rcu: rcupdate.h: Get rid of Sphinx warnings at rcu_pointer_handoff()
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
de30ad51 98 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \
7be7f0be 99 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 100 .name = RCU_STATE_NAME(sname), \
a4889858 101 .abbr = sabbr, \
f6a12f34 102 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 103 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
1e64b15a 104 .ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \
2723249a 105}
64db4cff 106
a41bfeb2
SRRH
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 109
b28a7c01 110static struct rcu_state *const rcu_state_p;
6ce75a23 111LIST_HEAD(rcu_struct_flavors);
27f4d280 112
a3dc2948
PM
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
7fa27001
PM
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 121module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 123/* Number of rcu_nodes at specified level. */
e95d68d2 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 128
b0d30417 129/*
52d7e48b
PM
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 134 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
ec2c2976
PM
158static void
159rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
160 struct rcu_node *rnp, unsigned long gps, unsigned long flags);
0aa04b05
PM
161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
164static void invoke_rcu_core(void);
165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
166static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
3549c2bc 168static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 169
a94844b2 170/* rcuc/rcub kthread realtime priority */
26730f55 171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
172module_param(kthread_prio, int, 0644);
173
8d7dc928 174/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 175
90040c9e
PM
176static int gp_preinit_delay;
177module_param(gp_preinit_delay, int, 0444);
178static int gp_init_delay;
179module_param(gp_init_delay, int, 0444);
180static int gp_cleanup_delay;
181module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 182
eab128e8
PM
183/*
184 * Number of grace periods between delays, normalized by the duration of
bfd090be 185 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
186 * each delay. The reason for this normalization is that it means that,
187 * for non-zero delays, the overall slowdown of grace periods is constant
188 * regardless of the duration of the delay. This arrangement balances
189 * the need for long delays to increase some race probabilities with the
190 * need for fast grace periods to increase other race probabilities.
191 */
192#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 193
4a298656
PM
194/*
195 * Track the rcutorture test sequence number and the update version
196 * number within a given test. The rcutorture_testseq is incremented
197 * on every rcutorture module load and unload, so has an odd value
198 * when a test is running. The rcutorture_vernum is set to zero
199 * when rcutorture starts and is incremented on each rcutorture update.
200 * These variables enable correlating rcutorture output with the
201 * RCU tracing information.
202 */
203unsigned long rcutorture_testseq;
204unsigned long rcutorture_vernum;
205
0aa04b05
PM
206/*
207 * Compute the mask of online CPUs for the specified rcu_node structure.
208 * This will not be stable unless the rcu_node structure's ->lock is
209 * held, but the bit corresponding to the current CPU will be stable
210 * in most contexts.
211 */
212unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
213{
7d0ae808 214 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
215}
216
fc2219d4 217/*
7d0ae808 218 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
219 * permit this function to be invoked without holding the root rcu_node
220 * structure's ->lock, but of course results can be subject to change.
221 */
222static int rcu_gp_in_progress(struct rcu_state *rsp)
223{
ba04107f 224 return rcu_seq_state(rcu_seq_current(&rsp->gp_seq));
fc2219d4
PM
225}
226
b1f77b05 227/*
d6714c22 228 * Note a quiescent state. Because we do not need to know
b1f77b05 229 * how many quiescent states passed, just if there was at least
d6714c22 230 * one since the start of the grace period, this just sets a flag.
e4cc1f22 231 * The caller must have disabled preemption.
b1f77b05 232 */
284a8c93 233void rcu_sched_qs(void)
b1f77b05 234{
f4687d26 235 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
236 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
237 return;
238 trace_rcu_grace_period(TPS("rcu_sched"),
477351f7 239 __this_cpu_read(rcu_sched_data.gp_seq),
fecbf6f0
PM
240 TPS("cpuqs"));
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
242 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
243 return;
46a5d164
PM
244 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
245 rcu_report_exp_rdp(&rcu_sched_state,
246 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
247}
248
284a8c93 249void rcu_bh_qs(void)
b1f77b05 250{
f4687d26 251 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 252 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93 253 trace_rcu_grace_period(TPS("rcu_bh"),
477351f7 254 __this_cpu_read(rcu_bh_data.gp_seq),
284a8c93 255 TPS("cpuqs"));
5b74c458 256 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 257 }
b1f77b05 258}
64db4cff 259
b8c17e66
PM
260/*
261 * Steal a bit from the bottom of ->dynticks for idle entry/exit
262 * control. Initially this is for TLB flushing.
263 */
264#define RCU_DYNTICK_CTRL_MASK 0x1
265#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
266#ifndef rcu_eqs_special_exit
267#define rcu_eqs_special_exit() do { } while (0)
268#endif
4a81e832
PM
269
270static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
51a1fd30 271 .dynticks_nesting = 1,
58721f5d 272 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
b8c17e66 273 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
274};
275
2625d469
PM
276/*
277 * Record entry into an extended quiescent state. This is only to be
278 * called when not already in an extended quiescent state.
279 */
280static void rcu_dynticks_eqs_enter(void)
281{
282 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 283 int seq;
2625d469
PM
284
285 /*
b8c17e66 286 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
287 * critical sections, and we also must force ordering with the
288 * next idle sojourn.
289 */
b8c17e66
PM
290 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
291 /* Better be in an extended quiescent state! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 (seq & RCU_DYNTICK_CTRL_CTR));
294 /* Better not have special action (TLB flush) pending! */
295 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
296 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
297}
298
299/*
300 * Record exit from an extended quiescent state. This is only to be
301 * called from an extended quiescent state.
302 */
303static void rcu_dynticks_eqs_exit(void)
304{
305 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 306 int seq;
2625d469
PM
307
308 /*
b8c17e66 309 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
310 * and we also must force ordering with the next RCU read-side
311 * critical section.
312 */
b8c17e66
PM
313 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
314 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
315 !(seq & RCU_DYNTICK_CTRL_CTR));
316 if (seq & RCU_DYNTICK_CTRL_MASK) {
317 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
318 smp_mb__after_atomic(); /* _exit after clearing mask. */
319 /* Prefer duplicate flushes to losing a flush. */
320 rcu_eqs_special_exit();
321 }
2625d469
PM
322}
323
324/*
325 * Reset the current CPU's ->dynticks counter to indicate that the
326 * newly onlined CPU is no longer in an extended quiescent state.
327 * This will either leave the counter unchanged, or increment it
328 * to the next non-quiescent value.
329 *
330 * The non-atomic test/increment sequence works because the upper bits
331 * of the ->dynticks counter are manipulated only by the corresponding CPU,
332 * or when the corresponding CPU is offline.
333 */
334static void rcu_dynticks_eqs_online(void)
335{
336 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
337
b8c17e66 338 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 339 return;
b8c17e66 340 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
341}
342
02a5c550
PM
343/*
344 * Is the current CPU in an extended quiescent state?
345 *
346 * No ordering, as we are sampling CPU-local information.
347 */
348bool rcu_dynticks_curr_cpu_in_eqs(void)
349{
350 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
351
b8c17e66 352 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
353}
354
8b2f63ab
PM
355/*
356 * Snapshot the ->dynticks counter with full ordering so as to allow
357 * stable comparison of this counter with past and future snapshots.
358 */
02a5c550 359int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
360{
361 int snap = atomic_add_return(0, &rdtp->dynticks);
362
b8c17e66 363 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
364}
365
02a5c550
PM
366/*
367 * Return true if the snapshot returned from rcu_dynticks_snap()
368 * indicates that RCU is in an extended quiescent state.
369 */
370static bool rcu_dynticks_in_eqs(int snap)
371{
b8c17e66 372 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
373}
374
375/*
376 * Return true if the CPU corresponding to the specified rcu_dynticks
377 * structure has spent some time in an extended quiescent state since
378 * rcu_dynticks_snap() returned the specified snapshot.
379 */
380static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
381{
382 return snap != rcu_dynticks_snap(rdtp);
383}
384
6563de9d
PM
385/*
386 * Do a double-increment of the ->dynticks counter to emulate a
387 * momentary idle-CPU quiescent state.
388 */
389static void rcu_dynticks_momentary_idle(void)
390{
391 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
392 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
393 &rdtp->dynticks);
6563de9d
PM
394
395 /* It is illegal to call this from idle state. */
b8c17e66 396 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
397}
398
b8c17e66
PM
399/*
400 * Set the special (bottom) bit of the specified CPU so that it
401 * will take special action (such as flushing its TLB) on the
402 * next exit from an extended quiescent state. Returns true if
403 * the bit was successfully set, or false if the CPU was not in
404 * an extended quiescent state.
405 */
406bool rcu_eqs_special_set(int cpu)
407{
408 int old;
409 int new;
410 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
411
412 do {
413 old = atomic_read(&rdtp->dynticks);
414 if (old & RCU_DYNTICK_CTRL_CTR)
415 return false;
416 new = old | RCU_DYNTICK_CTRL_MASK;
417 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
418 return true;
6563de9d 419}
5cd37193 420
4a81e832
PM
421/*
422 * Let the RCU core know that this CPU has gone through the scheduler,
423 * which is a quiescent state. This is called when the need for a
424 * quiescent state is urgent, so we burn an atomic operation and full
425 * memory barriers to let the RCU core know about it, regardless of what
426 * this CPU might (or might not) do in the near future.
427 *
0f9be8ca 428 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
429 *
430 * The caller must have disabled interrupts.
4a81e832
PM
431 */
432static void rcu_momentary_dyntick_idle(void)
433{
0f9be8ca
PM
434 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
435 rcu_dynticks_momentary_idle();
4a81e832
PM
436}
437
25502a6c
PM
438/*
439 * Note a context switch. This is a quiescent state for RCU-sched,
440 * and requires special handling for preemptible RCU.
46a5d164 441 * The caller must have disabled interrupts.
25502a6c 442 */
bcbfdd01 443void rcu_note_context_switch(bool preempt)
25502a6c 444{
bb73c52b 445 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 446 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 447 rcu_sched_qs();
5b72f964 448 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
449 /* Load rcu_urgent_qs before other flags. */
450 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
451 goto out;
452 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 453 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 454 rcu_momentary_dyntick_idle();
9226b10d 455 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
456 if (!preempt)
457 rcu_note_voluntary_context_switch_lite(current);
9226b10d 458out:
f7f7bac9 459 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 460 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 461}
29ce8310 462EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 463
5cd37193 464/*
1925d196 465 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
466 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
467 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 468 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
469 * be none of them). Either way, do a lightweight quiescent state for
470 * all RCU flavors.
bb73c52b
BF
471 *
472 * The barrier() calls are redundant in the common case when this is
473 * called externally, but just in case this is called from within this
474 * file.
475 *
5cd37193
PM
476 */
477void rcu_all_qs(void)
478{
46a5d164
PM
479 unsigned long flags;
480
9226b10d
PM
481 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
482 return;
483 preempt_disable();
484 /* Load rcu_urgent_qs before other flags. */
485 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
486 preempt_enable();
487 return;
488 }
489 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 490 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 491 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 492 local_irq_save(flags);
5cd37193 493 rcu_momentary_dyntick_idle();
46a5d164
PM
494 local_irq_restore(flags);
495 }
9226b10d 496 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 497 rcu_sched_qs();
9577df9a 498 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 499 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 500 preempt_enable();
5cd37193
PM
501}
502EXPORT_SYMBOL_GPL(rcu_all_qs);
503
17c7798b
PM
504#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
505static long blimit = DEFAULT_RCU_BLIMIT;
506#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
507static long qhimark = DEFAULT_RCU_QHIMARK;
508#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
509static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 510
878d7439
ED
511module_param(blimit, long, 0444);
512module_param(qhimark, long, 0444);
513module_param(qlowmark, long, 0444);
3d76c082 514
026ad283
PM
515static ulong jiffies_till_first_fqs = ULONG_MAX;
516static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 517static bool rcu_kick_kthreads;
d40011f6
PM
518
519module_param(jiffies_till_first_fqs, ulong, 0644);
520module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 521module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 522
4a81e832
PM
523/*
524 * How long the grace period must be before we start recruiting
525 * quiescent-state help from rcu_note_context_switch().
526 */
f79c3ad6
PM
527static ulong jiffies_till_sched_qs = HZ / 10;
528module_param(jiffies_till_sched_qs, ulong, 0444);
4a81e832 529
fe5ac724 530static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 531static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 532static int rcu_pending(void);
64db4cff
PM
533
534/*
17ef2fe9 535 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 536 */
17ef2fe9 537unsigned long rcu_get_gp_seq(void)
917963d0 538{
d7219312 539 return READ_ONCE(rcu_state_p->gp_seq);
917963d0 540}
17ef2fe9 541EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0
PM
542
543/*
17ef2fe9 544 * Return the number of RCU-sched GPs completed thus far for debug & stats.
