rcu: Switch dyntick nesting counters to rcu_data structure
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff 29 */
a7538352
JP
30
31#define pr_fmt(fmt) "rcu: " fmt
32
64db4cff
PM
33#include <linux/types.h>
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/spinlock.h>
37#include <linux/smp.h>
f9411ebe 38#include <linux/rcupdate_wait.h>
64db4cff
PM
39#include <linux/interrupt.h>
40#include <linux/sched.h>
b17b0153 41#include <linux/sched/debug.h>
c1dc0b9c 42#include <linux/nmi.h>
8826f3b0 43#include <linux/atomic.h>
64db4cff 44#include <linux/bitops.h>
9984de1a 45#include <linux/export.h>
64db4cff
PM
46#include <linux/completion.h>
47#include <linux/moduleparam.h>
48#include <linux/percpu.h>
49#include <linux/notifier.h>
50#include <linux/cpu.h>
51#include <linux/mutex.h>
52#include <linux/time.h>
bbad9379 53#include <linux/kernel_stat.h>
a26ac245
PM
54#include <linux/wait.h>
55#include <linux/kthread.h>
ae7e81c0 56#include <uapi/linux/sched/types.h>
268bb0ce 57#include <linux/prefetch.h>
3d3b7db0
PM
58#include <linux/delay.h>
59#include <linux/stop_machine.h>
661a85dc 60#include <linux/random.h>
af658dca 61#include <linux/trace_events.h>
d1d74d14 62#include <linux/suspend.h>
a278d471 63#include <linux/ftrace.h>
d3052109 64#include <linux/tick.h>
64db4cff 65
4102adab 66#include "tree.h"
29c00b4a 67#include "rcu.h"
9f77da9f 68
4102adab
PM
69#ifdef MODULE_PARAM_PREFIX
70#undef MODULE_PARAM_PREFIX
71#endif
72#define MODULE_PARAM_PREFIX "rcutree."
73
64db4cff
PM
74/* Data structures. */
75
4c5273bf
PM
76static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
77 .dynticks_nesting = 1,
78 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
79};
358be2d3
PM
80struct rcu_state rcu_state = {
81 .level = { &rcu_state.node[0] },
358be2d3
PM
82 .gp_state = RCU_GP_IDLE,
83 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
84 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
85 .name = RCU_NAME,
86 .abbr = RCU_ABBR,
87 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
88 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
89 .ofl_lock = __SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
90};
b1f77b05 91
a3dc2948
PM
92/* Dump rcu_node combining tree at boot to verify correct setup. */
93static bool dump_tree;
94module_param(dump_tree, bool, 0444);
7fa27001
PM
95/* Control rcu_node-tree auto-balancing at boot time. */
96static bool rcu_fanout_exact;
97module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
98/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
99static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 100module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 101int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 102/* Number of rcu_nodes at specified level. */
e95d68d2 103int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 104int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
105/* panic() on RCU Stall sysctl. */
106int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 107
b0d30417 108/*
52d7e48b
PM
109 * The rcu_scheduler_active variable is initialized to the value
110 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
111 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
112 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 113 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
114 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
115 * to detect real grace periods. This variable is also used to suppress
116 * boot-time false positives from lockdep-RCU error checking. Finally, it
117 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
118 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 119 */
bbad9379
PM
120int rcu_scheduler_active __read_mostly;
121EXPORT_SYMBOL_GPL(rcu_scheduler_active);
122
b0d30417
PM
123/*
124 * The rcu_scheduler_fully_active variable transitions from zero to one
125 * during the early_initcall() processing, which is after the scheduler
126 * is capable of creating new tasks. So RCU processing (for example,
127 * creating tasks for RCU priority boosting) must be delayed until after
128 * rcu_scheduler_fully_active transitions from zero to one. We also
129 * currently delay invocation of any RCU callbacks until after this point.
130 *
131 * It might later prove better for people registering RCU callbacks during
132 * early boot to take responsibility for these callbacks, but one step at
133 * a time.
134 */
135static int rcu_scheduler_fully_active __read_mostly;
136
b50912d0
PM
137static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
138 unsigned long gps, unsigned long flags);
0aa04b05
PM
139static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
140static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 141static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 142static void invoke_rcu_core(void);
aff4e9ed 143static void invoke_rcu_callbacks(struct rcu_data *rdp);
63d4c8c9 144static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 145static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 146
a94844b2 147/* rcuc/rcub kthread realtime priority */
26730f55 148static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
149module_param(kthread_prio, int, 0644);
150
8d7dc928 151/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 152
90040c9e
PM
153static int gp_preinit_delay;
154module_param(gp_preinit_delay, int, 0444);
155static int gp_init_delay;
156module_param(gp_init_delay, int, 0444);
157static int gp_cleanup_delay;
158module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 159
4cf439a2 160/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
161int rcu_get_gp_kthreads_prio(void)
162{
163 return kthread_prio;
164}
165EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
166
eab128e8
PM
167/*
168 * Number of grace periods between delays, normalized by the duration of
bfd090be 169 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
170 * each delay. The reason for this normalization is that it means that,
171 * for non-zero delays, the overall slowdown of grace periods is constant
172 * regardless of the duration of the delay. This arrangement balances
173 * the need for long delays to increase some race probabilities with the
174 * need for fast grace periods to increase other race probabilities.
175 */
176#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 177
0aa04b05
PM
178/*
179 * Compute the mask of online CPUs for the specified rcu_node structure.
180 * This will not be stable unless the rcu_node structure's ->lock is
181 * held, but the bit corresponding to the current CPU will be stable
182 * in most contexts.
183 */
184unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
185{
7d0ae808 186 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
187}
188
fc2219d4 189/*
7d0ae808 190 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
191 * permit this function to be invoked without holding the root rcu_node
192 * structure's ->lock, but of course results can be subject to change.
193 */
de8e8730 194static int rcu_gp_in_progress(void)
fc2219d4 195{
de8e8730 196 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
fc2219d4
PM
197}
198
d28139c4
PM
199void rcu_softirq_qs(void)
200{
45975c7d 201 rcu_qs();
d28139c4
PM
202 rcu_preempt_deferred_qs(current);
203}
204
b8c17e66
PM
205/*
206 * Steal a bit from the bottom of ->dynticks for idle entry/exit
207 * control. Initially this is for TLB flushing.
208 */
209#define RCU_DYNTICK_CTRL_MASK 0x1
210#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
211#ifndef rcu_eqs_special_exit
212#define rcu_eqs_special_exit() do { } while (0)
213#endif
4a81e832
PM
214
215static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
b8c17e66 216 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
217};
218
2625d469
PM
219/*
220 * Record entry into an extended quiescent state. This is only to be
221 * called when not already in an extended quiescent state.
222 */
223static void rcu_dynticks_eqs_enter(void)
224{
225 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 226 int seq;
2625d469
PM
227
228 /*
b8c17e66 229 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
230 * critical sections, and we also must force ordering with the
231 * next idle sojourn.
232 */
b8c17e66
PM
233 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
234 /* Better be in an extended quiescent state! */
235 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
236 (seq & RCU_DYNTICK_CTRL_CTR));
237 /* Better not have special action (TLB flush) pending! */
238 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
239 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
240}
241
242/*
243 * Record exit from an extended quiescent state. This is only to be
244 * called from an extended quiescent state.
245 */
246static void rcu_dynticks_eqs_exit(void)
247{
248 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 249 int seq;
2625d469
PM
250
251 /*
b8c17e66 252 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
253 * and we also must force ordering with the next RCU read-side
254 * critical section.
255 */
b8c17e66
PM
256 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
257 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
258 !(seq & RCU_DYNTICK_CTRL_CTR));
259 if (seq & RCU_DYNTICK_CTRL_MASK) {
260 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
261 smp_mb__after_atomic(); /* _exit after clearing mask. */
262 /* Prefer duplicate flushes to losing a flush. */
263 rcu_eqs_special_exit();
264 }
2625d469
PM
265}
266
267/*
268 * Reset the current CPU's ->dynticks counter to indicate that the
269 * newly onlined CPU is no longer in an extended quiescent state.
270 * This will either leave the counter unchanged, or increment it
271 * to the next non-quiescent value.
272 *
273 * The non-atomic test/increment sequence works because the upper bits
274 * of the ->dynticks counter are manipulated only by the corresponding CPU,
275 * or when the corresponding CPU is offline.
276 */
277static void rcu_dynticks_eqs_online(void)
278{
279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
280
b8c17e66 281 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 282 return;
b8c17e66 283 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
284}
285
02a5c550
PM
286/*
287 * Is the current CPU in an extended quiescent state?
288 *
289 * No ordering, as we are sampling CPU-local information.
290 */
291bool rcu_dynticks_curr_cpu_in_eqs(void)
292{
293 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
294
b8c17e66 295 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
296}
297
8b2f63ab
PM
298/*
299 * Snapshot the ->dynticks counter with full ordering so as to allow
300 * stable comparison of this counter with past and future snapshots.
301 */
02a5c550 302int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
303{
304 int snap = atomic_add_return(0, &rdtp->dynticks);
305
b8c17e66 306 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
307}
308
02a5c550
PM
309/*
310 * Return true if the snapshot returned from rcu_dynticks_snap()
311 * indicates that RCU is in an extended quiescent state.
312 */
313static bool rcu_dynticks_in_eqs(int snap)
314{
b8c17e66 315 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
316}
317
318/*
319 * Return true if the CPU corresponding to the specified rcu_dynticks
320 * structure has spent some time in an extended quiescent state since
321 * rcu_dynticks_snap() returned the specified snapshot.
322 */
323static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
324{
325 return snap != rcu_dynticks_snap(rdtp);
326}
327
b8c17e66
PM
328/*
329 * Set the special (bottom) bit of the specified CPU so that it
330 * will take special action (such as flushing its TLB) on the
331 * next exit from an extended quiescent state. Returns true if
332 * the bit was successfully set, or false if the CPU was not in
333 * an extended quiescent state.
334 */
335bool rcu_eqs_special_set(int cpu)
336{
337 int old;
338 int new;
339 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
340
341 do {
342 old = atomic_read(&rdtp->dynticks);
343 if (old & RCU_DYNTICK_CTRL_CTR)
344 return false;
345 new = old | RCU_DYNTICK_CTRL_MASK;
346 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
347 return true;
6563de9d 348}
5cd37193 349
4a81e832
PM
350/*
351 * Let the RCU core know that this CPU has gone through the scheduler,
352 * which is a quiescent state. This is called when the need for a
353 * quiescent state is urgent, so we burn an atomic operation and full
354 * memory barriers to let the RCU core know about it, regardless of what
355 * this CPU might (or might not) do in the near future.
356 *
0f9be8ca 357 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 358 *
3b57a399 359 * The caller must have disabled interrupts and must not be idle.
4a81e832 360 */
395a2f09 361static void __maybe_unused rcu_momentary_dyntick_idle(void)
4a81e832 362{
3b57a399
PM
363 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
364 int special;
365
2dba13f0 366 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
3b57a399
PM
367 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
368 /* It is illegal to call this from idle state. */
369 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
3e310098 370 rcu_preempt_deferred_qs(current);
4a81e832
PM
371}
372
45975c7d
PM
373/**
374 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
375 *
376 * If the current CPU is idle or running at a first-level (not nested)
377 * interrupt from idle, return true. The caller must have at least
378 * disabled preemption.
25502a6c 379 */
45975c7d 380static int rcu_is_cpu_rrupt_from_idle(void)
25502a6c 381{
4c5273bf
PM
382 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
383 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
25502a6c
PM
384}
385
17c7798b
PM
386#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
387static long blimit = DEFAULT_RCU_BLIMIT;
388#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
389static long qhimark = DEFAULT_RCU_QHIMARK;
390#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
391static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 392
878d7439
ED
393module_param(blimit, long, 0444);
394module_param(qhimark, long, 0444);
395module_param(qlowmark, long, 0444);
3d76c082 396
026ad283
PM
397static ulong jiffies_till_first_fqs = ULONG_MAX;
398static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 399static bool rcu_kick_kthreads;
d40011f6 400
c06aed0e
PM
401/*
402 * How long the grace period must be before we start recruiting
403 * quiescent-state help from rcu_note_context_switch().
404 */
405static ulong jiffies_till_sched_qs = ULONG_MAX;
406module_param(jiffies_till_sched_qs, ulong, 0444);
407static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
408module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
409
410/*
411 * Make sure that we give the grace-period kthread time to detect any
412 * idle CPUs before taking active measures to force quiescent states.
413 * However, don't go below 100 milliseconds, adjusted upwards for really
414 * large systems.
415 */
416static void adjust_jiffies_till_sched_qs(void)
417{
418 unsigned long j;
419
420 /* If jiffies_till_sched_qs was specified, respect the request. */
421 if (jiffies_till_sched_qs != ULONG_MAX) {
422 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
423 return;
424 }
425 j = READ_ONCE(jiffies_till_first_fqs) +
426 2 * READ_ONCE(jiffies_till_next_fqs);
427 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
428 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
429 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
430 WRITE_ONCE(jiffies_to_sched_qs, j);
431}
432
67abb96c
BP
433static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
434{
435 ulong j;
436 int ret = kstrtoul(val, 0, &j);
437
c06aed0e 438 if (!ret) {
67abb96c 439 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
440 adjust_jiffies_till_sched_qs();
441 }
67abb96c
BP
442 return ret;
443}
444
445static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
446{
447 ulong j;
448 int ret = kstrtoul(val, 0, &j);
449
c06aed0e 450 if (!ret) {
67abb96c 451 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
452 adjust_jiffies_till_sched_qs();
453 }
67abb96c
BP
454 return ret;
455}
456
457static struct kernel_param_ops first_fqs_jiffies_ops = {
458 .set = param_set_first_fqs_jiffies,
459 .get = param_get_ulong,
460};
461
462static struct kernel_param_ops next_fqs_jiffies_ops = {
463 .set = param_set_next_fqs_jiffies,
464 .get = param_get_ulong,
465};
466
467module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
468module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 469module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 470
8ff0b907 471static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
e9ecb780 472static void force_quiescent_state(void);
e3950ecd 473static int rcu_pending(void);
64db4cff
PM
474
475/*
17ef2fe9 476 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 477 */
17ef2fe9 478unsigned long rcu_get_gp_seq(void)
917963d0 479{
16fc9c60 480 return READ_ONCE(rcu_state.gp_seq);
917963d0 481}
17ef2fe9 482EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 483
291783b8
PM
484/*
485 * Return the number of RCU expedited batches completed thus far for
486 * debug & stats. Odd numbers mean that a batch is in progress, even
487 * numbers mean idle. The value returned will thus be roughly double
488 * the cumulative batches since boot.
489 */
490unsigned long rcu_exp_batches_completed(void)
491{
16fc9c60 492 return rcu_state.expedited_sequence;
291783b8
PM
493}
494EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
495
a381d757
ACB
496/*
497 * Force a quiescent state.
498 */
499void rcu_force_quiescent_state(void)
500{
e9ecb780 501 force_quiescent_state();
a381d757
ACB
502}
503EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
504
afea227f
PM
505/*
506 * Show the state of the grace-period kthreads.
507 */
508void show_rcu_gp_kthreads(void)
509{
47199a08
PM
510 int cpu;
511 struct rcu_data *rdp;
512 struct rcu_node *rnp;
afea227f 513
b97d23c5
PM
514 pr_info("%s: wait state: %d ->state: %#lx\n", rcu_state.name,
515 rcu_state.gp_state, rcu_state.gp_kthread->state);
516 rcu_for_each_node_breadth_first(rnp) {
517 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
518 continue;
519 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
520 rnp->grplo, rnp->grphi, rnp->gp_seq,
521 rnp->gp_seq_needed);
522 if (!rcu_is_leaf_node(rnp))
523 continue;
524 for_each_leaf_node_possible_cpu(rnp, cpu) {
525 rdp = per_cpu_ptr(&rcu_data, cpu);
526 if (rdp->gpwrap ||
527 ULONG_CMP_GE(rcu_state.gp_seq,
528 rdp->gp_seq_needed))
47199a08 529 continue;
b97d23c5
PM
530 pr_info("\tcpu %d ->gp_seq_needed %lu\n",
531 cpu, rdp->gp_seq_needed);
47199a08 532 }
afea227f 533 }
b97d23c5 534 /* sched_show_task(rcu_state.gp_kthread); */
afea227f
PM
535}
536EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
537
ad0dc7f9
PM
538/*
539 * Send along grace-period-related data for rcutorture diagnostics.
