rcu/tracing: Set disable_rcu_irq_enter on rcu_eqs_exit()
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
15fecf89
PM
101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 104 .name = RCU_STATE_NAME(sname), \
a4889858 105 .abbr = sabbr, \
f6a12f34 106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 108}
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
b28a7c01 113static struct rcu_state *const rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
a3dc2948
PM
116/* Dump rcu_node combining tree at boot to verify correct setup. */
117static bool dump_tree;
118module_param(dump_tree, bool, 0444);
7fa27001
PM
119/* Control rcu_node-tree auto-balancing at boot time. */
120static bool rcu_fanout_exact;
121module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 124module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 126/* Number of rcu_nodes at specified level. */
e95d68d2 127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
129/* panic() on RCU Stall sysctl. */
130int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 131
b0d30417 132/*
52d7e48b
PM
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 137 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 143 */
bbad9379
PM
144int rcu_scheduler_active __read_mostly;
145EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
b0d30417
PM
147/*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159static int rcu_scheduler_fully_active __read_mostly;
160
0aa04b05
PM
161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
164static void invoke_rcu_core(void);
165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
166static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
3549c2bc 168static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 169
a94844b2 170/* rcuc/rcub kthread realtime priority */
26730f55 171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
172module_param(kthread_prio, int, 0644);
173
8d7dc928 174/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 175
90040c9e
PM
176static int gp_preinit_delay;
177module_param(gp_preinit_delay, int, 0444);
178static int gp_init_delay;
179module_param(gp_init_delay, int, 0444);
180static int gp_cleanup_delay;
181module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 182
eab128e8
PM
183/*
184 * Number of grace periods between delays, normalized by the duration of
bfd090be 185 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
186 * each delay. The reason for this normalization is that it means that,
187 * for non-zero delays, the overall slowdown of grace periods is constant
188 * regardless of the duration of the delay. This arrangement balances
189 * the need for long delays to increase some race probabilities with the
190 * need for fast grace periods to increase other race probabilities.
191 */
192#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 193
4a298656
PM
194/*
195 * Track the rcutorture test sequence number and the update version
196 * number within a given test. The rcutorture_testseq is incremented
197 * on every rcutorture module load and unload, so has an odd value
198 * when a test is running. The rcutorture_vernum is set to zero
199 * when rcutorture starts and is incremented on each rcutorture update.
200 * These variables enable correlating rcutorture output with the
201 * RCU tracing information.
202 */
203unsigned long rcutorture_testseq;
204unsigned long rcutorture_vernum;
205
0aa04b05
PM
206/*
207 * Compute the mask of online CPUs for the specified rcu_node structure.
208 * This will not be stable unless the rcu_node structure's ->lock is
209 * held, but the bit corresponding to the current CPU will be stable
210 * in most contexts.
211 */
212unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
213{
7d0ae808 214 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
215}
216
fc2219d4 217/*
7d0ae808 218 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
219 * permit this function to be invoked without holding the root rcu_node
220 * structure's ->lock, but of course results can be subject to change.
221 */
222static int rcu_gp_in_progress(struct rcu_state *rsp)
223{
7d0ae808 224 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
225}
226
b1f77b05 227/*
d6714c22 228 * Note a quiescent state. Because we do not need to know
b1f77b05 229 * how many quiescent states passed, just if there was at least
d6714c22 230 * one since the start of the grace period, this just sets a flag.
e4cc1f22 231 * The caller must have disabled preemption.
b1f77b05 232 */
284a8c93 233void rcu_sched_qs(void)
b1f77b05 234{
f4687d26 235 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
236 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
237 return;
238 trace_rcu_grace_period(TPS("rcu_sched"),
239 __this_cpu_read(rcu_sched_data.gpnum),
240 TPS("cpuqs"));
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
242 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
243 return;
46a5d164
PM
244 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
245 rcu_report_exp_rdp(&rcu_sched_state,
246 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
247}
248
284a8c93 249void rcu_bh_qs(void)
b1f77b05 250{
f4687d26 251 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 252 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
253 trace_rcu_grace_period(TPS("rcu_bh"),
254 __this_cpu_read(rcu_bh_data.gpnum),
255 TPS("cpuqs"));
5b74c458 256 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 257 }
b1f77b05 258}
64db4cff 259
b8c17e66
PM
260/*
261 * Steal a bit from the bottom of ->dynticks for idle entry/exit
262 * control. Initially this is for TLB flushing.
263 */
264#define RCU_DYNTICK_CTRL_MASK 0x1
265#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
266#ifndef rcu_eqs_special_exit
267#define rcu_eqs_special_exit() do { } while (0)
268#endif
4a81e832
PM
269
270static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
271 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 272 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
273};
274
03ecd3f4
SRV
275/*
276 * There's a few places, currently just in the tracing infrastructure,
277 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
278 * a small location where that will not even work. In those cases
279 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
280 * can be called.
281 */
282static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
283
284bool rcu_irq_enter_disabled(void)
285{
286 return this_cpu_read(disable_rcu_irq_enter);
287}
288
2625d469
PM
289/*
290 * Record entry into an extended quiescent state. This is only to be
291 * called when not already in an extended quiescent state.
292 */
293static void rcu_dynticks_eqs_enter(void)
294{
295 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 296 int seq;
2625d469
PM
297
298 /*
b8c17e66 299 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
300 * critical sections, and we also must force ordering with the
301 * next idle sojourn.
302 */
b8c17e66
PM
303 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
304 /* Better be in an extended quiescent state! */
305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 (seq & RCU_DYNTICK_CTRL_CTR));
307 /* Better not have special action (TLB flush) pending! */
308 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
309 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
310}
311
312/*
313 * Record exit from an extended quiescent state. This is only to be
314 * called from an extended quiescent state.
315 */
316static void rcu_dynticks_eqs_exit(void)
317{
318 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 319 int seq;
2625d469
PM
320
321 /*
b8c17e66 322 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
323 * and we also must force ordering with the next RCU read-side
324 * critical section.
325 */
b8c17e66
PM
326 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
327 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
328 !(seq & RCU_DYNTICK_CTRL_CTR));
329 if (seq & RCU_DYNTICK_CTRL_MASK) {
330 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
331 smp_mb__after_atomic(); /* _exit after clearing mask. */
332 /* Prefer duplicate flushes to losing a flush. */
333 rcu_eqs_special_exit();
334 }
2625d469
PM
335}
336
337/*
338 * Reset the current CPU's ->dynticks counter to indicate that the
339 * newly onlined CPU is no longer in an extended quiescent state.
340 * This will either leave the counter unchanged, or increment it
341 * to the next non-quiescent value.
342 *
343 * The non-atomic test/increment sequence works because the upper bits
344 * of the ->dynticks counter are manipulated only by the corresponding CPU,
345 * or when the corresponding CPU is offline.
346 */
347static void rcu_dynticks_eqs_online(void)
348{
349 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
350
b8c17e66 351 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 352 return;
b8c17e66 353 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
354}
355
02a5c550
PM
356/*
357 * Is the current CPU in an extended quiescent state?
358 *
359 * No ordering, as we are sampling CPU-local information.
360 */
361bool rcu_dynticks_curr_cpu_in_eqs(void)
362{
363 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
364
b8c17e66 365 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
366}
367
8b2f63ab
PM
368/*
369 * Snapshot the ->dynticks counter with full ordering so as to allow
370 * stable comparison of this counter with past and future snapshots.
371 */
02a5c550 372int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
373{
374 int snap = atomic_add_return(0, &rdtp->dynticks);
375
b8c17e66 376 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
377}
378
02a5c550
PM
379/*
380 * Return true if the snapshot returned from rcu_dynticks_snap()
381 * indicates that RCU is in an extended quiescent state.
382 */
383static bool rcu_dynticks_in_eqs(int snap)
384{
b8c17e66 385 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
386}
387
388/*
389 * Return true if the CPU corresponding to the specified rcu_dynticks
390 * structure has spent some time in an extended quiescent state since
391 * rcu_dynticks_snap() returned the specified snapshot.
392 */
393static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
394{
395 return snap != rcu_dynticks_snap(rdtp);
396}
397
6563de9d
PM
398/*
399 * Do a double-increment of the ->dynticks counter to emulate a
400 * momentary idle-CPU quiescent state.
401 */
402static void rcu_dynticks_momentary_idle(void)
403{
404 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
405 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
406 &rdtp->dynticks);
6563de9d
PM
407
408 /* It is illegal to call this from idle state. */
b8c17e66 409 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
410}
411
b8c17e66
PM
412/*
413 * Set the special (bottom) bit of the specified CPU so that it
414 * will take special action (such as flushing its TLB) on the
415 * next exit from an extended quiescent state. Returns true if
416 * the bit was successfully set, or false if the CPU was not in
417 * an extended quiescent state.
418 */
419bool rcu_eqs_special_set(int cpu)
420{
421 int old;
422 int new;
423 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
424
425 do {
426 old = atomic_read(&rdtp->dynticks);
427 if (old & RCU_DYNTICK_CTRL_CTR)
428 return false;
429 new = old | RCU_DYNTICK_CTRL_MASK;
430 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
431 return true;
6563de9d 432}
5cd37193 433
4a81e832
PM
434/*
435 * Let the RCU core know that this CPU has gone through the scheduler,
436 * which is a quiescent state. This is called when the need for a
437 * quiescent state is urgent, so we burn an atomic operation and full
438 * memory barriers to let the RCU core know about it, regardless of what
439 * this CPU might (or might not) do in the near future.
440 *
0f9be8ca 441 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
442 *
443 * The caller must have disabled interrupts.
4a81e832
PM
444 */
445static void rcu_momentary_dyntick_idle(void)
446{
0f9be8ca
PM
447 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
448 rcu_dynticks_momentary_idle();
4a81e832
PM
449}
450
25502a6c
PM
451/*
452 * Note a context switch. This is a quiescent state for RCU-sched,
453 * and requires special handling for preemptible RCU.
46a5d164 454 * The caller must have disabled interrupts.
25502a6c 455 */
bcbfdd01 456void rcu_note_context_switch(bool preempt)
25502a6c 457{
bb73c52b 458 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 459 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 460 rcu_sched_qs();
5b72f964 461 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
462 /* Load rcu_urgent_qs before other flags. */
463 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
464 goto out;
465 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 466 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 467 rcu_momentary_dyntick_idle();
9226b10d 468 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
469 if (!preempt)
470 rcu_note_voluntary_context_switch_lite(current);
9226b10d 471out:
f7f7bac9 472 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 473 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 474}
29ce8310 475EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 476
5cd37193 477/*
1925d196 478 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
479 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
480 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 481 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
482 * be none of them). Either way, do a lightweight quiescent state for
483 * all RCU flavors.
bb73c52b
BF
484 *
485 * The barrier() calls are redundant in the common case when this is
486 * called externally, but just in case this is called from within this
487 * file.
488 *
5cd37193
PM
489 */
490void rcu_all_qs(void)
491{
46a5d164
PM
492 unsigned long flags;
493
9226b10d
PM
494 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
495 return;
496 preempt_disable();
497 /* Load rcu_urgent_qs before other flags. */
498 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
499 preempt_enable();
500 return;
501 }
502 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 503 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 504 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 505 local_irq_save(flags);
5cd37193 506 rcu_momentary_dyntick_idle();
46a5d164
PM
507 local_irq_restore(flags);
508 }
9226b10d 509 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 510 rcu_sched_qs();
9577df9a 511 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 512 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 513 preempt_enable();
5cd37193
PM
514}
515EXPORT_SYMBOL_GPL(rcu_all_qs);
516
17c7798b
PM
517#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
518static long blimit = DEFAULT_RCU_BLIMIT;
519#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
520static long qhimark = DEFAULT_RCU_QHIMARK;
521#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
522static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 523
878d7439
ED
524module_param(blimit, long, 0444);
525module_param(qhimark, long, 0444);
526module_param(qlowmark, long, 0444);
3d76c082 527
026ad283
PM
528static ulong jiffies_till_first_fqs = ULONG_MAX;
529static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 530static bool rcu_kick_kthreads;
d40011f6
PM
531
532module_param(jiffies_till_first_fqs, ulong, 0644);
533module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 534module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 535
4a81e832
PM
536/*
537 * How long the grace period must be before we start recruiting
538 * quiescent-state help from rcu_note_context_switch().
539 */
540static ulong jiffies_till_sched_qs = HZ / 20;
541module_param(jiffies_till_sched_qs, ulong, 0644);
542
48a7639c 543static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 544 struct rcu_data *rdp);
fe5ac724 545static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 546static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 547static int rcu_pending(void);
64db4cff
PM
548
549/*
917963d0 550 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 551 */
917963d0
PM
552unsigned long rcu_batches_started(void)
553{
554 return rcu_state_p->gpnum;
555}
556EXPORT_SYMBOL_GPL(rcu_batches_started);
557
558/*
559 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 560 */
917963d0
PM
561unsigned long rcu_batches_started_sched(void)
562{
563 return rcu_sched_state.gpnum;
564}
565EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
566
567/*
568 * Return the number of RCU BH batches started thus far for debug & stats.
569 */
570unsigned long rcu_batches_started_bh(void)
571{
572 return rcu_bh_state.gpnum;
573}
574EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
575
576/*
577 * Return the number of RCU batches completed thus far for debug & stats.
578 */
579unsigned long rcu_batches_completed(void)
580{
581 return rcu_state_p->completed;
582}
583EXPORT_SYMBOL_GPL(rcu_batches_completed);
584
585/*
586 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 587 */
9733e4f0 588unsigned long rcu_batches_completed_sched(void)
64db4cff 589{
d6714c22 590 return rcu_sched_state.completed;
64db4cff 591}
d6714c22 592EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
593
594/*
917963d0 595 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 596 */
9733e4f0 597unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
598{
599 return rcu_bh_state.completed;
600}
601EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
602
291783b8
PM
603/*
604 * Return the number of RCU expedited batches completed thus far for
605 * debug & stats. Odd numbers mean that a batch is in progress, even
606 * numbers mean idle. The value returned will thus be roughly double
607 * the cumulative batches since boot.
608 */
609unsigned long rcu_exp_batches_completed(void)
610{
611 return rcu_state_p->expedited_sequence;
612}
613EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
614
615/*
616 * Return the number of RCU-sched expedited batches completed thus far
617 * for debug & stats. Similar to rcu_exp_batches_completed().
618 */
619unsigned long rcu_exp_batches_completed_sched(void)
620{
621 return rcu_sched_state.expedited_sequence;
622}
623EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
624
a381d757
ACB
625/*
626 * Force a quiescent state.
627 */
628void rcu_force_quiescent_state(void)
629{
e534165b 630 force_quiescent_state(rcu_state_p);
a381d757
ACB
631}
632EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
633
bf66f18e
PM
634/*
635 * Force a quiescent state for RCU BH.
636 */
637void rcu_bh_force_quiescent_state(void)
638{
4cdfc175 639 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
640}
641EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
642
e7580f33
PM
643/*
644 * Force a quiescent state for RCU-sched.
645 */
646void rcu_sched_force_quiescent_state(void)
647{
648 force_quiescent_state(&rcu_sched_state);
649}
650EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
651
afea227f
PM
652/*
653 * Show the state of the grace-period kthreads.
654 */
655void show_rcu_gp_kthreads(void)
656{
657 struct rcu_state *rsp;
658
659 for_each_rcu_flavor(rsp) {
660 pr_info("%s: wait state: %d ->state: %#lx\n",
661 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
662 /* sched_show_task(rsp->gp_kthread); */
663 }
664}
665EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
666
4a298656
PM
667/*
668 * Record the number of times rcutorture tests have been initiated and
669 * terminated. This information allows the debugfs tracing stats to be
670 * correlated to the rcutorture messages, even when the rcutorture module
671 * is being repeatedly loaded and unloaded. In other words, we cannot
672 * store this state in rcutorture itself.
673 */
674void rcutorture_record_test_transition(void)
675{
676 rcutorture_testseq++;
677 rcutorture_vernum = 0;
678}
679EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
680
ad0dc7f9
PM
681/*
682 * Send along grace-period-related data for rcutorture diagnostics.
