rcu: Abstract the dynticks momentary-idle operation
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
af658dca 56#include <linux/trace_events.h>
d1d74d14 57#include <linux/suspend.h>
64db4cff 58
4102adab 59#include "tree.h"
29c00b4a 60#include "rcu.h"
9f77da9f 61
4102adab
PM
62#ifdef MODULE_PARAM_PREFIX
63#undef MODULE_PARAM_PREFIX
64#endif
65#define MODULE_PARAM_PREFIX "rcutree."
66
64db4cff
PM
67/* Data structures. */
68
f7f7bac9
SRRH
69/*
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
76 */
a8a29b3b
AB
77#ifdef CONFIG_TRACING
78# define DEFINE_RCU_TPS(sname) \
f7f7bac9 79static char sname##_varname[] = #sname; \
a8a29b3b
AB
80static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81# define RCU_STATE_NAME(sname) sname##_varname
82#else
83# define DEFINE_RCU_TPS(sname)
84# define RCU_STATE_NAME(sname) __stringify(sname)
85#endif
86
87#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88DEFINE_RCU_TPS(sname) \
c92fb057 89static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 90struct rcu_state sname##_state = { \
6c90cc7b 91 .level = { &sname##_state.node[0] }, \
2723249a 92 .rda = &sname##_data, \
037b64ed 93 .call = cr, \
77f81fe0 94 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
7b2e6011 97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 101 .name = RCU_STATE_NAME(sname), \
a4889858 102 .abbr = sabbr, \
f6a12f34 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 105}
64db4cff 106
a41bfeb2
SRRH
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 109
b28a7c01 110static struct rcu_state *const rcu_state_p;
6ce75a23 111LIST_HEAD(rcu_struct_flavors);
27f4d280 112
a3dc2948
PM
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
7fa27001
PM
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 121module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
123/* Number of rcu_nodes at specified level. */
124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 128
b0d30417 129/*
52d7e48b
PM
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 134 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
0aa04b05
PM
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
3549c2bc 165static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 166
a94844b2 167/* rcuc/rcub kthread realtime priority */
26730f55 168#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 169static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
170#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
173module_param(kthread_prio, int, 0644);
174
8d7dc928 175/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
176
177#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
179module_param(gp_preinit_delay, int, 0644);
180#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181static const int gp_preinit_delay;
182#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183
8d7dc928
PM
184#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 186module_param(gp_init_delay, int, 0644);
8d7dc928
PM
187#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188static const int gp_init_delay;
189#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 190
0f41c0dd
PM
191#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
193module_param(gp_cleanup_delay, int, 0644);
194#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195static const int gp_cleanup_delay;
196#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197
eab128e8
PM
198/*
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
206 */
207#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 208
4a298656
PM
209/*
210 * Track the rcutorture test sequence number and the update version
211 * number within a given test. The rcutorture_testseq is incremented
212 * on every rcutorture module load and unload, so has an odd value
213 * when a test is running. The rcutorture_vernum is set to zero
214 * when rcutorture starts and is incremented on each rcutorture update.
215 * These variables enable correlating rcutorture output with the
216 * RCU tracing information.
217 */
218unsigned long rcutorture_testseq;
219unsigned long rcutorture_vernum;
220
0aa04b05
PM
221/*
222 * Compute the mask of online CPUs for the specified rcu_node structure.
223 * This will not be stable unless the rcu_node structure's ->lock is
224 * held, but the bit corresponding to the current CPU will be stable
225 * in most contexts.
226 */
227unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228{
7d0ae808 229 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
230}
231
fc2219d4 232/*
7d0ae808 233 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
234 * permit this function to be invoked without holding the root rcu_node
235 * structure's ->lock, but of course results can be subject to change.
236 */
237static int rcu_gp_in_progress(struct rcu_state *rsp)
238{
7d0ae808 239 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
240}
241
b1f77b05 242/*
d6714c22 243 * Note a quiescent state. Because we do not need to know
b1f77b05 244 * how many quiescent states passed, just if there was at least
d6714c22 245 * one since the start of the grace period, this just sets a flag.
e4cc1f22 246 * The caller must have disabled preemption.
b1f77b05 247 */
284a8c93 248void rcu_sched_qs(void)
b1f77b05 249{
fecbf6f0
PM
250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
251 return;
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data.gpnum),
254 TPS("cpuqs"));
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 return;
46a5d164
PM
258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
259 rcu_report_exp_rdp(&rcu_sched_state,
260 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
261}
262
284a8c93 263void rcu_bh_qs(void)
b1f77b05 264{
5b74c458 265 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data.gpnum),
268 TPS("cpuqs"));
5b74c458 269 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 270 }
b1f77b05 271}
64db4cff 272
4a81e832
PM
273static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
274
275static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 .dynticks = ATOMIC_INIT(1),
278#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 .dynticks_idle = ATOMIC_INIT(1),
281#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
282};
283
6563de9d
PM
284/*
285 * Do a double-increment of the ->dynticks counter to emulate a
286 * momentary idle-CPU quiescent state.
287 */
288static void rcu_dynticks_momentary_idle(void)
289{
290 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
291 int special = atomic_add_return(2, &rdtp->dynticks);
292
293 /* It is illegal to call this from idle state. */
294 WARN_ON_ONCE(!(special & 0x1));
295}
296
5cd37193
PM
297DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
298EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
299
4a81e832
PM
300/*
301 * Let the RCU core know that this CPU has gone through the scheduler,
302 * which is a quiescent state. This is called when the need for a
303 * quiescent state is urgent, so we burn an atomic operation and full
304 * memory barriers to let the RCU core know about it, regardless of what
305 * this CPU might (or might not) do in the near future.
306 *
307 * We inform the RCU core by emulating a zero-duration dyntick-idle
308 * period, which we in turn do by incrementing the ->dynticks counter
309 * by two.
46a5d164
PM
310 *
311 * The caller must have disabled interrupts.
4a81e832
PM
312 */
313static void rcu_momentary_dyntick_idle(void)
314{
4a81e832 315 struct rcu_data *rdp;
4a81e832
PM
316 int resched_mask;
317 struct rcu_state *rsp;
318
4a81e832
PM
319 /*
320 * Yes, we can lose flag-setting operations. This is OK, because
321 * the flag will be set again after some delay.
322 */
323 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
324 raw_cpu_write(rcu_sched_qs_mask, 0);
325
326 /* Find the flavor that needs a quiescent state. */
327 for_each_rcu_flavor(rsp) {
328 rdp = raw_cpu_ptr(rsp->rda);
329 if (!(resched_mask & rsp->flavor_mask))
330 continue;
331 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
332 if (READ_ONCE(rdp->mynode->completed) !=
333 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
334 continue;
335
336 /*
337 * Pretend to be momentarily idle for the quiescent state.
338 * This allows the grace-period kthread to record the
339 * quiescent state, with no need for this CPU to do anything
340 * further.
341 */
6563de9d 342 rcu_dynticks_momentary_idle();
4a81e832
PM
343 break;
344 }
4a81e832
PM
345}
346
25502a6c
PM
347/*
348 * Note a context switch. This is a quiescent state for RCU-sched,
349 * and requires special handling for preemptible RCU.
46a5d164 350 * The caller must have disabled interrupts.
25502a6c 351 */
38200cf2 352void rcu_note_context_switch(void)
25502a6c 353{
bb73c52b 354 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 355 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 356 rcu_sched_qs();
38200cf2 357 rcu_preempt_note_context_switch();
4a81e832
PM
358 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
359 rcu_momentary_dyntick_idle();
f7f7bac9 360 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 361 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 362}
29ce8310 363EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 364
5cd37193 365/*
1925d196 366 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
367 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
368 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 369 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
370 * be none of them). Either way, do a lightweight quiescent state for
371 * all RCU flavors.
bb73c52b
BF
372 *
373 * The barrier() calls are redundant in the common case when this is
374 * called externally, but just in case this is called from within this
375 * file.
376 *
5cd37193
PM
377 */
378void rcu_all_qs(void)
379{
46a5d164
PM
380 unsigned long flags;
381
bb73c52b 382 barrier(); /* Avoid RCU read-side critical sections leaking down. */
46a5d164
PM
383 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
384 local_irq_save(flags);
5cd37193 385 rcu_momentary_dyntick_idle();
46a5d164
PM
386 local_irq_restore(flags);
387 }
a1e12248
PM
388 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
389 /*
390 * Yes, we just checked a per-CPU variable with preemption
391 * enabled, so we might be migrated to some other CPU at
392 * this point. That is OK because in that case, the
393 * migration will supply the needed quiescent state.
394 * We might end up needlessly disabling preemption and
395 * invoking rcu_sched_qs() on the destination CPU, but
396 * the probability and cost are both quite low, so this
397 * should not be a problem in practice.
398 */
399 preempt_disable();
400 rcu_sched_qs();
401 preempt_enable();
402 }
5cd37193 403 this_cpu_inc(rcu_qs_ctr);
bb73c52b 404 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
405}
406EXPORT_SYMBOL_GPL(rcu_all_qs);
407
878d7439
ED
408static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
409static long qhimark = 10000; /* If this many pending, ignore blimit. */
410static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 411
878d7439
ED
412module_param(blimit, long, 0444);
413module_param(qhimark, long, 0444);
414module_param(qlowmark, long, 0444);
3d76c082 415
026ad283
PM
416static ulong jiffies_till_first_fqs = ULONG_MAX;
417static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 418static bool rcu_kick_kthreads;
d40011f6
PM
419
420module_param(jiffies_till_first_fqs, ulong, 0644);
421module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 422module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 423
4a81e832
PM
424/*
425 * How long the grace period must be before we start recruiting
426 * quiescent-state help from rcu_note_context_switch().
427 */
428static ulong jiffies_till_sched_qs = HZ / 20;
429module_param(jiffies_till_sched_qs, ulong, 0644);
430
48a7639c 431static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 432 struct rcu_data *rdp);
217af2a2
PM
433static void force_qs_rnp(struct rcu_state *rsp,
434 int (*f)(struct rcu_data *rsp, bool *isidle,
435 unsigned long *maxj),
436 bool *isidle, unsigned long *maxj);
4cdfc175 437static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 438static int rcu_pending(void);
64db4cff
PM
439
440/*
917963d0 441 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 442 */
917963d0
PM
443unsigned long rcu_batches_started(void)
444{
445 return rcu_state_p->gpnum;
446}
447EXPORT_SYMBOL_GPL(rcu_batches_started);
448
449/*
450 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 451 */
917963d0
PM
452unsigned long rcu_batches_started_sched(void)
453{
454 return rcu_sched_state.gpnum;
455}
456EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
457
458/*
459 * Return the number of RCU BH batches started thus far for debug & stats.
460 */
461unsigned long rcu_batches_started_bh(void)
462{
463 return rcu_bh_state.gpnum;
464}
465EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
466
467/*
468 * Return the number of RCU batches completed thus far for debug & stats.
469 */
470unsigned long rcu_batches_completed(void)
471{
472 return rcu_state_p->completed;
473}
474EXPORT_SYMBOL_GPL(rcu_batches_completed);
475
476/*
477 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 478 */
9733e4f0 479unsigned long rcu_batches_completed_sched(void)
64db4cff 480{
d6714c22 481 return rcu_sched_state.completed;
64db4cff 482}
d6714c22 483EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
484
485/*
917963d0 486 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 487 */
9733e4f0 488unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
489{
490 return rcu_bh_state.completed;
491}
492EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
493
291783b8
PM
494/*
495 * Return the number of RCU expedited batches completed thus far for
496 * debug & stats. Odd numbers mean that a batch is in progress, even
497 * numbers mean idle. The value returned will thus be roughly double
498 * the cumulative batches since boot.
499 */
500unsigned long rcu_exp_batches_completed(void)
501{
502 return rcu_state_p->expedited_sequence;
503}
504EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
505
506/*
507 * Return the number of RCU-sched expedited batches completed thus far
508 * for debug & stats. Similar to rcu_exp_batches_completed().
509 */
510unsigned long rcu_exp_batches_completed_sched(void)
511{
512 return rcu_sched_state.expedited_sequence;
513}
514EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
515
a381d757
ACB
516/*
517 * Force a quiescent state.
518 */
519void rcu_force_quiescent_state(void)
520{
e534165b 521 force_quiescent_state(rcu_state_p);
a381d757
ACB
522}
523EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
524
bf66f18e
PM
525/*
526 * Force a quiescent state for RCU BH.
527 */
528void rcu_bh_force_quiescent_state(void)
529{
4cdfc175 530 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
531}
532EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
533
e7580f33
PM
534/*
535 * Force a quiescent state for RCU-sched.
536 */
537void rcu_sched_force_quiescent_state(void)
538{
539 force_quiescent_state(&rcu_sched_state);
540}
541EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
542
afea227f
PM
543/*
544 * Show the state of the grace-period kthreads.
545 */
546void show_rcu_gp_kthreads(void)
547{
548 struct rcu_state *rsp;
549
550 for_each_rcu_flavor(rsp) {
551 pr_info("%s: wait state: %d ->state: %#lx\n",
552 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
553 /* sched_show_task(rsp->gp_kthread); */
554 }
555}
556EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
557
4a298656
PM
558/*
559 * Record the number of times rcutorture tests have been initiated and
560 * terminated. This information allows the debugfs tracing stats to be
561 * correlated to the rcutorture messages, even when the rcutorture module
562 * is being repeatedly loaded and unloaded. In other words, we cannot
563 * store this state in rcutorture itself.
564 */
565void rcutorture_record_test_transition(void)
566{
567 rcutorture_testseq++;
568 rcutorture_vernum = 0;
569}
570EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
571
ad0dc7f9
PM
572/*
573 * Send along grace-period-related data for rcutorture diagnostics.
574 */
575void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
576 unsigned long *gpnum, unsigned long *completed)
577{
578 struct rcu_state *rsp = NULL;
579
580 switch (test_type) {
581 case RCU_FLAVOR:
e534165b 582 rsp = rcu_state_p;
ad0dc7f9
PM
583 break;
584 case RCU_BH_FLAVOR:
585 rsp = &rcu_bh_state;
586 break;
587 case RCU_SCHED_FLAVOR:
588 rsp = &rcu_sched_state;
589 break;
590 default:
591 break;
592 }
593 if (rsp != NULL) {
7d0ae808
PM
594 *flags = READ_ONCE(rsp->gp_flags);
595 *gpnum = READ_ONCE(rsp->gpnum);
596 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
597 return;
598 }
599 *flags = 0;
600 *gpnum = 0;
601 *completed = 0;
602}
603EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
604
4a298656
PM
605/*
606 * Record the number of writer passes through the current rcutorture test.
607 * This is also used to correlate debugfs tracing stats with the rcutorture
608 * messages.
609 */
610void rcutorture_record_progress(unsigned long vernum)
611{
612 rcutorture_vernum++;
613}
614EXPORT_SYMBOL_GPL(rcutorture_record_progress);
615
64db4cff
PM
616/*
617 * Does the CPU have callbacks ready to be invoked?
618 */
619static int
620cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
621{
3fbfbf7a
PM
622 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
623 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
624}
625
365187fb
PM
626/*
627 * Return the root node of the specified rcu_state structure.
628 */
629static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
630{
631 return &rsp->node[0];
632}
633
634/*
635 * Is there any need for future grace periods?
636 * Interrupts must be disabled. If the caller does not hold the root
637 * rnp_node structure's ->lock, the results are advisory only.
638 */
639static int rcu_future_needs_gp(struct rcu_state *rsp)
640{
641 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 642 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
643 int *fp = &rnp->need_future_gp[idx];
644
7d0ae808 645 return READ_ONCE(*fp);
365187fb
PM
646}
647
64db4cff 648/*
dc35c893
PM
649 * Does the current CPU require a not-yet-started grace period?
650 * The caller must have disabled interrupts to prevent races with
651 * normal callback registry.
