rcu: Move RCU CPU stall-warning code out of tree.c
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
22e40925 1// SPDX-License-Identifier: GPL-2.0+
64db4cff
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
64db4cff
PM
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
22e40925 9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
64db4cff 10 *
22e40925 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
64db4cff
PM
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 15 * Documentation/RCU
64db4cff 16 */
a7538352
JP
17
18#define pr_fmt(fmt) "rcu: " fmt
19
64db4cff
PM
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
f9411ebe 25#include <linux/rcupdate_wait.h>
64db4cff
PM
26#include <linux/interrupt.h>
27#include <linux/sched.h>
b17b0153 28#include <linux/sched/debug.h>
c1dc0b9c 29#include <linux/nmi.h>
8826f3b0 30#include <linux/atomic.h>
64db4cff 31#include <linux/bitops.h>
9984de1a 32#include <linux/export.h>
64db4cff
PM
33#include <linux/completion.h>
34#include <linux/moduleparam.h>
35#include <linux/percpu.h>
36#include <linux/notifier.h>
37#include <linux/cpu.h>
38#include <linux/mutex.h>
39#include <linux/time.h>
bbad9379 40#include <linux/kernel_stat.h>
a26ac245
PM
41#include <linux/wait.h>
42#include <linux/kthread.h>
ae7e81c0 43#include <uapi/linux/sched/types.h>
268bb0ce 44#include <linux/prefetch.h>
3d3b7db0
PM
45#include <linux/delay.h>
46#include <linux/stop_machine.h>
661a85dc 47#include <linux/random.h>
af658dca 48#include <linux/trace_events.h>
d1d74d14 49#include <linux/suspend.h>
a278d471 50#include <linux/ftrace.h>
d3052109 51#include <linux/tick.h>
2ccaff10 52#include <linux/sysrq.h>
c13324a5 53#include <linux/kprobes.h>
64db4cff 54
4102adab 55#include "tree.h"
29c00b4a 56#include "rcu.h"
9f77da9f 57
4102adab
PM
58#ifdef MODULE_PARAM_PREFIX
59#undef MODULE_PARAM_PREFIX
60#endif
61#define MODULE_PARAM_PREFIX "rcutree."
62
64db4cff
PM
63/* Data structures. */
64
f7f7bac9 65/*
dc5a4f29
PM
66 * Steal a bit from the bottom of ->dynticks for idle entry/exit
67 * control. Initially this is for TLB flushing.
f7f7bac9 68 */
dc5a4f29
PM
69#define RCU_DYNTICK_CTRL_MASK 0x1
70#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
71#ifndef rcu_eqs_special_exit
72#define rcu_eqs_special_exit() do { } while (0)
a8a29b3b
AB
73#endif
74
4c5273bf
PM
75static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
76 .dynticks_nesting = 1,
77 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
dc5a4f29 78 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4c5273bf 79};
358be2d3
PM
80struct rcu_state rcu_state = {
81 .level = { &rcu_state.node[0] },
358be2d3
PM
82 .gp_state = RCU_GP_IDLE,
83 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
84 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
85 .name = RCU_NAME,
86 .abbr = RCU_ABBR,
87 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
88 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
894d45bb 89 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
358be2d3 90};
27f4d280 91
a3dc2948
PM
92/* Dump rcu_node combining tree at boot to verify correct setup. */
93static bool dump_tree;
94module_param(dump_tree, bool, 0444);
7fa27001
PM
95/* Control rcu_node-tree auto-balancing at boot time. */
96static bool rcu_fanout_exact;
97module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
98/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
99static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 100module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 101int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 102/* Number of rcu_nodes at specified level. */
e95d68d2 103int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 104int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
2ccaff10
PM
105/* Commandeer a sysrq key to dump RCU's tree. */
106static bool sysrq_rcu;
107module_param(sysrq_rcu, bool, 0444);
f885b7f2 108
b0d30417 109/*
52d7e48b
PM
110 * The rcu_scheduler_active variable is initialized to the value
111 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
112 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
113 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 114 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
115 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
116 * to detect real grace periods. This variable is also used to suppress
117 * boot-time false positives from lockdep-RCU error checking. Finally, it
118 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
119 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 120 */
bbad9379
PM
121int rcu_scheduler_active __read_mostly;
122EXPORT_SYMBOL_GPL(rcu_scheduler_active);
123
b0d30417
PM
124/*
125 * The rcu_scheduler_fully_active variable transitions from zero to one
126 * during the early_initcall() processing, which is after the scheduler
127 * is capable of creating new tasks. So RCU processing (for example,
128 * creating tasks for RCU priority boosting) must be delayed until after
129 * rcu_scheduler_fully_active transitions from zero to one. We also
130 * currently delay invocation of any RCU callbacks until after this point.
131 *
132 * It might later prove better for people registering RCU callbacks during
133 * early boot to take responsibility for these callbacks, but one step at
134 * a time.
135 */
136static int rcu_scheduler_fully_active __read_mostly;
137
b50912d0
PM
138static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
139 unsigned long gps, unsigned long flags);
0aa04b05
PM
140static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
141static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 142static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 143static void invoke_rcu_core(void);
aff4e9ed 144static void invoke_rcu_callbacks(struct rcu_data *rdp);
63d4c8c9 145static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 146static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 147
a94844b2 148/* rcuc/rcub kthread realtime priority */
26730f55 149static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
150module_param(kthread_prio, int, 0644);
151
8d7dc928 152/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 153
90040c9e
PM
154static int gp_preinit_delay;
155module_param(gp_preinit_delay, int, 0444);
156static int gp_init_delay;
157module_param(gp_init_delay, int, 0444);
158static int gp_cleanup_delay;
159module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 160
4cf439a2 161/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
162int rcu_get_gp_kthreads_prio(void)
163{
164 return kthread_prio;
165}
166EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
167
eab128e8
PM
168/*
169 * Number of grace periods between delays, normalized by the duration of
bfd090be 170 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
171 * each delay. The reason for this normalization is that it means that,
172 * for non-zero delays, the overall slowdown of grace periods is constant
173 * regardless of the duration of the delay. This arrangement balances
174 * the need for long delays to increase some race probabilities with the
175 * need for fast grace periods to increase other race probabilities.
176 */
177#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 178
0aa04b05
PM
179/*
180 * Compute the mask of online CPUs for the specified rcu_node structure.
181 * This will not be stable unless the rcu_node structure's ->lock is
182 * held, but the bit corresponding to the current CPU will be stable
183 * in most contexts.
184 */
185unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
186{
7d0ae808 187 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
188}
189
fc2219d4 190/*
7d0ae808 191 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
192 * permit this function to be invoked without holding the root rcu_node
193 * structure's ->lock, but of course results can be subject to change.
194 */
de8e8730 195static int rcu_gp_in_progress(void)
fc2219d4 196{
de8e8730 197 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
b1f77b05
IM
198}
199
903ee83d
PM
200/*
201 * Return the number of callbacks queued on the specified CPU.
202 * Handles both the nocbs and normal cases.
203 */
204static long rcu_get_n_cbs_cpu(int cpu)
205{
206 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
207
208 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
209 return rcu_segcblist_n_cbs(&rdp->cblist);
210 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
211}
212
d28139c4 213void rcu_softirq_qs(void)
b1f77b05 214{
45975c7d 215 rcu_qs();
d28139c4 216 rcu_preempt_deferred_qs(current);
b1f77b05 217}
64db4cff 218
2625d469
PM
219/*
220 * Record entry into an extended quiescent state. This is only to be
221 * called when not already in an extended quiescent state.
222 */
223static void rcu_dynticks_eqs_enter(void)
224{
dc5a4f29 225 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 226 int seq;
2625d469
PM
227
228 /*
b8c17e66 229 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
230 * critical sections, and we also must force ordering with the
231 * next idle sojourn.
232 */
dc5a4f29 233 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
234 /* Better be in an extended quiescent state! */
235 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
236 (seq & RCU_DYNTICK_CTRL_CTR));
237 /* Better not have special action (TLB flush) pending! */
238 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
239 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
240}
241
242/*
243 * Record exit from an extended quiescent state. This is only to be
244 * called from an extended quiescent state.
245 */
246static void rcu_dynticks_eqs_exit(void)
247{
dc5a4f29 248 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 249 int seq;
2625d469
PM
250
251 /*
b8c17e66 252 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
253 * and we also must force ordering with the next RCU read-side
254 * critical section.
255 */
dc5a4f29 256 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
257 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
258 !(seq & RCU_DYNTICK_CTRL_CTR));
259 if (seq & RCU_DYNTICK_CTRL_MASK) {
dc5a4f29 260 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
b8c17e66
PM
261 smp_mb__after_atomic(); /* _exit after clearing mask. */
262 /* Prefer duplicate flushes to losing a flush. */
263 rcu_eqs_special_exit();
264 }
2625d469
PM
265}
266
267/*
268 * Reset the current CPU's ->dynticks counter to indicate that the
269 * newly onlined CPU is no longer in an extended quiescent state.
270 * This will either leave the counter unchanged, or increment it
271 * to the next non-quiescent value.
272 *
273 * The non-atomic test/increment sequence works because the upper bits
274 * of the ->dynticks counter are manipulated only by the corresponding CPU,
275 * or when the corresponding CPU is offline.
276 */
277static void rcu_dynticks_eqs_online(void)
278{
dc5a4f29 279 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2625d469 280
dc5a4f29 281 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 282 return;
dc5a4f29 283 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
2625d469
PM
284}
285
02a5c550
PM
286/*
287 * Is the current CPU in an extended quiescent state?
288 *
289 * No ordering, as we are sampling CPU-local information.
290 */
291bool rcu_dynticks_curr_cpu_in_eqs(void)
292{
dc5a4f29 293 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
02a5c550 294
dc5a4f29 295 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
296}
297
8b2f63ab
PM
298/*
299 * Snapshot the ->dynticks counter with full ordering so as to allow
300 * stable comparison of this counter with past and future snapshots.
301 */
dc5a4f29 302int rcu_dynticks_snap(struct rcu_data *rdp)
8b2f63ab 303{
dc5a4f29 304 int snap = atomic_add_return(0, &rdp->dynticks);
8b2f63ab 305
b8c17e66 306 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
307}
308
02a5c550
PM
309/*
310 * Return true if the snapshot returned from rcu_dynticks_snap()
311 * indicates that RCU is in an extended quiescent state.
312 */
313static bool rcu_dynticks_in_eqs(int snap)
314{
b8c17e66 315 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
316}
317
318/*
dc5a4f29 319 * Return true if the CPU corresponding to the specified rcu_data
02a5c550
PM
320 * structure has spent some time in an extended quiescent state since
321 * rcu_dynticks_snap() returned the specified snapshot.
322 */
dc5a4f29 323static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
02a5c550 324{
dc5a4f29 325 return snap != rcu_dynticks_snap(rdp);
02a5c550
PM
326}
327
b8c17e66
PM
328/*
329 * Set the special (bottom) bit of the specified CPU so that it
330 * will take special action (such as flushing its TLB) on the
331 * next exit from an extended quiescent state. Returns true if
332 * the bit was successfully set, or false if the CPU was not in
333 * an extended quiescent state.
334 */
335bool rcu_eqs_special_set(int cpu)
336{
337 int old;
338 int new;
dc5a4f29 339 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
b8c17e66
PM
340
341 do {
dc5a4f29 342 old = atomic_read(&rdp->dynticks);
b8c17e66
PM
343 if (old & RCU_DYNTICK_CTRL_CTR)
344 return false;
345 new = old | RCU_DYNTICK_CTRL_MASK;
dc5a4f29 346 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
b8c17e66 347 return true;
6563de9d 348}
5cd37193 349
4a81e832
PM
350/*
351 * Let the RCU core know that this CPU has gone through the scheduler,
352 * which is a quiescent state. This is called when the need for a
353 * quiescent state is urgent, so we burn an atomic operation and full
354 * memory barriers to let the RCU core know about it, regardless of what
355 * this CPU might (or might not) do in the near future.
356 *
0f9be8ca 357 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 358 *
3b57a399 359 * The caller must have disabled interrupts and must not be idle.
4a81e832 360 */
395a2f09 361static void __maybe_unused rcu_momentary_dyntick_idle(void)
4a81e832 362{
3b57a399
PM
363 int special;
364
2dba13f0 365 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
dc5a4f29
PM
366 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
367 &this_cpu_ptr(&rcu_data)->dynticks);
3b57a399
PM
368 /* It is illegal to call this from idle state. */
369 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
3e310098 370 rcu_preempt_deferred_qs(current);
4a81e832
PM
371}
372
45975c7d
PM
373/**
374 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
bb73c52b 375 *
45975c7d
PM
376 * If the current CPU is idle or running at a first-level (not nested)
377 * interrupt from idle, return true. The caller must have at least
378 * disabled preemption.
5cd37193 379 */
45975c7d 380static int rcu_is_cpu_rrupt_from_idle(void)
5cd37193 381{
4c5273bf
PM
382 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
383 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
5cd37193 384}
5cd37193 385
17c7798b
PM
386#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
387static long blimit = DEFAULT_RCU_BLIMIT;
388#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
389static long qhimark = DEFAULT_RCU_QHIMARK;
390#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
391static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 392
878d7439
ED
393module_param(blimit, long, 0444);
394module_param(qhimark, long, 0444);
395module_param(qlowmark, long, 0444);
3d76c082 396
026ad283
PM
397static ulong jiffies_till_first_fqs = ULONG_MAX;
398static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 399static bool rcu_kick_kthreads;
d40011f6 400
c06aed0e
PM
401/*
402 * How long the grace period must be before we start recruiting
403 * quiescent-state help from rcu_note_context_switch().
404 */
405static ulong jiffies_till_sched_qs = ULONG_MAX;
406module_param(jiffies_till_sched_qs, ulong, 0444);
407static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
408module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
409
410/*
411 * Make sure that we give the grace-period kthread time to detect any
412 * idle CPUs before taking active measures to force quiescent states.
413 * However, don't go below 100 milliseconds, adjusted upwards for really
414 * large systems.
415 */
416static void adjust_jiffies_till_sched_qs(void)
417{
418 unsigned long j;
419
420 /* If jiffies_till_sched_qs was specified, respect the request. */
421 if (jiffies_till_sched_qs != ULONG_MAX) {
422 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
423 return;
424 }
425 j = READ_ONCE(jiffies_till_first_fqs) +
426 2 * READ_ONCE(jiffies_till_next_fqs);
427 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
428 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
429 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
430 WRITE_ONCE(jiffies_to_sched_qs, j);
431}
432
67abb96c
BP
433static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
434{
435 ulong j;
436 int ret = kstrtoul(val, 0, &j);
437
c06aed0e 438 if (!ret) {
67abb96c 439 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
440 adjust_jiffies_till_sched_qs();
441 }
67abb96c
BP
442 return ret;
443}
444
445static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
446{
447 ulong j;
448 int ret = kstrtoul(val, 0, &j);
449
c06aed0e 450 if (!ret) {
67abb96c 451 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
452 adjust_jiffies_till_sched_qs();
453 }
67abb96c
BP
454 return ret;
455}
456
457static struct kernel_param_ops first_fqs_jiffies_ops = {
458 .set = param_set_first_fqs_jiffies,
459 .get = param_get_ulong,
460};
461
462static struct kernel_param_ops next_fqs_jiffies_ops = {
463 .set = param_set_next_fqs_jiffies,
464 .get = param_get_ulong,
465};
466
467module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
468module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 469module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 470
8ff0b907 471static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
e3950ecd 472static int rcu_pending(void);
64db4cff
PM
473
474/*
17ef2fe9 475 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 476 */
17ef2fe9 477unsigned long rcu_get_gp_seq(void)
917963d0 478{
16fc9c60 479 return READ_ONCE(rcu_state.gp_seq);
917963d0 480}
17ef2fe9 481EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 482
291783b8
PM
483/*
484 * Return the number of RCU expedited batches completed thus far for
485 * debug & stats. Odd numbers mean that a batch is in progress, even
486 * numbers mean idle. The value returned will thus be roughly double
487 * the cumulative batches since boot.
