rcu: Make rcu_start_future_gp() caller select grace period
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7be7f0be 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 101 .name = RCU_STATE_NAME(sname), \
a4889858 102 .abbr = sabbr, \
f6a12f34 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 105}
64db4cff 106
a41bfeb2
SRRH
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 109
b28a7c01 110static struct rcu_state *const rcu_state_p;
6ce75a23 111LIST_HEAD(rcu_struct_flavors);
27f4d280 112
a3dc2948
PM
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
7fa27001
PM
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 121module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 123/* Number of rcu_nodes at specified level. */
e95d68d2 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 128
b0d30417 129/*
52d7e48b
PM
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 134 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
0aa04b05
PM
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
3549c2bc 165static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 166
a94844b2 167/* rcuc/rcub kthread realtime priority */
26730f55 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
169module_param(kthread_prio, int, 0644);
170
8d7dc928 171/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 172
90040c9e
PM
173static int gp_preinit_delay;
174module_param(gp_preinit_delay, int, 0444);
175static int gp_init_delay;
176module_param(gp_init_delay, int, 0444);
177static int gp_cleanup_delay;
178module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 179
eab128e8
PM
180/*
181 * Number of grace periods between delays, normalized by the duration of
bfd090be 182 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
188 */
189#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 190
4a298656
PM
191/*
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
199 */
200unsigned long rcutorture_testseq;
201unsigned long rcutorture_vernum;
202
0aa04b05
PM
203/*
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
208 */
209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210{
7d0ae808 211 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
212}
213
fc2219d4 214/*
7d0ae808 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
218 */
219static int rcu_gp_in_progress(struct rcu_state *rsp)
220{
7d0ae808 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
222}
223
b1f77b05 224/*
d6714c22 225 * Note a quiescent state. Because we do not need to know
b1f77b05 226 * how many quiescent states passed, just if there was at least
d6714c22 227 * one since the start of the grace period, this just sets a flag.
e4cc1f22 228 * The caller must have disabled preemption.
b1f77b05 229 */
284a8c93 230void rcu_sched_qs(void)
b1f77b05 231{
f4687d26 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
46a5d164
PM
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
244}
245
284a8c93 246void rcu_bh_qs(void)
b1f77b05 247{
f4687d26 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
5b74c458 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 254 }
b1f77b05 255}
64db4cff 256
b8c17e66
PM
257/*
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
260 */
261#define RCU_DYNTICK_CTRL_MASK 0x1
262#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263#ifndef rcu_eqs_special_exit
264#define rcu_eqs_special_exit() do { } while (0)
265#endif
4a81e832
PM
266
267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
51a1fd30 268 .dynticks_nesting = 1,
58721f5d 269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
b8c17e66 270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
271};
272
2625d469
PM
273/*
274 * Record entry into an extended quiescent state. This is only to be
275 * called when not already in an extended quiescent state.
276 */
277static void rcu_dynticks_eqs_enter(void)
278{
279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 280 int seq;
2625d469
PM
281
282 /*
b8c17e66 283 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
284 * critical sections, and we also must force ordering with the
285 * next idle sojourn.
286 */
b8c17e66
PM
287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
288 /* Better be in an extended quiescent state! */
289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
290 (seq & RCU_DYNTICK_CTRL_CTR));
291 /* Better not have special action (TLB flush) pending! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
294}
295
296/*
297 * Record exit from an extended quiescent state. This is only to be
298 * called from an extended quiescent state.
299 */
300static void rcu_dynticks_eqs_exit(void)
301{
302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 303 int seq;
2625d469
PM
304
305 /*
b8c17e66 306 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
307 * and we also must force ordering with the next RCU read-side
308 * critical section.
309 */
b8c17e66
PM
310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
312 !(seq & RCU_DYNTICK_CTRL_CTR));
313 if (seq & RCU_DYNTICK_CTRL_MASK) {
314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
315 smp_mb__after_atomic(); /* _exit after clearing mask. */
316 /* Prefer duplicate flushes to losing a flush. */
317 rcu_eqs_special_exit();
318 }
2625d469
PM
319}
320
321/*
322 * Reset the current CPU's ->dynticks counter to indicate that the
323 * newly onlined CPU is no longer in an extended quiescent state.
324 * This will either leave the counter unchanged, or increment it
325 * to the next non-quiescent value.
326 *
327 * The non-atomic test/increment sequence works because the upper bits
328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
329 * or when the corresponding CPU is offline.
330 */
331static void rcu_dynticks_eqs_online(void)
332{
333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
334
b8c17e66 335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 336 return;
b8c17e66 337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
338}
339
02a5c550
PM
340/*
341 * Is the current CPU in an extended quiescent state?
342 *
343 * No ordering, as we are sampling CPU-local information.
344 */
345bool rcu_dynticks_curr_cpu_in_eqs(void)
346{
347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
348
b8c17e66 349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
350}
351
8b2f63ab
PM
352/*
353 * Snapshot the ->dynticks counter with full ordering so as to allow
354 * stable comparison of this counter with past and future snapshots.
355 */
02a5c550 356int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
357{
358 int snap = atomic_add_return(0, &rdtp->dynticks);
359
b8c17e66 360 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
361}
362
02a5c550
PM
363/*
364 * Return true if the snapshot returned from rcu_dynticks_snap()
365 * indicates that RCU is in an extended quiescent state.
366 */
367static bool rcu_dynticks_in_eqs(int snap)
368{
b8c17e66 369 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
370}
371
372/*
373 * Return true if the CPU corresponding to the specified rcu_dynticks
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
376 */
377static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
378{
379 return snap != rcu_dynticks_snap(rdtp);
380}
381
6563de9d
PM
382/*
383 * Do a double-increment of the ->dynticks counter to emulate a
384 * momentary idle-CPU quiescent state.
385 */
386static void rcu_dynticks_momentary_idle(void)
387{
388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
390 &rdtp->dynticks);
6563de9d
PM
391
392 /* It is illegal to call this from idle state. */
b8c17e66 393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
394}
395
b8c17e66
PM
396/*
397 * Set the special (bottom) bit of the specified CPU so that it
398 * will take special action (such as flushing its TLB) on the
399 * next exit from an extended quiescent state. Returns true if
400 * the bit was successfully set, or false if the CPU was not in
401 * an extended quiescent state.
402 */
403bool rcu_eqs_special_set(int cpu)
404{
405 int old;
406 int new;
407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
408
409 do {
410 old = atomic_read(&rdtp->dynticks);
411 if (old & RCU_DYNTICK_CTRL_CTR)
412 return false;
413 new = old | RCU_DYNTICK_CTRL_MASK;
414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
415 return true;
6563de9d 416}
5cd37193 417
4a81e832
PM
418/*
419 * Let the RCU core know that this CPU has gone through the scheduler,
420 * which is a quiescent state. This is called when the need for a
421 * quiescent state is urgent, so we burn an atomic operation and full
422 * memory barriers to let the RCU core know about it, regardless of what
423 * this CPU might (or might not) do in the near future.
424 *
0f9be8ca 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
426 *
427 * The caller must have disabled interrupts.
4a81e832
PM
428 */
429static void rcu_momentary_dyntick_idle(void)
430{
0f9be8ca
PM
431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
432 rcu_dynticks_momentary_idle();
4a81e832
PM
433}
434
25502a6c
PM
435/*
436 * Note a context switch. This is a quiescent state for RCU-sched,
437 * and requires special handling for preemptible RCU.
46a5d164 438 * The caller must have disabled interrupts.
25502a6c 439 */
bcbfdd01 440void rcu_note_context_switch(bool preempt)
25502a6c 441{
bb73c52b 442 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 443 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 444 rcu_sched_qs();
5b72f964 445 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
446 /* Load rcu_urgent_qs before other flags. */
447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
448 goto out;
449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 451 rcu_momentary_dyntick_idle();
9226b10d 452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
453 if (!preempt)
454 rcu_note_voluntary_context_switch_lite(current);
9226b10d 455out:
f7f7bac9 456 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 457 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 458}
29ce8310 459EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 460
5cd37193 461/*
1925d196 462 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 465 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
466 * be none of them). Either way, do a lightweight quiescent state for
467 * all RCU flavors.
bb73c52b
BF
468 *
469 * The barrier() calls are redundant in the common case when this is
470 * called externally, but just in case this is called from within this
471 * file.
472 *
5cd37193
PM
473 */
474void rcu_all_qs(void)
475{
46a5d164
PM
476 unsigned long flags;
477
9226b10d
PM
478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
479 return;
480 preempt_disable();
481 /* Load rcu_urgent_qs before other flags. */
482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
483 preempt_enable();
484 return;
485 }
486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 487 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 489 local_irq_save(flags);
5cd37193 490 rcu_momentary_dyntick_idle();
46a5d164
PM
491 local_irq_restore(flags);
492 }
9226b10d 493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 494 rcu_sched_qs();
9577df9a 495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 496 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 497 preempt_enable();
5cd37193
PM
498}
499EXPORT_SYMBOL_GPL(rcu_all_qs);
500
17c7798b
PM
501#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
502static long blimit = DEFAULT_RCU_BLIMIT;
503#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504static long qhimark = DEFAULT_RCU_QHIMARK;
505#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
506static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 507
878d7439
ED
508module_param(blimit, long, 0444);
509module_param(qhimark, long, 0444);
510module_param(qlowmark, long, 0444);
3d76c082 511
026ad283
PM
512static ulong jiffies_till_first_fqs = ULONG_MAX;
513static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 514static bool rcu_kick_kthreads;
d40011f6
PM
515
516module_param(jiffies_till_first_fqs, ulong, 0644);
517module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 518module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 519
4a81e832
PM
520/*
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
523 */
f79c3ad6
PM
524static ulong jiffies_till_sched_qs = HZ / 10;
525module_param(jiffies_till_sched_qs, ulong, 0444);
4a81e832 526
fe5ac724 527static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 528static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 529static int rcu_pending(void);
64db4cff
PM
530
531/*
917963d0 532 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 533 */
917963d0
PM
534unsigned long rcu_batches_started(void)
535{
536 return rcu_state_p->gpnum;
537}
538EXPORT_SYMBOL_GPL(rcu_batches_started);
539
540/*
541 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 542 */
917963d0
PM
543unsigned long rcu_batches_started_sched(void)
544{
545 return rcu_sched_state.gpnum;
546}
547EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
548
549/*
550 * Return the number of RCU BH batches started thus far for debug & stats.
551 */
552unsigned long rcu_batches_started_bh(void)
553{
554 return rcu_bh_state.gpnum;
555}
556EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
557
558/*
559 * Return the number of RCU batches completed thus far for debug & stats.
560 */
561unsigned long rcu_batches_completed(void)
562{
563 return rcu_state_p->completed;
564}
565EXPORT_SYMBOL_GPL(rcu_batches_completed);
566
567/*
568 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 569 */
9733e4f0 570unsigned long rcu_batches_completed_sched(void)
64db4cff 571{
d6714c22 572 return rcu_sched_state.completed;
64db4cff 573}
d6714c22 574EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
575
576/*
917963d0 577 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 578 */
9733e4f0 579unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
580{
581 return rcu_bh_state.completed;
582}
583EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
584
291783b8
PM
585/*
586 * Return the number of RCU expedited batches completed thus far for
587 * debug & stats. Odd numbers mean that a batch is in progress, even
588 * numbers mean idle. The value returned will thus be roughly double
589 * the cumulative batches since boot.
590 */
591unsigned long rcu_exp_batches_completed(void)
592{
593 return rcu_state_p->expedited_sequence;
594}
595EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
596
597/*
598 * Return the number of RCU-sched expedited batches completed thus far
599 * for debug & stats. Similar to rcu_exp_batches_completed().
600 */
601unsigned long rcu_exp_batches_completed_sched(void)
602{
603 return rcu_sched_state.expedited_sequence;
604}
605EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
606
a381d757
ACB
607/*
608 * Force a quiescent state.
609 */
610void rcu_force_quiescent_state(void)
611{
e534165b 612 force_quiescent_state(rcu_state_p);
a381d757
ACB
613}
614EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
615
bf66f18e
PM
616/*
617 * Force a quiescent state for RCU BH.
618 */
619void rcu_bh_force_quiescent_state(void)
620{
4cdfc175 621 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
622}
623EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
624
e7580f33
PM
625/*
626 * Force a quiescent state for RCU-sched.
627 */
628void rcu_sched_force_quiescent_state(void)
629{
630 force_quiescent_state(&rcu_sched_state);
631}
632EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
633
afea227f
PM
634/*
635 * Show the state of the grace-period kthreads.
636 */
637void show_rcu_gp_kthreads(void)
638{
639 struct rcu_state *rsp;
640
641 for_each_rcu_flavor(rsp) {
642 pr_info("%s: wait state: %d ->state: %#lx\n",
643 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
644 /* sched_show_task(rsp->gp_kthread); */
645 }
646}
647EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
648
4a298656
PM
649/*
650 * Record the number of times rcutorture tests have been initiated and
651 * terminated. This information allows the debugfs tracing stats to be
652 * correlated to the rcutorture messages, even when the rcutorture module
653 * is being repeatedly loaded and unloaded. In other words, we cannot
654 * store this state in rcutorture itself.
655 */
656void rcutorture_record_test_transition(void)
657{
658 rcutorture_testseq++;
659 rcutorture_vernum = 0;
660}
661EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
662
ad0dc7f9
PM
663/*
664 * Send along grace-period-related data for rcutorture diagnostics.
665 */
666void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
667 unsigned long *gpnum, unsigned long *completed)
668{
669 struct rcu_state *rsp = NULL;
670
671 switch (test_type) {
672 case RCU_FLAVOR:
e534165b 673 rsp = rcu_state_p;
ad0dc7f9
PM
674 break;
675 case RCU_BH_FLAVOR:
676 rsp = &rcu_bh_state;
677 break;
678 case RCU_SCHED_FLAVOR:
679 rsp = &rcu_sched_state;
680 break;
681 default:
682 break;
683 }
7f6733c3 684 if (rsp == NULL)
ad0dc7f9 685 return;
7f6733c3
PM
686 *flags = READ_ONCE(rsp->gp_flags);
687 *gpnum = READ_ONCE(rsp->gpnum);
688 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
689}
690EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
691
4a298656
PM
692/*
693 * Record the number of writer passes through the current rcutorture test.
694 * This is also used to correlate debugfs tracing stats with the rcutorture
695 * messages.
696 */
697void rcutorture_record_progress(unsigned long vernum)
698{
699 rcutorture_vernum++;
700}
701EXPORT_SYMBOL_GPL(rcutorture_record_progress);
702
365187fb
PM
703/*
704 * Return the root node of the specified rcu_state structure.
705 */
706static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
707{
708 return &rsp->node[0];
709}
710
711/*
712 * Is there any need for future grace periods?
713 * Interrupts must be disabled. If the caller does not hold the root
714 * rnp_node structure's ->lock, the results are advisory only.
715 */
716static int rcu_future_needs_gp(struct rcu_state *rsp)
717{
718 struct rcu_node *rnp = rcu_get_root(rsp);
365187fb 719
b04db8e1 720 lockdep_assert_irqs_disabled();
0ae94e00 721 return need_any_future_gp(rnp);
365187fb
PM
722}
723
64db4cff 724/*
dc35c893
PM
725 * Does the current CPU require a not-yet-started grace period?
726 * The caller must have disabled interrupts to prevent races with
727 * normal callback registry.
64db4cff 728 */
d117c8aa 729static bool
64db4cff
PM
730cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
731{
b04db8e1 732 lockdep_assert_irqs_disabled();
dc35c893 733 if (rcu_gp_in_progress(rsp))
d117c8aa 734 return false; /* No, a grace period is already in progress. */
365187fb 735 if (rcu_future_needs_gp(rsp))
d117c8aa 736 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 737 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 738 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 739 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 740 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
741 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
742 READ_ONCE(rsp->completed)))
743 return true; /* Yes, CBs for future grace period. */
d117c8aa 744 return false; /* No grace period needed. */
64db4cff
PM
745}
746
9b2e4f18 747/*
215bba9f
PM
748 * Enter an RCU extended quiescent state, which can be either the
749 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 750 *
215bba9f
PM
751 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
752 * the possibility of usermode upcalls having messed up our count
753 * of interrupt nesting level during the prior busy period.