64db4cff 652 */
d117c8aa 653static bool
64db4cff
PM
654cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
655{
dc35c893 656 int i;
3fbfbf7a 657
dc35c893 658 if (rcu_gp_in_progress(rsp))
d117c8aa 659 return false; /* No, a grace period is already in progress. */
365187fb 660 if (rcu_future_needs_gp(rsp))
d117c8aa 661 return true; /* Yes, a no-CBs CPU needs one. */
dc35c893 662 if (!rdp->nxttail[RCU_NEXT_TAIL])
d117c8aa 663 return false; /* No, this is a no-CBs (or offline) CPU. */
dc35c893 664 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
d117c8aa 665 return true; /* Yes, CPU has newly registered callbacks. */
dc35c893
PM
666 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
667 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 668 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893 669 rdp->nxtcompleted[i]))
d117c8aa
PM
670 return true; /* Yes, CBs for future grace period. */
671 return false; /* No grace period needed. */
64db4cff
PM
672}
673
9b2e4f18 674/*
adf5091e 675 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
676 *
677 * If the new value of the ->dynticks_nesting counter now is zero,
678 * we really have entered idle, and must do the appropriate accounting.
679 * The caller must have disabled interrupts.
680 */
28ced795 681static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 682{
96d3fd0d
PM
683 struct rcu_state *rsp;
684 struct rcu_data *rdp;
28ced795 685 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 686
f7f7bac9 687 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
688 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
689 !user && !is_idle_task(current)) {
289828e6
PM
690 struct task_struct *idle __maybe_unused =
691 idle_task(smp_processor_id());
0989cb46 692
f7f7bac9 693 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
274529ba 694 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
695 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
696 current->pid, current->comm,
697 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 698 }
96d3fd0d
PM
699 for_each_rcu_flavor(rsp) {
700 rdp = this_cpu_ptr(rsp->rda);
701 do_nocb_deferred_wakeup(rdp);
702 }
198bbf81 703 rcu_prepare_for_idle();
9b2e4f18 704 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 705 smp_mb__before_atomic(); /* See above. */
9b2e4f18 706 atomic_inc(&rdtp->dynticks);
4e857c58 707 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
1ce46ee5
PM
708 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
709 atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 710 rcu_dynticks_task_enter();
c44e2cdd
PM
711
712 /*
adf5091e 713 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
714 * in an RCU read-side critical section.
715 */
f78f5b90
PM
716 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
717 "Illegal idle entry in RCU read-side critical section.");
718 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
719 "Illegal idle entry in RCU-bh read-side critical section.");
720 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
721 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 722}
64db4cff 723
adf5091e
FW
724/*
725 * Enter an RCU extended quiescent state, which can be either the
726 * idle loop or adaptive-tickless usermode execution.
64db4cff 727 */
adf5091e 728static void rcu_eqs_enter(bool user)
64db4cff 729{
4145fa7f 730 long long oldval;
64db4cff
PM
731 struct rcu_dynticks *rdtp;
732
c9d4b0af 733 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 734 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
735 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
736 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 737 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 738 rdtp->dynticks_nesting = 0;
28ced795 739 rcu_eqs_enter_common(oldval, user);
3a592405 740 } else {
29e37d81 741 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 742 }
64db4cff 743}
adf5091e
FW
744
745/**
746 * rcu_idle_enter - inform RCU that current CPU is entering idle
747 *
748 * Enter idle mode, in other words, -leave- the mode in which RCU
749 * read-side critical sections can occur. (Though RCU read-side
750 * critical sections can occur in irq handlers in idle, a possibility
751 * handled by irq_enter() and irq_exit().)
752 *
753 * We crowbar the ->dynticks_nesting field to zero to allow for
754 * the possibility of usermode upcalls having messed up our count
755 * of interrupt nesting level during the prior busy period.
756 */
757void rcu_idle_enter(void)
758{
c5d900bf
FW
759 unsigned long flags;
760
761 local_irq_save(flags);
cb349ca9 762 rcu_eqs_enter(false);
28ced795 763 rcu_sysidle_enter(0);
c5d900bf 764 local_irq_restore(flags);
adf5091e 765}
8a2ecf47 766EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 767
d1ec4c34 768#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
769/**
770 * rcu_user_enter - inform RCU that we are resuming userspace.
771 *
772 * Enter RCU idle mode right before resuming userspace. No use of RCU
773 * is permitted between this call and rcu_user_exit(). This way the
774 * CPU doesn't need to maintain the tick for RCU maintenance purposes
775 * when the CPU runs in userspace.
776 */
777void rcu_user_enter(void)
778{
91d1aa43 779 rcu_eqs_enter(1);
adf5091e 780}
d1ec4c34 781#endif /* CONFIG_NO_HZ_FULL */
19dd1591 782
9b2e4f18
PM
783/**
784 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
785 *
786 * Exit from an interrupt handler, which might possibly result in entering
787 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 788 * sections can occur. The caller must have disabled interrupts.
64db4cff 789 *
9b2e4f18
PM
790 * This code assumes that the idle loop never does anything that might
791 * result in unbalanced calls to irq_enter() and irq_exit(). If your
792 * architecture violates this assumption, RCU will give you what you
793 * deserve, good and hard. But very infrequently and irreproducibly.
794 *
795 * Use things like work queues to work around this limitation.
796 *
797 * You have been warned.
64db4cff 798 */
9b2e4f18 799void rcu_irq_exit(void)
64db4cff 800{
4145fa7f 801 long long oldval;
64db4cff
PM
802 struct rcu_dynticks *rdtp;
803
7c9906ca 804 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 805 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 806 oldval = rdtp->dynticks_nesting;
9b2e4f18 807 rdtp->dynticks_nesting--;
1ce46ee5
PM
808 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
809 rdtp->dynticks_nesting < 0);
b6fc6020 810 if (rdtp->dynticks_nesting)
f7f7bac9 811 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 812 else
28ced795
CL
813 rcu_eqs_enter_common(oldval, true);
814 rcu_sysidle_enter(1);
7c9906ca
PM
815}
816
817/*
818 * Wrapper for rcu_irq_exit() where interrupts are enabled.
819 */
820void rcu_irq_exit_irqson(void)
821{
822 unsigned long flags;
823
824 local_irq_save(flags);
825 rcu_irq_exit();
9b2e4f18
PM
826 local_irq_restore(flags);
827}
828
829/*
adf5091e 830 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
831 *
832 * If the new value of the ->dynticks_nesting counter was previously zero,
833 * we really have exited idle, and must do the appropriate accounting.
834 * The caller must have disabled interrupts.
835 */
28ced795 836static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 837{
28ced795
CL
838 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
839
176f8f7a 840 rcu_dynticks_task_exit();
4e857c58 841 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
842 atomic_inc(&rdtp->dynticks);
843 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 844 smp_mb__after_atomic(); /* See above. */
1ce46ee5
PM
845 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
846 !(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 847 rcu_cleanup_after_idle();
f7f7bac9 848 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
849 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
850 !user && !is_idle_task(current)) {
289828e6
PM
851 struct task_struct *idle __maybe_unused =
852 idle_task(smp_processor_id());
0989cb46 853
f7f7bac9 854 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 855 oldval, rdtp->dynticks_nesting);
274529ba 856 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
857 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
858 current->pid, current->comm,
859 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
860 }
861}
862
adf5091e
FW
863/*
864 * Exit an RCU extended quiescent state, which can be either the
865 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 866 */
adf5091e 867static void rcu_eqs_exit(bool user)
9b2e4f18 868{
9b2e4f18
PM
869 struct rcu_dynticks *rdtp;
870 long long oldval;
871
c9d4b0af 872 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 873 oldval = rdtp->dynticks_nesting;
1ce46ee5 874 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 875 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 876 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 877 } else {
29e37d81 878 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 879 rcu_eqs_exit_common(oldval, user);
3a592405 880 }
9b2e4f18 881}
adf5091e
FW
882
883/**
884 * rcu_idle_exit - inform RCU that current CPU is leaving idle
885 *
886 * Exit idle mode, in other words, -enter- the mode in which RCU
887 * read-side critical sections can occur.
888 *
889 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
890 * allow for the possibility of usermode upcalls messing up our count
891 * of interrupt nesting level during the busy period that is just
892 * now starting.
893 */
894void rcu_idle_exit(void)
895{
c5d900bf
FW
896 unsigned long flags;
897
898 local_irq_save(flags);
cb349ca9 899 rcu_eqs_exit(false);
28ced795 900 rcu_sysidle_exit(0);
c5d900bf 901 local_irq_restore(flags);
adf5091e 902}
8a2ecf47 903EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 904
d1ec4c34 905#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
906/**
907 * rcu_user_exit - inform RCU that we are exiting userspace.
908 *
909 * Exit RCU idle mode while entering the kernel because it can
910 * run a RCU read side critical section anytime.
911 */
912void rcu_user_exit(void)
913{
91d1aa43 914 rcu_eqs_exit(1);
adf5091e 915}
d1ec4c34 916#endif /* CONFIG_NO_HZ_FULL */
19dd1591 917
9b2e4f18
PM
918/**
919 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
920 *
921 * Enter an interrupt handler, which might possibly result in exiting
922 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 923 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
924 *
925 * Note that the Linux kernel is fully capable of entering an interrupt
926 * handler that it never exits, for example when doing upcalls to
927 * user mode! This code assumes that the idle loop never does upcalls to
928 * user mode. If your architecture does do upcalls from the idle loop (or
929 * does anything else that results in unbalanced calls to the irq_enter()
930 * and irq_exit() functions), RCU will give you what you deserve, good
931 * and hard. But very infrequently and irreproducibly.
932 *
933 * Use things like work queues to work around this limitation.
934 *
935 * You have been warned.
936 */
937void rcu_irq_enter(void)
938{
9b2e4f18
PM
939 struct rcu_dynticks *rdtp;
940 long long oldval;
941
7c9906ca 942 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 943 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
944 oldval = rdtp->dynticks_nesting;
945 rdtp->dynticks_nesting++;
1ce46ee5
PM
946 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
947 rdtp->dynticks_nesting == 0);
b6fc6020 948 if (oldval)
f7f7bac9 949 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 950 else
28ced795
CL
951 rcu_eqs_exit_common(oldval, true);
952 rcu_sysidle_exit(1);
7c9906ca
PM
953}
954
955/*
956 * Wrapper for rcu_irq_enter() where interrupts are enabled.
957 */
958void rcu_irq_enter_irqson(void)
959{
960 unsigned long flags;
961
962 local_irq_save(flags);
963 rcu_irq_enter();
64db4cff 964 local_irq_restore(flags);
64db4cff
PM
965}
966
967/**
968 * rcu_nmi_enter - inform RCU of entry to NMI context
969 *
734d1680
PM
970 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
971 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
972 * that the CPU is active. This implementation permits nested NMIs, as
973 * long as the nesting level does not overflow an int. (You will probably
974 * run out of stack space first.)
64db4cff
PM
975 */
976void rcu_nmi_enter(void)
977{
c9d4b0af 978 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 979 int incby = 2;
64db4cff 980
734d1680
PM
981 /* Complain about underflow. */
982 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
983
984 /*
985 * If idle from RCU viewpoint, atomically increment ->dynticks
986 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
987 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
988 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
989 * to be in the outermost NMI handler that interrupted an RCU-idle
990 * period (observation due to Andy Lutomirski).
991 */
992 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
993 smp_mb__before_atomic(); /* Force delay from prior write. */
994 atomic_inc(&rdtp->dynticks);
995 /* atomic_inc() before later RCU read-side crit sects */
996 smp_mb__after_atomic(); /* See above. */
997 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
998 incby = 1;
999 }
1000 rdtp->dynticks_nmi_nesting += incby;
1001 barrier();
64db4cff
PM
1002}
1003
1004/**
1005 * rcu_nmi_exit - inform RCU of exit from NMI context
1006 *
734d1680
PM
1007 * If we are returning from the outermost NMI handler that interrupted an
1008 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1009 * to let the RCU grace-period handling know that the CPU is back to
1010 * being RCU-idle.
64db4cff
PM
1011 */
1012void rcu_nmi_exit(void)
1013{
c9d4b0af 1014 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1015
734d1680
PM
1016 /*
1017 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1018 * (We are exiting an NMI handler, so RCU better be paying attention
1019 * to us!)
1020 */
1021 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1022 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1023
1024 /*
1025 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1026 * leave it in non-RCU-idle state.
1027 */
1028 if (rdtp->dynticks_nmi_nesting != 1) {
1029 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1030 return;
734d1680
PM
1031 }
1032
1033 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1034 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 1035 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 1036 smp_mb__before_atomic(); /* See above. */
23b5c8fa 1037 atomic_inc(&rdtp->dynticks);
4e857c58 1038 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 1039 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
1040}
1041
1042/**
5c173eb8
PM
1043 * __rcu_is_watching - are RCU read-side critical sections safe?
1044 *
1045 * Return true if RCU is watching the running CPU, which means that
1046 * this CPU can safely enter RCU read-side critical sections. Unlike
1047 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1048 * least disabled preemption.
1049 */
9418fb20 1050bool notrace __rcu_is_watching(void)
5c173eb8
PM
1051{
1052 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1053}
1054
1055/**
1056 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1057 *
9b2e4f18 1058 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1059 * or NMI handler, return true.
64db4cff 1060 */
9418fb20 1061bool notrace rcu_is_watching(void)
64db4cff 1062{
f534ed1f 1063 bool ret;
34240697 1064
46f00d18 1065 preempt_disable_notrace();
5c173eb8 1066 ret = __rcu_is_watching();
46f00d18 1067 preempt_enable_notrace();
34240697 1068 return ret;
64db4cff 1069}
5c173eb8 1070EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1071
62fde6ed 1072#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1073
1074/*
1075 * Is the current CPU online? Disable preemption to avoid false positives
1076 * that could otherwise happen due to the current CPU number being sampled,
1077 * this task being preempted, its old CPU being taken offline, resuming
1078 * on some other CPU, then determining that its old CPU is now offline.
1079 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1080 * the check for rcu_scheduler_fully_active. Note also that it is OK
1081 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1082 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1083 * offline to continue to use RCU for one jiffy after marking itself
1084 * offline in the cpu_online_mask. This leniency is necessary given the
1085 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1086 * the fact that a CPU enters the scheduler after completing the teardown
1087 * of the CPU.
2036d94a 1088 *
4df83742
TG
1089 * This is also why RCU internally marks CPUs online during in the
1090 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1091 *
1092 * Disable checking if in an NMI handler because we cannot safely report
1093 * errors from NMI handlers anyway.
1094 */
1095bool rcu_lockdep_current_cpu_online(void)
1096{
2036d94a
PM
1097 struct rcu_data *rdp;
1098 struct rcu_node *rnp;
c0d6d01b
PM
1099 bool ret;
1100
1101 if (in_nmi())
f6f7ee9a 1102 return true;
c0d6d01b 1103 preempt_disable();
c9d4b0af 1104 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1105 rnp = rdp->mynode;
0aa04b05 1106 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1107 !rcu_scheduler_fully_active;
1108 preempt_enable();
1109 return ret;
1110}
1111EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1112
62fde6ed 1113#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1114
64db4cff 1115/**
9b2e4f18 1116 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1117 *
9b2e4f18
PM
1118 * If the current CPU is idle or running at a first-level (not nested)
1119 * interrupt from idle, return true. The caller must have at least
1120 * disabled preemption.
64db4cff 1121 */
62e3cb14 1122static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1123{
c9d4b0af 1124 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1125}
1126
64db4cff
PM
1127/*
1128 * Snapshot the specified CPU's dynticks counter so that we can later
1129 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1130 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1131 */
217af2a2
PM
1132static int dyntick_save_progress_counter(struct rcu_data *rdp,
1133 bool *isidle, unsigned long *maxj)
64db4cff 1134{
23b5c8fa 1135 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1136 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1137 if ((rdp->dynticks_snap & 0x1) == 0) {
1138 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1139 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1140 rdp->mynode->gpnum))
7d0ae808 1141 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1142 return 1;
7941dbde 1143 }
23a9bacd 1144 return 0;
64db4cff
PM
1145}
1146
1147/*
1148 * Return true if the specified CPU has passed through a quiescent
1149 * state by virtue of being in or having passed through an dynticks
1150 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1151 * for this same CPU, or by virtue of having been offline.
