fde6ed 1153#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1154
1155/*
1156 * Is the current CPU online? Disable preemption to avoid false positives
1157 * that could otherwise happen due to the current CPU number being sampled,
1158 * this task being preempted, its old CPU being taken offline, resuming
1159 * on some other CPU, then determining that its old CPU is now offline.
1160 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1161 * the check for rcu_scheduler_fully_active. Note also that it is OK
1162 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1163 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1164 * offline to continue to use RCU for one jiffy after marking itself
1165 * offline in the cpu_online_mask. This leniency is necessary given the
1166 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1167 * the fact that a CPU enters the scheduler after completing the teardown
1168 * of the CPU.
2036d94a 1169 *
4df83742
TG
1170 * This is also why RCU internally marks CPUs online during in the
1171 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1172 *
1173 * Disable checking if in an NMI handler because we cannot safely report
1174 * errors from NMI handlers anyway.
1175 */
1176bool rcu_lockdep_current_cpu_online(void)
1177{
2036d94a
PM
1178 struct rcu_data *rdp;
1179 struct rcu_node *rnp;
c0d6d01b
PM
1180 bool ret;
1181
1182 if (in_nmi())
f6f7ee9a 1183 return true;
c0d6d01b 1184 preempt_disable();
c9d4b0af 1185 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1186 rnp = rdp->mynode;
0aa04b05 1187 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1188 !rcu_scheduler_fully_active;
1189 preempt_enable();
1190 return ret;
1191}
1192EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1193
62fde6ed 1194#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1195
64db4cff 1196/**
9b2e4f18 1197 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1198 *
9b2e4f18
PM
1199 * If the current CPU is idle or running at a first-level (not nested)
1200 * interrupt from idle, return true. The caller must have at least
1201 * disabled preemption.
64db4cff 1202 */
62e3cb14 1203static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1204{
c9d4b0af 1205 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1206}
1207
64db4cff
PM
1208/*
1209 * Snapshot the specified CPU's dynticks counter so that we can later
1210 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1211 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1212 */
217af2a2
PM
1213static int dyntick_save_progress_counter(struct rcu_data *rdp,
1214 bool *isidle, unsigned long *maxj)
64db4cff 1215{
8b2f63ab 1216 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
0edd1b17 1217 rcu_sysidle_check_cpu(rdp, isidle, maxj);
02a5c550 1218 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1219 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1220 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1221 rdp->mynode->gpnum))
7d0ae808 1222 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1223 return 1;
7941dbde 1224 }
23a9bacd 1225 return 0;
64db4cff
PM
1226}
1227
1228/*
1229 * Return true if the specified CPU has passed through a quiescent
1230 * state by virtue of being in or having passed through an dynticks
1231 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1232 * for this same CPU, or by virtue of having been offline.
64db4cff 1233 */
217af2a2
PM
1234static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1235 bool *isidle, unsigned long *maxj)
64db4cff 1236{
3a19b46a 1237 unsigned long jtsq;
4a81e832 1238 int *rcrmp;
3a19b46a
PM
1239 unsigned long rjtsc;
1240 struct rcu_node *rnp;
64db4cff
PM
1241
1242 /*
1243 * If the CPU passed through or entered a dynticks idle phase with
1244 * no active irq/NMI handlers, then we can safely pretend that the CPU
1245 * already acknowledged the request to pass through a quiescent
1246 * state. Either way, that CPU cannot possibly be in an RCU
1247 * read-side critical section that started before the beginning
1248 * of the current RCU grace period.
1249 */
02a5c550 1250 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1251 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1252 rdp->dynticks_fqs++;
1253 return 1;
1254 }
1255
3a19b46a
PM
1256 /* Compute and saturate jiffies_till_sched_qs. */
1257 jtsq = jiffies_till_sched_qs;
1258 rjtsc = rcu_jiffies_till_stall_check();
1259 if (jtsq > rjtsc / 2) {
1260 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1261 jtsq = rjtsc / 2;
1262 } else if (jtsq < 1) {
1263 WRITE_ONCE(jiffies_till_sched_qs, 1);
1264 jtsq = 1;
1265 }
1266
a82dcc76 1267 /*
3a19b46a
PM
1268 * Has this CPU encountered a cond_resched_rcu_qs() since the
1269 * beginning of the grace period? For this to be the case,
1270 * the CPU has to have noticed the current grace period. This
1271 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1272 */
3a19b46a
PM
1273 rnp = rdp->mynode;
1274 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1275 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_qs_ctr, rdp->cpu) &&
1276 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1277 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1278 return 1;
1279 }
1280
38d30b33
PM
1281 /* Check for the CPU being offline. */
1282 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1283 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1284 rdp->offline_fqs++;
1285 return 1;
1286 }
65d798f0
PM
1287
1288 /*
4a81e832
PM
1289 * A CPU running for an extended time within the kernel can
1290 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1291 * even context-switching back and forth between a pair of
1292 * in-kernel CPU-bound tasks cannot advance grace periods.
1293 * So if the grace period is old enough, make the CPU pay attention.
1294 * Note that the unsynchronized assignments to the per-CPU
1295 * rcu_sched_qs_mask variable are safe. Yes, setting of
1296 * bits can be lost, but they will be set again on the next
1297 * force-quiescent-state pass. So lost bit sets do not result
1298 * in incorrect behavior, merely in a grace period lasting
1299 * a few jiffies longer than it might otherwise. Because
1300 * there are at most four threads involved, and because the
1301 * updates are only once every few jiffies, the probability of
1302 * lossage (and thus of slight grace-period extension) is
1303 * quite low.
1304 *
1305 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1306 * is set too high, we override with half of the RCU CPU stall
1307 * warning delay.
6193c76a 1308 */
4a81e832 1309 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
3a19b46a
PM
1310 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1311 time_after(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1312 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1313 WRITE_ONCE(rdp->cond_resched_completed,
1314 READ_ONCE(rdp->mynode->completed));
4a81e832 1315 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1316 WRITE_ONCE(*rcrmp,
1317 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832 1318 }
4914950a 1319 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1320 }
1321
28053bc7
PM
1322 /*
1323 * If more than halfway to RCU CPU stall-warning time, do
1324 * a resched_cpu() to try to loosen things up a bit.
1325 */
1326 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1327 resched_cpu(rdp->cpu);
4914950a 1328
a82dcc76 1329 return 0;
64db4cff
PM
1330}
1331
64db4cff
PM
1332static void record_gp_stall_check_time(struct rcu_state *rsp)
1333{
cb1e78cf 1334 unsigned long j = jiffies;
6193c76a 1335 unsigned long j1;
26cdfedf
PM
1336
1337 rsp->gp_start = j;
1338 smp_wmb(); /* Record start time before stall time. */
6193c76a 1339 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1340 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1341 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1342 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1343}
1344
6b50e119
PM
1345/*
1346 * Convert a ->gp_state value to a character string.
1347 */
1348static const char *gp_state_getname(short gs)
1349{
1350 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1351 return "???";
1352 return gp_state_names[gs];
1353}
1354
fb81a44b
PM
1355/*
1356 * Complain about starvation of grace-period kthread.
1357 */
1358static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1359{
1360 unsigned long gpa;
1361 unsigned long j;
1362
1363 j = jiffies;
7d0ae808 1364 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1365 if (j - gpa > 2 * HZ) {
6b50e119 1366 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1367 rsp->name, j - gpa,
319362c9 1368 rsp->gpnum, rsp->completed,
6b50e119
PM
1369 rsp->gp_flags,
1370 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1371 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1372 if (rsp->gp_kthread) {
b1adb3e2 1373 sched_show_task(rsp->gp_kthread);
86057b80
PM
1374 wake_up_process(rsp->gp_kthread);
1375 }
b1adb3e2 1376 }
64db4cff
PM
1377}
1378
b637a328 1379/*
7aa92230
PM
1380 * Dump stacks of all tasks running on stalled CPUs. First try using
1381 * NMIs, but fall back to manual remote stack tracing on architectures
1382 * that don't support NMI-based stack dumps. The NMI-triggered stack
1383 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1384 */
1385static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1386{
1387 int cpu;
1388 unsigned long flags;
1389 struct rcu_node *rnp;
1390
1391 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1392 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1393 for_each_leaf_node_possible_cpu(rnp, cpu)
1394 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1395 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1396 dump_cpu_task(cpu);
67c583a7 1397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1398 }
1399}
1400
8c7c4829
PM
1401/*
1402 * If too much time has passed in the current grace period, and if
1403 * so configured, go kick the relevant kthreads.
1404 */
1405static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1406{
1407 unsigned long j;
1408
1409 if (!rcu_kick_kthreads)
1410 return;
1411 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1412 if (time_after(jiffies, j) && rsp->gp_kthread &&
1413 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1414 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1415 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1416 wake_up_process(rsp->gp_kthread);
1417 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1418 }
1419}
1420
088e9d25
DBO
1421static inline void panic_on_rcu_stall(void)
1422{
1423 if (sysctl_panic_on_rcu_stall)
1424 panic("RCU Stall\n");
1425}
1426
6ccd2ecd 1427static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1428{
1429 int cpu;
1430 long delta;
1431 unsigned long flags;
6ccd2ecd
PM
1432 unsigned long gpa;
1433 unsigned long j;
285fe294 1434 int ndetected = 0;
64db4cff 1435 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1436 long totqlen = 0;
64db4cff 1437
8c7c4829
PM
1438 /* Kick and suppress, if so configured. */
1439 rcu_stall_kick_kthreads(rsp);
1440 if (rcu_cpu_stall_suppress)
1441 return;
1442
64db4cff
PM
1443 /* Only let one CPU complain about others per time interval. */
1444
6cf10081 1445 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1446 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1447 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1448 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1449 return;
1450 }
7d0ae808
PM
1451 WRITE_ONCE(rsp->jiffies_stall,
1452 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1454
8cdd32a9
PM
1455 /*
1456 * OK, time to rat on our buddy...
1457 * See Documentation/RCU/stallwarn.txt for info on how to debug
1458 * RCU CPU stall warnings.
1459 */
d7f3e207 1460 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1461 rsp->name);
a858af28 1462 print_cpu_stall_info_begin();
a0b6c9a7 1463 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1464 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1465 ndetected += rcu_print_task_stall(rnp);
c8020a67 1466 if (rnp->qsmask != 0) {
bc75e999
MR
1467 for_each_leaf_node_possible_cpu(rnp, cpu)
1468 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1469 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1470 ndetected++;
1471 }
1472 }
67c583a7 1473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1474 }
a858af28 1475
a858af28 1476 print_cpu_stall_info_end();
53bb857c
PM
1477 for_each_possible_cpu(cpu)
1478 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1479 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1480 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1481 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1482 if (ndetected) {
b637a328 1483 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1484
1485 /* Complain about tasks blocking the grace period. */
1486 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1487 } else {
7d0ae808
PM
1488 if (READ_ONCE(rsp->gpnum) != gpnum ||
1489 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1490 pr_err("INFO: Stall ended before state dump start\n");
1491 } else {
1492 j = jiffies;
7d0ae808 1493 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1494 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1495 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1496 jiffies_till_next_fqs,
1497 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1498 /* In this case, the current CPU might be at fault. */
1499 sched_show_task(current);
1500 }
1501 }
c1dc0b9c 1502
fb81a44b
PM
1503 rcu_check_gp_kthread_starvation(rsp);
1504
088e9d25
DBO
1505 panic_on_rcu_stall();
1506
4cdfc175 1507 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1508}
1509
1510static void print_cpu_stall(struct rcu_state *rsp)
1511{
53bb857c 1512 int cpu;
64db4cff
PM
1513 unsigned long flags;
1514 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1515 long totqlen = 0;
64db4cff 1516
8c7c4829
PM
1517 /* Kick and suppress, if so configured. */
1518 rcu_stall_kick_kthreads(rsp);
1519 if (rcu_cpu_stall_suppress)
1520 return;
1521
8cdd32a9
PM
1522 /*
1523 * OK, time to rat on ourselves...
1524 * See Documentation/RCU/stallwarn.txt for info on how to debug
1525 * RCU CPU stall warnings.
1526 */
d7f3e207 1527 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1528 print_cpu_stall_info_begin();
1529 print_cpu_stall_info(rsp, smp_processor_id());
1530 print_cpu_stall_info_end();
53bb857c
PM
1531 for_each_possible_cpu(cpu)
1532 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1533 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1534 jiffies - rsp->gp_start,
1535 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1536
1537 rcu_check_gp_kthread_starvation(rsp);
1538
bc1dce51 1539 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1540
6cf10081 1541 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1542 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1543 WRITE_ONCE(rsp->jiffies_stall,
1544 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1545 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1546
088e9d25
DBO
1547 panic_on_rcu_stall();
1548
b021fe3e
PZ
1549 /*
1550 * Attempt to revive the RCU machinery by forcing a context switch.