64db4cff 545 */
17ef2fe9 546unsigned long rcu_sched_get_gp_seq(void)
917963d0 547{
d7219312 548 return READ_ONCE(rcu_sched_state.gp_seq);
917963d0 549}
17ef2fe9 550EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq);
917963d0
PM
551
552/*
17ef2fe9 553 * Return the number of RCU-bh GPs completed thus far for debug & stats.
917963d0 554 */
17ef2fe9 555unsigned long rcu_bh_get_gp_seq(void)
917963d0 556{
d7219312 557 return READ_ONCE(rcu_bh_state.gp_seq);
917963d0 558}
17ef2fe9 559EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq);
64db4cff 560
291783b8
PM
561/*
562 * Return the number of RCU expedited batches completed thus far for
563 * debug & stats. Odd numbers mean that a batch is in progress, even
564 * numbers mean idle. The value returned will thus be roughly double
565 * the cumulative batches since boot.
566 */
567unsigned long rcu_exp_batches_completed(void)
568{
569 return rcu_state_p->expedited_sequence;
570}
571EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
572
573/*
574 * Return the number of RCU-sched expedited batches completed thus far
575 * for debug & stats. Similar to rcu_exp_batches_completed().
576 */
577unsigned long rcu_exp_batches_completed_sched(void)
578{
579 return rcu_sched_state.expedited_sequence;
580}
581EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
582
a381d757
ACB
583/*
584 * Force a quiescent state.
585 */
586void rcu_force_quiescent_state(void)
587{
e534165b 588 force_quiescent_state(rcu_state_p);
a381d757
ACB
589}
590EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
591
bf66f18e
PM
592/*
593 * Force a quiescent state for RCU BH.
594 */
595void rcu_bh_force_quiescent_state(void)
596{
4cdfc175 597 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
598}
599EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
600
e7580f33
PM
601/*
602 * Force a quiescent state for RCU-sched.
603 */
604void rcu_sched_force_quiescent_state(void)
605{
606 force_quiescent_state(&rcu_sched_state);
607}
608EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
609
afea227f
PM
610/*
611 * Show the state of the grace-period kthreads.
612 */
613void show_rcu_gp_kthreads(void)
614{
615 struct rcu_state *rsp;
616
617 for_each_rcu_flavor(rsp) {
618 pr_info("%s: wait state: %d ->state: %#lx\n",
619 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
620 /* sched_show_task(rsp->gp_kthread); */
621 }
622}
623EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
624
4a298656
PM
625/*
626 * Record the number of times rcutorture tests have been initiated and
627 * terminated. This information allows the debugfs tracing stats to be
628 * correlated to the rcutorture messages, even when the rcutorture module
629 * is being repeatedly loaded and unloaded. In other words, we cannot
630 * store this state in rcutorture itself.
631 */
632void rcutorture_record_test_transition(void)
633{
634 rcutorture_testseq++;
635 rcutorture_vernum = 0;
636}
637EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
638
ad0dc7f9
PM
639/*
640 * Send along grace-period-related data for rcutorture diagnostics.
641 */
642void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 643 unsigned long *gp_seq)
ad0dc7f9
PM
644{
645 struct rcu_state *rsp = NULL;
646
647 switch (test_type) {
648 case RCU_FLAVOR:
e534165b 649 rsp = rcu_state_p;
ad0dc7f9
PM
650 break;
651 case RCU_BH_FLAVOR:
652 rsp = &rcu_bh_state;
653 break;
654 case RCU_SCHED_FLAVOR:
655 rsp = &rcu_sched_state;
656 break;
657 default:
658 break;
659 }
7f6733c3 660 if (rsp == NULL)
ad0dc7f9 661 return;
7f6733c3 662 *flags = READ_ONCE(rsp->gp_flags);
aebc8264 663 *gp_seq = rcu_seq_current(&rsp->gp_seq);
ad0dc7f9
PM
664}
665EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
666
4a298656
PM
667/*
668 * Record the number of writer passes through the current rcutorture test.
669 * This is also used to correlate debugfs tracing stats with the rcutorture
670 * messages.
671 */
672void rcutorture_record_progress(unsigned long vernum)
673{
674 rcutorture_vernum++;
675}
676EXPORT_SYMBOL_GPL(rcutorture_record_progress);
677
365187fb
PM
678/*
679 * Return the root node of the specified rcu_state structure.
680 */
681static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
682{
683 return &rsp->node[0];
684}
685
9b2e4f18 686/*
215bba9f
PM
687 * Enter an RCU extended quiescent state, which can be either the
688 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 689 *
215bba9f
PM
690 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
691 * the possibility of usermode upcalls having messed up our count
692 * of interrupt nesting level during the prior busy period.
9b2e4f18 693 */
215bba9f 694static void rcu_eqs_enter(bool user)
9b2e4f18 695{
96d3fd0d
PM
696 struct rcu_state *rsp;
697 struct rcu_data *rdp;
215bba9f 698 struct rcu_dynticks *rdtp;
96d3fd0d 699
215bba9f
PM
700 rdtp = this_cpu_ptr(&rcu_dynticks);
701 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
702 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
703 rdtp->dynticks_nesting == 0);
704 if (rdtp->dynticks_nesting != 1) {
705 rdtp->dynticks_nesting--;
706 return;
9b2e4f18 707 }
96d3fd0d 708
b04db8e1 709 lockdep_assert_irqs_disabled();
dec98900 710 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
e68bbb26 711 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
96d3fd0d
PM
712 for_each_rcu_flavor(rsp) {
713 rdp = this_cpu_ptr(rsp->rda);
714 do_nocb_deferred_wakeup(rdp);
715 }
198bbf81 716 rcu_prepare_for_idle();
2342172f 717 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 718 rcu_dynticks_eqs_enter();
176f8f7a 719 rcu_dynticks_task_enter();
64db4cff 720}
adf5091e
FW
721
722/**
723 * rcu_idle_enter - inform RCU that current CPU is entering idle
724 *
725 * Enter idle mode, in other words, -leave- the mode in which RCU
726 * read-side critical sections can occur. (Though RCU read-side
727 * critical sections can occur in irq handlers in idle, a possibility
728 * handled by irq_enter() and irq_exit().)
729 *
c0da313e
PM
730 * If you add or remove a call to rcu_idle_enter(), be sure to test with
731 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
732 */
733void rcu_idle_enter(void)
734{
b04db8e1 735 lockdep_assert_irqs_disabled();
cb349ca9 736 rcu_eqs_enter(false);
adf5091e 737}
64db4cff 738
d1ec4c34 739#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
740/**
741 * rcu_user_enter - inform RCU that we are resuming userspace.
742 *
743 * Enter RCU idle mode right before resuming userspace. No use of RCU
744 * is permitted between this call and rcu_user_exit(). This way the
745 * CPU doesn't need to maintain the tick for RCU maintenance purposes
746 * when the CPU runs in userspace.
c0da313e
PM
747 *
748 * If you add or remove a call to rcu_user_enter(), be sure to test with
749 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
750 */
751void rcu_user_enter(void)
752{
b04db8e1 753 lockdep_assert_irqs_disabled();
d4db30af 754 rcu_eqs_enter(true);
adf5091e 755}
d1ec4c34 756#endif /* CONFIG_NO_HZ_FULL */
19dd1591 757
fd581a91
PM
758/**
759 * rcu_nmi_exit - inform RCU of exit from NMI context
760 *
761 * If we are returning from the outermost NMI handler that interrupted an
762 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
763 * to let the RCU grace-period handling know that the CPU is back to
764 * being RCU-idle.
765 *
766 * If you add or remove a call to rcu_nmi_exit(), be sure to test
767 * with CONFIG_RCU_EQS_DEBUG=y.
768 */
769void rcu_nmi_exit(void)
770{
771 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
772
773 /*
774 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
775 * (We are exiting an NMI handler, so RCU better be paying attention
776 * to us!)
777 */
778 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
779 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
780
781 /*
782 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
783 * leave it in non-RCU-idle state.
784 */
785 if (rdtp->dynticks_nmi_nesting != 1) {
dec98900 786 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
fd581a91
PM
787 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
788 rdtp->dynticks_nmi_nesting - 2);
789 return;
790 }
791
792 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dec98900 793 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
fd581a91
PM
794 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
795 rcu_dynticks_eqs_enter();
796}
797
9b2e4f18
PM
798/**
799 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
800 *
801 * Exit from an interrupt handler, which might possibly result in entering
802 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 803 * sections can occur. The caller must have disabled interrupts.
64db4cff 804 *
9b2e4f18
PM
805 * This code assumes that the idle loop never does anything that might
806 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
807 * architecture's idle loop violates this assumption, RCU will give you what
808 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
809 *
810 * Use things like work queues to work around this limitation.
811 *
812 * You have been warned.
c0da313e
PM
813 *
814 * If you add or remove a call to rcu_irq_exit(), be sure to test with
815 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 816 */
9b2e4f18 817void rcu_irq_exit(void)
64db4cff 818{
58721f5d 819 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 820
b04db8e1 821 lockdep_assert_irqs_disabled();
58721f5d
PM
822 if (rdtp->dynticks_nmi_nesting == 1)
823 rcu_prepare_for_idle();
824 rcu_nmi_exit();
825 if (rdtp->dynticks_nmi_nesting == 0)
826 rcu_dynticks_task_enter();
7c9906ca
PM
827}
828
829/*
830 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
831 *
832 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
833 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
834 */
835void rcu_irq_exit_irqson(void)
836{
837 unsigned long flags;
838
839 local_irq_save(flags);
840 rcu_irq_exit();
9b2e4f18
PM
841 local_irq_restore(flags);
842}
843
adf5091e
FW
844/*
845 * Exit an RCU extended quiescent state, which can be either the
846 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
847 *
848 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
849 * allow for the possibility of usermode upcalls messing up our count of
850 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 851 */
adf5091e 852static void rcu_eqs_exit(bool user)
9b2e4f18 853{
9b2e4f18 854 struct rcu_dynticks *rdtp;
84585aa8 855 long oldval;
9b2e4f18 856
b04db8e1 857 lockdep_assert_irqs_disabled();
c9d4b0af 858 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 859 oldval = rdtp->dynticks_nesting;
1ce46ee5 860 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30
PM
861 if (oldval) {
862 rdtp->dynticks_nesting++;
9dd238e2 863 return;
3a592405 864 }
9dd238e2
PM
865 rcu_dynticks_task_exit();
866 rcu_dynticks_eqs_exit();
867 rcu_cleanup_after_idle();
868 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
e68bbb26 869 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
9dd238e2
PM
870 WRITE_ONCE(rdtp->dynticks_nesting, 1);
871 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 872}
adf5091e
FW
873
874/**
875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
876 *
877 * Exit idle mode, in other words, -enter- the mode in which RCU
878 * read-side critical sections can occur.
879 *
c0da313e
PM
880 * If you add or remove a call to rcu_idle_exit(), be sure to test with
881 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
882 */
883void rcu_idle_exit(void)
884{
c5d900bf
FW
885 unsigned long flags;
886
887 local_irq_save(flags);
cb349ca9 888 rcu_eqs_exit(false);
c5d900bf 889 local_irq_restore(flags);
adf5091e 890}
9b2e4f18 891
d1ec4c34 892#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
893/**
894 * rcu_user_exit - inform RCU that we are exiting userspace.
895 *
896 * Exit RCU idle mode while entering the kernel because it can
897 * run a RCU read side critical section anytime.
c0da313e
PM
898 *
899 * If you add or remove a call to rcu_user_exit(), be sure to test with
900 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
901 */
902void rcu_user_exit(void)
903{
91d1aa43 904 rcu_eqs_exit(1);
adf5091e 905}
d1ec4c34 906#endif /* CONFIG_NO_HZ_FULL */
19dd1591 907
64db4cff
PM
908/**
909 * rcu_nmi_enter - inform RCU of entry to NMI context
910 *
734d1680
PM
911 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
912 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
913 * that the CPU is active. This implementation permits nested NMIs, as
914 * long as the nesting level does not overflow an int. (You will probably
915 * run out of stack space first.)
c0da313e
PM
916 *
917 * If you add or remove a call to rcu_nmi_enter(), be sure to test
918 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff
PM
919 */
920void rcu_nmi_enter(void)
921{
c9d4b0af 922 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
84585aa8 923 long incby = 2;
64db4cff 924
734d1680
PM
925 /* Complain about underflow. */
926 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
927
928 /*
929 * If idle from RCU viewpoint, atomically increment ->dynticks
930 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
931 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
932 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
933 * to be in the outermost NMI handler that interrupted an RCU-idle
934 * period (observation due to Andy Lutomirski).