488 */
489unsigned long rcu_exp_batches_completed(void)
490{
16fc9c60 491 return rcu_state.expedited_sequence;
291783b8
PM
492}
493EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
494
fd897573
PM
495/*
496 * Return the root node of the rcu_state structure.
497 */
498static struct rcu_node *rcu_get_root(void)
499{
500 return &rcu_state.node[0];
501}
502
69196019
PM
503/*
504 * Convert a ->gp_state value to a character string.
505 */
506static const char *gp_state_getname(short gs)
507{
508 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
509 return "???";
510 return gp_state_names[gs];
511}
512
afea227f
PM
513/*
514 * Show the state of the grace-period kthreads.
515 */
516void show_rcu_gp_kthreads(void)
517{
47199a08 518 int cpu;
c669c014 519 unsigned long j;
fd897573
PM
520 unsigned long ja;
521 unsigned long jr;
522 unsigned long jw;
47199a08
PM
523 struct rcu_data *rdp;
524 struct rcu_node *rnp;
afea227f 525
fd897573
PM
526 j = jiffies;
527 ja = j - READ_ONCE(rcu_state.gp_activity);
528 jr = j - READ_ONCE(rcu_state.gp_req_activity);
529 jw = j - READ_ONCE(rcu_state.gp_wake_time);
530 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %lu ->gp_req_activity %lu ->gp_wake_time %lu ->gp_wake_seq %ld ->gp_seq %ld ->gp_seq_needed %ld ->gp_flags %#x\n",
c669c014 531 rcu_state.name, gp_state_getname(rcu_state.gp_state),
fd897573
PM
532 rcu_state.gp_state,
533 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL,
534 ja, jr, jw, (long)READ_ONCE(rcu_state.gp_wake_seq),
535 (long)READ_ONCE(rcu_state.gp_seq),
536 (long)READ_ONCE(rcu_get_root()->gp_seq_needed),
537 READ_ONCE(rcu_state.gp_flags));
b97d23c5
PM
538 rcu_for_each_node_breadth_first(rnp) {
539 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
540 continue;
fd897573
PM
541 pr_info("\trcu_node %d:%d ->gp_seq %ld ->gp_seq_needed %ld\n",
542 rnp->grplo, rnp->grphi, (long)rnp->gp_seq,
543 (long)rnp->gp_seq_needed);
b97d23c5
PM
544 if (!rcu_is_leaf_node(rnp))
545 continue;
546 for_each_leaf_node_possible_cpu(rnp, cpu) {
547 rdp = per_cpu_ptr(&rcu_data, cpu);
548 if (rdp->gpwrap ||
549 ULONG_CMP_GE(rcu_state.gp_seq,
550 rdp->gp_seq_needed))
47199a08 551 continue;
fd897573
PM
552 pr_info("\tcpu %d ->gp_seq_needed %ld\n",
553 cpu, (long)rdp->gp_seq_needed);
47199a08 554 }
afea227f 555 }
b97d23c5 556 /* sched_show_task(rcu_state.gp_kthread); */
afea227f
PM
557}
558EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
559
2ccaff10
PM
560/* Dump grace-period-request information due to commandeered sysrq. */
561static void sysrq_show_rcu(int key)
562{
563 show_rcu_gp_kthreads();
564}
565
566static struct sysrq_key_op sysrq_rcudump_op = {
567 .handler = sysrq_show_rcu,
568 .help_msg = "show-rcu(y)",
569 .action_msg = "Show RCU tree",
570 .enable_mask = SYSRQ_ENABLE_DUMP,
571};
572
573static int __init rcu_sysrq_init(void)
574{
575 if (sysrq_rcu)
576 return register_sysrq_key('y', &sysrq_rcudump_op);
577 return 0;
578}
579early_initcall(rcu_sysrq_init);
580
ad0dc7f9
PM
581/*
582 * Send along grace-period-related data for rcutorture diagnostics.
583 */
584void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 585 unsigned long *gp_seq)
ad0dc7f9 586{
ad0dc7f9
PM
587 switch (test_type) {
588 case RCU_FLAVOR:
f7dd7d44
PM
589 *flags = READ_ONCE(rcu_state.gp_flags);
590 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
591 break;
592 default:
593 break;
594 }
ad0dc7f9
PM
595}
596EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
597
9b2e4f18 598/*
215bba9f
PM
599 * Enter an RCU extended quiescent state, which can be either the
600 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 601 *
215bba9f
PM
602 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
603 * the possibility of usermode upcalls having messed up our count
604 * of interrupt nesting level during the prior busy period.
9b2e4f18 605 */
215bba9f 606static void rcu_eqs_enter(bool user)
9b2e4f18 607{
4c5273bf 608 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
96d3fd0d 609
4c5273bf
PM
610 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
611 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
215bba9f 612 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
4c5273bf
PM
613 rdp->dynticks_nesting == 0);
614 if (rdp->dynticks_nesting != 1) {
615 rdp->dynticks_nesting--;
215bba9f 616 return;
9b2e4f18 617 }
96d3fd0d 618
b04db8e1 619 lockdep_assert_irqs_disabled();
dc5a4f29 620 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
e68bbb26 621 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
b97d23c5
PM
622 rdp = this_cpu_ptr(&rcu_data);
623 do_nocb_deferred_wakeup(rdp);
198bbf81 624 rcu_prepare_for_idle();
3e310098 625 rcu_preempt_deferred_qs(current);
4c5273bf 626 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 627 rcu_dynticks_eqs_enter();
176f8f7a 628 rcu_dynticks_task_enter();
64db4cff 629}
adf5091e
FW
630
631/**
632 * rcu_idle_enter - inform RCU that current CPU is entering idle
633 *
634 * Enter idle mode, in other words, -leave- the mode in which RCU
635 * read-side critical sections can occur. (Though RCU read-side
636 * critical sections can occur in irq handlers in idle, a possibility
637 * handled by irq_enter() and irq_exit().)
638 *
c0da313e
PM
639 * If you add or remove a call to rcu_idle_enter(), be sure to test with
640 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
641 */
642void rcu_idle_enter(void)
643{
b04db8e1 644 lockdep_assert_irqs_disabled();
cb349ca9 645 rcu_eqs_enter(false);
adf5091e 646}
64db4cff 647
d1ec4c34 648#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
649/**
650 * rcu_user_enter - inform RCU that we are resuming userspace.
651 *
652 * Enter RCU idle mode right before resuming userspace. No use of RCU
653 * is permitted between this call and rcu_user_exit(). This way the
654 * CPU doesn't need to maintain the tick for RCU maintenance purposes
655 * when the CPU runs in userspace.
c0da313e
PM
656 *
657 * If you add or remove a call to rcu_user_enter(), be sure to test with
658 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
659 */
660void rcu_user_enter(void)
661{
b04db8e1 662 lockdep_assert_irqs_disabled();
d4db30af 663 rcu_eqs_enter(true);
adf5091e 664}
d1ec4c34 665#endif /* CONFIG_NO_HZ_FULL */
19dd1591 666
cf7614e1 667/*
fd581a91 668 * If we are returning from the outermost NMI handler that interrupted an
dc5a4f29 669 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
fd581a91
PM
670 * to let the RCU grace-period handling know that the CPU is back to
671 * being RCU-idle.
672 *
cf7614e1 673 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
fd581a91
PM
674 * with CONFIG_RCU_EQS_DEBUG=y.
675 */
cf7614e1 676static __always_inline void rcu_nmi_exit_common(bool irq)
fd581a91 677{
4c5273bf 678 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
fd581a91
PM
679
680 /*
681 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
682 * (We are exiting an NMI handler, so RCU better be paying attention
683 * to us!)
684 */
4c5273bf 685 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
fd581a91
PM
686 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
687
688 /*
689 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
690 * leave it in non-RCU-idle state.
691 */
4c5273bf 692 if (rdp->dynticks_nmi_nesting != 1) {
dc5a4f29 693 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
4c5273bf
PM
694 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
695 rdp->dynticks_nmi_nesting - 2);
fd581a91
PM
696 return;
697 }
698
699 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dc5a4f29 700 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
4c5273bf 701 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
cf7614e1
BP
702
703 if (irq)
704 rcu_prepare_for_idle();
705
fd581a91 706 rcu_dynticks_eqs_enter();
cf7614e1
BP
707
708 if (irq)
709 rcu_dynticks_task_enter();
710}
711
712/**
713 * rcu_nmi_exit - inform RCU of exit from NMI context
cf7614e1
BP
714 *
715 * If you add or remove a call to rcu_nmi_exit(), be sure to test
716 * with CONFIG_RCU_EQS_DEBUG=y.
717 */
718void rcu_nmi_exit(void)
719{
720 rcu_nmi_exit_common(false);
fd581a91
PM
721}
722
9b2e4f18
PM
723/**
724 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
725 *
726 * Exit from an interrupt handler, which might possibly result in entering
727 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 728 * sections can occur. The caller must have disabled interrupts.
64db4cff 729 *
9b2e4f18
PM
730 * This code assumes that the idle loop never does anything that might
731 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
732 * architecture's idle loop violates this assumption, RCU will give you what
733 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
734 *
735 * Use things like work queues to work around this limitation.
736 *
737 * You have been warned.
c0da313e
PM
738 *
739 * If you add or remove a call to rcu_irq_exit(), be sure to test with
740 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 741 */
9b2e4f18 742void rcu_irq_exit(void)
64db4cff 743{
b04db8e1 744 lockdep_assert_irqs_disabled();
cf7614e1 745 rcu_nmi_exit_common(true);
7c9906ca
PM
746}
747
748/*
749 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
750 *
751 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
752 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
753 */
754void rcu_irq_exit_irqson(void)
755{
756 unsigned long flags;
757
758 local_irq_save(flags);
759 rcu_irq_exit();
9b2e4f18
PM
760 local_irq_restore(flags);
761}
762
adf5091e
FW
763/*
764 * Exit an RCU extended quiescent state, which can be either the
765 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
766 *
767 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
768 * allow for the possibility of usermode upcalls messing up our count of
769 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 770 */
adf5091e 771static void rcu_eqs_exit(bool user)
9b2e4f18 772{
4c5273bf 773 struct rcu_data *rdp;
84585aa8 774 long oldval;
9b2e4f18 775
b04db8e1 776 lockdep_assert_irqs_disabled();
4c5273bf
PM
777 rdp = this_cpu_ptr(&rcu_data);
778 oldval = rdp->dynticks_nesting;
1ce46ee5 779 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30 780 if (oldval) {
4c5273bf 781 rdp->dynticks_nesting++;
9dd238e2 782 return;
3a592405 783 }
9dd238e2
PM
784 rcu_dynticks_task_exit();
785 rcu_dynticks_eqs_exit();
786 rcu_cleanup_after_idle();
dc5a4f29 787 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
e68bbb26 788 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
4c5273bf
PM
789 WRITE_ONCE(rdp->dynticks_nesting, 1);
790 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
791 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 792}
adf5091e
FW
793
794/**
795 * rcu_idle_exit - inform RCU that current CPU is leaving idle
796 *
797 * Exit idle mode, in other words, -enter- the mode in which RCU
798 * read-side critical sections can occur.
799 *
c0da313e
PM
800 * If you add or remove a call to rcu_idle_exit(), be sure to test with
801 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
802 */
803void rcu_idle_exit(void)
804{
c5d900bf
FW
805 unsigned long flags;
806
807 local_irq_save(flags);
cb349ca9 808 rcu_eqs_exit(false);
c5d900bf 809 local_irq_restore(flags);
adf5091e 810}
9b2e4f18 811
d1ec4c34 812#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
813/**
814 * rcu_user_exit - inform RCU that we are exiting userspace.
815 *
816 * Exit RCU idle mode while entering the kernel because it can
817 * run a RCU read side critical section anytime.
c0da313e
PM
818 *
819 * If you add or remove a call to rcu_user_exit(), be sure to test with
820 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
821 */
822void rcu_user_exit(void)
823{
91d1aa43 824 rcu_eqs_exit(1);
adf5091e 825}
d1ec4c34 826#endif /* CONFIG_NO_HZ_FULL */
19dd1591 827
64db4cff 828/**
cf7614e1
BP
829 * rcu_nmi_enter_common - inform RCU of entry to NMI context
830 * @irq: Is this call from rcu_irq_enter?
64db4cff 831 *
dc5a4f29 832 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
4c5273bf 833 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
734d1680
PM
834 * that the CPU is active. This implementation permits nested NMIs, as
835 * long as the nesting level does not overflow an int. (You will probably
836 * run out of stack space first.)
c0da313e 837 *
cf7614e1 838 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
c0da313e 839 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff 840 */
cf7614e1 841static __always_inline void rcu_nmi_enter_common(bool irq)
64db4cff 842{
4c5273bf 843 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
84585aa8 844 long incby = 2;
64db4cff 845
734d1680 846 /* Complain about underflow. */
4c5273bf 847 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
734d1680
PM
848
849 /*
850 * If idle from RCU viewpoint, atomically increment ->dynticks
851 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
852 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
853 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
854 * to be in the outermost NMI handler that interrupted an RCU-idle
855 * period (observation due to Andy Lutomirski).
856 */
02a5c550 857 if (rcu_dynticks_curr_cpu_in_eqs()) {
cf7614e1
BP
858
859 if (irq)
860 rcu_dynticks_task_exit();
861
2625d469 862 rcu_dynticks_eqs_exit();
cf7614e1
BP
863
864 if (irq)
865 rcu_cleanup_after_idle();
866
734d1680
PM
867 incby = 1;
868 }
bd2b879a 869 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
4c5273bf 870 rdp->dynticks_nmi_nesting,
dc5a4f29 871 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
4c5273bf
PM
872 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
873 rdp->dynticks_nmi_nesting + incby);
734d1680 874 barrier();
64db4cff
PM
875}
876
cf7614e1
BP
877/**
878 * rcu_nmi_enter - inform RCU of entry to NMI context
879 */
880void rcu_nmi_enter(void)
881{
882 rcu_nmi_enter_common(false);
883}
c13324a5 884NOKPROBE_SYMBOL(rcu_nmi_enter);
cf7614e1 885
64db4cff 886/**
9b2e4f18 887 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 888 *
9b2e4f18
PM
889 * Enter an interrupt handler, which might possibly result in exiting
890 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 891 * sections can occur. The caller must have disabled interrupts.
c0da313e 892 *
9b2e4f18 893 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
894 * handler that it never exits, for example when doing upcalls to user mode!
895 * This code assumes that the idle loop never does upcalls to user mode.
896 * If your architecture's idle loop does do upcalls to user mode (or does
897 * anything else that results in unbalanced calls to the irq_enter() and
898 * irq_exit() functions), RCU will give you what you deserve, good and hard.
899 * But very infrequently and irreproducibly.
9b2e4f18
PM
900 *
901 * Use things like work queues to work around this limitation.