9b2e4f18 754 */
215bba9f 755static void rcu_eqs_enter(bool user)
9b2e4f18 756{
96d3fd0d
PM
757 struct rcu_state *rsp;
758 struct rcu_data *rdp;
215bba9f 759 struct rcu_dynticks *rdtp;
96d3fd0d 760
215bba9f
PM
761 rdtp = this_cpu_ptr(&rcu_dynticks);
762 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
763 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
764 rdtp->dynticks_nesting == 0);
765 if (rdtp->dynticks_nesting != 1) {
766 rdtp->dynticks_nesting--;
767 return;
9b2e4f18 768 }
96d3fd0d 769
b04db8e1 770 lockdep_assert_irqs_disabled();
dec98900 771 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
e68bbb26 772 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
96d3fd0d
PM
773 for_each_rcu_flavor(rsp) {
774 rdp = this_cpu_ptr(rsp->rda);
775 do_nocb_deferred_wakeup(rdp);
776 }
198bbf81 777 rcu_prepare_for_idle();
2342172f 778 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 779 rcu_dynticks_eqs_enter();
176f8f7a 780 rcu_dynticks_task_enter();
64db4cff 781}
adf5091e
FW
782
783/**
784 * rcu_idle_enter - inform RCU that current CPU is entering idle
785 *
786 * Enter idle mode, in other words, -leave- the mode in which RCU
787 * read-side critical sections can occur. (Though RCU read-side
788 * critical sections can occur in irq handlers in idle, a possibility
789 * handled by irq_enter() and irq_exit().)
790 *
c0da313e
PM
791 * If you add or remove a call to rcu_idle_enter(), be sure to test with
792 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
793 */
794void rcu_idle_enter(void)
795{
b04db8e1 796 lockdep_assert_irqs_disabled();
cb349ca9 797 rcu_eqs_enter(false);
adf5091e 798}
64db4cff 799
d1ec4c34 800#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
801/**
802 * rcu_user_enter - inform RCU that we are resuming userspace.
803 *
804 * Enter RCU idle mode right before resuming userspace. No use of RCU
805 * is permitted between this call and rcu_user_exit(). This way the
806 * CPU doesn't need to maintain the tick for RCU maintenance purposes
807 * when the CPU runs in userspace.
c0da313e
PM
808 *
809 * If you add or remove a call to rcu_user_enter(), be sure to test with
810 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
811 */
812void rcu_user_enter(void)
813{
b04db8e1 814 lockdep_assert_irqs_disabled();
d4db30af 815 rcu_eqs_enter(true);
adf5091e 816}
d1ec4c34 817#endif /* CONFIG_NO_HZ_FULL */
19dd1591 818
fd581a91
PM
819/**
820 * rcu_nmi_exit - inform RCU of exit from NMI context
821 *
822 * If we are returning from the outermost NMI handler that interrupted an
823 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
824 * to let the RCU grace-period handling know that the CPU is back to
825 * being RCU-idle.
826 *
827 * If you add or remove a call to rcu_nmi_exit(), be sure to test
828 * with CONFIG_RCU_EQS_DEBUG=y.
829 */
830void rcu_nmi_exit(void)
831{
832 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
833
834 /*
835 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
836 * (We are exiting an NMI handler, so RCU better be paying attention
837 * to us!)
838 */
839 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
840 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
841
842 /*
843 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
844 * leave it in non-RCU-idle state.
845 */
846 if (rdtp->dynticks_nmi_nesting != 1) {
dec98900 847 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
fd581a91
PM
848 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
849 rdtp->dynticks_nmi_nesting - 2);
850 return;
851 }
852
853 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dec98900 854 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
fd581a91
PM
855 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
856 rcu_dynticks_eqs_enter();
857}
858
9b2e4f18
PM
859/**
860 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
861 *
862 * Exit from an interrupt handler, which might possibly result in entering
863 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 864 * sections can occur. The caller must have disabled interrupts.
64db4cff 865 *
9b2e4f18
PM
866 * This code assumes that the idle loop never does anything that might
867 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
868 * architecture's idle loop violates this assumption, RCU will give you what
869 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
870 *
871 * Use things like work queues to work around this limitation.
872 *
873 * You have been warned.
c0da313e
PM
874 *
875 * If you add or remove a call to rcu_irq_exit(), be sure to test with
876 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 877 */
9b2e4f18 878void rcu_irq_exit(void)
64db4cff 879{
58721f5d 880 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 881
b04db8e1 882 lockdep_assert_irqs_disabled();
58721f5d
PM
883 if (rdtp->dynticks_nmi_nesting == 1)
884 rcu_prepare_for_idle();
885 rcu_nmi_exit();
886 if (rdtp->dynticks_nmi_nesting == 0)
887 rcu_dynticks_task_enter();
7c9906ca
PM
888}
889
890/*
891 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
892 *
893 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
894 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
895 */
896void rcu_irq_exit_irqson(void)
897{
898 unsigned long flags;
899
900 local_irq_save(flags);
901 rcu_irq_exit();
9b2e4f18
PM
902 local_irq_restore(flags);
903}
904
adf5091e
FW
905/*
906 * Exit an RCU extended quiescent state, which can be either the
907 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
908 *
909 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
910 * allow for the possibility of usermode upcalls messing up our count of
911 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 912 */
adf5091e 913static void rcu_eqs_exit(bool user)
9b2e4f18 914{
9b2e4f18 915 struct rcu_dynticks *rdtp;
84585aa8 916 long oldval;
9b2e4f18 917
b04db8e1 918 lockdep_assert_irqs_disabled();
c9d4b0af 919 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 920 oldval = rdtp->dynticks_nesting;
1ce46ee5 921 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30
PM
922 if (oldval) {
923 rdtp->dynticks_nesting++;
9dd238e2 924 return;
3a592405 925 }
9dd238e2
PM
926 rcu_dynticks_task_exit();
927 rcu_dynticks_eqs_exit();
928 rcu_cleanup_after_idle();
929 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
e68bbb26 930 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
9dd238e2
PM
931 WRITE_ONCE(rdtp->dynticks_nesting, 1);
932 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 933}
adf5091e
FW
934
935/**
936 * rcu_idle_exit - inform RCU that current CPU is leaving idle
937 *
938 * Exit idle mode, in other words, -enter- the mode in which RCU
939 * read-side critical sections can occur.
940 *
c0da313e
PM
941 * If you add or remove a call to rcu_idle_exit(), be sure to test with
942 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
943 */
944void rcu_idle_exit(void)
945{
c5d900bf
FW
946 unsigned long flags;
947
948 local_irq_save(flags);
cb349ca9 949 rcu_eqs_exit(false);
c5d900bf 950 local_irq_restore(flags);
adf5091e 951}
9b2e4f18 952
d1ec4c34 953#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
954/**
955 * rcu_user_exit - inform RCU that we are exiting userspace.
956 *
957 * Exit RCU idle mode while entering the kernel because it can
958 * run a RCU read side critical section anytime.
c0da313e
PM
959 *
960 * If you add or remove a call to rcu_user_exit(), be sure to test with
961 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
962 */
963void rcu_user_exit(void)
964{
91d1aa43 965 rcu_eqs_exit(1);
adf5091e 966}
d1ec4c34 967#endif /* CONFIG_NO_HZ_FULL */
19dd1591 968
64db4cff
PM
969/**
970 * rcu_nmi_enter - inform RCU of entry to NMI context
971 *
734d1680
PM
972 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
973 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
974 * that the CPU is active. This implementation permits nested NMIs, as
975 * long as the nesting level does not overflow an int. (You will probably
976 * run out of stack space first.)
c0da313e
PM
977 *
978 * If you add or remove a call to rcu_nmi_enter(), be sure to test
979 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff
PM
980 */
981void rcu_nmi_enter(void)
982{
c9d4b0af 983 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
84585aa8 984 long incby = 2;
64db4cff 985
734d1680
PM
986 /* Complain about underflow. */
987 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
988
989 /*
990 * If idle from RCU viewpoint, atomically increment ->dynticks
991 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
992 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
993 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
994 * to be in the outermost NMI handler that interrupted an RCU-idle
995 * period (observation due to Andy Lutomirski).
996 */
02a5c550 997 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 998 rcu_dynticks_eqs_exit();
734d1680
PM
999 incby = 1;
1000 }
bd2b879a
PM
1001 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1002 rdtp->dynticks_nmi_nesting,
dec98900 1003 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
fd581a91
PM
1004 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1005 rdtp->dynticks_nmi_nesting + incby);
734d1680 1006 barrier();
64db4cff
PM
1007}
1008
1009/**
9b2e4f18 1010 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 1011 *
9b2e4f18
PM
1012 * Enter an interrupt handler, which might possibly result in exiting
1013 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1014 * sections can occur. The caller must have disabled interrupts.
c0da313e 1015 *
9b2e4f18 1016 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
1017 * handler that it never exits, for example when doing upcalls to user mode!
1018 * This code assumes that the idle loop never does upcalls to user mode.
1019 * If your architecture's idle loop does do upcalls to user mode (or does
1020 * anything else that results in unbalanced calls to the irq_enter() and
1021 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1022 * But very infrequently and irreproducibly.
9b2e4f18
PM
1023 *
1024 * Use things like work queues to work around this limitation.
1025 *
1026 * You have been warned.
c0da313e
PM
1027 *
1028 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1029 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 1030 */
9b2e4f18 1031void rcu_irq_enter(void)
64db4cff 1032{
c9d4b0af 1033 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1034
b04db8e1 1035 lockdep_assert_irqs_disabled();
58721f5d
PM
1036 if (rdtp->dynticks_nmi_nesting == 0)
1037 rcu_dynticks_task_exit();
1038 rcu_nmi_enter();
1039 if (rdtp->dynticks_nmi_nesting == 1)
1040 rcu_cleanup_after_idle();
7c9906ca 1041}
734d1680 1042
7c9906ca
PM
1043/*
1044 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
1045 *
1046 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1047 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
1048 */
1049void rcu_irq_enter_irqson(void)
1050{
1051 unsigned long flags;
734d1680 1052
7c9906ca
PM
1053 local_irq_save(flags);
1054 rcu_irq_enter();
64db4cff 1055 local_irq_restore(flags);
64db4cff
PM
1056}
1057
5c173eb8
PM
1058/**
1059 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1060 *
791875d1
PM
1061 * Return true if RCU is watching the running CPU, which means that this
1062 * CPU can safely enter RCU read-side critical sections. In other words,
1063 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 1064 * or NMI handler, return true.
64db4cff 1065 */
9418fb20 1066bool notrace rcu_is_watching(void)
64db4cff 1067{
f534ed1f 1068 bool ret;
34240697 1069
46f00d18 1070 preempt_disable_notrace();
791875d1 1071 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1072 preempt_enable_notrace();
34240697 1073 return ret;
64db4cff 1074}
5c173eb8 1075EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1076
bcbfdd01
PM
1077/*
1078 * If a holdout task is actually running, request an urgent quiescent
1079 * state from its CPU. This is unsynchronized, so migrations can cause
1080 * the request to go to the wrong CPU. Which is OK, all that will happen
1081 * is that the CPU's next context switch will be a bit slower and next
1082 * time around this task will generate another request.
1083 */
1084void rcu_request_urgent_qs_task(struct task_struct *t)
1085{
1086 int cpu;
1087
1088 barrier();
1089 cpu = task_cpu(t);
1090 if (!task_curr(t))
1091 return; /* This task is not running on that CPU. */
1092 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1093}
1094
62fde6ed 1095#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1096
1097/*
1098 * Is the current CPU online? Disable preemption to avoid false positives
1099 * that could otherwise happen due to the current CPU number being sampled,
1100 * this task being preempted, its old CPU being taken offline, resuming
1101 * on some other CPU, then determining that its old CPU is now offline.
1102 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1103 * the check for rcu_scheduler_fully_active. Note also that it is OK
1104 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1105 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1106 * offline to continue to use RCU for one jiffy after marking itself
1107 * offline in the cpu_online_mask. This leniency is necessary given the
1108 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1109 * the fact that a CPU enters the scheduler after completing the teardown
1110 * of the CPU.
2036d94a 1111 *
4df83742
TG
1112 * This is also why RCU internally marks CPUs online during in the
1113 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1114 *
1115 * Disable checking if in an NMI handler because we cannot safely report
1116 * errors from NMI handlers anyway.
1117 */
1118bool rcu_lockdep_current_cpu_online(void)
1119{
2036d94a
PM
1120 struct rcu_data *rdp;
1121 struct rcu_node *rnp;
c0d6d01b
PM
1122 bool ret;
1123
1124 if (in_nmi())
f6f7ee9a 1125 return true;
c0d6d01b 1126 preempt_disable();
c9d4b0af 1127 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1128 rnp = rdp->mynode;
0aa04b05 1129 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1130 !rcu_scheduler_fully_active;
1131 preempt_enable();
1132 return ret;
1133}
1134EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1135
62fde6ed 1136#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1137
64db4cff 1138/**
9b2e4f18 1139 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1140 *
9b2e4f18
PM
1141 * If the current CPU is idle or running at a first-level (not nested)
1142 * interrupt from idle, return true. The caller must have at least
1143 * disabled preemption.
64db4cff 1144 */
62e3cb14 1145static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1146{
51a1fd30
PM
1147 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1148 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
64db4cff
PM
1149}
1150
9b9500da
PM
1151/*
1152 * We are reporting a quiescent state on behalf of some other CPU, so
1153 * it is our responsibility to check for and handle potential overflow
1154 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1155 * After all, the CPU might be in deep idle state, and thus executing no
1156 * code whatsoever.
1157 */
1158static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1159{
a32e01ee 1160 raw_lockdep_assert_held_rcu_node(rnp);
9b9500da
PM
1161 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1162 WRITE_ONCE(rdp->gpwrap, true);
1163 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1164 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1165}
1166
64db4cff
PM
1167/*
1168 * Snapshot the specified CPU's dynticks counter so that we can later
1169 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1170 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1171 */
fe5ac724 1172static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1173{
8b2f63ab 1174 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1175 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1176 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
9b9500da 1177 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1178 return 1;
7941dbde 1179 }
23a9bacd 1180 return 0;
64db4cff
PM
1181}
1182
9b9500da
PM
1183/*
1184 * Handler for the irq_work request posted when a grace period has
1185 * gone on for too long, but not yet long enough for an RCU CPU
1186 * stall warning. Set state appropriately, but just complain if
1187 * there is unexpected state on entry.
1188 */
1189static void rcu_iw_handler(struct irq_work *iwp)
1190{
1191 struct rcu_data *rdp;
1192 struct rcu_node *rnp;
1193
1194 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1195 rnp = rdp->mynode;
1196 raw_spin_lock_rcu_node(rnp);
1197 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1198 rdp->rcu_iw_gpnum = rnp->gpnum;
1199 rdp->rcu_iw_pending = false;
1200 }
1201 raw_spin_unlock_rcu_node(rnp);
1202}
1203
64db4cff
PM
1204/*
1205 * Return true if the specified CPU has passed through a quiescent
1206 * state by virtue of being in or having passed through an dynticks
1207 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1208 * for this same CPU, or by virtue of having been offline.
64db4cff 1209 */
fe5ac724 1210static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1211{
3a19b46a 1212 unsigned long jtsq;
0f9be8ca 1213 bool *rnhqp;
9226b10d 1214 bool *ruqp;
9b9500da 1215 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1216
1217 /*
1218 * If the CPU passed through or entered a dynticks idle phase with
1219 * no active irq/NMI handlers, then we can safely pretend that the CPU
1220 * already acknowledged the request to pass through a quiescent
1221 * state. Either way, that CPU cannot possibly be in an RCU
1222 * read-side critical section that started before the beginning
1223 * of the current RCU grace period.