683 */
684void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
685 unsigned long *gpnum, unsigned long *completed)
686{
687 struct rcu_state *rsp = NULL;
688
689 switch (test_type) {
690 case RCU_FLAVOR:
e534165b 691 rsp = rcu_state_p;
ad0dc7f9
PM
692 break;
693 case RCU_BH_FLAVOR:
694 rsp = &rcu_bh_state;
695 break;
696 case RCU_SCHED_FLAVOR:
697 rsp = &rcu_sched_state;
698 break;
699 default:
700 break;
701 }
7f6733c3 702 if (rsp == NULL)
ad0dc7f9 703 return;
7f6733c3
PM
704 *flags = READ_ONCE(rsp->gp_flags);
705 *gpnum = READ_ONCE(rsp->gpnum);
706 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
707}
708EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
709
4a298656
PM
710/*
711 * Record the number of writer passes through the current rcutorture test.
712 * This is also used to correlate debugfs tracing stats with the rcutorture
713 * messages.
714 */
715void rcutorture_record_progress(unsigned long vernum)
716{
717 rcutorture_vernum++;
718}
719EXPORT_SYMBOL_GPL(rcutorture_record_progress);
720
365187fb
PM
721/*
722 * Return the root node of the specified rcu_state structure.
723 */
724static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
725{
726 return &rsp->node[0];
727}
728
729/*
730 * Is there any need for future grace periods?
731 * Interrupts must be disabled. If the caller does not hold the root
732 * rnp_node structure's ->lock, the results are advisory only.
733 */
734static int rcu_future_needs_gp(struct rcu_state *rsp)
735{
736 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 737 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
738 int *fp = &rnp->need_future_gp[idx];
739
c0b334c5 740 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
7d0ae808 741 return READ_ONCE(*fp);
365187fb
PM
742}
743
64db4cff 744/*
dc35c893
PM
745 * Does the current CPU require a not-yet-started grace period?
746 * The caller must have disabled interrupts to prevent races with
747 * normal callback registry.
64db4cff 748 */
d117c8aa 749static bool
64db4cff
PM
750cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
751{
c0b334c5 752 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
dc35c893 753 if (rcu_gp_in_progress(rsp))
d117c8aa 754 return false; /* No, a grace period is already in progress. */
365187fb 755 if (rcu_future_needs_gp(rsp))
d117c8aa 756 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 757 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 758 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 759 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 760 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
761 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
762 READ_ONCE(rsp->completed)))
763 return true; /* Yes, CBs for future grace period. */
d117c8aa 764 return false; /* No grace period needed. */
64db4cff
PM
765}
766
9b2e4f18 767/*
a278d471 768 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
9b2e4f18 769 *
a278d471
PM
770 * Enter idle, doing appropriate accounting. The caller must have
771 * disabled interrupts.
9b2e4f18 772 */
a278d471 773static void rcu_eqs_enter_common(bool user)
9b2e4f18 774{
96d3fd0d
PM
775 struct rcu_state *rsp;
776 struct rcu_data *rdp;
a278d471 777 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 778
c0b334c5 779 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
a278d471 780 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
1ce46ee5
PM
781 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
782 !user && !is_idle_task(current)) {
289828e6
PM
783 struct task_struct *idle __maybe_unused =
784 idle_task(smp_processor_id());
0989cb46 785
a278d471 786 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
274529ba 787 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
788 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
789 current->pid, current->comm,
790 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 791 }
96d3fd0d
PM
792 for_each_rcu_flavor(rsp) {
793 rdp = this_cpu_ptr(rsp->rda);
794 do_nocb_deferred_wakeup(rdp);
795 }
198bbf81 796 rcu_prepare_for_idle();
03ecd3f4 797 __this_cpu_inc(disable_rcu_irq_enter);
a278d471
PM
798 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
799 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
03ecd3f4 800 __this_cpu_dec(disable_rcu_irq_enter);
176f8f7a 801 rcu_dynticks_task_enter();
c44e2cdd
PM
802
803 /*
adf5091e 804 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
805 * in an RCU read-side critical section.
806 */
f78f5b90
PM
807 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
808 "Illegal idle entry in RCU read-side critical section.");
809 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
810 "Illegal idle entry in RCU-bh read-side critical section.");
811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
812 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 813}
64db4cff 814
adf5091e
FW
815/*
816 * Enter an RCU extended quiescent state, which can be either the
817 * idle loop or adaptive-tickless usermode execution.
64db4cff 818 */
adf5091e 819static void rcu_eqs_enter(bool user)
64db4cff 820{
64db4cff
PM
821 struct rcu_dynticks *rdtp;
822
c9d4b0af 823 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 824 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
825 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
826 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
827 rcu_eqs_enter_common(user);
828 else
29e37d81 829 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
64db4cff 830}
adf5091e
FW
831
832/**
833 * rcu_idle_enter - inform RCU that current CPU is entering idle
834 *
835 * Enter idle mode, in other words, -leave- the mode in which RCU
836 * read-side critical sections can occur. (Though RCU read-side
837 * critical sections can occur in irq handlers in idle, a possibility
838 * handled by irq_enter() and irq_exit().)
839 *
840 * We crowbar the ->dynticks_nesting field to zero to allow for
841 * the possibility of usermode upcalls having messed up our count
842 * of interrupt nesting level during the prior busy period.
843 */
844void rcu_idle_enter(void)
845{
c5d900bf
FW
846 unsigned long flags;
847
848 local_irq_save(flags);
cb349ca9 849 rcu_eqs_enter(false);
c5d900bf 850 local_irq_restore(flags);
adf5091e 851}
8a2ecf47 852EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 853
d1ec4c34 854#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
855/**
856 * rcu_user_enter - inform RCU that we are resuming userspace.
857 *
858 * Enter RCU idle mode right before resuming userspace. No use of RCU
859 * is permitted between this call and rcu_user_exit(). This way the
860 * CPU doesn't need to maintain the tick for RCU maintenance purposes
861 * when the CPU runs in userspace.
862 */
863void rcu_user_enter(void)
864{
91d1aa43 865 rcu_eqs_enter(1);
adf5091e 866}
d1ec4c34 867#endif /* CONFIG_NO_HZ_FULL */
19dd1591 868
9b2e4f18
PM
869/**
870 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
871 *
872 * Exit from an interrupt handler, which might possibly result in entering
873 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 874 * sections can occur. The caller must have disabled interrupts.
64db4cff 875 *
9b2e4f18
PM
876 * This code assumes that the idle loop never does anything that might
877 * result in unbalanced calls to irq_enter() and irq_exit(). If your
878 * architecture violates this assumption, RCU will give you what you
879 * deserve, good and hard. But very infrequently and irreproducibly.
880 *
881 * Use things like work queues to work around this limitation.
882 *
883 * You have been warned.
64db4cff 884 */
9b2e4f18 885void rcu_irq_exit(void)
64db4cff 886{
64db4cff
PM
887 struct rcu_dynticks *rdtp;
888
7c9906ca 889 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 890 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 891 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
892 rdtp->dynticks_nesting < 1);
893 if (rdtp->dynticks_nesting <= 1) {
894 rcu_eqs_enter_common(true);
895 } else {
896 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
897 rdtp->dynticks_nesting--;
898 }
7c9906ca
PM
899}
900
901/*
902 * Wrapper for rcu_irq_exit() where interrupts are enabled.
903 */
904void rcu_irq_exit_irqson(void)
905{
906 unsigned long flags;
907
908 local_irq_save(flags);
909 rcu_irq_exit();
9b2e4f18
PM
910 local_irq_restore(flags);
911}
912
913/*
adf5091e 914 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
915 *
916 * If the new value of the ->dynticks_nesting counter was previously zero,
917 * we really have exited idle, and must do the appropriate accounting.
918 * The caller must have disabled interrupts.
919 */
28ced795 920static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 921{
2625d469 922 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 923
176f8f7a 924 rcu_dynticks_task_exit();
2625d469 925 rcu_dynticks_eqs_exit();
8fa7845d 926 rcu_cleanup_after_idle();
f7f7bac9 927 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
928 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
929 !user && !is_idle_task(current)) {
289828e6
PM
930 struct task_struct *idle __maybe_unused =
931 idle_task(smp_processor_id());
0989cb46 932
f7f7bac9 933 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 934 oldval, rdtp->dynticks_nesting);
274529ba 935 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
936 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
937 current->pid, current->comm,
938 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
939 }
940}
941
adf5091e
FW
942/*
943 * Exit an RCU extended quiescent state, which can be either the
944 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 945 */
adf5091e 946static void rcu_eqs_exit(bool user)
9b2e4f18 947{
9b2e4f18
PM
948 struct rcu_dynticks *rdtp;
949 long long oldval;
950
c0b334c5 951 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
c9d4b0af 952 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 953 oldval = rdtp->dynticks_nesting;
1ce46ee5 954 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 955 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 956 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 957 } else {
35fe723b 958 __this_cpu_inc(disable_rcu_irq_enter);
29e37d81 959 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 960 rcu_eqs_exit_common(oldval, user);
35fe723b 961 __this_cpu_dec(disable_rcu_irq_enter);
3a592405 962 }
9b2e4f18 963}
adf5091e
FW
964
965/**
966 * rcu_idle_exit - inform RCU that current CPU is leaving idle
967 *
968 * Exit idle mode, in other words, -enter- the mode in which RCU
969 * read-side critical sections can occur.
970 *
971 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
972 * allow for the possibility of usermode upcalls messing up our count
973 * of interrupt nesting level during the busy period that is just
974 * now starting.
975 */
976void rcu_idle_exit(void)
977{
c5d900bf
FW
978 unsigned long flags;
979
980 local_irq_save(flags);
cb349ca9 981 rcu_eqs_exit(false);
c5d900bf 982 local_irq_restore(flags);
adf5091e 983}
8a2ecf47 984EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 985
d1ec4c34 986#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
987/**
988 * rcu_user_exit - inform RCU that we are exiting userspace.
989 *
990 * Exit RCU idle mode while entering the kernel because it can
991 * run a RCU read side critical section anytime.
992 */
993void rcu_user_exit(void)
994{
91d1aa43 995 rcu_eqs_exit(1);
adf5091e 996}
d1ec4c34 997#endif /* CONFIG_NO_HZ_FULL */
19dd1591 998
9b2e4f18
PM
999/**
1000 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1001 *
1002 * Enter an interrupt handler, which might possibly result in exiting
1003 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1004 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1005 *
1006 * Note that the Linux kernel is fully capable of entering an interrupt
1007 * handler that it never exits, for example when doing upcalls to
1008 * user mode! This code assumes that the idle loop never does upcalls to
1009 * user mode. If your architecture does do upcalls from the idle loop (or
1010 * does anything else that results in unbalanced calls to the irq_enter()
1011 * and irq_exit() functions), RCU will give you what you deserve, good
1012 * and hard. But very infrequently and irreproducibly.
1013 *
1014 * Use things like work queues to work around this limitation.
1015 *
1016 * You have been warned.
1017 */
1018void rcu_irq_enter(void)
1019{
9b2e4f18
PM
1020 struct rcu_dynticks *rdtp;
1021 long long oldval;
1022
7c9906ca 1023 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1024 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1025 oldval = rdtp->dynticks_nesting;
1026 rdtp->dynticks_nesting++;
1ce46ee5
PM
1027 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1028 rdtp->dynticks_nesting == 0);
b6fc6020 1029 if (oldval)
f7f7bac9 1030 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1031 else
28ced795 1032 rcu_eqs_exit_common(oldval, true);
7c9906ca
PM
1033}
1034
1035/*
1036 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1037 */
1038void rcu_irq_enter_irqson(void)
1039{
1040 unsigned long flags;
1041
1042 local_irq_save(flags);
1043 rcu_irq_enter();
64db4cff 1044 local_irq_restore(flags);
64db4cff
PM
1045}
1046
1047/**
1048 * rcu_nmi_enter - inform RCU of entry to NMI context
1049 *
734d1680
PM
1050 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1051 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1052 * that the CPU is active. This implementation permits nested NMIs, as
1053 * long as the nesting level does not overflow an int. (You will probably
1054 * run out of stack space first.)
64db4cff
PM
1055 */
1056void rcu_nmi_enter(void)
1057{
c9d4b0af 1058 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1059 int incby = 2;
64db4cff 1060
734d1680
PM
1061 /* Complain about underflow. */
1062 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1063
1064 /*
1065 * If idle from RCU viewpoint, atomically increment ->dynticks
1066 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1067 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1068 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1069 * to be in the outermost NMI handler that interrupted an RCU-idle
1070 * period (observation due to Andy Lutomirski).
1071 */
02a5c550 1072 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1073 rcu_dynticks_eqs_exit();
734d1680
PM
1074 incby = 1;
1075 }
1076 rdtp->dynticks_nmi_nesting += incby;
1077 barrier();
64db4cff
PM
1078}
1079
1080/**
1081 * rcu_nmi_exit - inform RCU of exit from NMI context
1082 *
734d1680
PM
1083 * If we are returning from the outermost NMI handler that interrupted an
1084 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1085 * to let the RCU grace-period handling know that the CPU is back to
1086 * being RCU-idle.
64db4cff
PM
1087 */
1088void rcu_nmi_exit(void)
1089{
c9d4b0af 1090 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1091
734d1680
PM
1092 /*
1093 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1094 * (We are exiting an NMI handler, so RCU better be paying attention
1095 * to us!)
1096 */
1097 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1098 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1099
1100 /*
1101 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1102 * leave it in non-RCU-idle state.
1103 */
1104 if (rdtp->dynticks_nmi_nesting != 1) {
1105 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1106 return;
734d1680
PM
1107 }
1108
1109 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1110 rdtp->dynticks_nmi_nesting = 0;
2625d469 1111 rcu_dynticks_eqs_enter();
64db4cff
PM
1112}
1113
5c173eb8
PM
1114/**
1115 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1116 *
791875d1
PM
1117 * Return true if RCU is watching the running CPU, which means that this
1118 * CPU can safely enter RCU read-side critical sections. In other words,
1119 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 1120 * or NMI handler, return true.
64db4cff 1121 */
9418fb20 1122bool notrace rcu_is_watching(void)
64db4cff 1123{
f534ed1f 1124 bool ret;
34240697 1125
46f00d18 1126 preempt_disable_notrace();
791875d1 1127 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1128 preempt_enable_notrace();
34240697 1129 return ret;
64db4cff 1130}
5c173eb8 1131EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1132
bcbfdd01
PM
1133/*
1134 * If a holdout task is actually running, request an urgent quiescent
1135 * state from its CPU. This is unsynchronized, so migrations can cause
1136 * the request to go to the wrong CPU. Which is OK, all that will happen
1137 * is that the CPU's next context switch will be a bit slower and next
1138 * time around this task will generate another request.
1139 */
1140void rcu_request_urgent_qs_task(struct task_struct *t)
1141{
1142 int cpu;
1143
1144 barrier();
1145 cpu = task_cpu(t);
1146 if (!task_curr(t))
1147 return; /* This task is not running on that CPU. */
1148 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1149}
1150
62fde6ed 1151#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1152
1153/*
1154 * Is the current CPU online? Disable preemption to avoid false positives
1155 * that could otherwise happen due to the current CPU number being sampled,
1156 * this task being preempted, its old CPU being taken offline, resuming
1157 * on some other CPU, then determining that its old CPU is now offline.
1158 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1159 * the check for rcu_scheduler_fully_active. Note also that it is OK
1160 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1161 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1162 * offline to continue to use RCU for one jiffy after marking itself
1163 * offline in the cpu_online_mask. This leniency is necessary given the
1164 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1165 * the fact that a CPU enters the scheduler after completing the teardown
1166 * of the CPU.
2036d94a 1167 *
4df83742
TG
1168 * This is also why RCU internally marks CPUs online during in the
1169 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1170 *
1171 * Disable checking if in an NMI handler because we cannot safely report
1172 * errors from NMI handlers anyway.
1173 */
1174bool rcu_lockdep_current_cpu_online(void)
1175{
2036d94a
PM
1176 struct rcu_data *rdp;
1177 struct rcu_node *rnp;
c0d6d01b
PM
1178 bool ret;
1179
1180 if (in_nmi())
f6f7ee9a 1181 return true;
c0d6d01b 1182 preempt_disable();
c9d4b0af 1183 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1184 rnp = rdp->mynode;
0aa04b05 1185 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1186 !rcu_scheduler_fully_active;
1187 preempt_enable();
1188 return ret;
1189}
1190EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1191
62fde6ed 1192#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1193
64db4cff 1194/**
9b2e4f18 1195 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1196 *
9b2e4f18
PM
1197 * If the current CPU is idle or running at a first-level (not nested)
1198 * interrupt from idle, return true. The caller must have at least
1199 * disabled preemption.