935 */
02a5c550 936 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 937 rcu_dynticks_eqs_exit();
734d1680
PM
938 incby = 1;
939 }
bd2b879a
PM
940 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
941 rdtp->dynticks_nmi_nesting,
dec98900 942 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
fd581a91
PM
943 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
944 rdtp->dynticks_nmi_nesting + incby);
734d1680 945 barrier();
64db4cff
PM
946}
947
948/**
9b2e4f18 949 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 950 *
9b2e4f18
PM
951 * Enter an interrupt handler, which might possibly result in exiting
952 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 953 * sections can occur. The caller must have disabled interrupts.
c0da313e 954 *
9b2e4f18 955 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
956 * handler that it never exits, for example when doing upcalls to user mode!
957 * This code assumes that the idle loop never does upcalls to user mode.
958 * If your architecture's idle loop does do upcalls to user mode (or does
959 * anything else that results in unbalanced calls to the irq_enter() and
960 * irq_exit() functions), RCU will give you what you deserve, good and hard.
961 * But very infrequently and irreproducibly.
9b2e4f18
PM
962 *
963 * Use things like work queues to work around this limitation.
964 *
965 * You have been warned.
c0da313e
PM
966 *
967 * If you add or remove a call to rcu_irq_enter(), be sure to test with
968 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 969 */
9b2e4f18 970void rcu_irq_enter(void)
64db4cff 971{
c9d4b0af 972 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 973
b04db8e1 974 lockdep_assert_irqs_disabled();
58721f5d
PM
975 if (rdtp->dynticks_nmi_nesting == 0)
976 rcu_dynticks_task_exit();
977 rcu_nmi_enter();
978 if (rdtp->dynticks_nmi_nesting == 1)
979 rcu_cleanup_after_idle();
7c9906ca 980}
734d1680 981
7c9906ca
PM
982/*
983 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
984 *
985 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
986 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
987 */
988void rcu_irq_enter_irqson(void)
989{
990 unsigned long flags;
734d1680 991
7c9906ca
PM
992 local_irq_save(flags);
993 rcu_irq_enter();
64db4cff 994 local_irq_restore(flags);
64db4cff
PM
995}
996
5c173eb8
PM
997/**
998 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 999 *
791875d1
PM
1000 * Return true if RCU is watching the running CPU, which means that this
1001 * CPU can safely enter RCU read-side critical sections. In other words,
1002 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 1003 * or NMI handler, return true.
64db4cff 1004 */
9418fb20 1005bool notrace rcu_is_watching(void)
64db4cff 1006{
f534ed1f 1007 bool ret;
34240697 1008
46f00d18 1009 preempt_disable_notrace();
791875d1 1010 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1011 preempt_enable_notrace();
34240697 1012 return ret;
64db4cff 1013}
5c173eb8 1014EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1015
bcbfdd01
PM
1016/*
1017 * If a holdout task is actually running, request an urgent quiescent
1018 * state from its CPU. This is unsynchronized, so migrations can cause
1019 * the request to go to the wrong CPU. Which is OK, all that will happen
1020 * is that the CPU's next context switch will be a bit slower and next
1021 * time around this task will generate another request.
1022 */
1023void rcu_request_urgent_qs_task(struct task_struct *t)
1024{
1025 int cpu;
1026
1027 barrier();
1028 cpu = task_cpu(t);
1029 if (!task_curr(t))
1030 return; /* This task is not running on that CPU. */
1031 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1032}
1033
62fde6ed 1034#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1035
1036/*
5554788e 1037 * Is the current CPU online as far as RCU is concerned?
2036d94a 1038 *
5554788e
PM
1039 * Disable preemption to avoid false positives that could otherwise
1040 * happen due to the current CPU number being sampled, this task being
1041 * preempted, its old CPU being taken offline, resuming on some other CPU,
1042 * then determining that its old CPU is now offline. Because there are
1043 * multiple flavors of RCU, and because this function can be called in the
1044 * midst of updating the flavors while a given CPU coming online or going
1045 * offline, it is necessary to check all flavors. If any of the flavors
1046 * believe that given CPU is online, it is considered to be online.
c0d6d01b 1047 *
5554788e
PM
1048 * Disable checking if in an NMI handler because we cannot safely
1049 * report errors from NMI handlers anyway. In addition, it is OK to use
1050 * RCU on an offline processor during initial boot, hence the check for
1051 * rcu_scheduler_fully_active.
c0d6d01b
PM
1052 */
1053bool rcu_lockdep_current_cpu_online(void)
1054{
2036d94a
PM
1055 struct rcu_data *rdp;
1056 struct rcu_node *rnp;
5554788e 1057 struct rcu_state *rsp;
c0d6d01b 1058
5554788e 1059 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 1060 return true;
c0d6d01b 1061 preempt_disable();
5554788e
PM
1062 for_each_rcu_flavor(rsp) {
1063 rdp = this_cpu_ptr(rsp->rda);
1064 rnp = rdp->mynode;
1065 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) {
1066 preempt_enable();
1067 return true;
1068 }
1069 }
c0d6d01b 1070 preempt_enable();
5554788e 1071 return false;
c0d6d01b
PM
1072}
1073EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1074
62fde6ed 1075#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1076
64db4cff 1077/**
9b2e4f18 1078 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1079 *
9b2e4f18
PM
1080 * If the current CPU is idle or running at a first-level (not nested)
1081 * interrupt from idle, return true. The caller must have at least
1082 * disabled preemption.
64db4cff 1083 */
62e3cb14 1084static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1085{
51a1fd30
PM
1086 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1087 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
64db4cff
PM
1088}
1089
9b9500da
PM
1090/*
1091 * We are reporting a quiescent state on behalf of some other CPU, so
1092 * it is our responsibility to check for and handle potential overflow
a66ae8ae 1093 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
1094 * After all, the CPU might be in deep idle state, and thus executing no
1095 * code whatsoever.
1096 */
1097static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1098{
a32e01ee 1099 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
1100 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1101 rnp->gp_seq))
9b9500da 1102 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
1103 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1104 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
1105}
1106
64db4cff
PM
1107/*
1108 * Snapshot the specified CPU's dynticks counter so that we can later
1109 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1110 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1111 */
fe5ac724 1112static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1113{
8b2f63ab 1114 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1115 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
fee5997c 1116 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1117 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1118 return 1;
7941dbde 1119 }
23a9bacd 1120 return 0;
64db4cff
PM
1121}
1122
9b9500da
PM
1123/*
1124 * Handler for the irq_work request posted when a grace period has
1125 * gone on for too long, but not yet long enough for an RCU CPU
1126 * stall warning. Set state appropriately, but just complain if
1127 * there is unexpected state on entry.
1128 */
1129static void rcu_iw_handler(struct irq_work *iwp)
1130{
1131 struct rcu_data *rdp;
1132 struct rcu_node *rnp;
1133
1134 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1135 rnp = rdp->mynode;
1136 raw_spin_lock_rcu_node(rnp);
1137 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
8aa670cd 1138 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1139 rdp->rcu_iw_pending = false;
1140 }
1141 raw_spin_unlock_rcu_node(rnp);
1142}
1143
64db4cff
PM
1144/*
1145 * Return true if the specified CPU has passed through a quiescent
1146 * state by virtue of being in or having passed through an dynticks
1147 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1148 * for this same CPU, or by virtue of having been offline.
64db4cff 1149 */
fe5ac724 1150static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1151{
3a19b46a 1152 unsigned long jtsq;
0f9be8ca 1153 bool *rnhqp;
9226b10d 1154 bool *ruqp;
9b9500da 1155 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1156
1157 /*
1158 * If the CPU passed through or entered a dynticks idle phase with
1159 * no active irq/NMI handlers, then we can safely pretend that the CPU
1160 * already acknowledged the request to pass through a quiescent
1161 * state. Either way, that CPU cannot possibly be in an RCU
1162 * read-side critical section that started before the beginning
1163 * of the current RCU grace period.
1164 */
02a5c550 1165 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
fee5997c 1166 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
64db4cff 1167 rdp->dynticks_fqs++;
9b9500da 1168 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1169 return 1;
1170 }
1171
a82dcc76 1172 /*
cee43939
PM
1173 * Has this CPU encountered a cond_resched() since the beginning
1174 * of the grace period? For this to be the case, the CPU has to
1175 * have noticed the current grace period. This might not be the
1176 * case for nohz_full CPUs looping in the kernel.
a82dcc76 1177 */
f79c3ad6 1178 jtsq = jiffies_till_sched_qs;
9226b10d 1179 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1180 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1181 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
e05720b0 1182 rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) {
fee5997c 1183 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc"));
9b9500da 1184 rcu_gpnum_ovf(rnp, rdp);
3a19b46a 1185 return 1;
f79c3ad6 1186 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
9226b10d
PM
1187 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1188 smp_store_release(ruqp, true);
3a19b46a
PM
1189 }
1190
f2e2df59
PM
1191 /* If waiting too long on an offline CPU, complain. */
1192 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1193 time_after(jiffies, rdp->rsp->gp_start + HZ)) {
1194 bool onl;
1195 struct rcu_node *rnp1;
1196
1197 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1198 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1199 __func__, rnp->grplo, rnp->grphi, rnp->level,
1200 (long)rnp->gp_seq, (long)rnp->completedqs);
1201 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1202 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1203 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1204 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1205 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1206 __func__, rdp->cpu, ".o"[onl],
1207 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1208 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1209 return 1; /* Break things loose after complaining. */
1210 }
1211
65d798f0 1212 /*
4a81e832
PM
1213 * A CPU running for an extended time within the kernel can
1214 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1215 * even context-switching back and forth between a pair of
1216 * in-kernel CPU-bound tasks cannot advance grace periods.
1217 * So if the grace period is old enough, make the CPU pay attention.
1218 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1219 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1220 * bits can be lost, but they will be set again on the next
1221 * force-quiescent-state pass. So lost bit sets do not result
1222 * in incorrect behavior, merely in a grace period lasting
1223 * a few jiffies longer than it might otherwise. Because
1224 * there are at most four threads involved, and because the
1225 * updates are only once every few jiffies, the probability of
1226 * lossage (and thus of slight grace-period extension) is
1227 * quite low.
6193c76a 1228 */
0f9be8ca
PM
1229 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1230 if (!READ_ONCE(*rnhqp) &&
1231 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1232 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1233 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1234 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1235 smp_store_release(ruqp, true);
f79c3ad6 1236 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
6193c76a
PM
1237 }
1238
28053bc7 1239 /*
9b9500da
PM
1240 * If more than halfway to RCU CPU stall-warning time, do a
1241 * resched_cpu() to try to loosen things up a bit. Also check to
1242 * see if the CPU is getting hammered with interrupts, but only
1243 * once per grace period, just to keep the IPIs down to a dull roar.
28053bc7 1244 */
9b9500da 1245 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
28053bc7 1246 resched_cpu(rdp->cpu);
9b9500da 1247 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1248 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1249 (rnp->ffmask & rdp->grpmask)) {
1250 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1251 rdp->rcu_iw_pending = true;
8aa670cd 1252 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1253 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1254 }
1255 }
4914950a 1256
a82dcc76 1257 return 0;
64db4cff
PM
1258}
1259
64db4cff
PM
1260static void record_gp_stall_check_time(struct rcu_state *rsp)
1261{
cb1e78cf 1262 unsigned long j = jiffies;
6193c76a 1263 unsigned long j1;
26cdfedf
PM
1264
1265 rsp->gp_start = j;
6193c76a 1266 j1 = rcu_jiffies_till_stall_check();
91f63ced
PM
1267 /* Record ->gp_start before ->jiffies_stall. */
1268 smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */
6193c76a 1269 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1270 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1271}
1272
6b50e119
PM
1273/*
1274 * Convert a ->gp_state value to a character string.
1275 */
1276static const char *gp_state_getname(short gs)
1277{
1278 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1279 return "???";
1280 return gp_state_names[gs];
1281}
1282
fb81a44b
PM
1283/*
1284 * Complain about starvation of grace-period kthread.