1224 */
02a5c550 1225 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1226 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff 1227 rdp->dynticks_fqs++;
9b9500da 1228 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1229 return 1;
1230 }
1231
a82dcc76 1232 /*
3a19b46a
PM
1233 * Has this CPU encountered a cond_resched_rcu_qs() since the
1234 * beginning of the grace period? For this to be the case,
1235 * the CPU has to have noticed the current grace period. This
1236 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1237 */
f79c3ad6 1238 jtsq = jiffies_till_sched_qs;
9226b10d 1239 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1240 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1241 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1242 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1243 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
9b9500da 1244 rcu_gpnum_ovf(rnp, rdp);
3a19b46a 1245 return 1;
f79c3ad6 1246 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
9226b10d
PM
1247 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1248 smp_store_release(ruqp, true);
3a19b46a
PM
1249 }
1250
38d30b33
PM
1251 /* Check for the CPU being offline. */
1252 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1253 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76 1254 rdp->offline_fqs++;
9b9500da 1255 rcu_gpnum_ovf(rnp, rdp);
a82dcc76
PM
1256 return 1;
1257 }
65d798f0
PM
1258
1259 /*
4a81e832
PM
1260 * A CPU running for an extended time within the kernel can
1261 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1262 * even context-switching back and forth between a pair of
1263 * in-kernel CPU-bound tasks cannot advance grace periods.
1264 * So if the grace period is old enough, make the CPU pay attention.
1265 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1266 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1267 * bits can be lost, but they will be set again on the next
1268 * force-quiescent-state pass. So lost bit sets do not result
1269 * in incorrect behavior, merely in a grace period lasting
1270 * a few jiffies longer than it might otherwise. Because
1271 * there are at most four threads involved, and because the
1272 * updates are only once every few jiffies, the probability of
1273 * lossage (and thus of slight grace-period extension) is
1274 * quite low.
6193c76a 1275 */
0f9be8ca
PM
1276 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1277 if (!READ_ONCE(*rnhqp) &&
1278 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1279 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1280 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1281 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1282 smp_store_release(ruqp, true);
f79c3ad6 1283 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
6193c76a
PM
1284 }
1285
28053bc7 1286 /*
9b9500da
PM
1287 * If more than halfway to RCU CPU stall-warning time, do a
1288 * resched_cpu() to try to loosen things up a bit. Also check to
1289 * see if the CPU is getting hammered with interrupts, but only
1290 * once per grace period, just to keep the IPIs down to a dull roar.
28053bc7 1291 */
9b9500da 1292 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
28053bc7 1293 resched_cpu(rdp->cpu);
9b9500da
PM
1294 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1295 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1296 (rnp->ffmask & rdp->grpmask)) {
1297 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1298 rdp->rcu_iw_pending = true;
1299 rdp->rcu_iw_gpnum = rnp->gpnum;
1300 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1301 }
1302 }
4914950a 1303
a82dcc76 1304 return 0;
64db4cff
PM
1305}
1306
64db4cff
PM
1307static void record_gp_stall_check_time(struct rcu_state *rsp)
1308{
cb1e78cf 1309 unsigned long j = jiffies;
6193c76a 1310 unsigned long j1;
26cdfedf
PM
1311
1312 rsp->gp_start = j;
1313 smp_wmb(); /* Record start time before stall time. */
6193c76a 1314 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1315 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1316 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1317 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1318}
1319
6b50e119
PM
1320/*
1321 * Convert a ->gp_state value to a character string.
1322 */
1323static const char *gp_state_getname(short gs)
1324{
1325 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1326 return "???";
1327 return gp_state_names[gs];
1328}
1329
fb81a44b
PM
1330/*
1331 * Complain about starvation of grace-period kthread.
1332 */
1333static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1334{
1335 unsigned long gpa;
1336 unsigned long j;
1337
1338 j = jiffies;
7d0ae808 1339 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1340 if (j - gpa > 2 * HZ) {
96036c43 1341 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
81e701e4 1342 rsp->name, j - gpa,
319362c9 1343 rsp->gpnum, rsp->completed,
6b50e119
PM
1344 rsp->gp_flags,
1345 gp_state_getname(rsp->gp_state), rsp->gp_state,
96036c43
PM
1346 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1347 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
86057b80 1348 if (rsp->gp_kthread) {
d07aee2c 1349 pr_err("RCU grace-period kthread stack dump:\n");
b1adb3e2 1350 sched_show_task(rsp->gp_kthread);
86057b80
PM
1351 wake_up_process(rsp->gp_kthread);
1352 }
b1adb3e2 1353 }
64db4cff
PM
1354}
1355
b637a328 1356/*
7aa92230
PM
1357 * Dump stacks of all tasks running on stalled CPUs. First try using
1358 * NMIs, but fall back to manual remote stack tracing on architectures
1359 * that don't support NMI-based stack dumps. The NMI-triggered stack
1360 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1361 */
1362static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1363{
1364 int cpu;
1365 unsigned long flags;
1366 struct rcu_node *rnp;
1367
1368 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1369 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1370 for_each_leaf_node_possible_cpu(rnp, cpu)
1371 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1372 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1373 dump_cpu_task(cpu);
67c583a7 1374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1375 }
1376}
1377
8c7c4829
PM
1378/*
1379 * If too much time has passed in the current grace period, and if
1380 * so configured, go kick the relevant kthreads.
1381 */
1382static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1383{
1384 unsigned long j;
1385
1386 if (!rcu_kick_kthreads)
1387 return;
1388 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1389 if (time_after(jiffies, j) && rsp->gp_kthread &&
1390 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1391 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1392 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1393 wake_up_process(rsp->gp_kthread);
1394 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1395 }
1396}
1397
088e9d25
DBO
1398static inline void panic_on_rcu_stall(void)
1399{
1400 if (sysctl_panic_on_rcu_stall)
1401 panic("RCU Stall\n");
1402}
1403
6ccd2ecd 1404static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1405{
1406 int cpu;
1407 long delta;
1408 unsigned long flags;
6ccd2ecd
PM
1409 unsigned long gpa;
1410 unsigned long j;
285fe294 1411 int ndetected = 0;
64db4cff 1412 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1413 long totqlen = 0;
64db4cff 1414
8c7c4829
PM
1415 /* Kick and suppress, if so configured. */
1416 rcu_stall_kick_kthreads(rsp);
1417 if (rcu_cpu_stall_suppress)
1418 return;
1419
64db4cff
PM
1420 /* Only let one CPU complain about others per time interval. */
1421
6cf10081 1422 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1423 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1424 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1425 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1426 return;
1427 }
7d0ae808
PM
1428 WRITE_ONCE(rsp->jiffies_stall,
1429 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1431
8cdd32a9
PM
1432 /*
1433 * OK, time to rat on our buddy...
1434 * See Documentation/RCU/stallwarn.txt for info on how to debug
1435 * RCU CPU stall warnings.
1436 */
d7f3e207 1437 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1438 rsp->name);
a858af28 1439 print_cpu_stall_info_begin();
a0b6c9a7 1440 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1441 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1442 ndetected += rcu_print_task_stall(rnp);
c8020a67 1443 if (rnp->qsmask != 0) {
bc75e999
MR
1444 for_each_leaf_node_possible_cpu(rnp, cpu)
1445 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1446 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1447 ndetected++;
1448 }
1449 }
67c583a7 1450 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1451 }
a858af28 1452
a858af28 1453 print_cpu_stall_info_end();
53bb857c 1454 for_each_possible_cpu(cpu)
15fecf89
PM
1455 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1456 cpu)->cblist);
83ebe63e 1457 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1458 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1459 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1460 if (ndetected) {
b637a328 1461 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1462
1463 /* Complain about tasks blocking the grace period. */
1464 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1465 } else {
7d0ae808
PM
1466 if (READ_ONCE(rsp->gpnum) != gpnum ||
1467 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1468 pr_err("INFO: Stall ended before state dump start\n");
1469 } else {
1470 j = jiffies;
7d0ae808 1471 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1472 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1473 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1474 jiffies_till_next_fqs,
1475 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1476 /* In this case, the current CPU might be at fault. */
1477 sched_show_task(current);
1478 }
1479 }
c1dc0b9c 1480
fb81a44b
PM
1481 rcu_check_gp_kthread_starvation(rsp);
1482
088e9d25
DBO
1483 panic_on_rcu_stall();
1484
4cdfc175 1485 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1486}
1487
1488static void print_cpu_stall(struct rcu_state *rsp)
1489{
53bb857c 1490 int cpu;
64db4cff 1491 unsigned long flags;
9b9500da 1492 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1493 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1494 long totqlen = 0;
64db4cff 1495
8c7c4829
PM
1496 /* Kick and suppress, if so configured. */
1497 rcu_stall_kick_kthreads(rsp);
1498 if (rcu_cpu_stall_suppress)
1499 return;
1500
8cdd32a9
PM
1501 /*
1502 * OK, time to rat on ourselves...
1503 * See Documentation/RCU/stallwarn.txt for info on how to debug
1504 * RCU CPU stall warnings.
1505 */
d7f3e207 1506 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28 1507 print_cpu_stall_info_begin();
9b9500da 1508 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
a858af28 1509 print_cpu_stall_info(rsp, smp_processor_id());
9b9500da 1510 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1511 print_cpu_stall_info_end();
53bb857c 1512 for_each_possible_cpu(cpu)
15fecf89
PM
1513 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1514 cpu)->cblist);
83ebe63e
PM
1515 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1516 jiffies - rsp->gp_start,
1517 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1518
1519 rcu_check_gp_kthread_starvation(rsp);
1520
bc1dce51 1521 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1522
6cf10081 1523 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1524 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1525 WRITE_ONCE(rsp->jiffies_stall,
1526 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1527 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1528
088e9d25
DBO
1529 panic_on_rcu_stall();
1530
b021fe3e
PZ
1531 /*
1532 * Attempt to revive the RCU machinery by forcing a context switch.
1533 *
1534 * A context switch would normally allow the RCU state machine to make
1535 * progress and it could be we're stuck in kernel space without context
1536 * switches for an entirely unreasonable amount of time.
1537 */
1538 resched_cpu(smp_processor_id());
64db4cff
PM
1539}
1540
1541static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1542{
26cdfedf
PM
1543 unsigned long completed;
1544 unsigned long gpnum;
1545 unsigned long gps;
bad6e139
PM
1546 unsigned long j;
1547 unsigned long js;
64db4cff
PM
1548 struct rcu_node *rnp;
1549
8c7c4829
PM
1550 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1551 !rcu_gp_in_progress(rsp))
c68de209 1552 return;
8c7c4829 1553 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1554 j = jiffies;
26cdfedf
PM
1555
1556 /*
1557 * Lots of memory barriers to reject false positives.
1558 *
1559 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1560 * then rsp->gp_start, and finally rsp->completed. These values
1561 * are updated in the opposite order with memory barriers (or
1562 * equivalent) during grace-period initialization and cleanup.
1563 * Now, a false positive can occur if we get an new value of
1564 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1565 * the memory barriers, the only way that this can happen is if one
1566 * grace period ends and another starts between these two fetches.
1567 * Detect this by comparing rsp->completed with the previous fetch
1568 * from rsp->gpnum.
1569 *
1570 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1571 * and rsp->gp_start suffice to forestall false positives.
1572 */
7d0ae808 1573 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1574 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1575 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1576 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1577 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1578 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1579 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1580 if (ULONG_CMP_GE(completed, gpnum) ||
1581 ULONG_CMP_LT(j, js) ||
1582 ULONG_CMP_GE(gps, js))
1583 return; /* No stall or GP completed since entering function. */
64db4cff 1584 rnp = rdp->mynode;
c96ea7cf 1585 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1586 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1587
1588 /* We haven't checked in, so go dump stack. */
1589 print_cpu_stall(rsp);
1590
bad6e139
PM
1591 } else if (rcu_gp_in_progress(rsp) &&
1592 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1593
bad6e139 1594 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1595 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1596 }
1597}
1598
53d84e00
PM
1599/**
1600 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1601 *
1602 * Set the stall-warning timeout way off into the future, thus preventing
1603 * any RCU CPU stall-warning messages from appearing in the current set of
1604 * RCU grace periods.
1605 *
1606 * The caller must disable hard irqs.
1607 */
1608void rcu_cpu_stall_reset(void)
1609{
6ce75a23
PM
1610 struct rcu_state *rsp;
1611
1612 for_each_rcu_flavor(rsp)
7d0ae808 1613 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1614}
1615
dc35c893
PM
1616/*
1617 * Determine the value that ->completed will have at the end of the
1618 * next subsequent grace period. This is used to tag callbacks so that
1619 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1620 * been dyntick-idle for an extended period with callbacks under the
1621 * influence of RCU_FAST_NO_HZ.
1622 *
1623 * The caller must hold rnp->lock with interrupts disabled.
1624 */
1625static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1626 struct rcu_node *rnp)
1627{
a32e01ee 1628 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1629
dc35c893
PM
1630 /*
1631 * If RCU is idle, we just wait for the next grace period.
1632 * But we can only be sure that RCU is idle if we are looking
1633 * at the root rcu_node structure -- otherwise, a new grace
1634 * period might have started, but just not yet gotten around
1635 * to initializing the current non-root rcu_node structure.
1636 */
1637 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1638 return rnp->completed + 1;
1639
9036c2ff
PM
1640 /*
1641 * If the current rcu_node structure believes that RCU is
1642 * idle, and if the rcu_state structure does not yet reflect
1643 * the start of a new grace period, then the next grace period
1644 * will suffice. The memory barrier is needed to accurately
1645 * sample the rsp->gpnum, and pairs with the second lock
1646 * acquisition in rcu_gp_init(), which is augmented with
1647 * smp_mb__after_unlock_lock() for this purpose.
1648 */
1649 if (rnp->gpnum == rnp->completed) {
1650 smp_mb(); /* See above block comment. */
1651 if (READ_ONCE(rsp->gpnum) == rnp->completed)
1652 return rnp->completed + 1;
1653 }
1654
dc35c893
PM
1655 /*
1656 * Otherwise, wait for a possible partial grace period and
1657 * then the subsequent full grace period.
1658 */
1659 return rnp->completed + 2;
1660}
1661
41e80595
PM
1662/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1663static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1664 unsigned long c, const char *s)
0446be48
PM
1665{
1666 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1667 rnp->completed, c, rnp->level,
1668 rnp->grplo, rnp->grphi, s);
1669}
1670
1671/*
41e80595 1672 * Start the specified grace period, as needed to handle newly arrived
0446be48 1673 * callbacks. The required future grace periods are recorded in each
41e80595 1674 * rcu_node structure's ->need_future_gp[] field. Returns true if there
48a7639c 1675 * is reason to awaken the grace-period kthread.
0446be48 1676 *
d5cd9685
PM
1677 * The caller must hold the specified rcu_node structure's ->lock, which
1678 * is why the caller is responsible for waking the grace-period kthread.
0446be48 1679 */
41e80595
PM
1680static bool rcu_start_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1681 unsigned long c)
0446be48 1682{
48a7639c 1683 bool ret = false;
d5cd9685
PM
1684 struct rcu_state *rsp = rdp->rsp;
1685 struct rcu_node *rnp_root = rcu_get_root(rsp);
0446be48 1686
a32e01ee 1687 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1688
41e80595
PM
1689 /* If the specified GP is already known needed, return to caller. */
1690 trace_rcu_this_gp(rnp, rdp, c, TPS("Startleaf"));
c91a8675 1691 if (need_future_gp_element(rnp, c)) {
41e80595 1692 trace_rcu_this_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1693 goto out;
0446be48
PM
1694 }
1695
1696 /*
825a9911
PM
1697 * If this rcu_node structure believes that a grace period is in
1698 * progress, then we must wait for the one following, which is in
1699 * "c". Because our request will be noticed at the end of the
1700 * current grace period, we don't need to explicitly start one.
0446be48 1701 */
825a9911 1702 if (rnp->gpnum != rnp->completed) {
6f576e28 1703 need_future_gp_element(rnp, c) = true;
41e80595 1704 trace_rcu_this_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1705 goto out;
0446be48
PM
1706 }
1707
1708 /*
1709 * There might be no grace period in progress. If we don't already
1710 * hold it, acquire the root rcu_node structure's lock in order to
1711 * start one (if needed).