64db4cff 1200 */
62e3cb14 1201static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1202{
c9d4b0af 1203 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1204}
1205
64db4cff
PM
1206/*
1207 * Snapshot the specified CPU's dynticks counter so that we can later
1208 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1209 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1210 */
fe5ac724 1211static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1212{
8b2f63ab 1213 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1214 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1215 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1216 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1217 rdp->mynode->gpnum))
7d0ae808 1218 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1219 return 1;
7941dbde 1220 }
23a9bacd 1221 return 0;
64db4cff
PM
1222}
1223
1224/*
1225 * Return true if the specified CPU has passed through a quiescent
1226 * state by virtue of being in or having passed through an dynticks
1227 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1228 * for this same CPU, or by virtue of having been offline.
64db4cff 1229 */
fe5ac724 1230static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1231{
3a19b46a 1232 unsigned long jtsq;
0f9be8ca 1233 bool *rnhqp;
9226b10d 1234 bool *ruqp;
3a19b46a
PM
1235 unsigned long rjtsc;
1236 struct rcu_node *rnp;
64db4cff
PM
1237
1238 /*
1239 * If the CPU passed through or entered a dynticks idle phase with
1240 * no active irq/NMI handlers, then we can safely pretend that the CPU
1241 * already acknowledged the request to pass through a quiescent
1242 * state. Either way, that CPU cannot possibly be in an RCU
1243 * read-side critical section that started before the beginning
1244 * of the current RCU grace period.
1245 */
02a5c550 1246 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1247 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1248 rdp->dynticks_fqs++;
1249 return 1;
1250 }
1251
3a19b46a
PM
1252 /* Compute and saturate jiffies_till_sched_qs. */
1253 jtsq = jiffies_till_sched_qs;
1254 rjtsc = rcu_jiffies_till_stall_check();
1255 if (jtsq > rjtsc / 2) {
1256 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1257 jtsq = rjtsc / 2;
1258 } else if (jtsq < 1) {
1259 WRITE_ONCE(jiffies_till_sched_qs, 1);
1260 jtsq = 1;
1261 }
1262
a82dcc76 1263 /*
3a19b46a
PM
1264 * Has this CPU encountered a cond_resched_rcu_qs() since the
1265 * beginning of the grace period? For this to be the case,
1266 * the CPU has to have noticed the current grace period. This
1267 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1268 */
3a19b46a 1269 rnp = rdp->mynode;
9226b10d 1270 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1271 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1272 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1273 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1274 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1275 return 1;
9226b10d
PM
1276 } else {
1277 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1278 smp_store_release(ruqp, true);
3a19b46a
PM
1279 }
1280
38d30b33
PM
1281 /* Check for the CPU being offline. */
1282 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1283 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1284 rdp->offline_fqs++;
1285 return 1;
1286 }
65d798f0
PM
1287
1288 /*
4a81e832
PM
1289 * A CPU running for an extended time within the kernel can
1290 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1291 * even context-switching back and forth between a pair of
1292 * in-kernel CPU-bound tasks cannot advance grace periods.
1293 * So if the grace period is old enough, make the CPU pay attention.
1294 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1295 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1296 * bits can be lost, but they will be set again on the next
1297 * force-quiescent-state pass. So lost bit sets do not result
1298 * in incorrect behavior, merely in a grace period lasting
1299 * a few jiffies longer than it might otherwise. Because
1300 * there are at most four threads involved, and because the
1301 * updates are only once every few jiffies, the probability of
1302 * lossage (and thus of slight grace-period extension) is
1303 * quite low.
1304 *
1305 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1306 * is set too high, we override with half of the RCU CPU stall
1307 * warning delay.
6193c76a 1308 */
0f9be8ca
PM
1309 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1310 if (!READ_ONCE(*rnhqp) &&
1311 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1312 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1313 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1314 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1315 smp_store_release(ruqp, true);
4914950a 1316 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1317 }
1318
28053bc7
PM
1319 /*
1320 * If more than halfway to RCU CPU stall-warning time, do
1321 * a resched_cpu() to try to loosen things up a bit.
1322 */
1323 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1324 resched_cpu(rdp->cpu);
4914950a 1325
a82dcc76 1326 return 0;
64db4cff
PM
1327}
1328
64db4cff
PM
1329static void record_gp_stall_check_time(struct rcu_state *rsp)
1330{
cb1e78cf 1331 unsigned long j = jiffies;
6193c76a 1332 unsigned long j1;
26cdfedf
PM
1333
1334 rsp->gp_start = j;
1335 smp_wmb(); /* Record start time before stall time. */
6193c76a 1336 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1337 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1338 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1339 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1340}
1341
6b50e119
PM
1342/*
1343 * Convert a ->gp_state value to a character string.
1344 */
1345static const char *gp_state_getname(short gs)
1346{
1347 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1348 return "???";
1349 return gp_state_names[gs];
1350}
1351
fb81a44b
PM
1352/*
1353 * Complain about starvation of grace-period kthread.
1354 */
1355static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1356{
1357 unsigned long gpa;
1358 unsigned long j;
1359
1360 j = jiffies;
7d0ae808 1361 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1362 if (j - gpa > 2 * HZ) {
6b50e119 1363 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1364 rsp->name, j - gpa,
319362c9 1365 rsp->gpnum, rsp->completed,
6b50e119
PM
1366 rsp->gp_flags,
1367 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1368 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1369 if (rsp->gp_kthread) {
b1adb3e2 1370 sched_show_task(rsp->gp_kthread);
86057b80
PM
1371 wake_up_process(rsp->gp_kthread);
1372 }
b1adb3e2 1373 }
64db4cff
PM
1374}
1375
b637a328 1376/*
7aa92230
PM
1377 * Dump stacks of all tasks running on stalled CPUs. First try using
1378 * NMIs, but fall back to manual remote stack tracing on architectures
1379 * that don't support NMI-based stack dumps. The NMI-triggered stack
1380 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1381 */
1382static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1383{
1384 int cpu;
1385 unsigned long flags;
1386 struct rcu_node *rnp;
1387
1388 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1389 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1390 for_each_leaf_node_possible_cpu(rnp, cpu)
1391 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1392 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1393 dump_cpu_task(cpu);
67c583a7 1394 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1395 }
1396}
1397
8c7c4829
PM
1398/*
1399 * If too much time has passed in the current grace period, and if
1400 * so configured, go kick the relevant kthreads.
1401 */
1402static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1403{
1404 unsigned long j;
1405
1406 if (!rcu_kick_kthreads)
1407 return;
1408 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1409 if (time_after(jiffies, j) && rsp->gp_kthread &&
1410 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1411 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1412 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1413 wake_up_process(rsp->gp_kthread);
1414 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1415 }
1416}
1417
088e9d25
DBO
1418static inline void panic_on_rcu_stall(void)
1419{
1420 if (sysctl_panic_on_rcu_stall)
1421 panic("RCU Stall\n");
1422}
1423
6ccd2ecd 1424static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1425{
1426 int cpu;
1427 long delta;
1428 unsigned long flags;
6ccd2ecd
PM
1429 unsigned long gpa;
1430 unsigned long j;
285fe294 1431 int ndetected = 0;
64db4cff 1432 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1433 long totqlen = 0;
64db4cff 1434
8c7c4829
PM
1435 /* Kick and suppress, if so configured. */
1436 rcu_stall_kick_kthreads(rsp);
1437 if (rcu_cpu_stall_suppress)
1438 return;
1439
64db4cff
PM
1440 /* Only let one CPU complain about others per time interval. */
1441
6cf10081 1442 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1443 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1444 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1445 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1446 return;
1447 }
7d0ae808
PM
1448 WRITE_ONCE(rsp->jiffies_stall,
1449 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1450 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1451
8cdd32a9
PM
1452 /*
1453 * OK, time to rat on our buddy...
1454 * See Documentation/RCU/stallwarn.txt for info on how to debug
1455 * RCU CPU stall warnings.
1456 */
d7f3e207 1457 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1458 rsp->name);
a858af28 1459 print_cpu_stall_info_begin();
a0b6c9a7 1460 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1461 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1462 ndetected += rcu_print_task_stall(rnp);
c8020a67 1463 if (rnp->qsmask != 0) {
bc75e999
MR
1464 for_each_leaf_node_possible_cpu(rnp, cpu)
1465 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1466 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1467 ndetected++;
1468 }
1469 }
67c583a7 1470 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1471 }
a858af28 1472
a858af28 1473 print_cpu_stall_info_end();
53bb857c 1474 for_each_possible_cpu(cpu)
15fecf89
PM
1475 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1476 cpu)->cblist);
83ebe63e 1477 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1478 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1479 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1480 if (ndetected) {
b637a328 1481 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1482
1483 /* Complain about tasks blocking the grace period. */
1484 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1485 } else {
7d0ae808
PM
1486 if (READ_ONCE(rsp->gpnum) != gpnum ||
1487 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1488 pr_err("INFO: Stall ended before state dump start\n");
1489 } else {
1490 j = jiffies;
7d0ae808 1491 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1492 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1493 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1494 jiffies_till_next_fqs,
1495 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1496 /* In this case, the current CPU might be at fault. */
1497 sched_show_task(current);
1498 }
1499 }
c1dc0b9c 1500
fb81a44b
PM
1501 rcu_check_gp_kthread_starvation(rsp);
1502
088e9d25
DBO
1503 panic_on_rcu_stall();
1504
4cdfc175 1505 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1506}
1507
1508static void print_cpu_stall(struct rcu_state *rsp)
1509{
53bb857c 1510 int cpu;
64db4cff
PM
1511 unsigned long flags;
1512 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1513 long totqlen = 0;
64db4cff 1514
8c7c4829
PM
1515 /* Kick and suppress, if so configured. */
1516 rcu_stall_kick_kthreads(rsp);
1517 if (rcu_cpu_stall_suppress)
1518 return;
1519
8cdd32a9
PM
1520 /*
1521 * OK, time to rat on ourselves...
1522 * See Documentation/RCU/stallwarn.txt for info on how to debug
1523 * RCU CPU stall warnings.
1524 */
d7f3e207 1525 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1526 print_cpu_stall_info_begin();
1527 print_cpu_stall_info(rsp, smp_processor_id());
1528 print_cpu_stall_info_end();
53bb857c 1529 for_each_possible_cpu(cpu)
15fecf89
PM
1530 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1531 cpu)->cblist);
83ebe63e
PM
1532 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1533 jiffies - rsp->gp_start,
1534 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1535
1536 rcu_check_gp_kthread_starvation(rsp);
1537
bc1dce51 1538 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1539
6cf10081 1540 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1541 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1542 WRITE_ONCE(rsp->jiffies_stall,
1543 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1544 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1545
088e9d25
DBO
1546 panic_on_rcu_stall();
1547
b021fe3e
PZ
1548 /*
1549 * Attempt to revive the RCU machinery by forcing a context switch.
1550 *
1551 * A context switch would normally allow the RCU state machine to make
1552 * progress and it could be we're stuck in kernel space without context
1553 * switches for an entirely unreasonable amount of time.
1554 */
1555 resched_cpu(smp_processor_id());
64db4cff
PM
1556}
1557
1558static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1559{
26cdfedf
PM
1560 unsigned long completed;
1561 unsigned long gpnum;
1562 unsigned long gps;
bad6e139
PM
1563 unsigned long j;
1564 unsigned long js;
64db4cff
PM
1565 struct rcu_node *rnp;
1566
8c7c4829
PM
1567 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1568 !rcu_gp_in_progress(rsp))
c68de209 1569 return;
8c7c4829 1570 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1571 j = jiffies;
26cdfedf
PM
1572
1573 /*
1574 * Lots of memory barriers to reject false positives.
1575 *
1576 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1577 * then rsp->gp_start, and finally rsp->completed. These values
1578 * are updated in the opposite order with memory barriers (or
1579 * equivalent) during grace-period initialization and cleanup.
1580 * Now, a false positive can occur if we get an new value of
1581 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1582 * the memory barriers, the only way that this can happen is if one
1583 * grace period ends and another starts between these two fetches.
1584 * Detect this by comparing rsp->completed with the previous fetch
1585 * from rsp->gpnum.
1586 *
1587 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1588 * and rsp->gp_start suffice to forestall false positives.
1589 */
7d0ae808 1590 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1591 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1592 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1593 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1594 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1595 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1596 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1597 if (ULONG_CMP_GE(completed, gpnum) ||
1598 ULONG_CMP_LT(j, js) ||
1599 ULONG_CMP_GE(gps, js))
1600 return; /* No stall or GP completed since entering function. */
64db4cff 1601 rnp = rdp->mynode;
c96ea7cf 1602 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1603 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1604
1605 /* We haven't checked in, so go dump stack. */
1606 print_cpu_stall(rsp);
1607
bad6e139
PM
1608 } else if (rcu_gp_in_progress(rsp) &&
1609 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1610
bad6e139 1611 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1612 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1613 }
1614}
1615
53d84e00
PM
1616/**
1617 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1618 *
1619 * Set the stall-warning timeout way off into the future, thus preventing
1620 * any RCU CPU stall-warning messages from appearing in the current set of
1621 * RCU grace periods.
1622 *
1623 * The caller must disable hard irqs.
1624 */
1625void rcu_cpu_stall_reset(void)
1626{
6ce75a23
PM
1627 struct rcu_state *rsp;
1628
1629 for_each_rcu_flavor(rsp)
7d0ae808 1630 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1631}
1632
dc35c893
PM
1633/*
1634 * Determine the value that ->completed will have at the end of the
1635 * next subsequent grace period. This is used to tag callbacks so that
1636 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1637 * been dyntick-idle for an extended period with callbacks under the
1638 * influence of RCU_FAST_NO_HZ.
1639 *
1640 * The caller must hold rnp->lock with interrupts disabled.
1641 */
1642static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1643 struct rcu_node *rnp)
1644{
c0b334c5
PM
1645 lockdep_assert_held(&rnp->lock);
1646
dc35c893
PM
1647 /*
1648 * If RCU is idle, we just wait for the next grace period.
1649 * But we can only be sure that RCU is idle if we are looking
1650 * at the root rcu_node structure -- otherwise, a new grace
1651 * period might have started, but just not yet gotten around
1652 * to initializing the current non-root rcu_node structure.
1653 */
1654 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1655 return rnp->completed + 1;
1656
1657 /*
1658 * Otherwise, wait for a possible partial grace period and
1659 * then the subsequent full grace period.
1660 */
1661 return rnp->completed + 2;
1662}
1663
0446be48
PM
1664/*
1665 * Trace-event helper function for rcu_start_future_gp() and
1666 * rcu_nocb_wait_gp().
1667 */
1668static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1669 unsigned long c, const char *s)
0446be48
PM
1670{
1671 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1672 rnp->completed, c, rnp->level,
1673 rnp->grplo, rnp->grphi, s);
1674}
1675
1676/*
1677 * Start some future grace period, as needed to handle newly arrived
1678 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1679 * rcu_node structure's ->need_future_gp field. Returns true if there
1680 * is reason to awaken the grace-period kthread.
0446be48
PM
1681 *
1682 * The caller must hold the specified rcu_node structure's ->lock.
1683 */
48a7639c
PM
1684static bool __maybe_unused
1685rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1686 unsigned long *c_out)
0446be48
PM
1687{
1688 unsigned long c;
48a7639c 1689 bool ret = false;
0446be48
PM
1690 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1691
c0b334c5
PM
1692 lockdep_assert_held(&rnp->lock);
1693
0446be48
PM
1694 /*
1695 * Pick up grace-period number for new callbacks. If this
1696 * grace period is already marked as needed, return to the caller.