1551 *
1552 * A context switch would normally allow the RCU state machine to make
1553 * progress and it could be we're stuck in kernel space without context
1554 * switches for an entirely unreasonable amount of time.
1555 */
1556 resched_cpu(smp_processor_id());
64db4cff
PM
1557}
1558
1559static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1560{
26cdfedf
PM
1561 unsigned long completed;
1562 unsigned long gpnum;
1563 unsigned long gps;
bad6e139
PM
1564 unsigned long j;
1565 unsigned long js;
64db4cff
PM
1566 struct rcu_node *rnp;
1567
8c7c4829
PM
1568 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1569 !rcu_gp_in_progress(rsp))
c68de209 1570 return;
8c7c4829 1571 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1572 j = jiffies;
26cdfedf
PM
1573
1574 /*
1575 * Lots of memory barriers to reject false positives.
1576 *
1577 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1578 * then rsp->gp_start, and finally rsp->completed. These values
1579 * are updated in the opposite order with memory barriers (or
1580 * equivalent) during grace-period initialization and cleanup.
1581 * Now, a false positive can occur if we get an new value of
1582 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1583 * the memory barriers, the only way that this can happen is if one
1584 * grace period ends and another starts between these two fetches.
1585 * Detect this by comparing rsp->completed with the previous fetch
1586 * from rsp->gpnum.
1587 *
1588 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1589 * and rsp->gp_start suffice to forestall false positives.
1590 */
7d0ae808 1591 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1592 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1593 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1594 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1595 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1596 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1597 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1598 if (ULONG_CMP_GE(completed, gpnum) ||
1599 ULONG_CMP_LT(j, js) ||
1600 ULONG_CMP_GE(gps, js))
1601 return; /* No stall or GP completed since entering function. */
64db4cff 1602 rnp = rdp->mynode;
c96ea7cf 1603 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1604 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1605
1606 /* We haven't checked in, so go dump stack. */
1607 print_cpu_stall(rsp);
1608
bad6e139
PM
1609 } else if (rcu_gp_in_progress(rsp) &&
1610 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1611
bad6e139 1612 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1613 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1614 }
1615}
1616
53d84e00
PM
1617/**
1618 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1619 *
1620 * Set the stall-warning timeout way off into the future, thus preventing
1621 * any RCU CPU stall-warning messages from appearing in the current set of
1622 * RCU grace periods.
1623 *
1624 * The caller must disable hard irqs.
1625 */
1626void rcu_cpu_stall_reset(void)
1627{
6ce75a23
PM
1628 struct rcu_state *rsp;
1629
1630 for_each_rcu_flavor(rsp)
7d0ae808 1631 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1632}
1633
3f5d3ea6 1634/*
d3f3f3f2
PM
1635 * Initialize the specified rcu_data structure's default callback list
1636 * to empty. The default callback list is the one that is not used by
1637 * no-callbacks CPUs.
3f5d3ea6 1638 */
d3f3f3f2 1639static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1640{
1641 int i;
1642
1643 rdp->nxtlist = NULL;
1644 for (i = 0; i < RCU_NEXT_SIZE; i++)
1645 rdp->nxttail[i] = &rdp->nxtlist;
1646}
1647
d3f3f3f2
PM
1648/*
1649 * Initialize the specified rcu_data structure's callback list to empty.
1650 */
1651static void init_callback_list(struct rcu_data *rdp)
1652{
1653 if (init_nocb_callback_list(rdp))
1654 return;
1655 init_default_callback_list(rdp);
1656}
1657
dc35c893
PM
1658/*
1659 * Determine the value that ->completed will have at the end of the
1660 * next subsequent grace period. This is used to tag callbacks so that
1661 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1662 * been dyntick-idle for an extended period with callbacks under the
1663 * influence of RCU_FAST_NO_HZ.
1664 *
1665 * The caller must hold rnp->lock with interrupts disabled.
1666 */
1667static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1668 struct rcu_node *rnp)
1669{
1670 /*
1671 * If RCU is idle, we just wait for the next grace period.
1672 * But we can only be sure that RCU is idle if we are looking
1673 * at the root rcu_node structure -- otherwise, a new grace
1674 * period might have started, but just not yet gotten around
1675 * to initializing the current non-root rcu_node structure.
1676 */
1677 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1678 return rnp->completed + 1;
1679
1680 /*
1681 * Otherwise, wait for a possible partial grace period and
1682 * then the subsequent full grace period.
1683 */
1684 return rnp->completed + 2;
1685}
1686
0446be48
PM
1687/*
1688 * Trace-event helper function for rcu_start_future_gp() and
1689 * rcu_nocb_wait_gp().
1690 */
1691static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1692 unsigned long c, const char *s)
0446be48
PM
1693{
1694 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1695 rnp->completed, c, rnp->level,
1696 rnp->grplo, rnp->grphi, s);
1697}
1698
1699/*
1700 * Start some future grace period, as needed to handle newly arrived
1701 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1702 * rcu_node structure's ->need_future_gp field. Returns true if there
1703 * is reason to awaken the grace-period kthread.
0446be48
PM
1704 *
1705 * The caller must hold the specified rcu_node structure's ->lock.
1706 */
48a7639c
PM
1707static bool __maybe_unused
1708rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1709 unsigned long *c_out)
0446be48
PM
1710{
1711 unsigned long c;
1712 int i;
48a7639c 1713 bool ret = false;
0446be48
PM
1714 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1715
1716 /*
1717 * Pick up grace-period number for new callbacks. If this
1718 * grace period is already marked as needed, return to the caller.
1719 */
1720 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1721 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1722 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1723 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1724 goto out;
0446be48
PM
1725 }
1726
1727 /*
1728 * If either this rcu_node structure or the root rcu_node structure
1729 * believe that a grace period is in progress, then we must wait
1730 * for the one following, which is in "c". Because our request
1731 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1732 * need to explicitly start one. We only do the lockless check
1733 * of rnp_root's fields if the current rcu_node structure thinks
1734 * there is no grace period in flight, and because we hold rnp->lock,
1735 * the only possible change is when rnp_root's two fields are
1736 * equal, in which case rnp_root->gpnum might be concurrently
1737 * incremented. But that is OK, as it will just result in our
1738 * doing some extra useless work.
0446be48
PM
1739 */
1740 if (rnp->gpnum != rnp->completed ||
7d0ae808 1741 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1742 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1743 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1744 goto out;
0446be48
PM
1745 }
1746
1747 /*
1748 * There might be no grace period in progress. If we don't already
1749 * hold it, acquire the root rcu_node structure's lock in order to
1750 * start one (if needed).
1751 */
2a67e741
PZ
1752 if (rnp != rnp_root)
1753 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1754
1755 /*
1756 * Get a new grace-period number. If there really is no grace
1757 * period in progress, it will be smaller than the one we obtained
1758 * earlier. Adjust callbacks as needed. Note that even no-CBs
1759 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1760 */
1761 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1762 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1763 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1764 rdp->nxtcompleted[i] = c;
1765
1766 /*
1767 * If the needed for the required grace period is already
1768 * recorded, trace and leave.
1769 */
1770 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1771 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1772 goto unlock_out;
1773 }
1774
1775 /* Record the need for the future grace period. */
1776 rnp_root->need_future_gp[c & 0x1]++;
1777
1778 /* If a grace period is not already in progress, start one. */
1779 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1780 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1781 } else {
f7f7bac9 1782 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1783 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1784 }
1785unlock_out:
1786 if (rnp != rnp_root)
67c583a7 1787 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1788out:
1789 if (c_out != NULL)
1790 *c_out = c;
1791 return ret;
0446be48
PM
1792}
1793
1794/*
1795 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1796 * whether any additional grace periods have been requested.
0446be48
PM
1797 */
1798static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1799{
1800 int c = rnp->completed;
1801 int needmore;
1802 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1803
0446be48
PM
1804 rnp->need_future_gp[c & 0x1] = 0;
1805 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1806 trace_rcu_future_gp(rnp, rdp, c,
1807 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1808 return needmore;
1809}
1810
48a7639c
PM
1811/*
1812 * Awaken the grace-period kthread for the specified flavor of RCU.
1813 * Don't do a self-awaken, and don't bother awakening when there is
1814 * nothing for the grace-period kthread to do (as in several CPUs
1815 * raced to awaken, and we lost), and finally don't try to awaken
1816 * a kthread that has not yet been created.
1817 */
1818static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1819{
1820 if (current == rsp->gp_kthread ||
7d0ae808 1821 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1822 !rsp->gp_kthread)
1823 return;
abedf8e2 1824 swake_up(&rsp->gp_wq);
48a7639c
PM
1825}
1826
dc35c893
PM
1827/*
1828 * If there is room, assign a ->completed number to any callbacks on
1829 * this CPU that have not already been assigned. Also accelerate any
1830 * callbacks that were previously assigned a ->completed number that has
1831 * since proven to be too conservative, which can happen if callbacks get
1832 * assigned a ->completed number while RCU is idle, but with reference to
1833 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1834 * not hurt to call it repeatedly. Returns an flag saying that we should
1835 * awaken the RCU grace-period kthread.
dc35c893
PM
1836 *
1837 * The caller must hold rnp->lock with interrupts disabled.
1838 */
48a7639c 1839static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1840 struct rcu_data *rdp)
1841{
1842 unsigned long c;
1843 int i;
48a7639c 1844 bool ret;
dc35c893
PM
1845
1846 /* If the CPU has no callbacks, nothing to do. */
1847 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1848 return false;
dc35c893
PM
1849
1850 /*
1851 * Starting from the sublist containing the callbacks most
1852 * recently assigned a ->completed number and working down, find the
1853 * first sublist that is not assignable to an upcoming grace period.
1854 * Such a sublist has something in it (first two tests) and has
1855 * a ->completed number assigned that will complete sooner than
1856 * the ->completed number for newly arrived callbacks (last test).
1857 *
1858 * The key point is that any later sublist can be assigned the
1859 * same ->completed number as the newly arrived callbacks, which
1860 * means that the callbacks in any of these later sublist can be
1861 * grouped into a single sublist, whether or not they have already
1862 * been assigned a ->completed number.
1863 */
1864 c = rcu_cbs_completed(rsp, rnp);
1865 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1866 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1867 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1868 break;
1869
1870 /*
1871 * If there are no sublist for unassigned callbacks, leave.
1872 * At the same time, advance "i" one sublist, so that "i" will
1873 * index into the sublist where all the remaining callbacks should
1874 * be grouped into.
1875 */
1876 if (++i >= RCU_NEXT_TAIL)
48a7639c 1877 return false;
dc35c893
PM
1878
1879 /*
1880 * Assign all subsequent callbacks' ->completed number to the next
1881 * full grace period and group them all in the sublist initially
1882 * indexed by "i".
1883 */
1884 for (; i <= RCU_NEXT_TAIL; i++) {
1885 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1886 rdp->nxtcompleted[i] = c;
1887 }
910ee45d 1888 /* Record any needed additional grace periods. */
48a7639c 1889 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1890
1891 /* Trace depending on how much we were able to accelerate. */
1892 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1893 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1894 else
f7f7bac9 1895 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1896 return ret;
dc35c893
PM
1897}
1898
1899/*
1900 * Move any callbacks whose grace period has completed to the
1901 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1902 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1903 * sublist. This function is idempotent, so it does not hurt to
1904 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1905 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1906 *
1907 * The caller must hold rnp->lock with interrupts disabled.
1908 */
48a7639c 1909static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1910 struct rcu_data *rdp)
1911{
1912 int i, j;
1913
1914 /* If the CPU has no callbacks, nothing to do. */
1915 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1916 return false;
dc35c893
PM
1917
1918 /*
1919 * Find all callbacks whose ->completed numbers indicate that they
1920 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1921 */
1922 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1923 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1924 break;
1925 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1926 }
1927 /* Clean up any sublist tail pointers that were misordered above. */
1928 for (j = RCU_WAIT_TAIL; j < i; j++)
1929 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1930
1931 /* Copy down callbacks to fill in empty sublists. */
1932 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1933 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1934 break;
1935 rdp->nxttail[j] = rdp->nxttail[i];
1936 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1937 }
1938
1939 /* Classify any remaining callbacks. */
48a7639c 1940 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1941}
1942
d09b62df 1943/*
ba9fbe95
PM
1944 * Update CPU-local rcu_data state to record the beginnings and ends of
1945 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1946 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1947 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1948 */
48a7639c
PM
1949static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1950 struct rcu_data *rdp)
d09b62df 1951{
48a7639c 1952 bool ret;
3563a438 1953 bool need_gp;
48a7639c 1954
ba9fbe95 1955 /* Handle the ends of any preceding grace periods first. */
e3663b10 1956 if (rdp->completed == rnp->completed &&
7d0ae808 1957 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1958
ba9fbe95 1959 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1960 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1961
dc35c893
PM
1962 } else {
1963
1964 /* Advance callbacks. */
48a7639c 1965 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1966
1967 /* Remember that we saw this grace-period completion. */
1968 rdp->completed = rnp->completed;
f7f7bac9 1969 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1970 }
398ebe60 1971
7d0ae808 1972 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1973 /*
1974 * If the current grace period is waiting for this CPU,
1975 * set up to detect a quiescent state, otherwise don't
1976 * go looking for one.