1712 */
2a67e741
PZ
1713 if (rnp != rnp_root)
1714 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1715
1716 /*
1717 * Get a new grace-period number. If there really is no grace
1718 * period in progress, it will be smaller than the one we obtained
15fecf89 1719 * earlier. Adjust callbacks as needed.
0446be48 1720 */
d5cd9685 1721 c = rcu_cbs_completed(rsp, rnp_root);
15fecf89
PM
1722 if (!rcu_is_nocb_cpu(rdp->cpu))
1723 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1724
1725 /*
1726 * If the needed for the required grace period is already
1727 * recorded, trace and leave.
1728 */
c91a8675 1729 if (need_future_gp_element(rnp_root, c)) {
41e80595 1730 trace_rcu_this_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1731 goto unlock_out;
1732 }
1733
1734 /* Record the need for the future grace period. */
6f576e28 1735 need_future_gp_element(rnp_root, c) = true;
0446be48
PM
1736
1737 /* If a grace period is not already in progress, start one. */
1738 if (rnp_root->gpnum != rnp_root->completed) {
41e80595 1739 trace_rcu_this_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1740 } else {
41e80595 1741 trace_rcu_this_gp(rnp, rdp, c, TPS("Startedroot"));
d5cd9685
PM
1742 if (!rsp->gp_kthread)
1743 goto unlock_out; /* No grace-period kthread yet! */
1744 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
1745 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
1746 TPS("newreq"));
1747 ret = true; /* Caller must wake GP kthread. */
0446be48
PM
1748 }
1749unlock_out:
1750 if (rnp != rnp_root)
67c583a7 1751 raw_spin_unlock_rcu_node(rnp_root);
48a7639c 1752out:
48a7639c 1753 return ret;
0446be48
PM
1754}
1755
1756/*
1757 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1758 * whether any additional grace periods have been requested.
0446be48 1759 */
fb31340f 1760static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
0446be48 1761{
a508aa59 1762 unsigned long c = rnp->completed;
fb31340f 1763 bool needmore;
0446be48
PM
1764 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1765
6f576e28 1766 need_future_gp_element(rnp, c) = false;
fb31340f 1767 needmore = need_any_future_gp(rnp);
41e80595
PM
1768 trace_rcu_this_gp(rnp, rdp, c,
1769 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1770 return needmore;
1771}
1772
48a7639c
PM
1773/*
1774 * Awaken the grace-period kthread for the specified flavor of RCU.
1775 * Don't do a self-awaken, and don't bother awakening when there is
1776 * nothing for the grace-period kthread to do (as in several CPUs
1777 * raced to awaken, and we lost), and finally don't try to awaken
1778 * a kthread that has not yet been created.
1779 */
1780static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1781{
1782 if (current == rsp->gp_kthread ||
7d0ae808 1783 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1784 !rsp->gp_kthread)
1785 return;
abedf8e2 1786 swake_up(&rsp->gp_wq);
48a7639c
PM
1787}
1788
dc35c893
PM
1789/*
1790 * If there is room, assign a ->completed number to any callbacks on
1791 * this CPU that have not already been assigned. Also accelerate any
1792 * callbacks that were previously assigned a ->completed number that has
1793 * since proven to be too conservative, which can happen if callbacks get
1794 * assigned a ->completed number while RCU is idle, but with reference to
1795 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1796 * not hurt to call it repeatedly. Returns an flag saying that we should
1797 * awaken the RCU grace-period kthread.
dc35c893
PM
1798 *
1799 * The caller must hold rnp->lock with interrupts disabled.
1800 */
48a7639c 1801static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1802 struct rcu_data *rdp)
1803{
41e80595 1804 unsigned long c;
15fecf89 1805 bool ret = false;
dc35c893 1806
a32e01ee 1807 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1808
15fecf89
PM
1809 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1810 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1811 return false;
dc35c893
PM
1812
1813 /*
15fecf89
PM
1814 * Callbacks are often registered with incomplete grace-period
1815 * information. Something about the fact that getting exact
1816 * information requires acquiring a global lock... RCU therefore
1817 * makes a conservative estimate of the grace period number at which
1818 * a given callback will become ready to invoke. The following
1819 * code checks this estimate and improves it when possible, thus
1820 * accelerating callback invocation to an earlier grace-period
1821 * number.
dc35c893 1822 */
41e80595
PM
1823 c = rcu_cbs_completed(rsp, rnp);
1824 if (rcu_segcblist_accelerate(&rdp->cblist, c))
1825 ret = rcu_start_this_gp(rnp, rdp, c);
6d4b418c
PM
1826
1827 /* Trace depending on how much we were able to accelerate. */
15fecf89 1828 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1829 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1830 else
f7f7bac9 1831 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1832 return ret;
dc35c893
PM
1833}
1834
1835/*
1836 * Move any callbacks whose grace period has completed to the
1837 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1838 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1839 * sublist. This function is idempotent, so it does not hurt to
1840 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1841 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1842 *
1843 * The caller must hold rnp->lock with interrupts disabled.
1844 */
48a7639c 1845static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1846 struct rcu_data *rdp)
1847{
a32e01ee 1848 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1849
15fecf89
PM
1850 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1851 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1852 return false;
dc35c893
PM
1853
1854 /*
1855 * Find all callbacks whose ->completed numbers indicate that they
1856 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1857 */
15fecf89 1858 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1859
1860 /* Classify any remaining callbacks. */
48a7639c 1861 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1862}
1863
d09b62df 1864/*
ba9fbe95
PM
1865 * Update CPU-local rcu_data state to record the beginnings and ends of
1866 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1867 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1868 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1869 */
48a7639c
PM
1870static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1871 struct rcu_data *rdp)
d09b62df 1872{
48a7639c 1873 bool ret;
3563a438 1874 bool need_gp;
48a7639c 1875
a32e01ee 1876 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1877
ba9fbe95 1878 /* Handle the ends of any preceding grace periods first. */
e3663b10 1879 if (rdp->completed == rnp->completed &&
7d0ae808 1880 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1881
ba9fbe95 1882 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1883 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1884
dc35c893
PM
1885 } else {
1886
1887 /* Advance callbacks. */
48a7639c 1888 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1889
1890 /* Remember that we saw this grace-period completion. */
1891 rdp->completed = rnp->completed;
f7f7bac9 1892 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1893 }
398ebe60 1894
7d0ae808 1895 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1896 /*
1897 * If the current grace period is waiting for this CPU,
1898 * set up to detect a quiescent state, otherwise don't
1899 * go looking for one.
1900 */
1901 rdp->gpnum = rnp->gpnum;
f7f7bac9 1902 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1903 need_gp = !!(rnp->qsmask & rdp->grpmask);
1904 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1905 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1906 rdp->core_needs_qs = need_gp;
6eaef633 1907 zero_cpu_stall_ticks(rdp);
7d0ae808 1908 WRITE_ONCE(rdp->gpwrap, false);
9b9500da 1909 rcu_gpnum_ovf(rnp, rdp);
6eaef633 1910 }
48a7639c 1911 return ret;
6eaef633
PM
1912}
1913
d34ea322 1914static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1915{
1916 unsigned long flags;
48a7639c 1917 bool needwake;
6eaef633
PM
1918 struct rcu_node *rnp;
1919
1920 local_irq_save(flags);
1921 rnp = rdp->mynode;
7d0ae808
PM
1922 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1923 rdp->completed == READ_ONCE(rnp->completed) &&
1924 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1925 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1926 local_irq_restore(flags);
1927 return;
1928 }
48a7639c 1929 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1930 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1931 if (needwake)
1932 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1933}
1934
0f41c0dd
PM
1935static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1936{
1937 if (delay > 0 &&
1938 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1939 schedule_timeout_uninterruptible(delay);
1940}
1941
b3dbec76 1942/*
45fed3e7 1943 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1944 */
45fed3e7 1945static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1946{
0aa04b05 1947 unsigned long oldmask;
b3dbec76 1948 struct rcu_data *rdp;
7fdefc10 1949 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1950
7d0ae808 1951 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1952 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1953 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1954 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1955 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1956 return false;
f7be8209 1957 }
7d0ae808 1958 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1959
f7be8209
PM
1960 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1961 /*
1962 * Grace period already in progress, don't start another.
1963 * Not supposed to be able to happen.
1964 */
67c583a7 1965 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1966 return false;
7fdefc10
PM
1967 }
1968
7fdefc10 1969 /* Advance to a new grace period and initialize state. */
26cdfedf 1970 record_gp_stall_check_time(rsp);
765a3f4f
PM
1971 /* Record GP times before starting GP, hence smp_store_release(). */
1972 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1973 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1974 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1975
0aa04b05
PM
1976 /*
1977 * Apply per-leaf buffered online and offline operations to the
1978 * rcu_node tree. Note that this new grace period need not wait
1979 * for subsequent online CPUs, and that quiescent-state forcing
1980 * will handle subsequent offline CPUs.
1981 */
1982 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1983 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1984 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1985 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1986 !rnp->wait_blkd_tasks) {
1987 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1988 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
1989 continue;
1990 }
1991
1992 /* Record old state, apply changes to ->qsmaskinit field. */
1993 oldmask = rnp->qsmaskinit;
1994 rnp->qsmaskinit = rnp->qsmaskinitnext;
1995
1996 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1997 if (!oldmask != !rnp->qsmaskinit) {
1998 if (!oldmask) /* First online CPU for this rcu_node. */
1999 rcu_init_new_rnp(rnp);
2000 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2001 rnp->wait_blkd_tasks = true;
2002 else /* Last offline CPU and can propagate. */
2003 rcu_cleanup_dead_rnp(rnp);
2004 }
2005
2006 /*
2007 * If all waited-on tasks from prior grace period are
2008 * done, and if all this rcu_node structure's CPUs are
2009 * still offline, propagate up the rcu_node tree and
2010 * clear ->wait_blkd_tasks. Otherwise, if one of this
2011 * rcu_node structure's CPUs has since come back online,
2012 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2013 * checks for this, so just call it unconditionally).
2014 */
2015 if (rnp->wait_blkd_tasks &&
2016 (!rcu_preempt_has_tasks(rnp) ||
2017 rnp->qsmaskinit)) {
2018 rnp->wait_blkd_tasks = false;
2019 rcu_cleanup_dead_rnp(rnp);
2020 }
2021
67c583a7 2022 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2023 }
7fdefc10
PM
2024
2025 /*
2026 * Set the quiescent-state-needed bits in all the rcu_node
2027 * structures for all currently online CPUs in breadth-first order,
2028 * starting from the root rcu_node structure, relying on the layout
2029 * of the tree within the rsp->node[] array. Note that other CPUs
2030 * will access only the leaves of the hierarchy, thus seeing that no
2031 * grace period is in progress, at least until the corresponding
590d1757 2032 * leaf node has been initialized.
7fdefc10
PM
2033 *
2034 * The grace period cannot complete until the initialization
2035 * process finishes, because this kthread handles both.
2036 */
2037 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2038 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2039 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2040 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2041 rcu_preempt_check_blocked_tasks(rnp);
2042 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2043 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2044 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2045 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2046 if (rnp == rdp->mynode)
48a7639c 2047 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2048 rcu_preempt_boost_start_gp(rnp);
2049 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2050 rnp->level, rnp->grplo,
2051 rnp->grphi, rnp->qsmask);
67c583a7 2052 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2053 cond_resched_rcu_qs();
7d0ae808 2054 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2055 }
b3dbec76 2056
45fed3e7 2057 return true;
7fdefc10 2058}
b3dbec76 2059
b9a425cf 2060/*
d5374226
LR
2061 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2062 * time.
b9a425cf
PM
2063 */
2064static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2065{
2066 struct rcu_node *rnp = rcu_get_root(rsp);
2067
2068 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2069 *gfp = READ_ONCE(rsp->gp_flags);
2070 if (*gfp & RCU_GP_FLAG_FQS)
2071 return true;
2072
2073 /* The current grace period has completed. */
2074 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2075 return true;
2076
2077 return false;
2078}
2079
4cdfc175
PM
2080/*
2081 * Do one round of quiescent-state forcing.
2082 */
77f81fe0 2083static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2084{
4cdfc175
PM
2085 struct rcu_node *rnp = rcu_get_root(rsp);
2086
7d0ae808 2087 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2088 rsp->n_force_qs++;
77f81fe0 2089 if (first_time) {
4cdfc175 2090 /* Collect dyntick-idle snapshots. */
fe5ac724 2091 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2092 } else {
2093 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2094 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2095 }
2096 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2097 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2098 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2099 WRITE_ONCE(rsp->gp_flags,
2100 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2101 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2102 }
4cdfc175
PM
2103}
2104
7fdefc10
PM
2105/*
2106 * Clean up after the old grace period.
2107 */
4cdfc175 2108static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2109{
2110 unsigned long gp_duration;
48a7639c 2111 bool needgp = false;
7fdefc10
PM
2112 struct rcu_data *rdp;
2113 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2114 struct swait_queue_head *sq;
b3dbec76 2115
7d0ae808 2116 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2117 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2118 gp_duration = jiffies - rsp->gp_start;
2119 if (gp_duration > rsp->gp_max)
2120 rsp->gp_max = gp_duration;
b3dbec76 2121
7fdefc10
PM
2122 /*
2123 * We know the grace period is complete, but to everyone else
2124 * it appears to still be ongoing. But it is also the case
2125 * that to everyone else it looks like there is nothing that
2126 * they can do to advance the grace period. It is therefore
2127 * safe for us to drop the lock in order to mark the grace
2128 * period as completed in all of the rcu_node structures.
7fdefc10 2129 */
67c583a7 2130 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2131
5d4b8659
PM
2132 /*
2133 * Propagate new ->completed value to rcu_node structures so
2134 * that other CPUs don't have to wait until the start of the next
2135 * grace period to process their callbacks. This also avoids
2136 * some nasty RCU grace-period initialization races by forcing
2137 * the end of the current grace period to be completely recorded in
2138 * all of the rcu_node structures before the beginning of the next
2139 * grace period is recorded in any of the rcu_node structures.
2140 */
2141 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2142 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2143 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2144 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2145 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2146 rdp = this_cpu_ptr(rsp->rda);
2147 if (rnp == rdp->mynode)
48a7639c 2148 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2149 /* smp_mb() provided by prior unlock-lock pair. */
fb31340f 2150 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
065bb78c 2151 sq = rcu_nocb_gp_get(rnp);
67c583a7 2152 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2153 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2154 cond_resched_rcu_qs();
7d0ae808 2155 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2156 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2157 }
5d4b8659 2158 rnp = rcu_get_root(rsp);
2a67e741 2159 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
7fdefc10 2160
765a3f4f 2161 /* Declare grace period done. */
7d0ae808 2162 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2163 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2164 rsp->gp_state = RCU_GP_IDLE;
fb31340f 2165 /* Check for GP requests since above loop. */
5d4b8659 2166 rdp = this_cpu_ptr(rsp->rda);
fb31340f 2167 if (need_any_future_gp(rnp)) {
41e80595
PM
2168 trace_rcu_this_gp(rnp, rdp, rsp->completed - 1,
2169 TPS("CleanupMore"));
fb31340f
PM
2170 needgp = true;
2171 }
48a7639c
PM
2172 /* Advance CBs to reduce false positives below. */
2173 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2174 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2175 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2176 trace_rcu_grace_period(rsp->name,
7d0ae808 2177 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2178 TPS("newreq"));
2179 }
a824a287 2180 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
67c583a7 2181 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2182}
2183
2184/*
2185 * Body of kthread that handles grace periods.