1697 */
1698 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1699 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1700 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1701 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1702 goto out;
0446be48
PM
1703 }
1704
1705 /*
1706 * If either this rcu_node structure or the root rcu_node structure
1707 * believe that a grace period is in progress, then we must wait
1708 * for the one following, which is in "c". Because our request
1709 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1710 * need to explicitly start one. We only do the lockless check
1711 * of rnp_root's fields if the current rcu_node structure thinks
1712 * there is no grace period in flight, and because we hold rnp->lock,
1713 * the only possible change is when rnp_root's two fields are
1714 * equal, in which case rnp_root->gpnum might be concurrently
1715 * incremented. But that is OK, as it will just result in our
1716 * doing some extra useless work.
0446be48
PM
1717 */
1718 if (rnp->gpnum != rnp->completed ||
7d0ae808 1719 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1720 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1721 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1722 goto out;
0446be48
PM
1723 }
1724
1725 /*
1726 * There might be no grace period in progress. If we don't already
1727 * hold it, acquire the root rcu_node structure's lock in order to
1728 * start one (if needed).
1729 */
2a67e741
PZ
1730 if (rnp != rnp_root)
1731 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1732
1733 /*
1734 * Get a new grace-period number. If there really is no grace
1735 * period in progress, it will be smaller than the one we obtained
15fecf89 1736 * earlier. Adjust callbacks as needed.
0446be48
PM
1737 */
1738 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1739 if (!rcu_is_nocb_cpu(rdp->cpu))
1740 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1741
1742 /*
1743 * If the needed for the required grace period is already
1744 * recorded, trace and leave.
1745 */
1746 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1747 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1748 goto unlock_out;
1749 }
1750
1751 /* Record the need for the future grace period. */
1752 rnp_root->need_future_gp[c & 0x1]++;
1753
1754 /* If a grace period is not already in progress, start one. */
1755 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1756 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1757 } else {
f7f7bac9 1758 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1759 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1760 }
1761unlock_out:
1762 if (rnp != rnp_root)
67c583a7 1763 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1764out:
1765 if (c_out != NULL)
1766 *c_out = c;
1767 return ret;
0446be48
PM
1768}
1769
1770/*
1771 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1772 * whether any additional grace periods have been requested.
0446be48
PM
1773 */
1774static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1775{
1776 int c = rnp->completed;
1777 int needmore;
1778 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1779
0446be48
PM
1780 rnp->need_future_gp[c & 0x1] = 0;
1781 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1782 trace_rcu_future_gp(rnp, rdp, c,
1783 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1784 return needmore;
1785}
1786
48a7639c
PM
1787/*
1788 * Awaken the grace-period kthread for the specified flavor of RCU.
1789 * Don't do a self-awaken, and don't bother awakening when there is
1790 * nothing for the grace-period kthread to do (as in several CPUs
1791 * raced to awaken, and we lost), and finally don't try to awaken
1792 * a kthread that has not yet been created.
1793 */
1794static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1795{
1796 if (current == rsp->gp_kthread ||
7d0ae808 1797 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1798 !rsp->gp_kthread)
1799 return;
abedf8e2 1800 swake_up(&rsp->gp_wq);
48a7639c
PM
1801}
1802
dc35c893
PM
1803/*
1804 * If there is room, assign a ->completed number to any callbacks on
1805 * this CPU that have not already been assigned. Also accelerate any
1806 * callbacks that were previously assigned a ->completed number that has
1807 * since proven to be too conservative, which can happen if callbacks get
1808 * assigned a ->completed number while RCU is idle, but with reference to
1809 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1810 * not hurt to call it repeatedly. Returns an flag saying that we should
1811 * awaken the RCU grace-period kthread.
dc35c893
PM
1812 *
1813 * The caller must hold rnp->lock with interrupts disabled.
1814 */
48a7639c 1815static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1816 struct rcu_data *rdp)
1817{
15fecf89 1818 bool ret = false;
dc35c893 1819
c0b334c5
PM
1820 lockdep_assert_held(&rnp->lock);
1821
15fecf89
PM
1822 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1823 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1824 return false;
dc35c893
PM
1825
1826 /*
15fecf89
PM
1827 * Callbacks are often registered with incomplete grace-period
1828 * information. Something about the fact that getting exact
1829 * information requires acquiring a global lock... RCU therefore
1830 * makes a conservative estimate of the grace period number at which
1831 * a given callback will become ready to invoke. The following
1832 * code checks this estimate and improves it when possible, thus
1833 * accelerating callback invocation to an earlier grace-period
1834 * number.
dc35c893 1835 */
15fecf89
PM
1836 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1837 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1838
1839 /* Trace depending on how much we were able to accelerate. */
15fecf89 1840 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1841 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1842 else
f7f7bac9 1843 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1844 return ret;
dc35c893
PM
1845}
1846
1847/*
1848 * Move any callbacks whose grace period has completed to the
1849 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1850 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1851 * sublist. This function is idempotent, so it does not hurt to
1852 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1853 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1854 *
1855 * The caller must hold rnp->lock with interrupts disabled.
1856 */
48a7639c 1857static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1858 struct rcu_data *rdp)
1859{
c0b334c5
PM
1860 lockdep_assert_held(&rnp->lock);
1861
15fecf89
PM
1862 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1863 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1864 return false;
dc35c893
PM
1865
1866 /*
1867 * Find all callbacks whose ->completed numbers indicate that they
1868 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1869 */
15fecf89 1870 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1871
1872 /* Classify any remaining callbacks. */
48a7639c 1873 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1874}
1875
d09b62df 1876/*
ba9fbe95
PM
1877 * Update CPU-local rcu_data state to record the beginnings and ends of
1878 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1879 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1880 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1881 */
48a7639c
PM
1882static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1883 struct rcu_data *rdp)
d09b62df 1884{
48a7639c 1885 bool ret;
3563a438 1886 bool need_gp;
48a7639c 1887
c0b334c5
PM
1888 lockdep_assert_held(&rnp->lock);
1889
ba9fbe95 1890 /* Handle the ends of any preceding grace periods first. */
e3663b10 1891 if (rdp->completed == rnp->completed &&
7d0ae808 1892 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1893
ba9fbe95 1894 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1895 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1896
dc35c893
PM
1897 } else {
1898
1899 /* Advance callbacks. */
48a7639c 1900 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1901
1902 /* Remember that we saw this grace-period completion. */
1903 rdp->completed = rnp->completed;
f7f7bac9 1904 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1905 }
398ebe60 1906
7d0ae808 1907 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1908 /*
1909 * If the current grace period is waiting for this CPU,
1910 * set up to detect a quiescent state, otherwise don't
1911 * go looking for one.
1912 */
1913 rdp->gpnum = rnp->gpnum;
f7f7bac9 1914 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1915 need_gp = !!(rnp->qsmask & rdp->grpmask);
1916 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1917 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1918 rdp->core_needs_qs = need_gp;
6eaef633 1919 zero_cpu_stall_ticks(rdp);
7d0ae808 1920 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1921 }
48a7639c 1922 return ret;
6eaef633
PM
1923}
1924
d34ea322 1925static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1926{
1927 unsigned long flags;
48a7639c 1928 bool needwake;
6eaef633
PM
1929 struct rcu_node *rnp;
1930
1931 local_irq_save(flags);
1932 rnp = rdp->mynode;
7d0ae808
PM
1933 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1934 rdp->completed == READ_ONCE(rnp->completed) &&
1935 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1936 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1937 local_irq_restore(flags);
1938 return;
1939 }
48a7639c 1940 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1941 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1942 if (needwake)
1943 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1944}
1945
0f41c0dd
PM
1946static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1947{
1948 if (delay > 0 &&
1949 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1950 schedule_timeout_uninterruptible(delay);
1951}
1952
b3dbec76 1953/*
45fed3e7 1954 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1955 */
45fed3e7 1956static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1957{
0aa04b05 1958 unsigned long oldmask;
b3dbec76 1959 struct rcu_data *rdp;
7fdefc10 1960 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1961
7d0ae808 1962 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1963 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1964 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1965 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1966 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1967 return false;
f7be8209 1968 }
7d0ae808 1969 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1970
f7be8209
PM
1971 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1972 /*
1973 * Grace period already in progress, don't start another.
1974 * Not supposed to be able to happen.
1975 */
67c583a7 1976 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1977 return false;
7fdefc10
PM
1978 }
1979
7fdefc10 1980 /* Advance to a new grace period and initialize state. */
26cdfedf 1981 record_gp_stall_check_time(rsp);
765a3f4f
PM
1982 /* Record GP times before starting GP, hence smp_store_release(). */
1983 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1984 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1985 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1986
0aa04b05
PM
1987 /*
1988 * Apply per-leaf buffered online and offline operations to the
1989 * rcu_node tree. Note that this new grace period need not wait
1990 * for subsequent online CPUs, and that quiescent-state forcing
1991 * will handle subsequent offline CPUs.
1992 */
1993 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1994 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1995 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1996 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1997 !rnp->wait_blkd_tasks) {
1998 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1999 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2000 continue;
2001 }
2002
2003 /* Record old state, apply changes to ->qsmaskinit field. */
2004 oldmask = rnp->qsmaskinit;
2005 rnp->qsmaskinit = rnp->qsmaskinitnext;
2006
2007 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2008 if (!oldmask != !rnp->qsmaskinit) {
2009 if (!oldmask) /* First online CPU for this rcu_node. */
2010 rcu_init_new_rnp(rnp);
2011 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2012 rnp->wait_blkd_tasks = true;
2013 else /* Last offline CPU and can propagate. */
2014 rcu_cleanup_dead_rnp(rnp);
2015 }
2016
2017 /*
2018 * If all waited-on tasks from prior grace period are
2019 * done, and if all this rcu_node structure's CPUs are
2020 * still offline, propagate up the rcu_node tree and
2021 * clear ->wait_blkd_tasks. Otherwise, if one of this
2022 * rcu_node structure's CPUs has since come back online,
2023 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2024 * checks for this, so just call it unconditionally).
2025 */
2026 if (rnp->wait_blkd_tasks &&
2027 (!rcu_preempt_has_tasks(rnp) ||
2028 rnp->qsmaskinit)) {
2029 rnp->wait_blkd_tasks = false;
2030 rcu_cleanup_dead_rnp(rnp);
2031 }
2032
67c583a7 2033 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2034 }
7fdefc10
PM
2035
2036 /*
2037 * Set the quiescent-state-needed bits in all the rcu_node
2038 * structures for all currently online CPUs in breadth-first order,
2039 * starting from the root rcu_node structure, relying on the layout
2040 * of the tree within the rsp->node[] array. Note that other CPUs
2041 * will access only the leaves of the hierarchy, thus seeing that no
2042 * grace period is in progress, at least until the corresponding
590d1757 2043 * leaf node has been initialized.
7fdefc10
PM
2044 *
2045 * The grace period cannot complete until the initialization
2046 * process finishes, because this kthread handles both.
2047 */
2048 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2049 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2050 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2051 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2052 rcu_preempt_check_blocked_tasks(rnp);
2053 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2054 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2055 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2056 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2057 if (rnp == rdp->mynode)
48a7639c 2058 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2059 rcu_preempt_boost_start_gp(rnp);
2060 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2061 rnp->level, rnp->grplo,
2062 rnp->grphi, rnp->qsmask);
67c583a7 2063 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2064 cond_resched_rcu_qs();
7d0ae808 2065 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2066 }
b3dbec76 2067
45fed3e7 2068 return true;
7fdefc10 2069}
b3dbec76 2070
b9a425cf 2071/*
d5374226
LR
2072 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2073 * time.
b9a425cf
PM
2074 */
2075static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2076{
2077 struct rcu_node *rnp = rcu_get_root(rsp);
2078
2079 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2080 *gfp = READ_ONCE(rsp->gp_flags);
2081 if (*gfp & RCU_GP_FLAG_FQS)
2082 return true;
2083
2084 /* The current grace period has completed. */
2085 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2086 return true;
2087
2088 return false;
2089}
2090
4cdfc175
PM
2091/*
2092 * Do one round of quiescent-state forcing.
2093 */
77f81fe0 2094static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2095{
4cdfc175
PM
2096 struct rcu_node *rnp = rcu_get_root(rsp);
2097
7d0ae808 2098 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2099 rsp->n_force_qs++;
77f81fe0 2100 if (first_time) {
4cdfc175 2101 /* Collect dyntick-idle snapshots. */
fe5ac724 2102 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2103 } else {
2104 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2105 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2106 }
2107 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2108 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2109 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2110 WRITE_ONCE(rsp->gp_flags,
2111 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2112 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2113 }
4cdfc175
PM
2114}
2115
7fdefc10
PM
2116/*
2117 * Clean up after the old grace period.
2118 */
4cdfc175 2119static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2120{
2121 unsigned long gp_duration;
48a7639c 2122 bool needgp = false;
dae6e64d 2123 int nocb = 0;
7fdefc10
PM
2124 struct rcu_data *rdp;
2125 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2126 struct swait_queue_head *sq;
b3dbec76 2127
7d0ae808 2128 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2129 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2130 gp_duration = jiffies - rsp->gp_start;
2131 if (gp_duration > rsp->gp_max)
2132 rsp->gp_max = gp_duration;
b3dbec76 2133
7fdefc10
PM
2134 /*
2135 * We know the grace period is complete, but to everyone else
2136 * it appears to still be ongoing. But it is also the case
2137 * that to everyone else it looks like there is nothing that
2138 * they can do to advance the grace period. It is therefore
2139 * safe for us to drop the lock in order to mark the grace
2140 * period as completed in all of the rcu_node structures.
7fdefc10 2141 */
67c583a7 2142 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2143
5d4b8659
PM
2144 /*
2145 * Propagate new ->completed value to rcu_node structures so
2146 * that other CPUs don't have to wait until the start of the next
2147 * grace period to process their callbacks. This also avoids
2148 * some nasty RCU grace-period initialization races by forcing
2149 * the end of the current grace period to be completely recorded in
2150 * all of the rcu_node structures before the beginning of the next
2151 * grace period is recorded in any of the rcu_node structures.
2152 */
2153 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2154 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2155 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2156 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2157 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2158 rdp = this_cpu_ptr(rsp->rda);
2159 if (rnp == rdp->mynode)
48a7639c 2160 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2161 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2162 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2163 sq = rcu_nocb_gp_get(rnp);
67c583a7 2164 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2165 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2166 cond_resched_rcu_qs();
7d0ae808 2167 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2168 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2169 }
5d4b8659 2170 rnp = rcu_get_root(rsp);
2a67e741 2171 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2172 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2173
765a3f4f 2174 /* Declare grace period done. */
7d0ae808 2175 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2176 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2177 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2178 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2179 /* Advance CBs to reduce false positives below. */
2180 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2181 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2182 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2183 trace_rcu_grace_period(rsp->name,
7d0ae808 2184 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2185 TPS("newreq"));
2186 }
67c583a7 2187 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2188}
2189
2190/*
2191 * Body of kthread that handles grace periods.