1977 */
1978 rdp->gpnum = rnp->gpnum;
f7f7bac9 1979 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1980 need_gp = !!(rnp->qsmask & rdp->grpmask);
1981 rdp->cpu_no_qs.b.norm = need_gp;
5cd37193 1982 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3563a438 1983 rdp->core_needs_qs = need_gp;
6eaef633 1984 zero_cpu_stall_ticks(rdp);
7d0ae808 1985 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1986 }
48a7639c 1987 return ret;
6eaef633
PM
1988}
1989
d34ea322 1990static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1991{
1992 unsigned long flags;
48a7639c 1993 bool needwake;
6eaef633
PM
1994 struct rcu_node *rnp;
1995
1996 local_irq_save(flags);
1997 rnp = rdp->mynode;
7d0ae808
PM
1998 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1999 rdp->completed == READ_ONCE(rnp->completed) &&
2000 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 2001 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
2002 local_irq_restore(flags);
2003 return;
2004 }
48a7639c 2005 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 2006 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
2007 if (needwake)
2008 rcu_gp_kthread_wake(rsp);
6eaef633
PM
2009}
2010
0f41c0dd
PM
2011static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2012{
2013 if (delay > 0 &&
2014 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2015 schedule_timeout_uninterruptible(delay);
2016}
2017
b3dbec76 2018/*
45fed3e7 2019 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 2020 */
45fed3e7 2021static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 2022{
0aa04b05 2023 unsigned long oldmask;
b3dbec76 2024 struct rcu_data *rdp;
7fdefc10 2025 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 2026
7d0ae808 2027 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2028 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 2029 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 2030 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 2031 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2032 return false;
f7be8209 2033 }
7d0ae808 2034 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 2035
f7be8209
PM
2036 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2037 /*
2038 * Grace period already in progress, don't start another.
2039 * Not supposed to be able to happen.
2040 */
67c583a7 2041 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2042 return false;
7fdefc10
PM
2043 }
2044
7fdefc10 2045 /* Advance to a new grace period and initialize state. */
26cdfedf 2046 record_gp_stall_check_time(rsp);
765a3f4f
PM
2047 /* Record GP times before starting GP, hence smp_store_release(). */
2048 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 2049 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 2050 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 2051
0aa04b05
PM
2052 /*
2053 * Apply per-leaf buffered online and offline operations to the
2054 * rcu_node tree. Note that this new grace period need not wait
2055 * for subsequent online CPUs, and that quiescent-state forcing
2056 * will handle subsequent offline CPUs.
2057 */
2058 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2059 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2060 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2061 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2062 !rnp->wait_blkd_tasks) {
2063 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2064 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2065 continue;
2066 }
2067
2068 /* Record old state, apply changes to ->qsmaskinit field. */
2069 oldmask = rnp->qsmaskinit;
2070 rnp->qsmaskinit = rnp->qsmaskinitnext;
2071
2072 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2073 if (!oldmask != !rnp->qsmaskinit) {
2074 if (!oldmask) /* First online CPU for this rcu_node. */
2075 rcu_init_new_rnp(rnp);
2076 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2077 rnp->wait_blkd_tasks = true;
2078 else /* Last offline CPU and can propagate. */
2079 rcu_cleanup_dead_rnp(rnp);
2080 }
2081
2082 /*
2083 * If all waited-on tasks from prior grace period are
2084 * done, and if all this rcu_node structure's CPUs are
2085 * still offline, propagate up the rcu_node tree and
2086 * clear ->wait_blkd_tasks. Otherwise, if one of this
2087 * rcu_node structure's CPUs has since come back online,
2088 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2089 * checks for this, so just call it unconditionally).
2090 */
2091 if (rnp->wait_blkd_tasks &&
2092 (!rcu_preempt_has_tasks(rnp) ||
2093 rnp->qsmaskinit)) {
2094 rnp->wait_blkd_tasks = false;
2095 rcu_cleanup_dead_rnp(rnp);
2096 }
2097
67c583a7 2098 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2099 }
7fdefc10
PM
2100
2101 /*
2102 * Set the quiescent-state-needed bits in all the rcu_node
2103 * structures for all currently online CPUs in breadth-first order,
2104 * starting from the root rcu_node structure, relying on the layout
2105 * of the tree within the rsp->node[] array. Note that other CPUs
2106 * will access only the leaves of the hierarchy, thus seeing that no
2107 * grace period is in progress, at least until the corresponding
590d1757 2108 * leaf node has been initialized.
7fdefc10
PM
2109 *
2110 * The grace period cannot complete until the initialization
2111 * process finishes, because this kthread handles both.
2112 */
2113 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2114 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2115 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2116 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2117 rcu_preempt_check_blocked_tasks(rnp);
2118 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2119 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2120 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2121 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2122 if (rnp == rdp->mynode)
48a7639c 2123 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2124 rcu_preempt_boost_start_gp(rnp);
2125 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2126 rnp->level, rnp->grplo,
2127 rnp->grphi, rnp->qsmask);
67c583a7 2128 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2129 cond_resched_rcu_qs();
7d0ae808 2130 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2131 }
b3dbec76 2132
45fed3e7 2133 return true;
7fdefc10 2134}
b3dbec76 2135
b9a425cf
PM
2136/*
2137 * Helper function for wait_event_interruptible_timeout() wakeup
2138 * at force-quiescent-state time.
2139 */
2140static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2141{
2142 struct rcu_node *rnp = rcu_get_root(rsp);
2143
2144 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2145 *gfp = READ_ONCE(rsp->gp_flags);
2146 if (*gfp & RCU_GP_FLAG_FQS)
2147 return true;
2148
2149 /* The current grace period has completed. */
2150 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2151 return true;
2152
2153 return false;
2154}
2155
4cdfc175
PM
2156/*
2157 * Do one round of quiescent-state forcing.
2158 */
77f81fe0 2159static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2160{
217af2a2
PM
2161 bool isidle = false;
2162 unsigned long maxj;
4cdfc175
PM
2163 struct rcu_node *rnp = rcu_get_root(rsp);
2164
7d0ae808 2165 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2166 rsp->n_force_qs++;
77f81fe0 2167 if (first_time) {
4cdfc175 2168 /* Collect dyntick-idle snapshots. */
0edd1b17 2169 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2170 isidle = true;
0edd1b17
PM
2171 maxj = jiffies - ULONG_MAX / 4;
2172 }
217af2a2
PM
2173 force_qs_rnp(rsp, dyntick_save_progress_counter,
2174 &isidle, &maxj);
0edd1b17 2175 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2176 } else {
2177 /* Handle dyntick-idle and offline CPUs. */
675da67f 2178 isidle = true;
217af2a2 2179 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2180 }
2181 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2182 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2183 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2184 WRITE_ONCE(rsp->gp_flags,
2185 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2186 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2187 }
4cdfc175
PM
2188}
2189
7fdefc10
PM
2190/*
2191 * Clean up after the old grace period.
2192 */
4cdfc175 2193static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2194{
2195 unsigned long gp_duration;
48a7639c 2196 bool needgp = false;
dae6e64d 2197 int nocb = 0;
7fdefc10
PM
2198 struct rcu_data *rdp;
2199 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2200 struct swait_queue_head *sq;
b3dbec76 2201
7d0ae808 2202 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2203 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2204 gp_duration = jiffies - rsp->gp_start;
2205 if (gp_duration > rsp->gp_max)
2206 rsp->gp_max = gp_duration;
b3dbec76 2207
7fdefc10
PM
2208 /*
2209 * We know the grace period is complete, but to everyone else
2210 * it appears to still be ongoing. But it is also the case
2211 * that to everyone else it looks like there is nothing that
2212 * they can do to advance the grace period. It is therefore
2213 * safe for us to drop the lock in order to mark the grace
2214 * period as completed in all of the rcu_node structures.
7fdefc10 2215 */
67c583a7 2216 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2217
5d4b8659
PM
2218 /*
2219 * Propagate new ->completed value to rcu_node structures so
2220 * that other CPUs don't have to wait until the start of the next
2221 * grace period to process their callbacks. This also avoids
2222 * some nasty RCU grace-period initialization races by forcing
2223 * the end of the current grace period to be completely recorded in
2224 * all of the rcu_node structures before the beginning of the next
2225 * grace period is recorded in any of the rcu_node structures.
2226 */
2227 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2228 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2229 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2230 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2231 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2232 rdp = this_cpu_ptr(rsp->rda);
2233 if (rnp == rdp->mynode)
48a7639c 2234 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2235 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2236 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2237 sq = rcu_nocb_gp_get(rnp);
67c583a7 2238 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2239 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2240 cond_resched_rcu_qs();
7d0ae808 2241 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2242 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2243 }
5d4b8659 2244 rnp = rcu_get_root(rsp);
2a67e741 2245 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2246 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2247
765a3f4f 2248 /* Declare grace period done. */
7d0ae808 2249 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2250 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2251 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2252 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2253 /* Advance CBs to reduce false positives below. */
2254 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2255 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2256 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2257 trace_rcu_grace_period(rsp->name,
7d0ae808 2258 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2259 TPS("newreq"));
2260 }
67c583a7 2261 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2262}
2263
2264/*
2265 * Body of kthread that handles grace periods.
2266 */
2267static int __noreturn rcu_gp_kthread(void *arg)
2268{
77f81fe0 2269 bool first_gp_fqs;
88d6df61 2270 int gf;
d40011f6 2271 unsigned long j;
4cdfc175 2272 int ret;
7fdefc10
PM
2273 struct rcu_state *rsp = arg;
2274 struct rcu_node *rnp = rcu_get_root(rsp);
2275
5871968d 2276 rcu_bind_gp_kthread();
7fdefc10
PM
2277 for (;;) {
2278
2279 /* Handle grace-period start. */
2280 for (;;) {
63c4db78 2281 trace_rcu_grace_period(rsp->name,
7d0ae808 2282 READ_ONCE(rsp->gpnum),
63c4db78 2283 TPS("reqwait"));
afea227f 2284 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2285 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2286 READ_ONCE(rsp->gp_flags) &
4cdfc175 2287 RCU_GP_FLAG_INIT);
319362c9 2288 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2289 /* Locking provides needed memory barrier. */
f7be8209 2290 if (rcu_gp_init(rsp))
7fdefc10 2291 break;
bde6c3aa 2292 cond_resched_rcu_qs();
7d0ae808 2293 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2294 WARN_ON(signal_pending(current));
63c4db78 2295 trace_rcu_grace_period(rsp->name,
7d0ae808 2296 READ_ONCE(rsp->gpnum),
63c4db78 2297 TPS("reqwaitsig"));
7fdefc10 2298 }
cabc49c1 2299
4cdfc175 2300 /* Handle quiescent-state forcing. */
77f81fe0 2301 first_gp_fqs = true;
d40011f6
PM
2302 j = jiffies_till_first_fqs;
2303 if (j > HZ) {
2304 j = HZ;
2305 jiffies_till_first_fqs = HZ;
2306 }
88d6df61 2307 ret = 0;
cabc49c1 2308 for (;;) {
8c7c4829 2309 if (!ret) {
88d6df61 2310 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2311 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2312 jiffies + 3 * j);
2313 }
63c4db78 2314 trace_rcu_grace_period(rsp->name,
7d0ae808 2315 READ_ONCE(rsp->gpnum),
63c4db78 2316 TPS("fqswait"));
afea227f 2317 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2318 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2319 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2320 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2321 /* Locking provides needed memory barriers. */
4cdfc175 2322 /* If grace period done, leave loop. */
7d0ae808 2323 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2324 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2325 break;
4cdfc175 2326 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2327 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2328 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2329 trace_rcu_grace_period(rsp->name,
7d0ae808 2330 READ_ONCE(rsp->gpnum),
63c4db78 2331 TPS("fqsstart"));
77f81fe0
PM
2332 rcu_gp_fqs(rsp, first_gp_fqs);
2333 first_gp_fqs = false;
63c4db78 2334 trace_rcu_grace_period(rsp->name,
7d0ae808 2335 READ_ONCE(rsp->gpnum),
63c4db78 2336 TPS("fqsend"));
bde6c3aa 2337 cond_resched_rcu_qs();
7d0ae808 2338 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2339 ret = 0; /* Force full wait till next FQS. */
2340 j = jiffies_till_next_fqs;
2341 if (j > HZ) {
2342 j = HZ;
2343 jiffies_till_next_fqs = HZ;
2344 } else if (j < 1) {
2345 j = 1;
2346 jiffies_till_next_fqs = 1;
2347 }
4cdfc175
PM
2348 } else {
2349 /* Deal with stray signal. */
bde6c3aa 2350 cond_resched_rcu_qs();
7d0ae808 2351 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2352 WARN_ON(signal_pending(current));
63c4db78 2353 trace_rcu_grace_period(rsp->name,
7d0ae808 2354 READ_ONCE(rsp->gpnum),
63c4db78 2355 TPS("fqswaitsig"));
fcfd0a23
PM
2356 ret = 1; /* Keep old FQS timing. */
2357 j = jiffies;
2358 if (time_after(jiffies, rsp->jiffies_force_qs))
2359 j = 1;
2360 else
2361 j = rsp->jiffies_force_qs - j;
d40011f6 2362 }
cabc49c1 2363 }
4cdfc175
PM
2364
2365 /* Handle grace-period end. */
319362c9 2366 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2367 rcu_gp_cleanup(rsp);
319362c9 2368 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2369 }
b3dbec76
PM
2370}
2371
64db4cff
PM
2372/*
2373 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2374 * in preparation for detecting the next grace period. The caller must hold
b8462084 2375 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2376 *
2377 * Note that it is legal for a dying CPU (which is marked as offline) to
2378 * invoke this function. This can happen when the dying CPU reports its
2379 * quiescent state.