1285 */
1286static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1287{
1288 unsigned long gpa;
1289 unsigned long j;
1290
1291 j = jiffies;
7d0ae808 1292 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1293 if (j - gpa > 2 * HZ) {
78c5a67f 1294 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
81e701e4 1295 rsp->name, j - gpa,
78c5a67f 1296 (long)rcu_seq_current(&rsp->gp_seq),
6b50e119
PM
1297 rsp->gp_flags,
1298 gp_state_getname(rsp->gp_state), rsp->gp_state,
96036c43
PM
1299 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1300 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
86057b80 1301 if (rsp->gp_kthread) {
d07aee2c 1302 pr_err("RCU grace-period kthread stack dump:\n");
b1adb3e2 1303 sched_show_task(rsp->gp_kthread);
86057b80
PM
1304 wake_up_process(rsp->gp_kthread);
1305 }
b1adb3e2 1306 }
64db4cff
PM
1307}
1308
b637a328 1309/*
7aa92230
PM
1310 * Dump stacks of all tasks running on stalled CPUs. First try using
1311 * NMIs, but fall back to manual remote stack tracing on architectures
1312 * that don't support NMI-based stack dumps. The NMI-triggered stack
1313 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1314 */
1315static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1316{
1317 int cpu;
1318 unsigned long flags;
1319 struct rcu_node *rnp;
1320
1321 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1322 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1323 for_each_leaf_node_possible_cpu(rnp, cpu)
1324 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1325 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1326 dump_cpu_task(cpu);
67c583a7 1327 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1328 }
1329}
1330
8c7c4829
PM
1331/*
1332 * If too much time has passed in the current grace period, and if
1333 * so configured, go kick the relevant kthreads.
1334 */
1335static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1336{
1337 unsigned long j;
1338
1339 if (!rcu_kick_kthreads)
1340 return;
1341 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1342 if (time_after(jiffies, j) && rsp->gp_kthread &&
1343 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1344 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1345 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1346 wake_up_process(rsp->gp_kthread);
1347 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1348 }
1349}
1350
088e9d25
DBO
1351static inline void panic_on_rcu_stall(void)
1352{
1353 if (sysctl_panic_on_rcu_stall)
1354 panic("RCU Stall\n");
1355}
1356
471f87c3 1357static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq)
64db4cff
PM
1358{
1359 int cpu;
64db4cff 1360 unsigned long flags;
6ccd2ecd
PM
1361 unsigned long gpa;
1362 unsigned long j;
285fe294 1363 int ndetected = 0;
64db4cff 1364 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1365 long totqlen = 0;
64db4cff 1366
8c7c4829
PM
1367 /* Kick and suppress, if so configured. */
1368 rcu_stall_kick_kthreads(rsp);
1369 if (rcu_cpu_stall_suppress)
1370 return;
1371
8cdd32a9
PM
1372 /*
1373 * OK, time to rat on our buddy...
1374 * See Documentation/RCU/stallwarn.txt for info on how to debug
1375 * RCU CPU stall warnings.
1376 */
d7f3e207 1377 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1378 rsp->name);
a858af28 1379 print_cpu_stall_info_begin();
a0b6c9a7 1380 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1381 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1382 ndetected += rcu_print_task_stall(rnp);
c8020a67 1383 if (rnp->qsmask != 0) {
bc75e999
MR
1384 for_each_leaf_node_possible_cpu(rnp, cpu)
1385 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1386 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1387 ndetected++;
1388 }
1389 }
67c583a7 1390 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1391 }
a858af28 1392
a858af28 1393 print_cpu_stall_info_end();
53bb857c 1394 for_each_possible_cpu(cpu)
15fecf89
PM
1395 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1396 cpu)->cblist);
471f87c3 1397 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
eee05882 1398 smp_processor_id(), (long)(jiffies - rsp->gp_start),
471f87c3 1399 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
6ccd2ecd 1400 if (ndetected) {
b637a328 1401 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1402
1403 /* Complain about tasks blocking the grace period. */
1404 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1405 } else {
471f87c3 1406 if (rcu_seq_current(&rsp->gp_seq) != gp_seq) {
6ccd2ecd
PM
1407 pr_err("INFO: Stall ended before state dump start\n");
1408 } else {
1409 j = jiffies;
7d0ae808 1410 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1411 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1412 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1413 jiffies_till_next_fqs,
1414 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1415 /* In this case, the current CPU might be at fault. */
1416 sched_show_task(current);
1417 }
1418 }
8c42b1f3
PM
1419 /* Rewrite if needed in case of slow consoles. */
1420 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1421 WRITE_ONCE(rsp->jiffies_stall,
1422 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
c1dc0b9c 1423
fb81a44b
PM
1424 rcu_check_gp_kthread_starvation(rsp);
1425
088e9d25
DBO
1426 panic_on_rcu_stall();
1427
4cdfc175 1428 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1429}
1430
1431static void print_cpu_stall(struct rcu_state *rsp)
1432{
53bb857c 1433 int cpu;
64db4cff 1434 unsigned long flags;
9b9500da 1435 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1436 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1437 long totqlen = 0;
64db4cff 1438
8c7c4829
PM
1439 /* Kick and suppress, if so configured. */
1440 rcu_stall_kick_kthreads(rsp);
1441 if (rcu_cpu_stall_suppress)
1442 return;
1443
8cdd32a9
PM
1444 /*
1445 * OK, time to rat on ourselves...
1446 * See Documentation/RCU/stallwarn.txt for info on how to debug
1447 * RCU CPU stall warnings.
1448 */
d7f3e207 1449 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28 1450 print_cpu_stall_info_begin();
9b9500da 1451 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
a858af28 1452 print_cpu_stall_info(rsp, smp_processor_id());
9b9500da 1453 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1454 print_cpu_stall_info_end();
53bb857c 1455 for_each_possible_cpu(cpu)
15fecf89
PM
1456 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1457 cpu)->cblist);
471f87c3 1458 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
83ebe63e 1459 jiffies - rsp->gp_start,
471f87c3 1460 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
fb81a44b
PM
1461
1462 rcu_check_gp_kthread_starvation(rsp);
1463
bc1dce51 1464 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1465
6cf10081 1466 raw_spin_lock_irqsave_rcu_node(rnp, flags);
8c42b1f3 1467 /* Rewrite if needed in case of slow consoles. */
7d0ae808
PM
1468 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1469 WRITE_ONCE(rsp->jiffies_stall,
1470 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1471 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1472
088e9d25
DBO
1473 panic_on_rcu_stall();
1474
b021fe3e
PZ
1475 /*
1476 * Attempt to revive the RCU machinery by forcing a context switch.
1477 *
1478 * A context switch would normally allow the RCU state machine to make
1479 * progress and it could be we're stuck in kernel space without context
1480 * switches for an entirely unreasonable amount of time.
1481 */
1482 resched_cpu(smp_processor_id());
64db4cff
PM
1483}
1484
1485static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1486{
471f87c3
PM
1487 unsigned long gs1;
1488 unsigned long gs2;
26cdfedf 1489 unsigned long gps;
bad6e139 1490 unsigned long j;
8c42b1f3 1491 unsigned long jn;
bad6e139 1492 unsigned long js;
64db4cff
PM
1493 struct rcu_node *rnp;
1494
8c7c4829
PM
1495 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1496 !rcu_gp_in_progress(rsp))
c68de209 1497 return;
8c7c4829 1498 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1499 j = jiffies;
26cdfedf
PM
1500
1501 /*
1502 * Lots of memory barriers to reject false positives.
1503 *
471f87c3
PM
1504 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall,
1505 * then rsp->gp_start, and finally another copy of rsp->gp_seq.
1506 * These values are updated in the opposite order with memory
1507 * barriers (or equivalent) during grace-period initialization
1508 * and cleanup. Now, a false positive can occur if we get an new
1509 * value of rsp->gp_start and a old value of rsp->jiffies_stall.
1510 * But given the memory barriers, the only way that this can happen
1511 * is if one grace period ends and another starts between these
1512 * two fetches. This is detected by comparing the second fetch
1513 * of rsp->gp_seq with the previous fetch from rsp->gp_seq.
26cdfedf
PM
1514 *
1515 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1516 * and rsp->gp_start suffice to forestall false positives.
1517 */
471f87c3
PM
1518 gs1 = READ_ONCE(rsp->gp_seq);
1519 smp_rmb(); /* Pick up ->gp_seq first... */
7d0ae808 1520 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1521 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1522 gps = READ_ONCE(rsp->gp_start);
471f87c3
PM
1523 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1524 gs2 = READ_ONCE(rsp->gp_seq);
1525 if (gs1 != gs2 ||
26cdfedf
PM
1526 ULONG_CMP_LT(j, js) ||
1527 ULONG_CMP_GE(gps, js))
1528 return; /* No stall or GP completed since entering function. */
64db4cff 1529 rnp = rdp->mynode;
8c42b1f3 1530 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
c96ea7cf 1531 if (rcu_gp_in_progress(rsp) &&
8c42b1f3
PM
1532 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1533 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
64db4cff
PM
1534
1535 /* We haven't checked in, so go dump stack. */
1536 print_cpu_stall(rsp);
1537
bad6e139 1538 } else if (rcu_gp_in_progress(rsp) &&
8c42b1f3
PM
1539 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1540 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
64db4cff 1541
bad6e139 1542 /* They had a few time units to dump stack, so complain. */
471f87c3 1543 print_other_cpu_stall(rsp, gs2);
64db4cff
PM
1544 }
1545}
1546
53d84e00
PM
1547/**
1548 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1549 *
1550 * Set the stall-warning timeout way off into the future, thus preventing
1551 * any RCU CPU stall-warning messages from appearing in the current set of
1552 * RCU grace periods.
1553 *
1554 * The caller must disable hard irqs.
1555 */
1556void rcu_cpu_stall_reset(void)
1557{
6ce75a23
PM
1558 struct rcu_state *rsp;
1559
1560 for_each_rcu_flavor(rsp)
7d0ae808 1561 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1562}
1563
41e80595
PM
1564/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1565static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1566 unsigned long gp_seq_req, const char *s)
0446be48 1567{
b73de91d 1568 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req,
abd13fdd 1569 rnp->level, rnp->grplo, rnp->grphi, s);
0446be48
PM
1570}
1571
1572/*
b73de91d 1573 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1574 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1575 * @rdp: The rcu_data corresponding to the CPU from which to start.
1576 * @gp_seq_req: The gp_seq of the grace period to start.
1577 *
41e80595 1578 * Start the specified grace period, as needed to handle newly arrived
0446be48 1579 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1580 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1581 * is reason to awaken the grace-period kthread.
0446be48 1582 *
d5cd9685
PM
1583 * The caller must hold the specified rcu_node structure's ->lock, which
1584 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1585 *
1586 * Returns true if the GP thread needs to be awakened else false.
0446be48 1587 */
df2bf8f7 1588static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1589 unsigned long gp_seq_req)
0446be48 1590{
48a7639c 1591 bool ret = false;
d5cd9685 1592 struct rcu_state *rsp = rdp->rsp;
df2bf8f7 1593 struct rcu_node *rnp;
0446be48
PM
1594
1595 /*
360e0da6
PM
1596 * Use funnel locking to either acquire the root rcu_node
1597 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1598 * has already been recorded -- or if that grace period has in
1599 * fact already started. If there is already a grace period in
1600 * progress in a non-leaf node, no recording is needed because the
1601 * end of the grace period will scan the leaf rcu_node structures.
1602 * Note that rnp_start->lock must not be released.