540 */
541void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 542 unsigned long *gp_seq)
ad0dc7f9 543{
ad0dc7f9
PM
544 switch (test_type) {
545 case RCU_FLAVOR:
ad0dc7f9 546 case RCU_BH_FLAVOR:
ad0dc7f9 547 case RCU_SCHED_FLAVOR:
f7dd7d44
PM
548 *flags = READ_ONCE(rcu_state.gp_flags);
549 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
550 break;
551 default:
552 break;
553 }
ad0dc7f9
PM
554}
555EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
556
365187fb 557/*
49918a54 558 * Return the root node of the rcu_state structure.
365187fb 559 */
336a4f6c 560static struct rcu_node *rcu_get_root(void)
365187fb 561{
336a4f6c 562 return &rcu_state.node[0];
365187fb
PM
563}
564
9b2e4f18 565/*
215bba9f
PM
566 * Enter an RCU extended quiescent state, which can be either the
567 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 568 *
215bba9f
PM
569 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
570 * the possibility of usermode upcalls having messed up our count
571 * of interrupt nesting level during the prior busy period.
9b2e4f18 572 */
215bba9f 573static void rcu_eqs_enter(bool user)
9b2e4f18 574{
4c5273bf 575 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
215bba9f 576 struct rcu_dynticks *rdtp;
96d3fd0d 577
215bba9f 578 rdtp = this_cpu_ptr(&rcu_dynticks);
4c5273bf
PM
579 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
580 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
215bba9f 581 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
4c5273bf
PM
582 rdp->dynticks_nesting == 0);
583 if (rdp->dynticks_nesting != 1) {
584 rdp->dynticks_nesting--;
215bba9f 585 return;
9b2e4f18 586 }
96d3fd0d 587
b04db8e1 588 lockdep_assert_irqs_disabled();
4c5273bf 589 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdtp->dynticks);
e68bbb26 590 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
b97d23c5
PM
591 rdp = this_cpu_ptr(&rcu_data);
592 do_nocb_deferred_wakeup(rdp);
198bbf81 593 rcu_prepare_for_idle();
3e310098 594 rcu_preempt_deferred_qs(current);
4c5273bf 595 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 596 rcu_dynticks_eqs_enter();
176f8f7a 597 rcu_dynticks_task_enter();
64db4cff 598}
adf5091e
FW
599
600/**
601 * rcu_idle_enter - inform RCU that current CPU is entering idle
602 *
603 * Enter idle mode, in other words, -leave- the mode in which RCU
604 * read-side critical sections can occur. (Though RCU read-side
605 * critical sections can occur in irq handlers in idle, a possibility
606 * handled by irq_enter() and irq_exit().)
607 *
c0da313e
PM
608 * If you add or remove a call to rcu_idle_enter(), be sure to test with
609 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
610 */
611void rcu_idle_enter(void)
612{
b04db8e1 613 lockdep_assert_irqs_disabled();
cb349ca9 614 rcu_eqs_enter(false);
adf5091e 615}
64db4cff 616
d1ec4c34 617#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
618/**
619 * rcu_user_enter - inform RCU that we are resuming userspace.
620 *
621 * Enter RCU idle mode right before resuming userspace. No use of RCU
622 * is permitted between this call and rcu_user_exit(). This way the
623 * CPU doesn't need to maintain the tick for RCU maintenance purposes
624 * when the CPU runs in userspace.
c0da313e
PM
625 *
626 * If you add or remove a call to rcu_user_enter(), be sure to test with
627 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
628 */
629void rcu_user_enter(void)
630{
b04db8e1 631 lockdep_assert_irqs_disabled();
d4db30af 632 rcu_eqs_enter(true);
adf5091e 633}
d1ec4c34 634#endif /* CONFIG_NO_HZ_FULL */
19dd1591 635
cf7614e1 636/*
fd581a91 637 * If we are returning from the outermost NMI handler that interrupted an
4c5273bf 638 * RCU-idle period, update rdtp->dynticks and rdp->dynticks_nmi_nesting
fd581a91
PM
639 * to let the RCU grace-period handling know that the CPU is back to
640 * being RCU-idle.
641 *
cf7614e1 642 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
fd581a91
PM
643 * with CONFIG_RCU_EQS_DEBUG=y.
644 */
cf7614e1 645static __always_inline void rcu_nmi_exit_common(bool irq)
fd581a91 646{
4c5273bf
PM
647 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
648 struct rcu_dynticks __maybe_unused *rdtp = this_cpu_ptr(&rcu_dynticks);
fd581a91
PM
649
650 /*
651 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
652 * (We are exiting an NMI handler, so RCU better be paying attention
653 * to us!)
654 */
4c5273bf 655 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
fd581a91
PM
656 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
657
658 /*
659 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
660 * leave it in non-RCU-idle state.
661 */
4c5273bf
PM
662 if (rdp->dynticks_nmi_nesting != 1) {
663 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdtp->dynticks);
664 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
665 rdp->dynticks_nmi_nesting - 2);
fd581a91
PM
666 return;
667 }
668
669 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
4c5273bf
PM
670 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdtp->dynticks);
671 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
cf7614e1
BP
672
673 if (irq)
674 rcu_prepare_for_idle();
675
fd581a91 676 rcu_dynticks_eqs_enter();
cf7614e1
BP
677
678 if (irq)
679 rcu_dynticks_task_enter();
680}
681
682/**
683 * rcu_nmi_exit - inform RCU of exit from NMI context
684 * @irq: Is this call from rcu_irq_exit?
685 *
686 * If you add or remove a call to rcu_nmi_exit(), be sure to test
687 * with CONFIG_RCU_EQS_DEBUG=y.
688 */
689void rcu_nmi_exit(void)
690{
691 rcu_nmi_exit_common(false);
fd581a91
PM
692}
693
9b2e4f18
PM
694/**
695 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
696 *
697 * Exit from an interrupt handler, which might possibly result in entering
698 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 699 * sections can occur. The caller must have disabled interrupts.
64db4cff 700 *
9b2e4f18
PM
701 * This code assumes that the idle loop never does anything that might
702 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
703 * architecture's idle loop violates this assumption, RCU will give you what
704 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
705 *
706 * Use things like work queues to work around this limitation.
707 *
708 * You have been warned.
c0da313e
PM
709 *
710 * If you add or remove a call to rcu_irq_exit(), be sure to test with
711 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 712 */
9b2e4f18 713void rcu_irq_exit(void)
64db4cff 714{
b04db8e1 715 lockdep_assert_irqs_disabled();
cf7614e1 716 rcu_nmi_exit_common(true);
7c9906ca
PM
717}
718
719/*
720 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
721 *
722 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
723 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
724 */
725void rcu_irq_exit_irqson(void)
726{
727 unsigned long flags;
728
729 local_irq_save(flags);
730 rcu_irq_exit();
9b2e4f18
PM
731 local_irq_restore(flags);
732}
733
adf5091e
FW
734/*
735 * Exit an RCU extended quiescent state, which can be either the
736 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
737 *
738 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
739 * allow for the possibility of usermode upcalls messing up our count of
740 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 741 */
adf5091e 742static void rcu_eqs_exit(bool user)
9b2e4f18 743{
4c5273bf 744 struct rcu_data *rdp;
9b2e4f18 745 struct rcu_dynticks *rdtp;
84585aa8 746 long oldval;
9b2e4f18 747
b04db8e1 748 lockdep_assert_irqs_disabled();
c9d4b0af 749 rdtp = this_cpu_ptr(&rcu_dynticks);
4c5273bf
PM
750 rdp = this_cpu_ptr(&rcu_data);
751 oldval = rdp->dynticks_nesting;
1ce46ee5 752 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30 753 if (oldval) {
4c5273bf 754 rdp->dynticks_nesting++;
9dd238e2 755 return;
3a592405 756 }
9dd238e2
PM
757 rcu_dynticks_task_exit();
758 rcu_dynticks_eqs_exit();
759 rcu_cleanup_after_idle();
4c5273bf 760 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdtp->dynticks);
e68bbb26 761 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
4c5273bf
PM
762 WRITE_ONCE(rdp->dynticks_nesting, 1);
763 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
764 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 765}
adf5091e
FW
766
767/**
768 * rcu_idle_exit - inform RCU that current CPU is leaving idle
769 *
770 * Exit idle mode, in other words, -enter- the mode in which RCU
771 * read-side critical sections can occur.
772 *
c0da313e
PM
773 * If you add or remove a call to rcu_idle_exit(), be sure to test with
774 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
775 */
776void rcu_idle_exit(void)
777{
c5d900bf
FW
778 unsigned long flags;
779
780 local_irq_save(flags);
cb349ca9 781 rcu_eqs_exit(false);
c5d900bf 782 local_irq_restore(flags);
adf5091e 783}
9b2e4f18 784
d1ec4c34 785#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
786/**
787 * rcu_user_exit - inform RCU that we are exiting userspace.
788 *
789 * Exit RCU idle mode while entering the kernel because it can
790 * run a RCU read side critical section anytime.
c0da313e
PM
791 *
792 * If you add or remove a call to rcu_user_exit(), be sure to test with
793 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
794 */
795void rcu_user_exit(void)
796{
91d1aa43 797 rcu_eqs_exit(1);
adf5091e 798}
d1ec4c34 799#endif /* CONFIG_NO_HZ_FULL */
19dd1591 800
64db4cff 801/**
cf7614e1
BP
802 * rcu_nmi_enter_common - inform RCU of entry to NMI context
803 * @irq: Is this call from rcu_irq_enter?
64db4cff 804 *
734d1680 805 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
4c5273bf 806 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
734d1680
PM
807 * that the CPU is active. This implementation permits nested NMIs, as
808 * long as the nesting level does not overflow an int. (You will probably
809 * run out of stack space first.)
c0da313e 810 *
cf7614e1 811 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
c0da313e 812 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff 813 */
cf7614e1 814static __always_inline void rcu_nmi_enter_common(bool irq)
64db4cff 815{
4c5273bf
PM
816 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
817 struct rcu_dynticks __maybe_unused *rdtp = this_cpu_ptr(&rcu_dynticks);
84585aa8 818 long incby = 2;
64db4cff 819
734d1680 820 /* Complain about underflow. */
4c5273bf 821 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
734d1680
PM
822
823 /*
824 * If idle from RCU viewpoint, atomically increment ->dynticks
825 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
826 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
827 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
828 * to be in the outermost NMI handler that interrupted an RCU-idle
829 * period (observation due to Andy Lutomirski).
830 */
02a5c550 831 if (rcu_dynticks_curr_cpu_in_eqs()) {
cf7614e1
BP
832
833 if (irq)
834 rcu_dynticks_task_exit();
835
2625d469 836 rcu_dynticks_eqs_exit();
cf7614e1
BP
837
838 if (irq)
839 rcu_cleanup_after_idle();
840
734d1680
PM
841 incby = 1;
842 }
bd2b879a 843 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
4c5273bf
PM
844 rdp->dynticks_nmi_nesting,
845 rdp->dynticks_nmi_nesting + incby, rdtp->dynticks);
846 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
847 rdp->dynticks_nmi_nesting + incby);
734d1680 848 barrier();
64db4cff
PM
849}
850
cf7614e1
BP
851/**
852 * rcu_nmi_enter - inform RCU of entry to NMI context
853 */
854void rcu_nmi_enter(void)
855{
856 rcu_nmi_enter_common(false);
857}
858
64db4cff 859/**
9b2e4f18 860 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 861 *
9b2e4f18
PM
862 * Enter an interrupt handler, which might possibly result in exiting
863 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 864 * sections can occur. The caller must have disabled interrupts.
c0da313e 865 *
9b2e4f18 866 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
867 * handler that it never exits, for example when doing upcalls to user mode!
868 * This code assumes that the idle loop never does upcalls to user mode.
869 * If your architecture's idle loop does do upcalls to user mode (or does
870 * anything else that results in unbalanced calls to the irq_enter() and
871 * irq_exit() functions), RCU will give you what you deserve, good and hard.
872 * But very infrequently and irreproducibly.
9b2e4f18
PM
873 *
874 * Use things like work queues to work around this limitation.
875 *
876 * You have been warned.
c0da313e
PM
877 *
878 * If you add or remove a call to rcu_irq_enter(), be sure to test with
879 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 880 */
9b2e4f18 881void rcu_irq_enter(void)
64db4cff 882{
b04db8e1 883 lockdep_assert_irqs_disabled();
cf7614e1 884 rcu_nmi_enter_common(true);
7c9906ca 885}
734d1680 886
7c9906ca
PM
887/*
888 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
889 *
890 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
891 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
892 */
893void rcu_irq_enter_irqson(void)
894{
895 unsigned long flags;
734d1680 896
7c9906ca
PM
897 local_irq_save(flags);
898 rcu_irq_enter();
64db4cff 899 local_irq_restore(flags);
64db4cff
PM
900}
901
5c173eb8
PM
902/**
903 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 904 *
791875d1
PM
905 * Return true if RCU is watching the running CPU, which means that this
906 * CPU can safely enter RCU read-side critical sections. In other words,
907 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 908 * or NMI handler, return true.
64db4cff 909 */
9418fb20 910bool notrace rcu_is_watching(void)
64db4cff 911{
f534ed1f 912 bool ret;
34240697 913
46f00d18 914 preempt_disable_notrace();
791875d1 915 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 916 preempt_enable_notrace();
34240697 917 return ret;
64db4cff 918}
5c173eb8 919EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 920
bcbfdd01
PM
921/*
922 * If a holdout task is actually running, request an urgent quiescent
923 * state from its CPU. This is unsynchronized, so migrations can cause
924 * the request to go to the wrong CPU. Which is OK, all that will happen
925 * is that the CPU's next context switch will be a bit slower and next
926 * time around this task will generate another request.
927 */
928void rcu_request_urgent_qs_task(struct task_struct *t)
929{
930 int cpu;
931
932 barrier();
933 cpu = task_cpu(t);
934 if (!task_curr(t))
935 return; /* This task is not running on that CPU. */
2dba13f0 936 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
937}
938
62fde6ed 939#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
940
941/*
5554788e 942 * Is the current CPU online as far as RCU is concerned?
2036d94a 943 *
5554788e
PM
944 * Disable preemption to avoid false positives that could otherwise
945 * happen due to the current CPU number being sampled, this task being
946 * preempted, its old CPU being taken offline, resuming on some other CPU,
49918a54 947 * then determining that its old CPU is now offline.
c0d6d01b 948 *
5554788e
PM
949 * Disable checking if in an NMI handler because we cannot safely
950 * report errors from NMI handlers anyway. In addition, it is OK to use
951 * RCU on an offline processor during initial boot, hence the check for
952 * rcu_scheduler_fully_active.
c0d6d01b
PM
953 */
954bool rcu_lockdep_current_cpu_online(void)
955{
2036d94a
PM
956 struct rcu_data *rdp;
957 struct rcu_node *rnp;
b97d23c5 958 bool ret = false;
c0d6d01b 959
5554788e 960 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 961 return true;
c0d6d01b 962 preempt_disable();
b97d23c5
PM
963 rdp = this_cpu_ptr(&rcu_data);
964 rnp = rdp->mynode;
965 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
966 ret = true;
c0d6d01b 967 preempt_enable();
b97d23c5 968 return ret;
c0d6d01b
PM
969}
970EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
971
62fde6ed 972#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 973
9b9500da
PM
974/*
975 * We are reporting a quiescent state on behalf of some other CPU, so
976 * it is our responsibility to check for and handle potential overflow
a66ae8ae 977 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
978 * After all, the CPU might be in deep idle state, and thus executing no
979 * code whatsoever.
980 */
981static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
982{
a32e01ee 983 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
984 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
985 rnp->gp_seq))
9b9500da 986 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
987 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
988 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
989}
990
64db4cff
PM
991/*
992 * Snapshot the specified CPU's dynticks counter so that we can later
993 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 994 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 995 */
fe5ac724 996static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 997{
8b2f63ab 998 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 999 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 1000 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1001 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1002 return 1;
7941dbde 1003 }
23a9bacd 1004 return 0;
64db4cff
PM
1005}
1006
9b9500da
PM
1007/*
1008 * Handler for the irq_work request posted when a grace period has
1009 * gone on for too long, but not yet long enough for an RCU CPU
1010 * stall warning. Set state appropriately, but just complain if
1011 * there is unexpected state on entry.