902 *
903 * You have been warned.
c0da313e
PM
904 *
905 * If you add or remove a call to rcu_irq_enter(), be sure to test with
906 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 907 */
9b2e4f18 908void rcu_irq_enter(void)
64db4cff 909{
b04db8e1 910 lockdep_assert_irqs_disabled();
cf7614e1 911 rcu_nmi_enter_common(true);
7c9906ca 912}
734d1680 913
7c9906ca
PM
914/*
915 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
916 *
917 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
918 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
919 */
920void rcu_irq_enter_irqson(void)
921{
922 unsigned long flags;
734d1680 923
7c9906ca
PM
924 local_irq_save(flags);
925 rcu_irq_enter();
64db4cff 926 local_irq_restore(flags);
64db4cff
PM
927}
928
5c173eb8 929/**
2320bda2 930 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
64db4cff 931 *
791875d1
PM
932 * Return true if RCU is watching the running CPU, which means that this
933 * CPU can safely enter RCU read-side critical sections. In other words,
2320bda2
ZZ
934 * if the current CPU is not in its idle loop or is in an interrupt or
935 * NMI handler, return true.
64db4cff 936 */
9418fb20 937bool notrace rcu_is_watching(void)
64db4cff 938{
f534ed1f 939 bool ret;
34240697 940
46f00d18 941 preempt_disable_notrace();
791875d1 942 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 943 preempt_enable_notrace();
34240697 944 return ret;
64db4cff 945}
5c173eb8 946EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 947
bcbfdd01
PM
948/*
949 * If a holdout task is actually running, request an urgent quiescent
950 * state from its CPU. This is unsynchronized, so migrations can cause
951 * the request to go to the wrong CPU. Which is OK, all that will happen
952 * is that the CPU's next context switch will be a bit slower and next
953 * time around this task will generate another request.
954 */
955void rcu_request_urgent_qs_task(struct task_struct *t)
956{
957 int cpu;
958
959 barrier();
960 cpu = task_cpu(t);
961 if (!task_curr(t))
962 return; /* This task is not running on that CPU. */
2dba13f0 963 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
964}
965
62fde6ed 966#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
967
968/*
5554788e 969 * Is the current CPU online as far as RCU is concerned?
2036d94a 970 *
5554788e
PM
971 * Disable preemption to avoid false positives that could otherwise
972 * happen due to the current CPU number being sampled, this task being
973 * preempted, its old CPU being taken offline, resuming on some other CPU,
49918a54 974 * then determining that its old CPU is now offline.
c0d6d01b 975 *
5554788e
PM
976 * Disable checking if in an NMI handler because we cannot safely
977 * report errors from NMI handlers anyway. In addition, it is OK to use
978 * RCU on an offline processor during initial boot, hence the check for
979 * rcu_scheduler_fully_active.
c0d6d01b
PM
980 */
981bool rcu_lockdep_current_cpu_online(void)
982{
2036d94a
PM
983 struct rcu_data *rdp;
984 struct rcu_node *rnp;
b97d23c5 985 bool ret = false;
c0d6d01b 986
5554788e 987 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 988 return true;
c0d6d01b 989 preempt_disable();
b97d23c5
PM
990 rdp = this_cpu_ptr(&rcu_data);
991 rnp = rdp->mynode;
992 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
993 ret = true;
c0d6d01b 994 preempt_enable();
b97d23c5 995 return ret;
c0d6d01b
PM
996}
997EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
998
62fde6ed 999#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1000
9b9500da
PM
1001/*
1002 * We are reporting a quiescent state on behalf of some other CPU, so
1003 * it is our responsibility to check for and handle potential overflow
a66ae8ae 1004 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
1005 * After all, the CPU might be in deep idle state, and thus executing no
1006 * code whatsoever.
1007 */
1008static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1009{
a32e01ee 1010 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
1011 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1012 rnp->gp_seq))
9b9500da 1013 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
1014 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1015 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
1016}
1017
64db4cff
PM
1018/*
1019 * Snapshot the specified CPU's dynticks counter so that we can later
1020 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1021 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1022 */
fe5ac724 1023static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1024{
dc5a4f29 1025 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
02a5c550 1026 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 1027 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1028 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1029 return 1;
7941dbde 1030 }
23a9bacd 1031 return 0;
64db4cff
PM
1032}
1033
9b9500da
PM
1034/*
1035 * Handler for the irq_work request posted when a grace period has
1036 * gone on for too long, but not yet long enough for an RCU CPU
1037 * stall warning. Set state appropriately, but just complain if
1038 * there is unexpected state on entry.
1039 */
1040static void rcu_iw_handler(struct irq_work *iwp)
1041{
1042 struct rcu_data *rdp;
1043 struct rcu_node *rnp;
1044
1045 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1046 rnp = rdp->mynode;
1047 raw_spin_lock_rcu_node(rnp);
1048 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
8aa670cd 1049 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1050 rdp->rcu_iw_pending = false;
1051 }
1052 raw_spin_unlock_rcu_node(rnp);
1053}
1054
64db4cff
PM
1055/*
1056 * Return true if the specified CPU has passed through a quiescent
1057 * state by virtue of being in or having passed through an dynticks
1058 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1059 * for this same CPU, or by virtue of having been offline.
64db4cff 1060 */
fe5ac724 1061static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1062{
3a19b46a 1063 unsigned long jtsq;
0f9be8ca 1064 bool *rnhqp;
9226b10d 1065 bool *ruqp;
9b9500da 1066 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1067
1068 /*
1069 * If the CPU passed through or entered a dynticks idle phase with
1070 * no active irq/NMI handlers, then we can safely pretend that the CPU
1071 * already acknowledged the request to pass through a quiescent
1072 * state. Either way, that CPU cannot possibly be in an RCU
1073 * read-side critical section that started before the beginning
1074 * of the current RCU grace period.
1075 */
dc5a4f29 1076 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
88d1bead 1077 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1078 rcu_gpnum_ovf(rnp, rdp);
3a19b46a
PM
1079 return 1;
1080 }
1081
f2e2df59
PM
1082 /* If waiting too long on an offline CPU, complain. */
1083 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
88d1bead 1084 time_after(jiffies, rcu_state.gp_start + HZ)) {
f2e2df59
PM
1085 bool onl;
1086 struct rcu_node *rnp1;
1087
1088 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1089 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1090 __func__, rnp->grplo, rnp->grphi, rnp->level,
1091 (long)rnp->gp_seq, (long)rnp->completedqs);
1092 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1093 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1094 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1095 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1096 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1097 __func__, rdp->cpu, ".o"[onl],
1098 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1099 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1100 return 1; /* Break things loose after complaining. */
1101 }
1102
65d798f0 1103 /*
4a81e832 1104 * A CPU running for an extended time within the kernel can
c06aed0e
PM
1105 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1106 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
1107 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1108 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1109 * variable are safe because the assignments are repeated if this
1110 * CPU failed to pass through a quiescent state. This code
c06aed0e 1111 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 1112 * is set way high.
6193c76a 1113 */
c06aed0e 1114 jtsq = READ_ONCE(jiffies_to_sched_qs);
2dba13f0
PM
1115 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1116 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
0f9be8ca 1117 if (!READ_ONCE(*rnhqp) &&
7e28c5af 1118 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
88d1bead 1119 time_after(jiffies, rcu_state.jiffies_resched))) {
0f9be8ca 1120 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1121 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1122 smp_store_release(ruqp, true);
7e28c5af
PM
1123 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1124 WRITE_ONCE(*ruqp, true);
6193c76a
PM
1125 }
1126
28053bc7 1127 /*
c98cac60 1128 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
d3052109
PM
1129 * The above code handles this, but only for straight cond_resched().
1130 * And some in-kernel loops check need_resched() before calling
1131 * cond_resched(), which defeats the above code for CPUs that are
1132 * running in-kernel with scheduling-clock interrupts disabled.
1133 * So hit them over the head with the resched_cpu() hammer!
28053bc7 1134 */
d3052109
PM
1135 if (tick_nohz_full_cpu(rdp->cpu) &&
1136 time_after(jiffies,
1137 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
28053bc7 1138 resched_cpu(rdp->cpu);
d3052109
PM
1139 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1140 }
1141
1142 /*
1143 * If more than halfway to RCU CPU stall-warning time, invoke
1144 * resched_cpu() more frequently to try to loosen things up a bit.
1145 * Also check to see if the CPU is getting hammered with interrupts,
1146 * but only once per grace period, just to keep the IPIs down to
1147 * a dull roar.
1148 */
1149 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1150 if (time_after(jiffies,
1151 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1152 resched_cpu(rdp->cpu);
1153 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1154 }
9b9500da 1155 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1156 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1157 (rnp->ffmask & rdp->grpmask)) {
1158 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1159 rdp->rcu_iw_pending = true;
8aa670cd 1160 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1161 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1162 }
1163 }
4914950a 1164
a82dcc76 1165 return 0;
64db4cff
PM
1166}
1167
41e80595
PM
1168/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1169static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1170 unsigned long gp_seq_req, const char *s)
0446be48 1171{
88d1bead 1172 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
abd13fdd 1173 rnp->level, rnp->grplo, rnp->grphi, s);
0446be48
PM
1174}
1175
1176/*
b73de91d 1177 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1178 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1179 * @rdp: The rcu_data corresponding to the CPU from which to start.
1180 * @gp_seq_req: The gp_seq of the grace period to start.
1181 *
41e80595 1182 * Start the specified grace period, as needed to handle newly arrived
0446be48 1183 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1184 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1185 * is reason to awaken the grace-period kthread.
0446be48 1186 *
d5cd9685
PM
1187 * The caller must hold the specified rcu_node structure's ->lock, which
1188 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1189 *
1190 * Returns true if the GP thread needs to be awakened else false.
0446be48 1191 */
df2bf8f7 1192static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1193 unsigned long gp_seq_req)
0446be48 1194{
48a7639c 1195 bool ret = false;
df2bf8f7 1196 struct rcu_node *rnp;
0446be48
PM
1197
1198 /*
360e0da6
PM
1199 * Use funnel locking to either acquire the root rcu_node
1200 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1201 * has already been recorded -- or if that grace period has in
1202 * fact already started. If there is already a grace period in
1203 * progress in a non-leaf node, no recording is needed because the
1204 * end of the grace period will scan the leaf rcu_node structures.
1205 * Note that rnp_start->lock must not be released.
0446be48 1206 */
df2bf8f7
JFG
1207 raw_lockdep_assert_held_rcu_node(rnp_start);
1208 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1209 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1210 if (rnp != rnp_start)
1211 raw_spin_lock_rcu_node(rnp);
1212 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1213 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1214 (rnp != rnp_start &&
1215 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1216 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1217 TPS("Prestarted"));
360e0da6
PM
1218 goto unlock_out;
1219 }
df2bf8f7 1220 rnp->gp_seq_needed = gp_seq_req;
226ca5e7 1221 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1222 /*
226ca5e7
JFG
1223 * We just marked the leaf or internal node, and a
1224 * grace period is in progress, which means that
1225 * rcu_gp_cleanup() will see the marking. Bail to
1226 * reduce contention.
a2165e41 1227 */
df2bf8f7 1228 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1229 TPS("Startedleaf"));
a2165e41
PM
1230 goto unlock_out;
1231 }
df2bf8f7
JFG
1232 if (rnp != rnp_start && rnp->parent != NULL)
1233 raw_spin_unlock_rcu_node(rnp);
1234 if (!rnp->parent)
360e0da6 1235 break; /* At root, and perhaps also leaf. */
0446be48
PM
1236 }
1237
360e0da6 1238 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 1239 if (rcu_gp_in_progress()) {
df2bf8f7 1240 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1241 goto unlock_out;
1242 }
df2bf8f7 1243 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97
PM
1244 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1245 rcu_state.gp_req_activity = jiffies;
1246 if (!rcu_state.gp_kthread) {
df2bf8f7 1247 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1248 goto unlock_out;
0446be48 1249 }
9cbc5b97 1250 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
360e0da6 1251 ret = true; /* Caller must wake GP kthread. */
0446be48 1252unlock_out:
ab5e869c 1253 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7
JFG
1254 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1255 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1256 rdp->gp_seq_needed = rnp->gp_seq_needed;
ab5e869c 1257 }
df2bf8f7
JFG
1258 if (rnp != rnp_start)
1259 raw_spin_unlock_rcu_node(rnp);
48a7639c 1260 return ret;
0446be48
PM
1261}
1262
1263/*
1264 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1265 * whether any additional grace periods have been requested.
0446be48 1266 */
3481f2ea 1267static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1268{
fb31340f 1269 bool needmore;
da1df50d 1270 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1271
7a1d0f23
PM
1272 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1273 if (!needmore)
1274 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1275 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1276 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1277 return needmore;
1278}
1279
48a7639c 1280/*
1d1f898d
ZJ
1281 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1282 * an interrupt or softirq handler), and don't bother awakening when there
1283 * is nothing for the grace-period kthread to do (as in several CPUs raced
1284 * to awaken, and we lost), and finally don't try to awaken a kthread that
1285 * has not yet been created. If all those checks are passed, track some
1286 * debug information and awaken.
1287 *
1288 * So why do the self-wakeup when in an interrupt or softirq handler
1289 * in the grace-period kthread's context? Because the kthread might have
1290 * been interrupted just as it was going to sleep, and just after the final
1291 * pre-sleep check of the awaken condition. In this case, a wakeup really
1292 * is required, and is therefore supplied.
48a7639c 1293 */
532c00c9 1294static void rcu_gp_kthread_wake(void)
48a7639c 1295{
1d1f898d
ZJ
1296 if ((current == rcu_state.gp_kthread &&
1297 !in_interrupt() && !in_serving_softirq()) ||
532c00c9
PM
1298 !READ_ONCE(rcu_state.gp_flags) ||
1299 !rcu_state.gp_kthread)
48a7639c 1300 return;
fd897573
PM
1301 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1302 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
532c00c9 1303 swake_up_one(&rcu_state.gp_wq);
48a7639c
PM
1304}
1305
dc35c893 1306/*
29365e56
PM
1307 * If there is room, assign a ->gp_seq number to any callbacks on this
1308 * CPU that have not already been assigned. Also accelerate any callbacks
1309 * that were previously assigned a ->gp_seq number that has since proven
1310 * to be too conservative, which can happen if callbacks get assigned a
1311 * ->gp_seq number while RCU is idle, but with reference to a non-root
1312 * rcu_node structure. This function is idempotent, so it does not hurt
1313 * to call it repeatedly. Returns an flag saying that we should awaken
1314 * the RCU grace-period kthread.
dc35c893
PM
1315 *
1316 * The caller must hold rnp->lock with interrupts disabled.
1317 */
02f50142 1318static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1319{
b73de91d 1320 unsigned long gp_seq_req;
15fecf89 1321 bool ret = false;
dc35c893 1322
a32e01ee 1323 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1324
15fecf89
PM
1325 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1326 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1327 return false;
dc35c893
PM
1328
1329 /*
15fecf89
PM
1330 * Callbacks are often registered with incomplete grace-period
1331 * information. Something about the fact that getting exact
1332 * information requires acquiring a global lock... RCU therefore
1333 * makes a conservative estimate of the grace period number at which
1334 * a given callback will become ready to invoke. The following
1335 * code checks this estimate and improves it when possible, thus
1336 * accelerating callback invocation to an earlier grace-period
1337 * number.
dc35c893 1338 */
9cbc5b97 1339 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1340 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1341 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1342
1343 /* Trace depending on how much we were able to accelerate. */
15fecf89 1344 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
9cbc5b97 1345 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1346 else
9cbc5b97 1347 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1348 return ret;
dc35c893
PM
1349}
1350
e44e73ca
PM
1351/*
1352 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1353 * rcu_node structure's ->lock be held. It consults the cached value
1354 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1355 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1356 * while holding the leaf rcu_node structure's ->lock.