64db4cff 1152 */
217af2a2
PM
1153static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1154 bool *isidle, unsigned long *maxj)
64db4cff 1155{
7eb4f455 1156 unsigned int curr;
4a81e832 1157 int *rcrmp;
7eb4f455 1158 unsigned int snap;
64db4cff 1159
7eb4f455
PM
1160 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1161 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1162
1163 /*
1164 * If the CPU passed through or entered a dynticks idle phase with
1165 * no active irq/NMI handlers, then we can safely pretend that the CPU
1166 * already acknowledged the request to pass through a quiescent
1167 * state. Either way, that CPU cannot possibly be in an RCU
1168 * read-side critical section that started before the beginning
1169 * of the current RCU grace period.
1170 */
7eb4f455 1171 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1172 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1173 rdp->dynticks_fqs++;
1174 return 1;
1175 }
1176
a82dcc76
PM
1177 /*
1178 * Check for the CPU being offline, but only if the grace period
1179 * is old enough. We don't need to worry about the CPU changing
1180 * state: If we see it offline even once, it has been through a
1181 * quiescent state.
1182 *
1183 * The reason for insisting that the grace period be at least
1184 * one jiffy old is that CPUs that are not quite online and that
1185 * have just gone offline can still execute RCU read-side critical
1186 * sections.
1187 */
1188 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1189 return 0; /* Grace period is not old enough. */
1190 barrier();
1191 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1192 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1193 rdp->offline_fqs++;
1194 return 1;
1195 }
65d798f0
PM
1196
1197 /*
4a81e832
PM
1198 * A CPU running for an extended time within the kernel can
1199 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1200 * even context-switching back and forth between a pair of
1201 * in-kernel CPU-bound tasks cannot advance grace periods.
1202 * So if the grace period is old enough, make the CPU pay attention.
1203 * Note that the unsynchronized assignments to the per-CPU
1204 * rcu_sched_qs_mask variable are safe. Yes, setting of
1205 * bits can be lost, but they will be set again on the next
1206 * force-quiescent-state pass. So lost bit sets do not result
1207 * in incorrect behavior, merely in a grace period lasting
1208 * a few jiffies longer than it might otherwise. Because
1209 * there are at most four threads involved, and because the
1210 * updates are only once every few jiffies, the probability of
1211 * lossage (and thus of slight grace-period extension) is
1212 * quite low.
1213 *
1214 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1215 * is set too high, we override with half of the RCU CPU stall
1216 * warning delay.
6193c76a 1217 */
4a81e832
PM
1218 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1219 if (ULONG_CMP_GE(jiffies,
1220 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1221 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1222 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1223 WRITE_ONCE(rdp->cond_resched_completed,
1224 READ_ONCE(rdp->mynode->completed));
4a81e832 1225 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1226 WRITE_ONCE(*rcrmp,
1227 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832 1228 }
4914950a 1229 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1230 }
1231
4914950a
PM
1232 /* And if it has been a really long time, kick the CPU as well. */
1233 if (ULONG_CMP_GE(jiffies,
1234 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1235 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1236 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1237
a82dcc76 1238 return 0;
64db4cff
PM
1239}
1240
64db4cff
PM
1241static void record_gp_stall_check_time(struct rcu_state *rsp)
1242{
cb1e78cf 1243 unsigned long j = jiffies;
6193c76a 1244 unsigned long j1;
26cdfedf
PM
1245
1246 rsp->gp_start = j;
1247 smp_wmb(); /* Record start time before stall time. */
6193c76a 1248 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1249 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1250 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1251 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1252}
1253
6b50e119
PM
1254/*
1255 * Convert a ->gp_state value to a character string.
1256 */
1257static const char *gp_state_getname(short gs)
1258{
1259 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1260 return "???";
1261 return gp_state_names[gs];
1262}
1263
fb81a44b
PM
1264/*
1265 * Complain about starvation of grace-period kthread.
1266 */
1267static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1268{
1269 unsigned long gpa;
1270 unsigned long j;
1271
1272 j = jiffies;
7d0ae808 1273 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1274 if (j - gpa > 2 * HZ) {
6b50e119 1275 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1276 rsp->name, j - gpa,
319362c9 1277 rsp->gpnum, rsp->completed,
6b50e119
PM
1278 rsp->gp_flags,
1279 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1280 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1281 if (rsp->gp_kthread) {
b1adb3e2 1282 sched_show_task(rsp->gp_kthread);
86057b80
PM
1283 wake_up_process(rsp->gp_kthread);
1284 }
b1adb3e2 1285 }
64db4cff
PM
1286}
1287
b637a328 1288/*
bc1dce51 1289 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1290 */
1291static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1292{
1293 int cpu;
1294 unsigned long flags;
1295 struct rcu_node *rnp;
1296
1297 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1298 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b637a328 1299 if (rnp->qsmask != 0) {
bc75e999
MR
1300 for_each_leaf_node_possible_cpu(rnp, cpu)
1301 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1302 dump_cpu_task(cpu);
b637a328 1303 }
67c583a7 1304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1305 }
1306}
1307
8c7c4829
PM
1308/*
1309 * If too much time has passed in the current grace period, and if
1310 * so configured, go kick the relevant kthreads.
1311 */
1312static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1313{
1314 unsigned long j;
1315
1316 if (!rcu_kick_kthreads)
1317 return;
1318 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1319 if (time_after(jiffies, j) && rsp->gp_kthread &&
1320 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1321 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1322 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1323 wake_up_process(rsp->gp_kthread);
1324 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1325 }
1326}
1327
088e9d25
DBO
1328static inline void panic_on_rcu_stall(void)
1329{
1330 if (sysctl_panic_on_rcu_stall)
1331 panic("RCU Stall\n");
1332}
1333
6ccd2ecd 1334static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1335{
1336 int cpu;
1337 long delta;
1338 unsigned long flags;
6ccd2ecd
PM
1339 unsigned long gpa;
1340 unsigned long j;
285fe294 1341 int ndetected = 0;
64db4cff 1342 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1343 long totqlen = 0;
64db4cff 1344
8c7c4829
PM
1345 /* Kick and suppress, if so configured. */
1346 rcu_stall_kick_kthreads(rsp);
1347 if (rcu_cpu_stall_suppress)
1348 return;
1349
64db4cff
PM
1350 /* Only let one CPU complain about others per time interval. */
1351
6cf10081 1352 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1353 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1354 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1356 return;
1357 }
7d0ae808
PM
1358 WRITE_ONCE(rsp->jiffies_stall,
1359 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1360 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1361
8cdd32a9
PM
1362 /*
1363 * OK, time to rat on our buddy...
1364 * See Documentation/RCU/stallwarn.txt for info on how to debug
1365 * RCU CPU stall warnings.
1366 */
d7f3e207 1367 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1368 rsp->name);
a858af28 1369 print_cpu_stall_info_begin();
a0b6c9a7 1370 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1371 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1372 ndetected += rcu_print_task_stall(rnp);
c8020a67 1373 if (rnp->qsmask != 0) {
bc75e999
MR
1374 for_each_leaf_node_possible_cpu(rnp, cpu)
1375 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1376 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1377 ndetected++;
1378 }
1379 }
67c583a7 1380 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1381 }
a858af28 1382
a858af28 1383 print_cpu_stall_info_end();
53bb857c
PM
1384 for_each_possible_cpu(cpu)
1385 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1386 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1387 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1388 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1389 if (ndetected) {
b637a328 1390 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1391 } else {
7d0ae808
PM
1392 if (READ_ONCE(rsp->gpnum) != gpnum ||
1393 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1394 pr_err("INFO: Stall ended before state dump start\n");
1395 } else {
1396 j = jiffies;
7d0ae808 1397 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1398 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1399 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1400 jiffies_till_next_fqs,
1401 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1402 /* In this case, the current CPU might be at fault. */
1403 sched_show_task(current);
1404 }
1405 }
c1dc0b9c 1406
4cdfc175 1407 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1408 rcu_print_detail_task_stall(rsp);
1409
fb81a44b
PM
1410 rcu_check_gp_kthread_starvation(rsp);
1411
088e9d25
DBO
1412 panic_on_rcu_stall();
1413
4cdfc175 1414 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1415}
1416
1417static void print_cpu_stall(struct rcu_state *rsp)
1418{
53bb857c 1419 int cpu;
64db4cff
PM
1420 unsigned long flags;
1421 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1422 long totqlen = 0;
64db4cff 1423
8c7c4829
PM
1424 /* Kick and suppress, if so configured. */
1425 rcu_stall_kick_kthreads(rsp);
1426 if (rcu_cpu_stall_suppress)
1427 return;
1428
8cdd32a9
PM
1429 /*
1430 * OK, time to rat on ourselves...
1431 * See Documentation/RCU/stallwarn.txt for info on how to debug
1432 * RCU CPU stall warnings.
1433 */
d7f3e207 1434 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1435 print_cpu_stall_info_begin();
1436 print_cpu_stall_info(rsp, smp_processor_id());
1437 print_cpu_stall_info_end();
53bb857c
PM
1438 for_each_possible_cpu(cpu)
1439 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1440 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1441 jiffies - rsp->gp_start,
1442 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1443
1444 rcu_check_gp_kthread_starvation(rsp);
1445
bc1dce51 1446 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1447
6cf10081 1448 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1449 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1450 WRITE_ONCE(rsp->jiffies_stall,
1451 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1452 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1453
088e9d25
DBO
1454 panic_on_rcu_stall();
1455
b021fe3e
PZ
1456 /*
1457 * Attempt to revive the RCU machinery by forcing a context switch.
1458 *
1459 * A context switch would normally allow the RCU state machine to make
1460 * progress and it could be we're stuck in kernel space without context
1461 * switches for an entirely unreasonable amount of time.
1462 */
1463 resched_cpu(smp_processor_id());
64db4cff
PM
1464}
1465
1466static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1467{
26cdfedf
PM
1468 unsigned long completed;
1469 unsigned long gpnum;
1470 unsigned long gps;
bad6e139
PM
1471 unsigned long j;
1472 unsigned long js;
64db4cff
PM
1473 struct rcu_node *rnp;
1474
8c7c4829
PM
1475 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1476 !rcu_gp_in_progress(rsp))
c68de209 1477 return;
8c7c4829 1478 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1479 j = jiffies;
26cdfedf
PM
1480
1481 /*
1482 * Lots of memory barriers to reject false positives.
1483 *
1484 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1485 * then rsp->gp_start, and finally rsp->completed. These values
1486 * are updated in the opposite order with memory barriers (or
1487 * equivalent) during grace-period initialization and cleanup.
1488 * Now, a false positive can occur if we get an new value of
1489 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1490 * the memory barriers, the only way that this can happen is if one
1491 * grace period ends and another starts between these two fetches.
1492 * Detect this by comparing rsp->completed with the previous fetch
1493 * from rsp->gpnum.
1494 *
1495 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1496 * and rsp->gp_start suffice to forestall false positives.
1497 */
7d0ae808 1498 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1499 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1500 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1501 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1502 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1503 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1504 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1505 if (ULONG_CMP_GE(completed, gpnum) ||
1506 ULONG_CMP_LT(j, js) ||
1507 ULONG_CMP_GE(gps, js))
1508 return; /* No stall or GP completed since entering function. */
64db4cff 1509 rnp = rdp->mynode;
c96ea7cf 1510 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1511 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1512
1513 /* We haven't checked in, so go dump stack. */
1514 print_cpu_stall(rsp);
1515
bad6e139
PM
1516 } else if (rcu_gp_in_progress(rsp) &&
1517 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1518
bad6e139 1519 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1520 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1521 }
1522}
1523
53d84e00
PM
1524/**
1525 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1526 *
1527 * Set the stall-warning timeout way off into the future, thus preventing
1528 * any RCU CPU stall-warning messages from appearing in the current set of
1529 * RCU grace periods.
1530 *
1531 * The caller must disable hard irqs.
1532 */
1533void rcu_cpu_stall_reset(void)
1534{
6ce75a23
PM
1535 struct rcu_state *rsp;
1536
1537 for_each_rcu_flavor(rsp)
7d0ae808 1538 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1539}
1540
3f5d3ea6 1541/*
d3f3f3f2
PM
1542 * Initialize the specified rcu_data structure's default callback list
1543 * to empty. The default callback list is the one that is not used by
1544 * no-callbacks CPUs.
3f5d3ea6 1545 */
d3f3f3f2 1546static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1547{
1548 int i;
1549
1550 rdp->nxtlist = NULL;
1551 for (i = 0; i < RCU_NEXT_SIZE; i++)
1552 rdp->nxttail[i] = &rdp->nxtlist;
1553}
1554
d3f3f3f2
PM
1555/*
1556 * Initialize the specified rcu_data structure's callback list to empty.
1557 */
1558static void init_callback_list(struct rcu_data *rdp)
1559{
1560 if (init_nocb_callback_list(rdp))
1561 return;
1562 init_default_callback_list(rdp);
1563}
1564
dc35c893
PM
1565/*
1566 * Determine the value that ->completed will have at the end of the
1567 * next subsequent grace period. This is used to tag callbacks so that
1568 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1569 * been dyntick-idle for an extended period with callbacks under the
1570 * influence of RCU_FAST_NO_HZ.
1571 *
1572 * The caller must hold rnp->lock with interrupts disabled.
1573 */
1574static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1575 struct rcu_node *rnp)
1576{
1577 /*
1578 * If RCU is idle, we just wait for the next grace period.
1579 * But we can only be sure that RCU is idle if we are looking
1580 * at the root rcu_node structure -- otherwise, a new grace
1581 * period might have started, but just not yet gotten around
1582 * to initializing the current non-root rcu_node structure.
1583 */
1584 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1585 return rnp->completed + 1;
1586
1587 /*
1588 * Otherwise, wait for a possible partial grace period and
1589 * then the subsequent full grace period.
1590 */
1591 return rnp->completed + 2;
1592}
1593
0446be48
PM
1594/*
1595 * Trace-event helper function for rcu_start_future_gp() and
1596 * rcu_nocb_wait_gp().
1597 */
1598static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1599 unsigned long c, const char *s)
0446be48
PM
1600{
1601 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1602 rnp->completed, c, rnp->level,
1603 rnp->grplo, rnp->grphi, s);
1604}
1605
1606/*
1607 * Start some future grace period, as needed to handle newly arrived
1608 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1609 * rcu_node structure's ->need_future_gp field. Returns true if there
1610 * is reason to awaken the grace-period kthread.
0446be48
PM
1611 *
1612 * The caller must hold the specified rcu_node structure's ->lock.
1613 */
48a7639c
PM
1614static bool __maybe_unused
1615rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1616 unsigned long *c_out)
0446be48
PM
1617{
1618 unsigned long c;
1619 int i;
48a7639c 1620 bool ret = false;
0446be48
PM
1621 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1622
1623 /*
1624 * Pick up grace-period number for new callbacks. If this
1625 * grace period is already marked as needed, return to the caller.
1626 */
1627 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1628 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1629 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1630 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1631 goto out;
0446be48
PM
1632 }
1633
1634 /*
1635 * If either this rcu_node structure or the root rcu_node structure
1636 * believe that a grace period is in progress, then we must wait
1637 * for the one following, which is in "c". Because our request
1638 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1639 * need to explicitly start one. We only do the lockless check
1640 * of rnp_root's fields if the current rcu_node structure thinks
1641 * there is no grace period in flight, and because we hold rnp->lock,
1642 * the only possible change is when rnp_root's two fields are
1643 * equal, in which case rnp_root->gpnum might be concurrently
1644 * incremented. But that is OK, as it will just result in our
1645 * doing some extra useless work.
0446be48
PM
1646 */
1647 if (rnp->gpnum != rnp->completed ||
7d0ae808 1648 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1649 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1650 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1651 goto out;
0446be48
PM
1652 }
1653
1654 /*
1655 * There might be no grace period in progress. If we don't already
1656 * hold it, acquire the root rcu_node structure's lock in order to
1657 * start one (if needed).
1658 */
2a67e741
PZ
1659 if (rnp != rnp_root)
1660 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1661
1662 /*
1663 * Get a new grace-period number. If there really is no grace
1664 * period in progress, it will be smaller than the one we obtained
1665 * earlier. Adjust callbacks as needed. Note that even no-CBs
1666 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1667 */
1668 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1669 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1670 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1671 rdp->nxtcompleted[i] = c;
1672
1673 /*
1674 * If the needed for the required grace period is already
1675 * recorded, trace and leave.