48a7639c
PM
2380 *
2381 * Returns true if the grace-period kthread must be awakened.
64db4cff 2382 */
48a7639c 2383static bool
910ee45d
PM
2384rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2385 struct rcu_data *rdp)
64db4cff 2386{
b8462084 2387 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2388 /*
b3dbec76 2389 * Either we have not yet spawned the grace-period
62da1921
PM
2390 * task, this CPU does not need another grace period,
2391 * or a grace period is already in progress.
b3dbec76 2392 * Either way, don't start a new grace period.
afe24b12 2393 */
48a7639c 2394 return false;
afe24b12 2395 }
7d0ae808
PM
2396 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2397 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2398 TPS("newreq"));
62da1921 2399
016a8d5b
SR
2400 /*
2401 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2402 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2403 * the wakeup to our caller.
016a8d5b 2404 */
48a7639c 2405 return true;
64db4cff
PM
2406}
2407
910ee45d
PM
2408/*
2409 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2410 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2411 * is invoked indirectly from rcu_advance_cbs(), which would result in
2412 * endless recursion -- or would do so if it wasn't for the self-deadlock
2413 * that is encountered beforehand.
48a7639c
PM
2414 *
2415 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2416 */
48a7639c 2417static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2418{
2419 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2420 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2421 bool ret = false;
910ee45d
PM
2422
2423 /*
2424 * If there is no grace period in progress right now, any
2425 * callbacks we have up to this point will be satisfied by the
2426 * next grace period. Also, advancing the callbacks reduces the
2427 * probability of false positives from cpu_needs_another_gp()
2428 * resulting in pointless grace periods. So, advance callbacks
2429 * then start the grace period!
2430 */
48a7639c
PM
2431 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2432 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2433 return ret;
910ee45d
PM
2434}
2435
f41d911f 2436/*
8994515c
PM
2437 * Report a full set of quiescent states to the specified rcu_state data
2438 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2439 * kthread if another grace period is required. Whether we wake
2440 * the grace-period kthread or it awakens itself for the next round
2441 * of quiescent-state forcing, that kthread will clean up after the
2442 * just-completed grace period. Note that the caller must hold rnp->lock,
2443 * which is released before return.
f41d911f 2444 */
d3f6bad3 2445static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2446 __releases(rcu_get_root(rsp)->lock)
f41d911f 2447{
fc2219d4 2448 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2449 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2450 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2451 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2452}
2453
64db4cff 2454/*
d3f6bad3
PM
2455 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2456 * Allows quiescent states for a group of CPUs to be reported at one go
2457 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2458 * must be represented by the same rcu_node structure (which need not be a
2459 * leaf rcu_node structure, though it often will be). The gps parameter
2460 * is the grace-period snapshot, which means that the quiescent states
2461 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2462 * must be held upon entry, and it is released before return.
64db4cff
PM
2463 */
2464static void
d3f6bad3 2465rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2466 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2467 __releases(rnp->lock)
2468{
654e9533 2469 unsigned long oldmask = 0;
28ecd580
PM
2470 struct rcu_node *rnp_c;
2471
64db4cff
PM
2472 /* Walk up the rcu_node hierarchy. */
2473 for (;;) {
654e9533 2474 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2475
654e9533
PM
2476 /*
2477 * Our bit has already been cleared, or the
2478 * relevant grace period is already over, so done.
2479 */
67c583a7 2480 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2481 return;
2482 }
654e9533 2483 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2484 rnp->qsmask &= ~mask;
d4c08f2a
PM
2485 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2486 mask, rnp->qsmask, rnp->level,
2487 rnp->grplo, rnp->grphi,
2488 !!rnp->gp_tasks);
27f4d280 2489 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2490
2491 /* Other bits still set at this level, so done. */
67c583a7 2492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2493 return;
2494 }
2495 mask = rnp->grpmask;
2496 if (rnp->parent == NULL) {
2497
2498 /* No more levels. Exit loop holding root lock. */
2499
2500 break;
2501 }
67c583a7 2502 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2503 rnp_c = rnp;
64db4cff 2504 rnp = rnp->parent;
2a67e741 2505 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2506 oldmask = rnp_c->qsmask;
64db4cff
PM
2507 }
2508
2509 /*
2510 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2511 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2512 * to clean up and start the next grace period if one is needed.
64db4cff 2513 */
d3f6bad3 2514 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2515}
2516
cc99a310
PM
2517/*
2518 * Record a quiescent state for all tasks that were previously queued
2519 * on the specified rcu_node structure and that were blocking the current
2520 * RCU grace period. The caller must hold the specified rnp->lock with
2521 * irqs disabled, and this lock is released upon return, but irqs remain
2522 * disabled.
2523 */
0aa04b05 2524static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2525 struct rcu_node *rnp, unsigned long flags)
2526 __releases(rnp->lock)
2527{
654e9533 2528 unsigned long gps;
cc99a310
PM
2529 unsigned long mask;
2530 struct rcu_node *rnp_p;
2531
a77da14c
PM
2532 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2533 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2534 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2535 return; /* Still need more quiescent states! */
2536 }
2537
2538 rnp_p = rnp->parent;
2539 if (rnp_p == NULL) {
2540 /*
a77da14c
PM
2541 * Only one rcu_node structure in the tree, so don't
2542 * try to report up to its nonexistent parent!
cc99a310
PM
2543 */
2544 rcu_report_qs_rsp(rsp, flags);
2545 return;
2546 }
2547
654e9533
PM
2548 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2549 gps = rnp->gpnum;
cc99a310 2550 mask = rnp->grpmask;
67c583a7 2551 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2552 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2553 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2554}
2555
64db4cff 2556/*
d3f6bad3 2557 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2558 * structure. This must be called from the specified CPU.
64db4cff
PM
2559 */
2560static void
d7d6a11e 2561rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2562{
2563 unsigned long flags;
2564 unsigned long mask;
48a7639c 2565 bool needwake;
64db4cff
PM
2566 struct rcu_node *rnp;
2567
2568 rnp = rdp->mynode;
2a67e741 2569 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2570 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2571 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2572
2573 /*
e4cc1f22
PM
2574 * The grace period in which this quiescent state was
2575 * recorded has ended, so don't report it upwards.
2576 * We will instead need a new quiescent state that lies
2577 * within the current grace period.
64db4cff 2578 */
5b74c458 2579 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
5cd37193 2580 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
67c583a7 2581 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2582 return;
2583 }
2584 mask = rdp->grpmask;
2585 if ((rnp->qsmask & mask) == 0) {
67c583a7 2586 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2587 } else {
bb53e416 2588 rdp->core_needs_qs = false;
64db4cff
PM
2589
2590 /*
2591 * This GP can't end until cpu checks in, so all of our
2592 * callbacks can be processed during the next GP.
2593 */
48a7639c 2594 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2595
654e9533
PM
2596 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2597 /* ^^^ Released rnp->lock */
48a7639c
PM
2598 if (needwake)
2599 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2600 }
2601}
2602
2603/*
2604 * Check to see if there is a new grace period of which this CPU
2605 * is not yet aware, and if so, set up local rcu_data state for it.
2606 * Otherwise, see if this CPU has just passed through its first
2607 * quiescent state for this grace period, and record that fact if so.
2608 */
2609static void
2610rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2611{
05eb552b
PM
2612 /* Check for grace-period ends and beginnings. */
2613 note_gp_changes(rsp, rdp);
64db4cff
PM
2614
2615 /*
2616 * Does this CPU still need to do its part for current grace period?
2617 * If no, return and let the other CPUs do their part as well.
2618 */
97c668b8 2619 if (!rdp->core_needs_qs)
64db4cff
PM
2620 return;
2621
2622 /*
2623 * Was there a quiescent state since the beginning of the grace
2624 * period? If no, then exit and wait for the next call.
2625 */
3a19b46a 2626 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2627 return;
2628
d3f6bad3
PM
2629 /*
2630 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2631 * judge of that).
2632 */
d7d6a11e 2633 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2634}
2635
e74f4c45 2636/*
b1420f1c
PM
2637 * Send the specified CPU's RCU callbacks to the orphanage. The
2638 * specified CPU must be offline, and the caller must hold the
7b2e6011 2639 * ->orphan_lock.
e74f4c45 2640 */
b1420f1c
PM
2641static void
2642rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2643 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2644{
3fbfbf7a 2645 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2646 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2647 return;
2648
b1420f1c
PM
2649 /*
2650 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2651 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2652 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2653 */
a50c3af9 2654 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2655 rsp->qlen_lazy += rdp->qlen_lazy;
2656 rsp->qlen += rdp->qlen;
2657 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2658 rdp->qlen_lazy = 0;
7d0ae808 2659 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2660 }
2661
2662 /*
b1420f1c
PM
2663 * Next, move those callbacks still needing a grace period to
2664 * the orphanage, where some other CPU will pick them up.
2665 * Some of the callbacks might have gone partway through a grace
2666 * period, but that is too bad. They get to start over because we
2667 * cannot assume that grace periods are synchronized across CPUs.
2668 * We don't bother updating the ->nxttail[] array yet, instead
2669 * we just reset the whole thing later on.
a50c3af9 2670 */
b1420f1c
PM
2671 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2672 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2673 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2674 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2675 }
2676
2677 /*
b1420f1c
PM
2678 * Then move the ready-to-invoke callbacks to the orphanage,
2679 * where some other CPU will pick them up. These will not be
2680 * required to pass though another grace period: They are done.
a50c3af9 2681 */
e5601400 2682 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2683 *rsp->orphan_donetail = rdp->nxtlist;
2684 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2685 }
e74f4c45 2686
b33078b6
PM
2687 /*
2688 * Finally, initialize the rcu_data structure's list to empty and
2689 * disallow further callbacks on this CPU.
2690 */
3f5d3ea6 2691 init_callback_list(rdp);
b33078b6 2692 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2693}
2694
2695/*
2696 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2697 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2698 */
96d3fd0d 2699static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2700{
2701 int i;
fa07a58f 2702 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2703
3fbfbf7a 2704 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2705 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2706 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2707 return;
2708
b1420f1c
PM
2709 /* Do the accounting first. */
2710 rdp->qlen_lazy += rsp->qlen_lazy;
2711 rdp->qlen += rsp->qlen;
2712 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2713 if (rsp->qlen_lazy != rsp->qlen)
2714 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2715 rsp->qlen_lazy = 0;
2716 rsp->qlen = 0;
2717
2718 /*
2719 * We do not need a memory barrier here because the only way we
2720 * can get here if there is an rcu_barrier() in flight is if
2721 * we are the task doing the rcu_barrier().
2722 */
2723
2724 /* First adopt the ready-to-invoke callbacks. */
2725 if (rsp->orphan_donelist != NULL) {
2726 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2727 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2728 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2729 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2730 rdp->nxttail[i] = rsp->orphan_donetail;
2731 rsp->orphan_donelist = NULL;
2732 rsp->orphan_donetail = &rsp->orphan_donelist;
2733 }
2734
2735 /* And then adopt the callbacks that still need a grace period. */
2736 if (rsp->orphan_nxtlist != NULL) {
2737 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2738 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2739 rsp->orphan_nxtlist = NULL;
2740 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2741 }
2742}
2743
2744/*
2745 * Trace the fact that this CPU is going offline.