1012 */
1013static void rcu_iw_handler(struct irq_work *iwp)
1014{
1015 struct rcu_data *rdp;
1016 struct rcu_node *rnp;
1017
1018 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1019 rnp = rdp->mynode;
1020 raw_spin_lock_rcu_node(rnp);
1021 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
8aa670cd 1022 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1023 rdp->rcu_iw_pending = false;
1024 }
1025 raw_spin_unlock_rcu_node(rnp);
1026}
1027
64db4cff
PM
1028/*
1029 * Return true if the specified CPU has passed through a quiescent
1030 * state by virtue of being in or having passed through an dynticks
1031 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1032 * for this same CPU, or by virtue of having been offline.
64db4cff 1033 */
fe5ac724 1034static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1035{
3a19b46a 1036 unsigned long jtsq;
0f9be8ca 1037 bool *rnhqp;
9226b10d 1038 bool *ruqp;
9b9500da 1039 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1040
1041 /*
1042 * If the CPU passed through or entered a dynticks idle phase with
1043 * no active irq/NMI handlers, then we can safely pretend that the CPU
1044 * already acknowledged the request to pass through a quiescent
1045 * state. Either way, that CPU cannot possibly be in an RCU
1046 * read-side critical section that started before the beginning
1047 * of the current RCU grace period.
1048 */
02a5c550 1049 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
88d1bead 1050 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
64db4cff 1051 rdp->dynticks_fqs++;
9b9500da 1052 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1053 return 1;
1054 }
1055
f2e2df59
PM
1056 /* If waiting too long on an offline CPU, complain. */
1057 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
88d1bead 1058 time_after(jiffies, rcu_state.gp_start + HZ)) {
f2e2df59
PM
1059 bool onl;
1060 struct rcu_node *rnp1;
1061
1062 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1063 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1064 __func__, rnp->grplo, rnp->grphi, rnp->level,
1065 (long)rnp->gp_seq, (long)rnp->completedqs);
1066 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1067 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1068 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1069 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1070 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1071 __func__, rdp->cpu, ".o"[onl],
1072 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1073 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1074 return 1; /* Break things loose after complaining. */
1075 }
1076
65d798f0 1077 /*
4a81e832 1078 * A CPU running for an extended time within the kernel can
c06aed0e
PM
1079 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1080 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
1081 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1082 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1083 * variable are safe because the assignments are repeated if this
1084 * CPU failed to pass through a quiescent state. This code
c06aed0e 1085 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 1086 * is set way high.
6193c76a 1087 */
c06aed0e 1088 jtsq = READ_ONCE(jiffies_to_sched_qs);
2dba13f0
PM
1089 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1090 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
0f9be8ca 1091 if (!READ_ONCE(*rnhqp) &&
7e28c5af 1092 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
88d1bead 1093 time_after(jiffies, rcu_state.jiffies_resched))) {
0f9be8ca 1094 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1095 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1096 smp_store_release(ruqp, true);
7e28c5af
PM
1097 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1098 WRITE_ONCE(*ruqp, true);
6193c76a
PM
1099 }
1100
28053bc7 1101 /*
d3052109
PM
1102 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
1103 * The above code handles this, but only for straight cond_resched().
1104 * And some in-kernel loops check need_resched() before calling
1105 * cond_resched(), which defeats the above code for CPUs that are
1106 * running in-kernel with scheduling-clock interrupts disabled.
1107 * So hit them over the head with the resched_cpu() hammer!
28053bc7 1108 */
d3052109
PM
1109 if (tick_nohz_full_cpu(rdp->cpu) &&
1110 time_after(jiffies,
1111 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
28053bc7 1112 resched_cpu(rdp->cpu);
d3052109
PM
1113 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1114 }
1115
1116 /*
1117 * If more than halfway to RCU CPU stall-warning time, invoke
1118 * resched_cpu() more frequently to try to loosen things up a bit.
1119 * Also check to see if the CPU is getting hammered with interrupts,
1120 * but only once per grace period, just to keep the IPIs down to
1121 * a dull roar.
1122 */
1123 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1124 if (time_after(jiffies,
1125 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1126 resched_cpu(rdp->cpu);
1127 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1128 }
9b9500da 1129 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1130 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1131 (rnp->ffmask & rdp->grpmask)) {
1132 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1133 rdp->rcu_iw_pending = true;
8aa670cd 1134 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1135 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1136 }
1137 }
4914950a 1138
a82dcc76 1139 return 0;
64db4cff
PM
1140}
1141
ad3832e9 1142static void record_gp_stall_check_time(void)
64db4cff 1143{
cb1e78cf 1144 unsigned long j = jiffies;
6193c76a 1145 unsigned long j1;
26cdfedf 1146
ad3832e9 1147 rcu_state.gp_start = j;
6193c76a 1148 j1 = rcu_jiffies_till_stall_check();
91f63ced 1149 /* Record ->gp_start before ->jiffies_stall. */
ad3832e9
PM
1150 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1151 rcu_state.jiffies_resched = j + j1 / 2;
1152 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
64db4cff
PM
1153}
1154
6b50e119
PM
1155/*
1156 * Convert a ->gp_state value to a character string.
1157 */
1158static const char *gp_state_getname(short gs)
1159{
1160 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1161 return "???";
1162 return gp_state_names[gs];
1163}
1164
fb81a44b
PM
1165/*
1166 * Complain about starvation of grace-period kthread.
1167 */
8fd119b6 1168static void rcu_check_gp_kthread_starvation(void)
fb81a44b 1169{
7cba4775 1170 struct task_struct *gpk = rcu_state.gp_kthread;
fb81a44b
PM
1171 unsigned long j;
1172
7cba4775
PM
1173 j = jiffies - READ_ONCE(rcu_state.gp_activity);
1174 if (j > 2 * HZ) {
78c5a67f 1175 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
7cba4775
PM
1176 rcu_state.name, j,
1177 (long)rcu_seq_current(&rcu_state.gp_seq),
1178 rcu_state.gp_flags,
1179 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1180 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1181 if (gpk) {
d07aee2c 1182 pr_err("RCU grace-period kthread stack dump:\n");
7cba4775
PM
1183 sched_show_task(gpk);
1184 wake_up_process(gpk);
86057b80 1185 }
b1adb3e2 1186 }
64db4cff
PM
1187}
1188
b637a328 1189/*
7aa92230
PM
1190 * Dump stacks of all tasks running on stalled CPUs. First try using
1191 * NMIs, but fall back to manual remote stack tracing on architectures
1192 * that don't support NMI-based stack dumps. The NMI-triggered stack
1193 * traces are more accurate because they are printed by the target CPU.
b637a328 1194 */
33dbdbf0 1195static void rcu_dump_cpu_stacks(void)
b637a328
PM
1196{
1197 int cpu;
1198 unsigned long flags;
1199 struct rcu_node *rnp;
1200
aedf4ba9 1201 rcu_for_each_leaf_node(rnp) {
6cf10081 1202 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1203 for_each_leaf_node_possible_cpu(rnp, cpu)
1204 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1205 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1206 dump_cpu_task(cpu);
67c583a7 1207 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1208 }
1209}
1210
8c7c4829
PM
1211/*
1212 * If too much time has passed in the current grace period, and if
1213 * so configured, go kick the relevant kthreads.
1214 */
e1741c69 1215static void rcu_stall_kick_kthreads(void)
8c7c4829
PM
1216{
1217 unsigned long j;
1218
1219 if (!rcu_kick_kthreads)
1220 return;
4c6ed437
PM
1221 j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1222 if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1223 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1224 WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1225 rcu_state.name);
5dffed1e 1226 rcu_ftrace_dump(DUMP_ALL);
4c6ed437
PM
1227 wake_up_process(rcu_state.gp_kthread);
1228 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
8c7c4829
PM
1229 }
1230}
1231
95394e69 1232static void panic_on_rcu_stall(void)
088e9d25
DBO
1233{
1234 if (sysctl_panic_on_rcu_stall)
1235 panic("RCU Stall\n");
1236}
1237
a91e7e58 1238static void print_other_cpu_stall(unsigned long gp_seq)
64db4cff
PM
1239{
1240 int cpu;
64db4cff 1241 unsigned long flags;
6ccd2ecd
PM
1242 unsigned long gpa;
1243 unsigned long j;
285fe294 1244 int ndetected = 0;
336a4f6c 1245 struct rcu_node *rnp = rcu_get_root();
53bb857c 1246 long totqlen = 0;
64db4cff 1247
8c7c4829 1248 /* Kick and suppress, if so configured. */
e1741c69 1249 rcu_stall_kick_kthreads();
8c7c4829
PM
1250 if (rcu_cpu_stall_suppress)
1251 return;
1252
8cdd32a9
PM
1253 /*
1254 * OK, time to rat on our buddy...
1255 * See Documentation/RCU/stallwarn.txt for info on how to debug
1256 * RCU CPU stall warnings.
1257 */
4c6ed437 1258 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
a858af28 1259 print_cpu_stall_info_begin();
aedf4ba9 1260 rcu_for_each_leaf_node(rnp) {
6cf10081 1261 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1262 ndetected += rcu_print_task_stall(rnp);
c8020a67 1263 if (rnp->qsmask != 0) {
bc75e999
MR
1264 for_each_leaf_node_possible_cpu(rnp, cpu)
1265 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
b21ebed9 1266 print_cpu_stall_info(cpu);
c8020a67
PM
1267 ndetected++;
1268 }
1269 }
67c583a7 1270 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1271 }
a858af28 1272
a858af28 1273 print_cpu_stall_info_end();
53bb857c 1274 for_each_possible_cpu(cpu)
da1df50d 1275 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
15fecf89 1276 cpu)->cblist);
471f87c3 1277 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
4c6ed437
PM
1278 smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1279 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
6ccd2ecd 1280 if (ndetected) {
33dbdbf0 1281 rcu_dump_cpu_stacks();
c4402b27
BP
1282
1283 /* Complain about tasks blocking the grace period. */
a2887cd8 1284 rcu_print_detail_task_stall();
6ccd2ecd 1285 } else {
4c6ed437 1286 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
6ccd2ecd
PM
1287 pr_err("INFO: Stall ended before state dump start\n");
1288 } else {
1289 j = jiffies;
4c6ed437 1290 gpa = READ_ONCE(rcu_state.gp_activity);
237a0f21 1291 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
4c6ed437 1292 rcu_state.name, j - gpa, j, gpa,
c06aed0e 1293 READ_ONCE(jiffies_till_next_fqs),
336a4f6c 1294 rcu_get_root()->qsmask);
6ccd2ecd
PM
1295 /* In this case, the current CPU might be at fault. */
1296 sched_show_task(current);
1297 }
1298 }
8c42b1f3 1299 /* Rewrite if needed in case of slow consoles. */
4c6ed437
PM
1300 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1301 WRITE_ONCE(rcu_state.jiffies_stall,
8c42b1f3 1302 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
c1dc0b9c 1303
8fd119b6 1304 rcu_check_gp_kthread_starvation();
fb81a44b 1305
088e9d25
DBO
1306 panic_on_rcu_stall();
1307
e9ecb780 1308 force_quiescent_state(); /* Kick them all. */
64db4cff
PM
1309}
1310
4e8b8e08 1311static void print_cpu_stall(void)
64db4cff 1312{
53bb857c 1313 int cpu;
64db4cff 1314 unsigned long flags;
da1df50d 1315 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
336a4f6c 1316 struct rcu_node *rnp = rcu_get_root();
53bb857c 1317 long totqlen = 0;
64db4cff 1318
8c7c4829 1319 /* Kick and suppress, if so configured. */
e1741c69 1320 rcu_stall_kick_kthreads();
8c7c4829
PM
1321 if (rcu_cpu_stall_suppress)
1322 return;
1323
8cdd32a9
PM
1324 /*
1325 * OK, time to rat on ourselves...
1326 * See Documentation/RCU/stallwarn.txt for info on how to debug
1327 * RCU CPU stall warnings.
1328 */
4c6ed437 1329 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
a858af28 1330 print_cpu_stall_info_begin();
9b9500da 1331 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
b21ebed9 1332 print_cpu_stall_info(smp_processor_id());
9b9500da 1333 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1334 print_cpu_stall_info_end();
53bb857c 1335 for_each_possible_cpu(cpu)
da1df50d 1336 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
15fecf89 1337 cpu)->cblist);
471f87c3 1338 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
4c6ed437
PM
1339 jiffies - rcu_state.gp_start,
1340 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
fb81a44b 1341
8fd119b6 1342 rcu_check_gp_kthread_starvation();
fb81a44b 1343
33dbdbf0 1344 rcu_dump_cpu_stacks();
c1dc0b9c 1345
6cf10081 1346 raw_spin_lock_irqsave_rcu_node(rnp, flags);
8c42b1f3 1347 /* Rewrite if needed in case of slow consoles. */
4c6ed437
PM
1348 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1349 WRITE_ONCE(rcu_state.jiffies_stall,
7d0ae808 1350 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1352
088e9d25
DBO
1353 panic_on_rcu_stall();
1354
b021fe3e
PZ
1355 /*
1356 * Attempt to revive the RCU machinery by forcing a context switch.
1357 *
1358 * A context switch would normally allow the RCU state machine to make
1359 * progress and it could be we're stuck in kernel space without context
1360 * switches for an entirely unreasonable amount of time.
1361 */
fced9c8c
PM
1362 set_tsk_need_resched(current);
1363 set_preempt_need_resched();
64db4cff
PM
1364}
1365
ea12ff2b 1366static void check_cpu_stall(struct rcu_data *rdp)
64db4cff 1367{
471f87c3
PM
1368 unsigned long gs1;
1369 unsigned long gs2;
26cdfedf 1370 unsigned long gps;
bad6e139 1371 unsigned long j;
8c42b1f3 1372 unsigned long jn;
bad6e139 1373 unsigned long js;
64db4cff
PM
1374 struct rcu_node *rnp;
1375
8c7c4829 1376 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
de8e8730 1377 !rcu_gp_in_progress())
c68de209 1378 return;
e1741c69 1379 rcu_stall_kick_kthreads();
cb1e78cf 1380 j = jiffies;
26cdfedf
PM
1381
1382 /*
1383 * Lots of memory barriers to reject false positives.
1384 *
4c6ed437
PM
1385 * The idea is to pick up rcu_state.gp_seq, then
1386 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1387 * another copy of rcu_state.gp_seq. These values are updated in
1388 * the opposite order with memory barriers (or equivalent) during
1389 * grace-period initialization and cleanup. Now, a false positive
1390 * can occur if we get an new value of rcu_state.gp_start and a old
1391 * value of rcu_state.jiffies_stall. But given the memory barriers,
1392 * the only way that this can happen is if one grace period ends
1393 * and another starts between these two fetches. This is detected
1394 * by comparing the second fetch of rcu_state.gp_seq with the
1395 * previous fetch from rcu_state.gp_seq.
26cdfedf 1396 *
4c6ed437
PM
1397 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1398 * and rcu_state.gp_start suffice to forestall false positives.
26cdfedf 1399 */
4c6ed437 1400 gs1 = READ_ONCE(rcu_state.gp_seq);
471f87c3 1401 smp_rmb(); /* Pick up ->gp_seq first... */
4c6ed437 1402 js = READ_ONCE(rcu_state.jiffies_stall);
26cdfedf 1403 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
4c6ed437 1404 gps = READ_ONCE(rcu_state.gp_start);
471f87c3 1405 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
4c6ed437 1406 gs2 = READ_ONCE(rcu_state.gp_seq);
471f87c3 1407 if (gs1 != gs2 ||
26cdfedf
PM
1408 ULONG_CMP_LT(j, js) ||
1409 ULONG_CMP_GE(gps, js))
1410 return; /* No stall or GP completed since entering function. */
64db4cff 1411 rnp = rdp->mynode;
8c42b1f3 1412 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
de8e8730 1413 if (rcu_gp_in_progress() &&
8c42b1f3 1414 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
4c6ed437 1415 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
64db4cff
PM
1416
1417 /* We haven't checked in, so go dump stack. */
4e8b8e08 1418 print_cpu_stall();
64db4cff 1419
de8e8730 1420 } else if (rcu_gp_in_progress() &&
8c42b1f3 1421 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
4c6ed437 1422 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
64db4cff 1423
bad6e139 1424 /* They had a few time units to dump stack, so complain. */
a91e7e58 1425 print_other_cpu_stall(gs2);
64db4cff
PM
1426 }
1427}
1428
53d84e00
PM
1429/**
1430 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1431 *
1432 * Set the stall-warning timeout way off into the future, thus preventing
1433 * any RCU CPU stall-warning messages from appearing in the current set of
1434 * RCU grace periods.