2186 */
2187static int __noreturn rcu_gp_kthread(void *arg)
2188{
77f81fe0 2189 bool first_gp_fqs;
88d6df61 2190 int gf;
d40011f6 2191 unsigned long j;
4cdfc175 2192 int ret;
7fdefc10
PM
2193 struct rcu_state *rsp = arg;
2194 struct rcu_node *rnp = rcu_get_root(rsp);
2195
5fe0a562
PM
2196 /* Check for early-boot work. */
2197 raw_spin_lock_irq_rcu_node(rnp);
2198 if (need_any_future_gp(rnp))
2199 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2200 raw_spin_unlock_irq_rcu_node(rnp);
2201
5871968d 2202 rcu_bind_gp_kthread();
7fdefc10
PM
2203 for (;;) {
2204
2205 /* Handle grace-period start. */
2206 for (;;) {
63c4db78 2207 trace_rcu_grace_period(rsp->name,
7d0ae808 2208 READ_ONCE(rsp->gpnum),
63c4db78 2209 TPS("reqwait"));
afea227f 2210 rsp->gp_state = RCU_GP_WAIT_GPS;
d5374226
LR
2211 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2212 RCU_GP_FLAG_INIT);
319362c9 2213 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2214 /* Locking provides needed memory barrier. */
f7be8209 2215 if (rcu_gp_init(rsp))
7fdefc10 2216 break;
bde6c3aa 2217 cond_resched_rcu_qs();
7d0ae808 2218 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2219 WARN_ON(signal_pending(current));
63c4db78 2220 trace_rcu_grace_period(rsp->name,
7d0ae808 2221 READ_ONCE(rsp->gpnum),
63c4db78 2222 TPS("reqwaitsig"));
7fdefc10 2223 }
cabc49c1 2224
4cdfc175 2225 /* Handle quiescent-state forcing. */
77f81fe0 2226 first_gp_fqs = true;
d40011f6
PM
2227 j = jiffies_till_first_fqs;
2228 if (j > HZ) {
2229 j = HZ;
2230 jiffies_till_first_fqs = HZ;
2231 }
88d6df61 2232 ret = 0;
cabc49c1 2233 for (;;) {
8c7c4829 2234 if (!ret) {
88d6df61 2235 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2236 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2237 jiffies + 3 * j);
2238 }
63c4db78 2239 trace_rcu_grace_period(rsp->name,
7d0ae808 2240 READ_ONCE(rsp->gpnum),
63c4db78 2241 TPS("fqswait"));
afea227f 2242 rsp->gp_state = RCU_GP_WAIT_FQS;
d5374226 2243 ret = swait_event_idle_timeout(rsp->gp_wq,
b9a425cf 2244 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2245 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2246 /* Locking provides needed memory barriers. */
4cdfc175 2247 /* If grace period done, leave loop. */
7d0ae808 2248 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2249 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2250 break;
4cdfc175 2251 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2252 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2253 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2254 trace_rcu_grace_period(rsp->name,
7d0ae808 2255 READ_ONCE(rsp->gpnum),
63c4db78 2256 TPS("fqsstart"));
77f81fe0
PM
2257 rcu_gp_fqs(rsp, first_gp_fqs);
2258 first_gp_fqs = false;
63c4db78 2259 trace_rcu_grace_period(rsp->name,
7d0ae808 2260 READ_ONCE(rsp->gpnum),
63c4db78 2261 TPS("fqsend"));
bde6c3aa 2262 cond_resched_rcu_qs();
7d0ae808 2263 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2264 ret = 0; /* Force full wait till next FQS. */
2265 j = jiffies_till_next_fqs;
2266 if (j > HZ) {
2267 j = HZ;
2268 jiffies_till_next_fqs = HZ;
2269 } else if (j < 1) {
2270 j = 1;
2271 jiffies_till_next_fqs = 1;
2272 }
4cdfc175
PM
2273 } else {
2274 /* Deal with stray signal. */
bde6c3aa 2275 cond_resched_rcu_qs();
7d0ae808 2276 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2277 WARN_ON(signal_pending(current));
63c4db78 2278 trace_rcu_grace_period(rsp->name,
7d0ae808 2279 READ_ONCE(rsp->gpnum),
63c4db78 2280 TPS("fqswaitsig"));
fcfd0a23
PM
2281 ret = 1; /* Keep old FQS timing. */
2282 j = jiffies;
2283 if (time_after(jiffies, rsp->jiffies_force_qs))
2284 j = 1;
2285 else
2286 j = rsp->jiffies_force_qs - j;
d40011f6 2287 }
cabc49c1 2288 }
4cdfc175
PM
2289
2290 /* Handle grace-period end. */
319362c9 2291 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2292 rcu_gp_cleanup(rsp);
319362c9 2293 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2294 }
b3dbec76
PM
2295}
2296
f41d911f 2297/*
8994515c
PM
2298 * Report a full set of quiescent states to the specified rcu_state data
2299 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2300 * kthread if another grace period is required. Whether we wake
2301 * the grace-period kthread or it awakens itself for the next round
2302 * of quiescent-state forcing, that kthread will clean up after the
2303 * just-completed grace period. Note that the caller must hold rnp->lock,
2304 * which is released before return.
f41d911f 2305 */
d3f6bad3 2306static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2307 __releases(rcu_get_root(rsp)->lock)
f41d911f 2308{
a32e01ee 2309 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
fc2219d4 2310 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2311 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2312 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2313 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2314}
2315
64db4cff 2316/*
d3f6bad3
PM
2317 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2318 * Allows quiescent states for a group of CPUs to be reported at one go
2319 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2320 * must be represented by the same rcu_node structure (which need not be a
2321 * leaf rcu_node structure, though it often will be). The gps parameter
2322 * is the grace-period snapshot, which means that the quiescent states
2323 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2324 * must be held upon entry, and it is released before return.
64db4cff
PM
2325 */
2326static void
d3f6bad3 2327rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2328 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2329 __releases(rnp->lock)
2330{
654e9533 2331 unsigned long oldmask = 0;
28ecd580
PM
2332 struct rcu_node *rnp_c;
2333
a32e01ee 2334 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 2335
64db4cff
PM
2336 /* Walk up the rcu_node hierarchy. */
2337 for (;;) {
654e9533 2338 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2339
654e9533
PM
2340 /*
2341 * Our bit has already been cleared, or the
2342 * relevant grace period is already over, so done.
2343 */
67c583a7 2344 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2345 return;
2346 }
654e9533 2347 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2dee9404
PM
2348 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2349 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2350 rnp->qsmask &= ~mask;
d4c08f2a
PM
2351 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2352 mask, rnp->qsmask, rnp->level,
2353 rnp->grplo, rnp->grphi,
2354 !!rnp->gp_tasks);
27f4d280 2355 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2356
2357 /* Other bits still set at this level, so done. */
67c583a7 2358 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2359 return;
2360 }
2361 mask = rnp->grpmask;
2362 if (rnp->parent == NULL) {
2363
2364 /* No more levels. Exit loop holding root lock. */
2365
2366 break;
2367 }
67c583a7 2368 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2369 rnp_c = rnp;
64db4cff 2370 rnp = rnp->parent;
2a67e741 2371 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2372 oldmask = rnp_c->qsmask;
64db4cff
PM
2373 }
2374
2375 /*
2376 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2377 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2378 * to clean up and start the next grace period if one is needed.
64db4cff 2379 */
d3f6bad3 2380 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2381}
2382
cc99a310
PM
2383/*
2384 * Record a quiescent state for all tasks that were previously queued
2385 * on the specified rcu_node structure and that were blocking the current
2386 * RCU grace period. The caller must hold the specified rnp->lock with
2387 * irqs disabled, and this lock is released upon return, but irqs remain
2388 * disabled.
2389 */
0aa04b05 2390static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2391 struct rcu_node *rnp, unsigned long flags)
2392 __releases(rnp->lock)
2393{
654e9533 2394 unsigned long gps;
cc99a310
PM
2395 unsigned long mask;
2396 struct rcu_node *rnp_p;
2397
a32e01ee 2398 raw_lockdep_assert_held_rcu_node(rnp);
a77da14c
PM
2399 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2400 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2402 return; /* Still need more quiescent states! */
2403 }
2404
2405 rnp_p = rnp->parent;
2406 if (rnp_p == NULL) {
2407 /*
a77da14c
PM
2408 * Only one rcu_node structure in the tree, so don't
2409 * try to report up to its nonexistent parent!
cc99a310
PM
2410 */
2411 rcu_report_qs_rsp(rsp, flags);
2412 return;
2413 }
2414
654e9533
PM
2415 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2416 gps = rnp->gpnum;
cc99a310 2417 mask = rnp->grpmask;
67c583a7 2418 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2419 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2420 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2421}
2422
64db4cff 2423/*
d3f6bad3 2424 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2425 * structure. This must be called from the specified CPU.
64db4cff
PM
2426 */
2427static void
d7d6a11e 2428rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2429{
2430 unsigned long flags;
2431 unsigned long mask;
48a7639c 2432 bool needwake;
64db4cff
PM
2433 struct rcu_node *rnp;
2434
2435 rnp = rdp->mynode;
2a67e741 2436 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2437 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2438 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2439
2440 /*
e4cc1f22
PM
2441 * The grace period in which this quiescent state was
2442 * recorded has ended, so don't report it upwards.
2443 * We will instead need a new quiescent state that lies
2444 * within the current grace period.
64db4cff 2445 */
5b74c458 2446 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2447 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2448 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2449 return;
2450 }
2451 mask = rdp->grpmask;
2452 if ((rnp->qsmask & mask) == 0) {
67c583a7 2453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2454 } else {
bb53e416 2455 rdp->core_needs_qs = false;
64db4cff
PM
2456
2457 /*
2458 * This GP can't end until cpu checks in, so all of our
2459 * callbacks can be processed during the next GP.
2460 */
48a7639c 2461 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2462
654e9533
PM
2463 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2464 /* ^^^ Released rnp->lock */
48a7639c
PM
2465 if (needwake)
2466 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2467 }
2468}
2469
2470/*
2471 * Check to see if there is a new grace period of which this CPU
2472 * is not yet aware, and if so, set up local rcu_data state for it.
2473 * Otherwise, see if this CPU has just passed through its first
2474 * quiescent state for this grace period, and record that fact if so.
2475 */
2476static void
2477rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2478{
05eb552b
PM
2479 /* Check for grace-period ends and beginnings. */
2480 note_gp_changes(rsp, rdp);
64db4cff
PM
2481
2482 /*
2483 * Does this CPU still need to do its part for current grace period?
2484 * If no, return and let the other CPUs do their part as well.
2485 */
97c668b8 2486 if (!rdp->core_needs_qs)
64db4cff
PM
2487 return;
2488
2489 /*
2490 * Was there a quiescent state since the beginning of the grace
2491 * period? If no, then exit and wait for the next call.
2492 */
3a19b46a 2493 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2494 return;
2495
d3f6bad3
PM
2496 /*
2497 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2498 * judge of that).
2499 */
d7d6a11e 2500 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2501}
2502
b1420f1c
PM
2503/*
2504 * Trace the fact that this CPU is going offline.
2505 */
2506static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2507{
88a4976d
PM
2508 RCU_TRACE(unsigned long mask;)
2509 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2510 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2511
ea46351c
PM
2512 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2513 return;
2514
88a4976d 2515 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2516 trace_rcu_grace_period(rsp->name,
2517 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2518 TPS("cpuofl"));
64db4cff
PM
2519}
2520
8af3a5e7
PM
2521/*
2522 * All CPUs for the specified rcu_node structure have gone offline,
2523 * and all tasks that were preempted within an RCU read-side critical
2524 * section while running on one of those CPUs have since exited their RCU
2525 * read-side critical section. Some other CPU is reporting this fact with
2526 * the specified rcu_node structure's ->lock held and interrupts disabled.
2527 * This function therefore goes up the tree of rcu_node structures,
2528 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2529 * the leaf rcu_node structure's ->qsmaskinit field has already been
2530 * updated
2531 *
2532 * This function does check that the specified rcu_node structure has
2533 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2534 * prematurely. That said, invoking it after the fact will cost you
2535 * a needless lock acquisition. So once it has done its work, don't
2536 * invoke it again.
2537 */
2538static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2539{
2540 long mask;
2541 struct rcu_node *rnp = rnp_leaf;
2542
a32e01ee 2543 raw_lockdep_assert_held_rcu_node(rnp);
ea46351c
PM
2544 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2545 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2546 return;
2547 for (;;) {
2548 mask = rnp->grpmask;
2549 rnp = rnp->parent;
2550 if (!rnp)
2551 break;
2a67e741 2552 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2553 rnp->qsmaskinit &= ~mask;
0aa04b05 2554 rnp->qsmask &= ~mask;
8af3a5e7 2555 if (rnp->qsmaskinit) {
67c583a7
BF
2556 raw_spin_unlock_rcu_node(rnp);
2557 /* irqs remain disabled. */
8af3a5e7
PM
2558 return;
2559 }
67c583a7 2560 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2561 }
2562}
2563
64db4cff 2564/*
e5601400 2565 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2566 * this fact from process context. Do the remainder of the cleanup.
2567 * There can only be one CPU hotplug operation at a time, so no need for
2568 * explicit locking.
64db4cff 2569 */
e5601400 2570static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2571{
e5601400 2572 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2573 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2574
ea46351c
PM
2575 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2576 return;
2577
2036d94a 2578 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2579 rcu_boost_kthread_setaffinity(rnp, -1);
64db4cff
PM
2580}
2581
64db4cff
PM
2582/*
2583 * Invoke any RCU callbacks that have made it to the end of their grace
2584 * period. Thottle as specified by rdp->blimit.
2585 */
37c72e56 2586static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2587{
2588 unsigned long flags;
15fecf89
PM
2589 struct rcu_head *rhp;
2590 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2591 long bl, count;
64db4cff 2592
dc35c893 2593 /* If no callbacks are ready, just return. */
15fecf89
PM
2594 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2595 trace_rcu_batch_start(rsp->name,
2596 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2597 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2598 trace_rcu_batch_end(rsp->name, 0,
2599 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2600 need_resched(), is_idle_task(current),
2601 rcu_is_callbacks_kthread());
64db4cff 2602 return;
29c00b4a 2603 }
64db4cff
PM
2604
2605 /*
2606 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2607 * races with call_rcu() from interrupt handlers. Leave the
2608 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2609 */
2610 local_irq_save(flags);
8146c4e2 2611 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2612 bl = rdp->blimit;
15fecf89
PM
2613 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2614 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2615 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2616 local_irq_restore(flags);
2617
2618 /* Invoke callbacks. */
15fecf89
PM
2619 rhp = rcu_cblist_dequeue(&rcl);
2620 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2621 debug_rcu_head_unqueue(rhp);
2622 if (__rcu_reclaim(rsp->name, rhp))
2623 rcu_cblist_dequeued_lazy(&rcl);
2624 /*
2625 * Stop only if limit reached and CPU has something to do.
2626 * Note: The rcl structure counts down from zero.
2627 */
4b27f20b 2628 if (-rcl.len >= bl &&
dff1672d
PM
2629 (need_resched() ||
2630 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2631 break;
2632 }
2633
2634 local_irq_save(flags);
4b27f20b 2635 count = -rcl.len;
8ef0f37e
PM
2636 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2637 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2638
15fecf89
PM
2639 /* Update counts and requeue any remaining callbacks. */
2640 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2641 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2642 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2643
2644 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2645 count = rcu_segcblist_n_cbs(&rdp->cblist);
2646 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2647 rdp->blimit = blimit;
2648
37c72e56 2649 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2650 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2651 rdp->qlen_last_fqs_check = 0;
2652 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2653 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2654 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2655
2656 /*
2657 * The following usually indicates a double call_rcu(). To track
2658 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2659 */
15fecf89 2660 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2661
64db4cff
PM
2662 local_irq_restore(flags);
2663
e0f23060 2664 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2665 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2666 invoke_rcu_core();
64db4cff
PM
2667}
2668
2669/*
2670 * Check to see if this CPU is in a non-context-switch quiescent state
2671 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2672 * Also schedule RCU core processing.
64db4cff 2673 *
9b2e4f18 2674 * This function must be called from hardirq context. It is normally
5403d367 2675 * invoked from the scheduling-clock interrupt.