1676 */
1677 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1678 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1679 goto unlock_out;
1680 }
1681
1682 /* Record the need for the future grace period. */
1683 rnp_root->need_future_gp[c & 0x1]++;
1684
1685 /* If a grace period is not already in progress, start one. */
1686 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1687 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1688 } else {
f7f7bac9 1689 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1690 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1691 }
1692unlock_out:
1693 if (rnp != rnp_root)
67c583a7 1694 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1695out:
1696 if (c_out != NULL)
1697 *c_out = c;
1698 return ret;
0446be48
PM
1699}
1700
1701/*
1702 * Clean up any old requests for the just-ended grace period. Also return
1703 * whether any additional grace periods have been requested. Also invoke
1704 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1705 * waiting for this grace period to complete.
1706 */
1707static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1708{
1709 int c = rnp->completed;
1710 int needmore;
1711 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1712
0446be48
PM
1713 rnp->need_future_gp[c & 0x1] = 0;
1714 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1715 trace_rcu_future_gp(rnp, rdp, c,
1716 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1717 return needmore;
1718}
1719
48a7639c
PM
1720/*
1721 * Awaken the grace-period kthread for the specified flavor of RCU.
1722 * Don't do a self-awaken, and don't bother awakening when there is
1723 * nothing for the grace-period kthread to do (as in several CPUs
1724 * raced to awaken, and we lost), and finally don't try to awaken
1725 * a kthread that has not yet been created.
1726 */
1727static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1728{
1729 if (current == rsp->gp_kthread ||
7d0ae808 1730 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1731 !rsp->gp_kthread)
1732 return;
abedf8e2 1733 swake_up(&rsp->gp_wq);
48a7639c
PM
1734}
1735
dc35c893
PM
1736/*
1737 * If there is room, assign a ->completed number to any callbacks on
1738 * this CPU that have not already been assigned. Also accelerate any
1739 * callbacks that were previously assigned a ->completed number that has
1740 * since proven to be too conservative, which can happen if callbacks get
1741 * assigned a ->completed number while RCU is idle, but with reference to
1742 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1743 * not hurt to call it repeatedly. Returns an flag saying that we should
1744 * awaken the RCU grace-period kthread.
dc35c893
PM
1745 *
1746 * The caller must hold rnp->lock with interrupts disabled.
1747 */
48a7639c 1748static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1749 struct rcu_data *rdp)
1750{
1751 unsigned long c;
1752 int i;
48a7639c 1753 bool ret;
dc35c893
PM
1754
1755 /* If the CPU has no callbacks, nothing to do. */
1756 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1757 return false;
dc35c893
PM
1758
1759 /*
1760 * Starting from the sublist containing the callbacks most
1761 * recently assigned a ->completed number and working down, find the
1762 * first sublist that is not assignable to an upcoming grace period.
1763 * Such a sublist has something in it (first two tests) and has
1764 * a ->completed number assigned that will complete sooner than
1765 * the ->completed number for newly arrived callbacks (last test).
1766 *
1767 * The key point is that any later sublist can be assigned the
1768 * same ->completed number as the newly arrived callbacks, which
1769 * means that the callbacks in any of these later sublist can be
1770 * grouped into a single sublist, whether or not they have already
1771 * been assigned a ->completed number.
1772 */
1773 c = rcu_cbs_completed(rsp, rnp);
1774 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1775 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1776 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1777 break;
1778
1779 /*
1780 * If there are no sublist for unassigned callbacks, leave.
1781 * At the same time, advance "i" one sublist, so that "i" will
1782 * index into the sublist where all the remaining callbacks should
1783 * be grouped into.
1784 */
1785 if (++i >= RCU_NEXT_TAIL)
48a7639c 1786 return false;
dc35c893
PM
1787
1788 /*
1789 * Assign all subsequent callbacks' ->completed number to the next
1790 * full grace period and group them all in the sublist initially
1791 * indexed by "i".
1792 */
1793 for (; i <= RCU_NEXT_TAIL; i++) {
1794 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1795 rdp->nxtcompleted[i] = c;
1796 }
910ee45d 1797 /* Record any needed additional grace periods. */
48a7639c 1798 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1799
1800 /* Trace depending on how much we were able to accelerate. */
1801 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1802 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1803 else
f7f7bac9 1804 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1805 return ret;
dc35c893
PM
1806}
1807
1808/*
1809 * Move any callbacks whose grace period has completed to the
1810 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1811 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1812 * sublist. This function is idempotent, so it does not hurt to
1813 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1814 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1815 *
1816 * The caller must hold rnp->lock with interrupts disabled.
1817 */
48a7639c 1818static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1819 struct rcu_data *rdp)
1820{
1821 int i, j;
1822
1823 /* If the CPU has no callbacks, nothing to do. */
1824 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1825 return false;
dc35c893
PM
1826
1827 /*
1828 * Find all callbacks whose ->completed numbers indicate that they
1829 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1830 */
1831 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1832 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1833 break;
1834 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1835 }
1836 /* Clean up any sublist tail pointers that were misordered above. */
1837 for (j = RCU_WAIT_TAIL; j < i; j++)
1838 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1839
1840 /* Copy down callbacks to fill in empty sublists. */
1841 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1842 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1843 break;
1844 rdp->nxttail[j] = rdp->nxttail[i];
1845 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1846 }
1847
1848 /* Classify any remaining callbacks. */
48a7639c 1849 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1850}
1851
d09b62df 1852/*
ba9fbe95
PM
1853 * Update CPU-local rcu_data state to record the beginnings and ends of
1854 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1855 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1856 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1857 */
48a7639c
PM
1858static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1859 struct rcu_data *rdp)
d09b62df 1860{
48a7639c 1861 bool ret;
3563a438 1862 bool need_gp;
48a7639c 1863
ba9fbe95 1864 /* Handle the ends of any preceding grace periods first. */
e3663b10 1865 if (rdp->completed == rnp->completed &&
7d0ae808 1866 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1867
ba9fbe95 1868 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1869 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1870
dc35c893
PM
1871 } else {
1872
1873 /* Advance callbacks. */
48a7639c 1874 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1875
1876 /* Remember that we saw this grace-period completion. */
1877 rdp->completed = rnp->completed;
f7f7bac9 1878 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1879 }
398ebe60 1880
7d0ae808 1881 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1882 /*
1883 * If the current grace period is waiting for this CPU,
1884 * set up to detect a quiescent state, otherwise don't
1885 * go looking for one.
1886 */
1887 rdp->gpnum = rnp->gpnum;
f7f7bac9 1888 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1889 need_gp = !!(rnp->qsmask & rdp->grpmask);
1890 rdp->cpu_no_qs.b.norm = need_gp;
5cd37193 1891 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3563a438 1892 rdp->core_needs_qs = need_gp;
6eaef633 1893 zero_cpu_stall_ticks(rdp);
7d0ae808 1894 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1895 }
48a7639c 1896 return ret;
6eaef633
PM
1897}
1898
d34ea322 1899static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1900{
1901 unsigned long flags;
48a7639c 1902 bool needwake;
6eaef633
PM
1903 struct rcu_node *rnp;
1904
1905 local_irq_save(flags);
1906 rnp = rdp->mynode;
7d0ae808
PM
1907 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1908 rdp->completed == READ_ONCE(rnp->completed) &&
1909 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1910 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1911 local_irq_restore(flags);
1912 return;
1913 }
48a7639c 1914 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1915 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1916 if (needwake)
1917 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1918}
1919
0f41c0dd
PM
1920static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1921{
1922 if (delay > 0 &&
1923 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1924 schedule_timeout_uninterruptible(delay);
1925}
1926
b3dbec76 1927/*
45fed3e7 1928 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1929 */
45fed3e7 1930static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1931{
0aa04b05 1932 unsigned long oldmask;
b3dbec76 1933 struct rcu_data *rdp;
7fdefc10 1934 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1935
7d0ae808 1936 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1937 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1938 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1939 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1940 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1941 return false;
f7be8209 1942 }
7d0ae808 1943 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1944
f7be8209
PM
1945 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1946 /*
1947 * Grace period already in progress, don't start another.
1948 * Not supposed to be able to happen.
1949 */
67c583a7 1950 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1951 return false;
7fdefc10
PM
1952 }
1953
7fdefc10 1954 /* Advance to a new grace period and initialize state. */
26cdfedf 1955 record_gp_stall_check_time(rsp);
765a3f4f
PM
1956 /* Record GP times before starting GP, hence smp_store_release(). */
1957 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1958 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1959 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1960
0aa04b05
PM
1961 /*
1962 * Apply per-leaf buffered online and offline operations to the
1963 * rcu_node tree. Note that this new grace period need not wait
1964 * for subsequent online CPUs, and that quiescent-state forcing
1965 * will handle subsequent offline CPUs.
1966 */
1967 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1968 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1969 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1970 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1971 !rnp->wait_blkd_tasks) {
1972 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1973 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
1974 continue;
1975 }
1976
1977 /* Record old state, apply changes to ->qsmaskinit field. */
1978 oldmask = rnp->qsmaskinit;
1979 rnp->qsmaskinit = rnp->qsmaskinitnext;
1980
1981 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1982 if (!oldmask != !rnp->qsmaskinit) {
1983 if (!oldmask) /* First online CPU for this rcu_node. */
1984 rcu_init_new_rnp(rnp);
1985 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1986 rnp->wait_blkd_tasks = true;
1987 else /* Last offline CPU and can propagate. */
1988 rcu_cleanup_dead_rnp(rnp);
1989 }
1990
1991 /*
1992 * If all waited-on tasks from prior grace period are
1993 * done, and if all this rcu_node structure's CPUs are
1994 * still offline, propagate up the rcu_node tree and
1995 * clear ->wait_blkd_tasks. Otherwise, if one of this
1996 * rcu_node structure's CPUs has since come back online,
1997 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1998 * checks for this, so just call it unconditionally).
1999 */
2000 if (rnp->wait_blkd_tasks &&
2001 (!rcu_preempt_has_tasks(rnp) ||
2002 rnp->qsmaskinit)) {
2003 rnp->wait_blkd_tasks = false;
2004 rcu_cleanup_dead_rnp(rnp);
2005 }
2006
67c583a7 2007 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2008 }
7fdefc10
PM
2009
2010 /*
2011 * Set the quiescent-state-needed bits in all the rcu_node
2012 * structures for all currently online CPUs in breadth-first order,
2013 * starting from the root rcu_node structure, relying on the layout
2014 * of the tree within the rsp->node[] array. Note that other CPUs
2015 * will access only the leaves of the hierarchy, thus seeing that no
2016 * grace period is in progress, at least until the corresponding
590d1757 2017 * leaf node has been initialized.
7fdefc10
PM
2018 *
2019 * The grace period cannot complete until the initialization
2020 * process finishes, because this kthread handles both.
2021 */
2022 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2023 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2024 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2025 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2026 rcu_preempt_check_blocked_tasks(rnp);
2027 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2028 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2029 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2030 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2031 if (rnp == rdp->mynode)
48a7639c 2032 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2033 rcu_preempt_boost_start_gp(rnp);
2034 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2035 rnp->level, rnp->grplo,
2036 rnp->grphi, rnp->qsmask);
67c583a7 2037 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2038 cond_resched_rcu_qs();
7d0ae808 2039 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2040 }
b3dbec76 2041
45fed3e7 2042 return true;
7fdefc10 2043}
b3dbec76 2044
b9a425cf
PM
2045/*
2046 * Helper function for wait_event_interruptible_timeout() wakeup
2047 * at force-quiescent-state time.
2048 */
2049static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2050{
2051 struct rcu_node *rnp = rcu_get_root(rsp);
2052
2053 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2054 *gfp = READ_ONCE(rsp->gp_flags);
2055 if (*gfp & RCU_GP_FLAG_FQS)
2056 return true;
2057
2058 /* The current grace period has completed. */
2059 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2060 return true;
2061
2062 return false;
2063}
2064
4cdfc175
PM
2065/*
2066 * Do one round of quiescent-state forcing.
2067 */
77f81fe0 2068static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2069{
217af2a2
PM
2070 bool isidle = false;
2071 unsigned long maxj;
4cdfc175
PM
2072 struct rcu_node *rnp = rcu_get_root(rsp);
2073
7d0ae808 2074 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2075 rsp->n_force_qs++;
77f81fe0 2076 if (first_time) {
4cdfc175 2077 /* Collect dyntick-idle snapshots. */
0edd1b17 2078 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2079 isidle = true;
0edd1b17
PM
2080 maxj = jiffies - ULONG_MAX / 4;
2081 }
217af2a2
PM
2082 force_qs_rnp(rsp, dyntick_save_progress_counter,
2083 &isidle, &maxj);
0edd1b17 2084 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2085 } else {
2086 /* Handle dyntick-idle and offline CPUs. */
675da67f 2087 isidle = true;
217af2a2 2088 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2089 }
2090 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2091 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2092 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2093 WRITE_ONCE(rsp->gp_flags,
2094 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2095 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2096 }
4cdfc175
PM
2097}
2098
7fdefc10
PM
2099/*
2100 * Clean up after the old grace period.
2101 */
4cdfc175 2102static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2103{
2104 unsigned long gp_duration;
48a7639c 2105 bool needgp = false;
dae6e64d 2106 int nocb = 0;
7fdefc10
PM
2107 struct rcu_data *rdp;
2108 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2109 struct swait_queue_head *sq;
b3dbec76 2110
7d0ae808 2111 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2112 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2113 gp_duration = jiffies - rsp->gp_start;
2114 if (gp_duration > rsp->gp_max)
2115 rsp->gp_max = gp_duration;
b3dbec76 2116
7fdefc10
PM
2117 /*
2118 * We know the grace period is complete, but to everyone else
2119 * it appears to still be ongoing. But it is also the case
2120 * that to everyone else it looks like there is nothing that
2121 * they can do to advance the grace period. It is therefore
2122 * safe for us to drop the lock in order to mark the grace
2123 * period as completed in all of the rcu_node structures.
7fdefc10 2124 */
67c583a7 2125 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2126
5d4b8659
PM
2127 /*
2128 * Propagate new ->completed value to rcu_node structures so
2129 * that other CPUs don't have to wait until the start of the next
2130 * grace period to process their callbacks. This also avoids
2131 * some nasty RCU grace-period initialization races by forcing
2132 * the end of the current grace period to be completely recorded in
2133 * all of the rcu_node structures before the beginning of the next
2134 * grace period is recorded in any of the rcu_node structures.
2135 */
2136 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2137 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2138 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2139 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2140 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2141 rdp = this_cpu_ptr(rsp->rda);
2142 if (rnp == rdp->mynode)
48a7639c 2143 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2144 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2145 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2146 sq = rcu_nocb_gp_get(rnp);
67c583a7 2147 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2148 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2149 cond_resched_rcu_qs();
7d0ae808 2150 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2151 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2152 }
5d4b8659 2153 rnp = rcu_get_root(rsp);
2a67e741 2154 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2155 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2156
765a3f4f 2157 /* Declare grace period done. */
7d0ae808 2158 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2159 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2160 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2161 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2162 /* Advance CBs to reduce false positives below. */
2163 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2164 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2165 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2166 trace_rcu_grace_period(rsp->name,
7d0ae808 2167 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2168 TPS("newreq"));
2169 }
67c583a7 2170 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2171}
2172
2173/*
2174 * Body of kthread that handles grace periods.