2746 */
2747static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2748{
2749 RCU_TRACE(unsigned long mask);
2750 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2751 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2752
ea46351c
PM
2753 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2754 return;
2755
b1420f1c 2756 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2757 trace_rcu_grace_period(rsp->name,
2758 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2759 TPS("cpuofl"));
64db4cff
PM
2760}
2761
8af3a5e7
PM
2762/*
2763 * All CPUs for the specified rcu_node structure have gone offline,
2764 * and all tasks that were preempted within an RCU read-side critical
2765 * section while running on one of those CPUs have since exited their RCU
2766 * read-side critical section. Some other CPU is reporting this fact with
2767 * the specified rcu_node structure's ->lock held and interrupts disabled.
2768 * This function therefore goes up the tree of rcu_node structures,
2769 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2770 * the leaf rcu_node structure's ->qsmaskinit field has already been
2771 * updated
2772 *
2773 * This function does check that the specified rcu_node structure has
2774 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2775 * prematurely. That said, invoking it after the fact will cost you
2776 * a needless lock acquisition. So once it has done its work, don't
2777 * invoke it again.
2778 */
2779static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2780{
2781 long mask;
2782 struct rcu_node *rnp = rnp_leaf;
2783
ea46351c
PM
2784 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2785 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2786 return;
2787 for (;;) {
2788 mask = rnp->grpmask;
2789 rnp = rnp->parent;
2790 if (!rnp)
2791 break;
2a67e741 2792 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2793 rnp->qsmaskinit &= ~mask;
0aa04b05 2794 rnp->qsmask &= ~mask;
8af3a5e7 2795 if (rnp->qsmaskinit) {
67c583a7
BF
2796 raw_spin_unlock_rcu_node(rnp);
2797 /* irqs remain disabled. */
8af3a5e7
PM
2798 return;
2799 }
67c583a7 2800 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2801 }
2802}
2803
64db4cff 2804/*
e5601400 2805 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2806 * this fact from process context. Do the remainder of the cleanup,
2807 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2808 * adopting them. There can only be one CPU hotplug operation at a time,
2809 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2810 */
e5601400 2811static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2812{
2036d94a 2813 unsigned long flags;
e5601400 2814 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2815 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2816
ea46351c
PM
2817 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2818 return;
2819
2036d94a 2820 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2821 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2822
b1420f1c 2823 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2824 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2825 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2826 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2827 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2828
cf01537e
PM
2829 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2830 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2831 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2832}
2833
64db4cff
PM
2834/*
2835 * Invoke any RCU callbacks that have made it to the end of their grace
2836 * period. Thottle as specified by rdp->blimit.
2837 */
37c72e56 2838static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2839{
2840 unsigned long flags;
2841 struct rcu_head *next, *list, **tail;
878d7439
ED
2842 long bl, count, count_lazy;
2843 int i;
64db4cff 2844
dc35c893 2845 /* If no callbacks are ready, just return. */
29c00b4a 2846 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2847 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2848 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2849 need_resched(), is_idle_task(current),
2850 rcu_is_callbacks_kthread());
64db4cff 2851 return;
29c00b4a 2852 }
64db4cff
PM
2853
2854 /*
2855 * Extract the list of ready callbacks, disabling to prevent
2856 * races with call_rcu() from interrupt handlers.
2857 */
2858 local_irq_save(flags);
8146c4e2 2859 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2860 bl = rdp->blimit;
486e2593 2861 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2862 list = rdp->nxtlist;
2863 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2864 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2865 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2866 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2867 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2868 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2869 local_irq_restore(flags);
2870
2871 /* Invoke callbacks. */
486e2593 2872 count = count_lazy = 0;
64db4cff
PM
2873 while (list) {
2874 next = list->next;
2875 prefetch(next);
551d55a9 2876 debug_rcu_head_unqueue(list);
486e2593
PM
2877 if (__rcu_reclaim(rsp->name, list))
2878 count_lazy++;
64db4cff 2879 list = next;
dff1672d
PM
2880 /* Stop only if limit reached and CPU has something to do. */
2881 if (++count >= bl &&
2882 (need_resched() ||
2883 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2884 break;
2885 }
2886
2887 local_irq_save(flags);
4968c300
PM
2888 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2889 is_idle_task(current),
2890 rcu_is_callbacks_kthread());
64db4cff
PM
2891
2892 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2893 if (list != NULL) {
2894 *tail = rdp->nxtlist;
2895 rdp->nxtlist = list;
b41772ab
PM
2896 for (i = 0; i < RCU_NEXT_SIZE; i++)
2897 if (&rdp->nxtlist == rdp->nxttail[i])
2898 rdp->nxttail[i] = tail;
64db4cff
PM
2899 else
2900 break;
2901 }
b1420f1c
PM
2902 smp_mb(); /* List handling before counting for rcu_barrier(). */
2903 rdp->qlen_lazy -= count_lazy;
7d0ae808 2904 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2905 rdp->n_cbs_invoked += count;
64db4cff
PM
2906
2907 /* Reinstate batch limit if we have worked down the excess. */
2908 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2909 rdp->blimit = blimit;
2910
37c72e56
PM
2911 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2912 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2913 rdp->qlen_last_fqs_check = 0;
2914 rdp->n_force_qs_snap = rsp->n_force_qs;
2915 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2916 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2917 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2918
64db4cff
PM
2919 local_irq_restore(flags);
2920
e0f23060 2921 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2922 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2923 invoke_rcu_core();
64db4cff
PM
2924}
2925
2926/*
2927 * Check to see if this CPU is in a non-context-switch quiescent state
2928 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2929 * Also schedule RCU core processing.
64db4cff 2930 *
9b2e4f18 2931 * This function must be called from hardirq context. It is normally
5403d367 2932 * invoked from the scheduling-clock interrupt.
64db4cff 2933 */
c3377c2d 2934void rcu_check_callbacks(int user)
64db4cff 2935{
f7f7bac9 2936 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2937 increment_cpu_stall_ticks();
9b2e4f18 2938 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2939
2940 /*
2941 * Get here if this CPU took its interrupt from user
2942 * mode or from the idle loop, and if this is not a
2943 * nested interrupt. In this case, the CPU is in
d6714c22 2944 * a quiescent state, so note it.
64db4cff
PM
2945 *
2946 * No memory barrier is required here because both
d6714c22
PM
2947 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2948 * variables that other CPUs neither access nor modify,
2949 * at least not while the corresponding CPU is online.
64db4cff
PM
2950 */
2951
284a8c93
PM
2952 rcu_sched_qs();
2953 rcu_bh_qs();
64db4cff
PM
2954
2955 } else if (!in_softirq()) {
2956
2957 /*
2958 * Get here if this CPU did not take its interrupt from
2959 * softirq, in other words, if it is not interrupting
2960 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2961 * critical section, so note it.
64db4cff
PM
2962 */
2963
284a8c93 2964 rcu_bh_qs();
64db4cff 2965 }
86aea0e6 2966 rcu_preempt_check_callbacks();
e3950ecd 2967 if (rcu_pending())
a46e0899 2968 invoke_rcu_core();
8315f422
PM
2969 if (user)
2970 rcu_note_voluntary_context_switch(current);
f7f7bac9 2971 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2972}
2973
64db4cff
PM
2974/*
2975 * Scan the leaf rcu_node structures, processing dyntick state for any that
2976 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2977 * Also initiate boosting for any threads blocked on the root rcu_node.
2978 *
ee47eb9f 2979 * The caller must have suppressed start of new grace periods.
64db4cff 2980 */
217af2a2
PM
2981static void force_qs_rnp(struct rcu_state *rsp,
2982 int (*f)(struct rcu_data *rsp, bool *isidle,
2983 unsigned long *maxj),
2984 bool *isidle, unsigned long *maxj)
64db4cff 2985{
64db4cff
PM
2986 int cpu;
2987 unsigned long flags;
2988 unsigned long mask;
a0b6c9a7 2989 struct rcu_node *rnp;
64db4cff 2990
a0b6c9a7 2991 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2992 cond_resched_rcu_qs();
64db4cff 2993 mask = 0;
2a67e741 2994 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2995 if (rnp->qsmask == 0) {
a77da14c
PM
2996 if (rcu_state_p == &rcu_sched_state ||
2997 rsp != rcu_state_p ||
2998 rcu_preempt_blocked_readers_cgp(rnp)) {
2999 /*
3000 * No point in scanning bits because they
3001 * are all zero. But we might need to
3002 * priority-boost blocked readers.
3003 */
3004 rcu_initiate_boost(rnp, flags);
3005 /* rcu_initiate_boost() releases rnp->lock */
3006 continue;
3007 }
3008 if (rnp->parent &&
3009 (rnp->parent->qsmask & rnp->grpmask)) {
3010 /*
3011 * Race between grace-period
3012 * initialization and task exiting RCU
3013 * read-side critical section: Report.
3014 */
3015 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
3016 /* rcu_report_unblock_qs_rnp() rlses ->lock */
3017 continue;
3018 }
64db4cff 3019 }
bc75e999
MR
3020 for_each_leaf_node_possible_cpu(rnp, cpu) {
3021 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 3022 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
3023 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
3024 mask |= bit;
3025 }
64db4cff 3026 }
45f014c5 3027 if (mask != 0) {
654e9533
PM
3028 /* Idle/offline CPUs, report (releases rnp->lock. */
3029 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
3030 } else {
3031 /* Nothing to do here, so just drop the lock. */
67c583a7 3032 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 3033 }
64db4cff 3034 }
64db4cff
PM
3035}
3036
3037/*
3038 * Force quiescent states on reluctant CPUs, and also detect which
3039 * CPUs are in dyntick-idle mode.
3040 */
4cdfc175 3041static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
3042{
3043 unsigned long flags;
394f2769
PM
3044 bool ret;
3045 struct rcu_node *rnp;
3046 struct rcu_node *rnp_old = NULL;
3047
3048 /* Funnel through hierarchy to reduce memory contention. */
d860d403 3049 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 3050 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 3051 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
3052 !raw_spin_trylock(&rnp->fqslock);
3053 if (rnp_old != NULL)
3054 raw_spin_unlock(&rnp_old->fqslock);
3055 if (ret) {
a792563b 3056 rsp->n_force_qs_lh++;
394f2769
PM
3057 return;
3058 }
3059 rnp_old = rnp;
3060 }
3061 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 3062
394f2769 3063 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 3064 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 3065 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 3066 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 3067 rsp->n_force_qs_lh++;
67c583a7 3068 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 3069 return; /* Someone beat us to it. */
46a1e34e 3070 }
7d0ae808 3071 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 3072 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 3073 rcu_gp_kthread_wake(rsp);
64db4cff
PM
3074}
3075
64db4cff 3076/*
e0f23060
PM
3077 * This does the RCU core processing work for the specified rcu_state
3078 * and rcu_data structures. This may be called only from the CPU to
3079 * whom the rdp belongs.
64db4cff
PM
3080 */
3081static void
1bca8cf1 3082__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
3083{
3084 unsigned long flags;
48a7639c 3085 bool needwake;
fa07a58f 3086 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 3087
2e597558
PM
3088 WARN_ON_ONCE(rdp->beenonline == 0);
3089
64db4cff
PM
3090 /* Update RCU state based on any recent quiescent states. */
3091 rcu_check_quiescent_state(rsp, rdp);
3092
3093 /* Does this CPU require a not-yet-started grace period? */
dc35c893 3094 local_irq_save(flags);
64db4cff 3095 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 3096 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 3097 needwake = rcu_start_gp(rsp);
67c583a7 3098 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
3099 if (needwake)
3100 rcu_gp_kthread_wake(rsp);
dc35c893
PM
3101 } else {
3102 local_irq_restore(flags);
64db4cff
PM
3103 }
3104
3105 /* If there are callbacks ready, invoke them. */
09223371 3106 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 3107 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3108
3109 /* Do any needed deferred wakeups of rcuo kthreads. */
3110 do_nocb_deferred_wakeup(rdp);
09223371
SL
3111}
3112
64db4cff 3113/*
e0f23060 3114 * Do RCU core processing for the current CPU.
64db4cff 3115 */
0766f788 3116static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3117{
6ce75a23
PM
3118 struct rcu_state *rsp;
3119
bfa00b4c
PM
3120 if (cpu_is_offline(smp_processor_id()))
3121 return;
f7f7bac9 3122 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3123 for_each_rcu_flavor(rsp)
3124 __rcu_process_callbacks(rsp);
f7f7bac9 3125 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3126}
3127
a26ac245 3128/*
e0f23060
PM
3129 * Schedule RCU callback invocation. If the specified type of RCU
3130 * does not support RCU priority boosting, just do a direct call,
3131 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3132 * are running on the current CPU with softirqs disabled, the
e0f23060 3133 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3134 */
a46e0899 3135static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3136{
7d0ae808 3137 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3138 return;
a46e0899
PM
3139 if (likely(!rsp->boost)) {
3140 rcu_do_batch(rsp, rdp);
a26ac245
PM
3141 return;
3142 }
a46e0899 3143 invoke_rcu_callbacks_kthread();
a26ac245
PM
3144}
3145
a46e0899 3146static void invoke_rcu_core(void)
09223371 3147{
b0f74036
PM
3148 if (cpu_online(smp_processor_id()))
3149 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3150}
3151
29154c57
PM
3152/*
3153 * Handle any core-RCU processing required by a call_rcu() invocation.