1435 *
1436 * The caller must disable hard irqs.
1437 */
1438void rcu_cpu_stall_reset(void)
1439{
b97d23c5 1440 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1441}
1442
41e80595
PM
1443/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1444static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1445 unsigned long gp_seq_req, const char *s)
0446be48 1446{
88d1bead 1447 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
abd13fdd 1448 rnp->level, rnp->grplo, rnp->grphi, s);
0446be48
PM
1449}
1450
1451/*
b73de91d 1452 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1453 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1454 * @rdp: The rcu_data corresponding to the CPU from which to start.
1455 * @gp_seq_req: The gp_seq of the grace period to start.
1456 *
41e80595 1457 * Start the specified grace period, as needed to handle newly arrived
0446be48 1458 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1459 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1460 * is reason to awaken the grace-period kthread.
0446be48 1461 *
d5cd9685
PM
1462 * The caller must hold the specified rcu_node structure's ->lock, which
1463 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1464 *
1465 * Returns true if the GP thread needs to be awakened else false.
0446be48 1466 */
df2bf8f7 1467static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1468 unsigned long gp_seq_req)
0446be48 1469{
48a7639c 1470 bool ret = false;
df2bf8f7 1471 struct rcu_node *rnp;
0446be48
PM
1472
1473 /*
360e0da6
PM
1474 * Use funnel locking to either acquire the root rcu_node
1475 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1476 * has already been recorded -- or if that grace period has in
1477 * fact already started. If there is already a grace period in
1478 * progress in a non-leaf node, no recording is needed because the
1479 * end of the grace period will scan the leaf rcu_node structures.
1480 * Note that rnp_start->lock must not be released.
0446be48 1481 */
df2bf8f7
JFG
1482 raw_lockdep_assert_held_rcu_node(rnp_start);
1483 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1484 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1485 if (rnp != rnp_start)
1486 raw_spin_lock_rcu_node(rnp);
1487 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1488 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1489 (rnp != rnp_start &&
1490 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1491 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1492 TPS("Prestarted"));
360e0da6
PM
1493 goto unlock_out;
1494 }
df2bf8f7 1495 rnp->gp_seq_needed = gp_seq_req;
226ca5e7 1496 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1497 /*
226ca5e7
JFG
1498 * We just marked the leaf or internal node, and a
1499 * grace period is in progress, which means that
1500 * rcu_gp_cleanup() will see the marking. Bail to
1501 * reduce contention.
a2165e41 1502 */
df2bf8f7 1503 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1504 TPS("Startedleaf"));
a2165e41
PM
1505 goto unlock_out;
1506 }
df2bf8f7
JFG
1507 if (rnp != rnp_start && rnp->parent != NULL)
1508 raw_spin_unlock_rcu_node(rnp);
1509 if (!rnp->parent)
360e0da6 1510 break; /* At root, and perhaps also leaf. */
0446be48
PM
1511 }
1512
360e0da6 1513 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 1514 if (rcu_gp_in_progress()) {
df2bf8f7 1515 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1516 goto unlock_out;
1517 }
df2bf8f7 1518 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97
PM
1519 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1520 rcu_state.gp_req_activity = jiffies;
1521 if (!rcu_state.gp_kthread) {
df2bf8f7 1522 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1523 goto unlock_out;
0446be48 1524 }
9cbc5b97 1525 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
360e0da6 1526 ret = true; /* Caller must wake GP kthread. */
0446be48 1527unlock_out:
ab5e869c 1528 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7
JFG
1529 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1530 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1531 rdp->gp_seq_needed = rnp->gp_seq_needed;
ab5e869c 1532 }
df2bf8f7
JFG
1533 if (rnp != rnp_start)
1534 raw_spin_unlock_rcu_node(rnp);
48a7639c 1535 return ret;
0446be48
PM
1536}
1537
1538/*
1539 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1540 * whether any additional grace periods have been requested.
0446be48 1541 */
3481f2ea 1542static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1543{
fb31340f 1544 bool needmore;
da1df50d 1545 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1546
7a1d0f23
PM
1547 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1548 if (!needmore)
1549 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1550 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1551 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1552 return needmore;
1553}
1554
48a7639c 1555/*
49918a54
PM
1556 * Awaken the grace-period kthread. Don't do a self-awaken, and don't
1557 * bother awakening when there is nothing for the grace-period kthread
1558 * to do (as in several CPUs raced to awaken, and we lost), and finally
1559 * don't try to awaken a kthread that has not yet been created.
48a7639c 1560 */
532c00c9 1561static void rcu_gp_kthread_wake(void)
48a7639c 1562{
532c00c9
PM
1563 if (current == rcu_state.gp_kthread ||
1564 !READ_ONCE(rcu_state.gp_flags) ||
1565 !rcu_state.gp_kthread)
48a7639c 1566 return;
532c00c9 1567 swake_up_one(&rcu_state.gp_wq);
48a7639c
PM
1568}
1569
dc35c893 1570/*
29365e56
PM
1571 * If there is room, assign a ->gp_seq number to any callbacks on this
1572 * CPU that have not already been assigned. Also accelerate any callbacks
1573 * that were previously assigned a ->gp_seq number that has since proven
1574 * to be too conservative, which can happen if callbacks get assigned a
1575 * ->gp_seq number while RCU is idle, but with reference to a non-root
1576 * rcu_node structure. This function is idempotent, so it does not hurt
1577 * to call it repeatedly. Returns an flag saying that we should awaken
1578 * the RCU grace-period kthread.
dc35c893
PM
1579 *
1580 * The caller must hold rnp->lock with interrupts disabled.
1581 */
02f50142 1582static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1583{
b73de91d 1584 unsigned long gp_seq_req;
15fecf89 1585 bool ret = false;
dc35c893 1586
a32e01ee 1587 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1588
15fecf89
PM
1589 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1590 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1591 return false;
dc35c893
PM
1592
1593 /*
15fecf89
PM
1594 * Callbacks are often registered with incomplete grace-period
1595 * information. Something about the fact that getting exact
1596 * information requires acquiring a global lock... RCU therefore
1597 * makes a conservative estimate of the grace period number at which
1598 * a given callback will become ready to invoke. The following
1599 * code checks this estimate and improves it when possible, thus
1600 * accelerating callback invocation to an earlier grace-period
1601 * number.
dc35c893 1602 */
9cbc5b97 1603 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1604 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1605 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1606
1607 /* Trace depending on how much we were able to accelerate. */
15fecf89 1608 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
9cbc5b97 1609 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1610 else
9cbc5b97 1611 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1612 return ret;
dc35c893
PM
1613}
1614
e44e73ca
PM
1615/*
1616 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1617 * rcu_node structure's ->lock be held. It consults the cached value
1618 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1619 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1620 * while holding the leaf rcu_node structure's ->lock.
1621 */
c6e09b97 1622static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1623 struct rcu_data *rdp)
1624{
1625 unsigned long c;
1626 bool needwake;
1627
1628 lockdep_assert_irqs_disabled();
c6e09b97 1629 c = rcu_seq_snap(&rcu_state.gp_seq);
e44e73ca
PM
1630 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1631 /* Old request still live, so mark recent callbacks. */
1632 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1633 return;
1634 }
1635 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1636 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1637 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1638 if (needwake)
532c00c9 1639 rcu_gp_kthread_wake();
e44e73ca
PM
1640}
1641
dc35c893
PM
1642/*
1643 * Move any callbacks whose grace period has completed to the
1644 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1645 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1646 * sublist. This function is idempotent, so it does not hurt to
1647 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1648 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1649 *
1650 * The caller must hold rnp->lock with interrupts disabled.
1651 */
834f56bf 1652static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1653{
a32e01ee 1654 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1655
15fecf89
PM
1656 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1657 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1658 return false;
dc35c893
PM
1659
1660 /*
29365e56 1661 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1662 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1663 */
29365e56 1664 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1665
1666 /* Classify any remaining callbacks. */
02f50142 1667 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1668}
1669
d09b62df 1670/*
ba9fbe95
PM
1671 * Update CPU-local rcu_data state to record the beginnings and ends of
1672 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1673 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1674 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1675 */
c7e48f7b 1676static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1677{
48a7639c 1678 bool ret;
3563a438 1679 bool need_gp;
48a7639c 1680
a32e01ee 1681 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1682
67e14c1e
PM
1683 if (rdp->gp_seq == rnp->gp_seq)
1684 return false; /* Nothing to do. */
d09b62df 1685
67e14c1e
PM
1686 /* Handle the ends of any preceding grace periods first. */
1687 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1688 unlikely(READ_ONCE(rdp->gpwrap))) {
834f56bf 1689 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
9cbc5b97 1690 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1691 } else {
02f50142 1692 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
d09b62df 1693 }
398ebe60 1694
67e14c1e
PM
1695 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1696 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1697 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1698 /*
1699 * If the current grace period is waiting for this CPU,
1700 * set up to detect a quiescent state, otherwise don't
1701 * go looking for one.
1702 */
9cbc5b97 1703 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
3563a438
PM
1704 need_gp = !!(rnp->qsmask & rdp->grpmask);
1705 rdp->cpu_no_qs.b.norm = need_gp;
3563a438 1706 rdp->core_needs_qs = need_gp;
6eaef633
PM
1707 zero_cpu_stall_ticks(rdp);
1708 }
67e14c1e 1709 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
3d18469a
PM
1710 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1711 rdp->gp_seq_needed = rnp->gp_seq_needed;
1712 WRITE_ONCE(rdp->gpwrap, false);
1713 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1714 return ret;
6eaef633
PM
1715}
1716
15cabdff 1717static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1718{
1719 unsigned long flags;
48a7639c 1720 bool needwake;
6eaef633
PM
1721 struct rcu_node *rnp;
1722
1723 local_irq_save(flags);
1724 rnp = rdp->mynode;
67e14c1e 1725 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1726 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1727 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1728 local_irq_restore(flags);
1729 return;
1730 }
c7e48f7b 1731 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1732 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c 1733 if (needwake)
532c00c9 1734 rcu_gp_kthread_wake();
6eaef633
PM
1735}
1736
22212332 1737static void rcu_gp_slow(int delay)
0f41c0dd
PM
1738{
1739 if (delay > 0 &&
22212332 1740 !(rcu_seq_ctr(rcu_state.gp_seq) %
dee4f422 1741 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1742 schedule_timeout_uninterruptible(delay);
1743}
1744
b3dbec76 1745/*
45fed3e7 1746 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1747 */
0854a05c 1748static bool rcu_gp_init(void)
b3dbec76 1749{
ec2c2976 1750 unsigned long flags;
0aa04b05 1751 unsigned long oldmask;
ec2c2976 1752 unsigned long mask;
b3dbec76 1753 struct rcu_data *rdp;
336a4f6c 1754 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1755
9cbc5b97 1756 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1757 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1758 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1759 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1760 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1761 return false;
f7be8209 1762 }
9cbc5b97 1763 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1764
de8e8730 1765 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1766 /*
1767 * Grace period already in progress, don't start another.
1768 * Not supposed to be able to happen.
1769 */
67c583a7 1770 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1771 return false;
7fdefc10
PM
1772 }
1773
7fdefc10 1774 /* Advance to a new grace period and initialize state. */
ad3832e9 1775 record_gp_stall_check_time();
ff3bb6f4 1776 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97
PM
1777 rcu_seq_start(&rcu_state.gp_seq);
1778 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
67c583a7 1779 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1780
0aa04b05
PM
1781 /*
1782 * Apply per-leaf buffered online and offline operations to the
1783 * rcu_node tree. Note that this new grace period need not wait
1784 * for subsequent online CPUs, and that quiescent-state forcing
1785 * will handle subsequent offline CPUs.
1786 */
9cbc5b97 1787 rcu_state.gp_state = RCU_GP_ONOFF;
aedf4ba9 1788 rcu_for_each_leaf_node(rnp) {
9cbc5b97 1789 spin_lock(&rcu_state.ofl_lock);
2a67e741 1790 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1791 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1792 !rnp->wait_blkd_tasks) {
1793 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1794 raw_spin_unlock_irq_rcu_node(rnp);
9cbc5b97 1795 spin_unlock(&rcu_state.ofl_lock);
0aa04b05
PM
1796 continue;
1797 }
1798
1799 /* Record old state, apply changes to ->qsmaskinit field. */
1800 oldmask = rnp->qsmaskinit;
1801 rnp->qsmaskinit = rnp->qsmaskinitnext;
1802
1803 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1804 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1805 if (!oldmask) { /* First online CPU for rcu_node. */
1806 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1807 rcu_init_new_rnp(rnp);
1808 } else if (rcu_preempt_has_tasks(rnp)) {
1809 rnp->wait_blkd_tasks = true; /* blocked tasks */
1810 } else { /* Last offline CPU and can propagate. */
0aa04b05 1811 rcu_cleanup_dead_rnp(rnp);
962aff03 1812 }
0aa04b05
PM
1813 }
1814
1815 /*
1816 * If all waited-on tasks from prior grace period are
1817 * done, and if all this rcu_node structure's CPUs are
1818 * still offline, propagate up the rcu_node tree and
1819 * clear ->wait_blkd_tasks. Otherwise, if one of this
1820 * rcu_node structure's CPUs has since come back online,
962aff03 1821 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1822 */
1823 if (rnp->wait_blkd_tasks &&
962aff03 1824 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1825 rnp->wait_blkd_tasks = false;
962aff03
PM
1826 if (!rnp->qsmaskinit)
1827 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1828 }
1829
67c583a7 1830 raw_spin_unlock_irq_rcu_node(rnp);
9cbc5b97 1831 spin_unlock(&rcu_state.ofl_lock);
0aa04b05 1832 }
22212332 1833 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1834
1835 /*
1836 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1837 * structures for all currently online CPUs in breadth-first
1838 * order, starting from the root rcu_node structure, relying on the
1839 * layout of the tree within the rcu_state.node[] array. Note that
1840 * other CPUs will access only the leaves of the hierarchy, thus
1841 * seeing that no grace period is in progress, at least until the
1842 * corresponding leaf node has been initialized.
7fdefc10
PM
1843 *
1844 * The grace period cannot complete until the initialization
1845 * process finishes, because this kthread handles both.
1846 */
9cbc5b97 1847 rcu_state.gp_state = RCU_GP_INIT;
aedf4ba9 1848 rcu_for_each_node_breadth_first(rnp) {
22212332 1849 rcu_gp_slow(gp_init_delay);
ec2c2976 1850 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1851 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1852 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1853 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1854 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1855 if (rnp == rdp->mynode)
c7e48f7b 1856 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1857 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1858 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1859 rnp->level, rnp->grplo,
1860 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1861 /* Quiescent states for tasks on any now-offline CPUs. */
1862 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1863 rnp->rcu_gp_init_mask = mask;
ec2c2976 1864 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1865 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1866 else
1867 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1868 cond_resched_tasks_rcu_qs();
9cbc5b97 1869 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1870 }
b3dbec76 1871
45fed3e7 1872 return true;
7fdefc10 1873}
b3dbec76 1874
b9a425cf 1875/*
b3dae109 1876 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1877 * time.
b9a425cf 1878 */
0854a05c 1879static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1880{
336a4f6c 1881 struct rcu_node *rnp = rcu_get_root();
b9a425cf
PM
1882
1883 /* Someone like call_rcu() requested a force-quiescent-state scan. */
0854a05c 1884 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1885 if (*gfp & RCU_GP_FLAG_FQS)
1886 return true;
1887
1888 /* The current grace period has completed. */
1889 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1890 return true;
1891
1892 return false;
1893}
1894
4cdfc175
PM
1895/*
1896 * Do one round of quiescent-state forcing.
1897 */
0854a05c 1898static void rcu_gp_fqs(bool first_time)
4cdfc175 1899{
336a4f6c 1900 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1901
9cbc5b97
PM
1902 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1903 rcu_state.n_force_qs++;
77f81fe0 1904 if (first_time) {
4cdfc175 1905 /* Collect dyntick-idle snapshots. */
e9ecb780 1906 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1907 } else {
1908 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1909 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1910 }
1911 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1912 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1913 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1914 WRITE_ONCE(rcu_state.gp_flags,
1915 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1916 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1917 }
4cdfc175
PM
1918}
1919
c3854a05
PM
1920/*
1921 * Loop doing repeated quiescent-state forcing until the grace period ends.