2175 */
2176static int __noreturn rcu_gp_kthread(void *arg)
2177{
77f81fe0 2178 bool first_gp_fqs;
88d6df61 2179 int gf;
d40011f6 2180 unsigned long j;
4cdfc175 2181 int ret;
7fdefc10
PM
2182 struct rcu_state *rsp = arg;
2183 struct rcu_node *rnp = rcu_get_root(rsp);
2184
5871968d 2185 rcu_bind_gp_kthread();
7fdefc10
PM
2186 for (;;) {
2187
2188 /* Handle grace-period start. */
2189 for (;;) {
63c4db78 2190 trace_rcu_grace_period(rsp->name,
7d0ae808 2191 READ_ONCE(rsp->gpnum),
63c4db78 2192 TPS("reqwait"));
afea227f 2193 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2194 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2195 READ_ONCE(rsp->gp_flags) &
4cdfc175 2196 RCU_GP_FLAG_INIT);
319362c9 2197 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2198 /* Locking provides needed memory barrier. */
f7be8209 2199 if (rcu_gp_init(rsp))
7fdefc10 2200 break;
bde6c3aa 2201 cond_resched_rcu_qs();
7d0ae808 2202 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2203 WARN_ON(signal_pending(current));
63c4db78 2204 trace_rcu_grace_period(rsp->name,
7d0ae808 2205 READ_ONCE(rsp->gpnum),
63c4db78 2206 TPS("reqwaitsig"));
7fdefc10 2207 }
cabc49c1 2208
4cdfc175 2209 /* Handle quiescent-state forcing. */
77f81fe0 2210 first_gp_fqs = true;
d40011f6
PM
2211 j = jiffies_till_first_fqs;
2212 if (j > HZ) {
2213 j = HZ;
2214 jiffies_till_first_fqs = HZ;
2215 }
88d6df61 2216 ret = 0;
cabc49c1 2217 for (;;) {
8c7c4829 2218 if (!ret) {
88d6df61 2219 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2220 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2221 jiffies + 3 * j);
2222 }
63c4db78 2223 trace_rcu_grace_period(rsp->name,
7d0ae808 2224 READ_ONCE(rsp->gpnum),
63c4db78 2225 TPS("fqswait"));
afea227f 2226 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2227 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2228 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2229 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2230 /* Locking provides needed memory barriers. */
4cdfc175 2231 /* If grace period done, leave loop. */
7d0ae808 2232 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2233 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2234 break;
4cdfc175 2235 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2236 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2237 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2238 trace_rcu_grace_period(rsp->name,
7d0ae808 2239 READ_ONCE(rsp->gpnum),
63c4db78 2240 TPS("fqsstart"));
77f81fe0
PM
2241 rcu_gp_fqs(rsp, first_gp_fqs);
2242 first_gp_fqs = false;
63c4db78 2243 trace_rcu_grace_period(rsp->name,
7d0ae808 2244 READ_ONCE(rsp->gpnum),
63c4db78 2245 TPS("fqsend"));
bde6c3aa 2246 cond_resched_rcu_qs();
7d0ae808 2247 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2248 ret = 0; /* Force full wait till next FQS. */
2249 j = jiffies_till_next_fqs;
2250 if (j > HZ) {
2251 j = HZ;
2252 jiffies_till_next_fqs = HZ;
2253 } else if (j < 1) {
2254 j = 1;
2255 jiffies_till_next_fqs = 1;
2256 }
4cdfc175
PM
2257 } else {
2258 /* Deal with stray signal. */
bde6c3aa 2259 cond_resched_rcu_qs();
7d0ae808 2260 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2261 WARN_ON(signal_pending(current));
63c4db78 2262 trace_rcu_grace_period(rsp->name,
7d0ae808 2263 READ_ONCE(rsp->gpnum),
63c4db78 2264 TPS("fqswaitsig"));
fcfd0a23
PM
2265 ret = 1; /* Keep old FQS timing. */
2266 j = jiffies;
2267 if (time_after(jiffies, rsp->jiffies_force_qs))
2268 j = 1;
2269 else
2270 j = rsp->jiffies_force_qs - j;
d40011f6 2271 }
cabc49c1 2272 }
4cdfc175
PM
2273
2274 /* Handle grace-period end. */
319362c9 2275 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2276 rcu_gp_cleanup(rsp);
319362c9 2277 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2278 }
b3dbec76
PM
2279}
2280
64db4cff
PM
2281/*
2282 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2283 * in preparation for detecting the next grace period. The caller must hold
b8462084 2284 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2285 *
2286 * Note that it is legal for a dying CPU (which is marked as offline) to
2287 * invoke this function. This can happen when the dying CPU reports its
2288 * quiescent state.
48a7639c
PM
2289 *
2290 * Returns true if the grace-period kthread must be awakened.
64db4cff 2291 */
48a7639c 2292static bool
910ee45d
PM
2293rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2294 struct rcu_data *rdp)
64db4cff 2295{
b8462084 2296 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2297 /*
b3dbec76 2298 * Either we have not yet spawned the grace-period
62da1921
PM
2299 * task, this CPU does not need another grace period,
2300 * or a grace period is already in progress.
b3dbec76 2301 * Either way, don't start a new grace period.
afe24b12 2302 */
48a7639c 2303 return false;
afe24b12 2304 }
7d0ae808
PM
2305 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2306 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2307 TPS("newreq"));
62da1921 2308
016a8d5b
SR
2309 /*
2310 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2311 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2312 * the wakeup to our caller.
016a8d5b 2313 */
48a7639c 2314 return true;
64db4cff
PM
2315}
2316
910ee45d
PM
2317/*
2318 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2319 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2320 * is invoked indirectly from rcu_advance_cbs(), which would result in
2321 * endless recursion -- or would do so if it wasn't for the self-deadlock
2322 * that is encountered beforehand.
48a7639c
PM
2323 *
2324 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2325 */
48a7639c 2326static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2327{
2328 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2329 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2330 bool ret = false;
910ee45d
PM
2331
2332 /*
2333 * If there is no grace period in progress right now, any
2334 * callbacks we have up to this point will be satisfied by the
2335 * next grace period. Also, advancing the callbacks reduces the
2336 * probability of false positives from cpu_needs_another_gp()
2337 * resulting in pointless grace periods. So, advance callbacks
2338 * then start the grace period!
2339 */
48a7639c
PM
2340 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2341 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2342 return ret;
910ee45d
PM
2343}
2344
f41d911f 2345/*
8994515c
PM
2346 * Report a full set of quiescent states to the specified rcu_state data
2347 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2348 * kthread if another grace period is required. Whether we wake
2349 * the grace-period kthread or it awakens itself for the next round
2350 * of quiescent-state forcing, that kthread will clean up after the
2351 * just-completed grace period. Note that the caller must hold rnp->lock,
2352 * which is released before return.
f41d911f 2353 */
d3f6bad3 2354static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2355 __releases(rcu_get_root(rsp)->lock)
f41d911f 2356{
fc2219d4 2357 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2358 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2359 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2360 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2361}
2362
64db4cff 2363/*
d3f6bad3
PM
2364 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2365 * Allows quiescent states for a group of CPUs to be reported at one go
2366 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2367 * must be represented by the same rcu_node structure (which need not be a
2368 * leaf rcu_node structure, though it often will be). The gps parameter
2369 * is the grace-period snapshot, which means that the quiescent states
2370 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2371 * must be held upon entry, and it is released before return.
64db4cff
PM
2372 */
2373static void
d3f6bad3 2374rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2375 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2376 __releases(rnp->lock)
2377{
654e9533 2378 unsigned long oldmask = 0;
28ecd580
PM
2379 struct rcu_node *rnp_c;
2380
64db4cff
PM
2381 /* Walk up the rcu_node hierarchy. */
2382 for (;;) {
654e9533 2383 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2384
654e9533
PM
2385 /*
2386 * Our bit has already been cleared, or the
2387 * relevant grace period is already over, so done.
2388 */
67c583a7 2389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2390 return;
2391 }
654e9533 2392 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2393 rnp->qsmask &= ~mask;
d4c08f2a
PM
2394 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2395 mask, rnp->qsmask, rnp->level,
2396 rnp->grplo, rnp->grphi,
2397 !!rnp->gp_tasks);
27f4d280 2398 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2399
2400 /* Other bits still set at this level, so done. */
67c583a7 2401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2402 return;
2403 }
2404 mask = rnp->grpmask;
2405 if (rnp->parent == NULL) {
2406
2407 /* No more levels. Exit loop holding root lock. */
2408
2409 break;
2410 }
67c583a7 2411 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2412 rnp_c = rnp;
64db4cff 2413 rnp = rnp->parent;
2a67e741 2414 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2415 oldmask = rnp_c->qsmask;
64db4cff
PM
2416 }
2417
2418 /*
2419 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2420 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2421 * to clean up and start the next grace period if one is needed.
64db4cff 2422 */
d3f6bad3 2423 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2424}
2425
cc99a310
PM
2426/*
2427 * Record a quiescent state for all tasks that were previously queued
2428 * on the specified rcu_node structure and that were blocking the current
2429 * RCU grace period. The caller must hold the specified rnp->lock with
2430 * irqs disabled, and this lock is released upon return, but irqs remain
2431 * disabled.
2432 */
0aa04b05 2433static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2434 struct rcu_node *rnp, unsigned long flags)
2435 __releases(rnp->lock)
2436{
654e9533 2437 unsigned long gps;
cc99a310
PM
2438 unsigned long mask;
2439 struct rcu_node *rnp_p;
2440
a77da14c
PM
2441 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2442 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2444 return; /* Still need more quiescent states! */
2445 }
2446
2447 rnp_p = rnp->parent;
2448 if (rnp_p == NULL) {
2449 /*
a77da14c
PM
2450 * Only one rcu_node structure in the tree, so don't
2451 * try to report up to its nonexistent parent!
cc99a310
PM
2452 */
2453 rcu_report_qs_rsp(rsp, flags);
2454 return;
2455 }
2456
654e9533
PM
2457 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2458 gps = rnp->gpnum;
cc99a310 2459 mask = rnp->grpmask;
67c583a7 2460 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2461 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2462 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2463}
2464
64db4cff 2465/*
d3f6bad3 2466 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2467 * structure. This must be called from the specified CPU.
64db4cff
PM
2468 */
2469static void
d7d6a11e 2470rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2471{
2472 unsigned long flags;
2473 unsigned long mask;
48a7639c 2474 bool needwake;
64db4cff
PM
2475 struct rcu_node *rnp;
2476
2477 rnp = rdp->mynode;
2a67e741 2478 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5b74c458 2479 if ((rdp->cpu_no_qs.b.norm &&
5cd37193
PM
2480 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2481 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2482 rdp->gpwrap) {
64db4cff
PM
2483
2484 /*
e4cc1f22
PM
2485 * The grace period in which this quiescent state was
2486 * recorded has ended, so don't report it upwards.
2487 * We will instead need a new quiescent state that lies
2488 * within the current grace period.
64db4cff 2489 */
5b74c458 2490 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
5cd37193 2491 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
67c583a7 2492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2493 return;
2494 }
2495 mask = rdp->grpmask;
2496 if ((rnp->qsmask & mask) == 0) {
67c583a7 2497 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2498 } else {
bb53e416 2499 rdp->core_needs_qs = false;
64db4cff
PM
2500
2501 /*
2502 * This GP can't end until cpu checks in, so all of our
2503 * callbacks can be processed during the next GP.
2504 */
48a7639c 2505 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2506
654e9533
PM
2507 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2508 /* ^^^ Released rnp->lock */
48a7639c
PM
2509 if (needwake)
2510 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2511 }
2512}
2513
2514/*
2515 * Check to see if there is a new grace period of which this CPU
2516 * is not yet aware, and if so, set up local rcu_data state for it.
2517 * Otherwise, see if this CPU has just passed through its first
2518 * quiescent state for this grace period, and record that fact if so.
2519 */
2520static void
2521rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2522{
05eb552b
PM
2523 /* Check for grace-period ends and beginnings. */
2524 note_gp_changes(rsp, rdp);
64db4cff
PM
2525
2526 /*
2527 * Does this CPU still need to do its part for current grace period?
2528 * If no, return and let the other CPUs do their part as well.
2529 */
97c668b8 2530 if (!rdp->core_needs_qs)
64db4cff
PM
2531 return;
2532
2533 /*
2534 * Was there a quiescent state since the beginning of the grace
2535 * period? If no, then exit and wait for the next call.
2536 */
5b74c458 2537 if (rdp->cpu_no_qs.b.norm &&
5cd37193 2538 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2539 return;
2540
d3f6bad3
PM
2541 /*
2542 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2543 * judge of that).
2544 */
d7d6a11e 2545 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2546}
2547
e74f4c45 2548/*
b1420f1c
PM
2549 * Send the specified CPU's RCU callbacks to the orphanage. The
2550 * specified CPU must be offline, and the caller must hold the
7b2e6011 2551 * ->orphan_lock.
e74f4c45 2552 */
b1420f1c
PM
2553static void
2554rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2555 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2556{
3fbfbf7a 2557 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2558 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2559 return;
2560
b1420f1c
PM
2561 /*
2562 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2563 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2564 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2565 */
a50c3af9 2566 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2567 rsp->qlen_lazy += rdp->qlen_lazy;
2568 rsp->qlen += rdp->qlen;
2569 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2570 rdp->qlen_lazy = 0;
7d0ae808 2571 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2572 }
2573
2574 /*
b1420f1c
PM
2575 * Next, move those callbacks still needing a grace period to
2576 * the orphanage, where some other CPU will pick them up.
2577 * Some of the callbacks might have gone partway through a grace
2578 * period, but that is too bad. They get to start over because we
2579 * cannot assume that grace periods are synchronized across CPUs.
2580 * We don't bother updating the ->nxttail[] array yet, instead
2581 * we just reset the whole thing later on.
a50c3af9 2582 */
b1420f1c
PM
2583 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2584 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2585 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2586 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2587 }
2588
2589 /*
b1420f1c
PM
2590 * Then move the ready-to-invoke callbacks to the orphanage,
2591 * where some other CPU will pick them up. These will not be
2592 * required to pass though another grace period: They are done.
a50c3af9 2593 */
e5601400 2594 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2595 *rsp->orphan_donetail = rdp->nxtlist;
2596 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2597 }
e74f4c45 2598
b33078b6
PM
2599 /*
2600 * Finally, initialize the rcu_data structure's list to empty and
2601 * disallow further callbacks on this CPU.
2602 */
3f5d3ea6 2603 init_callback_list(rdp);
b33078b6 2604 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2605}
2606
2607/*
2608 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2609 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2610 */
96d3fd0d 2611static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2612{
2613 int i;
fa07a58f 2614 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2615
3fbfbf7a 2616 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2617 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2618 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2619 return;
2620
b1420f1c
PM
2621 /* Do the accounting first. */
2622 rdp->qlen_lazy += rsp->qlen_lazy;
2623 rdp->qlen += rsp->qlen;
2624 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2625 if (rsp->qlen_lazy != rsp->qlen)
2626 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2627 rsp->qlen_lazy = 0;
2628 rsp->qlen = 0;
2629
2630 /*
2631 * We do not need a memory barrier here because the only way we
2632 * can get here if there is an rcu_barrier() in flight is if
2633 * we are the task doing the rcu_barrier().
2634 */
2635
2636 /* First adopt the ready-to-invoke callbacks. */
2637 if (rsp->orphan_donelist != NULL) {
2638 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2639 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2640 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2641 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2642 rdp->nxttail[i] = rsp->orphan_donetail;
2643 rsp->orphan_donelist = NULL;
2644 rsp->orphan_donetail = &rsp->orphan_donelist;
2645 }
2646
2647 /* And then adopt the callbacks that still need a grace period. */
2648 if (rsp->orphan_nxtlist != NULL) {
2649 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2650 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2651 rsp->orphan_nxtlist = NULL;
2652 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2653 }
2654}
2655
2656/*
2657 * Trace the fact that this CPU is going offline.
2658 */
2659static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2660{
2661 RCU_TRACE(unsigned long mask);
2662 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2663 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2664
ea46351c
PM
2665 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2666 return;
2667
b1420f1c 2668 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2669 trace_rcu_grace_period(rsp->name,
2670 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2671 TPS("cpuofl"));
64db4cff
PM
2672}
2673
8af3a5e7
PM
2674/*
2675 * All CPUs for the specified rcu_node structure have gone offline,
2676 * and all tasks that were preempted within an RCU read-side critical
2677 * section while running on one of those CPUs have since exited their RCU
2678 * read-side critical section. Some other CPU is reporting this fact with
2679 * the specified rcu_node structure's ->lock held and interrupts disabled.
2680 * This function therefore goes up the tree of rcu_node structures,
2681 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2682 * the leaf rcu_node structure's ->qsmaskinit field has already been
2683 * updated
2684 *
2685 * This function does check that the specified rcu_node structure has
2686 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2687 * prematurely. That said, invoking it after the fact will cost you
2688 * a needless lock acquisition. So once it has done its work, don't
2689 * invoke it again.