3154 */
3155static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3156 struct rcu_head *head, unsigned long flags)
64db4cff 3157{
48a7639c
PM
3158 bool needwake;
3159
62fde6ed
PM
3160 /*
3161 * If called from an extended quiescent state, invoke the RCU
3162 * core in order to force a re-evaluation of RCU's idleness.
3163 */
9910affa 3164 if (!rcu_is_watching())
62fde6ed
PM
3165 invoke_rcu_core();
3166
a16b7a69 3167 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3168 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3169 return;
64db4cff 3170
37c72e56
PM
3171 /*
3172 * Force the grace period if too many callbacks or too long waiting.
3173 * Enforce hysteresis, and don't invoke force_quiescent_state()
3174 * if some other CPU has recently done so. Also, don't bother
3175 * invoking force_quiescent_state() if the newly enqueued callback
3176 * is the only one waiting for a grace period to complete.
3177 */
2655d57e 3178 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3179
3180 /* Are we ignoring a completed grace period? */
470716fc 3181 note_gp_changes(rsp, rdp);
b52573d2
PM
3182
3183 /* Start a new grace period if one not already started. */
3184 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3185 struct rcu_node *rnp_root = rcu_get_root(rsp);
3186
2a67e741 3187 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3188 needwake = rcu_start_gp(rsp);
67c583a7 3189 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3190 if (needwake)
3191 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3192 } else {
3193 /* Give the grace period a kick. */
3194 rdp->blimit = LONG_MAX;
3195 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3196 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3197 force_quiescent_state(rsp);
b52573d2
PM
3198 rdp->n_force_qs_snap = rsp->n_force_qs;
3199 rdp->qlen_last_fqs_check = rdp->qlen;
3200 }
4cdfc175 3201 }
29154c57
PM
3202}
3203
ae150184
PM
3204/*
3205 * RCU callback function to leak a callback.
3206 */
3207static void rcu_leak_callback(struct rcu_head *rhp)
3208{
3209}
3210
3fbfbf7a
PM
3211/*
3212 * Helper function for call_rcu() and friends. The cpu argument will
3213 * normally be -1, indicating "currently running CPU". It may specify
3214 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3215 * is expected to specify a CPU.
3216 */
64db4cff 3217static void
b6a4ae76 3218__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3219 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3220{
3221 unsigned long flags;
3222 struct rcu_data *rdp;
3223
b8f2ed53
PM
3224 /* Misaligned rcu_head! */
3225 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3226
ae150184
PM
3227 if (debug_rcu_head_queue(head)) {
3228 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3229 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3230 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3231 return;
3232 }
64db4cff
PM
3233 head->func = func;
3234 head->next = NULL;
64db4cff 3235 local_irq_save(flags);
394f99a9 3236 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3237
3238 /* Add the callback to our list. */
3fbfbf7a
PM
3239 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3240 int offline;
3241
3242 if (cpu != -1)
3243 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3244 if (likely(rdp->mynode)) {
3245 /* Post-boot, so this should be for a no-CBs CPU. */
3246 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3247 WARN_ON_ONCE(offline);
3248 /* Offline CPU, _call_rcu() illegal, leak callback. */
3249 local_irq_restore(flags);
3250 return;
3251 }
3252 /*
3253 * Very early boot, before rcu_init(). Initialize if needed
3254 * and then drop through to queue the callback.
3255 */
3256 BUG_ON(cpu != -1);
34404ca8 3257 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3258 if (!likely(rdp->nxtlist))
3259 init_default_callback_list(rdp);
0d8ee37e 3260 }
7d0ae808 3261 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3262 if (lazy)
3263 rdp->qlen_lazy++;
c57afe80
PM
3264 else
3265 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3266 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3267 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3268 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3269
d4c08f2a
PM
3270 if (__is_kfree_rcu_offset((unsigned long)func))
3271 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3272 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3273 else
486e2593 3274 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3275
29154c57
PM
3276 /* Go handle any RCU core processing required. */
3277 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3278 local_irq_restore(flags);
3279}
3280
3281/*
d6714c22 3282 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3283 */
b6a4ae76 3284void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3285{
3fbfbf7a 3286 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3287}
d6714c22 3288EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3289
3290/*
486e2593 3291 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3292 */
b6a4ae76 3293void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3294{
3fbfbf7a 3295 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3296}
3297EXPORT_SYMBOL_GPL(call_rcu_bh);
3298
495aa969
ACB
3299/*
3300 * Queue an RCU callback for lazy invocation after a grace period.
3301 * This will likely be later named something like "call_rcu_lazy()",
3302 * but this change will require some way of tagging the lazy RCU
3303 * callbacks in the list of pending callbacks. Until then, this
3304 * function may only be called from __kfree_rcu().
3305 */
3306void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3307 rcu_callback_t func)
495aa969 3308{
e534165b 3309 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3310}
3311EXPORT_SYMBOL_GPL(kfree_call_rcu);
3312
6d813391
PM
3313/*
3314 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3315 * any blocking grace-period wait automatically implies a grace period
3316 * if there is only one CPU online at any point time during execution
3317 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3318 * occasionally incorrectly indicate that there are multiple CPUs online
3319 * when there was in fact only one the whole time, as this just adds
3320 * some overhead: RCU still operates correctly.
6d813391
PM
3321 */
3322static inline int rcu_blocking_is_gp(void)
3323{
95f0c1de
PM
3324 int ret;
3325
6d813391 3326 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3327 preempt_disable();
3328 ret = num_online_cpus() <= 1;
3329 preempt_enable();
3330 return ret;
6d813391
PM
3331}
3332
6ebb237b
PM
3333/**
3334 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3335 *
3336 * Control will return to the caller some time after a full rcu-sched
3337 * grace period has elapsed, in other words after all currently executing
3338 * rcu-sched read-side critical sections have completed. These read-side
3339 * critical sections are delimited by rcu_read_lock_sched() and
3340 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3341 * local_irq_disable(), and so on may be used in place of
3342 * rcu_read_lock_sched().
3343 *
3344 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3345 * non-threaded hardware-interrupt handlers, in progress on entry will
3346 * have completed before this primitive returns. However, this does not
3347 * guarantee that softirq handlers will have completed, since in some
3348 * kernels, these handlers can run in process context, and can block.
3349 *
3350 * Note that this guarantee implies further memory-ordering guarantees.
3351 * On systems with more than one CPU, when synchronize_sched() returns,
3352 * each CPU is guaranteed to have executed a full memory barrier since the
3353 * end of its last RCU-sched read-side critical section whose beginning
3354 * preceded the call to synchronize_sched(). In addition, each CPU having
3355 * an RCU read-side critical section that extends beyond the return from
3356 * synchronize_sched() is guaranteed to have executed a full memory barrier
3357 * after the beginning of synchronize_sched() and before the beginning of
3358 * that RCU read-side critical section. Note that these guarantees include
3359 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3360 * that are executing in the kernel.
3361 *
3362 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3363 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3364 * to have executed a full memory barrier during the execution of
3365 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3366 * again only if the system has more than one CPU).
6ebb237b
PM
3367 *
3368 * This primitive provides the guarantees made by the (now removed)
3369 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3370 * guarantees that rcu_read_lock() sections will have completed.
3371 * In "classic RCU", these two guarantees happen to be one and
3372 * the same, but can differ in realtime RCU implementations.
3373 */
3374void synchronize_sched(void)
3375{
f78f5b90
PM
3376 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3377 lock_is_held(&rcu_lock_map) ||
3378 lock_is_held(&rcu_sched_lock_map),
3379 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3380 if (rcu_blocking_is_gp())
3381 return;
5afff48b 3382 if (rcu_gp_is_expedited())
3705b88d
AM
3383 synchronize_sched_expedited();
3384 else
3385 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3386}
3387EXPORT_SYMBOL_GPL(synchronize_sched);
3388
3389/**
3390 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3391 *
3392 * Control will return to the caller some time after a full rcu_bh grace
3393 * period has elapsed, in other words after all currently executing rcu_bh
3394 * read-side critical sections have completed. RCU read-side critical
3395 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3396 * and may be nested.
f0a0e6f2
PM
3397 *
3398 * See the description of synchronize_sched() for more detailed information
3399 * on memory ordering guarantees.
6ebb237b
PM
3400 */
3401void synchronize_rcu_bh(void)
3402{
f78f5b90
PM
3403 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3404 lock_is_held(&rcu_lock_map) ||
3405 lock_is_held(&rcu_sched_lock_map),
3406 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3407 if (rcu_blocking_is_gp())
3408 return;
5afff48b 3409 if (rcu_gp_is_expedited())
3705b88d
AM
3410 synchronize_rcu_bh_expedited();
3411 else
3412 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3413}
3414EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3415
765a3f4f
PM
3416/**
3417 * get_state_synchronize_rcu - Snapshot current RCU state
3418 *
3419 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3420 * to determine whether or not a full grace period has elapsed in the
3421 * meantime.
3422 */
3423unsigned long get_state_synchronize_rcu(void)
3424{
3425 /*
3426 * Any prior manipulation of RCU-protected data must happen
3427 * before the load from ->gpnum.
3428 */
3429 smp_mb(); /* ^^^ */
3430
3431 /*
3432 * Make sure this load happens before the purportedly
3433 * time-consuming work between get_state_synchronize_rcu()
3434 * and cond_synchronize_rcu().
3435 */
e534165b 3436 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3437}
3438EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3439
3440/**
3441 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3442 *
3443 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3444 *
3445 * If a full RCU grace period has elapsed since the earlier call to
3446 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3447 * synchronize_rcu() to wait for a full grace period.
3448 *
3449 * Yes, this function does not take counter wrap into account. But
3450 * counter wrap is harmless. If the counter wraps, we have waited for
3451 * more than 2 billion grace periods (and way more on a 64-bit system!),
3452 * so waiting for one additional grace period should be just fine.
3453 */
3454void cond_synchronize_rcu(unsigned long oldstate)
3455{
3456 unsigned long newstate;
3457
3458 /*
3459 * Ensure that this load happens before any RCU-destructive
3460 * actions the caller might carry out after we return.
3461 */
e534165b 3462 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3463 if (ULONG_CMP_GE(oldstate, newstate))
3464 synchronize_rcu();
3465}
3466EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3467
24560056
PM
3468/**
3469 * get_state_synchronize_sched - Snapshot current RCU-sched state
3470 *
3471 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3472 * to determine whether or not a full grace period has elapsed in the
3473 * meantime.
3474 */
3475unsigned long get_state_synchronize_sched(void)
3476{
3477 /*
3478 * Any prior manipulation of RCU-protected data must happen
3479 * before the load from ->gpnum.
3480 */
3481 smp_mb(); /* ^^^ */
3482
3483 /*
3484 * Make sure this load happens before the purportedly
3485 * time-consuming work between get_state_synchronize_sched()
3486 * and cond_synchronize_sched().
3487 */
3488 return smp_load_acquire(&rcu_sched_state.gpnum);
3489}
3490EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3491
3492/**
3493 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3494 *
3495 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3496 *
3497 * If a full RCU-sched grace period has elapsed since the earlier call to
3498 * get_state_synchronize_sched(), just return. Otherwise, invoke
3499 * synchronize_sched() to wait for a full grace period.
3500 *
3501 * Yes, this function does not take counter wrap into account. But
3502 * counter wrap is harmless. If the counter wraps, we have waited for
3503 * more than 2 billion grace periods (and way more on a 64-bit system!),
3504 * so waiting for one additional grace period should be just fine.
3505 */
3506void cond_synchronize_sched(unsigned long oldstate)
3507{
3508 unsigned long newstate;
3509
3510 /*
3511 * Ensure that this load happens before any RCU-destructive
3512 * actions the caller might carry out after we return.
3513 */
3514 newstate = smp_load_acquire(&rcu_sched_state.completed);
3515 if (ULONG_CMP_GE(oldstate, newstate))
3516 synchronize_sched();
3517}
3518EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3519
28f00767
PM
3520/* Adjust sequence number for start of update-side operation. */
3521static void rcu_seq_start(unsigned long *sp)
3522{
3523 WRITE_ONCE(*sp, *sp + 1);
3524 smp_mb(); /* Ensure update-side operation after counter increment. */
3525 WARN_ON_ONCE(!(*sp & 0x1));
3526}
3527
3528/* Adjust sequence number for end of update-side operation. */
3529static void rcu_seq_end(unsigned long *sp)
3530{
3531 smp_mb(); /* Ensure update-side operation before counter increment. */
3532 WRITE_ONCE(*sp, *sp + 1);
3533 WARN_ON_ONCE(*sp & 0x1);
3534}
3535
3536/* Take a snapshot of the update side's sequence number. */
3537static unsigned long rcu_seq_snap(unsigned long *sp)
3538{
3539 unsigned long s;
3540
28f00767
PM
3541 s = (READ_ONCE(*sp) + 3) & ~0x1;
3542 smp_mb(); /* Above access must not bleed into critical section. */
3543 return s;
3544}
3545
3546/*
3547 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3548 * full update-side operation has occurred.