0446be48 1603 */
df2bf8f7
JFG
1604 raw_lockdep_assert_held_rcu_node(rnp_start);
1605 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1606 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1607 if (rnp != rnp_start)
1608 raw_spin_lock_rcu_node(rnp);
1609 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1610 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1611 (rnp != rnp_start &&
1612 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1613 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1614 TPS("Prestarted"));
360e0da6
PM
1615 goto unlock_out;
1616 }
df2bf8f7 1617 rnp->gp_seq_needed = gp_seq_req;
226ca5e7 1618 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1619 /*
226ca5e7
JFG
1620 * We just marked the leaf or internal node, and a
1621 * grace period is in progress, which means that
1622 * rcu_gp_cleanup() will see the marking. Bail to
1623 * reduce contention.
a2165e41 1624 */
df2bf8f7 1625 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1626 TPS("Startedleaf"));
a2165e41
PM
1627 goto unlock_out;
1628 }
df2bf8f7
JFG
1629 if (rnp != rnp_start && rnp->parent != NULL)
1630 raw_spin_unlock_rcu_node(rnp);
1631 if (!rnp->parent)
360e0da6 1632 break; /* At root, and perhaps also leaf. */
0446be48
PM
1633 }
1634
360e0da6 1635 /* If GP already in progress, just leave, otherwise start one. */
29365e56 1636 if (rcu_gp_in_progress(rsp)) {
df2bf8f7 1637 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1638 goto unlock_out;
1639 }
df2bf8f7 1640 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
360e0da6 1641 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
26d950a9 1642 rsp->gp_req_activity = jiffies;
360e0da6 1643 if (!rsp->gp_kthread) {
df2bf8f7 1644 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1645 goto unlock_out;
0446be48 1646 }
477351f7 1647 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq"));
360e0da6 1648 ret = true; /* Caller must wake GP kthread. */
0446be48 1649unlock_out:
ab5e869c 1650 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7
JFG
1651 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1652 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1653 rdp->gp_seq_needed = rnp->gp_seq_needed;
ab5e869c 1654 }
df2bf8f7
JFG
1655 if (rnp != rnp_start)
1656 raw_spin_unlock_rcu_node(rnp);
48a7639c 1657 return ret;
0446be48
PM
1658}
1659
1660/*
1661 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1662 * whether any additional grace periods have been requested.
0446be48 1663 */
fb31340f 1664static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
0446be48 1665{
fb31340f 1666 bool needmore;
0446be48
PM
1667 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1668
7a1d0f23
PM
1669 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1670 if (!needmore)
1671 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1672 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1673 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1674 return needmore;
1675}
1676
48a7639c
PM
1677/*
1678 * Awaken the grace-period kthread for the specified flavor of RCU.
1679 * Don't do a self-awaken, and don't bother awakening when there is
1680 * nothing for the grace-period kthread to do (as in several CPUs
1681 * raced to awaken, and we lost), and finally don't try to awaken
1682 * a kthread that has not yet been created.
1683 */
1684static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1685{
1686 if (current == rsp->gp_kthread ||
7d0ae808 1687 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1688 !rsp->gp_kthread)
1689 return;
abedf8e2 1690 swake_up(&rsp->gp_wq);
48a7639c
PM
1691}
1692
dc35c893 1693/*
29365e56
PM
1694 * If there is room, assign a ->gp_seq number to any callbacks on this
1695 * CPU that have not already been assigned. Also accelerate any callbacks
1696 * that were previously assigned a ->gp_seq number that has since proven
1697 * to be too conservative, which can happen if callbacks get assigned a
1698 * ->gp_seq number while RCU is idle, but with reference to a non-root
1699 * rcu_node structure. This function is idempotent, so it does not hurt
1700 * to call it repeatedly. Returns an flag saying that we should awaken
1701 * the RCU grace-period kthread.
dc35c893
PM
1702 *
1703 * The caller must hold rnp->lock with interrupts disabled.
1704 */
48a7639c 1705static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1706 struct rcu_data *rdp)
1707{
b73de91d 1708 unsigned long gp_seq_req;
15fecf89 1709 bool ret = false;
dc35c893 1710
a32e01ee 1711 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1712
15fecf89
PM
1713 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1714 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1715 return false;
dc35c893
PM
1716
1717 /*
15fecf89
PM
1718 * Callbacks are often registered with incomplete grace-period
1719 * information. Something about the fact that getting exact
1720 * information requires acquiring a global lock... RCU therefore
1721 * makes a conservative estimate of the grace period number at which
1722 * a given callback will become ready to invoke. The following
1723 * code checks this estimate and improves it when possible, thus
1724 * accelerating callback invocation to an earlier grace-period
1725 * number.
dc35c893 1726 */
b73de91d
JF
1727 gp_seq_req = rcu_seq_snap(&rsp->gp_seq);
1728 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1729 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1730
1731 /* Trace depending on how much we were able to accelerate. */
15fecf89 1732 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
477351f7 1733 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1734 else
477351f7 1735 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1736 return ret;
dc35c893
PM
1737}
1738
e44e73ca
PM
1739/*
1740 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1741 * rcu_node structure's ->lock be held. It consults the cached value
1742 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1743 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1744 * while holding the leaf rcu_node structure's ->lock.
1745 */
1746static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp,
1747 struct rcu_node *rnp,
1748 struct rcu_data *rdp)
1749{
1750 unsigned long c;
1751 bool needwake;
1752
1753 lockdep_assert_irqs_disabled();
1754 c = rcu_seq_snap(&rsp->gp_seq);
1755 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1756 /* Old request still live, so mark recent callbacks. */
1757 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1758 return;
1759 }
1760 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1761 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1762 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1763 if (needwake)
1764 rcu_gp_kthread_wake(rsp);
1765}
1766
dc35c893
PM
1767/*
1768 * Move any callbacks whose grace period has completed to the
1769 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1770 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1771 * sublist. This function is idempotent, so it does not hurt to
1772 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1773 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1774 *
1775 * The caller must hold rnp->lock with interrupts disabled.
1776 */
48a7639c 1777static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1778 struct rcu_data *rdp)
1779{
a32e01ee 1780 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1781
15fecf89
PM
1782 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1783 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1784 return false;
dc35c893
PM
1785
1786 /*
29365e56 1787 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1788 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1789 */
29365e56 1790 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1791
1792 /* Classify any remaining callbacks. */
48a7639c 1793 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1794}
1795
d09b62df 1796/*
ba9fbe95
PM
1797 * Update CPU-local rcu_data state to record the beginnings and ends of
1798 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1799 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1800 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1801 */
48a7639c
PM
1802static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1803 struct rcu_data *rdp)
d09b62df 1804{
48a7639c 1805 bool ret;
3563a438 1806 bool need_gp;
48a7639c 1807
a32e01ee 1808 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1809
67e14c1e
PM
1810 if (rdp->gp_seq == rnp->gp_seq)
1811 return false; /* Nothing to do. */
d09b62df 1812
67e14c1e
PM
1813 /* Handle the ends of any preceding grace periods first. */
1814 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1815 unlikely(READ_ONCE(rdp->gpwrap))) {
1816 ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */
67e14c1e
PM
1817 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend"));
1818 } else {
1819 ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */
d09b62df 1820 }
398ebe60 1821
67e14c1e
PM
1822 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1823 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1824 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1825 /*
1826 * If the current grace period is waiting for this CPU,
1827 * set up to detect a quiescent state, otherwise don't
1828 * go looking for one.
1829 */
5ca0905f 1830 trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart"));
3563a438
PM
1831 need_gp = !!(rnp->qsmask & rdp->grpmask);
1832 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1833 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1834 rdp->core_needs_qs = need_gp;
6eaef633
PM
1835 zero_cpu_stall_ticks(rdp);
1836 }
67e14c1e 1837 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
3d18469a
PM
1838 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1839 rdp->gp_seq_needed = rnp->gp_seq_needed;
1840 WRITE_ONCE(rdp->gpwrap, false);
1841 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1842 return ret;
6eaef633
PM
1843}
1844
d34ea322 1845static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1846{
1847 unsigned long flags;
48a7639c 1848 bool needwake;
6eaef633
PM
1849 struct rcu_node *rnp;
1850
1851 local_irq_save(flags);
1852 rnp = rdp->mynode;
67e14c1e 1853 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1854 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1855 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1856 local_irq_restore(flags);
1857 return;
1858 }
48a7639c 1859 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1860 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1861 if (needwake)
1862 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1863}
1864
0f41c0dd
PM
1865static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1866{
1867 if (delay > 0 &&
dee4f422
PM
1868 !(rcu_seq_ctr(rsp->gp_seq) %
1869 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1870 schedule_timeout_uninterruptible(delay);
1871}
1872
b3dbec76 1873/*
45fed3e7 1874 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1875 */
45fed3e7 1876static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1877{
ec2c2976 1878 unsigned long flags;
0aa04b05 1879 unsigned long oldmask;
ec2c2976 1880 unsigned long mask;
b3dbec76 1881 struct rcu_data *rdp;
7fdefc10 1882 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1883
7d0ae808 1884 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1885 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1886 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1887 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1888 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1889 return false;
f7be8209 1890 }
7d0ae808 1891 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1892
f7be8209
PM
1893 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1894 /*
1895 * Grace period already in progress, don't start another.
1896 * Not supposed to be able to happen.
1897 */
67c583a7 1898 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1899 return false;
7fdefc10
PM
1900 }
1901
7fdefc10 1902 /* Advance to a new grace period and initialize state. */
26cdfedf 1903 record_gp_stall_check_time(rsp);
ff3bb6f4 1904 /* Record GP times before starting GP, hence rcu_seq_start(). */
de30ad51 1905 rcu_seq_start(&rsp->gp_seq);
477351f7 1906 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start"));
67c583a7 1907 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1908
0aa04b05
PM
1909 /*
1910 * Apply per-leaf buffered online and offline operations to the
1911 * rcu_node tree. Note that this new grace period need not wait
1912 * for subsequent online CPUs, and that quiescent-state forcing
1913 * will handle subsequent offline CPUs.
1914 */
fea3f222 1915 rsp->gp_state = RCU_GP_ONOFF;
0aa04b05 1916 rcu_for_each_leaf_node(rsp, rnp) {
1e64b15a 1917 spin_lock(&rsp->ofl_lock);
2a67e741 1918 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1919 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1920 !rnp->wait_blkd_tasks) {
1921 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1922 raw_spin_unlock_irq_rcu_node(rnp);
1e64b15a 1923 spin_unlock(&rsp->ofl_lock);
0aa04b05
PM
1924 continue;
1925 }
1926
1927 /* Record old state, apply changes to ->qsmaskinit field. */
1928 oldmask = rnp->qsmaskinit;
1929 rnp->qsmaskinit = rnp->qsmaskinitnext;
1930
1931 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1932 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1933 if (!oldmask) { /* First online CPU for rcu_node. */
1934 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1935 rcu_init_new_rnp(rnp);
1936 } else if (rcu_preempt_has_tasks(rnp)) {
1937 rnp->wait_blkd_tasks = true; /* blocked tasks */
1938 } else { /* Last offline CPU and can propagate. */
0aa04b05 1939 rcu_cleanup_dead_rnp(rnp);
962aff03 1940 }
0aa04b05
PM
1941 }
1942
1943 /*
1944 * If all waited-on tasks from prior grace period are
1945 * done, and if all this rcu_node structure's CPUs are
1946 * still offline, propagate up the rcu_node tree and
1947 * clear ->wait_blkd_tasks. Otherwise, if one of this
1948 * rcu_node structure's CPUs has since come back online,
962aff03 1949 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1950 */
1951 if (rnp->wait_blkd_tasks &&
962aff03 1952 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1953 rnp->wait_blkd_tasks = false;
962aff03
PM
1954 if (!rnp->qsmaskinit)
1955 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1956 }
1957
67c583a7 1958 raw_spin_unlock_irq_rcu_node(rnp);
1e64b15a 1959 spin_unlock(&rsp->ofl_lock);
0aa04b05 1960 }
f34f2f58 1961 rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1962
1963 /*
1964 * Set the quiescent-state-needed bits in all the rcu_node
1965 * structures for all currently online CPUs in breadth-first order,
1966 * starting from the root rcu_node structure, relying on the layout
1967 * of the tree within the rsp->node[] array. Note that other CPUs
1968 * will access only the leaves of the hierarchy, thus seeing that no
1969 * grace period is in progress, at least until the corresponding
590d1757 1970 * leaf node has been initialized.
7fdefc10
PM
1971 *
1972 * The grace period cannot complete until the initialization
1973 * process finishes, because this kthread handles both.