2192 */
2193static int __noreturn rcu_gp_kthread(void *arg)
2194{
77f81fe0 2195 bool first_gp_fqs;
88d6df61 2196 int gf;
d40011f6 2197 unsigned long j;
4cdfc175 2198 int ret;
7fdefc10
PM
2199 struct rcu_state *rsp = arg;
2200 struct rcu_node *rnp = rcu_get_root(rsp);
2201
5871968d 2202 rcu_bind_gp_kthread();
7fdefc10
PM
2203 for (;;) {
2204
2205 /* Handle grace-period start. */
2206 for (;;) {
63c4db78 2207 trace_rcu_grace_period(rsp->name,
7d0ae808 2208 READ_ONCE(rsp->gpnum),
63c4db78 2209 TPS("reqwait"));
afea227f 2210 rsp->gp_state = RCU_GP_WAIT_GPS;
d5374226
LR
2211 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2212 RCU_GP_FLAG_INIT);
319362c9 2213 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2214 /* Locking provides needed memory barrier. */
f7be8209 2215 if (rcu_gp_init(rsp))
7fdefc10 2216 break;
bde6c3aa 2217 cond_resched_rcu_qs();
7d0ae808 2218 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2219 WARN_ON(signal_pending(current));
63c4db78 2220 trace_rcu_grace_period(rsp->name,
7d0ae808 2221 READ_ONCE(rsp->gpnum),
63c4db78 2222 TPS("reqwaitsig"));
7fdefc10 2223 }
cabc49c1 2224
4cdfc175 2225 /* Handle quiescent-state forcing. */
77f81fe0 2226 first_gp_fqs = true;
d40011f6
PM
2227 j = jiffies_till_first_fqs;
2228 if (j > HZ) {
2229 j = HZ;
2230 jiffies_till_first_fqs = HZ;
2231 }
88d6df61 2232 ret = 0;
cabc49c1 2233 for (;;) {
8c7c4829 2234 if (!ret) {
88d6df61 2235 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2236 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2237 jiffies + 3 * j);
2238 }
63c4db78 2239 trace_rcu_grace_period(rsp->name,
7d0ae808 2240 READ_ONCE(rsp->gpnum),
63c4db78 2241 TPS("fqswait"));
afea227f 2242 rsp->gp_state = RCU_GP_WAIT_FQS;
d5374226 2243 ret = swait_event_idle_timeout(rsp->gp_wq,
b9a425cf 2244 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2245 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2246 /* Locking provides needed memory barriers. */
4cdfc175 2247 /* If grace period done, leave loop. */
7d0ae808 2248 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2249 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2250 break;
4cdfc175 2251 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2252 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2253 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2254 trace_rcu_grace_period(rsp->name,
7d0ae808 2255 READ_ONCE(rsp->gpnum),
63c4db78 2256 TPS("fqsstart"));
77f81fe0
PM
2257 rcu_gp_fqs(rsp, first_gp_fqs);
2258 first_gp_fqs = false;
63c4db78 2259 trace_rcu_grace_period(rsp->name,
7d0ae808 2260 READ_ONCE(rsp->gpnum),
63c4db78 2261 TPS("fqsend"));
bde6c3aa 2262 cond_resched_rcu_qs();
7d0ae808 2263 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2264 ret = 0; /* Force full wait till next FQS. */
2265 j = jiffies_till_next_fqs;
2266 if (j > HZ) {
2267 j = HZ;
2268 jiffies_till_next_fqs = HZ;
2269 } else if (j < 1) {
2270 j = 1;
2271 jiffies_till_next_fqs = 1;
2272 }
4cdfc175
PM
2273 } else {
2274 /* Deal with stray signal. */
bde6c3aa 2275 cond_resched_rcu_qs();
7d0ae808 2276 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2277 WARN_ON(signal_pending(current));
63c4db78 2278 trace_rcu_grace_period(rsp->name,
7d0ae808 2279 READ_ONCE(rsp->gpnum),
63c4db78 2280 TPS("fqswaitsig"));
fcfd0a23
PM
2281 ret = 1; /* Keep old FQS timing. */
2282 j = jiffies;
2283 if (time_after(jiffies, rsp->jiffies_force_qs))
2284 j = 1;
2285 else
2286 j = rsp->jiffies_force_qs - j;
d40011f6 2287 }
cabc49c1 2288 }
4cdfc175
PM
2289
2290 /* Handle grace-period end. */
319362c9 2291 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2292 rcu_gp_cleanup(rsp);
319362c9 2293 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2294 }
b3dbec76
PM
2295}
2296
64db4cff
PM
2297/*
2298 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2299 * in preparation for detecting the next grace period. The caller must hold
b8462084 2300 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2301 *
2302 * Note that it is legal for a dying CPU (which is marked as offline) to
2303 * invoke this function. This can happen when the dying CPU reports its
2304 * quiescent state.
48a7639c
PM
2305 *
2306 * Returns true if the grace-period kthread must be awakened.
64db4cff 2307 */
48a7639c 2308static bool
910ee45d
PM
2309rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2310 struct rcu_data *rdp)
64db4cff 2311{
c0b334c5 2312 lockdep_assert_held(&rnp->lock);
b8462084 2313 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2314 /*
b3dbec76 2315 * Either we have not yet spawned the grace-period
62da1921
PM
2316 * task, this CPU does not need another grace period,
2317 * or a grace period is already in progress.
b3dbec76 2318 * Either way, don't start a new grace period.
afe24b12 2319 */
48a7639c 2320 return false;
afe24b12 2321 }
7d0ae808
PM
2322 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2323 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2324 TPS("newreq"));
62da1921 2325
016a8d5b
SR
2326 /*
2327 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2328 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2329 * the wakeup to our caller.
016a8d5b 2330 */
48a7639c 2331 return true;
64db4cff
PM
2332}
2333
910ee45d
PM
2334/*
2335 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2336 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2337 * is invoked indirectly from rcu_advance_cbs(), which would result in
2338 * endless recursion -- or would do so if it wasn't for the self-deadlock
2339 * that is encountered beforehand.
48a7639c
PM
2340 *
2341 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2342 */
48a7639c 2343static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2344{
2345 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2346 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2347 bool ret = false;
910ee45d
PM
2348
2349 /*
2350 * If there is no grace period in progress right now, any
2351 * callbacks we have up to this point will be satisfied by the
2352 * next grace period. Also, advancing the callbacks reduces the
2353 * probability of false positives from cpu_needs_another_gp()
2354 * resulting in pointless grace periods. So, advance callbacks
2355 * then start the grace period!
2356 */
48a7639c
PM
2357 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2358 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2359 return ret;
910ee45d
PM
2360}
2361
f41d911f 2362/*
8994515c
PM
2363 * Report a full set of quiescent states to the specified rcu_state data
2364 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2365 * kthread if another grace period is required. Whether we wake
2366 * the grace-period kthread or it awakens itself for the next round
2367 * of quiescent-state forcing, that kthread will clean up after the
2368 * just-completed grace period. Note that the caller must hold rnp->lock,
2369 * which is released before return.
f41d911f 2370 */
d3f6bad3 2371static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2372 __releases(rcu_get_root(rsp)->lock)
f41d911f 2373{
c0b334c5 2374 lockdep_assert_held(&rcu_get_root(rsp)->lock);
fc2219d4 2375 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2376 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2377 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2378 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2379}
2380
64db4cff 2381/*
d3f6bad3
PM
2382 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2383 * Allows quiescent states for a group of CPUs to be reported at one go
2384 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2385 * must be represented by the same rcu_node structure (which need not be a
2386 * leaf rcu_node structure, though it often will be). The gps parameter
2387 * is the grace-period snapshot, which means that the quiescent states
2388 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2389 * must be held upon entry, and it is released before return.
64db4cff
PM
2390 */
2391static void
d3f6bad3 2392rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2393 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2394 __releases(rnp->lock)
2395{
654e9533 2396 unsigned long oldmask = 0;
28ecd580
PM
2397 struct rcu_node *rnp_c;
2398
c0b334c5
PM
2399 lockdep_assert_held(&rnp->lock);
2400
64db4cff
PM
2401 /* Walk up the rcu_node hierarchy. */
2402 for (;;) {
654e9533 2403 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2404
654e9533
PM
2405 /*
2406 * Our bit has already been cleared, or the
2407 * relevant grace period is already over, so done.
2408 */
67c583a7 2409 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2410 return;
2411 }
654e9533 2412 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2413 rnp->qsmask &= ~mask;
d4c08f2a
PM
2414 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2415 mask, rnp->qsmask, rnp->level,
2416 rnp->grplo, rnp->grphi,
2417 !!rnp->gp_tasks);
27f4d280 2418 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2419
2420 /* Other bits still set at this level, so done. */
67c583a7 2421 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2422 return;
2423 }
2424 mask = rnp->grpmask;
2425 if (rnp->parent == NULL) {
2426
2427 /* No more levels. Exit loop holding root lock. */
2428
2429 break;
2430 }
67c583a7 2431 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2432 rnp_c = rnp;
64db4cff 2433 rnp = rnp->parent;
2a67e741 2434 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2435 oldmask = rnp_c->qsmask;
64db4cff
PM
2436 }
2437
2438 /*
2439 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2440 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2441 * to clean up and start the next grace period if one is needed.
64db4cff 2442 */
d3f6bad3 2443 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2444}
2445
cc99a310
PM
2446/*
2447 * Record a quiescent state for all tasks that were previously queued
2448 * on the specified rcu_node structure and that were blocking the current
2449 * RCU grace period. The caller must hold the specified rnp->lock with
2450 * irqs disabled, and this lock is released upon return, but irqs remain
2451 * disabled.
2452 */
0aa04b05 2453static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2454 struct rcu_node *rnp, unsigned long flags)
2455 __releases(rnp->lock)
2456{
654e9533 2457 unsigned long gps;
cc99a310
PM
2458 unsigned long mask;
2459 struct rcu_node *rnp_p;
2460
c0b334c5 2461 lockdep_assert_held(&rnp->lock);
a77da14c
PM
2462 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2463 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2464 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2465 return; /* Still need more quiescent states! */
2466 }
2467
2468 rnp_p = rnp->parent;
2469 if (rnp_p == NULL) {
2470 /*
a77da14c
PM
2471 * Only one rcu_node structure in the tree, so don't
2472 * try to report up to its nonexistent parent!
cc99a310
PM
2473 */
2474 rcu_report_qs_rsp(rsp, flags);
2475 return;
2476 }
2477
654e9533
PM
2478 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2479 gps = rnp->gpnum;
cc99a310 2480 mask = rnp->grpmask;
67c583a7 2481 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2482 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2483 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2484}
2485
64db4cff 2486/*
d3f6bad3 2487 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2488 * structure. This must be called from the specified CPU.
64db4cff
PM
2489 */
2490static void
d7d6a11e 2491rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2492{
2493 unsigned long flags;
2494 unsigned long mask;
48a7639c 2495 bool needwake;
64db4cff
PM
2496 struct rcu_node *rnp;
2497
2498 rnp = rdp->mynode;
2a67e741 2499 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2500 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2501 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2502
2503 /*
e4cc1f22
PM
2504 * The grace period in which this quiescent state was
2505 * recorded has ended, so don't report it upwards.
2506 * We will instead need a new quiescent state that lies
2507 * within the current grace period.
64db4cff 2508 */
5b74c458 2509 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2510 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2511 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2512 return;
2513 }
2514 mask = rdp->grpmask;
2515 if ((rnp->qsmask & mask) == 0) {
67c583a7 2516 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2517 } else {
bb53e416 2518 rdp->core_needs_qs = false;
64db4cff
PM
2519
2520 /*
2521 * This GP can't end until cpu checks in, so all of our
2522 * callbacks can be processed during the next GP.
2523 */
48a7639c 2524 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2525
654e9533
PM
2526 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2527 /* ^^^ Released rnp->lock */
48a7639c
PM
2528 if (needwake)
2529 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2530 }
2531}
2532
2533/*
2534 * Check to see if there is a new grace period of which this CPU
2535 * is not yet aware, and if so, set up local rcu_data state for it.
2536 * Otherwise, see if this CPU has just passed through its first
2537 * quiescent state for this grace period, and record that fact if so.
2538 */
2539static void
2540rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2541{
05eb552b
PM
2542 /* Check for grace-period ends and beginnings. */
2543 note_gp_changes(rsp, rdp);
64db4cff
PM
2544
2545 /*
2546 * Does this CPU still need to do its part for current grace period?
2547 * If no, return and let the other CPUs do their part as well.
2548 */
97c668b8 2549 if (!rdp->core_needs_qs)
64db4cff
PM
2550 return;
2551
2552 /*
2553 * Was there a quiescent state since the beginning of the grace
2554 * period? If no, then exit and wait for the next call.
2555 */
3a19b46a 2556 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2557 return;
2558
d3f6bad3
PM
2559 /*
2560 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2561 * judge of that).
2562 */
d7d6a11e 2563 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2564}
2565
e74f4c45 2566/*
b1420f1c
PM
2567 * Send the specified CPU's RCU callbacks to the orphanage. The
2568 * specified CPU must be offline, and the caller must hold the
7b2e6011 2569 * ->orphan_lock.
e74f4c45 2570 */
b1420f1c
PM
2571static void
2572rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2573 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2574{
c0b334c5
PM
2575 lockdep_assert_held(&rsp->orphan_lock);
2576
3fbfbf7a 2577 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2578 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2579 return;
2580
b1420f1c
PM
2581 /*
2582 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2583 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2584 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2585 */
15fecf89
PM
2586 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2587 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
a50c3af9
PM
2588
2589 /*
b1420f1c
PM
2590 * Next, move those callbacks still needing a grace period to
2591 * the orphanage, where some other CPU will pick them up.
2592 * Some of the callbacks might have gone partway through a grace
2593 * period, but that is too bad. They get to start over because we
2594 * cannot assume that grace periods are synchronized across CPUs.
a50c3af9 2595 */
15fecf89 2596 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
a50c3af9
PM
2597
2598 /*
b1420f1c
PM
2599 * Then move the ready-to-invoke callbacks to the orphanage,
2600 * where some other CPU will pick them up. These will not be
2601 * required to pass though another grace period: They are done.
a50c3af9 2602 */
15fecf89 2603 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
e74f4c45 2604
15fecf89
PM
2605 /* Finally, disallow further callbacks on this CPU. */
2606 rcu_segcblist_disable(&rdp->cblist);
b1420f1c
PM
2607}
2608
2609/*
2610 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2611 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2612 */
96d3fd0d 2613static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c 2614{
fa07a58f 2615 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2616
c0b334c5
PM
2617 lockdep_assert_held(&rsp->orphan_lock);
2618
3fbfbf7a 2619 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2620 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2621 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2622 return;
2623
b1420f1c 2624 /* Do the accounting first. */
4b27f20b 2625 rdp->n_cbs_adopted += rsp->orphan_done.len;
933dfbd7 2626 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
8f5af6f1 2627 rcu_idle_count_callbacks_posted();
15fecf89 2628 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
b1420f1c
PM
2629
2630 /*
2631 * We do not need a memory barrier here because the only way we
2632 * can get here if there is an rcu_barrier() in flight is if
2633 * we are the task doing the rcu_barrier().
2634 */
2635
15fecf89
PM
2636 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2637 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
8ef0f37e 2638 WARN_ON_ONCE(rsp->orphan_done.head);
15fecf89 2639 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
8ef0f37e 2640 WARN_ON_ONCE(rsp->orphan_pend.head);
15fecf89
PM
2641 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2642 !rcu_segcblist_n_cbs(&rdp->cblist));
b1420f1c
PM
2643}
2644
2645/*
2646 * Trace the fact that this CPU is going offline.
2647 */
2648static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2649{
88a4976d
PM
2650 RCU_TRACE(unsigned long mask;)
2651 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2652 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2653
ea46351c
PM
2654 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2655 return;
2656
88a4976d 2657 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2658 trace_rcu_grace_period(rsp->name,
2659 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2660 TPS("cpuofl"));
64db4cff
PM
2661}
2662
8af3a5e7
PM
2663/*
2664 * All CPUs for the specified rcu_node structure have gone offline,
2665 * and all tasks that were preempted within an RCU read-side critical
2666 * section while running on one of those CPUs have since exited their RCU
2667 * read-side critical section. Some other CPU is reporting this fact with
2668 * the specified rcu_node structure's ->lock held and interrupts disabled.
2669 * This function therefore goes up the tree of rcu_node structures,
2670 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2671 * the leaf rcu_node structure's ->qsmaskinit field has already been
2672 * updated
2673 *
2674 * This function does check that the specified rcu_node structure has
2675 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2676 * prematurely. That said, invoking it after the fact will cost you
2677 * a needless lock acquisition. So once it has done its work, don't
2678 * invoke it again.
2679 */
2680static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2681{
2682 long mask;
2683 struct rcu_node *rnp = rnp_leaf;
2684
c0b334c5 2685 lockdep_assert_held(&rnp->lock);
ea46351c
PM
2686 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2687 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2688 return;
2689 for (;;) {
2690 mask = rnp->grpmask;
2691 rnp = rnp->parent;
2692 if (!rnp)
2693 break;
2a67e741 2694 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2695 rnp->qsmaskinit &= ~mask;
0aa04b05 2696 rnp->qsmask &= ~mask;
8af3a5e7 2697 if (rnp->qsmaskinit) {
67c583a7
BF
2698 raw_spin_unlock_rcu_node(rnp);
2699 /* irqs remain disabled. */
8af3a5e7
PM
2700 return;
2701 }
67c583a7 2702 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2703 }
2704}
2705
64db4cff 2706/*
e5601400 2707 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2708 * this fact from process context. Do the remainder of the cleanup,
2709 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2710 * adopting them. There can only be one CPU hotplug operation at a time,
2711 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2712 */
e5601400 2713static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2714{
2036d94a 2715 unsigned long flags;
e5601400 2716 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2717 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2718
ea46351c
PM
2719 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2720 return;
2721
2036d94a 2722 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2723 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2724
b1420f1c 2725 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2726 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2727 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2728 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2729 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2730
15fecf89
PM
2731 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2732 !rcu_segcblist_empty(&rdp->cblist),
2733 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2734 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2735 rcu_segcblist_first_cb(&rdp->cblist));
64db4cff
PM
2736}
2737
64db4cff
PM
2738/*
2739 * Invoke any RCU callbacks that have made it to the end of their grace
2740 * period. Thottle as specified by rdp->blimit.