3549 */
3550static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3551{
3552 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3553}
3554
64db4cff
PM
3555/*
3556 * Check to see if there is any immediate RCU-related work to be done
3557 * by the current CPU, for the specified type of RCU, returning 1 if so.
3558 * The checks are in order of increasing expense: checks that can be
3559 * carried out against CPU-local state are performed first. However,
3560 * we must check for CPU stalls first, else we might not get a chance.
3561 */
3562static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3563{
2f51f988
PM
3564 struct rcu_node *rnp = rdp->mynode;
3565
64db4cff
PM
3566 rdp->n_rcu_pending++;
3567
3568 /* Check for CPU stalls, if enabled. */
3569 check_cpu_stall(rsp, rdp);
3570
a096932f
PM
3571 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3572 if (rcu_nohz_full_cpu(rsp))
3573 return 0;
3574
64db4cff 3575 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3576 if (rcu_scheduler_fully_active &&
5b74c458 3577 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
5cd37193 3578 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
97c668b8 3579 rdp->n_rp_core_needs_qs++;
3a19b46a 3580 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3581 rdp->n_rp_report_qs++;
64db4cff 3582 return 1;
7ba5c840 3583 }
64db4cff
PM
3584
3585 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3586 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3587 rdp->n_rp_cb_ready++;
64db4cff 3588 return 1;
7ba5c840 3589 }
64db4cff
PM
3590
3591 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3592 if (cpu_needs_another_gp(rsp, rdp)) {
3593 rdp->n_rp_cpu_needs_gp++;
64db4cff 3594 return 1;
7ba5c840 3595 }
64db4cff
PM
3596
3597 /* Has another RCU grace period completed? */
7d0ae808 3598 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3599 rdp->n_rp_gp_completed++;
64db4cff 3600 return 1;
7ba5c840 3601 }
64db4cff
PM
3602
3603 /* Has a new RCU grace period started? */
7d0ae808
PM
3604 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3605 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3606 rdp->n_rp_gp_started++;
64db4cff 3607 return 1;
7ba5c840 3608 }
64db4cff 3609
96d3fd0d
PM
3610 /* Does this CPU need a deferred NOCB wakeup? */
3611 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3612 rdp->n_rp_nocb_defer_wakeup++;
3613 return 1;
3614 }
3615
64db4cff 3616 /* nothing to do */
7ba5c840 3617 rdp->n_rp_need_nothing++;
64db4cff
PM
3618 return 0;
3619}
3620
3621/*
3622 * Check to see if there is any immediate RCU-related work to be done
3623 * by the current CPU, returning 1 if so. This function is part of the
3624 * RCU implementation; it is -not- an exported member of the RCU API.
3625 */
e3950ecd 3626static int rcu_pending(void)
64db4cff 3627{
6ce75a23
PM
3628 struct rcu_state *rsp;
3629
3630 for_each_rcu_flavor(rsp)
e3950ecd 3631 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3632 return 1;
3633 return 0;
64db4cff
PM
3634}
3635
3636/*
c0f4dfd4
PM
3637 * Return true if the specified CPU has any callback. If all_lazy is
3638 * non-NULL, store an indication of whether all callbacks are lazy.
3639 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3640 */
82072c4f 3641static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3642{
c0f4dfd4
PM
3643 bool al = true;
3644 bool hc = false;
3645 struct rcu_data *rdp;
6ce75a23
PM
3646 struct rcu_state *rsp;
3647
c0f4dfd4 3648 for_each_rcu_flavor(rsp) {
aa6da514 3649 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3650 if (!rdp->nxtlist)
3651 continue;
3652 hc = true;
3653 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3654 al = false;
69c8d28c
PM
3655 break;
3656 }
c0f4dfd4
PM
3657 }
3658 if (all_lazy)
3659 *all_lazy = al;
3660 return hc;
64db4cff
PM
3661}
3662
a83eff0a
PM
3663/*
3664 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3665 * the compiler is expected to optimize this away.
3666 */
e66c33d5 3667static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3668 int cpu, unsigned long done)
3669{
3670 trace_rcu_barrier(rsp->name, s, cpu,
3671 atomic_read(&rsp->barrier_cpu_count), done);
3672}
3673
b1420f1c
PM
3674/*
3675 * RCU callback function for _rcu_barrier(). If we are last, wake
3676 * up the task executing _rcu_barrier().
3677 */
24ebbca8 3678static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3679{
24ebbca8
PM
3680 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3681 struct rcu_state *rsp = rdp->rsp;
3682
a83eff0a 3683 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3684 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3685 complete(&rsp->barrier_completion);
a83eff0a 3686 } else {
4f525a52 3687 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3688 }
d0ec774c
PM
3689}
3690
3691/*
3692 * Called with preemption disabled, and from cross-cpu IRQ context.
3693 */
3694static void rcu_barrier_func(void *type)
3695{
037b64ed 3696 struct rcu_state *rsp = type;
fa07a58f 3697 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3698
4f525a52 3699 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3700 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3701 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3702}
3703
d0ec774c
PM
3704/*
3705 * Orchestrate the specified type of RCU barrier, waiting for all
3706 * RCU callbacks of the specified type to complete.
3707 */
037b64ed 3708static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3709{
b1420f1c 3710 int cpu;
b1420f1c 3711 struct rcu_data *rdp;
4f525a52 3712 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3713
4f525a52 3714 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3715
e74f4c45 3716 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3717 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3718
4f525a52
PM
3719 /* Did someone else do our work for us? */
3720 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3721 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3722 smp_mb(); /* caller's subsequent code after above check. */
3723 mutex_unlock(&rsp->barrier_mutex);
3724 return;
3725 }
3726
4f525a52
PM
3727 /* Mark the start of the barrier operation. */
3728 rcu_seq_start(&rsp->barrier_sequence);
3729 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3730
d0ec774c 3731 /*
b1420f1c
PM
3732 * Initialize the count to one rather than to zero in order to
3733 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3734 * (or preemption of this task). Exclude CPU-hotplug operations
3735 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3736 */
7db74df8 3737 init_completion(&rsp->barrier_completion);
24ebbca8 3738 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3739 get_online_cpus();
b1420f1c
PM
3740
3741 /*
1331e7a1
PM
3742 * Force each CPU with callbacks to register a new callback.
3743 * When that callback is invoked, we will know that all of the
3744 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3745 */
3fbfbf7a 3746 for_each_possible_cpu(cpu) {
d1e43fa5 3747 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3748 continue;
b1420f1c 3749 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3750 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3751 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3752 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3753 rsp->barrier_sequence);
d7e29933
PM
3754 } else {
3755 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3756 rsp->barrier_sequence);
41050a00 3757 smp_mb__before_atomic();
d7e29933
PM
3758 atomic_inc(&rsp->barrier_cpu_count);
3759 __call_rcu(&rdp->barrier_head,
3760 rcu_barrier_callback, rsp, cpu, 0);
3761 }
7d0ae808 3762 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 3763 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3764 rsp->barrier_sequence);
037b64ed 3765 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3766 } else {
a83eff0a 3767 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3768 rsp->barrier_sequence);
b1420f1c
PM
3769 }
3770 }
1331e7a1 3771 put_online_cpus();
b1420f1c
PM
3772
3773 /*
3774 * Now that we have an rcu_barrier_callback() callback on each
3775 * CPU, and thus each counted, remove the initial count.
3776 */
24ebbca8 3777 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3778 complete(&rsp->barrier_completion);
b1420f1c
PM
3779
3780 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3781 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3782
4f525a52
PM
3783 /* Mark the end of the barrier operation. */
3784 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3785 rcu_seq_end(&rsp->barrier_sequence);
3786
b1420f1c 3787 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3788 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3789}
d0ec774c
PM
3790
3791/**
3792 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3793 */
3794void rcu_barrier_bh(void)
3795{
037b64ed 3796 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3797}
3798EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3799
3800/**
3801 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3802 */
3803void rcu_barrier_sched(void)
3804{
037b64ed 3805 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3806}
3807EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3808
0aa04b05
PM
3809/*
3810 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3811 * first CPU in a given leaf rcu_node structure coming online. The caller
3812 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3813 * disabled.
3814 */
3815static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3816{
3817 long mask;
3818 struct rcu_node *rnp = rnp_leaf;
3819
3820 for (;;) {
3821 mask = rnp->grpmask;
3822 rnp = rnp->parent;
3823 if (rnp == NULL)
3824 return;
6cf10081 3825 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3826 rnp->qsmaskinit |= mask;
67c583a7 3827 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3828 }
3829}
3830
64db4cff 3831/*
27569620 3832 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3833 */
27569620
PM
3834static void __init
3835rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3836{
3837 unsigned long flags;
394f99a9 3838 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3839 struct rcu_node *rnp = rcu_get_root(rsp);
3840
3841 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3842 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3843 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3844 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3845 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3846 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3847 rdp->cpu = cpu;
d4c08f2a 3848 rdp->rsp = rsp;
3fbfbf7a 3849 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3850 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3851}
3852
3853/*
3854 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3855 * offline event can be happening at a given time. Note also that we
3856 * can accept some slop in the rsp->completed access due to the fact
3857 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3858 */
49fb4c62 3859static void
9b67122a 3860rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3861{
3862 unsigned long flags;
394f99a9 3863 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3864 struct rcu_node *rnp = rcu_get_root(rsp);
3865
3866 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3867 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3868 rdp->qlen_last_fqs_check = 0;
3869 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3870 rdp->blimit = blimit;
39c8d313
PM
3871 if (!rdp->nxtlist)
3872 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3873 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3874 rcu_sysidle_init_percpu_data(rdp->dynticks);
2625d469 3875 rcu_dynticks_eqs_online();
67c583a7 3876 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3877
0aa04b05
PM
3878 /*
3879 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3880 * propagation up the rcu_node tree will happen at the beginning
3881 * of the next grace period.
3882 */
64db4cff 3883 rnp = rdp->mynode;
2a67e741 3884 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3885 if (!rdp->beenonline)
3886 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3887 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3888 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3889 rdp->completed = rnp->completed;
5b74c458 3890 rdp->cpu_no_qs.b.norm = true;
a738eec6 3891 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
97c668b8 3892 rdp->core_needs_qs = false;
0aa04b05 3893 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3894 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3895}
3896
deb34f36
PM
3897/*
3898 * Invoked early in the CPU-online process, when pretty much all
3899 * services are available. The incoming CPU is not present.
3900 */
4df83742 3901int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3902{
6ce75a23
PM
3903 struct rcu_state *rsp;
3904
3905 for_each_rcu_flavor(rsp)
9b67122a 3906 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3907
3908 rcu_prepare_kthreads(cpu);
3909 rcu_spawn_all_nocb_kthreads(cpu);
3910
3911 return 0;
3912}
3913
deb34f36
PM
3914/*
3915 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3916 */
4df83742
TG
3917static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3918{
3919 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3920
3921 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3922}
3923
deb34f36
PM
3924/*
3925 * Near the end of the CPU-online process. Pretty much all services
3926 * enabled, and the CPU is now very much alive.
3927 */
4df83742
TG
3928int rcutree_online_cpu(unsigned int cpu)
3929{
3930 sync_sched_exp_online_cleanup(cpu);
3931 rcutree_affinity_setting(cpu, -1);
3932 return 0;
3933}
3934
deb34f36
PM
3935/*
3936 * Near the beginning of the process. The CPU is still very much alive
3937 * with pretty much all services enabled.
3938 */
4df83742
TG
3939int rcutree_offline_cpu(unsigned int cpu)
3940{
3941 rcutree_affinity_setting(cpu, cpu);
3942 return 0;
3943}
3944
deb34f36
PM
3945/*
3946 * Near the end of the offline process. We do only tracing here.
3947 */
4df83742
TG
3948int rcutree_dying_cpu(unsigned int cpu)
3949{
3950 struct rcu_state *rsp;
3951
3952 for_each_rcu_flavor(rsp)
3953 rcu_cleanup_dying_cpu(rsp);
3954 return 0;
3955}
3956
deb34f36
PM
3957/*
3958 * The outgoing CPU is gone and we are running elsewhere.