1357 */
c6e09b97 1358static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1359 struct rcu_data *rdp)
1360{
1361 unsigned long c;
1362 bool needwake;
1363
1364 lockdep_assert_irqs_disabled();
c6e09b97 1365 c = rcu_seq_snap(&rcu_state.gp_seq);
e44e73ca
PM
1366 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1367 /* Old request still live, so mark recent callbacks. */
1368 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1369 return;
1370 }
1371 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1372 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1373 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1374 if (needwake)
532c00c9 1375 rcu_gp_kthread_wake();
e44e73ca
PM
1376}
1377
dc35c893
PM
1378/*
1379 * Move any callbacks whose grace period has completed to the
1380 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1381 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1382 * sublist. This function is idempotent, so it does not hurt to
1383 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1384 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1385 *
1386 * The caller must hold rnp->lock with interrupts disabled.
1387 */
834f56bf 1388static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1389{
a32e01ee 1390 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1391
15fecf89
PM
1392 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1393 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1394 return false;
dc35c893
PM
1395
1396 /*
29365e56 1397 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1398 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1399 */
29365e56 1400 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1401
1402 /* Classify any remaining callbacks. */
02f50142 1403 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1404}
1405
d09b62df 1406/*
ba9fbe95
PM
1407 * Update CPU-local rcu_data state to record the beginnings and ends of
1408 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1409 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1410 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1411 */
c7e48f7b 1412static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1413{
48a7639c 1414 bool ret;
3563a438 1415 bool need_gp;
48a7639c 1416
a32e01ee 1417 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1418
67e14c1e
PM
1419 if (rdp->gp_seq == rnp->gp_seq)
1420 return false; /* Nothing to do. */
d09b62df 1421
67e14c1e
PM
1422 /* Handle the ends of any preceding grace periods first. */
1423 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1424 unlikely(READ_ONCE(rdp->gpwrap))) {
834f56bf 1425 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
9cbc5b97 1426 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1427 } else {
02f50142 1428 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
d09b62df 1429 }
398ebe60 1430
67e14c1e
PM
1431 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1432 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1433 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1434 /*
1435 * If the current grace period is waiting for this CPU,
1436 * set up to detect a quiescent state, otherwise don't
1437 * go looking for one.
1438 */
9cbc5b97 1439 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
3563a438
PM
1440 need_gp = !!(rnp->qsmask & rdp->grpmask);
1441 rdp->cpu_no_qs.b.norm = need_gp;
3563a438 1442 rdp->core_needs_qs = need_gp;
6eaef633
PM
1443 zero_cpu_stall_ticks(rdp);
1444 }
67e14c1e 1445 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
13dc7d0c 1446 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
3d18469a
PM
1447 rdp->gp_seq_needed = rnp->gp_seq_needed;
1448 WRITE_ONCE(rdp->gpwrap, false);
1449 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1450 return ret;
6eaef633
PM
1451}
1452
15cabdff 1453static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1454{
1455 unsigned long flags;
48a7639c 1456 bool needwake;
6eaef633
PM
1457 struct rcu_node *rnp;
1458
1459 local_irq_save(flags);
1460 rnp = rdp->mynode;
67e14c1e 1461 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1462 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1463 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1464 local_irq_restore(flags);
1465 return;
1466 }
c7e48f7b 1467 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1468 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c 1469 if (needwake)
532c00c9 1470 rcu_gp_kthread_wake();
6eaef633
PM
1471}
1472
22212332 1473static void rcu_gp_slow(int delay)
0f41c0dd
PM
1474{
1475 if (delay > 0 &&
22212332 1476 !(rcu_seq_ctr(rcu_state.gp_seq) %
dee4f422 1477 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1478 schedule_timeout_uninterruptible(delay);
1479}
1480
b3dbec76 1481/*
45fed3e7 1482 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1483 */
0854a05c 1484static bool rcu_gp_init(void)
b3dbec76 1485{
ec2c2976 1486 unsigned long flags;
0aa04b05 1487 unsigned long oldmask;
ec2c2976 1488 unsigned long mask;
b3dbec76 1489 struct rcu_data *rdp;
336a4f6c 1490 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1491
9cbc5b97 1492 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1493 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1494 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1495 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1496 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1497 return false;
f7be8209 1498 }
9cbc5b97 1499 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1500
de8e8730 1501 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1502 /*
1503 * Grace period already in progress, don't start another.
1504 * Not supposed to be able to happen.
1505 */
67c583a7 1506 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1507 return false;
7fdefc10
PM
1508 }
1509
7fdefc10 1510 /* Advance to a new grace period and initialize state. */
ad3832e9 1511 record_gp_stall_check_time();
ff3bb6f4 1512 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97
PM
1513 rcu_seq_start(&rcu_state.gp_seq);
1514 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
67c583a7 1515 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1516
0aa04b05
PM
1517 /*
1518 * Apply per-leaf buffered online and offline operations to the
1519 * rcu_node tree. Note that this new grace period need not wait
1520 * for subsequent online CPUs, and that quiescent-state forcing
1521 * will handle subsequent offline CPUs.
1522 */
9cbc5b97 1523 rcu_state.gp_state = RCU_GP_ONOFF;
aedf4ba9 1524 rcu_for_each_leaf_node(rnp) {
894d45bb 1525 raw_spin_lock(&rcu_state.ofl_lock);
2a67e741 1526 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1527 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1528 !rnp->wait_blkd_tasks) {
1529 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1530 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1531 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05
PM
1532 continue;
1533 }
1534
1535 /* Record old state, apply changes to ->qsmaskinit field. */
1536 oldmask = rnp->qsmaskinit;
1537 rnp->qsmaskinit = rnp->qsmaskinitnext;
1538
1539 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1540 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1541 if (!oldmask) { /* First online CPU for rcu_node. */
1542 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1543 rcu_init_new_rnp(rnp);
1544 } else if (rcu_preempt_has_tasks(rnp)) {
1545 rnp->wait_blkd_tasks = true; /* blocked tasks */
1546 } else { /* Last offline CPU and can propagate. */
0aa04b05 1547 rcu_cleanup_dead_rnp(rnp);
962aff03 1548 }
0aa04b05
PM
1549 }
1550
1551 /*
1552 * If all waited-on tasks from prior grace period are
1553 * done, and if all this rcu_node structure's CPUs are
1554 * still offline, propagate up the rcu_node tree and
1555 * clear ->wait_blkd_tasks. Otherwise, if one of this
1556 * rcu_node structure's CPUs has since come back online,
962aff03 1557 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1558 */
1559 if (rnp->wait_blkd_tasks &&
962aff03 1560 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1561 rnp->wait_blkd_tasks = false;
962aff03
PM
1562 if (!rnp->qsmaskinit)
1563 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1564 }
1565
67c583a7 1566 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1567 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05 1568 }
22212332 1569 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1570
1571 /*
1572 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1573 * structures for all currently online CPUs in breadth-first
1574 * order, starting from the root rcu_node structure, relying on the
1575 * layout of the tree within the rcu_state.node[] array. Note that
1576 * other CPUs will access only the leaves of the hierarchy, thus
1577 * seeing that no grace period is in progress, at least until the
1578 * corresponding leaf node has been initialized.
7fdefc10
PM
1579 *
1580 * The grace period cannot complete until the initialization
1581 * process finishes, because this kthread handles both.
1582 */
9cbc5b97 1583 rcu_state.gp_state = RCU_GP_INIT;
aedf4ba9 1584 rcu_for_each_node_breadth_first(rnp) {
22212332 1585 rcu_gp_slow(gp_init_delay);
ec2c2976 1586 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1587 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1588 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1589 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1590 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1591 if (rnp == rdp->mynode)
c7e48f7b 1592 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1593 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1594 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1595 rnp->level, rnp->grplo,
1596 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1597 /* Quiescent states for tasks on any now-offline CPUs. */
1598 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1599 rnp->rcu_gp_init_mask = mask;
ec2c2976 1600 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1601 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1602 else
1603 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1604 cond_resched_tasks_rcu_qs();
9cbc5b97 1605 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1606 }
b3dbec76 1607
45fed3e7 1608 return true;
7fdefc10 1609}
b3dbec76 1610
b9a425cf 1611/*
b3dae109 1612 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1613 * time.
b9a425cf 1614 */
0854a05c 1615static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1616{
336a4f6c 1617 struct rcu_node *rnp = rcu_get_root();
b9a425cf
PM
1618
1619 /* Someone like call_rcu() requested a force-quiescent-state scan. */
0854a05c 1620 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1621 if (*gfp & RCU_GP_FLAG_FQS)
1622 return true;
1623
1624 /* The current grace period has completed. */
1625 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1626 return true;
1627
1628 return false;
1629}
1630
4cdfc175
PM
1631/*
1632 * Do one round of quiescent-state forcing.
1633 */
0854a05c 1634static void rcu_gp_fqs(bool first_time)
4cdfc175 1635{
336a4f6c 1636 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1637
9cbc5b97
PM
1638 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1639 rcu_state.n_force_qs++;
77f81fe0 1640 if (first_time) {
4cdfc175 1641 /* Collect dyntick-idle snapshots. */
e9ecb780 1642 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1643 } else {
1644 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1645 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1646 }
1647 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1648 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1649 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1650 WRITE_ONCE(rcu_state.gp_flags,
1651 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1652 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1653 }
4cdfc175
PM
1654}
1655
c3854a05
PM
1656/*
1657 * Loop doing repeated quiescent-state forcing until the grace period ends.
1658 */
1659static void rcu_gp_fqs_loop(void)
1660{
1661 bool first_gp_fqs;
1662 int gf;
1663 unsigned long j;
1664 int ret;
1665 struct rcu_node *rnp = rcu_get_root();
1666
1667 first_gp_fqs = true;
c06aed0e 1668 j = READ_ONCE(jiffies_till_first_fqs);
c3854a05
PM
1669 ret = 0;
1670 for (;;) {
1671 if (!ret) {
1672 rcu_state.jiffies_force_qs = jiffies + j;
1673 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
9cf422a8 1674 jiffies + (j ? 3 * j : 2));
c3854a05
PM
1675 }
1676 trace_rcu_grace_period(rcu_state.name,
1677 READ_ONCE(rcu_state.gp_seq),
1678 TPS("fqswait"));
1679 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1680 ret = swait_event_idle_timeout_exclusive(
1681 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1682 rcu_state.gp_state = RCU_GP_DOING_FQS;
1683 /* Locking provides needed memory barriers. */
1684 /* If grace period done, leave loop. */
1685 if (!READ_ONCE(rnp->qsmask) &&
1686 !rcu_preempt_blocked_readers_cgp(rnp))
1687 break;
1688 /* If time for quiescent-state forcing, do it. */
1689 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1690 (gf & RCU_GP_FLAG_FQS)) {
1691 trace_rcu_grace_period(rcu_state.name,
1692 READ_ONCE(rcu_state.gp_seq),
1693 TPS("fqsstart"));
1694 rcu_gp_fqs(first_gp_fqs);
1695 first_gp_fqs = false;
1696 trace_rcu_grace_period(rcu_state.name,
1697 READ_ONCE(rcu_state.gp_seq),
1698 TPS("fqsend"));
1699 cond_resched_tasks_rcu_qs();
1700 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1701 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1702 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1703 } else {
1704 /* Deal with stray signal. */
1705 cond_resched_tasks_rcu_qs();
1706 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1707 WARN_ON(signal_pending(current));
1708 trace_rcu_grace_period(rcu_state.name,
1709 READ_ONCE(rcu_state.gp_seq),
1710 TPS("fqswaitsig"));
1711 ret = 1; /* Keep old FQS timing. */
1712 j = jiffies;
1713 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1714 j = 1;
1715 else
1716 j = rcu_state.jiffies_force_qs - j;
1717 }
1718 }
1719}
1720
7fdefc10
PM
1721/*
1722 * Clean up after the old grace period.
1723 */
0854a05c 1724static void rcu_gp_cleanup(void)
7fdefc10
PM
1725{
1726 unsigned long gp_duration;
48a7639c 1727 bool needgp = false;
de30ad51 1728 unsigned long new_gp_seq;
7fdefc10 1729 struct rcu_data *rdp;
336a4f6c 1730 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1731 struct swait_queue_head *sq;
b3dbec76 1732
9cbc5b97 1733 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1734 raw_spin_lock_irq_rcu_node(rnp);
c51d7b5e
PM
1735 rcu_state.gp_end = jiffies;
1736 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
9cbc5b97
PM
1737 if (gp_duration > rcu_state.gp_max)
1738 rcu_state.gp_max = gp_duration;
b3dbec76 1739
7fdefc10
PM
1740 /*
1741 * We know the grace period is complete, but to everyone else
1742 * it appears to still be ongoing. But it is also the case
1743 * that to everyone else it looks like there is nothing that
1744 * they can do to advance the grace period. It is therefore
1745 * safe for us to drop the lock in order to mark the grace
1746 * period as completed in all of the rcu_node structures.
7fdefc10 1747 */
67c583a7 1748 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 1749
5d4b8659 1750 /*
ff3bb6f4
PM
1751 * Propagate new ->gp_seq value to rcu_node structures so that
1752 * other CPUs don't have to wait until the start of the next grace
1753 * period to process their callbacks. This also avoids some nasty
1754 * RCU grace-period initialization races by forcing the end of
1755 * the current grace period to be completely recorded in all of
1756 * the rcu_node structures before the beginning of the next grace
1757 * period is recorded in any of the rcu_node structures.
5d4b8659 1758 */
9cbc5b97 1759 new_gp_seq = rcu_state.gp_seq;
de30ad51 1760 rcu_seq_end(&new_gp_seq);
aedf4ba9 1761 rcu_for_each_node_breadth_first(rnp) {
2a67e741 1762 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 1763 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 1764 dump_blkd_tasks(rnp, 10);
5c60d25f 1765 WARN_ON_ONCE(rnp->qsmask);
de30ad51 1766 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
da1df50d 1767 rdp = this_cpu_ptr(&rcu_data);
b11cc576 1768 if (rnp == rdp->mynode)
c7e48f7b 1769 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 1770 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 1771 needgp = rcu_future_gp_cleanup(rnp) || needgp;
065bb78c 1772 sq = rcu_nocb_gp_get(rnp);
67c583a7 1773 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 1774 rcu_nocb_gp_cleanup(sq);
cee43939 1775 cond_resched_tasks_rcu_qs();
9cbc5b97 1776 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 1777 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 1778 }
336a4f6c 1779 rnp = rcu_get_root();
9cbc5b97 1780 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 1781
0a89e5a4 1782 /* Declare grace period done, trace first to use old GP number. */
9cbc5b97 1783 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
0a89e5a4 1784 rcu_seq_end(&rcu_state.gp_seq);
9cbc5b97 1785 rcu_state.gp_state = RCU_GP_IDLE;
fb31340f 1786 /* Check for GP requests since above loop. */
da1df50d 1787 rdp = this_cpu_ptr(&rcu_data);
5b55072f 1788 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 1789 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 1790 TPS("CleanupMore"));
fb31340f
PM
1791 needgp = true;
1792 }
48a7639c 1793 /* Advance CBs to reduce false positives below. */
02f50142 1794 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
9cbc5b97
PM
1795 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1796 rcu_state.gp_req_activity = jiffies;
1797 trace_rcu_grace_period(rcu_state.name,
1798 READ_ONCE(rcu_state.gp_seq),
bb311ecc 1799 TPS("newreq"));
18390aea 1800 } else {
9cbc5b97
PM
1801 WRITE_ONCE(rcu_state.gp_flags,
1802 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 1803 }
67c583a7 1804 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
1805}
1806
1807/*
1808 * Body of kthread that handles grace periods.