2741 */
37c72e56 2742static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2743{
2744 unsigned long flags;
15fecf89
PM
2745 struct rcu_head *rhp;
2746 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2747 long bl, count;
64db4cff 2748
dc35c893 2749 /* If no callbacks are ready, just return. */
15fecf89
PM
2750 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2751 trace_rcu_batch_start(rsp->name,
2752 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2753 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2754 trace_rcu_batch_end(rsp->name, 0,
2755 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2756 need_resched(), is_idle_task(current),
2757 rcu_is_callbacks_kthread());
64db4cff 2758 return;
29c00b4a 2759 }
64db4cff
PM
2760
2761 /*
2762 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2763 * races with call_rcu() from interrupt handlers. Leave the
2764 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2765 */
2766 local_irq_save(flags);
8146c4e2 2767 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2768 bl = rdp->blimit;
15fecf89
PM
2769 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2770 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2771 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2772 local_irq_restore(flags);
2773
2774 /* Invoke callbacks. */
15fecf89
PM
2775 rhp = rcu_cblist_dequeue(&rcl);
2776 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2777 debug_rcu_head_unqueue(rhp);
2778 if (__rcu_reclaim(rsp->name, rhp))
2779 rcu_cblist_dequeued_lazy(&rcl);
2780 /*
2781 * Stop only if limit reached and CPU has something to do.
2782 * Note: The rcl structure counts down from zero.
2783 */
4b27f20b 2784 if (-rcl.len >= bl &&
dff1672d
PM
2785 (need_resched() ||
2786 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2787 break;
2788 }
2789
2790 local_irq_save(flags);
4b27f20b 2791 count = -rcl.len;
8ef0f37e
PM
2792 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2793 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2794
15fecf89
PM
2795 /* Update counts and requeue any remaining callbacks. */
2796 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2797 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2798 rdp->n_cbs_invoked += count;
15fecf89 2799 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2800
2801 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2802 count = rcu_segcblist_n_cbs(&rdp->cblist);
2803 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2804 rdp->blimit = blimit;
2805
37c72e56 2806 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2807 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2808 rdp->qlen_last_fqs_check = 0;
2809 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2810 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2811 rdp->qlen_last_fqs_check = count;
2812 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2813
64db4cff
PM
2814 local_irq_restore(flags);
2815
e0f23060 2816 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2817 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2818 invoke_rcu_core();
64db4cff
PM
2819}
2820
2821/*
2822 * Check to see if this CPU is in a non-context-switch quiescent state
2823 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2824 * Also schedule RCU core processing.
64db4cff 2825 *
9b2e4f18 2826 * This function must be called from hardirq context. It is normally
5403d367 2827 * invoked from the scheduling-clock interrupt.
64db4cff 2828 */
c3377c2d 2829void rcu_check_callbacks(int user)
64db4cff 2830{
f7f7bac9 2831 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2832 increment_cpu_stall_ticks();
9b2e4f18 2833 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2834
2835 /*
2836 * Get here if this CPU took its interrupt from user
2837 * mode or from the idle loop, and if this is not a
2838 * nested interrupt. In this case, the CPU is in
d6714c22 2839 * a quiescent state, so note it.
64db4cff
PM
2840 *
2841 * No memory barrier is required here because both
d6714c22
PM
2842 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2843 * variables that other CPUs neither access nor modify,
2844 * at least not while the corresponding CPU is online.
64db4cff
PM
2845 */
2846
284a8c93
PM
2847 rcu_sched_qs();
2848 rcu_bh_qs();
64db4cff
PM
2849
2850 } else if (!in_softirq()) {
2851
2852 /*
2853 * Get here if this CPU did not take its interrupt from
2854 * softirq, in other words, if it is not interrupting
2855 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2856 * critical section, so note it.
64db4cff
PM
2857 */
2858
284a8c93 2859 rcu_bh_qs();
64db4cff 2860 }
86aea0e6 2861 rcu_preempt_check_callbacks();
e3950ecd 2862 if (rcu_pending())
a46e0899 2863 invoke_rcu_core();
8315f422
PM
2864 if (user)
2865 rcu_note_voluntary_context_switch(current);
f7f7bac9 2866 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2867}
2868
64db4cff
PM
2869/*
2870 * Scan the leaf rcu_node structures, processing dyntick state for any that
2871 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2872 * Also initiate boosting for any threads blocked on the root rcu_node.
2873 *
ee47eb9f 2874 * The caller must have suppressed start of new grace periods.
64db4cff 2875 */
fe5ac724 2876static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2877{
64db4cff
PM
2878 int cpu;
2879 unsigned long flags;
2880 unsigned long mask;
a0b6c9a7 2881 struct rcu_node *rnp;
64db4cff 2882
a0b6c9a7 2883 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2884 cond_resched_rcu_qs();
64db4cff 2885 mask = 0;
2a67e741 2886 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2887 if (rnp->qsmask == 0) {
a77da14c
PM
2888 if (rcu_state_p == &rcu_sched_state ||
2889 rsp != rcu_state_p ||
2890 rcu_preempt_blocked_readers_cgp(rnp)) {
2891 /*
2892 * No point in scanning bits because they
2893 * are all zero. But we might need to
2894 * priority-boost blocked readers.
2895 */
2896 rcu_initiate_boost(rnp, flags);
2897 /* rcu_initiate_boost() releases rnp->lock */
2898 continue;
2899 }
2900 if (rnp->parent &&
2901 (rnp->parent->qsmask & rnp->grpmask)) {
2902 /*
2903 * Race between grace-period
2904 * initialization and task exiting RCU
2905 * read-side critical section: Report.
2906 */
2907 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2908 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2909 continue;
2910 }
64db4cff 2911 }
bc75e999
MR
2912 for_each_leaf_node_possible_cpu(rnp, cpu) {
2913 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2914 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2915 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2916 mask |= bit;
2917 }
64db4cff 2918 }
45f014c5 2919 if (mask != 0) {
654e9533
PM
2920 /* Idle/offline CPUs, report (releases rnp->lock. */
2921 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2922 } else {
2923 /* Nothing to do here, so just drop the lock. */
67c583a7 2924 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2925 }
64db4cff 2926 }
64db4cff
PM
2927}
2928
2929/*
2930 * Force quiescent states on reluctant CPUs, and also detect which
2931 * CPUs are in dyntick-idle mode.
2932 */
4cdfc175 2933static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2934{
2935 unsigned long flags;
394f2769
PM
2936 bool ret;
2937 struct rcu_node *rnp;
2938 struct rcu_node *rnp_old = NULL;
2939
2940 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2941 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2942 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2943 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2944 !raw_spin_trylock(&rnp->fqslock);
2945 if (rnp_old != NULL)
2946 raw_spin_unlock(&rnp_old->fqslock);
2947 if (ret) {
a792563b 2948 rsp->n_force_qs_lh++;
394f2769
PM
2949 return;
2950 }
2951 rnp_old = rnp;
2952 }
2953 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2954
394f2769 2955 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2956 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2957 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2958 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2959 rsp->n_force_qs_lh++;
67c583a7 2960 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2961 return; /* Someone beat us to it. */
46a1e34e 2962 }
7d0ae808 2963 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2964 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2965 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2966}
2967
64db4cff 2968/*
e0f23060
PM
2969 * This does the RCU core processing work for the specified rcu_state
2970 * and rcu_data structures. This may be called only from the CPU to
2971 * whom the rdp belongs.
64db4cff
PM
2972 */
2973static void
1bca8cf1 2974__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2975{
2976 unsigned long flags;
48a7639c 2977 bool needwake;
fa07a58f 2978 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2979
50dc7def 2980 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2981
64db4cff
PM
2982 /* Update RCU state based on any recent quiescent states. */
2983 rcu_check_quiescent_state(rsp, rdp);
2984
2985 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2986 local_irq_save(flags);
64db4cff 2987 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2988 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2989 needwake = rcu_start_gp(rsp);
67c583a7 2990 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
2991 if (needwake)
2992 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2993 } else {
2994 local_irq_restore(flags);
64db4cff
PM
2995 }
2996
2997 /* If there are callbacks ready, invoke them. */
15fecf89 2998 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2999 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3000
3001 /* Do any needed deferred wakeups of rcuo kthreads. */
3002 do_nocb_deferred_wakeup(rdp);
09223371
SL
3003}
3004
64db4cff 3005/*
e0f23060 3006 * Do RCU core processing for the current CPU.
64db4cff 3007 */
0766f788 3008static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3009{
6ce75a23
PM
3010 struct rcu_state *rsp;
3011
bfa00b4c
PM
3012 if (cpu_is_offline(smp_processor_id()))
3013 return;
f7f7bac9 3014 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3015 for_each_rcu_flavor(rsp)
3016 __rcu_process_callbacks(rsp);
f7f7bac9 3017 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3018}
3019
a26ac245 3020/*
e0f23060
PM
3021 * Schedule RCU callback invocation. If the specified type of RCU
3022 * does not support RCU priority boosting, just do a direct call,
3023 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3024 * are running on the current CPU with softirqs disabled, the
e0f23060 3025 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3026 */
a46e0899 3027static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3028{
7d0ae808 3029 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3030 return;
a46e0899
PM
3031 if (likely(!rsp->boost)) {
3032 rcu_do_batch(rsp, rdp);
a26ac245
PM
3033 return;
3034 }
a46e0899 3035 invoke_rcu_callbacks_kthread();
a26ac245
PM
3036}
3037
a46e0899 3038static void invoke_rcu_core(void)
09223371 3039{
b0f74036
PM
3040 if (cpu_online(smp_processor_id()))
3041 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3042}
3043
29154c57
PM
3044/*
3045 * Handle any core-RCU processing required by a call_rcu() invocation.
3046 */
3047static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3048 struct rcu_head *head, unsigned long flags)
64db4cff 3049{
48a7639c
PM
3050 bool needwake;
3051
62fde6ed
PM
3052 /*
3053 * If called from an extended quiescent state, invoke the RCU
3054 * core in order to force a re-evaluation of RCU's idleness.
3055 */
9910affa 3056 if (!rcu_is_watching())
62fde6ed
PM
3057 invoke_rcu_core();
3058
a16b7a69 3059 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3060 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3061 return;
64db4cff 3062
37c72e56
PM
3063 /*
3064 * Force the grace period if too many callbacks or too long waiting.
3065 * Enforce hysteresis, and don't invoke force_quiescent_state()
3066 * if some other CPU has recently done so. Also, don't bother
3067 * invoking force_quiescent_state() if the newly enqueued callback
3068 * is the only one waiting for a grace period to complete.
3069 */
15fecf89
PM
3070 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3071 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3072
3073 /* Are we ignoring a completed grace period? */
470716fc 3074 note_gp_changes(rsp, rdp);
b52573d2
PM
3075
3076 /* Start a new grace period if one not already started. */
3077 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3078 struct rcu_node *rnp_root = rcu_get_root(rsp);
3079
2a67e741 3080 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3081 needwake = rcu_start_gp(rsp);
67c583a7 3082 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3083 if (needwake)
3084 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3085 } else {
3086 /* Give the grace period a kick. */
3087 rdp->blimit = LONG_MAX;
3088 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 3089 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 3090 force_quiescent_state(rsp);
b52573d2 3091 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 3092 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 3093 }
4cdfc175 3094 }
29154c57
PM
3095}
3096
ae150184
PM
3097/*
3098 * RCU callback function to leak a callback.
3099 */
3100static void rcu_leak_callback(struct rcu_head *rhp)
3101{
3102}
3103
3fbfbf7a
PM
3104/*
3105 * Helper function for call_rcu() and friends. The cpu argument will
3106 * normally be -1, indicating "currently running CPU". It may specify
3107 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3108 * is expected to specify a CPU.
3109 */
64db4cff 3110static void
b6a4ae76 3111__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3112 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3113{
3114 unsigned long flags;
3115 struct rcu_data *rdp;
3116
b8f2ed53
PM
3117 /* Misaligned rcu_head! */
3118 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3119
ae150184 3120 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
3121 /*
3122 * Probable double call_rcu(), so leak the callback.
3123 * Use rcu:rcu_callback trace event to find the previous
3124 * time callback was passed to __call_rcu().
3125 */
3126 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3127 head, head->func);
7d0ae808 3128 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3129 return;
3130 }
64db4cff
PM
3131 head->func = func;
3132 head->next = NULL;
64db4cff 3133 local_irq_save(flags);
394f99a9 3134 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3135
3136 /* Add the callback to our list. */
15fecf89 3137 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3138 int offline;
3139
3140 if (cpu != -1)
3141 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3142 if (likely(rdp->mynode)) {
3143 /* Post-boot, so this should be for a no-CBs CPU. */
3144 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3145 WARN_ON_ONCE(offline);
3146 /* Offline CPU, _call_rcu() illegal, leak callback. */
3147 local_irq_restore(flags);
3148 return;
3149 }
3150 /*
3151 * Very early boot, before rcu_init(). Initialize if needed
3152 * and then drop through to queue the callback.
3153 */
3154 BUG_ON(cpu != -1);
34404ca8 3155 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3156 if (rcu_segcblist_empty(&rdp->cblist))
3157 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3158 }
15fecf89
PM
3159 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3160 if (!lazy)
c57afe80 3161 rcu_idle_count_callbacks_posted();
2655d57e 3162
d4c08f2a
PM
3163 if (__is_kfree_rcu_offset((unsigned long)func))
3164 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3165 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3166 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3167 else
15fecf89
PM
3168 trace_rcu_callback(rsp->name, head,
3169 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3170 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3171
29154c57
PM
3172 /* Go handle any RCU core processing required. */
3173 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3174 local_irq_restore(flags);
3175}
3176
a68a2bb2
PM
3177/**
3178 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3179 * @head: structure to be used for queueing the RCU updates.
3180 * @func: actual callback function to be invoked after the grace period
3181 *
3182 * The callback function will be invoked some time after a full grace
3183 * period elapses, in other words after all currently executing RCU
3184 * read-side critical sections have completed. call_rcu_sched() assumes
3185 * that the read-side critical sections end on enabling of preemption
3186 * or on voluntary preemption.
3187 * RCU read-side critical sections are delimited by :
3188 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3189 * - anything that disables preemption.
3190 *
3191 * These may be nested.
3192 *
3193 * See the description of call_rcu() for more detailed information on
3194 * memory ordering guarantees.
64db4cff 3195 */
b6a4ae76 3196void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3197{
3fbfbf7a 3198 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3199}
d6714c22 3200EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3201
a68a2bb2
PM
3202/**
3203 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3204 * @head: structure to be used for queueing the RCU updates.
3205 * @func: actual callback function to be invoked after the grace period
3206 *
3207 * The callback function will be invoked some time after a full grace
3208 * period elapses, in other words after all currently executing RCU
3209 * read-side critical sections have completed. call_rcu_bh() assumes
3210 * that the read-side critical sections end on completion of a softirq
3211 * handler. This means that read-side critical sections in process
3212 * context must not be interrupted by softirqs. This interface is to be
3213 * used when most of the read-side critical sections are in softirq context.
3214 * RCU read-side critical sections are delimited by :
3215 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
3216 * OR
3217 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3218 * These may be nested.
3219 *
3220 * See the description of call_rcu() for more detailed information on
3221 * memory ordering guarantees.
64db4cff 3222 */
b6a4ae76 3223void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3224{
3fbfbf7a 3225 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3226}
3227EXPORT_SYMBOL_GPL(call_rcu_bh);
3228
495aa969
ACB
3229/*
3230 * Queue an RCU callback for lazy invocation after a grace period.
3231 * This will likely be later named something like "call_rcu_lazy()",
3232 * but this change will require some way of tagging the lazy RCU
3233 * callbacks in the list of pending callbacks. Until then, this
3234 * function may only be called from __kfree_rcu().