3959 */
4df83742
TG
3960int rcutree_dead_cpu(unsigned int cpu)
3961{
3962 struct rcu_state *rsp;
3963
3964 for_each_rcu_flavor(rsp) {
3965 rcu_cleanup_dead_cpu(cpu, rsp);
3966 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3967 }
3968 return 0;
64db4cff
PM
3969}
3970
7ec99de3
PM
3971/*
3972 * Mark the specified CPU as being online so that subsequent grace periods
3973 * (both expedited and normal) will wait on it. Note that this means that
3974 * incoming CPUs are not allowed to use RCU read-side critical sections
3975 * until this function is called. Failing to observe this restriction
3976 * will result in lockdep splats.
deb34f36
PM
3977 *
3978 * Note that this function is special in that it is invoked directly
3979 * from the incoming CPU rather than from the cpuhp_step mechanism.
3980 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3981 */
3982void rcu_cpu_starting(unsigned int cpu)
3983{
3984 unsigned long flags;
3985 unsigned long mask;
3986 struct rcu_data *rdp;
3987 struct rcu_node *rnp;
3988 struct rcu_state *rsp;
3989
3990 for_each_rcu_flavor(rsp) {
fdbb9b31 3991 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3992 rnp = rdp->mynode;
3993 mask = rdp->grpmask;
3994 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3995 rnp->qsmaskinitnext |= mask;
3996 rnp->expmaskinitnext |= mask;
3997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3998 }
3999}
4000
27d50c7e
TG
4001#ifdef CONFIG_HOTPLUG_CPU
4002/*
4003 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4004 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4005 * bit masks.
4006 */
4007static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4008{
4009 unsigned long flags;
4010 unsigned long mask;
4011 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4012 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4013
27d50c7e
TG
4014 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4015 mask = rdp->grpmask;
4016 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4017 rnp->qsmaskinitnext &= ~mask;
710d60cb 4018 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
4019}
4020
deb34f36
PM
4021/*
4022 * The outgoing function has no further need of RCU, so remove it from
4023 * the list of CPUs that RCU must track.
4024 *
4025 * Note that this function is special in that it is invoked directly
4026 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4027 * This is because this function must be invoked at a precise location.
4028 */
27d50c7e
TG
4029void rcu_report_dead(unsigned int cpu)
4030{
4031 struct rcu_state *rsp;
4032
4033 /* QS for any half-done expedited RCU-sched GP. */
4034 preempt_disable();
4035 rcu_report_exp_rdp(&rcu_sched_state,
4036 this_cpu_ptr(rcu_sched_state.rda), true);
4037 preempt_enable();
4038 for_each_rcu_flavor(rsp)
4039 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4040}
4041#endif
4042
deb34f36
PM
4043/*
4044 * On non-huge systems, use expedited RCU grace periods to make suspend
4045 * and hibernation run faster.
4046 */
d1d74d14
BP
4047static int rcu_pm_notify(struct notifier_block *self,
4048 unsigned long action, void *hcpu)
4049{
4050 switch (action) {
4051 case PM_HIBERNATION_PREPARE:
4052 case PM_SUSPEND_PREPARE:
4053 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4054 rcu_expedite_gp();
d1d74d14
BP
4055 break;
4056 case PM_POST_HIBERNATION:
4057 case PM_POST_SUSPEND:
5afff48b
PM
4058 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4059 rcu_unexpedite_gp();
d1d74d14
BP
4060 break;
4061 default:
4062 break;
4063 }
4064 return NOTIFY_OK;
4065}
4066
b3dbec76 4067/*
9386c0b7 4068 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4069 */
4070static int __init rcu_spawn_gp_kthread(void)
4071{
4072 unsigned long flags;
a94844b2 4073 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4074 struct rcu_node *rnp;
4075 struct rcu_state *rsp;
a94844b2 4076 struct sched_param sp;
b3dbec76
PM
4077 struct task_struct *t;
4078
a94844b2
PM
4079 /* Force priority into range. */
4080 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4081 kthread_prio = 1;
4082 else if (kthread_prio < 0)
4083 kthread_prio = 0;
4084 else if (kthread_prio > 99)
4085 kthread_prio = 99;
4086 if (kthread_prio != kthread_prio_in)
4087 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4088 kthread_prio, kthread_prio_in);
4089
9386c0b7 4090 rcu_scheduler_fully_active = 1;
b3dbec76 4091 for_each_rcu_flavor(rsp) {
a94844b2 4092 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4093 BUG_ON(IS_ERR(t));
4094 rnp = rcu_get_root(rsp);
6cf10081 4095 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4096 rsp->gp_kthread = t;
a94844b2
PM
4097 if (kthread_prio) {
4098 sp.sched_priority = kthread_prio;
4099 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4100 }
67c583a7 4101 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4102 wake_up_process(t);
b3dbec76 4103 }
35ce7f29 4104 rcu_spawn_nocb_kthreads();
9386c0b7 4105 rcu_spawn_boost_kthreads();
b3dbec76
PM
4106 return 0;
4107}
4108early_initcall(rcu_spawn_gp_kthread);
4109
bbad9379 4110/*
52d7e48b
PM
4111 * This function is invoked towards the end of the scheduler's
4112 * initialization process. Before this is called, the idle task might
4113 * contain synchronous grace-period primitives (during which time, this idle
4114 * task is booting the system, and such primitives are no-ops). After this
4115 * function is called, any synchronous grace-period primitives are run as
4116 * expedited, with the requesting task driving the grace period forward.
4117 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4118 * runtime RCU functionality.
bbad9379
PM
4119 */
4120void rcu_scheduler_starting(void)
4121{
4122 WARN_ON(num_online_cpus() != 1);
4123 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4124 rcu_test_sync_prims();
4125 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4126 rcu_test_sync_prims();
bbad9379
PM
4127}
4128
64db4cff
PM
4129/*
4130 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4131 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4132 */
199977bf 4133static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4134{
64db4cff
PM
4135 int i;
4136
7fa27001 4137 if (rcu_fanout_exact) {
199977bf 4138 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4139 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4140 levelspread[i] = RCU_FANOUT;
66292405
PM
4141 } else {
4142 int ccur;
4143 int cprv;
4144
4145 cprv = nr_cpu_ids;
4146 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4147 ccur = levelcnt[i];
4148 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4149 cprv = ccur;
4150 }
64db4cff
PM
4151 }
4152}
64db4cff
PM
4153
4154/*
4155 * Helper function for rcu_init() that initializes one rcu_state structure.
4156 */
a87f203e 4157static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4158{
cb007102
AG
4159 static const char * const buf[] = RCU_NODE_NAME_INIT;
4160 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4161 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4162 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4a81e832 4163 static u8 fl_mask = 0x1;
199977bf
AG
4164
4165 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4166 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4167 int cpustride = 1;
4168 int i;
4169 int j;
4170 struct rcu_node *rnp;
4171
05b84aec 4172 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4173
3eaaaf6c
PM
4174 /* Silence gcc 4.8 false positive about array index out of range. */
4175 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4176 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4177
64db4cff
PM
4178 /* Initialize the level-tracking arrays. */
4179
f885b7f2 4180 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4181 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4182 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4183 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4184 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4185 rsp->flavor_mask = fl_mask;
4186 fl_mask <<= 1;
64db4cff
PM
4187
4188 /* Initialize the elements themselves, starting from the leaves. */
4189
f885b7f2 4190 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4191 cpustride *= levelspread[i];
64db4cff 4192 rnp = rsp->level[i];
199977bf 4193 for (j = 0; j < levelcnt[i]; j++, rnp++) {
67c583a7
BF
4194 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4195 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4196 &rcu_node_class[i], buf[i]);
394f2769
PM
4197 raw_spin_lock_init(&rnp->fqslock);
4198 lockdep_set_class_and_name(&rnp->fqslock,
4199 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4200 rnp->gpnum = rsp->gpnum;
4201 rnp->completed = rsp->completed;
64db4cff
PM
4202 rnp->qsmask = 0;
4203 rnp->qsmaskinit = 0;
4204 rnp->grplo = j * cpustride;
4205 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4206 if (rnp->grphi >= nr_cpu_ids)
4207 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4208 if (i == 0) {
4209 rnp->grpnum = 0;
4210 rnp->grpmask = 0;
4211 rnp->parent = NULL;
4212 } else {
199977bf 4213 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4214 rnp->grpmask = 1UL << rnp->grpnum;
4215 rnp->parent = rsp->level[i - 1] +
199977bf 4216 j / levelspread[i - 1];
64db4cff
PM
4217 }
4218 rnp->level = i;
12f5f524 4219 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4220 rcu_init_one_nocb(rnp);
f6a12f34
PM
4221 init_waitqueue_head(&rnp->exp_wq[0]);
4222 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4223 init_waitqueue_head(&rnp->exp_wq[2]);
4224 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4225 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4226 }
4227 }
0c34029a 4228
abedf8e2
PG
4229 init_swait_queue_head(&rsp->gp_wq);
4230 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4231 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4232 for_each_possible_cpu(i) {
4a90a068 4233 while (i > rnp->grphi)
0c34029a 4234 rnp++;
394f99a9 4235 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4236 rcu_boot_init_percpu_data(i, rsp);
4237 }
6ce75a23 4238 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4239}
4240
f885b7f2
PM
4241/*
4242 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4243 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4244 * the ->node array in the rcu_state structure.
4245 */
4246static void __init rcu_init_geometry(void)
4247{
026ad283 4248 ulong d;
f885b7f2 4249 int i;
05b84aec 4250 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4251
026ad283
PM
4252 /*
4253 * Initialize any unspecified boot parameters.
4254 * The default values of jiffies_till_first_fqs and
4255 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4256 * value, which is a function of HZ, then adding one for each
4257 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4258 */
4259 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4260 if (jiffies_till_first_fqs == ULONG_MAX)
4261 jiffies_till_first_fqs = d;
4262 if (jiffies_till_next_fqs == ULONG_MAX)
4263 jiffies_till_next_fqs = d;
4264
f885b7f2 4265 /* If the compile-time values are accurate, just leave. */
47d631af 4266 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4267 nr_cpu_ids == NR_CPUS)
f885b7f2 4268 return;
39479098
PM
4269 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4270 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4271
f885b7f2 4272 /*
ee968ac6
PM
4273 * The boot-time rcu_fanout_leaf parameter must be at least two
4274 * and cannot exceed the number of bits in the rcu_node masks.
4275 * Complain and fall back to the compile-time values if this
4276 * limit is exceeded.
f885b7f2 4277 */
ee968ac6 4278 if (rcu_fanout_leaf < 2 ||
75cf15a4 4279 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4280 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4281 WARN_ON(1);
4282 return;
4283 }
4284
f885b7f2
PM
4285 /*
4286 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4287 * with the given number of levels.
f885b7f2 4288 */
9618138b 4289 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4290 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4291 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4292
4293 /*
75cf15a4 4294 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4295 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4296 */
ee968ac6
PM
4297 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4298 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4299 WARN_ON(1);
4300 return;
4301 }
f885b7f2 4302
679f9858 4303 /* Calculate the number of levels in the tree. */
9618138b 4304 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4305 }
9618138b 4306 rcu_num_lvls = i + 1;
679f9858 4307
f885b7f2 4308 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4309 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4310 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4311 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4312 }
f885b7f2
PM
4313
4314 /* Calculate the total number of rcu_node structures. */
4315 rcu_num_nodes = 0;
679f9858 4316 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4317 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4318}
4319
a3dc2948
PM
4320/*
4321 * Dump out the structure of the rcu_node combining tree associated
4322 * with the rcu_state structure referenced by rsp.
4323 */
4324static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4325{
4326 int level = 0;
4327 struct rcu_node *rnp;
4328
4329 pr_info("rcu_node tree layout dump\n");
4330 pr_info(" ");
4331 rcu_for_each_node_breadth_first(rsp, rnp) {
4332 if (rnp->level != level) {
4333 pr_cont("\n");
4334 pr_info(" ");
4335 level = rnp->level;
4336 }
4337 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4338 }
4339 pr_cont("\n");
4340}
4341
9f680ab4 4342void __init rcu_init(void)
64db4cff 4343{
017c4261 4344 int cpu;
9f680ab4 4345
47627678
PM
4346 rcu_early_boot_tests();
4347
f41d911f 4348 rcu_bootup_announce();
f885b7f2 4349 rcu_init_geometry();
a87f203e
PM
4350 rcu_init_one(&rcu_bh_state);
4351 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4352 if (dump_tree)
4353 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4354 __rcu_init_preempt();
b5b39360 4355 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4356
4357 /*
4358 * We don't need protection against CPU-hotplug here because
4359 * this is called early in boot, before either interrupts
4360 * or the scheduler are operational.
4361 */
d1d74d14 4362 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4363 for_each_online_cpu(cpu) {
4df83742 4364 rcutree_prepare_cpu(cpu);
7ec99de3
PM
4365 rcu_cpu_starting(cpu);
4366 }
64db4cff
PM
4367}
4368
3549c2bc 4369#include "tree_exp.h"
4102adab 4370#include "tree_plugin.h"