1809 */
0854a05c 1810static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 1811{
5871968d 1812 rcu_bind_gp_kthread();
7fdefc10
PM
1813 for (;;) {
1814
1815 /* Handle grace-period start. */
1816 for (;;) {
9cbc5b97
PM
1817 trace_rcu_grace_period(rcu_state.name,
1818 READ_ONCE(rcu_state.gp_seq),
63c4db78 1819 TPS("reqwait"));
9cbc5b97
PM
1820 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1821 swait_event_idle_exclusive(rcu_state.gp_wq,
1822 READ_ONCE(rcu_state.gp_flags) &
1823 RCU_GP_FLAG_INIT);
1824 rcu_state.gp_state = RCU_GP_DONE_GPS;
78e4bc34 1825 /* Locking provides needed memory barrier. */
0854a05c 1826 if (rcu_gp_init())
7fdefc10 1827 break;
cee43939 1828 cond_resched_tasks_rcu_qs();
9cbc5b97 1829 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 1830 WARN_ON(signal_pending(current));
9cbc5b97
PM
1831 trace_rcu_grace_period(rcu_state.name,
1832 READ_ONCE(rcu_state.gp_seq),
63c4db78 1833 TPS("reqwaitsig"));
7fdefc10 1834 }
cabc49c1 1835
4cdfc175 1836 /* Handle quiescent-state forcing. */
c3854a05 1837 rcu_gp_fqs_loop();
4cdfc175
PM
1838
1839 /* Handle grace-period end. */
9cbc5b97 1840 rcu_state.gp_state = RCU_GP_CLEANUP;
0854a05c 1841 rcu_gp_cleanup();
9cbc5b97 1842 rcu_state.gp_state = RCU_GP_CLEANED;
b3dbec76 1843 }
b3dbec76
PM
1844}
1845
f41d911f 1846/*
49918a54
PM
1847 * Report a full set of quiescent states to the rcu_state data structure.
1848 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1849 * another grace period is required. Whether we wake the grace-period
1850 * kthread or it awakens itself for the next round of quiescent-state
1851 * forcing, that kthread will clean up after the just-completed grace
1852 * period. Note that the caller must hold rnp->lock, which is released
1853 * before return.
f41d911f 1854 */
aff4e9ed 1855static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 1856 __releases(rcu_get_root()->lock)
f41d911f 1857{
336a4f6c 1858 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 1859 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
1860 WRITE_ONCE(rcu_state.gp_flags,
1861 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 1862 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 1863 rcu_gp_kthread_wake();
f41d911f
PM
1864}
1865
64db4cff 1866/*
d3f6bad3
PM
1867 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1868 * Allows quiescent states for a group of CPUs to be reported at one go
1869 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
1870 * must be represented by the same rcu_node structure (which need not be a
1871 * leaf rcu_node structure, though it often will be). The gps parameter
1872 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 1873 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 1874 * must be held upon entry, and it is released before return.
ec2c2976
PM
1875 *
1876 * As a special case, if mask is zero, the bit-already-cleared check is
1877 * disabled. This allows propagating quiescent state due to resumed tasks
1878 * during grace-period initialization.
64db4cff 1879 */
b50912d0
PM
1880static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1881 unsigned long gps, unsigned long flags)
64db4cff
PM
1882 __releases(rnp->lock)
1883{
654e9533 1884 unsigned long oldmask = 0;
28ecd580
PM
1885 struct rcu_node *rnp_c;
1886
a32e01ee 1887 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1888
64db4cff
PM
1889 /* Walk up the rcu_node hierarchy. */
1890 for (;;) {
ec2c2976 1891 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 1892
654e9533
PM
1893 /*
1894 * Our bit has already been cleared, or the
1895 * relevant grace period is already over, so done.
1896 */
67c583a7 1897 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1898 return;
1899 }
654e9533 1900 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 1901 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 1902 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 1903 rnp->qsmask &= ~mask;
67a0edbf 1904 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
1905 mask, rnp->qsmask, rnp->level,
1906 rnp->grplo, rnp->grphi,
1907 !!rnp->gp_tasks);
27f4d280 1908 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1909
1910 /* Other bits still set at this level, so done. */
67c583a7 1911 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1912 return;
1913 }
d43a5d32 1914 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
1915 mask = rnp->grpmask;
1916 if (rnp->parent == NULL) {
1917
1918 /* No more levels. Exit loop holding root lock. */
1919
1920 break;
1921 }
67c583a7 1922 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 1923 rnp_c = rnp;
64db4cff 1924 rnp = rnp->parent;
2a67e741 1925 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 1926 oldmask = rnp_c->qsmask;
64db4cff
PM
1927 }
1928
1929 /*
1930 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1931 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1932 * to clean up and start the next grace period if one is needed.
64db4cff 1933 */
aff4e9ed 1934 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
1935}
1936
cc99a310
PM
1937/*
1938 * Record a quiescent state for all tasks that were previously queued
1939 * on the specified rcu_node structure and that were blocking the current
49918a54 1940 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
1941 * irqs disabled, and this lock is released upon return, but irqs remain
1942 * disabled.
1943 */
17a8212b 1944static void __maybe_unused
139ad4da 1945rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
1946 __releases(rnp->lock)
1947{
654e9533 1948 unsigned long gps;
cc99a310
PM
1949 unsigned long mask;
1950 struct rcu_node *rnp_p;
1951
a32e01ee 1952 raw_lockdep_assert_held_rcu_node(rnp);
45975c7d 1953 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
c74859d1
PM
1954 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1955 rnp->qsmask != 0) {
67c583a7 1956 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
1957 return; /* Still need more quiescent states! */
1958 }
1959
77cfc7bf 1960 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
1961 rnp_p = rnp->parent;
1962 if (rnp_p == NULL) {
1963 /*
a77da14c
PM
1964 * Only one rcu_node structure in the tree, so don't
1965 * try to report up to its nonexistent parent!
cc99a310 1966 */
aff4e9ed 1967 rcu_report_qs_rsp(flags);
cc99a310
PM
1968 return;
1969 }
1970
c9a24e2d
PM
1971 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1972 gps = rnp->gp_seq;
cc99a310 1973 mask = rnp->grpmask;
67c583a7 1974 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 1975 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 1976 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
1977}
1978
64db4cff 1979/*
d3f6bad3 1980 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 1981 * structure. This must be called from the specified CPU.
64db4cff
PM
1982 */
1983static void
33085c46 1984rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
64db4cff
PM
1985{
1986 unsigned long flags;
1987 unsigned long mask;
48a7639c 1988 bool needwake;
64db4cff
PM
1989 struct rcu_node *rnp;
1990
1991 rnp = rdp->mynode;
2a67e741 1992 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
1993 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1994 rdp->gpwrap) {
64db4cff
PM
1995
1996 /*
e4cc1f22
PM
1997 * The grace period in which this quiescent state was
1998 * recorded has ended, so don't report it upwards.
1999 * We will instead need a new quiescent state that lies
2000 * within the current grace period.
64db4cff 2001 */
5b74c458 2002 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 2003 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2004 return;
2005 }
2006 mask = rdp->grpmask;
2007 if ((rnp->qsmask & mask) == 0) {
67c583a7 2008 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2009 } else {
bb53e416 2010 rdp->core_needs_qs = false;
64db4cff
PM
2011
2012 /*
2013 * This GP can't end until cpu checks in, so all of our
2014 * callbacks can be processed during the next GP.
2015 */
02f50142 2016 needwake = rcu_accelerate_cbs(rnp, rdp);
64db4cff 2017
b50912d0 2018 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 2019 /* ^^^ Released rnp->lock */
48a7639c 2020 if (needwake)
532c00c9 2021 rcu_gp_kthread_wake();
64db4cff
PM
2022 }
2023}
2024
2025/*
2026 * Check to see if there is a new grace period of which this CPU
2027 * is not yet aware, and if so, set up local rcu_data state for it.
2028 * Otherwise, see if this CPU has just passed through its first
2029 * quiescent state for this grace period, and record that fact if so.
2030 */
2031static void
8087d3e3 2032rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 2033{
05eb552b 2034 /* Check for grace-period ends and beginnings. */
15cabdff 2035 note_gp_changes(rdp);
64db4cff
PM
2036
2037 /*
2038 * Does this CPU still need to do its part for current grace period?
2039 * If no, return and let the other CPUs do their part as well.
2040 */
97c668b8 2041 if (!rdp->core_needs_qs)
64db4cff
PM
2042 return;
2043
2044 /*
2045 * Was there a quiescent state since the beginning of the grace
2046 * period? If no, then exit and wait for the next call.
2047 */
3a19b46a 2048 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2049 return;
2050
d3f6bad3
PM
2051 /*
2052 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2053 * judge of that).
2054 */
33085c46 2055 rcu_report_qs_rdp(rdp->cpu, rdp);
64db4cff
PM
2056}
2057
b1420f1c 2058/*
780cd590
PM
2059 * Near the end of the offline process. Trace the fact that this CPU
2060 * is going offline.
b1420f1c 2061 */
780cd590 2062int rcutree_dying_cpu(unsigned int cpu)
b1420f1c 2063{
477351f7 2064 RCU_TRACE(bool blkd;)
da1df50d 2065 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
88a4976d 2066 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2067
ea46351c 2068 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2069 return 0;
ea46351c 2070
477351f7 2071 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
780cd590 2072 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
477351f7 2073 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
780cd590 2074 return 0;
64db4cff
PM
2075}
2076
8af3a5e7
PM
2077/*
2078 * All CPUs for the specified rcu_node structure have gone offline,
2079 * and all tasks that were preempted within an RCU read-side critical
2080 * section while running on one of those CPUs have since exited their RCU
2081 * read-side critical section. Some other CPU is reporting this fact with
2082 * the specified rcu_node structure's ->lock held and interrupts disabled.
2083 * This function therefore goes up the tree of rcu_node structures,
2084 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2085 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2086 * updated.
8af3a5e7
PM
2087 *
2088 * This function does check that the specified rcu_node structure has
2089 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2090 * prematurely. That said, invoking it after the fact will cost you
2091 * a needless lock acquisition. So once it has done its work, don't
2092 * invoke it again.
2093 */
2094static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2095{
2096 long mask;
2097 struct rcu_node *rnp = rnp_leaf;
2098
962aff03 2099 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2100 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2101 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2102 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2103 return;
2104 for (;;) {
2105 mask = rnp->grpmask;
2106 rnp = rnp->parent;
2107 if (!rnp)
2108 break;
2a67e741 2109 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2110 rnp->qsmaskinit &= ~mask;
962aff03
PM
2111 /* Between grace periods, so better already be zero! */
2112 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2113 if (rnp->qsmaskinit) {
67c583a7
BF
2114 raw_spin_unlock_rcu_node(rnp);
2115 /* irqs remain disabled. */
8af3a5e7
PM
2116 return;
2117 }
67c583a7 2118 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2119 }
2120}
2121
64db4cff 2122/*
e5601400 2123 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2124 * this fact from process context. Do the remainder of the cleanup.
2125 * There can only be one CPU hotplug operation at a time, so no need for
2126 * explicit locking.
64db4cff 2127 */
780cd590 2128int rcutree_dead_cpu(unsigned int cpu)
64db4cff 2129{
da1df50d 2130 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
b1420f1c 2131 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2132
ea46351c 2133 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2134 return 0;
ea46351c 2135
2036d94a 2136 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2137 rcu_boost_kthread_setaffinity(rnp, -1);
780cd590
PM
2138 /* Do any needed no-CB deferred wakeups from this CPU. */
2139 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2140 return 0;
64db4cff
PM
2141}
2142
64db4cff
PM
2143/*
2144 * Invoke any RCU callbacks that have made it to the end of their grace
2145 * period. Thottle as specified by rdp->blimit.
2146 */
5bb5d09c 2147static void rcu_do_batch(struct rcu_data *rdp)
64db4cff
PM
2148{
2149 unsigned long flags;
15fecf89
PM
2150 struct rcu_head *rhp;
2151 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2152 long bl, count;
64db4cff 2153
dc35c893 2154 /* If no callbacks are ready, just return. */
15fecf89 2155 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2156 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2157 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2158 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2159 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2160 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2161 need_resched(), is_idle_task(current),
2162 rcu_is_callbacks_kthread());
64db4cff 2163 return;
29c00b4a 2164 }
64db4cff
PM
2165
2166 /*
2167 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2168 * races with call_rcu() from interrupt handlers. Leave the
2169 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2170 */
2171 local_irq_save(flags);
8146c4e2 2172 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2173 bl = rdp->blimit;
3c779dfe
PM
2174 trace_rcu_batch_start(rcu_state.name,
2175 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
15fecf89
PM
2176 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2177 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2178 local_irq_restore(flags);
2179
2180 /* Invoke callbacks. */
15fecf89
PM
2181 rhp = rcu_cblist_dequeue(&rcl);
2182 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2183 debug_rcu_head_unqueue(rhp);
3c779dfe 2184 if (__rcu_reclaim(rcu_state.name, rhp))
15fecf89
PM
2185 rcu_cblist_dequeued_lazy(&rcl);
2186 /*
2187 * Stop only if limit reached and CPU has something to do.
2188 * Note: The rcl structure counts down from zero.
2189 */
4b27f20b 2190 if (-rcl.len >= bl &&
dff1672d
PM
2191 (need_resched() ||
2192 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2193 break;
2194 }
2195
2196 local_irq_save(flags);
4b27f20b 2197 count = -rcl.len;
3c779dfe 2198 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
8ef0f37e 2199 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2200
15fecf89
PM
2201 /* Update counts and requeue any remaining callbacks. */
2202 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2203 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2204 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2205
2206 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2207 count = rcu_segcblist_n_cbs(&rdp->cblist);
2208 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2209 rdp->blimit = blimit;
2210
37c72e56 2211 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2212 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2213 rdp->qlen_last_fqs_check = 0;
3c779dfe 2214 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89
PM
2215 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2216 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2217
2218 /*
2219 * The following usually indicates a double call_rcu(). To track
2220 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2221 */
15fecf89 2222 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2223
64db4cff
PM
2224 local_irq_restore(flags);
2225
e0f23060 2226 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2227 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2228 invoke_rcu_core();
64db4cff
PM
2229}
2230
2231/*
c98cac60
PM
2232 * This function is invoked from each scheduling-clock interrupt,
2233 * and checks to see if this CPU is in a non-context-switch quiescent
2234 * state, for example, user mode or idle loop. It also schedules RCU
2235 * core processing. If the current grace period has gone on too long,
2236 * it will ask the scheduler to manufacture a context switch for the sole
2237 * purpose of providing a providing the needed quiescent state.
64db4cff 2238 */
c98cac60 2239void rcu_sched_clock_irq(int user)
64db4cff 2240{
f7f7bac9 2241 trace_rcu_utilization(TPS("Start scheduler-tick"));
4e95020c 2242 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2243 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2244 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2245 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2246 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2247 set_tsk_need_resched(current);
2248 set_preempt_need_resched();
2249 }
2dba13f0 2250 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
64db4cff 2251 }
c98cac60 2252 rcu_flavor_sched_clock_irq(user);
e3950ecd 2253 if (rcu_pending())
a46e0899 2254 invoke_rcu_core();
07f27570 2255
f7f7bac9 2256 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2257}
2258
64db4cff
PM
2259/*
2260 * Scan the leaf rcu_node structures, processing dyntick state for any that
2261 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2262 * Also initiate boosting for any threads blocked on the root rcu_node.
2263 *
ee47eb9f 2264 * The caller must have suppressed start of new grace periods.