2690 */
2691static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2692{
2693 long mask;
2694 struct rcu_node *rnp = rnp_leaf;
2695
ea46351c
PM
2696 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2697 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2698 return;
2699 for (;;) {
2700 mask = rnp->grpmask;
2701 rnp = rnp->parent;
2702 if (!rnp)
2703 break;
2a67e741 2704 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2705 rnp->qsmaskinit &= ~mask;
0aa04b05 2706 rnp->qsmask &= ~mask;
8af3a5e7 2707 if (rnp->qsmaskinit) {
67c583a7
BF
2708 raw_spin_unlock_rcu_node(rnp);
2709 /* irqs remain disabled. */
8af3a5e7
PM
2710 return;
2711 }
67c583a7 2712 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2713 }
2714}
2715
64db4cff 2716/*
e5601400 2717 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2718 * this fact from process context. Do the remainder of the cleanup,
2719 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2720 * adopting them. There can only be one CPU hotplug operation at a time,
2721 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2722 */
e5601400 2723static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2724{
2036d94a 2725 unsigned long flags;
e5601400 2726 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2727 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2728
ea46351c
PM
2729 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2730 return;
2731
2036d94a 2732 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2733 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2734
b1420f1c 2735 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2736 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2737 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2738 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2739 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2740
cf01537e
PM
2741 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2742 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2743 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2744}
2745
64db4cff
PM
2746/*
2747 * Invoke any RCU callbacks that have made it to the end of their grace
2748 * period. Thottle as specified by rdp->blimit.
2749 */
37c72e56 2750static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2751{
2752 unsigned long flags;
2753 struct rcu_head *next, *list, **tail;
878d7439
ED
2754 long bl, count, count_lazy;
2755 int i;
64db4cff 2756
dc35c893 2757 /* If no callbacks are ready, just return. */
29c00b4a 2758 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2759 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2760 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2761 need_resched(), is_idle_task(current),
2762 rcu_is_callbacks_kthread());
64db4cff 2763 return;
29c00b4a 2764 }
64db4cff
PM
2765
2766 /*
2767 * Extract the list of ready callbacks, disabling to prevent
2768 * races with call_rcu() from interrupt handlers.
2769 */
2770 local_irq_save(flags);
8146c4e2 2771 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2772 bl = rdp->blimit;
486e2593 2773 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2774 list = rdp->nxtlist;
2775 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2776 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2777 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2778 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2779 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2780 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2781 local_irq_restore(flags);
2782
2783 /* Invoke callbacks. */
486e2593 2784 count = count_lazy = 0;
64db4cff
PM
2785 while (list) {
2786 next = list->next;
2787 prefetch(next);
551d55a9 2788 debug_rcu_head_unqueue(list);
486e2593
PM
2789 if (__rcu_reclaim(rsp->name, list))
2790 count_lazy++;
64db4cff 2791 list = next;
dff1672d
PM
2792 /* Stop only if limit reached and CPU has something to do. */
2793 if (++count >= bl &&
2794 (need_resched() ||
2795 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2796 break;
2797 }
2798
2799 local_irq_save(flags);
4968c300
PM
2800 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2801 is_idle_task(current),
2802 rcu_is_callbacks_kthread());
64db4cff
PM
2803
2804 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2805 if (list != NULL) {
2806 *tail = rdp->nxtlist;
2807 rdp->nxtlist = list;
b41772ab
PM
2808 for (i = 0; i < RCU_NEXT_SIZE; i++)
2809 if (&rdp->nxtlist == rdp->nxttail[i])
2810 rdp->nxttail[i] = tail;
64db4cff
PM
2811 else
2812 break;
2813 }
b1420f1c
PM
2814 smp_mb(); /* List handling before counting for rcu_barrier(). */
2815 rdp->qlen_lazy -= count_lazy;
7d0ae808 2816 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2817 rdp->n_cbs_invoked += count;
64db4cff
PM
2818
2819 /* Reinstate batch limit if we have worked down the excess. */
2820 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2821 rdp->blimit = blimit;
2822
37c72e56
PM
2823 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2824 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2825 rdp->qlen_last_fqs_check = 0;
2826 rdp->n_force_qs_snap = rsp->n_force_qs;
2827 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2828 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2829 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2830
64db4cff
PM
2831 local_irq_restore(flags);
2832
e0f23060 2833 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2834 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2835 invoke_rcu_core();
64db4cff
PM
2836}
2837
2838/*
2839 * Check to see if this CPU is in a non-context-switch quiescent state
2840 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2841 * Also schedule RCU core processing.
64db4cff 2842 *
9b2e4f18 2843 * This function must be called from hardirq context. It is normally
5403d367 2844 * invoked from the scheduling-clock interrupt.
64db4cff 2845 */
c3377c2d 2846void rcu_check_callbacks(int user)
64db4cff 2847{
f7f7bac9 2848 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2849 increment_cpu_stall_ticks();
9b2e4f18 2850 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2851
2852 /*
2853 * Get here if this CPU took its interrupt from user
2854 * mode or from the idle loop, and if this is not a
2855 * nested interrupt. In this case, the CPU is in
d6714c22 2856 * a quiescent state, so note it.
64db4cff
PM
2857 *
2858 * No memory barrier is required here because both
d6714c22
PM
2859 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2860 * variables that other CPUs neither access nor modify,
2861 * at least not while the corresponding CPU is online.
64db4cff
PM
2862 */
2863
284a8c93
PM
2864 rcu_sched_qs();
2865 rcu_bh_qs();
64db4cff
PM
2866
2867 } else if (!in_softirq()) {
2868
2869 /*
2870 * Get here if this CPU did not take its interrupt from
2871 * softirq, in other words, if it is not interrupting
2872 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2873 * critical section, so note it.
64db4cff
PM
2874 */
2875
284a8c93 2876 rcu_bh_qs();
64db4cff 2877 }
86aea0e6 2878 rcu_preempt_check_callbacks();
e3950ecd 2879 if (rcu_pending())
a46e0899 2880 invoke_rcu_core();
8315f422
PM
2881 if (user)
2882 rcu_note_voluntary_context_switch(current);
f7f7bac9 2883 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2884}
2885
64db4cff
PM
2886/*
2887 * Scan the leaf rcu_node structures, processing dyntick state for any that
2888 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2889 * Also initiate boosting for any threads blocked on the root rcu_node.
2890 *
ee47eb9f 2891 * The caller must have suppressed start of new grace periods.
64db4cff 2892 */
217af2a2
PM
2893static void force_qs_rnp(struct rcu_state *rsp,
2894 int (*f)(struct rcu_data *rsp, bool *isidle,
2895 unsigned long *maxj),
2896 bool *isidle, unsigned long *maxj)
64db4cff 2897{
64db4cff
PM
2898 int cpu;
2899 unsigned long flags;
2900 unsigned long mask;
a0b6c9a7 2901 struct rcu_node *rnp;
64db4cff 2902
a0b6c9a7 2903 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2904 cond_resched_rcu_qs();
64db4cff 2905 mask = 0;
2a67e741 2906 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2907 if (rnp->qsmask == 0) {
a77da14c
PM
2908 if (rcu_state_p == &rcu_sched_state ||
2909 rsp != rcu_state_p ||
2910 rcu_preempt_blocked_readers_cgp(rnp)) {
2911 /*
2912 * No point in scanning bits because they
2913 * are all zero. But we might need to
2914 * priority-boost blocked readers.
2915 */
2916 rcu_initiate_boost(rnp, flags);
2917 /* rcu_initiate_boost() releases rnp->lock */
2918 continue;
2919 }
2920 if (rnp->parent &&
2921 (rnp->parent->qsmask & rnp->grpmask)) {
2922 /*
2923 * Race between grace-period
2924 * initialization and task exiting RCU
2925 * read-side critical section: Report.
2926 */
2927 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2928 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2929 continue;
2930 }
64db4cff 2931 }
bc75e999
MR
2932 for_each_leaf_node_possible_cpu(rnp, cpu) {
2933 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2934 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2935 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2936 mask |= bit;
2937 }
64db4cff 2938 }
45f014c5 2939 if (mask != 0) {
654e9533
PM
2940 /* Idle/offline CPUs, report (releases rnp->lock. */
2941 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2942 } else {
2943 /* Nothing to do here, so just drop the lock. */
67c583a7 2944 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2945 }
64db4cff 2946 }
64db4cff
PM
2947}
2948
2949/*
2950 * Force quiescent states on reluctant CPUs, and also detect which
2951 * CPUs are in dyntick-idle mode.
2952 */
4cdfc175 2953static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2954{
2955 unsigned long flags;
394f2769
PM
2956 bool ret;
2957 struct rcu_node *rnp;
2958 struct rcu_node *rnp_old = NULL;
2959
2960 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2961 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2962 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2963 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2964 !raw_spin_trylock(&rnp->fqslock);
2965 if (rnp_old != NULL)
2966 raw_spin_unlock(&rnp_old->fqslock);
2967 if (ret) {
a792563b 2968 rsp->n_force_qs_lh++;
394f2769
PM
2969 return;
2970 }
2971 rnp_old = rnp;
2972 }
2973 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2974
394f2769 2975 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2976 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2977 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2978 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2979 rsp->n_force_qs_lh++;
67c583a7 2980 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2981 return; /* Someone beat us to it. */
46a1e34e 2982 }
7d0ae808 2983 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2984 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2985 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2986}
2987
64db4cff 2988/*
e0f23060
PM
2989 * This does the RCU core processing work for the specified rcu_state
2990 * and rcu_data structures. This may be called only from the CPU to
2991 * whom the rdp belongs.
64db4cff
PM
2992 */
2993static void
1bca8cf1 2994__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2995{
2996 unsigned long flags;
48a7639c 2997 bool needwake;
fa07a58f 2998 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2999
2e597558
PM
3000 WARN_ON_ONCE(rdp->beenonline == 0);
3001
64db4cff
PM
3002 /* Update RCU state based on any recent quiescent states. */
3003 rcu_check_quiescent_state(rsp, rdp);
3004
3005 /* Does this CPU require a not-yet-started grace period? */
dc35c893 3006 local_irq_save(flags);
64db4cff 3007 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 3008 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 3009 needwake = rcu_start_gp(rsp);
67c583a7 3010 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
3011 if (needwake)
3012 rcu_gp_kthread_wake(rsp);
dc35c893
PM
3013 } else {
3014 local_irq_restore(flags);
64db4cff
PM
3015 }
3016
3017 /* If there are callbacks ready, invoke them. */
09223371 3018 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 3019 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3020
3021 /* Do any needed deferred wakeups of rcuo kthreads. */
3022 do_nocb_deferred_wakeup(rdp);
09223371
SL
3023}
3024
64db4cff 3025/*
e0f23060 3026 * Do RCU core processing for the current CPU.
64db4cff 3027 */
0766f788 3028static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3029{
6ce75a23
PM
3030 struct rcu_state *rsp;
3031
bfa00b4c
PM
3032 if (cpu_is_offline(smp_processor_id()))
3033 return;
f7f7bac9 3034 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3035 for_each_rcu_flavor(rsp)
3036 __rcu_process_callbacks(rsp);
f7f7bac9 3037 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3038}
3039
a26ac245 3040/*
e0f23060
PM
3041 * Schedule RCU callback invocation. If the specified type of RCU
3042 * does not support RCU priority boosting, just do a direct call,
3043 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3044 * are running on the current CPU with softirqs disabled, the
e0f23060 3045 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3046 */
a46e0899 3047static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3048{
7d0ae808 3049 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3050 return;
a46e0899
PM
3051 if (likely(!rsp->boost)) {
3052 rcu_do_batch(rsp, rdp);
a26ac245
PM
3053 return;
3054 }
a46e0899 3055 invoke_rcu_callbacks_kthread();
a26ac245
PM
3056}
3057
a46e0899 3058static void invoke_rcu_core(void)
09223371 3059{
b0f74036
PM
3060 if (cpu_online(smp_processor_id()))
3061 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3062}
3063
29154c57
PM
3064/*
3065 * Handle any core-RCU processing required by a call_rcu() invocation.
3066 */
3067static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3068 struct rcu_head *head, unsigned long flags)
64db4cff 3069{
48a7639c
PM
3070 bool needwake;
3071
62fde6ed
PM
3072 /*
3073 * If called from an extended quiescent state, invoke the RCU
3074 * core in order to force a re-evaluation of RCU's idleness.
3075 */
9910affa 3076 if (!rcu_is_watching())
62fde6ed
PM
3077 invoke_rcu_core();
3078
a16b7a69 3079 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3080 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3081 return;
64db4cff 3082
37c72e56
PM
3083 /*
3084 * Force the grace period if too many callbacks or too long waiting.
3085 * Enforce hysteresis, and don't invoke force_quiescent_state()
3086 * if some other CPU has recently done so. Also, don't bother
3087 * invoking force_quiescent_state() if the newly enqueued callback
3088 * is the only one waiting for a grace period to complete.
3089 */
2655d57e 3090 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3091
3092 /* Are we ignoring a completed grace period? */
470716fc 3093 note_gp_changes(rsp, rdp);
b52573d2
PM
3094
3095 /* Start a new grace period if one not already started. */
3096 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3097 struct rcu_node *rnp_root = rcu_get_root(rsp);
3098
2a67e741 3099 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3100 needwake = rcu_start_gp(rsp);
67c583a7 3101 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3102 if (needwake)
3103 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3104 } else {
3105 /* Give the grace period a kick. */
3106 rdp->blimit = LONG_MAX;
3107 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3108 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3109 force_quiescent_state(rsp);
b52573d2
PM
3110 rdp->n_force_qs_snap = rsp->n_force_qs;
3111 rdp->qlen_last_fqs_check = rdp->qlen;
3112 }
4cdfc175 3113 }
29154c57
PM
3114}
3115
ae150184
PM
3116/*
3117 * RCU callback function to leak a callback.
3118 */
3119static void rcu_leak_callback(struct rcu_head *rhp)
3120{
3121}
3122
3fbfbf7a
PM
3123/*
3124 * Helper function for call_rcu() and friends. The cpu argument will
3125 * normally be -1, indicating "currently running CPU". It may specify
3126 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3127 * is expected to specify a CPU.
3128 */
64db4cff 3129static void
b6a4ae76 3130__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3131 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3132{
3133 unsigned long flags;
3134 struct rcu_data *rdp;
3135
b8f2ed53
PM
3136 /* Misaligned rcu_head! */
3137 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3138
ae150184
PM
3139 if (debug_rcu_head_queue(head)) {
3140 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3141 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3142 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3143 return;
3144 }
64db4cff
PM
3145 head->func = func;
3146 head->next = NULL;
64db4cff 3147 local_irq_save(flags);
394f99a9 3148 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3149
3150 /* Add the callback to our list. */
3fbfbf7a
PM
3151 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3152 int offline;
3153
3154 if (cpu != -1)
3155 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3156 if (likely(rdp->mynode)) {
3157 /* Post-boot, so this should be for a no-CBs CPU. */
3158 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3159 WARN_ON_ONCE(offline);
3160 /* Offline CPU, _call_rcu() illegal, leak callback. */
3161 local_irq_restore(flags);
3162 return;
3163 }
3164 /*
3165 * Very early boot, before rcu_init(). Initialize if needed
3166 * and then drop through to queue the callback.
3167 */
3168 BUG_ON(cpu != -1);
34404ca8 3169 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3170 if (!likely(rdp->nxtlist))
3171 init_default_callback_list(rdp);
0d8ee37e 3172 }
7d0ae808 3173 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3174 if (lazy)
3175 rdp->qlen_lazy++;
c57afe80
PM
3176 else
3177 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3178 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3179 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3180 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3181
d4c08f2a
PM
3182 if (__is_kfree_rcu_offset((unsigned long)func))
3183 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3184 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3185 else
486e2593 3186 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3187
29154c57
PM
3188 /* Go handle any RCU core processing required. */
3189 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3190 local_irq_restore(flags);
3191}
3192
3193/*
d6714c22 3194 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3195 */
b6a4ae76 3196void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3197{
3fbfbf7a 3198 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3199}
d6714c22 3200EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3201
3202/*
486e2593 3203 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3204 */
b6a4ae76 3205void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3206{
3fbfbf7a 3207 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3208}
3209EXPORT_SYMBOL_GPL(call_rcu_bh);
3210
495aa969
ACB
3211/*
3212 * Queue an RCU callback for lazy invocation after a grace period.