1974 */
fea3f222 1975 rsp->gp_state = RCU_GP_INIT;
7fdefc10 1976 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1977 rcu_gp_slow(rsp, gp_init_delay);
ec2c2976 1978 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 1979 rdp = this_cpu_ptr(rsp->rda);
57738942 1980 rcu_preempt_check_blocked_tasks(rsp, rnp);
7fdefc10 1981 rnp->qsmask = rnp->qsmaskinit;
de30ad51 1982 WRITE_ONCE(rnp->gp_seq, rsp->gp_seq);
7fdefc10 1983 if (rnp == rdp->mynode)
48a7639c 1984 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10 1985 rcu_preempt_boost_start_gp(rnp);
477351f7 1986 trace_rcu_grace_period_init(rsp->name, rnp->gp_seq,
7fdefc10
PM
1987 rnp->level, rnp->grplo,
1988 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1989 /* Quiescent states for tasks on any now-offline CPUs. */
1990 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1991 rnp->rcu_gp_init_mask = mask;
ec2c2976
PM
1992 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1993 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
1994 else
1995 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1996 cond_resched_tasks_rcu_qs();
7d0ae808 1997 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1998 }
b3dbec76 1999
45fed3e7 2000 return true;
7fdefc10 2001}
b3dbec76 2002
b9a425cf 2003/*
d5374226
LR
2004 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2005 * time.
b9a425cf
PM
2006 */
2007static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2008{
2009 struct rcu_node *rnp = rcu_get_root(rsp);
2010
2011 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2012 *gfp = READ_ONCE(rsp->gp_flags);
2013 if (*gfp & RCU_GP_FLAG_FQS)
2014 return true;
2015
2016 /* The current grace period has completed. */
2017 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2018 return true;
2019
2020 return false;
2021}
2022
4cdfc175
PM
2023/*
2024 * Do one round of quiescent-state forcing.
2025 */
77f81fe0 2026static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2027{
4cdfc175
PM
2028 struct rcu_node *rnp = rcu_get_root(rsp);
2029
7d0ae808 2030 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2031 rsp->n_force_qs++;
77f81fe0 2032 if (first_time) {
4cdfc175 2033 /* Collect dyntick-idle snapshots. */
fe5ac724 2034 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2035 } else {
2036 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2037 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2038 }
2039 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2040 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2041 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2042 WRITE_ONCE(rsp->gp_flags,
2043 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2044 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2045 }
4cdfc175
PM
2046}
2047
7fdefc10
PM
2048/*
2049 * Clean up after the old grace period.
2050 */
4cdfc175 2051static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2052{
2053 unsigned long gp_duration;
48a7639c 2054 bool needgp = false;
de30ad51 2055 unsigned long new_gp_seq;
7fdefc10
PM
2056 struct rcu_data *rdp;
2057 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2058 struct swait_queue_head *sq;
b3dbec76 2059
7d0ae808 2060 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2061 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2062 gp_duration = jiffies - rsp->gp_start;
2063 if (gp_duration > rsp->gp_max)
2064 rsp->gp_max = gp_duration;
b3dbec76 2065
7fdefc10
PM
2066 /*
2067 * We know the grace period is complete, but to everyone else
2068 * it appears to still be ongoing. But it is also the case
2069 * that to everyone else it looks like there is nothing that
2070 * they can do to advance the grace period. It is therefore
2071 * safe for us to drop the lock in order to mark the grace
2072 * period as completed in all of the rcu_node structures.
7fdefc10 2073 */
67c583a7 2074 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2075
5d4b8659 2076 /*
ff3bb6f4
PM
2077 * Propagate new ->gp_seq value to rcu_node structures so that
2078 * other CPUs don't have to wait until the start of the next grace
2079 * period to process their callbacks. This also avoids some nasty
2080 * RCU grace-period initialization races by forcing the end of
2081 * the current grace period to be completely recorded in all of
2082 * the rcu_node structures before the beginning of the next grace
2083 * period is recorded in any of the rcu_node structures.
5d4b8659 2084 */
de30ad51
PM
2085 new_gp_seq = rsp->gp_seq;
2086 rcu_seq_end(&new_gp_seq);
5d4b8659 2087 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2088 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 2089 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
57738942 2090 dump_blkd_tasks(rsp, rnp, 10);
5c60d25f 2091 WARN_ON_ONCE(rnp->qsmask);
de30ad51 2092 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
b11cc576
PM
2093 rdp = this_cpu_ptr(rsp->rda);
2094 if (rnp == rdp->mynode)
48a7639c 2095 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2096 /* smp_mb() provided by prior unlock-lock pair. */
fb31340f 2097 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
065bb78c 2098 sq = rcu_nocb_gp_get(rnp);
67c583a7 2099 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2100 rcu_nocb_gp_cleanup(sq);
cee43939 2101 cond_resched_tasks_rcu_qs();
7d0ae808 2102 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2103 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2104 }
5d4b8659 2105 rnp = rcu_get_root(rsp);
de30ad51 2106 raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */
7fdefc10 2107
765a3f4f 2108 /* Declare grace period done. */
de30ad51 2109 rcu_seq_end(&rsp->gp_seq);
477351f7 2110 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end"));
77f81fe0 2111 rsp->gp_state = RCU_GP_IDLE;
fb31340f 2112 /* Check for GP requests since above loop. */
5d4b8659 2113 rdp = this_cpu_ptr(rsp->rda);
5b55072f 2114 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 2115 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 2116 TPS("CleanupMore"));
fb31340f
PM
2117 needgp = true;
2118 }
48a7639c 2119 /* Advance CBs to reduce false positives below. */
384f77f4 2120 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) {
7d0ae808 2121 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
26d950a9 2122 rsp->gp_req_activity = jiffies;
477351f7 2123 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq),
bb311ecc 2124 TPS("newreq"));
18390aea
PM
2125 } else {
2126 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 2127 }
67c583a7 2128 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2129}
2130
2131/*
2132 * Body of kthread that handles grace periods.
2133 */
2134static int __noreturn rcu_gp_kthread(void *arg)
2135{
77f81fe0 2136 bool first_gp_fqs;
88d6df61 2137 int gf;
d40011f6 2138 unsigned long j;
4cdfc175 2139 int ret;
7fdefc10
PM
2140 struct rcu_state *rsp = arg;
2141 struct rcu_node *rnp = rcu_get_root(rsp);
2142
5871968d 2143 rcu_bind_gp_kthread();
7fdefc10
PM
2144 for (;;) {
2145
2146 /* Handle grace-period start. */
2147 for (;;) {
63c4db78 2148 trace_rcu_grace_period(rsp->name,
477351f7 2149 READ_ONCE(rsp->gp_seq),
63c4db78 2150 TPS("reqwait"));
afea227f 2151 rsp->gp_state = RCU_GP_WAIT_GPS;
d5374226
LR
2152 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2153 RCU_GP_FLAG_INIT);
319362c9 2154 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2155 /* Locking provides needed memory barrier. */
f7be8209 2156 if (rcu_gp_init(rsp))
7fdefc10 2157 break;
cee43939 2158 cond_resched_tasks_rcu_qs();
7d0ae808 2159 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2160 WARN_ON(signal_pending(current));
63c4db78 2161 trace_rcu_grace_period(rsp->name,
477351f7 2162 READ_ONCE(rsp->gp_seq),
63c4db78 2163 TPS("reqwaitsig"));
7fdefc10 2164 }
cabc49c1 2165
4cdfc175 2166 /* Handle quiescent-state forcing. */
77f81fe0 2167 first_gp_fqs = true;
d40011f6
PM
2168 j = jiffies_till_first_fqs;
2169 if (j > HZ) {
2170 j = HZ;
2171 jiffies_till_first_fqs = HZ;
2172 }
88d6df61 2173 ret = 0;
cabc49c1 2174 for (;;) {
8c7c4829 2175 if (!ret) {
88d6df61 2176 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2177 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2178 jiffies + 3 * j);
2179 }
63c4db78 2180 trace_rcu_grace_period(rsp->name,
477351f7 2181 READ_ONCE(rsp->gp_seq),
63c4db78 2182 TPS("fqswait"));
afea227f 2183 rsp->gp_state = RCU_GP_WAIT_FQS;
d5374226 2184 ret = swait_event_idle_timeout(rsp->gp_wq,
b9a425cf 2185 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2186 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2187 /* Locking provides needed memory barriers. */
4cdfc175 2188 /* If grace period done, leave loop. */
7d0ae808 2189 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2190 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2191 break;
4cdfc175 2192 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2193 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2194 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2195 trace_rcu_grace_period(rsp->name,
477351f7 2196 READ_ONCE(rsp->gp_seq),
63c4db78 2197 TPS("fqsstart"));
77f81fe0
PM
2198 rcu_gp_fqs(rsp, first_gp_fqs);
2199 first_gp_fqs = false;
63c4db78 2200 trace_rcu_grace_period(rsp->name,
477351f7 2201 READ_ONCE(rsp->gp_seq),
63c4db78 2202 TPS("fqsend"));
cee43939 2203 cond_resched_tasks_rcu_qs();
7d0ae808 2204 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2205 ret = 0; /* Force full wait till next FQS. */
2206 j = jiffies_till_next_fqs;
2207 if (j > HZ) {
2208 j = HZ;
2209 jiffies_till_next_fqs = HZ;
2210 } else if (j < 1) {
2211 j = 1;
2212 jiffies_till_next_fqs = 1;
2213 }
4cdfc175
PM
2214 } else {
2215 /* Deal with stray signal. */
cee43939 2216 cond_resched_tasks_rcu_qs();
7d0ae808 2217 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2218 WARN_ON(signal_pending(current));
63c4db78 2219 trace_rcu_grace_period(rsp->name,
477351f7 2220 READ_ONCE(rsp->gp_seq),
63c4db78 2221 TPS("fqswaitsig"));
fcfd0a23
PM
2222 ret = 1; /* Keep old FQS timing. */
2223 j = jiffies;
2224 if (time_after(jiffies, rsp->jiffies_force_qs))
2225 j = 1;
2226 else
2227 j = rsp->jiffies_force_qs - j;
d40011f6 2228 }
cabc49c1 2229 }
4cdfc175
PM
2230
2231 /* Handle grace-period end. */
319362c9 2232 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2233 rcu_gp_cleanup(rsp);
319362c9 2234 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2235 }
b3dbec76
PM
2236}
2237
f41d911f 2238/*
8994515c
PM
2239 * Report a full set of quiescent states to the specified rcu_state data
2240 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2241 * kthread if another grace period is required. Whether we wake
2242 * the grace-period kthread or it awakens itself for the next round
2243 * of quiescent-state forcing, that kthread will clean up after the
2244 * just-completed grace period. Note that the caller must hold rnp->lock,
2245 * which is released before return.
f41d911f 2246 */
d3f6bad3 2247static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2248 __releases(rcu_get_root(rsp)->lock)
f41d911f 2249{
a32e01ee 2250 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
fc2219d4 2251 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2252 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2253 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2254 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2255}
2256
64db4cff 2257/*
d3f6bad3
PM
2258 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2259 * Allows quiescent states for a group of CPUs to be reported at one go
2260 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2261 * must be represented by the same rcu_node structure (which need not be a
2262 * leaf rcu_node structure, though it often will be). The gps parameter
2263 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 2264 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 2265 * must be held upon entry, and it is released before return.
ec2c2976
PM
2266 *
2267 * As a special case, if mask is zero, the bit-already-cleared check is
2268 * disabled. This allows propagating quiescent state due to resumed tasks
2269 * during grace-period initialization.
64db4cff
PM
2270 */
2271static void
d3f6bad3 2272rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2273 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2274 __releases(rnp->lock)
2275{
654e9533 2276 unsigned long oldmask = 0;
28ecd580
PM
2277 struct rcu_node *rnp_c;
2278
a32e01ee 2279 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 2280
64db4cff
PM
2281 /* Walk up the rcu_node hierarchy. */
2282 for (;;) {
ec2c2976 2283 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 2284
654e9533
PM
2285 /*
2286 * Our bit has already been cleared, or the
2287 * relevant grace period is already over, so done.
2288 */
67c583a7 2289 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2290 return;
2291 }
654e9533 2292 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 2293 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 2294 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2295 rnp->qsmask &= ~mask;
db023296 2296 trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq,
d4c08f2a
PM
2297 mask, rnp->qsmask, rnp->level,
2298 rnp->grplo, rnp->grphi,
2299 !!rnp->gp_tasks);
27f4d280 2300 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2301
2302 /* Other bits still set at this level, so done. */
67c583a7 2303 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2304 return;
2305 }
d43a5d32 2306 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
2307 mask = rnp->grpmask;
2308 if (rnp->parent == NULL) {
2309
2310 /* No more levels. Exit loop holding root lock. */
2311
2312 break;
2313 }
67c583a7 2314 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2315 rnp_c = rnp;
64db4cff 2316 rnp = rnp->parent;
2a67e741 2317 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2318 oldmask = rnp_c->qsmask;
64db4cff
PM
2319 }
2320
2321 /*
2322 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2323 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2324 * to clean up and start the next grace period if one is needed.