64db4cff 2265 */
8ff0b907 2266static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2267{
64db4cff
PM
2268 int cpu;
2269 unsigned long flags;
2270 unsigned long mask;
a0b6c9a7 2271 struct rcu_node *rnp;
64db4cff 2272
aedf4ba9 2273 rcu_for_each_leaf_node(rnp) {
cee43939 2274 cond_resched_tasks_rcu_qs();
64db4cff 2275 mask = 0;
2a67e741 2276 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2277 if (rnp->qsmask == 0) {
45975c7d 2278 if (!IS_ENABLED(CONFIG_PREEMPT) ||
a77da14c
PM
2279 rcu_preempt_blocked_readers_cgp(rnp)) {
2280 /*
2281 * No point in scanning bits because they
2282 * are all zero. But we might need to
2283 * priority-boost blocked readers.
2284 */
2285 rcu_initiate_boost(rnp, flags);
2286 /* rcu_initiate_boost() releases rnp->lock */
2287 continue;
2288 }
92816435
PM
2289 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2290 continue;
64db4cff 2291 }
bc75e999
MR
2292 for_each_leaf_node_possible_cpu(rnp, cpu) {
2293 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2294 if ((rnp->qsmask & bit) != 0) {
da1df50d 2295 if (f(per_cpu_ptr(&rcu_data, cpu)))
0edd1b17
PM
2296 mask |= bit;
2297 }
64db4cff 2298 }
45f014c5 2299 if (mask != 0) {
c9a24e2d 2300 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2301 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2302 } else {
2303 /* Nothing to do here, so just drop the lock. */
67c583a7 2304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2305 }
64db4cff 2306 }
64db4cff
PM
2307}
2308
2309/*
2310 * Force quiescent states on reluctant CPUs, and also detect which
2311 * CPUs are in dyntick-idle mode.
2312 */
cd920e5a 2313void rcu_force_quiescent_state(void)
64db4cff
PM
2314{
2315 unsigned long flags;
394f2769
PM
2316 bool ret;
2317 struct rcu_node *rnp;
2318 struct rcu_node *rnp_old = NULL;
2319
2320 /* Funnel through hierarchy to reduce memory contention. */
da1df50d 2321 rnp = __this_cpu_read(rcu_data.mynode);
394f2769 2322 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2323 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2324 !raw_spin_trylock(&rnp->fqslock);
2325 if (rnp_old != NULL)
2326 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2327 if (ret)
394f2769 2328 return;
394f2769
PM
2329 rnp_old = rnp;
2330 }
336a4f6c 2331 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2332
394f2769 2333 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2334 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2335 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2336 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2337 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2338 return; /* Someone beat us to it. */
46a1e34e 2339 }
67a0edbf
PM
2340 WRITE_ONCE(rcu_state.gp_flags,
2341 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2342 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2343 rcu_gp_kthread_wake();
64db4cff 2344}
cd920e5a 2345EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
64db4cff 2346
26d950a9
PM
2347/*
2348 * This function checks for grace-period requests that fail to motivate
2349 * RCU to come out of its idle mode.
2350 */
791416c4
PM
2351void
2352rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp,
2353 const unsigned long gpssdelay)
26d950a9
PM
2354{
2355 unsigned long flags;
2356 unsigned long j;
336a4f6c 2357 struct rcu_node *rnp_root = rcu_get_root();
26d950a9
PM
2358 static atomic_t warned = ATOMIC_INIT(0);
2359
de8e8730 2360 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
7a1d0f23 2361 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
26d950a9
PM
2362 return;
2363 j = jiffies; /* Expensive access, and in common case don't get here. */
67a0edbf
PM
2364 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2365 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
26d950a9
PM
2366 atomic_read(&warned))
2367 return;
2368
2369 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2370 j = jiffies;
de8e8730 2371 if (rcu_gp_in_progress() ||
7a1d0f23 2372 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
67a0edbf
PM
2373 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2374 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
26d950a9
PM
2375 atomic_read(&warned)) {
2376 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2377 return;
2378 }
2379 /* Hold onto the leaf lock to make others see warned==1. */
2380
2381 if (rnp_root != rnp)
2382 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2383 j = jiffies;
de8e8730 2384 if (rcu_gp_in_progress() ||
7a1d0f23 2385 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
67a0edbf
PM
2386 time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2387 time_before(j, rcu_state.gp_activity + gpssdelay) ||
26d950a9
PM
2388 atomic_xchg(&warned, 1)) {
2389 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2390 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2391 return;
2392 }
26d950a9
PM
2393 WARN_ON(1);
2394 if (rnp_root != rnp)
2395 raw_spin_unlock_rcu_node(rnp_root);
2396 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
fd897573 2397 show_rcu_gp_kthreads();
26d950a9
PM
2398}
2399
e0aff973
PM
2400/*
2401 * Do a forward-progress check for rcutorture. This is normally invoked
2402 * due to an OOM event. The argument "j" gives the time period during
2403 * which rcutorture would like progress to have been made.
2404 */
2405void rcu_fwd_progress_check(unsigned long j)
2406{
bfcfcffc
PM
2407 unsigned long cbs;
2408 int cpu;
2409 unsigned long max_cbs = 0;
2410 int max_cpu = -1;
e0aff973
PM
2411 struct rcu_data *rdp;
2412
2413 if (rcu_gp_in_progress()) {
8dd3b546
PM
2414 pr_info("%s: GP age %lu jiffies\n",
2415 __func__, jiffies - rcu_state.gp_start);
e0aff973
PM
2416 show_rcu_gp_kthreads();
2417 } else {
c51d7b5e
PM
2418 pr_info("%s: Last GP end %lu jiffies ago\n",
2419 __func__, jiffies - rcu_state.gp_end);
e0aff973
PM
2420 preempt_disable();
2421 rdp = this_cpu_ptr(&rcu_data);
2422 rcu_check_gp_start_stall(rdp->mynode, rdp, j);
2423 preempt_enable();
2424 }
bfcfcffc
PM
2425 for_each_possible_cpu(cpu) {
2426 cbs = rcu_get_n_cbs_cpu(cpu);
2427 if (!cbs)
2428 continue;
2429 if (max_cpu < 0)
2430 pr_info("%s: callbacks", __func__);
2431 pr_cont(" %d: %lu", cpu, cbs);
2432 if (cbs <= max_cbs)
2433 continue;
2434 max_cbs = cbs;
2435 max_cpu = cpu;
2436 }
2437 if (max_cpu >= 0)
2438 pr_cont("\n");
e0aff973
PM
2439}
2440EXPORT_SYMBOL_GPL(rcu_fwd_progress_check);
2441
fb60e533
PM
2442/* Perform RCU core processing work for the current CPU. */
2443static __latent_entropy void rcu_core(struct softirq_action *unused)
64db4cff
PM
2444{
2445 unsigned long flags;
da1df50d 2446 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2447 struct rcu_node *rnp = rdp->mynode;
64db4cff 2448
b049fdf8
PM
2449 if (cpu_is_offline(smp_processor_id()))
2450 return;
2451 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2452 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2453
3e310098 2454 /* Report any deferred quiescent states if preemption enabled. */
fced9c8c 2455 if (!(preempt_count() & PREEMPT_MASK)) {
3e310098 2456 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2457 } else if (rcu_preempt_need_deferred_qs(current)) {
2458 set_tsk_need_resched(current);
2459 set_preempt_need_resched();
2460 }
3e310098 2461
64db4cff 2462 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2463 rcu_check_quiescent_state(rdp);
64db4cff 2464
bd7af846 2465 /* No grace period and unregistered callbacks? */
de8e8730 2466 if (!rcu_gp_in_progress() &&
bd7af846
PM
2467 rcu_segcblist_is_enabled(&rdp->cblist)) {
2468 local_irq_save(flags);
e44e73ca 2469 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2470 rcu_accelerate_cbs_unlocked(rnp, rdp);
e44e73ca 2471 local_irq_restore(flags);
64db4cff
PM
2472 }
2473
791416c4 2474 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
26d950a9 2475
64db4cff 2476 /* If there are callbacks ready, invoke them. */
15fecf89 2477 if (rcu_segcblist_ready_cbs(&rdp->cblist))
aff4e9ed 2478 invoke_rcu_callbacks(rdp);
96d3fd0d
PM
2479
2480 /* Do any needed deferred wakeups of rcuo kthreads. */
2481 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2482 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2483}
2484
a26ac245 2485/*
49918a54
PM
2486 * Schedule RCU callback invocation. If the running implementation of RCU
2487 * does not support RCU priority boosting, just do a direct call, otherwise
2488 * wake up the per-CPU kernel kthread. Note that because we are running
2489 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2490 * cannot disappear out from under us.
a26ac245 2491 */
aff4e9ed 2492static void invoke_rcu_callbacks(struct rcu_data *rdp)
a26ac245 2493{
7d0ae808 2494 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2495 return;
3c779dfe 2496 if (likely(!rcu_state.boost)) {
5bb5d09c 2497 rcu_do_batch(rdp);
a26ac245
PM
2498 return;
2499 }
a46e0899 2500 invoke_rcu_callbacks_kthread();
a26ac245
PM
2501}
2502
a46e0899 2503static void invoke_rcu_core(void)
09223371 2504{
b0f74036
PM
2505 if (cpu_online(smp_processor_id()))
2506 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2507}
2508
29154c57
PM
2509/*
2510 * Handle any core-RCU processing required by a call_rcu() invocation.
2511 */
5c7d8967
PM
2512static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2513 unsigned long flags)
64db4cff 2514{
62fde6ed
PM
2515 /*
2516 * If called from an extended quiescent state, invoke the RCU
2517 * core in order to force a re-evaluation of RCU's idleness.
2518 */
9910affa 2519 if (!rcu_is_watching())
62fde6ed
PM
2520 invoke_rcu_core();
2521
a16b7a69 2522 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2523 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2524 return;
64db4cff 2525
37c72e56
PM
2526 /*
2527 * Force the grace period if too many callbacks or too long waiting.
cd920e5a 2528 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
37c72e56 2529 * if some other CPU has recently done so. Also, don't bother
cd920e5a 2530 * invoking rcu_force_quiescent_state() if the newly enqueued callback
37c72e56
PM
2531 * is the only one waiting for a grace period to complete.
2532 */
15fecf89
PM
2533 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2534 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2535
2536 /* Are we ignoring a completed grace period? */
15cabdff 2537 note_gp_changes(rdp);
b52573d2
PM
2538
2539 /* Start a new grace period if one not already started. */
de8e8730 2540 if (!rcu_gp_in_progress()) {
c6e09b97 2541 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2542 } else {
2543 /* Give the grace period a kick. */
2544 rdp->blimit = LONG_MAX;
5c7d8967 2545 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2546 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
cd920e5a 2547 rcu_force_quiescent_state();
5c7d8967 2548 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89 2549 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2550 }
4cdfc175 2551 }
29154c57
PM
2552}
2553
ae150184
PM
2554/*
2555 * RCU callback function to leak a callback.
2556 */
2557static void rcu_leak_callback(struct rcu_head *rhp)
2558{
2559}
2560
3fbfbf7a
PM
2561/*
2562 * Helper function for call_rcu() and friends. The cpu argument will
2563 * normally be -1, indicating "currently running CPU". It may specify
dd46a788 2564 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
3fbfbf7a
PM
2565 * is expected to specify a CPU.
2566 */
64db4cff 2567static void
5c7d8967 2568__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
64db4cff
PM
2569{
2570 unsigned long flags;
2571 struct rcu_data *rdp;
2572
b8f2ed53
PM
2573 /* Misaligned rcu_head! */
2574 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2575
ae150184 2576 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2577 /*
2578 * Probable double call_rcu(), so leak the callback.
2579 * Use rcu:rcu_callback trace event to find the previous
2580 * time callback was passed to __call_rcu().
2581 */
2582 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2583 head, head->func);
7d0ae808 2584 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2585 return;
2586 }
64db4cff
PM
2587 head->func = func;
2588 head->next = NULL;
64db4cff 2589 local_irq_save(flags);
da1df50d 2590 rdp = this_cpu_ptr(&rcu_data);
64db4cff
PM
2591
2592 /* Add the callback to our list. */
15fecf89 2593 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2594 int offline;
2595
2596 if (cpu != -1)
da1df50d 2597 rdp = per_cpu_ptr(&rcu_data, cpu);
143da9c2
PM
2598 if (likely(rdp->mynode)) {
2599 /* Post-boot, so this should be for a no-CBs CPU. */
2600 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2601 WARN_ON_ONCE(offline);
2602 /* Offline CPU, _call_rcu() illegal, leak callback. */
2603 local_irq_restore(flags);
2604 return;
2605 }
2606 /*
2607 * Very early boot, before rcu_init(). Initialize if needed
2608 * and then drop through to queue the callback.
2609 */
08543bda 2610 WARN_ON_ONCE(cpu != -1);
34404ca8 2611 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
2612 if (rcu_segcblist_empty(&rdp->cblist))
2613 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2614 }
15fecf89 2615 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
d4c08f2a 2616 if (__is_kfree_rcu_offset((unsigned long)func))
3c779dfe
PM
2617 trace_rcu_kfree_callback(rcu_state.name, head,
2618 (unsigned long)func,
15fecf89
PM
2619 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2620 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2621 else
3c779dfe 2622 trace_rcu_callback(rcu_state.name, head,
15fecf89
PM
2623 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2624 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2625
29154c57 2626 /* Go handle any RCU core processing required. */
5c7d8967 2627 __call_rcu_core(rdp, head, flags);
64db4cff
PM
2628 local_irq_restore(flags);
2629}
2630
a68a2bb2 2631/**
45975c7d 2632 * call_rcu() - Queue an RCU callback for invocation after a grace period.
a68a2bb2
PM
2633 * @head: structure to be used for queueing the RCU updates.
2634 * @func: actual callback function to be invoked after the grace period
2635 *
2636 * The callback function will be invoked some time after a full grace
45975c7d
PM
2637 * period elapses, in other words after all pre-existing RCU read-side
2638 * critical sections have completed. However, the callback function
2639 * might well execute concurrently with RCU read-side critical sections
2640 * that started after call_rcu() was invoked. RCU read-side critical
2641 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2642 * may be nested. In addition, regions of code across which interrupts,
2643 * preemption, or softirqs have been disabled also serve as RCU read-side
2644 * critical sections. This includes hardware interrupt handlers, softirq
2645 * handlers, and NMI handlers.
2646 *
2647 * Note that all CPUs must agree that the grace period extended beyond
2648 * all pre-existing RCU read-side critical section. On systems with more
2649 * than one CPU, this means that when "func()" is invoked, each CPU is
2650 * guaranteed to have executed a full memory barrier since the end of its
2651 * last RCU read-side critical section whose beginning preceded the call
2652 * to call_rcu(). It also means that each CPU executing an RCU read-side
2653 * critical section that continues beyond the start of "func()" must have
2654 * executed a memory barrier after the call_rcu() but before the beginning
2655 * of that RCU read-side critical section. Note that these guarantees
2656 * include CPUs that are offline, idle, or executing in user mode, as
2657 * well as CPUs that are executing in the kernel.
2658 *
2659 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2660 * resulting RCU callback function "func()", then both CPU A and CPU B are
2661 * guaranteed to execute a full memory barrier during the time interval
2662 * between the call to call_rcu() and the invocation of "func()" -- even
2663 * if CPU A and CPU B are the same CPU (but again only if the system has
2664 * more than one CPU).
2665 */
2666void call_rcu(struct rcu_head *head, rcu_callback_t func)
2667{
5c7d8967 2668 __call_rcu(head, func, -1, 0);
45975c7d
PM
2669}
2670EXPORT_SYMBOL_GPL(call_rcu);
64db4cff 2671
495aa969
ACB
2672/*
2673 * Queue an RCU callback for lazy invocation after a grace period.
2674 * This will likely be later named something like "call_rcu_lazy()",
2675 * but this change will require some way of tagging the lazy RCU
2676 * callbacks in the list of pending callbacks. Until then, this
2677 * function may only be called from __kfree_rcu().