1922 */
1923static void rcu_gp_fqs_loop(void)
1924{
1925 bool first_gp_fqs;
1926 int gf;
1927 unsigned long j;
1928 int ret;
1929 struct rcu_node *rnp = rcu_get_root();
1930
1931 first_gp_fqs = true;
c06aed0e 1932 j = READ_ONCE(jiffies_till_first_fqs);
c3854a05
PM
1933 ret = 0;
1934 for (;;) {
1935 if (!ret) {
1936 rcu_state.jiffies_force_qs = jiffies + j;
1937 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1938 jiffies + 3 * j);
1939 }
1940 trace_rcu_grace_period(rcu_state.name,
1941 READ_ONCE(rcu_state.gp_seq),
1942 TPS("fqswait"));
1943 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1944 ret = swait_event_idle_timeout_exclusive(
1945 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1946 rcu_state.gp_state = RCU_GP_DOING_FQS;
1947 /* Locking provides needed memory barriers. */
1948 /* If grace period done, leave loop. */
1949 if (!READ_ONCE(rnp->qsmask) &&
1950 !rcu_preempt_blocked_readers_cgp(rnp))
1951 break;
1952 /* If time for quiescent-state forcing, do it. */
1953 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1954 (gf & RCU_GP_FLAG_FQS)) {
1955 trace_rcu_grace_period(rcu_state.name,
1956 READ_ONCE(rcu_state.gp_seq),
1957 TPS("fqsstart"));
1958 rcu_gp_fqs(first_gp_fqs);
1959 first_gp_fqs = false;
1960 trace_rcu_grace_period(rcu_state.name,
1961 READ_ONCE(rcu_state.gp_seq),
1962 TPS("fqsend"));
1963 cond_resched_tasks_rcu_qs();
1964 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1965 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1966 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1967 } else {
1968 /* Deal with stray signal. */
1969 cond_resched_tasks_rcu_qs();
1970 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1971 WARN_ON(signal_pending(current));
1972 trace_rcu_grace_period(rcu_state.name,
1973 READ_ONCE(rcu_state.gp_seq),
1974 TPS("fqswaitsig"));
1975 ret = 1; /* Keep old FQS timing. */
1976 j = jiffies;
1977 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1978 j = 1;
1979 else
1980 j = rcu_state.jiffies_force_qs - j;
1981 }
1982 }
1983}
1984
7fdefc10
PM
1985/*
1986 * Clean up after the old grace period.
1987 */
0854a05c 1988static void rcu_gp_cleanup(void)
7fdefc10
PM
1989{
1990 unsigned long gp_duration;
48a7639c 1991 bool needgp = false;
de30ad51 1992 unsigned long new_gp_seq;
7fdefc10 1993 struct rcu_data *rdp;
336a4f6c 1994 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1995 struct swait_queue_head *sq;
b3dbec76 1996
9cbc5b97 1997 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1998 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1999 gp_duration = jiffies - rcu_state.gp_start;
2000 if (gp_duration > rcu_state.gp_max)
2001 rcu_state.gp_max = gp_duration;
b3dbec76 2002
7fdefc10
PM
2003 /*
2004 * We know the grace period is complete, but to everyone else
2005 * it appears to still be ongoing. But it is also the case
2006 * that to everyone else it looks like there is nothing that
2007 * they can do to advance the grace period. It is therefore
2008 * safe for us to drop the lock in order to mark the grace
2009 * period as completed in all of the rcu_node structures.
7fdefc10 2010 */
67c583a7 2011 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2012
5d4b8659 2013 /*
ff3bb6f4
PM
2014 * Propagate new ->gp_seq value to rcu_node structures so that
2015 * other CPUs don't have to wait until the start of the next grace
2016 * period to process their callbacks. This also avoids some nasty
2017 * RCU grace-period initialization races by forcing the end of
2018 * the current grace period to be completely recorded in all of
2019 * the rcu_node structures before the beginning of the next grace
2020 * period is recorded in any of the rcu_node structures.
5d4b8659 2021 */
9cbc5b97 2022 new_gp_seq = rcu_state.gp_seq;
de30ad51 2023 rcu_seq_end(&new_gp_seq);
aedf4ba9 2024 rcu_for_each_node_breadth_first(rnp) {
2a67e741 2025 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 2026 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 2027 dump_blkd_tasks(rnp, 10);
5c60d25f 2028 WARN_ON_ONCE(rnp->qsmask);
de30ad51 2029 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
da1df50d 2030 rdp = this_cpu_ptr(&rcu_data);
b11cc576 2031 if (rnp == rdp->mynode)
c7e48f7b 2032 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 2033 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 2034 needgp = rcu_future_gp_cleanup(rnp) || needgp;
065bb78c 2035 sq = rcu_nocb_gp_get(rnp);
67c583a7 2036 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2037 rcu_nocb_gp_cleanup(sq);
cee43939 2038 cond_resched_tasks_rcu_qs();
9cbc5b97 2039 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 2040 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 2041 }
336a4f6c 2042 rnp = rcu_get_root();
9cbc5b97 2043 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 2044
765a3f4f 2045 /* Declare grace period done. */
9cbc5b97
PM
2046 rcu_seq_end(&rcu_state.gp_seq);
2047 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2048 rcu_state.gp_state = RCU_GP_IDLE;
fb31340f 2049 /* Check for GP requests since above loop. */
da1df50d 2050 rdp = this_cpu_ptr(&rcu_data);
5b55072f 2051 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 2052 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 2053 TPS("CleanupMore"));
fb31340f
PM
2054 needgp = true;
2055 }
48a7639c 2056 /* Advance CBs to reduce false positives below. */
02f50142 2057 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
9cbc5b97
PM
2058 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2059 rcu_state.gp_req_activity = jiffies;
2060 trace_rcu_grace_period(rcu_state.name,
2061 READ_ONCE(rcu_state.gp_seq),
bb311ecc 2062 TPS("newreq"));
18390aea 2063 } else {
9cbc5b97
PM
2064 WRITE_ONCE(rcu_state.gp_flags,
2065 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 2066 }
67c583a7 2067 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2068}
2069
2070/*
2071 * Body of kthread that handles grace periods.
2072 */
0854a05c 2073static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 2074{
5871968d 2075 rcu_bind_gp_kthread();
7fdefc10
PM
2076 for (;;) {
2077
2078 /* Handle grace-period start. */
2079 for (;;) {
9cbc5b97
PM
2080 trace_rcu_grace_period(rcu_state.name,
2081 READ_ONCE(rcu_state.gp_seq),
63c4db78 2082 TPS("reqwait"));
9cbc5b97
PM
2083 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2084 swait_event_idle_exclusive(rcu_state.gp_wq,
2085 READ_ONCE(rcu_state.gp_flags) &
2086 RCU_GP_FLAG_INIT);
2087 rcu_state.gp_state = RCU_GP_DONE_GPS;
78e4bc34 2088 /* Locking provides needed memory barrier. */
0854a05c 2089 if (rcu_gp_init())
7fdefc10 2090 break;
cee43939 2091 cond_resched_tasks_rcu_qs();
9cbc5b97 2092 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 2093 WARN_ON(signal_pending(current));
9cbc5b97
PM
2094 trace_rcu_grace_period(rcu_state.name,
2095 READ_ONCE(rcu_state.gp_seq),
63c4db78 2096 TPS("reqwaitsig"));
7fdefc10 2097 }
cabc49c1 2098
4cdfc175 2099 /* Handle quiescent-state forcing. */
c3854a05 2100 rcu_gp_fqs_loop();
4cdfc175
PM
2101
2102 /* Handle grace-period end. */
9cbc5b97 2103 rcu_state.gp_state = RCU_GP_CLEANUP;
0854a05c 2104 rcu_gp_cleanup();
9cbc5b97 2105 rcu_state.gp_state = RCU_GP_CLEANED;
b3dbec76 2106 }
b3dbec76
PM
2107}
2108
f41d911f 2109/*
49918a54
PM
2110 * Report a full set of quiescent states to the rcu_state data structure.
2111 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2112 * another grace period is required. Whether we wake the grace-period
2113 * kthread or it awakens itself for the next round of quiescent-state
2114 * forcing, that kthread will clean up after the just-completed grace
2115 * period. Note that the caller must hold rnp->lock, which is released
2116 * before return.
f41d911f 2117 */
aff4e9ed 2118static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 2119 __releases(rcu_get_root()->lock)
f41d911f 2120{
336a4f6c 2121 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 2122 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
2123 WRITE_ONCE(rcu_state.gp_flags,
2124 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 2125 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 2126 rcu_gp_kthread_wake();
f41d911f
PM
2127}
2128
64db4cff 2129/*
d3f6bad3
PM
2130 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2131 * Allows quiescent states for a group of CPUs to be reported at one go
2132 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2133 * must be represented by the same rcu_node structure (which need not be a
2134 * leaf rcu_node structure, though it often will be). The gps parameter
2135 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 2136 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 2137 * must be held upon entry, and it is released before return.
ec2c2976
PM
2138 *
2139 * As a special case, if mask is zero, the bit-already-cleared check is
2140 * disabled. This allows propagating quiescent state due to resumed tasks
2141 * during grace-period initialization.
64db4cff 2142 */
b50912d0
PM
2143static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2144 unsigned long gps, unsigned long flags)
64db4cff
PM
2145 __releases(rnp->lock)
2146{
654e9533 2147 unsigned long oldmask = 0;
28ecd580
PM
2148 struct rcu_node *rnp_c;
2149
a32e01ee 2150 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 2151
64db4cff
PM
2152 /* Walk up the rcu_node hierarchy. */
2153 for (;;) {
ec2c2976 2154 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 2155
654e9533
PM
2156 /*
2157 * Our bit has already been cleared, or the
2158 * relevant grace period is already over, so done.
2159 */
67c583a7 2160 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2161 return;
2162 }
654e9533 2163 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 2164 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 2165 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2166 rnp->qsmask &= ~mask;
67a0edbf 2167 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
2168 mask, rnp->qsmask, rnp->level,
2169 rnp->grplo, rnp->grphi,
2170 !!rnp->gp_tasks);
27f4d280 2171 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2172
2173 /* Other bits still set at this level, so done. */
67c583a7 2174 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2175 return;
2176 }
d43a5d32 2177 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
2178 mask = rnp->grpmask;
2179 if (rnp->parent == NULL) {
2180
2181 /* No more levels. Exit loop holding root lock. */
2182
2183 break;
2184 }
67c583a7 2185 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2186 rnp_c = rnp;
64db4cff 2187 rnp = rnp->parent;
2a67e741 2188 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2189 oldmask = rnp_c->qsmask;
64db4cff
PM
2190 }
2191
2192 /*
2193 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2194 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2195 * to clean up and start the next grace period if one is needed.
64db4cff 2196 */
aff4e9ed 2197 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
2198}
2199
cc99a310
PM
2200/*
2201 * Record a quiescent state for all tasks that were previously queued
2202 * on the specified rcu_node structure and that were blocking the current
49918a54 2203 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
2204 * irqs disabled, and this lock is released upon return, but irqs remain
2205 * disabled.
2206 */
17a8212b 2207static void __maybe_unused
139ad4da 2208rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
2209 __releases(rnp->lock)
2210{
654e9533 2211 unsigned long gps;
cc99a310
PM
2212 unsigned long mask;
2213 struct rcu_node *rnp_p;
2214
a32e01ee 2215 raw_lockdep_assert_held_rcu_node(rnp);
45975c7d 2216 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
c74859d1
PM
2217 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2218 rnp->qsmask != 0) {
67c583a7 2219 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2220 return; /* Still need more quiescent states! */
2221 }
2222
77cfc7bf 2223 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
2224 rnp_p = rnp->parent;
2225 if (rnp_p == NULL) {
2226 /*
a77da14c
PM
2227 * Only one rcu_node structure in the tree, so don't
2228 * try to report up to its nonexistent parent!
cc99a310 2229 */
aff4e9ed 2230 rcu_report_qs_rsp(flags);
cc99a310
PM
2231 return;
2232 }
2233
c9a24e2d
PM
2234 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2235 gps = rnp->gp_seq;
cc99a310 2236 mask = rnp->grpmask;
67c583a7 2237 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2238 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 2239 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
2240}
2241
64db4cff 2242/*
d3f6bad3 2243 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2244 * structure. This must be called from the specified CPU.
64db4cff
PM
2245 */
2246static void
33085c46 2247rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
64db4cff
PM
2248{
2249 unsigned long flags;
2250 unsigned long mask;
48a7639c 2251 bool needwake;
64db4cff
PM
2252 struct rcu_node *rnp;
2253
2254 rnp = rdp->mynode;
2a67e741 2255 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
2256 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2257 rdp->gpwrap) {
64db4cff
PM
2258
2259 /*
e4cc1f22
PM
2260 * The grace period in which this quiescent state was
2261 * recorded has ended, so don't report it upwards.
2262 * We will instead need a new quiescent state that lies
2263 * within the current grace period.
64db4cff 2264 */
5b74c458 2265 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 2266 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2267 return;
2268 }
2269 mask = rdp->grpmask;
2270 if ((rnp->qsmask & mask) == 0) {
67c583a7 2271 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2272 } else {
bb53e416 2273 rdp->core_needs_qs = false;
64db4cff
PM
2274
2275 /*
2276 * This GP can't end until cpu checks in, so all of our
2277 * callbacks can be processed during the next GP.
2278 */
02f50142 2279 needwake = rcu_accelerate_cbs(rnp, rdp);
64db4cff 2280
b50912d0 2281 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 2282 /* ^^^ Released rnp->lock */
48a7639c 2283 if (needwake)
532c00c9 2284 rcu_gp_kthread_wake();
64db4cff
PM
2285 }
2286}
2287
2288/*
2289 * Check to see if there is a new grace period of which this CPU
2290 * is not yet aware, and if so, set up local rcu_data state for it.
2291 * Otherwise, see if this CPU has just passed through its first
2292 * quiescent state for this grace period, and record that fact if so.
2293 */
2294static void
8087d3e3 2295rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 2296{
05eb552b 2297 /* Check for grace-period ends and beginnings. */
15cabdff 2298 note_gp_changes(rdp);
64db4cff
PM
2299
2300 /*
2301 * Does this CPU still need to do its part for current grace period?
2302 * If no, return and let the other CPUs do their part as well.
2303 */
97c668b8 2304 if (!rdp->core_needs_qs)
64db4cff
PM
2305 return;
2306
2307 /*
2308 * Was there a quiescent state since the beginning of the grace
2309 * period? If no, then exit and wait for the next call.
2310 */
3a19b46a 2311 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2312 return;
2313
d3f6bad3
PM
2314 /*
2315 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2316 * judge of that).
2317 */
33085c46 2318 rcu_report_qs_rdp(rdp->cpu, rdp);
64db4cff
PM
2319}
2320
b1420f1c 2321/*
780cd590
PM
2322 * Near the end of the offline process. Trace the fact that this CPU
2323 * is going offline.
b1420f1c 2324 */
780cd590 2325int rcutree_dying_cpu(unsigned int cpu)
b1420f1c 2326{
477351f7 2327 RCU_TRACE(bool blkd;)
da1df50d 2328 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
88a4976d 2329 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2330
ea46351c 2331 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2332 return 0;
ea46351c 2333
477351f7 2334 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
780cd590 2335 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
477351f7 2336 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
780cd590 2337 return 0;
64db4cff
PM
2338}
2339
8af3a5e7
PM
2340/*
2341 * All CPUs for the specified rcu_node structure have gone offline,
2342 * and all tasks that were preempted within an RCU read-side critical
2343 * section while running on one of those CPUs have since exited their RCU
2344 * read-side critical section. Some other CPU is reporting this fact with
2345 * the specified rcu_node structure's ->lock held and interrupts disabled.
2346 * This function therefore goes up the tree of rcu_node structures,
2347 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2348 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2349 * updated.
8af3a5e7
PM
2350 *
2351 * This function does check that the specified rcu_node structure has
2352 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2353 * prematurely. That said, invoking it after the fact will cost you
2354 * a needless lock acquisition. So once it has done its work, don't
2355 * invoke it again.