64db4cff 2325 */
d3f6bad3 2326 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2327}
2328
cc99a310
PM
2329/*
2330 * Record a quiescent state for all tasks that were previously queued
2331 * on the specified rcu_node structure and that were blocking the current
2332 * RCU grace period. The caller must hold the specified rnp->lock with
2333 * irqs disabled, and this lock is released upon return, but irqs remain
2334 * disabled.
2335 */
17a8212b
PM
2336static void __maybe_unused
2337rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2338 struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
2339 __releases(rnp->lock)
2340{
654e9533 2341 unsigned long gps;
cc99a310
PM
2342 unsigned long mask;
2343 struct rcu_node *rnp_p;
2344
a32e01ee 2345 raw_lockdep_assert_held_rcu_node(rnp);
c74859d1
PM
2346 if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) ||
2347 WARN_ON_ONCE(rsp != rcu_state_p) ||
2348 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2349 rnp->qsmask != 0) {
67c583a7 2350 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2351 return; /* Still need more quiescent states! */
2352 }
2353
77cfc7bf 2354 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
2355 rnp_p = rnp->parent;
2356 if (rnp_p == NULL) {
2357 /*
a77da14c
PM
2358 * Only one rcu_node structure in the tree, so don't
2359 * try to report up to its nonexistent parent!
cc99a310
PM
2360 */
2361 rcu_report_qs_rsp(rsp, flags);
2362 return;
2363 }
2364
c9a24e2d
PM
2365 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2366 gps = rnp->gp_seq;
cc99a310 2367 mask = rnp->grpmask;
67c583a7 2368 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2369 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2370 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2371}
2372
64db4cff 2373/*
d3f6bad3 2374 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2375 * structure. This must be called from the specified CPU.
64db4cff
PM
2376 */
2377static void
d7d6a11e 2378rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2379{
2380 unsigned long flags;
2381 unsigned long mask;
48a7639c 2382 bool needwake;
64db4cff
PM
2383 struct rcu_node *rnp;
2384
2385 rnp = rdp->mynode;
2a67e741 2386 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
2387 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2388 rdp->gpwrap) {
64db4cff
PM
2389
2390 /*
e4cc1f22
PM
2391 * The grace period in which this quiescent state was
2392 * recorded has ended, so don't report it upwards.
2393 * We will instead need a new quiescent state that lies
2394 * within the current grace period.
64db4cff 2395 */
5b74c458 2396 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2397 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2398 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2399 return;
2400 }
2401 mask = rdp->grpmask;
2402 if ((rnp->qsmask & mask) == 0) {
67c583a7 2403 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2404 } else {
bb53e416 2405 rdp->core_needs_qs = false;
64db4cff
PM
2406
2407 /*
2408 * This GP can't end until cpu checks in, so all of our
2409 * callbacks can be processed during the next GP.
2410 */
48a7639c 2411 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2412
c9a24e2d 2413 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
654e9533 2414 /* ^^^ Released rnp->lock */
48a7639c
PM
2415 if (needwake)
2416 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2417 }
2418}
2419
2420/*
2421 * Check to see if there is a new grace period of which this CPU
2422 * is not yet aware, and if so, set up local rcu_data state for it.
2423 * Otherwise, see if this CPU has just passed through its first
2424 * quiescent state for this grace period, and record that fact if so.
2425 */
2426static void
2427rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2428{
05eb552b
PM
2429 /* Check for grace-period ends and beginnings. */
2430 note_gp_changes(rsp, rdp);
64db4cff
PM
2431
2432 /*
2433 * Does this CPU still need to do its part for current grace period?
2434 * If no, return and let the other CPUs do their part as well.
2435 */
97c668b8 2436 if (!rdp->core_needs_qs)
64db4cff
PM
2437 return;
2438
2439 /*
2440 * Was there a quiescent state since the beginning of the grace
2441 * period? If no, then exit and wait for the next call.
2442 */
3a19b46a 2443 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2444 return;
2445
d3f6bad3
PM
2446 /*
2447 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2448 * judge of that).
2449 */
d7d6a11e 2450 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2451}
2452
b1420f1c
PM
2453/*
2454 * Trace the fact that this CPU is going offline.
2455 */
2456static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2457{
477351f7 2458 RCU_TRACE(bool blkd;)
88a4976d
PM
2459 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2460 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2461
ea46351c
PM
2462 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2463 return;
2464
477351f7
PM
2465 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2466 trace_rcu_grace_period(rsp->name, rnp->gp_seq,
2467 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
64db4cff
PM
2468}
2469
8af3a5e7
PM
2470/*
2471 * All CPUs for the specified rcu_node structure have gone offline,
2472 * and all tasks that were preempted within an RCU read-side critical
2473 * section while running on one of those CPUs have since exited their RCU
2474 * read-side critical section. Some other CPU is reporting this fact with
2475 * the specified rcu_node structure's ->lock held and interrupts disabled.
2476 * This function therefore goes up the tree of rcu_node structures,
2477 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2478 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2479 * updated.
8af3a5e7
PM
2480 *
2481 * This function does check that the specified rcu_node structure has
2482 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2483 * prematurely. That said, invoking it after the fact will cost you
2484 * a needless lock acquisition. So once it has done its work, don't
2485 * invoke it again.
2486 */
2487static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2488{
2489 long mask;
2490 struct rcu_node *rnp = rnp_leaf;
2491
962aff03 2492 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2493 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2494 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2495 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2496 return;
2497 for (;;) {
2498 mask = rnp->grpmask;
2499 rnp = rnp->parent;
2500 if (!rnp)
2501 break;
2a67e741 2502 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2503 rnp->qsmaskinit &= ~mask;
962aff03
PM
2504 /* Between grace periods, so better already be zero! */
2505 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2506 if (rnp->qsmaskinit) {
67c583a7
BF
2507 raw_spin_unlock_rcu_node(rnp);
2508 /* irqs remain disabled. */
8af3a5e7
PM
2509 return;
2510 }
67c583a7 2511 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2512 }
2513}
2514
64db4cff 2515/*
e5601400 2516 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2517 * this fact from process context. Do the remainder of the cleanup.
2518 * There can only be one CPU hotplug operation at a time, so no need for
2519 * explicit locking.
64db4cff 2520 */
e5601400 2521static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2522{
e5601400 2523 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2524 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2525
ea46351c
PM
2526 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2527 return;
2528
2036d94a 2529 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2530 rcu_boost_kthread_setaffinity(rnp, -1);
64db4cff
PM
2531}
2532
64db4cff
PM
2533/*
2534 * Invoke any RCU callbacks that have made it to the end of their grace
2535 * period. Thottle as specified by rdp->blimit.
2536 */
37c72e56 2537static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2538{
2539 unsigned long flags;
15fecf89
PM
2540 struct rcu_head *rhp;
2541 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2542 long bl, count;
64db4cff 2543
dc35c893 2544 /* If no callbacks are ready, just return. */
15fecf89
PM
2545 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2546 trace_rcu_batch_start(rsp->name,
2547 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2548 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2549 trace_rcu_batch_end(rsp->name, 0,
2550 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2551 need_resched(), is_idle_task(current),
2552 rcu_is_callbacks_kthread());
64db4cff 2553 return;
29c00b4a 2554 }
64db4cff
PM
2555
2556 /*
2557 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2558 * races with call_rcu() from interrupt handlers. Leave the
2559 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2560 */
2561 local_irq_save(flags);
8146c4e2 2562 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2563 bl = rdp->blimit;
15fecf89
PM
2564 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2565 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2566 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2567 local_irq_restore(flags);
2568
2569 /* Invoke callbacks. */
15fecf89
PM
2570 rhp = rcu_cblist_dequeue(&rcl);
2571 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2572 debug_rcu_head_unqueue(rhp);
2573 if (__rcu_reclaim(rsp->name, rhp))
2574 rcu_cblist_dequeued_lazy(&rcl);
2575 /*
2576 * Stop only if limit reached and CPU has something to do.
2577 * Note: The rcl structure counts down from zero.
2578 */
4b27f20b 2579 if (-rcl.len >= bl &&
dff1672d
PM
2580 (need_resched() ||
2581 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2582 break;
2583 }
2584
2585 local_irq_save(flags);
4b27f20b 2586 count = -rcl.len;
8ef0f37e
PM
2587 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2588 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2589
15fecf89
PM
2590 /* Update counts and requeue any remaining callbacks. */
2591 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2592 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2593 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2594
2595 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2596 count = rcu_segcblist_n_cbs(&rdp->cblist);
2597 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2598 rdp->blimit = blimit;
2599
37c72e56 2600 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2601 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2602 rdp->qlen_last_fqs_check = 0;
2603 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2604 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2605 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2606
2607 /*
2608 * The following usually indicates a double call_rcu(). To track
2609 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2610 */
15fecf89 2611 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2612
64db4cff
PM
2613 local_irq_restore(flags);
2614
e0f23060 2615 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2616 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2617 invoke_rcu_core();
64db4cff
PM
2618}
2619
2620/*
2621 * Check to see if this CPU is in a non-context-switch quiescent state
2622 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2623 * Also schedule RCU core processing.
64db4cff 2624 *
9b2e4f18 2625 * This function must be called from hardirq context. It is normally
5403d367 2626 * invoked from the scheduling-clock interrupt.
64db4cff 2627 */
c3377c2d 2628void rcu_check_callbacks(int user)
64db4cff 2629{
f7f7bac9 2630 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2631 increment_cpu_stall_ticks();
9b2e4f18 2632 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2633
2634 /*
2635 * Get here if this CPU took its interrupt from user
2636 * mode or from the idle loop, and if this is not a
2637 * nested interrupt. In this case, the CPU is in
d6714c22 2638 * a quiescent state, so note it.
64db4cff
PM
2639 *
2640 * No memory barrier is required here because both
d6714c22
PM
2641 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2642 * variables that other CPUs neither access nor modify,
2643 * at least not while the corresponding CPU is online.
64db4cff
PM
2644 */
2645
284a8c93
PM
2646 rcu_sched_qs();
2647 rcu_bh_qs();
07f27570 2648 rcu_note_voluntary_context_switch(current);
64db4cff
PM
2649
2650 } else if (!in_softirq()) {
2651
2652 /*
2653 * Get here if this CPU did not take its interrupt from
2654 * softirq, in other words, if it is not interrupting
2655 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2656 * critical section, so note it.
64db4cff
PM
2657 */
2658
284a8c93 2659 rcu_bh_qs();
64db4cff 2660 }
86aea0e6 2661 rcu_preempt_check_callbacks();
e3950ecd 2662 if (rcu_pending())
a46e0899 2663 invoke_rcu_core();
07f27570 2664
f7f7bac9 2665 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2666}
2667
64db4cff
PM
2668/*
2669 * Scan the leaf rcu_node structures, processing dyntick state for any that
2670 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2671 * Also initiate boosting for any threads blocked on the root rcu_node.
2672 *
ee47eb9f 2673 * The caller must have suppressed start of new grace periods.
64db4cff 2674 */
fe5ac724 2675static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2676{
64db4cff
PM
2677 int cpu;
2678 unsigned long flags;
2679 unsigned long mask;
a0b6c9a7 2680 struct rcu_node *rnp;
64db4cff 2681
a0b6c9a7 2682 rcu_for_each_leaf_node(rsp, rnp) {
cee43939 2683 cond_resched_tasks_rcu_qs();
64db4cff 2684 mask = 0;
2a67e741 2685 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2686 if (rnp->qsmask == 0) {
a77da14c
PM
2687 if (rcu_state_p == &rcu_sched_state ||
2688 rsp != rcu_state_p ||
2689 rcu_preempt_blocked_readers_cgp(rnp)) {
2690 /*
2691 * No point in scanning bits because they
2692 * are all zero. But we might need to
2693 * priority-boost blocked readers.
2694 */
2695 rcu_initiate_boost(rnp, flags);
2696 /* rcu_initiate_boost() releases rnp->lock */
2697 continue;
2698 }
92816435
PM
2699 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2700 continue;
64db4cff 2701 }
bc75e999
MR
2702 for_each_leaf_node_possible_cpu(rnp, cpu) {
2703 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2704 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2705 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2706 mask |= bit;
2707 }
64db4cff 2708 }
45f014c5 2709 if (mask != 0) {
c9a24e2d
PM
2710 /* Idle/offline CPUs, report (releases rnp->lock). */
2711 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2712 } else {
2713 /* Nothing to do here, so just drop the lock. */
67c583a7 2714 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2715 }
64db4cff 2716 }
64db4cff
PM
2717}
2718
2719/*
2720 * Force quiescent states on reluctant CPUs, and also detect which
2721 * CPUs are in dyntick-idle mode.