2678 */
98ece508 2679void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
495aa969 2680{
5c7d8967 2681 __call_rcu(head, func, -1, 1);
495aa969
ACB
2682}
2683EXPORT_SYMBOL_GPL(kfree_call_rcu);
2684
e5bc3af7
PM
2685/*
2686 * During early boot, any blocking grace-period wait automatically
2687 * implies a grace period. Later on, this is never the case for PREEMPT.
2688 *
2689 * Howevr, because a context switch is a grace period for !PREEMPT, any
2690 * blocking grace-period wait automatically implies a grace period if
2691 * there is only one CPU online at any point time during execution of
2692 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2693 * occasionally incorrectly indicate that there are multiple CPUs online
2694 * when there was in fact only one the whole time, as this just adds some
2695 * overhead: RCU still operates correctly.
2696 */
2697static int rcu_blocking_is_gp(void)
2698{
2699 int ret;
2700
2701 if (IS_ENABLED(CONFIG_PREEMPT))
2702 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2703 might_sleep(); /* Check for RCU read-side critical section. */
2704 preempt_disable();
2705 ret = num_online_cpus() <= 1;
2706 preempt_enable();
2707 return ret;
2708}
2709
2710/**
2711 * synchronize_rcu - wait until a grace period has elapsed.
2712 *
2713 * Control will return to the caller some time after a full grace
2714 * period has elapsed, in other words after all currently executing RCU
2715 * read-side critical sections have completed. Note, however, that
2716 * upon return from synchronize_rcu(), the caller might well be executing
2717 * concurrently with new RCU read-side critical sections that began while
2718 * synchronize_rcu() was waiting. RCU read-side critical sections are
2719 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2720 * In addition, regions of code across which interrupts, preemption, or
2721 * softirqs have been disabled also serve as RCU read-side critical
2722 * sections. This includes hardware interrupt handlers, softirq handlers,
2723 * and NMI handlers.
2724 *
2725 * Note that this guarantee implies further memory-ordering guarantees.
2726 * On systems with more than one CPU, when synchronize_rcu() returns,
2727 * each CPU is guaranteed to have executed a full memory barrier since
2728 * the end of its last RCU read-side critical section whose beginning
2729 * preceded the call to synchronize_rcu(). In addition, each CPU having
2730 * an RCU read-side critical section that extends beyond the return from
2731 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2732 * after the beginning of synchronize_rcu() and before the beginning of
2733 * that RCU read-side critical section. Note that these guarantees include
2734 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2735 * that are executing in the kernel.
2736 *
2737 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2738 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2739 * to have executed a full memory barrier during the execution of
2740 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2741 * again only if the system has more than one CPU).
2742 */
2743void synchronize_rcu(void)
2744{
2745 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2746 lock_is_held(&rcu_lock_map) ||
2747 lock_is_held(&rcu_sched_lock_map),
2748 "Illegal synchronize_rcu() in RCU read-side critical section");
2749 if (rcu_blocking_is_gp())
2750 return;
2751 if (rcu_gp_is_expedited())
2752 synchronize_rcu_expedited();
2753 else
2754 wait_rcu_gp(call_rcu);
2755}
2756EXPORT_SYMBOL_GPL(synchronize_rcu);
2757
765a3f4f
PM
2758/**
2759 * get_state_synchronize_rcu - Snapshot current RCU state
2760 *
2761 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2762 * to determine whether or not a full grace period has elapsed in the
2763 * meantime.
2764 */
2765unsigned long get_state_synchronize_rcu(void)
2766{
2767 /*
2768 * Any prior manipulation of RCU-protected data must happen
e4be81a2 2769 * before the load from ->gp_seq.
765a3f4f
PM
2770 */
2771 smp_mb(); /* ^^^ */
16fc9c60 2772 return rcu_seq_snap(&rcu_state.gp_seq);
765a3f4f
PM
2773}
2774EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2775
2776/**
2777 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2778 *
2779 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2780 *
2781 * If a full RCU grace period has elapsed since the earlier call to
2782 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2783 * synchronize_rcu() to wait for a full grace period.
2784 *
2785 * Yes, this function does not take counter wrap into account. But
2786 * counter wrap is harmless. If the counter wraps, we have waited for
2787 * more than 2 billion grace periods (and way more on a 64-bit system!),
2788 * so waiting for one additional grace period should be just fine.
2789 */
2790void cond_synchronize_rcu(unsigned long oldstate)
2791{
16fc9c60 2792 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
765a3f4f 2793 synchronize_rcu();
e4be81a2
PM
2794 else
2795 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
2796}
2797EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2798
64db4cff 2799/*
98ece508 2800 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
2801 * the current CPU, returning 1 if so and zero otherwise. The checks are
2802 * in order of increasing expense: checks that can be carried out against
2803 * CPU-local state are performed first. However, we must check for CPU
2804 * stalls first, else we might not get a chance.
64db4cff 2805 */
98ece508 2806static int rcu_pending(void)
64db4cff 2807{
98ece508 2808 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
2809 struct rcu_node *rnp = rdp->mynode;
2810
64db4cff 2811 /* Check for CPU stalls, if enabled. */
ea12ff2b 2812 check_cpu_stall(rdp);
64db4cff 2813
a096932f 2814 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
4580b054 2815 if (rcu_nohz_full_cpu())
a096932f
PM
2816 return 0;
2817
64db4cff 2818 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 2819 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
2820 return 1;
2821
2822 /* Does this CPU have callbacks ready to invoke? */
01c495f7 2823 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
2824 return 1;
2825
2826 /* Has RCU gone idle with this CPU needing another grace period? */
de8e8730 2827 if (!rcu_gp_in_progress() &&
c1935209
PM
2828 rcu_segcblist_is_enabled(&rdp->cblist) &&
2829 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
2830 return 1;
2831
67e14c1e
PM
2832 /* Have RCU grace period completed or started? */
2833 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 2834 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
2835 return 1;
2836
96d3fd0d 2837 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 2838 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 2839 return 1;
96d3fd0d 2840
64db4cff
PM
2841 /* nothing to do */
2842 return 0;
2843}
2844
a83eff0a 2845/*
dd46a788 2846 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
2847 * the compiler is expected to optimize this away.
2848 */
dd46a788 2849static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 2850{
8344b871
PM
2851 trace_rcu_barrier(rcu_state.name, s, cpu,
2852 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
2853}
2854
b1420f1c 2855/*
dd46a788
PM
2856 * RCU callback function for rcu_barrier(). If we are last, wake
2857 * up the task executing rcu_barrier().
b1420f1c 2858 */
24ebbca8 2859static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2860{
ec9f5835 2861 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
dd46a788 2862 rcu_barrier_trace(TPS("LastCB"), -1,
ec9f5835
PM
2863 rcu_state.barrier_sequence);
2864 complete(&rcu_state.barrier_completion);
a83eff0a 2865 } else {
dd46a788 2866 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
a83eff0a 2867 }
d0ec774c
PM
2868}
2869
2870/*
2871 * Called with preemption disabled, and from cross-cpu IRQ context.
2872 */
ec9f5835 2873static void rcu_barrier_func(void *unused)
d0ec774c 2874{
da1df50d 2875 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
d0ec774c 2876
dd46a788 2877 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
2878 rdp->barrier_head.func = rcu_barrier_callback;
2879 debug_rcu_head_queue(&rdp->barrier_head);
2880 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
ec9f5835 2881 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
2882 } else {
2883 debug_rcu_head_unqueue(&rdp->barrier_head);
dd46a788 2884 rcu_barrier_trace(TPS("IRQNQ"), -1,
ec9f5835 2885 rcu_state.barrier_sequence);
f92c734f 2886 }
d0ec774c
PM
2887}
2888
dd46a788
PM
2889/**
2890 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2891 *
2892 * Note that this primitive does not necessarily wait for an RCU grace period
2893 * to complete. For example, if there are no RCU callbacks queued anywhere
2894 * in the system, then rcu_barrier() is within its rights to return
2895 * immediately, without waiting for anything, much less an RCU grace period.
d0ec774c 2896 */
dd46a788 2897void rcu_barrier(void)
d0ec774c 2898{
b1420f1c 2899 int cpu;
b1420f1c 2900 struct rcu_data *rdp;
ec9f5835 2901 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 2902
dd46a788 2903 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 2904
e74f4c45 2905 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 2906 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 2907
4f525a52 2908 /* Did someone else do our work for us? */
ec9f5835 2909 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
dd46a788 2910 rcu_barrier_trace(TPS("EarlyExit"), -1,
ec9f5835 2911 rcu_state.barrier_sequence);
cf3a9c48 2912 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 2913 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
2914 return;
2915 }
2916
4f525a52 2917 /* Mark the start of the barrier operation. */
ec9f5835 2918 rcu_seq_start(&rcu_state.barrier_sequence);
dd46a788 2919 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 2920
d0ec774c 2921 /*
b1420f1c
PM
2922 * Initialize the count to one rather than to zero in order to
2923 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2924 * (or preemption of this task). Exclude CPU-hotplug operations
2925 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2926 */
ec9f5835
PM
2927 init_completion(&rcu_state.barrier_completion);
2928 atomic_set(&rcu_state.barrier_cpu_count, 1);
1331e7a1 2929 get_online_cpus();
b1420f1c
PM
2930
2931 /*
1331e7a1
PM
2932 * Force each CPU with callbacks to register a new callback.
2933 * When that callback is invoked, we will know that all of the
2934 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2935 */
3fbfbf7a 2936 for_each_possible_cpu(cpu) {
d1e43fa5 2937 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2938 continue;
da1df50d 2939 rdp = per_cpu_ptr(&rcu_data, cpu);
d1e43fa5 2940 if (rcu_is_nocb_cpu(cpu)) {
4580b054 2941 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
dd46a788 2942 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
ec9f5835 2943 rcu_state.barrier_sequence);
d7e29933 2944 } else {
dd46a788 2945 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
ec9f5835 2946 rcu_state.barrier_sequence);
41050a00 2947 smp_mb__before_atomic();
ec9f5835 2948 atomic_inc(&rcu_state.barrier_cpu_count);
d7e29933 2949 __call_rcu(&rdp->barrier_head,
5c7d8967 2950 rcu_barrier_callback, cpu, 0);
d7e29933 2951 }
15fecf89 2952 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
dd46a788 2953 rcu_barrier_trace(TPS("OnlineQ"), cpu,
ec9f5835
PM
2954 rcu_state.barrier_sequence);
2955 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
b1420f1c 2956 } else {
dd46a788 2957 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
ec9f5835 2958 rcu_state.barrier_sequence);
b1420f1c
PM
2959 }
2960 }
1331e7a1 2961 put_online_cpus();
b1420f1c
PM
2962
2963 /*
2964 * Now that we have an rcu_barrier_callback() callback on each
2965 * CPU, and thus each counted, remove the initial count.
2966 */
ec9f5835
PM
2967 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2968 complete(&rcu_state.barrier_completion);
b1420f1c
PM
2969
2970 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 2971 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 2972
4f525a52 2973 /* Mark the end of the barrier operation. */
dd46a788 2974 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 2975 rcu_seq_end(&rcu_state.barrier_sequence);
4f525a52 2976
b1420f1c 2977 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 2978 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 2979}
45975c7d 2980EXPORT_SYMBOL_GPL(rcu_barrier);
d0ec774c 2981
0aa04b05
PM
2982/*
2983 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2984 * first CPU in a given leaf rcu_node structure coming online. The caller
2985 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2986 * disabled.
2987 */
2988static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2989{
2990 long mask;
8d672fa6 2991 long oldmask;
0aa04b05
PM
2992 struct rcu_node *rnp = rnp_leaf;
2993
8d672fa6 2994 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 2995 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
2996 for (;;) {
2997 mask = rnp->grpmask;
2998 rnp = rnp->parent;
2999 if (rnp == NULL)
3000 return;
6cf10081 3001 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 3002 oldmask = rnp->qsmaskinit;
0aa04b05 3003 rnp->qsmaskinit |= mask;
67c583a7 3004 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
3005 if (oldmask)
3006 return;
0aa04b05
PM
3007 }
3008}
3009
64db4cff 3010/*
27569620 3011 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3012 */
27569620 3013static void __init
53b46303 3014rcu_boot_init_percpu_data(int cpu)
64db4cff 3015{
da1df50d 3016 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
3017
3018 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3019 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4c5273bf 3020 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
dc5a4f29 3021 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
53b46303 3022 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 3023 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 3024 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 3025 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
27569620 3026 rdp->cpu = cpu;
3fbfbf7a 3027 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3028}
3029
3030/*
53b46303
PM
3031 * Invoked early in the CPU-online process, when pretty much all services
3032 * are available. The incoming CPU is not present.
3033 *
3034 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
3035 * offline event can be happening at a given time. Note also that we can
3036 * accept some slop in the rsp->gp_seq access due to the fact that this
3037 * CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3038 */
53b46303 3039int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
3040{
3041 unsigned long flags;
da1df50d 3042 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3043 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
3044
3045 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3046 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 3047 rdp->qlen_last_fqs_check = 0;
53b46303 3048 rdp->n_force_qs_snap = rcu_state.n_force_qs;
64db4cff 3049 rdp->blimit = blimit;
15fecf89
PM
3050 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3051 !init_nocb_callback_list(rdp))
3052 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4c5273bf 3053 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3054 rcu_dynticks_eqs_online();
67c583a7 3055 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3056
0aa04b05
PM
3057 /*
3058 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3059 * propagation up the rcu_node tree will happen at the beginning
3060 * of the next grace period.
3061 */
64db4cff 3062 rnp = rdp->mynode;
2a67e741 3063 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3064 rdp->beenonline = true; /* We have now been online. */
de30ad51 3065 rdp->gp_seq = rnp->gp_seq;
7a1d0f23 3066 rdp->gp_seq_needed = rnp->gp_seq;
5b74c458 3067 rdp->cpu_no_qs.b.norm = true;
97c668b8 3068 rdp->core_needs_qs = false;
9b9500da 3069 rdp->rcu_iw_pending = false;
8aa670cd 3070 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
53b46303 3071 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 3072 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4df83742 3073 rcu_prepare_kthreads(cpu);
ad368d15 3074 rcu_spawn_cpu_nocb_kthread(cpu);
4df83742
TG
3075
3076 return 0;
3077}
3078
deb34f36
PM
3079/*
3080 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3081 */
4df83742
TG
3082static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3083{
da1df50d 3084 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
3085
3086 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3087}
3088
deb34f36
PM
3089/*
3090 * Near the end of the CPU-online process. Pretty much all services
3091 * enabled, and the CPU is now very much alive.
3092 */
4df83742
TG
3093int rcutree_online_cpu(unsigned int cpu)
3094{
9b9500da
PM
3095 unsigned long flags;
3096 struct rcu_data *rdp;
3097 struct rcu_node *rnp;
9b9500da 3098
b97d23c5
PM
3099 rdp = per_cpu_ptr(&rcu_data, cpu);
3100 rnp = rdp->mynode;
3101 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3102 rnp->ffmask |= rdp->grpmask;
3103 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da
PM
3104 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3105 return 0; /* Too early in boot for scheduler work. */
3106 sync_sched_exp_online_cleanup(cpu);
3107 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3108 return 0;
3109}
3110
deb34f36
PM
3111/*
3112 * Near the beginning of the process. The CPU is still very much alive
3113 * with pretty much all services enabled.