64db4cff 2676 */
c3377c2d 2677void rcu_check_callbacks(int user)
64db4cff 2678{
f7f7bac9 2679 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2680 increment_cpu_stall_ticks();
9b2e4f18 2681 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2682
2683 /*
2684 * Get here if this CPU took its interrupt from user
2685 * mode or from the idle loop, and if this is not a
2686 * nested interrupt. In this case, the CPU is in
d6714c22 2687 * a quiescent state, so note it.
64db4cff
PM
2688 *
2689 * No memory barrier is required here because both
d6714c22
PM
2690 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2691 * variables that other CPUs neither access nor modify,
2692 * at least not while the corresponding CPU is online.
64db4cff
PM
2693 */
2694
284a8c93
PM
2695 rcu_sched_qs();
2696 rcu_bh_qs();
64db4cff
PM
2697
2698 } else if (!in_softirq()) {
2699
2700 /*
2701 * Get here if this CPU did not take its interrupt from
2702 * softirq, in other words, if it is not interrupting
2703 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2704 * critical section, so note it.
64db4cff
PM
2705 */
2706
284a8c93 2707 rcu_bh_qs();
64db4cff 2708 }
86aea0e6 2709 rcu_preempt_check_callbacks();
e3950ecd 2710 if (rcu_pending())
a46e0899 2711 invoke_rcu_core();
8315f422
PM
2712 if (user)
2713 rcu_note_voluntary_context_switch(current);
f7f7bac9 2714 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2715}
2716
64db4cff
PM
2717/*
2718 * Scan the leaf rcu_node structures, processing dyntick state for any that
2719 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2720 * Also initiate boosting for any threads blocked on the root rcu_node.
2721 *
ee47eb9f 2722 * The caller must have suppressed start of new grace periods.
64db4cff 2723 */
fe5ac724 2724static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2725{
64db4cff
PM
2726 int cpu;
2727 unsigned long flags;
2728 unsigned long mask;
a0b6c9a7 2729 struct rcu_node *rnp;
64db4cff 2730
a0b6c9a7 2731 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2732 cond_resched_rcu_qs();
64db4cff 2733 mask = 0;
2a67e741 2734 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2735 if (rnp->qsmask == 0) {
a77da14c
PM
2736 if (rcu_state_p == &rcu_sched_state ||
2737 rsp != rcu_state_p ||
2738 rcu_preempt_blocked_readers_cgp(rnp)) {
2739 /*
2740 * No point in scanning bits because they
2741 * are all zero. But we might need to
2742 * priority-boost blocked readers.
2743 */
2744 rcu_initiate_boost(rnp, flags);
2745 /* rcu_initiate_boost() releases rnp->lock */
2746 continue;
2747 }
2748 if (rnp->parent &&
2749 (rnp->parent->qsmask & rnp->grpmask)) {
2750 /*
2751 * Race between grace-period
2752 * initialization and task exiting RCU
2753 * read-side critical section: Report.
2754 */
2755 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2756 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2757 continue;
2758 }
64db4cff 2759 }
bc75e999
MR
2760 for_each_leaf_node_possible_cpu(rnp, cpu) {
2761 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2762 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2763 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2764 mask |= bit;
2765 }
64db4cff 2766 }
45f014c5 2767 if (mask != 0) {
654e9533
PM
2768 /* Idle/offline CPUs, report (releases rnp->lock. */
2769 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2770 } else {
2771 /* Nothing to do here, so just drop the lock. */
67c583a7 2772 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2773 }
64db4cff 2774 }
64db4cff
PM
2775}
2776
2777/*
2778 * Force quiescent states on reluctant CPUs, and also detect which
2779 * CPUs are in dyntick-idle mode.
2780 */
4cdfc175 2781static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2782{
2783 unsigned long flags;
394f2769
PM
2784 bool ret;
2785 struct rcu_node *rnp;
2786 struct rcu_node *rnp_old = NULL;
2787
2788 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2789 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2790 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2791 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2792 !raw_spin_trylock(&rnp->fqslock);
2793 if (rnp_old != NULL)
2794 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2795 if (ret)
394f2769 2796 return;
394f2769
PM
2797 rnp_old = rnp;
2798 }
2799 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2800
394f2769 2801 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2802 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2803 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2804 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2805 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2806 return; /* Someone beat us to it. */
46a1e34e 2807 }
7d0ae808 2808 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2809 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2810 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2811}
2812
64db4cff 2813/*
e0f23060
PM
2814 * This does the RCU core processing work for the specified rcu_state
2815 * and rcu_data structures. This may be called only from the CPU to
2816 * whom the rdp belongs.
64db4cff
PM
2817 */
2818static void
1bca8cf1 2819__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2820{
2821 unsigned long flags;
48a7639c 2822 bool needwake;
fa07a58f 2823 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
bd7af846 2824 struct rcu_node *rnp;
64db4cff 2825
50dc7def 2826 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2827
64db4cff
PM
2828 /* Update RCU state based on any recent quiescent states. */
2829 rcu_check_quiescent_state(rsp, rdp);
2830
bd7af846
PM
2831 /* No grace period and unregistered callbacks? */
2832 if (!rcu_gp_in_progress(rsp) &&
2833 rcu_segcblist_is_enabled(&rdp->cblist)) {
2834 local_irq_save(flags);
2835 if (rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) {
2836 local_irq_restore(flags);
2837 } else {
2838 rnp = rdp->mynode;
2839 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
2840 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2841 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2842 if (needwake)
2843 rcu_gp_kthread_wake(rsp);
2844 }
64db4cff
PM
2845 }
2846
2847 /* If there are callbacks ready, invoke them. */
15fecf89 2848 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2849 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2850
2851 /* Do any needed deferred wakeups of rcuo kthreads. */
2852 do_nocb_deferred_wakeup(rdp);
09223371
SL
2853}
2854
64db4cff 2855/*
e0f23060 2856 * Do RCU core processing for the current CPU.
64db4cff 2857 */
0766f788 2858static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2859{
6ce75a23
PM
2860 struct rcu_state *rsp;
2861
bfa00b4c
PM
2862 if (cpu_is_offline(smp_processor_id()))
2863 return;
f7f7bac9 2864 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2865 for_each_rcu_flavor(rsp)
2866 __rcu_process_callbacks(rsp);
f7f7bac9 2867 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2868}
2869
a26ac245 2870/*
e0f23060
PM
2871 * Schedule RCU callback invocation. If the specified type of RCU
2872 * does not support RCU priority boosting, just do a direct call,
2873 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2874 * are running on the current CPU with softirqs disabled, the
e0f23060 2875 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2876 */
a46e0899 2877static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2878{
7d0ae808 2879 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2880 return;
a46e0899
PM
2881 if (likely(!rsp->boost)) {
2882 rcu_do_batch(rsp, rdp);
a26ac245
PM
2883 return;
2884 }
a46e0899 2885 invoke_rcu_callbacks_kthread();
a26ac245
PM
2886}
2887
a46e0899 2888static void invoke_rcu_core(void)
09223371 2889{
b0f74036
PM
2890 if (cpu_online(smp_processor_id()))
2891 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2892}
2893
29154c57
PM
2894/*
2895 * Handle any core-RCU processing required by a call_rcu() invocation.
2896 */
2897static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2898 struct rcu_head *head, unsigned long flags)
64db4cff 2899{
48a7639c
PM
2900 bool needwake;
2901
62fde6ed
PM
2902 /*
2903 * If called from an extended quiescent state, invoke the RCU
2904 * core in order to force a re-evaluation of RCU's idleness.
2905 */
9910affa 2906 if (!rcu_is_watching())
62fde6ed
PM
2907 invoke_rcu_core();
2908
a16b7a69 2909 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2910 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2911 return;
64db4cff 2912
37c72e56
PM
2913 /*
2914 * Force the grace period if too many callbacks or too long waiting.
2915 * Enforce hysteresis, and don't invoke force_quiescent_state()
2916 * if some other CPU has recently done so. Also, don't bother
2917 * invoking force_quiescent_state() if the newly enqueued callback
2918 * is the only one waiting for a grace period to complete.
2919 */
15fecf89
PM
2920 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2921 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2922
2923 /* Are we ignoring a completed grace period? */
470716fc 2924 note_gp_changes(rsp, rdp);
b52573d2
PM
2925
2926 /* Start a new grace period if one not already started. */
2927 if (!rcu_gp_in_progress(rsp)) {
a6058d85 2928 struct rcu_node *rnp = rdp->mynode;
b52573d2 2929
a6058d85
PM
2930 raw_spin_lock_rcu_node(rnp);
2931 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2932 raw_spin_unlock_rcu_node(rnp);
48a7639c
PM
2933 if (needwake)
2934 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2935 } else {
2936 /* Give the grace period a kick. */
2937 rdp->blimit = LONG_MAX;
2938 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2939 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 2940 force_quiescent_state(rsp);
b52573d2 2941 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 2942 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2943 }
4cdfc175 2944 }
29154c57
PM
2945}
2946
ae150184
PM
2947/*
2948 * RCU callback function to leak a callback.
2949 */
2950static void rcu_leak_callback(struct rcu_head *rhp)
2951{
2952}
2953
3fbfbf7a
PM
2954/*
2955 * Helper function for call_rcu() and friends. The cpu argument will
2956 * normally be -1, indicating "currently running CPU". It may specify
2957 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2958 * is expected to specify a CPU.
2959 */
64db4cff 2960static void
b6a4ae76 2961__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 2962 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2963{
2964 unsigned long flags;
2965 struct rcu_data *rdp;
2966
b8f2ed53
PM
2967 /* Misaligned rcu_head! */
2968 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2969
ae150184 2970 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2971 /*
2972 * Probable double call_rcu(), so leak the callback.
2973 * Use rcu:rcu_callback trace event to find the previous
2974 * time callback was passed to __call_rcu().
2975 */
2976 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2977 head, head->func);
7d0ae808 2978 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2979 return;
2980 }
64db4cff
PM
2981 head->func = func;
2982 head->next = NULL;
64db4cff 2983 local_irq_save(flags);
394f99a9 2984 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2985
2986 /* Add the callback to our list. */
15fecf89 2987 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2988 int offline;
2989
2990 if (cpu != -1)
2991 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
2992 if (likely(rdp->mynode)) {
2993 /* Post-boot, so this should be for a no-CBs CPU. */
2994 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2995 WARN_ON_ONCE(offline);
2996 /* Offline CPU, _call_rcu() illegal, leak callback. */
2997 local_irq_restore(flags);
2998 return;
2999 }
3000 /*
3001 * Very early boot, before rcu_init(). Initialize if needed
3002 * and then drop through to queue the callback.
3003 */
3004 BUG_ON(cpu != -1);
34404ca8 3005 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3006 if (rcu_segcblist_empty(&rdp->cblist))
3007 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3008 }
15fecf89
PM
3009 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3010 if (!lazy)
c57afe80 3011 rcu_idle_count_callbacks_posted();
2655d57e 3012
d4c08f2a
PM
3013 if (__is_kfree_rcu_offset((unsigned long)func))
3014 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3015 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3016 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3017 else
15fecf89
PM
3018 trace_rcu_callback(rsp->name, head,
3019 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3020 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3021
29154c57
PM
3022 /* Go handle any RCU core processing required. */
3023 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3024 local_irq_restore(flags);
3025}
3026
a68a2bb2
PM
3027/**
3028 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3029 * @head: structure to be used for queueing the RCU updates.
3030 * @func: actual callback function to be invoked after the grace period
3031 *
3032 * The callback function will be invoked some time after a full grace
3033 * period elapses, in other words after all currently executing RCU
3034 * read-side critical sections have completed. call_rcu_sched() assumes
3035 * that the read-side critical sections end on enabling of preemption
3036 * or on voluntary preemption.
27fdb35f
PM
3037 * RCU read-side critical sections are delimited by:
3038 *
3039 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3040 * - anything that disables preemption.
a68a2bb2
PM
3041 *
3042 * These may be nested.
3043 *
3044 * See the description of call_rcu() for more detailed information on
3045 * memory ordering guarantees.
64db4cff 3046 */
b6a4ae76 3047void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3048{
3fbfbf7a 3049 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3050}
d6714c22 3051EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3052
a68a2bb2
PM
3053/**
3054 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3055 * @head: structure to be used for queueing the RCU updates.
3056 * @func: actual callback function to be invoked after the grace period
3057 *
3058 * The callback function will be invoked some time after a full grace
3059 * period elapses, in other words after all currently executing RCU
3060 * read-side critical sections have completed. call_rcu_bh() assumes
3061 * that the read-side critical sections end on completion of a softirq
3062 * handler. This means that read-side critical sections in process
3063 * context must not be interrupted by softirqs. This interface is to be
3064 * used when most of the read-side critical sections are in softirq context.
27fdb35f
PM
3065 * RCU read-side critical sections are delimited by:
3066 *
3067 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3068 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3069 *
3070 * These may be nested.
a68a2bb2
PM
3071 *
3072 * See the description of call_rcu() for more detailed information on
3073 * memory ordering guarantees.
64db4cff 3074 */
b6a4ae76 3075void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3076{
3fbfbf7a 3077 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3078}
3079EXPORT_SYMBOL_GPL(call_rcu_bh);
3080
495aa969
ACB
3081/*
3082 * Queue an RCU callback for lazy invocation after a grace period.
3083 * This will likely be later named something like "call_rcu_lazy()",
3084 * but this change will require some way of tagging the lazy RCU
3085 * callbacks in the list of pending callbacks. Until then, this
3086 * function may only be called from __kfree_rcu().
3087 */
3088void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3089 rcu_callback_t func)
495aa969 3090{
e534165b 3091 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3092}
3093EXPORT_SYMBOL_GPL(kfree_call_rcu);
3094
6d813391
PM
3095/*
3096 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3097 * any blocking grace-period wait automatically implies a grace period
3098 * if there is only one CPU online at any point time during execution
3099 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3100 * occasionally incorrectly indicate that there are multiple CPUs online
3101 * when there was in fact only one the whole time, as this just adds
3102 * some overhead: RCU still operates correctly.
6d813391
PM
3103 */
3104static inline int rcu_blocking_is_gp(void)
3105{
95f0c1de
PM
3106 int ret;
3107
6d813391 3108 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3109 preempt_disable();
3110 ret = num_online_cpus() <= 1;
3111 preempt_enable();
3112 return ret;
6d813391
PM
3113}
3114
6ebb237b
PM
3115/**
3116 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3117 *
3118 * Control will return to the caller some time after a full rcu-sched
3119 * grace period has elapsed, in other words after all currently executing
3120 * rcu-sched read-side critical sections have completed. These read-side
3121 * critical sections are delimited by rcu_read_lock_sched() and
3122 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3123 * local_irq_disable(), and so on may be used in place of
3124 * rcu_read_lock_sched().
3125 *
3126 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3127 * non-threaded hardware-interrupt handlers, in progress on entry will
3128 * have completed before this primitive returns. However, this does not
3129 * guarantee that softirq handlers will have completed, since in some
3130 * kernels, these handlers can run in process context, and can block.
3131 *
3132 * Note that this guarantee implies further memory-ordering guarantees.
3133 * On systems with more than one CPU, when synchronize_sched() returns,
3134 * each CPU is guaranteed to have executed a full memory barrier since the
3135 * end of its last RCU-sched read-side critical section whose beginning
3136 * preceded the call to synchronize_sched(). In addition, each CPU having
3137 * an RCU read-side critical section that extends beyond the return from
3138 * synchronize_sched() is guaranteed to have executed a full memory barrier
3139 * after the beginning of synchronize_sched() and before the beginning of
3140 * that RCU read-side critical section. Note that these guarantees include
3141 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3142 * that are executing in the kernel.
3143 *
3144 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3145 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3146 * to have executed a full memory barrier during the execution of
3147 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3148 * again only if the system has more than one CPU).