3213 * This will likely be later named something like "call_rcu_lazy()",
3214 * but this change will require some way of tagging the lazy RCU
3215 * callbacks in the list of pending callbacks. Until then, this
3216 * function may only be called from __kfree_rcu().
3217 */
3218void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3219 rcu_callback_t func)
495aa969 3220{
e534165b 3221 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3222}
3223EXPORT_SYMBOL_GPL(kfree_call_rcu);
3224
6d813391
PM
3225/*
3226 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3227 * any blocking grace-period wait automatically implies a grace period
3228 * if there is only one CPU online at any point time during execution
3229 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3230 * occasionally incorrectly indicate that there are multiple CPUs online
3231 * when there was in fact only one the whole time, as this just adds
3232 * some overhead: RCU still operates correctly.
6d813391
PM
3233 */
3234static inline int rcu_blocking_is_gp(void)
3235{
95f0c1de
PM
3236 int ret;
3237
6d813391 3238 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3239 preempt_disable();
3240 ret = num_online_cpus() <= 1;
3241 preempt_enable();
3242 return ret;
6d813391
PM
3243}
3244
6ebb237b
PM
3245/**
3246 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3247 *
3248 * Control will return to the caller some time after a full rcu-sched
3249 * grace period has elapsed, in other words after all currently executing
3250 * rcu-sched read-side critical sections have completed. These read-side
3251 * critical sections are delimited by rcu_read_lock_sched() and
3252 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3253 * local_irq_disable(), and so on may be used in place of
3254 * rcu_read_lock_sched().
3255 *
3256 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3257 * non-threaded hardware-interrupt handlers, in progress on entry will
3258 * have completed before this primitive returns. However, this does not
3259 * guarantee that softirq handlers will have completed, since in some
3260 * kernels, these handlers can run in process context, and can block.
3261 *
3262 * Note that this guarantee implies further memory-ordering guarantees.
3263 * On systems with more than one CPU, when synchronize_sched() returns,
3264 * each CPU is guaranteed to have executed a full memory barrier since the
3265 * end of its last RCU-sched read-side critical section whose beginning
3266 * preceded the call to synchronize_sched(). In addition, each CPU having
3267 * an RCU read-side critical section that extends beyond the return from
3268 * synchronize_sched() is guaranteed to have executed a full memory barrier
3269 * after the beginning of synchronize_sched() and before the beginning of
3270 * that RCU read-side critical section. Note that these guarantees include
3271 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3272 * that are executing in the kernel.
3273 *
3274 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3275 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3276 * to have executed a full memory barrier during the execution of
3277 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3278 * again only if the system has more than one CPU).
6ebb237b
PM
3279 *
3280 * This primitive provides the guarantees made by the (now removed)
3281 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3282 * guarantees that rcu_read_lock() sections will have completed.
3283 * In "classic RCU", these two guarantees happen to be one and
3284 * the same, but can differ in realtime RCU implementations.
3285 */
3286void synchronize_sched(void)
3287{
f78f5b90
PM
3288 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3289 lock_is_held(&rcu_lock_map) ||
3290 lock_is_held(&rcu_sched_lock_map),
3291 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3292 if (rcu_blocking_is_gp())
3293 return;
5afff48b 3294 if (rcu_gp_is_expedited())
3705b88d
AM
3295 synchronize_sched_expedited();
3296 else
3297 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3298}
3299EXPORT_SYMBOL_GPL(synchronize_sched);
3300
3301/**
3302 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3303 *
3304 * Control will return to the caller some time after a full rcu_bh grace
3305 * period has elapsed, in other words after all currently executing rcu_bh
3306 * read-side critical sections have completed. RCU read-side critical
3307 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3308 * and may be nested.
f0a0e6f2
PM
3309 *
3310 * See the description of synchronize_sched() for more detailed information
3311 * on memory ordering guarantees.
6ebb237b
PM
3312 */
3313void synchronize_rcu_bh(void)
3314{
f78f5b90
PM
3315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3316 lock_is_held(&rcu_lock_map) ||
3317 lock_is_held(&rcu_sched_lock_map),
3318 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3319 if (rcu_blocking_is_gp())
3320 return;
5afff48b 3321 if (rcu_gp_is_expedited())
3705b88d
AM
3322 synchronize_rcu_bh_expedited();
3323 else
3324 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3325}
3326EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3327
765a3f4f
PM
3328/**
3329 * get_state_synchronize_rcu - Snapshot current RCU state
3330 *
3331 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3332 * to determine whether or not a full grace period has elapsed in the
3333 * meantime.
3334 */
3335unsigned long get_state_synchronize_rcu(void)
3336{
3337 /*
3338 * Any prior manipulation of RCU-protected data must happen
3339 * before the load from ->gpnum.
3340 */
3341 smp_mb(); /* ^^^ */
3342
3343 /*
3344 * Make sure this load happens before the purportedly
3345 * time-consuming work between get_state_synchronize_rcu()
3346 * and cond_synchronize_rcu().
3347 */
e534165b 3348 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3349}
3350EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3351
3352/**
3353 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3354 *
3355 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3356 *
3357 * If a full RCU grace period has elapsed since the earlier call to
3358 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3359 * synchronize_rcu() to wait for a full grace period.
3360 *
3361 * Yes, this function does not take counter wrap into account. But
3362 * counter wrap is harmless. If the counter wraps, we have waited for
3363 * more than 2 billion grace periods (and way more on a 64-bit system!),
3364 * so waiting for one additional grace period should be just fine.
3365 */
3366void cond_synchronize_rcu(unsigned long oldstate)
3367{
3368 unsigned long newstate;
3369
3370 /*
3371 * Ensure that this load happens before any RCU-destructive
3372 * actions the caller might carry out after we return.
3373 */
e534165b 3374 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3375 if (ULONG_CMP_GE(oldstate, newstate))
3376 synchronize_rcu();
3377}
3378EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3379
24560056
PM
3380/**
3381 * get_state_synchronize_sched - Snapshot current RCU-sched state
3382 *
3383 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3384 * to determine whether or not a full grace period has elapsed in the
3385 * meantime.
3386 */
3387unsigned long get_state_synchronize_sched(void)
3388{
3389 /*
3390 * Any prior manipulation of RCU-protected data must happen
3391 * before the load from ->gpnum.
3392 */
3393 smp_mb(); /* ^^^ */
3394
3395 /*
3396 * Make sure this load happens before the purportedly
3397 * time-consuming work between get_state_synchronize_sched()
3398 * and cond_synchronize_sched().
3399 */
3400 return smp_load_acquire(&rcu_sched_state.gpnum);
3401}
3402EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3403
3404/**
3405 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3406 *
3407 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3408 *
3409 * If a full RCU-sched grace period has elapsed since the earlier call to
3410 * get_state_synchronize_sched(), just return. Otherwise, invoke
3411 * synchronize_sched() to wait for a full grace period.
3412 *
3413 * Yes, this function does not take counter wrap into account. But
3414 * counter wrap is harmless. If the counter wraps, we have waited for
3415 * more than 2 billion grace periods (and way more on a 64-bit system!),
3416 * so waiting for one additional grace period should be just fine.
3417 */
3418void cond_synchronize_sched(unsigned long oldstate)
3419{
3420 unsigned long newstate;
3421
3422 /*
3423 * Ensure that this load happens before any RCU-destructive
3424 * actions the caller might carry out after we return.
3425 */
3426 newstate = smp_load_acquire(&rcu_sched_state.completed);
3427 if (ULONG_CMP_GE(oldstate, newstate))
3428 synchronize_sched();
3429}
3430EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3431
28f00767
PM
3432/* Adjust sequence number for start of update-side operation. */
3433static void rcu_seq_start(unsigned long *sp)
3434{
3435 WRITE_ONCE(*sp, *sp + 1);
3436 smp_mb(); /* Ensure update-side operation after counter increment. */
3437 WARN_ON_ONCE(!(*sp & 0x1));
3438}
3439
3440/* Adjust sequence number for end of update-side operation. */
3441static void rcu_seq_end(unsigned long *sp)
3442{
3443 smp_mb(); /* Ensure update-side operation before counter increment. */
3444 WRITE_ONCE(*sp, *sp + 1);
3445 WARN_ON_ONCE(*sp & 0x1);
3446}
3447
3448/* Take a snapshot of the update side's sequence number. */
3449static unsigned long rcu_seq_snap(unsigned long *sp)
3450{
3451 unsigned long s;
3452
28f00767
PM
3453 s = (READ_ONCE(*sp) + 3) & ~0x1;
3454 smp_mb(); /* Above access must not bleed into critical section. */
3455 return s;
3456}
3457
3458/*
3459 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3460 * full update-side operation has occurred.
3461 */
3462static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3463{
3464 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3465}
3466
64db4cff
PM
3467/*
3468 * Check to see if there is any immediate RCU-related work to be done
3469 * by the current CPU, for the specified type of RCU, returning 1 if so.
3470 * The checks are in order of increasing expense: checks that can be
3471 * carried out against CPU-local state are performed first. However,
3472 * we must check for CPU stalls first, else we might not get a chance.
3473 */
3474static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3475{
2f51f988
PM
3476 struct rcu_node *rnp = rdp->mynode;
3477
64db4cff
PM
3478 rdp->n_rcu_pending++;
3479
3480 /* Check for CPU stalls, if enabled. */
3481 check_cpu_stall(rsp, rdp);
3482
a096932f
PM
3483 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3484 if (rcu_nohz_full_cpu(rsp))
3485 return 0;
3486
64db4cff 3487 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3488 if (rcu_scheduler_fully_active &&
5b74c458 3489 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
5cd37193 3490 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
97c668b8
PM
3491 rdp->n_rp_core_needs_qs++;
3492 } else if (rdp->core_needs_qs &&
5b74c458 3493 (!rdp->cpu_no_qs.b.norm ||
5cd37193 3494 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3495 rdp->n_rp_report_qs++;
64db4cff 3496 return 1;
7ba5c840 3497 }
64db4cff
PM
3498
3499 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3500 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3501 rdp->n_rp_cb_ready++;
64db4cff 3502 return 1;
7ba5c840 3503 }
64db4cff
PM
3504
3505 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3506 if (cpu_needs_another_gp(rsp, rdp)) {
3507 rdp->n_rp_cpu_needs_gp++;
64db4cff 3508 return 1;
7ba5c840 3509 }
64db4cff
PM
3510
3511 /* Has another RCU grace period completed? */
7d0ae808 3512 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3513 rdp->n_rp_gp_completed++;
64db4cff 3514 return 1;
7ba5c840 3515 }
64db4cff
PM
3516
3517 /* Has a new RCU grace period started? */
7d0ae808
PM
3518 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3519 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3520 rdp->n_rp_gp_started++;
64db4cff 3521 return 1;
7ba5c840 3522 }
64db4cff 3523
96d3fd0d
PM
3524 /* Does this CPU need a deferred NOCB wakeup? */
3525 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3526 rdp->n_rp_nocb_defer_wakeup++;
3527 return 1;
3528 }
3529
64db4cff 3530 /* nothing to do */
7ba5c840 3531 rdp->n_rp_need_nothing++;
64db4cff
PM
3532 return 0;
3533}
3534
3535/*
3536 * Check to see if there is any immediate RCU-related work to be done
3537 * by the current CPU, returning 1 if so. This function is part of the
3538 * RCU implementation; it is -not- an exported member of the RCU API.
3539 */
e3950ecd 3540static int rcu_pending(void)
64db4cff 3541{
6ce75a23
PM
3542 struct rcu_state *rsp;
3543
3544 for_each_rcu_flavor(rsp)
e3950ecd 3545 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3546 return 1;
3547 return 0;
64db4cff
PM
3548}
3549
3550/*
c0f4dfd4
PM
3551 * Return true if the specified CPU has any callback. If all_lazy is
3552 * non-NULL, store an indication of whether all callbacks are lazy.
3553 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3554 */
82072c4f 3555static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3556{
c0f4dfd4
PM
3557 bool al = true;
3558 bool hc = false;
3559 struct rcu_data *rdp;
6ce75a23
PM
3560 struct rcu_state *rsp;
3561
c0f4dfd4 3562 for_each_rcu_flavor(rsp) {
aa6da514 3563 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3564 if (!rdp->nxtlist)
3565 continue;
3566 hc = true;
3567 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3568 al = false;
69c8d28c
PM
3569 break;
3570 }
c0f4dfd4
PM
3571 }
3572 if (all_lazy)
3573 *all_lazy = al;
3574 return hc;
64db4cff
PM
3575}
3576
a83eff0a
PM
3577/*
3578 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3579 * the compiler is expected to optimize this away.
3580 */
e66c33d5 3581static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3582 int cpu, unsigned long done)
3583{
3584 trace_rcu_barrier(rsp->name, s, cpu,
3585 atomic_read(&rsp->barrier_cpu_count), done);
3586}
3587
b1420f1c
PM
3588/*
3589 * RCU callback function for _rcu_barrier(). If we are last, wake
3590 * up the task executing _rcu_barrier().
3591 */
24ebbca8 3592static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3593{
24ebbca8
PM
3594 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3595 struct rcu_state *rsp = rdp->rsp;
3596
a83eff0a 3597 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3598 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3599 complete(&rsp->barrier_completion);
a83eff0a 3600 } else {
4f525a52 3601 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3602 }
d0ec774c
PM
3603}
3604
3605/*
3606 * Called with preemption disabled, and from cross-cpu IRQ context.
3607 */
3608static void rcu_barrier_func(void *type)
3609{
037b64ed 3610 struct rcu_state *rsp = type;
fa07a58f 3611 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3612
4f525a52 3613 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3614 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3615 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3616}
3617
d0ec774c
PM
3618/*
3619 * Orchestrate the specified type of RCU barrier, waiting for all
3620 * RCU callbacks of the specified type to complete.
3621 */
037b64ed 3622static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3623{
b1420f1c 3624 int cpu;
b1420f1c 3625 struct rcu_data *rdp;
4f525a52 3626 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3627
4f525a52 3628 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3629
e74f4c45 3630 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3631 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3632
4f525a52
PM
3633 /* Did someone else do our work for us? */
3634 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3635 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3636 smp_mb(); /* caller's subsequent code after above check. */
3637 mutex_unlock(&rsp->barrier_mutex);
3638 return;
3639 }
3640
4f525a52
PM
3641 /* Mark the start of the barrier operation. */
3642 rcu_seq_start(&rsp->barrier_sequence);
3643 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3644
d0ec774c 3645 /*
b1420f1c
PM
3646 * Initialize the count to one rather than to zero in order to
3647 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3648 * (or preemption of this task). Exclude CPU-hotplug operations
3649 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3650 */
7db74df8 3651 init_completion(&rsp->barrier_completion);
24ebbca8 3652 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3653 get_online_cpus();
b1420f1c
PM
3654
3655 /*
1331e7a1
PM
3656 * Force each CPU with callbacks to register a new callback.
3657 * When that callback is invoked, we will know that all of the
3658 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3659 */
3fbfbf7a 3660 for_each_possible_cpu(cpu) {
d1e43fa5 3661 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3662 continue;
b1420f1c 3663 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3664 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3665 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3666 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3667 rsp->barrier_sequence);
d7e29933
PM
3668 } else {
3669 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3670 rsp->barrier_sequence);
41050a00 3671 smp_mb__before_atomic();
d7e29933
PM
3672 atomic_inc(&rsp->barrier_cpu_count);
3673 __call_rcu(&rdp->barrier_head,
3674 rcu_barrier_callback, rsp, cpu, 0);
3675 }
7d0ae808 3676 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 3677 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3678 rsp->barrier_sequence);
037b64ed 3679 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3680 } else {
a83eff0a 3681 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3682 rsp->barrier_sequence);
b1420f1c
PM
3683 }
3684 }
1331e7a1 3685 put_online_cpus();
b1420f1c
PM
3686
3687 /*
3688 * Now that we have an rcu_barrier_callback() callback on each
3689 * CPU, and thus each counted, remove the initial count.