3114 */
4df83742
TG
3115int rcutree_offline_cpu(unsigned int cpu)
3116{
9b9500da
PM
3117 unsigned long flags;
3118 struct rcu_data *rdp;
3119 struct rcu_node *rnp;
9b9500da 3120
b97d23c5
PM
3121 rdp = per_cpu_ptr(&rcu_data, cpu);
3122 rnp = rdp->mynode;
3123 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3124 rnp->ffmask &= ~rdp->grpmask;
3125 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da 3126
4df83742
TG
3127 rcutree_affinity_setting(cpu, cpu);
3128 return 0;
3129}
3130
f64c6013
PZ
3131static DEFINE_PER_CPU(int, rcu_cpu_started);
3132
7ec99de3
PM
3133/*
3134 * Mark the specified CPU as being online so that subsequent grace periods
3135 * (both expedited and normal) will wait on it. Note that this means that
3136 * incoming CPUs are not allowed to use RCU read-side critical sections
3137 * until this function is called. Failing to observe this restriction
3138 * will result in lockdep splats.
deb34f36
PM
3139 *
3140 * Note that this function is special in that it is invoked directly
3141 * from the incoming CPU rather than from the cpuhp_step mechanism.
3142 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3143 */
3144void rcu_cpu_starting(unsigned int cpu)
3145{
3146 unsigned long flags;
3147 unsigned long mask;
313517fc
PM
3148 int nbits;
3149 unsigned long oldmask;
7ec99de3
PM
3150 struct rcu_data *rdp;
3151 struct rcu_node *rnp;
7ec99de3 3152
f64c6013
PZ
3153 if (per_cpu(rcu_cpu_started, cpu))
3154 return;
3155
3156 per_cpu(rcu_cpu_started, cpu) = 1;
3157
b97d23c5
PM
3158 rdp = per_cpu_ptr(&rcu_data, cpu);
3159 rnp = rdp->mynode;
3160 mask = rdp->grpmask;
3161 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3162 rnp->qsmaskinitnext |= mask;
3163 oldmask = rnp->expmaskinitnext;
3164 rnp->expmaskinitnext |= mask;
3165 oldmask ^= rnp->expmaskinitnext;
3166 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3167 /* Allow lockless access for expedited grace periods. */
eb7a6653 3168 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
b97d23c5 3169 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
3170 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3171 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
b97d23c5
PM
3172 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3173 /* Report QS -after- changing ->qsmaskinitnext! */
3174 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3175 } else {
3176 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7ec99de3 3177 }
313517fc 3178 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3179}
3180
27d50c7e
TG
3181#ifdef CONFIG_HOTPLUG_CPU
3182/*
53b46303
PM
3183 * The outgoing function has no further need of RCU, so remove it from
3184 * the rcu_node tree's ->qsmaskinitnext bit masks.
3185 *
3186 * Note that this function is special in that it is invoked directly
3187 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3188 * This is because this function must be invoked at a precise location.
27d50c7e 3189 */
53b46303 3190void rcu_report_dead(unsigned int cpu)
27d50c7e
TG
3191{
3192 unsigned long flags;
3193 unsigned long mask;
da1df50d 3194 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27d50c7e
TG
3195 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3196
49918a54 3197 /* QS for any half-done expedited grace period. */
53b46303 3198 preempt_disable();
63d4c8c9 3199 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
53b46303
PM
3200 preempt_enable();
3201 rcu_preempt_deferred_qs(current);
3202
27d50c7e
TG
3203 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3204 mask = rdp->grpmask;
894d45bb 3205 raw_spin_lock(&rcu_state.ofl_lock);
27d50c7e 3206 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
3207 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3208 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
3209 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3210 /* Report quiescent state -before- changing ->qsmaskinitnext! */
b50912d0 3211 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
3212 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3213 }
27d50c7e 3214 rnp->qsmaskinitnext &= ~mask;
710d60cb 3215 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
894d45bb 3216 raw_spin_unlock(&rcu_state.ofl_lock);
f64c6013
PZ
3217
3218 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3219}
a58163d8 3220
53b46303
PM
3221/*
3222 * The outgoing CPU has just passed through the dying-idle state, and we
3223 * are being invoked from the CPU that was IPIed to continue the offline
3224 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3225 */
3226void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
3227{
3228 unsigned long flags;
b1a2d79f 3229 struct rcu_data *my_rdp;
da1df50d 3230 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3231 struct rcu_node *rnp_root = rcu_get_root();
ec4eacce 3232 bool needwake;
a58163d8 3233
95335c03
PM
3234 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3235 return; /* No callbacks to migrate. */
3236
b1a2d79f 3237 local_irq_save(flags);
da1df50d 3238 my_rdp = this_cpu_ptr(&rcu_data);
b1a2d79f
PM
3239 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3240 local_irq_restore(flags);
3241 return;
3242 }
9fa46fb8 3243 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce 3244 /* Leverage recent GPs and set GP for new callbacks. */
834f56bf
PM
3245 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3246 rcu_advance_cbs(rnp_root, my_rdp);
f2dbe4a5 3247 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3248 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3249 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3250 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce 3251 if (needwake)
532c00c9 3252 rcu_gp_kthread_wake();
a58163d8
PM
3253 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3254 !rcu_segcblist_empty(&rdp->cblist),
3255 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3256 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3257 rcu_segcblist_first_cb(&rdp->cblist));
3258}
27d50c7e
TG
3259#endif
3260
deb34f36
PM
3261/*
3262 * On non-huge systems, use expedited RCU grace periods to make suspend
3263 * and hibernation run faster.
3264 */
d1d74d14
BP
3265static int rcu_pm_notify(struct notifier_block *self,
3266 unsigned long action, void *hcpu)
3267{
3268 switch (action) {
3269 case PM_HIBERNATION_PREPARE:
3270 case PM_SUSPEND_PREPARE:
3271 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3272 rcu_expedite_gp();
d1d74d14
BP
3273 break;
3274 case PM_POST_HIBERNATION:
3275 case PM_POST_SUSPEND:
5afff48b
PM
3276 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3277 rcu_unexpedite_gp();
d1d74d14
BP
3278 break;
3279 default:
3280 break;
3281 }
3282 return NOTIFY_OK;
3283}
3284
b3dbec76 3285/*
49918a54 3286 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
3287 */
3288static int __init rcu_spawn_gp_kthread(void)
3289{
3290 unsigned long flags;
a94844b2 3291 int kthread_prio_in = kthread_prio;
b3dbec76 3292 struct rcu_node *rnp;
a94844b2 3293 struct sched_param sp;
b3dbec76
PM
3294 struct task_struct *t;
3295
a94844b2 3296 /* Force priority into range. */
c7cd161e
JFG
3297 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3298 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3299 kthread_prio = 2;
3300 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
a94844b2
PM
3301 kthread_prio = 1;
3302 else if (kthread_prio < 0)
3303 kthread_prio = 0;
3304 else if (kthread_prio > 99)
3305 kthread_prio = 99;
c7cd161e 3306
a94844b2
PM
3307 if (kthread_prio != kthread_prio_in)
3308 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3309 kthread_prio, kthread_prio_in);
3310
9386c0b7 3311 rcu_scheduler_fully_active = 1;
b97d23c5 3312 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
08543bda
PM
3313 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3314 return 0;
b97d23c5
PM
3315 rnp = rcu_get_root();
3316 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3317 rcu_state.gp_kthread = t;
3318 if (kthread_prio) {
3319 sp.sched_priority = kthread_prio;
3320 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 3321 }
b97d23c5
PM
3322 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3323 wake_up_process(t);
35ce7f29 3324 rcu_spawn_nocb_kthreads();
9386c0b7 3325 rcu_spawn_boost_kthreads();
b3dbec76
PM
3326 return 0;
3327}
3328early_initcall(rcu_spawn_gp_kthread);
3329
bbad9379 3330/*
52d7e48b
PM
3331 * This function is invoked towards the end of the scheduler's
3332 * initialization process. Before this is called, the idle task might
3333 * contain synchronous grace-period primitives (during which time, this idle
3334 * task is booting the system, and such primitives are no-ops). After this
3335 * function is called, any synchronous grace-period primitives are run as
3336 * expedited, with the requesting task driving the grace period forward.
900b1028 3337 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3338 * runtime RCU functionality.
bbad9379
PM
3339 */
3340void rcu_scheduler_starting(void)
3341{
3342 WARN_ON(num_online_cpus() != 1);
3343 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3344 rcu_test_sync_prims();
3345 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3346 rcu_test_sync_prims();
bbad9379
PM
3347}
3348
64db4cff 3349/*
49918a54 3350 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 3351 */
b8bb1f63 3352static void __init rcu_init_one(void)
64db4cff 3353{
cb007102
AG
3354 static const char * const buf[] = RCU_NODE_NAME_INIT;
3355 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3356 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3357 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3358
199977bf 3359 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3360 int cpustride = 1;
3361 int i;
3362 int j;
3363 struct rcu_node *rnp;
3364
05b84aec 3365 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3366
3eaaaf6c
PM
3367 /* Silence gcc 4.8 false positive about array index out of range. */
3368 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3369 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3370
64db4cff
PM
3371 /* Initialize the level-tracking arrays. */
3372
f885b7f2 3373 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
3374 rcu_state.level[i] =
3375 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 3376 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3377
3378 /* Initialize the elements themselves, starting from the leaves. */
3379
f885b7f2 3380 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3381 cpustride *= levelspread[i];
eb7a6653 3382 rnp = rcu_state.level[i];
41f5c631 3383 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3384 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3385 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3386 &rcu_node_class[i], buf[i]);
394f2769
PM
3387 raw_spin_lock_init(&rnp->fqslock);
3388 lockdep_set_class_and_name(&rnp->fqslock,
3389 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
3390 rnp->gp_seq = rcu_state.gp_seq;
3391 rnp->gp_seq_needed = rcu_state.gp_seq;
3392 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
3393 rnp->qsmask = 0;
3394 rnp->qsmaskinit = 0;
3395 rnp->grplo = j * cpustride;
3396 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3397 if (rnp->grphi >= nr_cpu_ids)
3398 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3399 if (i == 0) {
3400 rnp->grpnum = 0;
3401 rnp->grpmask = 0;
3402 rnp->parent = NULL;
3403 } else {
199977bf 3404 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 3405 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 3406 rnp->parent = rcu_state.level[i - 1] +
199977bf 3407 j / levelspread[i - 1];
64db4cff
PM
3408 }
3409 rnp->level = i;
12f5f524 3410 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3411 rcu_init_one_nocb(rnp);
f6a12f34
PM
3412 init_waitqueue_head(&rnp->exp_wq[0]);
3413 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
3414 init_waitqueue_head(&rnp->exp_wq[2]);
3415 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 3416 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
3417 }
3418 }
0c34029a 3419
eb7a6653
PM
3420 init_swait_queue_head(&rcu_state.gp_wq);
3421 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 3422 rnp = rcu_first_leaf_node();
0c34029a 3423 for_each_possible_cpu(i) {
4a90a068 3424 while (i > rnp->grphi)
0c34029a 3425 rnp++;
da1df50d 3426 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 3427 rcu_boot_init_percpu_data(i);
0c34029a 3428 }
64db4cff
PM
3429}
3430
f885b7f2
PM
3431/*
3432 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3433 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3434 * the ->node array in the rcu_state structure.
3435 */
3436static void __init rcu_init_geometry(void)
3437{
026ad283 3438 ulong d;
f885b7f2 3439 int i;
05b84aec 3440 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 3441
026ad283
PM
3442 /*
3443 * Initialize any unspecified boot parameters.
3444 * The default values of jiffies_till_first_fqs and
3445 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3446 * value, which is a function of HZ, then adding one for each
3447 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3448 */
3449 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3450 if (jiffies_till_first_fqs == ULONG_MAX)
3451 jiffies_till_first_fqs = d;
3452 if (jiffies_till_next_fqs == ULONG_MAX)
3453 jiffies_till_next_fqs = d;
c06aed0e
PM
3454 if (jiffies_till_sched_qs == ULONG_MAX)
3455 adjust_jiffies_till_sched_qs();
026ad283 3456
f885b7f2 3457 /* If the compile-time values are accurate, just leave. */
47d631af 3458 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 3459 nr_cpu_ids == NR_CPUS)
f885b7f2 3460 return;
a7538352 3461 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 3462 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 3463
f885b7f2 3464 /*
ee968ac6
PM
3465 * The boot-time rcu_fanout_leaf parameter must be at least two
3466 * and cannot exceed the number of bits in the rcu_node masks.
3467 * Complain and fall back to the compile-time values if this
3468 * limit is exceeded.
f885b7f2 3469 */
ee968ac6 3470 if (rcu_fanout_leaf < 2 ||
75cf15a4 3471 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 3472 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
3473 WARN_ON(1);
3474 return;
3475 }
3476
f885b7f2
PM
3477 /*
3478 * Compute number of nodes that can be handled an rcu_node tree
9618138b 3479 * with the given number of levels.
f885b7f2 3480 */
9618138b 3481 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 3482 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 3483 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
3484
3485 /*
75cf15a4 3486 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 3487 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 3488 */
ee968ac6
PM
3489 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3490 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3491 WARN_ON(1);
3492 return;
3493 }
f885b7f2 3494
679f9858 3495 /* Calculate the number of levels in the tree. */
9618138b 3496 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 3497 }
9618138b 3498 rcu_num_lvls = i + 1;
679f9858 3499
f885b7f2 3500 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 3501 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 3502 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
3503 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3504 }
f885b7f2
PM
3505
3506 /* Calculate the total number of rcu_node structures. */
3507 rcu_num_nodes = 0;
679f9858 3508 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 3509 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
3510}
3511
a3dc2948
PM
3512/*
3513 * Dump out the structure of the rcu_node combining tree associated
49918a54 3514 * with the rcu_state structure.
a3dc2948 3515 */
b8bb1f63 3516static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
3517{
3518 int level = 0;
3519 struct rcu_node *rnp;
3520
3521 pr_info("rcu_node tree layout dump\n");
3522 pr_info(" ");
aedf4ba9 3523 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
3524 if (rnp->level != level) {
3525 pr_cont("\n");
3526 pr_info(" ");
3527 level = rnp->level;
3528 }
3529 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3530 }
3531 pr_cont("\n");
3532}
3533
ad7c946b 3534struct workqueue_struct *rcu_gp_wq;
25f3d7ef 3535struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 3536
9f680ab4 3537void __init rcu_init(void)
64db4cff 3538{
017c4261 3539 int cpu;
9f680ab4 3540
47627678
PM
3541 rcu_early_boot_tests();
3542
f41d911f 3543 rcu_bootup_announce();
f885b7f2 3544 rcu_init_geometry();
b8bb1f63 3545 rcu_init_one();
a3dc2948 3546 if (dump_tree)
b8bb1f63 3547 rcu_dump_rcu_node_tree();
fb60e533 3548 open_softirq(RCU_SOFTIRQ, rcu_core);
9f680ab4
PM
3549
3550 /*
3551 * We don't need protection against CPU-hotplug here because
3552 * this is called early in boot, before either interrupts
3553 * or the scheduler are operational.
3554 */
d1d74d14 3555 pm_notifier(rcu_pm_notify, 0);
7ec99de3 3556 for_each_online_cpu(cpu) {
4df83742 3557 rcutree_prepare_cpu(cpu);
7ec99de3 3558 rcu_cpu_starting(cpu);
9b9500da 3559 rcutree_online_cpu(cpu);
7ec99de3 3560 }
ad7c946b
PM
3561
3562 /* Create workqueue for expedited GPs and for Tree SRCU. */
3563 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3564 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
3565 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3566 WARN_ON(!rcu_par_gp_wq);
e0fcba9a 3567 srcu_init();
64db4cff
PM
3568}
3569
10462d6f 3570#include "tree_stall.h"
3549c2bc 3571#include "tree_exp.h"
4102adab 3572#include "tree_plugin.h"