6ebb237b
PM
3149 */
3150void synchronize_sched(void)
3151{
f78f5b90
PM
3152 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3153 lock_is_held(&rcu_lock_map) ||
3154 lock_is_held(&rcu_sched_lock_map),
3155 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3156 if (rcu_blocking_is_gp())
3157 return;
5afff48b 3158 if (rcu_gp_is_expedited())
3705b88d
AM
3159 synchronize_sched_expedited();
3160 else
3161 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3162}
3163EXPORT_SYMBOL_GPL(synchronize_sched);
3164
3165/**
3166 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3167 *
3168 * Control will return to the caller some time after a full rcu_bh grace
3169 * period has elapsed, in other words after all currently executing rcu_bh
3170 * read-side critical sections have completed. RCU read-side critical
3171 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3172 * and may be nested.
f0a0e6f2
PM
3173 *
3174 * See the description of synchronize_sched() for more detailed information
3175 * on memory ordering guarantees.
6ebb237b
PM
3176 */
3177void synchronize_rcu_bh(void)
3178{
f78f5b90
PM
3179 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3180 lock_is_held(&rcu_lock_map) ||
3181 lock_is_held(&rcu_sched_lock_map),
3182 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3183 if (rcu_blocking_is_gp())
3184 return;
5afff48b 3185 if (rcu_gp_is_expedited())
3705b88d
AM
3186 synchronize_rcu_bh_expedited();
3187 else
3188 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3189}
3190EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3191
765a3f4f
PM
3192/**
3193 * get_state_synchronize_rcu - Snapshot current RCU state
3194 *
3195 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3196 * to determine whether or not a full grace period has elapsed in the
3197 * meantime.
3198 */
3199unsigned long get_state_synchronize_rcu(void)
3200{
3201 /*
3202 * Any prior manipulation of RCU-protected data must happen
3203 * before the load from ->gpnum.
3204 */
3205 smp_mb(); /* ^^^ */
3206
3207 /*
3208 * Make sure this load happens before the purportedly
3209 * time-consuming work between get_state_synchronize_rcu()
3210 * and cond_synchronize_rcu().
3211 */
e534165b 3212 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3213}
3214EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3215
3216/**
3217 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3218 *
3219 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3220 *
3221 * If a full RCU grace period has elapsed since the earlier call to
3222 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3223 * synchronize_rcu() to wait for a full grace period.
3224 *
3225 * Yes, this function does not take counter wrap into account. But
3226 * counter wrap is harmless. If the counter wraps, we have waited for
3227 * more than 2 billion grace periods (and way more on a 64-bit system!),
3228 * so waiting for one additional grace period should be just fine.
3229 */
3230void cond_synchronize_rcu(unsigned long oldstate)
3231{
3232 unsigned long newstate;
3233
3234 /*
3235 * Ensure that this load happens before any RCU-destructive
3236 * actions the caller might carry out after we return.
3237 */
e534165b 3238 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3239 if (ULONG_CMP_GE(oldstate, newstate))
3240 synchronize_rcu();
3241}
3242EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3243
24560056
PM
3244/**
3245 * get_state_synchronize_sched - Snapshot current RCU-sched state
3246 *
3247 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3248 * to determine whether or not a full grace period has elapsed in the
3249 * meantime.
3250 */
3251unsigned long get_state_synchronize_sched(void)
3252{
3253 /*
3254 * Any prior manipulation of RCU-protected data must happen
3255 * before the load from ->gpnum.
3256 */
3257 smp_mb(); /* ^^^ */
3258
3259 /*
3260 * Make sure this load happens before the purportedly
3261 * time-consuming work between get_state_synchronize_sched()
3262 * and cond_synchronize_sched().
3263 */
3264 return smp_load_acquire(&rcu_sched_state.gpnum);
3265}
3266EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3267
3268/**
3269 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3270 *
3271 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3272 *
3273 * If a full RCU-sched grace period has elapsed since the earlier call to
3274 * get_state_synchronize_sched(), just return. Otherwise, invoke
3275 * synchronize_sched() to wait for a full grace period.
3276 *
3277 * Yes, this function does not take counter wrap into account. But
3278 * counter wrap is harmless. If the counter wraps, we have waited for
3279 * more than 2 billion grace periods (and way more on a 64-bit system!),
3280 * so waiting for one additional grace period should be just fine.
3281 */
3282void cond_synchronize_sched(unsigned long oldstate)
3283{
3284 unsigned long newstate;
3285
3286 /*
3287 * Ensure that this load happens before any RCU-destructive
3288 * actions the caller might carry out after we return.
3289 */
3290 newstate = smp_load_acquire(&rcu_sched_state.completed);
3291 if (ULONG_CMP_GE(oldstate, newstate))
3292 synchronize_sched();
3293}
3294EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3295
64db4cff
PM
3296/*
3297 * Check to see if there is any immediate RCU-related work to be done
3298 * by the current CPU, for the specified type of RCU, returning 1 if so.
3299 * The checks are in order of increasing expense: checks that can be
3300 * carried out against CPU-local state are performed first. However,
3301 * we must check for CPU stalls first, else we might not get a chance.
3302 */
3303static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3304{
2f51f988
PM
3305 struct rcu_node *rnp = rdp->mynode;
3306
64db4cff
PM
3307 /* Check for CPU stalls, if enabled. */
3308 check_cpu_stall(rsp, rdp);
3309
a096932f
PM
3310 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3311 if (rcu_nohz_full_cpu(rsp))
3312 return 0;
3313
64db4cff 3314 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 3315 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
3316 return 1;
3317
3318 /* Does this CPU have callbacks ready to invoke? */
01c495f7 3319 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
3320 return 1;
3321
3322 /* Has RCU gone idle with this CPU needing another grace period? */
01c495f7 3323 if (cpu_needs_another_gp(rsp, rdp))
64db4cff
PM
3324 return 1;
3325
3326 /* Has another RCU grace period completed? */
01c495f7 3327 if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */
64db4cff
PM
3328 return 1;
3329
3330 /* Has a new RCU grace period started? */
7d0ae808 3331 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
01c495f7 3332 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
3333 return 1;
3334
96d3fd0d 3335 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 3336 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 3337 return 1;
96d3fd0d 3338
64db4cff
PM
3339 /* nothing to do */
3340 return 0;
3341}
3342
3343/*
3344 * Check to see if there is any immediate RCU-related work to be done
3345 * by the current CPU, returning 1 if so. This function is part of the
3346 * RCU implementation; it is -not- an exported member of the RCU API.
3347 */
e3950ecd 3348static int rcu_pending(void)
64db4cff 3349{
6ce75a23
PM
3350 struct rcu_state *rsp;
3351
3352 for_each_rcu_flavor(rsp)
e3950ecd 3353 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3354 return 1;
3355 return 0;
64db4cff
PM
3356}
3357
3358/*
c0f4dfd4
PM
3359 * Return true if the specified CPU has any callback. If all_lazy is
3360 * non-NULL, store an indication of whether all callbacks are lazy.
3361 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3362 */
82072c4f 3363static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3364{
c0f4dfd4
PM
3365 bool al = true;
3366 bool hc = false;
3367 struct rcu_data *rdp;
6ce75a23
PM
3368 struct rcu_state *rsp;
3369
c0f4dfd4 3370 for_each_rcu_flavor(rsp) {
aa6da514 3371 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3372 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3373 continue;
3374 hc = true;
15fecf89 3375 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3376 al = false;
69c8d28c
PM
3377 break;
3378 }
c0f4dfd4
PM
3379 }
3380 if (all_lazy)
3381 *all_lazy = al;
3382 return hc;
64db4cff
PM
3383}
3384
a83eff0a
PM
3385/*
3386 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3387 * the compiler is expected to optimize this away.
3388 */
e66c33d5 3389static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3390 int cpu, unsigned long done)
3391{
3392 trace_rcu_barrier(rsp->name, s, cpu,
3393 atomic_read(&rsp->barrier_cpu_count), done);
3394}
3395
b1420f1c
PM
3396/*
3397 * RCU callback function for _rcu_barrier(). If we are last, wake
3398 * up the task executing _rcu_barrier().
3399 */
24ebbca8 3400static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3401{
24ebbca8
PM
3402 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3403 struct rcu_state *rsp = rdp->rsp;
3404
a83eff0a 3405 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
d8db2e86
PM
3406 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3407 rsp->barrier_sequence);
7db74df8 3408 complete(&rsp->barrier_completion);
a83eff0a 3409 } else {
d8db2e86 3410 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
a83eff0a 3411 }
d0ec774c
PM
3412}
3413
3414/*
3415 * Called with preemption disabled, and from cross-cpu IRQ context.
3416 */
3417static void rcu_barrier_func(void *type)
3418{
037b64ed 3419 struct rcu_state *rsp = type;
fa07a58f 3420 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3421
d8db2e86 3422 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
f92c734f
PM
3423 rdp->barrier_head.func = rcu_barrier_callback;
3424 debug_rcu_head_queue(&rdp->barrier_head);
3425 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3426 atomic_inc(&rsp->barrier_cpu_count);
3427 } else {
3428 debug_rcu_head_unqueue(&rdp->barrier_head);
d8db2e86
PM
3429 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3430 rsp->barrier_sequence);
f92c734f 3431 }
d0ec774c
PM
3432}
3433
d0ec774c
PM
3434/*
3435 * Orchestrate the specified type of RCU barrier, waiting for all
3436 * RCU callbacks of the specified type to complete.
3437 */
037b64ed 3438static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3439{
b1420f1c 3440 int cpu;
b1420f1c 3441 struct rcu_data *rdp;
4f525a52 3442 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3443
d8db2e86 3444 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
b1420f1c 3445
e74f4c45 3446 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3447 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3448
4f525a52
PM
3449 /* Did someone else do our work for us? */
3450 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
d8db2e86
PM
3451 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3452 rsp->barrier_sequence);
cf3a9c48
PM
3453 smp_mb(); /* caller's subsequent code after above check. */
3454 mutex_unlock(&rsp->barrier_mutex);
3455 return;
3456 }
3457
4f525a52
PM
3458 /* Mark the start of the barrier operation. */
3459 rcu_seq_start(&rsp->barrier_sequence);
d8db2e86 3460 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
b1420f1c 3461
d0ec774c 3462 /*
b1420f1c
PM
3463 * Initialize the count to one rather than to zero in order to
3464 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3465 * (or preemption of this task). Exclude CPU-hotplug operations
3466 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3467 */
7db74df8 3468 init_completion(&rsp->barrier_completion);
24ebbca8 3469 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3470 get_online_cpus();
b1420f1c
PM
3471
3472 /*
1331e7a1
PM
3473 * Force each CPU with callbacks to register a new callback.
3474 * When that callback is invoked, we will know that all of the
3475 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3476 */
3fbfbf7a 3477 for_each_possible_cpu(cpu) {
d1e43fa5 3478 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3479 continue;
b1420f1c 3480 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3481 if (rcu_is_nocb_cpu(cpu)) {
d7e29933 3482 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
d8db2e86 3483 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
4f525a52 3484 rsp->barrier_sequence);
d7e29933 3485 } else {
d8db2e86 3486 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
4f525a52 3487 rsp->barrier_sequence);
41050a00 3488 smp_mb__before_atomic();
d7e29933
PM
3489 atomic_inc(&rsp->barrier_cpu_count);
3490 __call_rcu(&rdp->barrier_head,
3491 rcu_barrier_callback, rsp, cpu, 0);
3492 }
15fecf89 3493 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
d8db2e86 3494 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
4f525a52 3495 rsp->barrier_sequence);
037b64ed 3496 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3497 } else {
d8db2e86 3498 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
4f525a52 3499 rsp->barrier_sequence);
b1420f1c
PM
3500 }
3501 }
1331e7a1 3502 put_online_cpus();
b1420f1c
PM
3503
3504 /*
3505 * Now that we have an rcu_barrier_callback() callback on each
3506 * CPU, and thus each counted, remove the initial count.
3507 */
24ebbca8 3508 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3509 complete(&rsp->barrier_completion);
b1420f1c
PM
3510
3511 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3512 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3513
4f525a52 3514 /* Mark the end of the barrier operation. */
d8db2e86 3515 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
4f525a52
PM
3516 rcu_seq_end(&rsp->barrier_sequence);
3517
b1420f1c 3518 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3519 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3520}
d0ec774c
PM
3521
3522/**
3523 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3524 */
3525void rcu_barrier_bh(void)
3526{
037b64ed 3527 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3528}
3529EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3530
3531/**
3532 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3533 */
3534void rcu_barrier_sched(void)
3535{
037b64ed 3536 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3537}
3538EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3539
0aa04b05
PM
3540/*
3541 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3542 * first CPU in a given leaf rcu_node structure coming online. The caller
3543 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3544 * disabled.
3545 */
3546static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3547{
3548 long mask;
3549 struct rcu_node *rnp = rnp_leaf;
3550
a32e01ee 3551 raw_lockdep_assert_held_rcu_node(rnp);
0aa04b05
PM
3552 for (;;) {
3553 mask = rnp->grpmask;
3554 rnp = rnp->parent;
3555 if (rnp == NULL)
3556 return;
6cf10081 3557 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3558 rnp->qsmaskinit |= mask;
67c583a7 3559 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3560 }
3561}
3562
64db4cff 3563/*
27569620 3564 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3565 */
27569620
PM
3566static void __init
3567rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff 3568{
394f99a9 3569 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3570
3571 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3572 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3573 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
51a1fd30 3574 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
02a5c550 3575 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3576 rdp->cpu = cpu;
d4c08f2a 3577 rdp->rsp = rsp;
3fbfbf7a 3578 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3579}
3580
3581/*
3582 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3583 * offline event can be happening at a given time. Note also that we
3584 * can accept some slop in the rsp->completed access due to the fact
3585 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3586 */
49fb4c62 3587static void
9b67122a 3588rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3589{
3590 unsigned long flags;
394f99a9 3591 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3592 struct rcu_node *rnp = rcu_get_root(rsp);
3593
3594 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3595 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3596 rdp->qlen_last_fqs_check = 0;
3597 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3598 rdp->blimit = blimit;
15fecf89
PM
3599 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3600 !init_nocb_callback_list(rdp))
3601 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
2342172f 3602 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3603 rcu_dynticks_eqs_online();
67c583a7 3604 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3605
0aa04b05
PM
3606 /*
3607 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3608 * propagation up the rcu_node tree will happen at the beginning
3609 * of the next grace period.
3610 */
64db4cff 3611 rnp = rdp->mynode;
2a67e741 3612 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3613 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3614 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3615 rdp->completed = rnp->completed;
5b74c458 3616 rdp->cpu_no_qs.b.norm = true;
9577df9a 3617 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3618 rdp->core_needs_qs = false;
9b9500da
PM
3619 rdp->rcu_iw_pending = false;
3620 rdp->rcu_iw_gpnum = rnp->gpnum - 1;
0aa04b05 3621 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3622 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3623}
3624
deb34f36
PM
3625/*
3626 * Invoked early in the CPU-online process, when pretty much all
3627 * services are available. The incoming CPU is not present.
3628 */
4df83742 3629int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3630{
6ce75a23
PM
3631 struct rcu_state *rsp;
3632
3633 for_each_rcu_flavor(rsp)
9b67122a 3634 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3635
3636 rcu_prepare_kthreads(cpu);
3637 rcu_spawn_all_nocb_kthreads(cpu);
3638
3639 return 0;
3640}
3641
deb34f36
PM
3642/*
3643 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3644 */
4df83742
TG
3645static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3646{
3647 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3648
3649 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3650}
3651
deb34f36
PM
3652/*
3653 * Near the end of the CPU-online process. Pretty much all services
3654 * enabled, and the CPU is now very much alive.
3655 */
4df83742
TG
3656int rcutree_online_cpu(unsigned int cpu)
3657{
9b9500da
PM
3658 unsigned long flags;
3659 struct rcu_data *rdp;
3660 struct rcu_node *rnp;
3661 struct rcu_state *rsp;
3662
3663 for_each_rcu_flavor(rsp) {
3664 rdp = per_cpu_ptr(rsp->rda, cpu);
3665 rnp = rdp->mynode;
3666 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3667 rnp->ffmask |= rdp->grpmask;
3668 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3669 }
da915ad5
PM
3670 if (IS_ENABLED(CONFIG_TREE_SRCU))
3671 srcu_online_cpu(cpu);
9b9500da
PM
3672 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3673 return 0; /* Too early in boot for scheduler work. */
3674 sync_sched_exp_online_cleanup(cpu);
3675 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3676 return 0;
3677}
3678
deb34f36
PM
3679/*
3680 * Near the beginning of the process. The CPU is still very much alive
3681 * with pretty much all services enabled.