2356 */
2357static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2358{
2359 long mask;
2360 struct rcu_node *rnp = rnp_leaf;
2361
962aff03 2362 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2363 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2364 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2365 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2366 return;
2367 for (;;) {
2368 mask = rnp->grpmask;
2369 rnp = rnp->parent;
2370 if (!rnp)
2371 break;
2a67e741 2372 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2373 rnp->qsmaskinit &= ~mask;
962aff03
PM
2374 /* Between grace periods, so better already be zero! */
2375 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2376 if (rnp->qsmaskinit) {
67c583a7
BF
2377 raw_spin_unlock_rcu_node(rnp);
2378 /* irqs remain disabled. */
8af3a5e7
PM
2379 return;
2380 }
67c583a7 2381 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2382 }
2383}
2384
64db4cff 2385/*
e5601400 2386 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2387 * this fact from process context. Do the remainder of the cleanup.
2388 * There can only be one CPU hotplug operation at a time, so no need for
2389 * explicit locking.
64db4cff 2390 */
780cd590 2391int rcutree_dead_cpu(unsigned int cpu)
64db4cff 2392{
da1df50d 2393 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
b1420f1c 2394 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2395
ea46351c 2396 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2397 return 0;
ea46351c 2398
2036d94a 2399 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2400 rcu_boost_kthread_setaffinity(rnp, -1);
780cd590
PM
2401 /* Do any needed no-CB deferred wakeups from this CPU. */
2402 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2403 return 0;
64db4cff
PM
2404}
2405
64db4cff
PM
2406/*
2407 * Invoke any RCU callbacks that have made it to the end of their grace
2408 * period. Thottle as specified by rdp->blimit.
2409 */
5bb5d09c 2410static void rcu_do_batch(struct rcu_data *rdp)
64db4cff
PM
2411{
2412 unsigned long flags;
15fecf89
PM
2413 struct rcu_head *rhp;
2414 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2415 long bl, count;
64db4cff 2416
dc35c893 2417 /* If no callbacks are ready, just return. */
15fecf89 2418 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2419 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2420 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2421 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2422 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2423 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2424 need_resched(), is_idle_task(current),
2425 rcu_is_callbacks_kthread());
64db4cff 2426 return;
29c00b4a 2427 }
64db4cff
PM
2428
2429 /*
2430 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2431 * races with call_rcu() from interrupt handlers. Leave the
2432 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2433 */
2434 local_irq_save(flags);
8146c4e2 2435 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2436 bl = rdp->blimit;
3c779dfe
PM
2437 trace_rcu_batch_start(rcu_state.name,
2438 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
15fecf89
PM
2439 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2440 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2441 local_irq_restore(flags);
2442
2443 /* Invoke callbacks. */
15fecf89
PM
2444 rhp = rcu_cblist_dequeue(&rcl);
2445 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2446 debug_rcu_head_unqueue(rhp);
3c779dfe 2447 if (__rcu_reclaim(rcu_state.name, rhp))
15fecf89
PM
2448 rcu_cblist_dequeued_lazy(&rcl);
2449 /*
2450 * Stop only if limit reached and CPU has something to do.
2451 * Note: The rcl structure counts down from zero.
2452 */
4b27f20b 2453 if (-rcl.len >= bl &&
dff1672d
PM
2454 (need_resched() ||
2455 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2456 break;
2457 }
2458
2459 local_irq_save(flags);
4b27f20b 2460 count = -rcl.len;
3c779dfe 2461 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
8ef0f37e 2462 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2463
15fecf89
PM
2464 /* Update counts and requeue any remaining callbacks. */
2465 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2466 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2467 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2468
2469 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2470 count = rcu_segcblist_n_cbs(&rdp->cblist);
2471 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2472 rdp->blimit = blimit;
2473
37c72e56 2474 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2475 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2476 rdp->qlen_last_fqs_check = 0;
3c779dfe 2477 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89
PM
2478 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2479 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2480
2481 /*
2482 * The following usually indicates a double call_rcu(). To track
2483 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2484 */
15fecf89 2485 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2486
64db4cff
PM
2487 local_irq_restore(flags);
2488
e0f23060 2489 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2490 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2491 invoke_rcu_core();
64db4cff
PM
2492}
2493
2494/*
2495 * Check to see if this CPU is in a non-context-switch quiescent state
2496 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2497 * Also schedule RCU core processing.
64db4cff 2498 *
9b2e4f18 2499 * This function must be called from hardirq context. It is normally
5403d367 2500 * invoked from the scheduling-clock interrupt.
64db4cff 2501 */
c3377c2d 2502void rcu_check_callbacks(int user)
64db4cff 2503{
f7f7bac9 2504 trace_rcu_utilization(TPS("Start scheduler-tick"));
4e95020c 2505 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2506 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2507 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2508 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2509 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2510 set_tsk_need_resched(current);
2511 set_preempt_need_resched();
2512 }
2dba13f0 2513 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
92aa39e9 2514 }
45975c7d 2515 rcu_flavor_check_callbacks(user);
e3950ecd 2516 if (rcu_pending())
a46e0899 2517 invoke_rcu_core();
07f27570 2518
f7f7bac9 2519 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2520}
2521
64db4cff
PM
2522/*
2523 * Scan the leaf rcu_node structures, processing dyntick state for any that
2524 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2525 * Also initiate boosting for any threads blocked on the root rcu_node.
2526 *
ee47eb9f 2527 * The caller must have suppressed start of new grace periods.
64db4cff 2528 */
8ff0b907 2529static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2530{
64db4cff
PM
2531 int cpu;
2532 unsigned long flags;
2533 unsigned long mask;
a0b6c9a7 2534 struct rcu_node *rnp;
64db4cff 2535
aedf4ba9 2536 rcu_for_each_leaf_node(rnp) {
cee43939 2537 cond_resched_tasks_rcu_qs();
64db4cff 2538 mask = 0;
2a67e741 2539 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2540 if (rnp->qsmask == 0) {
45975c7d 2541 if (!IS_ENABLED(CONFIG_PREEMPT) ||
a77da14c
PM
2542 rcu_preempt_blocked_readers_cgp(rnp)) {
2543 /*
2544 * No point in scanning bits because they
2545 * are all zero. But we might need to
2546 * priority-boost blocked readers.
2547 */
2548 rcu_initiate_boost(rnp, flags);
2549 /* rcu_initiate_boost() releases rnp->lock */
2550 continue;
2551 }
92816435
PM
2552 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2553 continue;
64db4cff 2554 }
bc75e999
MR
2555 for_each_leaf_node_possible_cpu(rnp, cpu) {
2556 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2557 if ((rnp->qsmask & bit) != 0) {
da1df50d 2558 if (f(per_cpu_ptr(&rcu_data, cpu)))
0edd1b17
PM
2559 mask |= bit;
2560 }
64db4cff 2561 }
45f014c5 2562 if (mask != 0) {
c9a24e2d 2563 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2564 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2565 } else {
2566 /* Nothing to do here, so just drop the lock. */
67c583a7 2567 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2568 }
64db4cff 2569 }
64db4cff
PM
2570}
2571
2572/*
2573 * Force quiescent states on reluctant CPUs, and also detect which
2574 * CPUs are in dyntick-idle mode.
2575 */
e9ecb780 2576static void force_quiescent_state(void)
64db4cff
PM
2577{
2578 unsigned long flags;
394f2769
PM
2579 bool ret;
2580 struct rcu_node *rnp;
2581 struct rcu_node *rnp_old = NULL;
2582
2583 /* Funnel through hierarchy to reduce memory contention. */
da1df50d 2584 rnp = __this_cpu_read(rcu_data.mynode);
394f2769 2585 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2586 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2587 !raw_spin_trylock(&rnp->fqslock);
2588 if (rnp_old != NULL)
2589 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2590 if (ret)
394f2769 2591 return;
394f2769
PM
2592 rnp_old = rnp;
2593 }
336a4f6c 2594 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2595
394f2769 2596 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2597 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2598 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2599 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2600 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2601 return; /* Someone beat us to it. */
46a1e34e 2602 }
67a0edbf
PM
2603 WRITE_ONCE(rcu_state.gp_flags,
2604 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2605 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2606 rcu_gp_kthread_wake();
64db4cff
PM
2607}
2608
26d950a9
PM
2609/*
2610 * This function checks for grace-period requests that fail to motivate
2611 * RCU to come out of its idle mode.
2612 */
2613static void
b96f9dc4 2614rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp)
26d950a9 2615{
b06ae25a 2616 const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
26d950a9
PM
2617 unsigned long flags;
2618 unsigned long j;
336a4f6c 2619 struct rcu_node *rnp_root = rcu_get_root();
26d950a9
PM
2620 static atomic_t warned = ATOMIC_INIT(0);
2621
de8e8730 2622 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
7a1d0f23 2623 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
26d950a9
PM
2624 return;
2625 j = jiffies; /* Expensive access, and in common case don't get here. */
67a0edbf
PM
2626 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2627 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
26d950a9
PM
2628 atomic_read(&warned))
2629 return;
2630
2631 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2632 j = jiffies;
de8e8730 2633 if (rcu_gp_in_progress() ||
7a1d0f23 2634 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
67a0edbf
PM
2635 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2636 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
26d950a9
PM
2637 atomic_read(&warned)) {
2638 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2639 return;
2640 }
2641 /* Hold onto the leaf lock to make others see warned==1. */
2642
2643 if (rnp_root != rnp)
2644 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2645 j = jiffies;
de8e8730 2646 if (rcu_gp_in_progress() ||
7a1d0f23 2647 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
67a0edbf
PM
2648 time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2649 time_before(j, rcu_state.gp_activity + gpssdelay) ||
26d950a9
PM
2650 atomic_xchg(&warned, 1)) {
2651 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2652 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2653 return;
2654 }
b06ae25a 2655 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
67a0edbf 2656 __func__, (long)READ_ONCE(rcu_state.gp_seq),
7a1d0f23 2657 (long)READ_ONCE(rnp_root->gp_seq_needed),
67a0edbf
PM
2658 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity,
2659 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name,
2660 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL);
26d950a9
PM
2661 WARN_ON(1);
2662 if (rnp_root != rnp)
2663 raw_spin_unlock_rcu_node(rnp_root);
2664 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2665}
2666
64db4cff 2667/*
b049fdf8
PM
2668 * This does the RCU core processing work for the specified rcu_data
2669 * structures. This may be called only from the CPU to whom the rdp
2670 * belongs.
64db4cff 2671 */
b049fdf8 2672static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff
PM
2673{
2674 unsigned long flags;
da1df50d 2675 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2676 struct rcu_node *rnp = rdp->mynode;
64db4cff 2677
b049fdf8
PM
2678 if (cpu_is_offline(smp_processor_id()))
2679 return;
2680 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2681 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2682
3e310098 2683 /* Report any deferred quiescent states if preemption enabled. */
fced9c8c 2684 if (!(preempt_count() & PREEMPT_MASK)) {
3e310098 2685 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2686 } else if (rcu_preempt_need_deferred_qs(current)) {
2687 set_tsk_need_resched(current);
2688 set_preempt_need_resched();
2689 }
3e310098 2690
64db4cff 2691 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2692 rcu_check_quiescent_state(rdp);
64db4cff 2693
bd7af846 2694 /* No grace period and unregistered callbacks? */
de8e8730 2695 if (!rcu_gp_in_progress() &&
bd7af846
PM
2696 rcu_segcblist_is_enabled(&rdp->cblist)) {
2697 local_irq_save(flags);
e44e73ca 2698 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2699 rcu_accelerate_cbs_unlocked(rnp, rdp);
e44e73ca 2700 local_irq_restore(flags);
64db4cff
PM
2701 }
2702
b96f9dc4 2703 rcu_check_gp_start_stall(rnp, rdp);
26d950a9 2704
64db4cff 2705 /* If there are callbacks ready, invoke them. */
15fecf89 2706 if (rcu_segcblist_ready_cbs(&rdp->cblist))
aff4e9ed 2707 invoke_rcu_callbacks(rdp);
96d3fd0d
PM
2708
2709 /* Do any needed deferred wakeups of rcuo kthreads. */
2710 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2711 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2712}
2713
a26ac245 2714/*
49918a54
PM
2715 * Schedule RCU callback invocation. If the running implementation of RCU
2716 * does not support RCU priority boosting, just do a direct call, otherwise
2717 * wake up the per-CPU kernel kthread. Note that because we are running
2718 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2719 * cannot disappear out from under us.
a26ac245 2720 */
aff4e9ed 2721static void invoke_rcu_callbacks(struct rcu_data *rdp)
a26ac245 2722{
7d0ae808 2723 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2724 return;
3c779dfe 2725 if (likely(!rcu_state.boost)) {
5bb5d09c 2726 rcu_do_batch(rdp);
a26ac245
PM
2727 return;
2728 }
a46e0899 2729 invoke_rcu_callbacks_kthread();
a26ac245
PM
2730}
2731
a46e0899 2732static void invoke_rcu_core(void)
09223371 2733{
b0f74036
PM
2734 if (cpu_online(smp_processor_id()))
2735 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2736}
2737
29154c57
PM
2738/*
2739 * Handle any core-RCU processing required by a call_rcu() invocation.
2740 */
5c7d8967
PM
2741static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2742 unsigned long flags)
64db4cff 2743{
62fde6ed
PM
2744 /*
2745 * If called from an extended quiescent state, invoke the RCU
2746 * core in order to force a re-evaluation of RCU's idleness.
2747 */
9910affa 2748 if (!rcu_is_watching())
62fde6ed
PM
2749 invoke_rcu_core();
2750
a16b7a69 2751 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2752 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2753 return;
64db4cff 2754
37c72e56
PM
2755 /*
2756 * Force the grace period if too many callbacks or too long waiting.
2757 * Enforce hysteresis, and don't invoke force_quiescent_state()
2758 * if some other CPU has recently done so. Also, don't bother
2759 * invoking force_quiescent_state() if the newly enqueued callback
2760 * is the only one waiting for a grace period to complete.
2761 */
15fecf89
PM
2762 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2763 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2764
2765 /* Are we ignoring a completed grace period? */
15cabdff 2766 note_gp_changes(rdp);
b52573d2
PM
2767
2768 /* Start a new grace period if one not already started. */
de8e8730 2769 if (!rcu_gp_in_progress()) {
c6e09b97 2770 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2771 } else {
2772 /* Give the grace period a kick. */
2773 rdp->blimit = LONG_MAX;
5c7d8967 2774 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2775 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
e9ecb780 2776 force_quiescent_state();
5c7d8967 2777 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89 2778 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2779 }
4cdfc175 2780 }
29154c57
PM
2781}
2782
ae150184
PM
2783/*
2784 * RCU callback function to leak a callback.
2785 */
2786static void rcu_leak_callback(struct rcu_head *rhp)
2787{
2788}
2789
3fbfbf7a
PM
2790/*
2791 * Helper function for call_rcu() and friends. The cpu argument will
2792 * normally be -1, indicating "currently running CPU". It may specify
dd46a788 2793 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
3fbfbf7a
PM
2794 * is expected to specify a CPU.
2795 */
64db4cff 2796static void
5c7d8967 2797__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
64db4cff
PM
2798{
2799 unsigned long flags;
2800 struct rcu_data *rdp;
2801
b8f2ed53
PM
2802 /* Misaligned rcu_head! */
2803 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2804
ae150184 2805 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2806 /*
2807 * Probable double call_rcu(), so leak the callback.
2808 * Use rcu:rcu_callback trace event to find the previous
2809 * time callback was passed to __call_rcu().
2810 */
2811 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2812 head, head->func);
7d0ae808 2813 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2814 return;
2815 }
64db4cff
PM
2816 head->func = func;
2817 head->next = NULL;
64db4cff 2818 local_irq_save(flags);
da1df50d 2819 rdp = this_cpu_ptr(&rcu_data);
64db4cff
PM
2820
2821 /* Add the callback to our list. */
15fecf89 2822 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2823 int offline;
2824
2825 if (cpu != -1)
da1df50d 2826 rdp = per_cpu_ptr(&rcu_data, cpu);
143da9c2
PM
2827 if (likely(rdp->mynode)) {
2828 /* Post-boot, so this should be for a no-CBs CPU. */
2829 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2830 WARN_ON_ONCE(offline);
2831 /* Offline CPU, _call_rcu() illegal, leak callback. */
2832 local_irq_restore(flags);
2833 return;
2834 }
2835 /*
2836 * Very early boot, before rcu_init(). Initialize if needed
2837 * and then drop through to queue the callback.