3235 */
3236void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3237 rcu_callback_t func)
495aa969 3238{
e534165b 3239 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3240}
3241EXPORT_SYMBOL_GPL(kfree_call_rcu);
3242
6d813391
PM
3243/*
3244 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3245 * any blocking grace-period wait automatically implies a grace period
3246 * if there is only one CPU online at any point time during execution
3247 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3248 * occasionally incorrectly indicate that there are multiple CPUs online
3249 * when there was in fact only one the whole time, as this just adds
3250 * some overhead: RCU still operates correctly.
6d813391
PM
3251 */
3252static inline int rcu_blocking_is_gp(void)
3253{
95f0c1de
PM
3254 int ret;
3255
6d813391 3256 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3257 preempt_disable();
3258 ret = num_online_cpus() <= 1;
3259 preempt_enable();
3260 return ret;
6d813391
PM
3261}
3262
6ebb237b
PM
3263/**
3264 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3265 *
3266 * Control will return to the caller some time after a full rcu-sched
3267 * grace period has elapsed, in other words after all currently executing
3268 * rcu-sched read-side critical sections have completed. These read-side
3269 * critical sections are delimited by rcu_read_lock_sched() and
3270 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3271 * local_irq_disable(), and so on may be used in place of
3272 * rcu_read_lock_sched().
3273 *
3274 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3275 * non-threaded hardware-interrupt handlers, in progress on entry will
3276 * have completed before this primitive returns. However, this does not
3277 * guarantee that softirq handlers will have completed, since in some
3278 * kernels, these handlers can run in process context, and can block.
3279 *
3280 * Note that this guarantee implies further memory-ordering guarantees.
3281 * On systems with more than one CPU, when synchronize_sched() returns,
3282 * each CPU is guaranteed to have executed a full memory barrier since the
3283 * end of its last RCU-sched read-side critical section whose beginning
3284 * preceded the call to synchronize_sched(). In addition, each CPU having
3285 * an RCU read-side critical section that extends beyond the return from
3286 * synchronize_sched() is guaranteed to have executed a full memory barrier
3287 * after the beginning of synchronize_sched() and before the beginning of
3288 * that RCU read-side critical section. Note that these guarantees include
3289 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3290 * that are executing in the kernel.
3291 *
3292 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3293 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3294 * to have executed a full memory barrier during the execution of
3295 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3296 * again only if the system has more than one CPU).
6ebb237b
PM
3297 */
3298void synchronize_sched(void)
3299{
f78f5b90
PM
3300 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3301 lock_is_held(&rcu_lock_map) ||
3302 lock_is_held(&rcu_sched_lock_map),
3303 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3304 if (rcu_blocking_is_gp())
3305 return;
5afff48b 3306 if (rcu_gp_is_expedited())
3705b88d
AM
3307 synchronize_sched_expedited();
3308 else
3309 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3310}
3311EXPORT_SYMBOL_GPL(synchronize_sched);
3312
3313/**
3314 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3315 *
3316 * Control will return to the caller some time after a full rcu_bh grace
3317 * period has elapsed, in other words after all currently executing rcu_bh
3318 * read-side critical sections have completed. RCU read-side critical
3319 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3320 * and may be nested.
f0a0e6f2
PM
3321 *
3322 * See the description of synchronize_sched() for more detailed information
3323 * on memory ordering guarantees.
6ebb237b
PM
3324 */
3325void synchronize_rcu_bh(void)
3326{
f78f5b90
PM
3327 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3328 lock_is_held(&rcu_lock_map) ||
3329 lock_is_held(&rcu_sched_lock_map),
3330 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3331 if (rcu_blocking_is_gp())
3332 return;
5afff48b 3333 if (rcu_gp_is_expedited())
3705b88d
AM
3334 synchronize_rcu_bh_expedited();
3335 else
3336 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3337}
3338EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3339
765a3f4f
PM
3340/**
3341 * get_state_synchronize_rcu - Snapshot current RCU state
3342 *
3343 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3344 * to determine whether or not a full grace period has elapsed in the
3345 * meantime.
3346 */
3347unsigned long get_state_synchronize_rcu(void)
3348{
3349 /*
3350 * Any prior manipulation of RCU-protected data must happen
3351 * before the load from ->gpnum.
3352 */
3353 smp_mb(); /* ^^^ */
3354
3355 /*
3356 * Make sure this load happens before the purportedly
3357 * time-consuming work between get_state_synchronize_rcu()
3358 * and cond_synchronize_rcu().
3359 */
e534165b 3360 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3361}
3362EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3363
3364/**
3365 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3366 *
3367 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3368 *
3369 * If a full RCU grace period has elapsed since the earlier call to
3370 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3371 * synchronize_rcu() to wait for a full grace period.
3372 *
3373 * Yes, this function does not take counter wrap into account. But
3374 * counter wrap is harmless. If the counter wraps, we have waited for
3375 * more than 2 billion grace periods (and way more on a 64-bit system!),
3376 * so waiting for one additional grace period should be just fine.
3377 */
3378void cond_synchronize_rcu(unsigned long oldstate)
3379{
3380 unsigned long newstate;
3381
3382 /*
3383 * Ensure that this load happens before any RCU-destructive
3384 * actions the caller might carry out after we return.
3385 */
e534165b 3386 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3387 if (ULONG_CMP_GE(oldstate, newstate))
3388 synchronize_rcu();
3389}
3390EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3391
24560056
PM
3392/**
3393 * get_state_synchronize_sched - Snapshot current RCU-sched state
3394 *
3395 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3396 * to determine whether or not a full grace period has elapsed in the
3397 * meantime.
3398 */
3399unsigned long get_state_synchronize_sched(void)
3400{
3401 /*
3402 * Any prior manipulation of RCU-protected data must happen
3403 * before the load from ->gpnum.
3404 */
3405 smp_mb(); /* ^^^ */
3406
3407 /*
3408 * Make sure this load happens before the purportedly
3409 * time-consuming work between get_state_synchronize_sched()
3410 * and cond_synchronize_sched().
3411 */
3412 return smp_load_acquire(&rcu_sched_state.gpnum);
3413}
3414EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3415
3416/**
3417 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3418 *
3419 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3420 *
3421 * If a full RCU-sched grace period has elapsed since the earlier call to
3422 * get_state_synchronize_sched(), just return. Otherwise, invoke
3423 * synchronize_sched() to wait for a full grace period.
3424 *
3425 * Yes, this function does not take counter wrap into account. But
3426 * counter wrap is harmless. If the counter wraps, we have waited for
3427 * more than 2 billion grace periods (and way more on a 64-bit system!),
3428 * so waiting for one additional grace period should be just fine.
3429 */
3430void cond_synchronize_sched(unsigned long oldstate)
3431{
3432 unsigned long newstate;
3433
3434 /*
3435 * Ensure that this load happens before any RCU-destructive
3436 * actions the caller might carry out after we return.
3437 */
3438 newstate = smp_load_acquire(&rcu_sched_state.completed);
3439 if (ULONG_CMP_GE(oldstate, newstate))
3440 synchronize_sched();
3441}
3442EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3443
64db4cff
PM
3444/*
3445 * Check to see if there is any immediate RCU-related work to be done
3446 * by the current CPU, for the specified type of RCU, returning 1 if so.
3447 * The checks are in order of increasing expense: checks that can be
3448 * carried out against CPU-local state are performed first. However,
3449 * we must check for CPU stalls first, else we might not get a chance.
3450 */
3451static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3452{
2f51f988
PM
3453 struct rcu_node *rnp = rdp->mynode;
3454
64db4cff
PM
3455 rdp->n_rcu_pending++;
3456
3457 /* Check for CPU stalls, if enabled. */
3458 check_cpu_stall(rsp, rdp);
3459
a096932f
PM
3460 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3461 if (rcu_nohz_full_cpu(rsp))
3462 return 0;
3463
64db4cff 3464 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3465 if (rcu_scheduler_fully_active &&
5b74c458 3466 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3467 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3468 rdp->n_rp_core_needs_qs++;
3a19b46a 3469 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3470 rdp->n_rp_report_qs++;
64db4cff 3471 return 1;
7ba5c840 3472 }
64db4cff
PM
3473
3474 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3475 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3476 rdp->n_rp_cb_ready++;
64db4cff 3477 return 1;
7ba5c840 3478 }
64db4cff
PM
3479
3480 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3481 if (cpu_needs_another_gp(rsp, rdp)) {
3482 rdp->n_rp_cpu_needs_gp++;
64db4cff 3483 return 1;
7ba5c840 3484 }
64db4cff
PM
3485
3486 /* Has another RCU grace period completed? */
7d0ae808 3487 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3488 rdp->n_rp_gp_completed++;
64db4cff 3489 return 1;
7ba5c840 3490 }
64db4cff
PM
3491
3492 /* Has a new RCU grace period started? */
7d0ae808
PM
3493 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3494 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3495 rdp->n_rp_gp_started++;
64db4cff 3496 return 1;
7ba5c840 3497 }
64db4cff 3498
96d3fd0d
PM
3499 /* Does this CPU need a deferred NOCB wakeup? */
3500 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3501 rdp->n_rp_nocb_defer_wakeup++;
3502 return 1;
3503 }
3504
64db4cff 3505 /* nothing to do */
7ba5c840 3506 rdp->n_rp_need_nothing++;
64db4cff
PM
3507 return 0;
3508}
3509
3510/*
3511 * Check to see if there is any immediate RCU-related work to be done
3512 * by the current CPU, returning 1 if so. This function is part of the
3513 * RCU implementation; it is -not- an exported member of the RCU API.
3514 */
e3950ecd 3515static int rcu_pending(void)
64db4cff 3516{
6ce75a23
PM
3517 struct rcu_state *rsp;
3518
3519 for_each_rcu_flavor(rsp)
e3950ecd 3520 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3521 return 1;
3522 return 0;
64db4cff
PM
3523}
3524
3525/*
c0f4dfd4
PM
3526 * Return true if the specified CPU has any callback. If all_lazy is
3527 * non-NULL, store an indication of whether all callbacks are lazy.
3528 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3529 */
82072c4f 3530static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3531{
c0f4dfd4
PM
3532 bool al = true;
3533 bool hc = false;
3534 struct rcu_data *rdp;
6ce75a23
PM
3535 struct rcu_state *rsp;
3536
c0f4dfd4 3537 for_each_rcu_flavor(rsp) {
aa6da514 3538 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3539 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3540 continue;
3541 hc = true;
15fecf89 3542 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3543 al = false;
69c8d28c
PM
3544 break;
3545 }
c0f4dfd4
PM
3546 }
3547 if (all_lazy)
3548 *all_lazy = al;
3549 return hc;
64db4cff
PM
3550}
3551
a83eff0a
PM
3552/*
3553 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3554 * the compiler is expected to optimize this away.
3555 */
e66c33d5 3556static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3557 int cpu, unsigned long done)
3558{
3559 trace_rcu_barrier(rsp->name, s, cpu,
3560 atomic_read(&rsp->barrier_cpu_count), done);
3561}
3562
b1420f1c
PM
3563/*
3564 * RCU callback function for _rcu_barrier(). If we are last, wake
3565 * up the task executing _rcu_barrier().
3566 */
24ebbca8 3567static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3568{
24ebbca8
PM
3569 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3570 struct rcu_state *rsp = rdp->rsp;
3571
a83eff0a 3572 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
d8db2e86
PM
3573 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3574 rsp->barrier_sequence);
7db74df8 3575 complete(&rsp->barrier_completion);
a83eff0a 3576 } else {
d8db2e86 3577 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
a83eff0a 3578 }
d0ec774c
PM
3579}
3580
3581/*
3582 * Called with preemption disabled, and from cross-cpu IRQ context.
3583 */
3584static void rcu_barrier_func(void *type)
3585{
037b64ed 3586 struct rcu_state *rsp = type;
fa07a58f 3587 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3588
d8db2e86 3589 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
f92c734f
PM
3590 rdp->barrier_head.func = rcu_barrier_callback;
3591 debug_rcu_head_queue(&rdp->barrier_head);
3592 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3593 atomic_inc(&rsp->barrier_cpu_count);
3594 } else {
3595 debug_rcu_head_unqueue(&rdp->barrier_head);
d8db2e86
PM
3596 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3597 rsp->barrier_sequence);
f92c734f 3598 }
d0ec774c
PM
3599}
3600
d0ec774c
PM
3601/*
3602 * Orchestrate the specified type of RCU barrier, waiting for all
3603 * RCU callbacks of the specified type to complete.
3604 */
037b64ed 3605static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3606{
b1420f1c 3607 int cpu;
b1420f1c 3608 struct rcu_data *rdp;
4f525a52 3609 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3610
d8db2e86 3611 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
b1420f1c 3612
e74f4c45 3613 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3614 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3615
4f525a52
PM
3616 /* Did someone else do our work for us? */
3617 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
d8db2e86
PM
3618 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3619 rsp->barrier_sequence);
cf3a9c48
PM
3620 smp_mb(); /* caller's subsequent code after above check. */
3621 mutex_unlock(&rsp->barrier_mutex);
3622 return;
3623 }
3624
4f525a52
PM
3625 /* Mark the start of the barrier operation. */
3626 rcu_seq_start(&rsp->barrier_sequence);
d8db2e86 3627 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
b1420f1c 3628
d0ec774c 3629 /*
b1420f1c
PM
3630 * Initialize the count to one rather than to zero in order to
3631 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3632 * (or preemption of this task). Exclude CPU-hotplug operations
3633 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3634 */
7db74df8 3635 init_completion(&rsp->barrier_completion);
24ebbca8 3636 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3637 get_online_cpus();
b1420f1c
PM
3638
3639 /*
1331e7a1
PM
3640 * Force each CPU with callbacks to register a new callback.
3641 * When that callback is invoked, we will know that all of the
3642 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3643 */
3fbfbf7a 3644 for_each_possible_cpu(cpu) {
d1e43fa5 3645 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3646 continue;
b1420f1c 3647 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3648 if (rcu_is_nocb_cpu(cpu)) {
d7e29933 3649 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
d8db2e86 3650 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
4f525a52 3651 rsp->barrier_sequence);
d7e29933 3652 } else {
d8db2e86 3653 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
4f525a52 3654 rsp->barrier_sequence);
41050a00 3655 smp_mb__before_atomic();
d7e29933
PM
3656 atomic_inc(&rsp->barrier_cpu_count);
3657 __call_rcu(&rdp->barrier_head,
3658 rcu_barrier_callback, rsp, cpu, 0);
3659 }
15fecf89 3660 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
d8db2e86 3661 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
4f525a52 3662 rsp->barrier_sequence);
037b64ed 3663 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3664 } else {
d8db2e86 3665 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
4f525a52 3666 rsp->barrier_sequence);
b1420f1c
PM
3667 }
3668 }
1331e7a1 3669 put_online_cpus();
b1420f1c
PM
3670
3671 /*
3672 * Now that we have an rcu_barrier_callback() callback on each
3673 * CPU, and thus each counted, remove the initial count.
3674 */
24ebbca8 3675 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3676 complete(&rsp->barrier_completion);
b1420f1c
PM
3677
3678 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3679 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3680
4f525a52 3681 /* Mark the end of the barrier operation. */
d8db2e86 3682 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
4f525a52
PM
3683 rcu_seq_end(&rsp->barrier_sequence);
3684
b1420f1c 3685 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3686 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3687}
d0ec774c
PM
3688
3689/**
3690 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3691 */
3692void rcu_barrier_bh(void)
3693{
037b64ed 3694 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3695}
3696EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3697
3698/**
3699 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3700 */
3701void rcu_barrier_sched(void)
3702{
037b64ed 3703 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3704}
3705EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3706
0aa04b05
PM
3707/*
3708 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3709 * first CPU in a given leaf rcu_node structure coming online. The caller
3710 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3711 * disabled.