3690 */
24ebbca8 3691 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3692 complete(&rsp->barrier_completion);
b1420f1c
PM
3693
3694 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3695 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3696
4f525a52
PM
3697 /* Mark the end of the barrier operation. */
3698 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3699 rcu_seq_end(&rsp->barrier_sequence);
3700
b1420f1c 3701 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3702 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3703}
d0ec774c
PM
3704
3705/**
3706 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3707 */
3708void rcu_barrier_bh(void)
3709{
037b64ed 3710 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3711}
3712EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3713
3714/**
3715 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3716 */
3717void rcu_barrier_sched(void)
3718{
037b64ed 3719 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3720}
3721EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3722
0aa04b05
PM
3723/*
3724 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3725 * first CPU in a given leaf rcu_node structure coming online. The caller
3726 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3727 * disabled.
3728 */
3729static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3730{
3731 long mask;
3732 struct rcu_node *rnp = rnp_leaf;
3733
3734 for (;;) {
3735 mask = rnp->grpmask;
3736 rnp = rnp->parent;
3737 if (rnp == NULL)
3738 return;
6cf10081 3739 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3740 rnp->qsmaskinit |= mask;
67c583a7 3741 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3742 }
3743}
3744
64db4cff 3745/*
27569620 3746 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3747 */
27569620
PM
3748static void __init
3749rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3750{
3751 unsigned long flags;
394f99a9 3752 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3753 struct rcu_node *rnp = rcu_get_root(rsp);
3754
3755 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3756 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3757 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3758 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3759 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3760 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3761 rdp->cpu = cpu;
d4c08f2a 3762 rdp->rsp = rsp;
3fbfbf7a 3763 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3764 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3765}
3766
3767/*
3768 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3769 * offline event can be happening at a given time. Note also that we
3770 * can accept some slop in the rsp->completed access due to the fact
3771 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3772 */
49fb4c62 3773static void
9b67122a 3774rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3775{
3776 unsigned long flags;
64db4cff 3777 unsigned long mask;
394f99a9 3778 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3779 struct rcu_node *rnp = rcu_get_root(rsp);
3780
3781 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3782 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3783 rdp->qlen_last_fqs_check = 0;
3784 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3785 rdp->blimit = blimit;
39c8d313
PM
3786 if (!rdp->nxtlist)
3787 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3788 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3789 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3790 atomic_set(&rdp->dynticks->dynticks,
3791 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
67c583a7 3792 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3793
0aa04b05
PM
3794 /*
3795 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3796 * propagation up the rcu_node tree will happen at the beginning
3797 * of the next grace period.
3798 */
64db4cff
PM
3799 rnp = rdp->mynode;
3800 mask = rdp->grpmask;
2a67e741 3801 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3802 if (!rdp->beenonline)
3803 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3804 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3805 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3806 rdp->completed = rnp->completed;
5b74c458 3807 rdp->cpu_no_qs.b.norm = true;
a738eec6 3808 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
97c668b8 3809 rdp->core_needs_qs = false;
0aa04b05 3810 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3811 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3812}
3813
4df83742 3814int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3815{
6ce75a23
PM
3816 struct rcu_state *rsp;
3817
3818 for_each_rcu_flavor(rsp)
9b67122a 3819 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3820
3821 rcu_prepare_kthreads(cpu);
3822 rcu_spawn_all_nocb_kthreads(cpu);
3823
3824 return 0;
3825}
3826
3827static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3828{
3829 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3830
3831 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3832}
3833
3834int rcutree_online_cpu(unsigned int cpu)
3835{
3836 sync_sched_exp_online_cleanup(cpu);
3837 rcutree_affinity_setting(cpu, -1);
3838 return 0;
3839}
3840
3841int rcutree_offline_cpu(unsigned int cpu)
3842{
3843 rcutree_affinity_setting(cpu, cpu);
3844 return 0;
3845}
3846
3847
3848int rcutree_dying_cpu(unsigned int cpu)
3849{
3850 struct rcu_state *rsp;
3851
3852 for_each_rcu_flavor(rsp)
3853 rcu_cleanup_dying_cpu(rsp);
3854 return 0;
3855}
3856
3857int rcutree_dead_cpu(unsigned int cpu)
3858{
3859 struct rcu_state *rsp;
3860
3861 for_each_rcu_flavor(rsp) {
3862 rcu_cleanup_dead_cpu(cpu, rsp);
3863 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3864 }
3865 return 0;
64db4cff
PM
3866}
3867
7ec99de3
PM
3868/*
3869 * Mark the specified CPU as being online so that subsequent grace periods
3870 * (both expedited and normal) will wait on it. Note that this means that
3871 * incoming CPUs are not allowed to use RCU read-side critical sections
3872 * until this function is called. Failing to observe this restriction
3873 * will result in lockdep splats.
3874 */
3875void rcu_cpu_starting(unsigned int cpu)
3876{
3877 unsigned long flags;
3878 unsigned long mask;
3879 struct rcu_data *rdp;
3880 struct rcu_node *rnp;
3881 struct rcu_state *rsp;
3882
3883 for_each_rcu_flavor(rsp) {
3884 rdp = this_cpu_ptr(rsp->rda);
3885 rnp = rdp->mynode;
3886 mask = rdp->grpmask;
3887 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3888 rnp->qsmaskinitnext |= mask;
3889 rnp->expmaskinitnext |= mask;
3890 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3891 }
3892}
3893
27d50c7e
TG
3894#ifdef CONFIG_HOTPLUG_CPU
3895/*
710d60cb
LT
3896 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3897 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3898 * bit masks.
27d50c7e
TG
3899 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3900 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3901 * bit masks.
3902 */
3903static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3904{
3905 unsigned long flags;
3906 unsigned long mask;
3907 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3908 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3909
27d50c7e
TG
3910 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3911 mask = rdp->grpmask;
3912 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3913 rnp->qsmaskinitnext &= ~mask;
710d60cb 3914 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3915}
3916
3917void rcu_report_dead(unsigned int cpu)
3918{
3919 struct rcu_state *rsp;
3920
3921 /* QS for any half-done expedited RCU-sched GP. */
3922 preempt_disable();
3923 rcu_report_exp_rdp(&rcu_sched_state,
3924 this_cpu_ptr(rcu_sched_state.rda), true);
3925 preempt_enable();
3926 for_each_rcu_flavor(rsp)
3927 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3928}
3929#endif
3930
d1d74d14
BP
3931static int rcu_pm_notify(struct notifier_block *self,
3932 unsigned long action, void *hcpu)
3933{
3934 switch (action) {
3935 case PM_HIBERNATION_PREPARE:
3936 case PM_SUSPEND_PREPARE:
3937 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3938 rcu_expedite_gp();
d1d74d14
BP
3939 break;
3940 case PM_POST_HIBERNATION:
3941 case PM_POST_SUSPEND:
5afff48b
PM
3942 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3943 rcu_unexpedite_gp();
d1d74d14
BP
3944 break;
3945 default:
3946 break;
3947 }
3948 return NOTIFY_OK;
3949}
3950
b3dbec76 3951/*
9386c0b7 3952 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3953 */
3954static int __init rcu_spawn_gp_kthread(void)
3955{
3956 unsigned long flags;
a94844b2 3957 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3958 struct rcu_node *rnp;
3959 struct rcu_state *rsp;
a94844b2 3960 struct sched_param sp;
b3dbec76
PM
3961 struct task_struct *t;
3962
a94844b2
PM
3963 /* Force priority into range. */
3964 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3965 kthread_prio = 1;
3966 else if (kthread_prio < 0)
3967 kthread_prio = 0;
3968 else if (kthread_prio > 99)
3969 kthread_prio = 99;
3970 if (kthread_prio != kthread_prio_in)
3971 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3972 kthread_prio, kthread_prio_in);
3973
9386c0b7 3974 rcu_scheduler_fully_active = 1;
b3dbec76 3975 for_each_rcu_flavor(rsp) {
a94844b2 3976 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3977 BUG_ON(IS_ERR(t));
3978 rnp = rcu_get_root(rsp);
6cf10081 3979 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3980 rsp->gp_kthread = t;
a94844b2
PM
3981 if (kthread_prio) {
3982 sp.sched_priority = kthread_prio;
3983 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3984 }
67c583a7 3985 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3986 wake_up_process(t);
b3dbec76 3987 }
35ce7f29 3988 rcu_spawn_nocb_kthreads();
9386c0b7 3989 rcu_spawn_boost_kthreads();
b3dbec76
PM
3990 return 0;
3991}
3992early_initcall(rcu_spawn_gp_kthread);
3993
bbad9379 3994/*
52d7e48b
PM
3995 * This function is invoked towards the end of the scheduler's
3996 * initialization process. Before this is called, the idle task might
3997 * contain synchronous grace-period primitives (during which time, this idle
3998 * task is booting the system, and such primitives are no-ops). After this
3999 * function is called, any synchronous grace-period primitives are run as
4000 * expedited, with the requesting task driving the grace period forward.
4001 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4002 * runtime RCU functionality.
bbad9379
PM
4003 */
4004void rcu_scheduler_starting(void)
4005{
4006 WARN_ON(num_online_cpus() != 1);
4007 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4008 rcu_test_sync_prims();
4009 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4010 rcu_test_sync_prims();
bbad9379
PM
4011}
4012
64db4cff
PM
4013/*
4014 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4015 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4016 */
199977bf 4017static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4018{
64db4cff
PM
4019 int i;
4020
7fa27001 4021 if (rcu_fanout_exact) {
199977bf 4022 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4023 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4024 levelspread[i] = RCU_FANOUT;
66292405
PM
4025 } else {
4026 int ccur;
4027 int cprv;
4028
4029 cprv = nr_cpu_ids;
4030 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4031 ccur = levelcnt[i];
4032 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4033 cprv = ccur;
4034 }
64db4cff
PM
4035 }
4036}
64db4cff
PM
4037
4038/*
4039 * Helper function for rcu_init() that initializes one rcu_state structure.
4040 */
a87f203e 4041static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4042{
cb007102
AG
4043 static const char * const buf[] = RCU_NODE_NAME_INIT;
4044 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4045 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4046 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4a81e832 4047 static u8 fl_mask = 0x1;
199977bf
AG
4048
4049 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4050 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4051 int cpustride = 1;
4052 int i;
4053 int j;
4054 struct rcu_node *rnp;
4055
05b84aec 4056 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4057
3eaaaf6c
PM
4058 /* Silence gcc 4.8 false positive about array index out of range. */
4059 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4060 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4061
64db4cff
PM
4062 /* Initialize the level-tracking arrays. */
4063
f885b7f2 4064 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4065 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4066 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4067 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4068 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4069 rsp->flavor_mask = fl_mask;
4070 fl_mask <<= 1;
64db4cff
PM
4071
4072 /* Initialize the elements themselves, starting from the leaves. */
4073
f885b7f2 4074 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4075 cpustride *= levelspread[i];
64db4cff 4076 rnp = rsp->level[i];
199977bf 4077 for (j = 0; j < levelcnt[i]; j++, rnp++) {
67c583a7
BF
4078 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4079 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4080 &rcu_node_class[i], buf[i]);
394f2769
PM
4081 raw_spin_lock_init(&rnp->fqslock);
4082 lockdep_set_class_and_name(&rnp->fqslock,
4083 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4084 rnp->gpnum = rsp->gpnum;
4085 rnp->completed = rsp->completed;
64db4cff
PM
4086 rnp->qsmask = 0;
4087 rnp->qsmaskinit = 0;
4088 rnp->grplo = j * cpustride;
4089 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4090 if (rnp->grphi >= nr_cpu_ids)
4091 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4092 if (i == 0) {
4093 rnp->grpnum = 0;
4094 rnp->grpmask = 0;
4095 rnp->parent = NULL;
4096 } else {
199977bf 4097 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4098 rnp->grpmask = 1UL << rnp->grpnum;
4099 rnp->parent = rsp->level[i - 1] +
199977bf 4100 j / levelspread[i - 1];
64db4cff
PM
4101 }
4102 rnp->level = i;
12f5f524 4103 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4104 rcu_init_one_nocb(rnp);
f6a12f34
PM
4105 init_waitqueue_head(&rnp->exp_wq[0]);
4106 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4107 init_waitqueue_head(&rnp->exp_wq[2]);
4108 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4109 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4110 }
4111 }
0c34029a 4112
abedf8e2
PG
4113 init_swait_queue_head(&rsp->gp_wq);
4114 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4115 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4116 for_each_possible_cpu(i) {
4a90a068 4117 while (i > rnp->grphi)
0c34029a 4118 rnp++;
394f99a9 4119 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4120 rcu_boot_init_percpu_data(i, rsp);
4121 }
6ce75a23 4122 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4123}
4124
f885b7f2
PM
4125/*
4126 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4127 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4128 * the ->node array in the rcu_state structure.
4129 */
4130static void __init rcu_init_geometry(void)
4131{
026ad283 4132 ulong d;
f885b7f2 4133 int i;
05b84aec 4134 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4135
026ad283
PM
4136 /*
4137 * Initialize any unspecified boot parameters.
4138 * The default values of jiffies_till_first_fqs and
4139 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4140 * value, which is a function of HZ, then adding one for each
4141 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4142 */
4143 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4144 if (jiffies_till_first_fqs == ULONG_MAX)
4145 jiffies_till_first_fqs = d;
4146 if (jiffies_till_next_fqs == ULONG_MAX)
4147 jiffies_till_next_fqs = d;
4148
f885b7f2 4149 /* If the compile-time values are accurate, just leave. */
47d631af 4150 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4151 nr_cpu_ids == NR_CPUS)
f885b7f2 4152 return;
39479098
PM
4153 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4154 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4155
f885b7f2 4156 /*
ee968ac6
PM
4157 * The boot-time rcu_fanout_leaf parameter must be at least two
4158 * and cannot exceed the number of bits in the rcu_node masks.
4159 * Complain and fall back to the compile-time values if this
4160 * limit is exceeded.
f885b7f2 4161 */
ee968ac6 4162 if (rcu_fanout_leaf < 2 ||
75cf15a4 4163 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4164 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4165 WARN_ON(1);
4166 return;
4167 }
4168
f885b7f2
PM
4169 /*
4170 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4171 * with the given number of levels.
f885b7f2 4172 */
9618138b 4173 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4174 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4175 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4176
4177 /*
75cf15a4 4178 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4179 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4180 */
ee968ac6
PM
4181 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4182 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4183 WARN_ON(1);
4184 return;
4185 }
f885b7f2 4186
679f9858 4187 /* Calculate the number of levels in the tree. */
9618138b 4188 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4189 }
9618138b 4190 rcu_num_lvls = i + 1;
679f9858 4191
f885b7f2 4192 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4193 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4194 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4195 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4196 }
f885b7f2
PM
4197
4198 /* Calculate the total number of rcu_node structures. */
4199 rcu_num_nodes = 0;
679f9858 4200 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4201 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4202}
4203
a3dc2948
PM
4204/*
4205 * Dump out the structure of the rcu_node combining tree associated
4206 * with the rcu_state structure referenced by rsp.
4207 */
4208static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4209{
4210 int level = 0;
4211 struct rcu_node *rnp;
4212
4213 pr_info("rcu_node tree layout dump\n");
4214 pr_info(" ");
4215 rcu_for_each_node_breadth_first(rsp, rnp) {
4216 if (rnp->level != level) {
4217 pr_cont("\n");
4218 pr_info(" ");
4219 level = rnp->level;
4220 }
4221 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4222 }
4223 pr_cont("\n");
4224}
4225
9f680ab4 4226void __init rcu_init(void)
64db4cff 4227{
017c4261 4228 int cpu;
9f680ab4 4229
47627678
PM
4230 rcu_early_boot_tests();
4231
f41d911f 4232 rcu_bootup_announce();
f885b7f2 4233 rcu_init_geometry();
a87f203e
PM
4234 rcu_init_one(&rcu_bh_state);
4235 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4236 if (dump_tree)
4237 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4238 __rcu_init_preempt();
b5b39360 4239 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4240
4241 /*
4242 * We don't need protection against CPU-hotplug here because
4243 * this is called early in boot, before either interrupts
4244 * or the scheduler are operational.
4245 */
d1d74d14 4246 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4247 for_each_online_cpu(cpu) {
4df83742 4248 rcutree_prepare_cpu(cpu);
7ec99de3
PM
4249 rcu_cpu_starting(cpu);
4250 }
64db4cff
PM
4251}
4252
3549c2bc 4253#include "tree_exp.h"
4102adab 4254#include "tree_plugin.h"