2838 */
2839 BUG_ON(cpu != -1);
34404ca8 2840 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
2841 if (rcu_segcblist_empty(&rdp->cblist))
2842 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2843 }
15fecf89
PM
2844 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2845 if (!lazy)
c57afe80 2846 rcu_idle_count_callbacks_posted();
2655d57e 2847
d4c08f2a 2848 if (__is_kfree_rcu_offset((unsigned long)func))
3c779dfe
PM
2849 trace_rcu_kfree_callback(rcu_state.name, head,
2850 (unsigned long)func,
15fecf89
PM
2851 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2852 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2853 else
3c779dfe 2854 trace_rcu_callback(rcu_state.name, head,
15fecf89
PM
2855 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2856 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2857
29154c57 2858 /* Go handle any RCU core processing required. */
5c7d8967 2859 __call_rcu_core(rdp, head, flags);
64db4cff
PM
2860 local_irq_restore(flags);
2861}
2862
a68a2bb2 2863/**
45975c7d 2864 * call_rcu() - Queue an RCU callback for invocation after a grace period.
a68a2bb2
PM
2865 * @head: structure to be used for queueing the RCU updates.
2866 * @func: actual callback function to be invoked after the grace period
2867 *
2868 * The callback function will be invoked some time after a full grace
45975c7d
PM
2869 * period elapses, in other words after all pre-existing RCU read-side
2870 * critical sections have completed. However, the callback function
2871 * might well execute concurrently with RCU read-side critical sections
2872 * that started after call_rcu() was invoked. RCU read-side critical
2873 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2874 * may be nested. In addition, regions of code across which interrupts,
2875 * preemption, or softirqs have been disabled also serve as RCU read-side
2876 * critical sections. This includes hardware interrupt handlers, softirq
2877 * handlers, and NMI handlers.
2878 *
2879 * Note that all CPUs must agree that the grace period extended beyond
2880 * all pre-existing RCU read-side critical section. On systems with more
2881 * than one CPU, this means that when "func()" is invoked, each CPU is
2882 * guaranteed to have executed a full memory barrier since the end of its
2883 * last RCU read-side critical section whose beginning preceded the call
2884 * to call_rcu(). It also means that each CPU executing an RCU read-side
2885 * critical section that continues beyond the start of "func()" must have
2886 * executed a memory barrier after the call_rcu() but before the beginning
2887 * of that RCU read-side critical section. Note that these guarantees
2888 * include CPUs that are offline, idle, or executing in user mode, as
2889 * well as CPUs that are executing in the kernel.
2890 *
2891 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2892 * resulting RCU callback function "func()", then both CPU A and CPU B are
2893 * guaranteed to execute a full memory barrier during the time interval
2894 * between the call to call_rcu() and the invocation of "func()" -- even
2895 * if CPU A and CPU B are the same CPU (but again only if the system has
2896 * more than one CPU).
2897 */
2898void call_rcu(struct rcu_head *head, rcu_callback_t func)
2899{
5c7d8967 2900 __call_rcu(head, func, -1, 0);
45975c7d
PM
2901}
2902EXPORT_SYMBOL_GPL(call_rcu);
2903
495aa969
ACB
2904/*
2905 * Queue an RCU callback for lazy invocation after a grace period.
2906 * This will likely be later named something like "call_rcu_lazy()",
2907 * but this change will require some way of tagging the lazy RCU
2908 * callbacks in the list of pending callbacks. Until then, this
2909 * function may only be called from __kfree_rcu().
2910 */
98ece508 2911void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
495aa969 2912{
5c7d8967 2913 __call_rcu(head, func, -1, 1);
495aa969
ACB
2914}
2915EXPORT_SYMBOL_GPL(kfree_call_rcu);
2916
765a3f4f
PM
2917/**
2918 * get_state_synchronize_rcu - Snapshot current RCU state
2919 *
2920 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2921 * to determine whether or not a full grace period has elapsed in the
2922 * meantime.
2923 */
2924unsigned long get_state_synchronize_rcu(void)
2925{
2926 /*
2927 * Any prior manipulation of RCU-protected data must happen
e4be81a2 2928 * before the load from ->gp_seq.
765a3f4f
PM
2929 */
2930 smp_mb(); /* ^^^ */
16fc9c60 2931 return rcu_seq_snap(&rcu_state.gp_seq);
765a3f4f
PM
2932}
2933EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2934
2935/**
2936 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2937 *
2938 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2939 *
2940 * If a full RCU grace period has elapsed since the earlier call to
2941 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2942 * synchronize_rcu() to wait for a full grace period.
2943 *
2944 * Yes, this function does not take counter wrap into account. But
2945 * counter wrap is harmless. If the counter wraps, we have waited for
2946 * more than 2 billion grace periods (and way more on a 64-bit system!),
2947 * so waiting for one additional grace period should be just fine.
2948 */
2949void cond_synchronize_rcu(unsigned long oldstate)
2950{
16fc9c60 2951 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
765a3f4f 2952 synchronize_rcu();
e4be81a2
PM
2953 else
2954 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
2955}
2956EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2957
64db4cff 2958/*
98ece508 2959 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
2960 * the current CPU, returning 1 if so and zero otherwise. The checks are
2961 * in order of increasing expense: checks that can be carried out against
2962 * CPU-local state are performed first. However, we must check for CPU
2963 * stalls first, else we might not get a chance.
64db4cff 2964 */
98ece508 2965static int rcu_pending(void)
64db4cff 2966{
98ece508 2967 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
2968 struct rcu_node *rnp = rdp->mynode;
2969
64db4cff 2970 /* Check for CPU stalls, if enabled. */
ea12ff2b 2971 check_cpu_stall(rdp);
64db4cff 2972
a096932f 2973 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
4580b054 2974 if (rcu_nohz_full_cpu())
a096932f
PM
2975 return 0;
2976
64db4cff 2977 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 2978 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
2979 return 1;
2980
2981 /* Does this CPU have callbacks ready to invoke? */
01c495f7 2982 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
2983 return 1;
2984
2985 /* Has RCU gone idle with this CPU needing another grace period? */
de8e8730 2986 if (!rcu_gp_in_progress() &&
c1935209
PM
2987 rcu_segcblist_is_enabled(&rdp->cblist) &&
2988 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
2989 return 1;
2990
67e14c1e
PM
2991 /* Have RCU grace period completed or started? */
2992 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 2993 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
2994 return 1;
2995
96d3fd0d 2996 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 2997 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 2998 return 1;
96d3fd0d 2999
64db4cff
PM
3000 /* nothing to do */
3001 return 0;
3002}
3003
64db4cff 3004/*
c0f4dfd4
PM
3005 * Return true if the specified CPU has any callback. If all_lazy is
3006 * non-NULL, store an indication of whether all callbacks are lazy.
3007 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3008 */
51fbb910 3009static bool rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3010{
c0f4dfd4
PM
3011 bool al = true;
3012 bool hc = false;
3013 struct rcu_data *rdp;
6ce75a23 3014
b97d23c5
PM
3015 rdp = this_cpu_ptr(&rcu_data);
3016 if (!rcu_segcblist_empty(&rdp->cblist)) {
69c8d28c 3017 hc = true;
b97d23c5 3018 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist))
c0f4dfd4 3019 al = false;
c0f4dfd4
PM
3020 }
3021 if (all_lazy)
3022 *all_lazy = al;
3023 return hc;
64db4cff
PM
3024}
3025
a83eff0a 3026/*
dd46a788 3027 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
3028 * the compiler is expected to optimize this away.
3029 */
dd46a788 3030static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 3031{
8344b871
PM
3032 trace_rcu_barrier(rcu_state.name, s, cpu,
3033 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
3034}
3035
b1420f1c 3036/*
dd46a788
PM
3037 * RCU callback function for rcu_barrier(). If we are last, wake
3038 * up the task executing rcu_barrier().
b1420f1c 3039 */
24ebbca8 3040static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3041{
ec9f5835 3042 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
dd46a788 3043 rcu_barrier_trace(TPS("LastCB"), -1,
ec9f5835
PM
3044 rcu_state.barrier_sequence);
3045 complete(&rcu_state.barrier_completion);
a83eff0a 3046 } else {
dd46a788 3047 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
a83eff0a 3048 }
d0ec774c
PM
3049}
3050
3051/*
3052 * Called with preemption disabled, and from cross-cpu IRQ context.
3053 */
ec9f5835 3054static void rcu_barrier_func(void *unused)
d0ec774c 3055{
da1df50d 3056 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
d0ec774c 3057
dd46a788 3058 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
3059 rdp->barrier_head.func = rcu_barrier_callback;
3060 debug_rcu_head_queue(&rdp->barrier_head);
3061 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
ec9f5835 3062 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
3063 } else {
3064 debug_rcu_head_unqueue(&rdp->barrier_head);
dd46a788 3065 rcu_barrier_trace(TPS("IRQNQ"), -1,
ec9f5835 3066 rcu_state.barrier_sequence);
f92c734f 3067 }
d0ec774c
PM
3068}
3069
dd46a788
PM
3070/**
3071 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3072 *
3073 * Note that this primitive does not necessarily wait for an RCU grace period
3074 * to complete. For example, if there are no RCU callbacks queued anywhere
3075 * in the system, then rcu_barrier() is within its rights to return
3076 * immediately, without waiting for anything, much less an RCU grace period.
3077 */
3078void rcu_barrier(void)
d0ec774c 3079{
b1420f1c 3080 int cpu;
b1420f1c 3081 struct rcu_data *rdp;
ec9f5835 3082 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 3083
dd46a788 3084 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 3085
e74f4c45 3086 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 3087 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 3088
4f525a52 3089 /* Did someone else do our work for us? */
ec9f5835 3090 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
dd46a788 3091 rcu_barrier_trace(TPS("EarlyExit"), -1,
ec9f5835 3092 rcu_state.barrier_sequence);
cf3a9c48 3093 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 3094 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
3095 return;
3096 }
3097
4f525a52 3098 /* Mark the start of the barrier operation. */
ec9f5835 3099 rcu_seq_start(&rcu_state.barrier_sequence);
dd46a788 3100 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 3101
d0ec774c 3102 /*
b1420f1c
PM
3103 * Initialize the count to one rather than to zero in order to
3104 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3105 * (or preemption of this task). Exclude CPU-hotplug operations
3106 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3107 */
ec9f5835
PM
3108 init_completion(&rcu_state.barrier_completion);
3109 atomic_set(&rcu_state.barrier_cpu_count, 1);
1331e7a1 3110 get_online_cpus();
b1420f1c
PM
3111
3112 /*
1331e7a1
PM
3113 * Force each CPU with callbacks to register a new callback.
3114 * When that callback is invoked, we will know that all of the
3115 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3116 */
3fbfbf7a 3117 for_each_possible_cpu(cpu) {
d1e43fa5 3118 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3119 continue;
da1df50d 3120 rdp = per_cpu_ptr(&rcu_data, cpu);
d1e43fa5 3121 if (rcu_is_nocb_cpu(cpu)) {
4580b054 3122 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
dd46a788 3123 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
ec9f5835 3124 rcu_state.barrier_sequence);
d7e29933 3125 } else {
dd46a788 3126 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
ec9f5835 3127 rcu_state.barrier_sequence);
41050a00 3128 smp_mb__before_atomic();
ec9f5835 3129 atomic_inc(&rcu_state.barrier_cpu_count);
d7e29933 3130 __call_rcu(&rdp->barrier_head,
5c7d8967 3131 rcu_barrier_callback, cpu, 0);
d7e29933 3132 }
15fecf89 3133 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
dd46a788 3134 rcu_barrier_trace(TPS("OnlineQ"), cpu,
ec9f5835
PM
3135 rcu_state.barrier_sequence);
3136 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
b1420f1c 3137 } else {
dd46a788 3138 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
ec9f5835 3139 rcu_state.barrier_sequence);
b1420f1c
PM
3140 }
3141 }
1331e7a1 3142 put_online_cpus();
b1420f1c
PM
3143
3144 /*
3145 * Now that we have an rcu_barrier_callback() callback on each
3146 * CPU, and thus each counted, remove the initial count.
3147 */
ec9f5835
PM
3148 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3149 complete(&rcu_state.barrier_completion);
b1420f1c
PM
3150
3151 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 3152 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 3153
4f525a52 3154 /* Mark the end of the barrier operation. */
dd46a788 3155 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 3156 rcu_seq_end(&rcu_state.barrier_sequence);
4f525a52 3157
b1420f1c 3158 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 3159 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 3160}
45975c7d
PM
3161EXPORT_SYMBOL_GPL(rcu_barrier);
3162
0aa04b05
PM
3163/*
3164 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3165 * first CPU in a given leaf rcu_node structure coming online. The caller
3166 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3167 * disabled.
3168 */
3169static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3170{
3171 long mask;
8d672fa6 3172 long oldmask;
0aa04b05
PM
3173 struct rcu_node *rnp = rnp_leaf;
3174
8d672fa6 3175 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 3176 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
3177 for (;;) {
3178 mask = rnp->grpmask;
3179 rnp = rnp->parent;
3180 if (rnp == NULL)
3181 return;
6cf10081 3182 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 3183 oldmask = rnp->qsmaskinit;
0aa04b05 3184 rnp->qsmaskinit |= mask;
67c583a7 3185 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
3186 if (oldmask)
3187 return;
0aa04b05
PM
3188 }
3189}
3190
64db4cff 3191/*
27569620 3192 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3193 */
27569620 3194static void __init
53b46303 3195rcu_boot_init_percpu_data(int cpu)
64db4cff 3196{
da1df50d 3197 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
3198
3199 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3200 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3201 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4c5273bf 3202 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
02a5c550 3203 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
53b46303 3204 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 3205 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 3206 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 3207 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
27569620 3208 rdp->cpu = cpu;
3fbfbf7a 3209 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3210}
3211
3212/*
53b46303
PM
3213 * Invoked early in the CPU-online process, when pretty much all services
3214 * are available. The incoming CPU is not present.
3215 *
3216 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
3217 * offline event can be happening at a given time. Note also that we can
3218 * accept some slop in the rsp->gp_seq access due to the fact that this
3219 * CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3220 */
53b46303 3221int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
3222{
3223 unsigned long flags;
da1df50d 3224 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3225 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
3226
3227 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3228 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 3229 rdp->qlen_last_fqs_check = 0;
53b46303 3230 rdp->n_force_qs_snap = rcu_state.n_force_qs;
64db4cff 3231 rdp->blimit = blimit;
15fecf89
PM
3232 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3233 !init_nocb_callback_list(rdp))
3234 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4c5273bf 3235 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3236 rcu_dynticks_eqs_online();
67c583a7 3237 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3238
0aa04b05
PM
3239 /*
3240 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3241 * propagation up the rcu_node tree will happen at the beginning
3242 * of the next grace period.
3243 */
64db4cff 3244 rnp = rdp->mynode;
2a67e741 3245 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3246 rdp->beenonline = true; /* We have now been online. */
de30ad51 3247 rdp->gp_seq = rnp->gp_seq;
7a1d0f23 3248 rdp->gp_seq_needed = rnp->gp_seq;
5b74c458 3249 rdp->cpu_no_qs.b.norm = true;
97c668b8 3250 rdp->core_needs_qs = false;
9b9500da 3251 rdp->rcu_iw_pending = false;
8aa670cd 3252 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
53b46303 3253 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 3254 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4df83742
TG
3255 rcu_prepare_kthreads(cpu);
3256 rcu_spawn_all_nocb_kthreads(cpu);
3257
3258 return 0;
3259}
3260
deb34f36
PM
3261/*
3262 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3263 */
4df83742
TG
3264static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3265{
da1df50d 3266 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
3267
3268 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3269}
3270
deb34f36
PM
3271/*
3272 * Near the end of the CPU-online process. Pretty much all services
3273 * enabled, and the CPU is now very much alive.