3712 */
3713static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3714{
3715 long mask;
3716 struct rcu_node *rnp = rnp_leaf;
3717
c0b334c5 3718 lockdep_assert_held(&rnp->lock);
0aa04b05
PM
3719 for (;;) {
3720 mask = rnp->grpmask;
3721 rnp = rnp->parent;
3722 if (rnp == NULL)
3723 return;
6cf10081 3724 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3725 rnp->qsmaskinit |= mask;
67c583a7 3726 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3727 }
3728}
3729
64db4cff 3730/*
27569620 3731 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3732 */
27569620
PM
3733static void __init
3734rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3735{
3736 unsigned long flags;
394f99a9 3737 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3738 struct rcu_node *rnp = rcu_get_root(rsp);
3739
3740 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3741 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3742 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3743 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3744 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3745 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3746 rdp->cpu = cpu;
d4c08f2a 3747 rdp->rsp = rsp;
3fbfbf7a 3748 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3749 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3750}
3751
3752/*
3753 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3754 * offline event can be happening at a given time. Note also that we
3755 * can accept some slop in the rsp->completed access due to the fact
3756 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3757 */
49fb4c62 3758static void
9b67122a 3759rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3760{
3761 unsigned long flags;
394f99a9 3762 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3763 struct rcu_node *rnp = rcu_get_root(rsp);
3764
3765 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3766 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3767 rdp->qlen_last_fqs_check = 0;
3768 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3769 rdp->blimit = blimit;
15fecf89
PM
3770 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3771 !init_nocb_callback_list(rdp))
3772 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
29e37d81 3773 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2625d469 3774 rcu_dynticks_eqs_online();
67c583a7 3775 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3776
0aa04b05
PM
3777 /*
3778 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3779 * propagation up the rcu_node tree will happen at the beginning
3780 * of the next grace period.
3781 */
64db4cff 3782 rnp = rdp->mynode;
2a67e741 3783 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3784 if (!rdp->beenonline)
3785 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3786 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3787 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3788 rdp->completed = rnp->completed;
5b74c458 3789 rdp->cpu_no_qs.b.norm = true;
9577df9a 3790 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3791 rdp->core_needs_qs = false;
0aa04b05 3792 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3793 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3794}
3795
deb34f36
PM
3796/*
3797 * Invoked early in the CPU-online process, when pretty much all
3798 * services are available. The incoming CPU is not present.
3799 */
4df83742 3800int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3801{
6ce75a23
PM
3802 struct rcu_state *rsp;
3803
3804 for_each_rcu_flavor(rsp)
9b67122a 3805 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3806
3807 rcu_prepare_kthreads(cpu);
3808 rcu_spawn_all_nocb_kthreads(cpu);
3809
3810 return 0;
3811}
3812
deb34f36
PM
3813/*
3814 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3815 */
4df83742
TG
3816static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3817{
3818 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3819
3820 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3821}
3822
deb34f36
PM
3823/*
3824 * Near the end of the CPU-online process. Pretty much all services
3825 * enabled, and the CPU is now very much alive.
3826 */
4df83742
TG
3827int rcutree_online_cpu(unsigned int cpu)
3828{
3829 sync_sched_exp_online_cleanup(cpu);
3830 rcutree_affinity_setting(cpu, -1);
da915ad5
PM
3831 if (IS_ENABLED(CONFIG_TREE_SRCU))
3832 srcu_online_cpu(cpu);
4df83742
TG
3833 return 0;
3834}
3835
deb34f36
PM
3836/*
3837 * Near the beginning of the process. The CPU is still very much alive
3838 * with pretty much all services enabled.
3839 */
4df83742
TG
3840int rcutree_offline_cpu(unsigned int cpu)
3841{
3842 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3843 if (IS_ENABLED(CONFIG_TREE_SRCU))
3844 srcu_offline_cpu(cpu);
4df83742
TG
3845 return 0;
3846}
3847
deb34f36
PM
3848/*
3849 * Near the end of the offline process. We do only tracing here.
3850 */
4df83742
TG
3851int rcutree_dying_cpu(unsigned int cpu)
3852{
3853 struct rcu_state *rsp;
3854
3855 for_each_rcu_flavor(rsp)
3856 rcu_cleanup_dying_cpu(rsp);
3857 return 0;
3858}
3859
deb34f36
PM
3860/*
3861 * The outgoing CPU is gone and we are running elsewhere.
3862 */
4df83742
TG
3863int rcutree_dead_cpu(unsigned int cpu)
3864{
3865 struct rcu_state *rsp;
3866
3867 for_each_rcu_flavor(rsp) {
3868 rcu_cleanup_dead_cpu(cpu, rsp);
3869 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3870 }
3871 return 0;
64db4cff
PM
3872}
3873
7ec99de3
PM
3874/*
3875 * Mark the specified CPU as being online so that subsequent grace periods
3876 * (both expedited and normal) will wait on it. Note that this means that
3877 * incoming CPUs are not allowed to use RCU read-side critical sections
3878 * until this function is called. Failing to observe this restriction
3879 * will result in lockdep splats.
deb34f36
PM
3880 *
3881 * Note that this function is special in that it is invoked directly
3882 * from the incoming CPU rather than from the cpuhp_step mechanism.
3883 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3884 */
3885void rcu_cpu_starting(unsigned int cpu)
3886{
3887 unsigned long flags;
3888 unsigned long mask;
3889 struct rcu_data *rdp;
3890 struct rcu_node *rnp;
3891 struct rcu_state *rsp;
3892
3893 for_each_rcu_flavor(rsp) {
fdbb9b31 3894 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3895 rnp = rdp->mynode;
3896 mask = rdp->grpmask;
3897 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3898 rnp->qsmaskinitnext |= mask;
3899 rnp->expmaskinitnext |= mask;
3900 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3901 }
3902}
3903
27d50c7e
TG
3904#ifdef CONFIG_HOTPLUG_CPU
3905/*
3906 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3907 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3908 * bit masks.
3909 */
3910static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3911{
3912 unsigned long flags;
3913 unsigned long mask;
3914 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3915 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3916
27d50c7e
TG
3917 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3918 mask = rdp->grpmask;
3919 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3920 rnp->qsmaskinitnext &= ~mask;
710d60cb 3921 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3922}
3923
deb34f36
PM
3924/*
3925 * The outgoing function has no further need of RCU, so remove it from
3926 * the list of CPUs that RCU must track.
3927 *
3928 * Note that this function is special in that it is invoked directly
3929 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3930 * This is because this function must be invoked at a precise location.
3931 */
27d50c7e
TG
3932void rcu_report_dead(unsigned int cpu)
3933{
3934 struct rcu_state *rsp;
3935
3936 /* QS for any half-done expedited RCU-sched GP. */
3937 preempt_disable();
3938 rcu_report_exp_rdp(&rcu_sched_state,
3939 this_cpu_ptr(rcu_sched_state.rda), true);
3940 preempt_enable();
3941 for_each_rcu_flavor(rsp)
3942 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3943}
3944#endif
3945
deb34f36
PM
3946/*
3947 * On non-huge systems, use expedited RCU grace periods to make suspend
3948 * and hibernation run faster.
3949 */
d1d74d14
BP
3950static int rcu_pm_notify(struct notifier_block *self,
3951 unsigned long action, void *hcpu)
3952{
3953 switch (action) {
3954 case PM_HIBERNATION_PREPARE:
3955 case PM_SUSPEND_PREPARE:
3956 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3957 rcu_expedite_gp();
d1d74d14
BP
3958 break;
3959 case PM_POST_HIBERNATION:
3960 case PM_POST_SUSPEND:
5afff48b
PM
3961 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3962 rcu_unexpedite_gp();
d1d74d14
BP
3963 break;
3964 default:
3965 break;
3966 }
3967 return NOTIFY_OK;
3968}
3969
b3dbec76 3970/*
9386c0b7 3971 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3972 */
3973static int __init rcu_spawn_gp_kthread(void)
3974{
3975 unsigned long flags;
a94844b2 3976 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3977 struct rcu_node *rnp;
3978 struct rcu_state *rsp;
a94844b2 3979 struct sched_param sp;
b3dbec76
PM
3980 struct task_struct *t;
3981
a94844b2
PM
3982 /* Force priority into range. */
3983 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3984 kthread_prio = 1;
3985 else if (kthread_prio < 0)
3986 kthread_prio = 0;
3987 else if (kthread_prio > 99)
3988 kthread_prio = 99;
3989 if (kthread_prio != kthread_prio_in)
3990 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3991 kthread_prio, kthread_prio_in);
3992
9386c0b7 3993 rcu_scheduler_fully_active = 1;
b3dbec76 3994 for_each_rcu_flavor(rsp) {
a94844b2 3995 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3996 BUG_ON(IS_ERR(t));
3997 rnp = rcu_get_root(rsp);
6cf10081 3998 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3999 rsp->gp_kthread = t;
a94844b2
PM
4000 if (kthread_prio) {
4001 sp.sched_priority = kthread_prio;
4002 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4003 }
67c583a7 4004 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4005 wake_up_process(t);
b3dbec76 4006 }
35ce7f29 4007 rcu_spawn_nocb_kthreads();
9386c0b7 4008 rcu_spawn_boost_kthreads();
b3dbec76
PM
4009 return 0;
4010}
4011early_initcall(rcu_spawn_gp_kthread);
4012
bbad9379 4013/*
52d7e48b
PM
4014 * This function is invoked towards the end of the scheduler's
4015 * initialization process. Before this is called, the idle task might
4016 * contain synchronous grace-period primitives (during which time, this idle
4017 * task is booting the system, and such primitives are no-ops). After this
4018 * function is called, any synchronous grace-period primitives are run as
4019 * expedited, with the requesting task driving the grace period forward.
900b1028 4020 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4021 * runtime RCU functionality.
bbad9379
PM
4022 */
4023void rcu_scheduler_starting(void)
4024{
4025 WARN_ON(num_online_cpus() != 1);
4026 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4027 rcu_test_sync_prims();
4028 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4029 rcu_test_sync_prims();
bbad9379
PM
4030}
4031
64db4cff
PM
4032/*
4033 * Helper function for rcu_init() that initializes one rcu_state structure.
4034 */
a87f203e 4035static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4036{
cb007102
AG
4037 static const char * const buf[] = RCU_NODE_NAME_INIT;
4038 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4039 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4040 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4041
199977bf 4042 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4043 int cpustride = 1;
4044 int i;
4045 int j;
4046 struct rcu_node *rnp;
4047
05b84aec 4048 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4049
3eaaaf6c
PM
4050 /* Silence gcc 4.8 false positive about array index out of range. */
4051 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4052 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4053
64db4cff
PM
4054 /* Initialize the level-tracking arrays. */
4055
f885b7f2 4056 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4057 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4058 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4059
4060 /* Initialize the elements themselves, starting from the leaves. */
4061
f885b7f2 4062 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4063 cpustride *= levelspread[i];
64db4cff 4064 rnp = rsp->level[i];
41f5c631 4065 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4066 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4067 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4068 &rcu_node_class[i], buf[i]);
394f2769
PM
4069 raw_spin_lock_init(&rnp->fqslock);
4070 lockdep_set_class_and_name(&rnp->fqslock,
4071 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4072 rnp->gpnum = rsp->gpnum;
4073 rnp->completed = rsp->completed;
64db4cff
PM
4074 rnp->qsmask = 0;
4075 rnp->qsmaskinit = 0;
4076 rnp->grplo = j * cpustride;
4077 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4078 if (rnp->grphi >= nr_cpu_ids)
4079 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4080 if (i == 0) {
4081 rnp->grpnum = 0;
4082 rnp->grpmask = 0;
4083 rnp->parent = NULL;
4084 } else {
199977bf 4085 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4086 rnp->grpmask = 1UL << rnp->grpnum;
4087 rnp->parent = rsp->level[i - 1] +
199977bf 4088 j / levelspread[i - 1];
64db4cff
PM
4089 }
4090 rnp->level = i;
12f5f524 4091 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4092 rcu_init_one_nocb(rnp);
f6a12f34
PM
4093 init_waitqueue_head(&rnp->exp_wq[0]);
4094 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4095 init_waitqueue_head(&rnp->exp_wq[2]);
4096 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4097 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4098 }
4099 }
0c34029a 4100
abedf8e2
PG
4101 init_swait_queue_head(&rsp->gp_wq);
4102 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4103 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4104 for_each_possible_cpu(i) {
4a90a068 4105 while (i > rnp->grphi)
0c34029a 4106 rnp++;
394f99a9 4107 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4108 rcu_boot_init_percpu_data(i, rsp);
4109 }
6ce75a23 4110 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4111}
4112
f885b7f2
PM
4113/*
4114 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4115 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4116 * the ->node array in the rcu_state structure.
4117 */
4118static void __init rcu_init_geometry(void)
4119{
026ad283 4120 ulong d;
f885b7f2 4121 int i;
05b84aec 4122 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4123
026ad283
PM
4124 /*
4125 * Initialize any unspecified boot parameters.
4126 * The default values of jiffies_till_first_fqs and
4127 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4128 * value, which is a function of HZ, then adding one for each
4129 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4130 */
4131 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4132 if (jiffies_till_first_fqs == ULONG_MAX)
4133 jiffies_till_first_fqs = d;
4134 if (jiffies_till_next_fqs == ULONG_MAX)
4135 jiffies_till_next_fqs = d;
4136
f885b7f2 4137 /* If the compile-time values are accurate, just leave. */
47d631af 4138 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4139 nr_cpu_ids == NR_CPUS)
f885b7f2 4140 return;
39479098
PM
4141 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4142 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4143
f885b7f2 4144 /*
ee968ac6
PM
4145 * The boot-time rcu_fanout_leaf parameter must be at least two
4146 * and cannot exceed the number of bits in the rcu_node masks.
4147 * Complain and fall back to the compile-time values if this
4148 * limit is exceeded.
f885b7f2 4149 */
ee968ac6 4150 if (rcu_fanout_leaf < 2 ||
75cf15a4 4151 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4152 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4153 WARN_ON(1);
4154 return;
4155 }
4156
f885b7f2
PM
4157 /*
4158 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4159 * with the given number of levels.
f885b7f2 4160 */
9618138b 4161 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4162 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4163 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4164
4165 /*
75cf15a4 4166 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4167 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4168 */
ee968ac6
PM
4169 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4170 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4171 WARN_ON(1);
4172 return;
4173 }
f885b7f2 4174
679f9858 4175 /* Calculate the number of levels in the tree. */
9618138b 4176 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4177 }
9618138b 4178 rcu_num_lvls = i + 1;
679f9858 4179
f885b7f2 4180 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4181 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4182 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4183 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4184 }
f885b7f2
PM
4185
4186 /* Calculate the total number of rcu_node structures. */
4187 rcu_num_nodes = 0;
679f9858 4188 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4189 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4190}
4191
a3dc2948
PM
4192/*
4193 * Dump out the structure of the rcu_node combining tree associated
4194 * with the rcu_state structure referenced by rsp.
4195 */
4196static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4197{
4198 int level = 0;
4199 struct rcu_node *rnp;
4200
4201 pr_info("rcu_node tree layout dump\n");
4202 pr_info(" ");
4203 rcu_for_each_node_breadth_first(rsp, rnp) {
4204 if (rnp->level != level) {
4205 pr_cont("\n");
4206 pr_info(" ");
4207 level = rnp->level;
4208 }
4209 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4210 }
4211 pr_cont("\n");
4212}
4213
9f680ab4 4214void __init rcu_init(void)
64db4cff 4215{
017c4261 4216 int cpu;
9f680ab4 4217
47627678
PM
4218 rcu_early_boot_tests();
4219
f41d911f 4220 rcu_bootup_announce();
f885b7f2 4221 rcu_init_geometry();
a87f203e
PM
4222 rcu_init_one(&rcu_bh_state);
4223 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4224 if (dump_tree)
4225 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4226 __rcu_init_preempt();
b5b39360 4227 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4228
4229 /*
4230 * We don't need protection against CPU-hotplug here because
4231 * this is called early in boot, before either interrupts
4232 * or the scheduler are operational.
4233 */
d1d74d14 4234 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4235 for_each_online_cpu(cpu) {
4df83742 4236 rcutree_prepare_cpu(cpu);
7ec99de3 4237 rcu_cpu_starting(cpu);
da915ad5
PM
4238 if (IS_ENABLED(CONFIG_TREE_SRCU))
4239 srcu_online_cpu(cpu);
7ec99de3 4240 }
64db4cff
PM
4241}
4242
3549c2bc 4243#include "tree_exp.h"
4102adab 4244#include "tree_plugin.h"