3682 */
4df83742
TG
3683int rcutree_offline_cpu(unsigned int cpu)
3684{
9b9500da
PM
3685 unsigned long flags;
3686 struct rcu_data *rdp;
3687 struct rcu_node *rnp;
3688 struct rcu_state *rsp;
3689
3690 for_each_rcu_flavor(rsp) {
3691 rdp = per_cpu_ptr(rsp->rda, cpu);
3692 rnp = rdp->mynode;
3693 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3694 rnp->ffmask &= ~rdp->grpmask;
3695 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3696 }
3697
4df83742 3698 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3699 if (IS_ENABLED(CONFIG_TREE_SRCU))
3700 srcu_offline_cpu(cpu);
4df83742
TG
3701 return 0;
3702}
3703
deb34f36
PM
3704/*
3705 * Near the end of the offline process. We do only tracing here.
3706 */
4df83742
TG
3707int rcutree_dying_cpu(unsigned int cpu)
3708{
3709 struct rcu_state *rsp;
3710
3711 for_each_rcu_flavor(rsp)
3712 rcu_cleanup_dying_cpu(rsp);
3713 return 0;
3714}
3715
deb34f36
PM
3716/*
3717 * The outgoing CPU is gone and we are running elsewhere.
3718 */
4df83742
TG
3719int rcutree_dead_cpu(unsigned int cpu)
3720{
3721 struct rcu_state *rsp;
3722
3723 for_each_rcu_flavor(rsp) {
3724 rcu_cleanup_dead_cpu(cpu, rsp);
3725 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3726 }
3727 return 0;
64db4cff
PM
3728}
3729
7ec99de3
PM
3730/*
3731 * Mark the specified CPU as being online so that subsequent grace periods
3732 * (both expedited and normal) will wait on it. Note that this means that
3733 * incoming CPUs are not allowed to use RCU read-side critical sections
3734 * until this function is called. Failing to observe this restriction
3735 * will result in lockdep splats.
deb34f36
PM
3736 *
3737 * Note that this function is special in that it is invoked directly
3738 * from the incoming CPU rather than from the cpuhp_step mechanism.
3739 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3740 */
3741void rcu_cpu_starting(unsigned int cpu)
3742{
3743 unsigned long flags;
3744 unsigned long mask;
313517fc
PM
3745 int nbits;
3746 unsigned long oldmask;
7ec99de3
PM
3747 struct rcu_data *rdp;
3748 struct rcu_node *rnp;
3749 struct rcu_state *rsp;
3750
3751 for_each_rcu_flavor(rsp) {
fdbb9b31 3752 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3753 rnp = rdp->mynode;
3754 mask = rdp->grpmask;
3755 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3756 rnp->qsmaskinitnext |= mask;
313517fc 3757 oldmask = rnp->expmaskinitnext;
7ec99de3 3758 rnp->expmaskinitnext |= mask;
313517fc
PM
3759 oldmask ^= rnp->expmaskinitnext;
3760 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3761 /* Allow lockless access for expedited grace periods. */
3762 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
7ec99de3
PM
3763 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3764 }
313517fc 3765 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3766}
3767
27d50c7e
TG
3768#ifdef CONFIG_HOTPLUG_CPU
3769/*
3770 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3771 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3772 * bit masks.
3773 */
3774static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3775{
3776 unsigned long flags;
3777 unsigned long mask;
3778 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3779 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3780
27d50c7e
TG
3781 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3782 mask = rdp->grpmask;
3783 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3784 rnp->qsmaskinitnext &= ~mask;
710d60cb 3785 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3786}
3787
deb34f36
PM
3788/*
3789 * The outgoing function has no further need of RCU, so remove it from
3790 * the list of CPUs that RCU must track.
3791 *
3792 * Note that this function is special in that it is invoked directly
3793 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3794 * This is because this function must be invoked at a precise location.
3795 */
27d50c7e
TG
3796void rcu_report_dead(unsigned int cpu)
3797{
3798 struct rcu_state *rsp;
3799
3800 /* QS for any half-done expedited RCU-sched GP. */
3801 preempt_disable();
3802 rcu_report_exp_rdp(&rcu_sched_state,
3803 this_cpu_ptr(rcu_sched_state.rda), true);
3804 preempt_enable();
3805 for_each_rcu_flavor(rsp)
3806 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3807}
a58163d8 3808
f2dbe4a5 3809/* Migrate the dead CPU's callbacks to the current CPU. */
a58163d8
PM
3810static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3811{
3812 unsigned long flags;
b1a2d79f 3813 struct rcu_data *my_rdp;
a58163d8 3814 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
9fa46fb8 3815 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
ec4eacce 3816 bool needwake;
a58163d8 3817
95335c03
PM
3818 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3819 return; /* No callbacks to migrate. */
3820
b1a2d79f
PM
3821 local_irq_save(flags);
3822 my_rdp = this_cpu_ptr(rsp->rda);
3823 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3824 local_irq_restore(flags);
3825 return;
3826 }
9fa46fb8 3827 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce
PM
3828 /* Leverage recent GPs and set GP for new callbacks. */
3829 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
3830 rcu_advance_cbs(rsp, rnp_root, my_rdp);
f2dbe4a5 3831 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3832 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3833 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3834 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce
PM
3835 if (needwake)
3836 rcu_gp_kthread_wake(rsp);
a58163d8
PM
3837 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3838 !rcu_segcblist_empty(&rdp->cblist),
3839 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3840 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3841 rcu_segcblist_first_cb(&rdp->cblist));
3842}
3843
3844/*
3845 * The outgoing CPU has just passed through the dying-idle state,
3846 * and we are being invoked from the CPU that was IPIed to continue the
3847 * offline operation. We need to migrate the outgoing CPU's callbacks.
3848 */
3849void rcutree_migrate_callbacks(int cpu)
3850{
3851 struct rcu_state *rsp;
3852
3853 for_each_rcu_flavor(rsp)
3854 rcu_migrate_callbacks(cpu, rsp);
3855}
27d50c7e
TG
3856#endif
3857
deb34f36
PM
3858/*
3859 * On non-huge systems, use expedited RCU grace periods to make suspend
3860 * and hibernation run faster.
3861 */
d1d74d14
BP
3862static int rcu_pm_notify(struct notifier_block *self,
3863 unsigned long action, void *hcpu)
3864{
3865 switch (action) {
3866 case PM_HIBERNATION_PREPARE:
3867 case PM_SUSPEND_PREPARE:
3868 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3869 rcu_expedite_gp();
d1d74d14
BP
3870 break;
3871 case PM_POST_HIBERNATION:
3872 case PM_POST_SUSPEND:
5afff48b
PM
3873 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3874 rcu_unexpedite_gp();
d1d74d14
BP
3875 break;
3876 default:
3877 break;
3878 }
3879 return NOTIFY_OK;
3880}
3881
b3dbec76 3882/*
9386c0b7 3883 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3884 */
3885static int __init rcu_spawn_gp_kthread(void)
3886{
3887 unsigned long flags;
a94844b2 3888 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3889 struct rcu_node *rnp;
3890 struct rcu_state *rsp;
a94844b2 3891 struct sched_param sp;
b3dbec76
PM
3892 struct task_struct *t;
3893
a94844b2
PM
3894 /* Force priority into range. */
3895 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3896 kthread_prio = 1;
3897 else if (kthread_prio < 0)
3898 kthread_prio = 0;
3899 else if (kthread_prio > 99)
3900 kthread_prio = 99;
3901 if (kthread_prio != kthread_prio_in)
3902 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3903 kthread_prio, kthread_prio_in);
3904
9386c0b7 3905 rcu_scheduler_fully_active = 1;
b3dbec76 3906 for_each_rcu_flavor(rsp) {
a94844b2 3907 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3908 BUG_ON(IS_ERR(t));
3909 rnp = rcu_get_root(rsp);
6cf10081 3910 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3911 rsp->gp_kthread = t;
a94844b2
PM
3912 if (kthread_prio) {
3913 sp.sched_priority = kthread_prio;
3914 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3915 }
67c583a7 3916 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3917 wake_up_process(t);
b3dbec76 3918 }
35ce7f29 3919 rcu_spawn_nocb_kthreads();
9386c0b7 3920 rcu_spawn_boost_kthreads();
b3dbec76
PM
3921 return 0;
3922}
3923early_initcall(rcu_spawn_gp_kthread);
3924
bbad9379 3925/*
52d7e48b
PM
3926 * This function is invoked towards the end of the scheduler's
3927 * initialization process. Before this is called, the idle task might
3928 * contain synchronous grace-period primitives (during which time, this idle
3929 * task is booting the system, and such primitives are no-ops). After this
3930 * function is called, any synchronous grace-period primitives are run as
3931 * expedited, with the requesting task driving the grace period forward.
900b1028 3932 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3933 * runtime RCU functionality.
bbad9379
PM
3934 */
3935void rcu_scheduler_starting(void)
3936{
3937 WARN_ON(num_online_cpus() != 1);
3938 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3939 rcu_test_sync_prims();
3940 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3941 rcu_test_sync_prims();
bbad9379
PM
3942}
3943
64db4cff
PM
3944/*
3945 * Helper function for rcu_init() that initializes one rcu_state structure.
3946 */
a87f203e 3947static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 3948{
cb007102
AG
3949 static const char * const buf[] = RCU_NODE_NAME_INIT;
3950 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3951 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3952 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3953
199977bf 3954 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3955 int cpustride = 1;
3956 int i;
3957 int j;
3958 struct rcu_node *rnp;
3959
05b84aec 3960 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3961
3eaaaf6c
PM
3962 /* Silence gcc 4.8 false positive about array index out of range. */
3963 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3964 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3965
64db4cff
PM
3966 /* Initialize the level-tracking arrays. */
3967
f885b7f2 3968 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
3969 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
3970 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3971
3972 /* Initialize the elements themselves, starting from the leaves. */
3973
f885b7f2 3974 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3975 cpustride *= levelspread[i];
64db4cff 3976 rnp = rsp->level[i];
41f5c631 3977 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3978 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3979 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3980 &rcu_node_class[i], buf[i]);
394f2769
PM
3981 raw_spin_lock_init(&rnp->fqslock);
3982 lockdep_set_class_and_name(&rnp->fqslock,
3983 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3984 rnp->gpnum = rsp->gpnum;
3985 rnp->completed = rsp->completed;
64db4cff
PM
3986 rnp->qsmask = 0;
3987 rnp->qsmaskinit = 0;
3988 rnp->grplo = j * cpustride;
3989 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3990 if (rnp->grphi >= nr_cpu_ids)
3991 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3992 if (i == 0) {
3993 rnp->grpnum = 0;
3994 rnp->grpmask = 0;
3995 rnp->parent = NULL;
3996 } else {
199977bf 3997 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
3998 rnp->grpmask = 1UL << rnp->grpnum;
3999 rnp->parent = rsp->level[i - 1] +
199977bf 4000 j / levelspread[i - 1];
64db4cff
PM
4001 }
4002 rnp->level = i;
12f5f524 4003 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4004 rcu_init_one_nocb(rnp);
f6a12f34
PM
4005 init_waitqueue_head(&rnp->exp_wq[0]);
4006 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4007 init_waitqueue_head(&rnp->exp_wq[2]);
4008 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4009 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4010 }
4011 }
0c34029a 4012
abedf8e2
PG
4013 init_swait_queue_head(&rsp->gp_wq);
4014 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4015 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4016 for_each_possible_cpu(i) {
4a90a068 4017 while (i > rnp->grphi)
0c34029a 4018 rnp++;
394f99a9 4019 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4020 rcu_boot_init_percpu_data(i, rsp);
4021 }
6ce75a23 4022 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4023}
4024
f885b7f2
PM
4025/*
4026 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4027 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4028 * the ->node array in the rcu_state structure.
4029 */
4030static void __init rcu_init_geometry(void)
4031{
026ad283 4032 ulong d;
f885b7f2 4033 int i;
05b84aec 4034 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4035
026ad283
PM
4036 /*
4037 * Initialize any unspecified boot parameters.
4038 * The default values of jiffies_till_first_fqs and
4039 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4040 * value, which is a function of HZ, then adding one for each
4041 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4042 */
4043 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4044 if (jiffies_till_first_fqs == ULONG_MAX)
4045 jiffies_till_first_fqs = d;
4046 if (jiffies_till_next_fqs == ULONG_MAX)
4047 jiffies_till_next_fqs = d;
4048
f885b7f2 4049 /* If the compile-time values are accurate, just leave. */
47d631af 4050 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4051 nr_cpu_ids == NR_CPUS)
f885b7f2 4052 return;
9b130ad5 4053 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 4054 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4055
f885b7f2 4056 /*
ee968ac6
PM
4057 * The boot-time rcu_fanout_leaf parameter must be at least two
4058 * and cannot exceed the number of bits in the rcu_node masks.
4059 * Complain and fall back to the compile-time values if this
4060 * limit is exceeded.
f885b7f2 4061 */
ee968ac6 4062 if (rcu_fanout_leaf < 2 ||
75cf15a4 4063 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4064 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4065 WARN_ON(1);
4066 return;
4067 }
4068
f885b7f2
PM
4069 /*
4070 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4071 * with the given number of levels.
f885b7f2 4072 */
9618138b 4073 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4074 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4075 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4076
4077 /*
75cf15a4 4078 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4079 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4080 */
ee968ac6
PM
4081 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4082 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4083 WARN_ON(1);
4084 return;
4085 }
f885b7f2 4086
679f9858 4087 /* Calculate the number of levels in the tree. */
9618138b 4088 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4089 }
9618138b 4090 rcu_num_lvls = i + 1;
679f9858 4091
f885b7f2 4092 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4093 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4094 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4095 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4096 }
f885b7f2
PM
4097
4098 /* Calculate the total number of rcu_node structures. */
4099 rcu_num_nodes = 0;
679f9858 4100 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4101 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4102}
4103
a3dc2948
PM
4104/*
4105 * Dump out the structure of the rcu_node combining tree associated
4106 * with the rcu_state structure referenced by rsp.
4107 */
4108static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4109{
4110 int level = 0;
4111 struct rcu_node *rnp;
4112
4113 pr_info("rcu_node tree layout dump\n");
4114 pr_info(" ");
4115 rcu_for_each_node_breadth_first(rsp, rnp) {
4116 if (rnp->level != level) {
4117 pr_cont("\n");
4118 pr_info(" ");
4119 level = rnp->level;
4120 }
4121 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4122 }
4123 pr_cont("\n");
4124}
4125
ad7c946b
PM
4126struct workqueue_struct *rcu_gp_wq;
4127
9f680ab4 4128void __init rcu_init(void)
64db4cff 4129{
017c4261 4130 int cpu;
9f680ab4 4131
47627678
PM
4132 rcu_early_boot_tests();
4133
f41d911f 4134 rcu_bootup_announce();
f885b7f2 4135 rcu_init_geometry();
a87f203e
PM
4136 rcu_init_one(&rcu_bh_state);
4137 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4138 if (dump_tree)
4139 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4140 __rcu_init_preempt();
b5b39360 4141 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4142
4143 /*
4144 * We don't need protection against CPU-hotplug here because
4145 * this is called early in boot, before either interrupts
4146 * or the scheduler are operational.
4147 */
d1d74d14 4148 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4149 for_each_online_cpu(cpu) {
4df83742 4150 rcutree_prepare_cpu(cpu);
7ec99de3 4151 rcu_cpu_starting(cpu);
9b9500da 4152 rcutree_online_cpu(cpu);
7ec99de3 4153 }
ad7c946b
PM
4154
4155 /* Create workqueue for expedited GPs and for Tree SRCU. */
4156 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4157 WARN_ON(!rcu_gp_wq);
64db4cff
PM
4158}
4159
3549c2bc 4160#include "tree_exp.h"
4102adab 4161#include "tree_plugin.h"