3274 */
4df83742
TG
3275int rcutree_online_cpu(unsigned int cpu)
3276{
9b9500da
PM
3277 unsigned long flags;
3278 struct rcu_data *rdp;
3279 struct rcu_node *rnp;
9b9500da 3280
b97d23c5
PM
3281 rdp = per_cpu_ptr(&rcu_data, cpu);
3282 rnp = rdp->mynode;
3283 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3284 rnp->ffmask |= rdp->grpmask;
3285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
da915ad5
PM
3286 if (IS_ENABLED(CONFIG_TREE_SRCU))
3287 srcu_online_cpu(cpu);
9b9500da
PM
3288 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3289 return 0; /* Too early in boot for scheduler work. */
3290 sync_sched_exp_online_cleanup(cpu);
3291 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3292 return 0;
3293}
3294
deb34f36
PM
3295/*
3296 * Near the beginning of the process. The CPU is still very much alive
3297 * with pretty much all services enabled.
3298 */
4df83742
TG
3299int rcutree_offline_cpu(unsigned int cpu)
3300{
9b9500da
PM
3301 unsigned long flags;
3302 struct rcu_data *rdp;
3303 struct rcu_node *rnp;
9b9500da 3304
b97d23c5
PM
3305 rdp = per_cpu_ptr(&rcu_data, cpu);
3306 rnp = rdp->mynode;
3307 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3308 rnp->ffmask &= ~rdp->grpmask;
3309 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da 3310
4df83742 3311 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3312 if (IS_ENABLED(CONFIG_TREE_SRCU))
3313 srcu_offline_cpu(cpu);
4df83742
TG
3314 return 0;
3315}
3316
f64c6013
PZ
3317static DEFINE_PER_CPU(int, rcu_cpu_started);
3318
7ec99de3
PM
3319/*
3320 * Mark the specified CPU as being online so that subsequent grace periods
3321 * (both expedited and normal) will wait on it. Note that this means that
3322 * incoming CPUs are not allowed to use RCU read-side critical sections
3323 * until this function is called. Failing to observe this restriction
3324 * will result in lockdep splats.
deb34f36
PM
3325 *
3326 * Note that this function is special in that it is invoked directly
3327 * from the incoming CPU rather than from the cpuhp_step mechanism.
3328 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3329 */
3330void rcu_cpu_starting(unsigned int cpu)
3331{
3332 unsigned long flags;
3333 unsigned long mask;
313517fc
PM
3334 int nbits;
3335 unsigned long oldmask;
7ec99de3
PM
3336 struct rcu_data *rdp;
3337 struct rcu_node *rnp;
7ec99de3 3338
f64c6013
PZ
3339 if (per_cpu(rcu_cpu_started, cpu))
3340 return;
3341
3342 per_cpu(rcu_cpu_started, cpu) = 1;
3343
b97d23c5
PM
3344 rdp = per_cpu_ptr(&rcu_data, cpu);
3345 rnp = rdp->mynode;
3346 mask = rdp->grpmask;
3347 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3348 rnp->qsmaskinitnext |= mask;
3349 oldmask = rnp->expmaskinitnext;
3350 rnp->expmaskinitnext |= mask;
3351 oldmask ^= rnp->expmaskinitnext;
3352 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3353 /* Allow lockless access for expedited grace periods. */
eb7a6653 3354 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
b97d23c5 3355 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
3356 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3357 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
b97d23c5
PM
3358 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3359 /* Report QS -after- changing ->qsmaskinitnext! */
3360 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3361 } else {
3362 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7ec99de3 3363 }
313517fc 3364 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3365}
3366
27d50c7e
TG
3367#ifdef CONFIG_HOTPLUG_CPU
3368/*
53b46303
PM
3369 * The outgoing function has no further need of RCU, so remove it from
3370 * the rcu_node tree's ->qsmaskinitnext bit masks.
3371 *
3372 * Note that this function is special in that it is invoked directly
3373 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3374 * This is because this function must be invoked at a precise location.
27d50c7e 3375 */
53b46303 3376void rcu_report_dead(unsigned int cpu)
27d50c7e
TG
3377{
3378 unsigned long flags;
3379 unsigned long mask;
da1df50d 3380 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27d50c7e
TG
3381 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3382
49918a54 3383 /* QS for any half-done expedited grace period. */
53b46303 3384 preempt_disable();
63d4c8c9 3385 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
53b46303
PM
3386 preempt_enable();
3387 rcu_preempt_deferred_qs(current);
3388
27d50c7e
TG
3389 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3390 mask = rdp->grpmask;
53b46303 3391 spin_lock(&rcu_state.ofl_lock);
27d50c7e 3392 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
3393 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3394 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
3395 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3396 /* Report quiescent state -before- changing ->qsmaskinitnext! */
b50912d0 3397 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
3398 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3399 }
27d50c7e 3400 rnp->qsmaskinitnext &= ~mask;
710d60cb 3401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
53b46303 3402 spin_unlock(&rcu_state.ofl_lock);
f64c6013
PZ
3403
3404 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3405}
a58163d8 3406
53b46303
PM
3407/*
3408 * The outgoing CPU has just passed through the dying-idle state, and we
3409 * are being invoked from the CPU that was IPIed to continue the offline
3410 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3411 */
3412void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
3413{
3414 unsigned long flags;
b1a2d79f 3415 struct rcu_data *my_rdp;
da1df50d 3416 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3417 struct rcu_node *rnp_root = rcu_get_root();
ec4eacce 3418 bool needwake;
a58163d8 3419
95335c03
PM
3420 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3421 return; /* No callbacks to migrate. */
3422
b1a2d79f 3423 local_irq_save(flags);
da1df50d 3424 my_rdp = this_cpu_ptr(&rcu_data);
b1a2d79f
PM
3425 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3426 local_irq_restore(flags);
3427 return;
3428 }
9fa46fb8 3429 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce 3430 /* Leverage recent GPs and set GP for new callbacks. */
834f56bf
PM
3431 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3432 rcu_advance_cbs(rnp_root, my_rdp);
f2dbe4a5 3433 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3434 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3435 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3436 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce 3437 if (needwake)
532c00c9 3438 rcu_gp_kthread_wake();
a58163d8
PM
3439 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3440 !rcu_segcblist_empty(&rdp->cblist),
3441 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3442 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3443 rcu_segcblist_first_cb(&rdp->cblist));
3444}
27d50c7e
TG
3445#endif
3446
deb34f36
PM
3447/*
3448 * On non-huge systems, use expedited RCU grace periods to make suspend
3449 * and hibernation run faster.
3450 */
d1d74d14
BP
3451static int rcu_pm_notify(struct notifier_block *self,
3452 unsigned long action, void *hcpu)
3453{
3454 switch (action) {
3455 case PM_HIBERNATION_PREPARE:
3456 case PM_SUSPEND_PREPARE:
3457 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3458 rcu_expedite_gp();
d1d74d14
BP
3459 break;
3460 case PM_POST_HIBERNATION:
3461 case PM_POST_SUSPEND:
5afff48b
PM
3462 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3463 rcu_unexpedite_gp();
d1d74d14
BP
3464 break;
3465 default:
3466 break;
3467 }
3468 return NOTIFY_OK;
3469}
3470
b3dbec76 3471/*
49918a54 3472 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
3473 */
3474static int __init rcu_spawn_gp_kthread(void)
3475{
3476 unsigned long flags;
a94844b2 3477 int kthread_prio_in = kthread_prio;
b3dbec76 3478 struct rcu_node *rnp;
a94844b2 3479 struct sched_param sp;
b3dbec76
PM
3480 struct task_struct *t;
3481
a94844b2 3482 /* Force priority into range. */
c7cd161e
JFG
3483 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3484 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3485 kthread_prio = 2;
3486 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
a94844b2
PM
3487 kthread_prio = 1;
3488 else if (kthread_prio < 0)
3489 kthread_prio = 0;
3490 else if (kthread_prio > 99)
3491 kthread_prio = 99;
c7cd161e 3492
a94844b2
PM
3493 if (kthread_prio != kthread_prio_in)
3494 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3495 kthread_prio, kthread_prio_in);
3496
9386c0b7 3497 rcu_scheduler_fully_active = 1;
b97d23c5
PM
3498 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3499 BUG_ON(IS_ERR(t));
3500 rnp = rcu_get_root();
3501 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3502 rcu_state.gp_kthread = t;
3503 if (kthread_prio) {
3504 sp.sched_priority = kthread_prio;
3505 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 3506 }
b97d23c5
PM
3507 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3508 wake_up_process(t);
35ce7f29 3509 rcu_spawn_nocb_kthreads();
9386c0b7 3510 rcu_spawn_boost_kthreads();
b3dbec76
PM
3511 return 0;
3512}
3513early_initcall(rcu_spawn_gp_kthread);
3514
bbad9379 3515/*
52d7e48b
PM
3516 * This function is invoked towards the end of the scheduler's
3517 * initialization process. Before this is called, the idle task might
3518 * contain synchronous grace-period primitives (during which time, this idle
3519 * task is booting the system, and such primitives are no-ops). After this
3520 * function is called, any synchronous grace-period primitives are run as
3521 * expedited, with the requesting task driving the grace period forward.
900b1028 3522 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3523 * runtime RCU functionality.
bbad9379
PM
3524 */
3525void rcu_scheduler_starting(void)
3526{
3527 WARN_ON(num_online_cpus() != 1);
3528 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3529 rcu_test_sync_prims();
3530 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3531 rcu_test_sync_prims();
bbad9379
PM
3532}
3533
64db4cff 3534/*
49918a54 3535 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 3536 */
b8bb1f63 3537static void __init rcu_init_one(void)
64db4cff 3538{
cb007102
AG
3539 static const char * const buf[] = RCU_NODE_NAME_INIT;
3540 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3541 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3542 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3543
199977bf 3544 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3545 int cpustride = 1;
3546 int i;
3547 int j;
3548 struct rcu_node *rnp;
3549
05b84aec 3550 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3551
3eaaaf6c
PM
3552 /* Silence gcc 4.8 false positive about array index out of range. */
3553 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3554 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3555
64db4cff
PM
3556 /* Initialize the level-tracking arrays. */
3557
f885b7f2 3558 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
3559 rcu_state.level[i] =
3560 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 3561 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3562
3563 /* Initialize the elements themselves, starting from the leaves. */
3564
f885b7f2 3565 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3566 cpustride *= levelspread[i];
eb7a6653 3567 rnp = rcu_state.level[i];
41f5c631 3568 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3569 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3570 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3571 &rcu_node_class[i], buf[i]);
394f2769
PM
3572 raw_spin_lock_init(&rnp->fqslock);
3573 lockdep_set_class_and_name(&rnp->fqslock,
3574 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
3575 rnp->gp_seq = rcu_state.gp_seq;
3576 rnp->gp_seq_needed = rcu_state.gp_seq;
3577 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
3578 rnp->qsmask = 0;
3579 rnp->qsmaskinit = 0;
3580 rnp->grplo = j * cpustride;
3581 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3582 if (rnp->grphi >= nr_cpu_ids)
3583 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3584 if (i == 0) {
3585 rnp->grpnum = 0;
3586 rnp->grpmask = 0;
3587 rnp->parent = NULL;
3588 } else {
199977bf 3589 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 3590 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 3591 rnp->parent = rcu_state.level[i - 1] +
199977bf 3592 j / levelspread[i - 1];
64db4cff
PM
3593 }
3594 rnp->level = i;
12f5f524 3595 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3596 rcu_init_one_nocb(rnp);
f6a12f34
PM
3597 init_waitqueue_head(&rnp->exp_wq[0]);
3598 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
3599 init_waitqueue_head(&rnp->exp_wq[2]);
3600 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 3601 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
3602 }
3603 }
0c34029a 3604
eb7a6653
PM
3605 init_swait_queue_head(&rcu_state.gp_wq);
3606 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 3607 rnp = rcu_first_leaf_node();
0c34029a 3608 for_each_possible_cpu(i) {
4a90a068 3609 while (i > rnp->grphi)
0c34029a 3610 rnp++;
da1df50d 3611 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 3612 rcu_boot_init_percpu_data(i);
0c34029a 3613 }
64db4cff
PM
3614}
3615
f885b7f2
PM
3616/*
3617 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3618 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3619 * the ->node array in the rcu_state structure.
3620 */
3621static void __init rcu_init_geometry(void)
3622{
026ad283 3623 ulong d;
f885b7f2 3624 int i;
05b84aec 3625 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 3626
026ad283
PM
3627 /*
3628 * Initialize any unspecified boot parameters.
3629 * The default values of jiffies_till_first_fqs and
3630 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3631 * value, which is a function of HZ, then adding one for each
3632 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3633 */
3634 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3635 if (jiffies_till_first_fqs == ULONG_MAX)
3636 jiffies_till_first_fqs = d;
3637 if (jiffies_till_next_fqs == ULONG_MAX)
3638 jiffies_till_next_fqs = d;
c06aed0e
PM
3639 if (jiffies_till_sched_qs == ULONG_MAX)
3640 adjust_jiffies_till_sched_qs();
026ad283 3641
f885b7f2 3642 /* If the compile-time values are accurate, just leave. */
47d631af 3643 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 3644 nr_cpu_ids == NR_CPUS)
f885b7f2 3645 return;
a7538352 3646 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 3647 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 3648
f885b7f2 3649 /*
ee968ac6
PM
3650 * The boot-time rcu_fanout_leaf parameter must be at least two
3651 * and cannot exceed the number of bits in the rcu_node masks.
3652 * Complain and fall back to the compile-time values if this
3653 * limit is exceeded.
f885b7f2 3654 */
ee968ac6 3655 if (rcu_fanout_leaf < 2 ||
75cf15a4 3656 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 3657 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
3658 WARN_ON(1);
3659 return;
3660 }
3661
f885b7f2
PM
3662 /*
3663 * Compute number of nodes that can be handled an rcu_node tree
9618138b 3664 * with the given number of levels.
f885b7f2 3665 */
9618138b 3666 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 3667 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 3668 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
3669
3670 /*
75cf15a4 3671 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 3672 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 3673 */
ee968ac6
PM
3674 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3675 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3676 WARN_ON(1);
3677 return;
3678 }
f885b7f2 3679
679f9858 3680 /* Calculate the number of levels in the tree. */
9618138b 3681 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 3682 }
9618138b 3683 rcu_num_lvls = i + 1;
679f9858 3684
f885b7f2 3685 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 3686 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 3687 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
3688 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3689 }
f885b7f2
PM
3690
3691 /* Calculate the total number of rcu_node structures. */
3692 rcu_num_nodes = 0;
679f9858 3693 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 3694 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
3695}
3696
a3dc2948
PM
3697/*
3698 * Dump out the structure of the rcu_node combining tree associated
49918a54 3699 * with the rcu_state structure.
a3dc2948 3700 */
b8bb1f63 3701static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
3702{
3703 int level = 0;
3704 struct rcu_node *rnp;
3705
3706 pr_info("rcu_node tree layout dump\n");
3707 pr_info(" ");
aedf4ba9 3708 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
3709 if (rnp->level != level) {
3710 pr_cont("\n");
3711 pr_info(" ");
3712 level = rnp->level;
3713 }
3714 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3715 }
3716 pr_cont("\n");
3717}
3718
ad7c946b 3719struct workqueue_struct *rcu_gp_wq;
25f3d7ef 3720struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 3721
9f680ab4 3722void __init rcu_init(void)
64db4cff 3723{
017c4261 3724 int cpu;
9f680ab4 3725
47627678
PM
3726 rcu_early_boot_tests();
3727
f41d911f 3728 rcu_bootup_announce();
f885b7f2 3729 rcu_init_geometry();
b8bb1f63 3730 rcu_init_one();
a3dc2948 3731 if (dump_tree)
b8bb1f63 3732 rcu_dump_rcu_node_tree();
b5b39360 3733 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3734
3735 /*
3736 * We don't need protection against CPU-hotplug here because
3737 * this is called early in boot, before either interrupts
3738 * or the scheduler are operational.
3739 */
d1d74d14 3740 pm_notifier(rcu_pm_notify, 0);
7ec99de3 3741 for_each_online_cpu(cpu) {
4df83742 3742 rcutree_prepare_cpu(cpu);
7ec99de3 3743 rcu_cpu_starting(cpu);
9b9500da 3744 rcutree_online_cpu(cpu);
7ec99de3 3745 }
ad7c946b
PM
3746
3747 /* Create workqueue for expedited GPs and for Tree SRCU. */
3748 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3749 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
3750 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3751 WARN_ON(!rcu_par_gp_wq);
64db4cff
PM
3752}
3753
3549c2bc 3754#include "tree_exp.h"
4102adab 3755#include "tree_plugin.h"