2722 */
4cdfc175 2723static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2724{
2725 unsigned long flags;
394f2769
PM
2726 bool ret;
2727 struct rcu_node *rnp;
2728 struct rcu_node *rnp_old = NULL;
2729
2730 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2731 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2732 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2733 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2734 !raw_spin_trylock(&rnp->fqslock);
2735 if (rnp_old != NULL)
2736 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2737 if (ret)
394f2769 2738 return;
394f2769
PM
2739 rnp_old = rnp;
2740 }
2741 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2742
394f2769 2743 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2744 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2745 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2746 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2747 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2748 return; /* Someone beat us to it. */
46a1e34e 2749 }
7d0ae808 2750 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2751 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2752 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2753}
2754
26d950a9
PM
2755/*
2756 * This function checks for grace-period requests that fail to motivate
2757 * RCU to come out of its idle mode.
2758 */
2759static void
2760rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp,
2761 struct rcu_data *rdp)
2762{
2763 unsigned long flags;
2764 unsigned long j;
2765 struct rcu_node *rnp_root = rcu_get_root(rsp);
2766 static atomic_t warned = ATOMIC_INIT(0);
2767
7a1d0f23
PM
2768 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) ||
2769 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
26d950a9
PM
2770 return;
2771 j = jiffies; /* Expensive access, and in common case don't get here. */
2772 if (time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) ||
2773 time_before(j, READ_ONCE(rsp->gp_activity) + HZ) ||
2774 atomic_read(&warned))
2775 return;
2776
2777 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2778 j = jiffies;
7a1d0f23
PM
2779 if (rcu_gp_in_progress(rsp) ||
2780 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
26d950a9
PM
2781 time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) ||
2782 time_before(j, READ_ONCE(rsp->gp_activity) + HZ) ||
2783 atomic_read(&warned)) {
2784 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2785 return;
2786 }
2787 /* Hold onto the leaf lock to make others see warned==1. */
2788
2789 if (rnp_root != rnp)
2790 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2791 j = jiffies;
7a1d0f23
PM
2792 if (rcu_gp_in_progress(rsp) ||
2793 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
26d950a9
PM
2794 time_before(j, rsp->gp_req_activity + HZ) ||
2795 time_before(j, rsp->gp_activity + HZ) ||
2796 atomic_xchg(&warned, 1)) {
2797 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2798 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2799 return;
2800 }
7a1d0f23
PM
2801 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x %s->state:%#lx\n",
2802 __func__, (long)READ_ONCE(rsp->gp_seq),
2803 (long)READ_ONCE(rnp_root->gp_seq_needed),
26d950a9
PM
2804 j - rsp->gp_req_activity, j - rsp->gp_activity,
2805 rsp->gp_flags, rsp->name,
2806 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL);
2807 WARN_ON(1);
2808 if (rnp_root != rnp)
2809 raw_spin_unlock_rcu_node(rnp_root);
2810 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2811}
2812
64db4cff 2813/*
e0f23060
PM
2814 * This does the RCU core processing work for the specified rcu_state
2815 * and rcu_data structures. This may be called only from the CPU to
2816 * whom the rdp belongs.
64db4cff
PM
2817 */
2818static void
1bca8cf1 2819__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2820{
2821 unsigned long flags;
fa07a58f 2822 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
26d950a9 2823 struct rcu_node *rnp = rdp->mynode;
64db4cff 2824
50dc7def 2825 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2826
64db4cff
PM
2827 /* Update RCU state based on any recent quiescent states. */
2828 rcu_check_quiescent_state(rsp, rdp);
2829
bd7af846
PM
2830 /* No grace period and unregistered callbacks? */
2831 if (!rcu_gp_in_progress(rsp) &&
2832 rcu_segcblist_is_enabled(&rdp->cblist)) {
2833 local_irq_save(flags);
e44e73ca
PM
2834 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2835 rcu_accelerate_cbs_unlocked(rsp, rnp, rdp);
2836 local_irq_restore(flags);
64db4cff
PM
2837 }
2838
26d950a9
PM
2839 rcu_check_gp_start_stall(rsp, rnp, rdp);
2840
64db4cff 2841 /* If there are callbacks ready, invoke them. */
15fecf89 2842 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2843 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2844
2845 /* Do any needed deferred wakeups of rcuo kthreads. */
2846 do_nocb_deferred_wakeup(rdp);
09223371
SL
2847}
2848
64db4cff 2849/*
e0f23060 2850 * Do RCU core processing for the current CPU.
64db4cff 2851 */
0766f788 2852static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2853{
6ce75a23
PM
2854 struct rcu_state *rsp;
2855
bfa00b4c
PM
2856 if (cpu_is_offline(smp_processor_id()))
2857 return;
f7f7bac9 2858 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2859 for_each_rcu_flavor(rsp)
2860 __rcu_process_callbacks(rsp);
f7f7bac9 2861 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2862}
2863
a26ac245 2864/*
e0f23060
PM
2865 * Schedule RCU callback invocation. If the specified type of RCU
2866 * does not support RCU priority boosting, just do a direct call,
2867 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2868 * are running on the current CPU with softirqs disabled, the
e0f23060 2869 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2870 */
a46e0899 2871static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2872{
7d0ae808 2873 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2874 return;
a46e0899
PM
2875 if (likely(!rsp->boost)) {
2876 rcu_do_batch(rsp, rdp);
a26ac245
PM
2877 return;
2878 }
a46e0899 2879 invoke_rcu_callbacks_kthread();
a26ac245
PM
2880}
2881
a46e0899 2882static void invoke_rcu_core(void)
09223371 2883{
b0f74036
PM
2884 if (cpu_online(smp_processor_id()))
2885 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2886}
2887
29154c57
PM
2888/*
2889 * Handle any core-RCU processing required by a call_rcu() invocation.
2890 */
2891static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2892 struct rcu_head *head, unsigned long flags)
64db4cff 2893{
62fde6ed
PM
2894 /*
2895 * If called from an extended quiescent state, invoke the RCU
2896 * core in order to force a re-evaluation of RCU's idleness.
2897 */
9910affa 2898 if (!rcu_is_watching())
62fde6ed
PM
2899 invoke_rcu_core();
2900
a16b7a69 2901 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2902 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2903 return;
64db4cff 2904
37c72e56
PM
2905 /*
2906 * Force the grace period if too many callbacks or too long waiting.
2907 * Enforce hysteresis, and don't invoke force_quiescent_state()
2908 * if some other CPU has recently done so. Also, don't bother
2909 * invoking force_quiescent_state() if the newly enqueued callback
2910 * is the only one waiting for a grace period to complete.
2911 */
15fecf89
PM
2912 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2913 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2914
2915 /* Are we ignoring a completed grace period? */
470716fc 2916 note_gp_changes(rsp, rdp);
b52573d2
PM
2917
2918 /* Start a new grace period if one not already started. */
2919 if (!rcu_gp_in_progress(rsp)) {
e44e73ca 2920 rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp);
b52573d2
PM
2921 } else {
2922 /* Give the grace period a kick. */
2923 rdp->blimit = LONG_MAX;
2924 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2925 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 2926 force_quiescent_state(rsp);
b52573d2 2927 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 2928 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2929 }
4cdfc175 2930 }
29154c57
PM
2931}
2932
ae150184
PM
2933/*
2934 * RCU callback function to leak a callback.
2935 */
2936static void rcu_leak_callback(struct rcu_head *rhp)
2937{
2938}
2939
3fbfbf7a
PM
2940/*
2941 * Helper function for call_rcu() and friends. The cpu argument will
2942 * normally be -1, indicating "currently running CPU". It may specify
2943 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2944 * is expected to specify a CPU.
2945 */
64db4cff 2946static void
b6a4ae76 2947__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 2948 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2949{
2950 unsigned long flags;
2951 struct rcu_data *rdp;
2952
b8f2ed53
PM
2953 /* Misaligned rcu_head! */
2954 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2955
ae150184 2956 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2957 /*
2958 * Probable double call_rcu(), so leak the callback.
2959 * Use rcu:rcu_callback trace event to find the previous
2960 * time callback was passed to __call_rcu().
2961 */
2962 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2963 head, head->func);
7d0ae808 2964 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2965 return;
2966 }
64db4cff
PM
2967 head->func = func;
2968 head->next = NULL;
64db4cff 2969 local_irq_save(flags);
394f99a9 2970 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2971
2972 /* Add the callback to our list. */
15fecf89 2973 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2974 int offline;
2975
2976 if (cpu != -1)
2977 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
2978 if (likely(rdp->mynode)) {
2979 /* Post-boot, so this should be for a no-CBs CPU. */
2980 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2981 WARN_ON_ONCE(offline);
2982 /* Offline CPU, _call_rcu() illegal, leak callback. */
2983 local_irq_restore(flags);
2984 return;
2985 }
2986 /*
2987 * Very early boot, before rcu_init(). Initialize if needed
2988 * and then drop through to queue the callback.
2989 */
2990 BUG_ON(cpu != -1);
34404ca8 2991 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
2992 if (rcu_segcblist_empty(&rdp->cblist))
2993 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2994 }
15fecf89
PM
2995 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2996 if (!lazy)
c57afe80 2997 rcu_idle_count_callbacks_posted();
2655d57e 2998
d4c08f2a
PM
2999 if (__is_kfree_rcu_offset((unsigned long)func))
3000 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3001 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3002 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3003 else
15fecf89
PM
3004 trace_rcu_callback(rsp->name, head,
3005 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3006 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3007
29154c57
PM
3008 /* Go handle any RCU core processing required. */
3009 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3010 local_irq_restore(flags);
3011}
3012
a68a2bb2
PM
3013/**
3014 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3015 * @head: structure to be used for queueing the RCU updates.
3016 * @func: actual callback function to be invoked after the grace period
3017 *
3018 * The callback function will be invoked some time after a full grace
3019 * period elapses, in other words after all currently executing RCU
3020 * read-side critical sections have completed. call_rcu_sched() assumes
3021 * that the read-side critical sections end on enabling of preemption
3022 * or on voluntary preemption.
27fdb35f
PM
3023 * RCU read-side critical sections are delimited by:
3024 *
3025 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3026 * - anything that disables preemption.
a68a2bb2
PM
3027 *
3028 * These may be nested.
3029 *
3030 * See the description of call_rcu() for more detailed information on
3031 * memory ordering guarantees.
64db4cff 3032 */
b6a4ae76 3033void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3034{
3fbfbf7a 3035 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3036}
d6714c22 3037EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3038
a68a2bb2
PM
3039/**
3040 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3041 * @head: structure to be used for queueing the RCU updates.
3042 * @func: actual callback function to be invoked after the grace period
3043 *
3044 * The callback function will be invoked some time after a full grace
3045 * period elapses, in other words after all currently executing RCU
3046 * read-side critical sections have completed. call_rcu_bh() assumes
3047 * that the read-side critical sections end on completion of a softirq
3048 * handler. This means that read-side critical sections in process
3049 * context must not be interrupted by softirqs. This interface is to be
3050 * used when most of the read-side critical sections are in softirq context.
27fdb35f
PM
3051 * RCU read-side critical sections are delimited by:
3052 *
3053 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3054 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3055 *
3056 * These may be nested.
a68a2bb2
PM
3057 *
3058 * See the description of call_rcu() for more detailed information on
3059 * memory ordering guarantees.
64db4cff 3060 */
b6a4ae76 3061void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3062{
3fbfbf7a 3063 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3064}
3065EXPORT_SYMBOL_GPL(call_rcu_bh);
3066
495aa969
ACB
3067/*
3068 * Queue an RCU callback for lazy invocation after a grace period.
3069 * This will likely be later named something like "call_rcu_lazy()",
3070 * but this change will require some way of tagging the lazy RCU
3071 * callbacks in the list of pending callbacks. Until then, this
3072 * function may only be called from __kfree_rcu().
3073 */
3074void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3075 rcu_callback_t func)
495aa969 3076{
e534165b 3077 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3078}
3079EXPORT_SYMBOL_GPL(kfree_call_rcu);
3080
6d813391
PM
3081/*
3082 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3083 * any blocking grace-period wait automatically implies a grace period
3084 * if there is only one CPU online at any point time during execution
3085 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3086 * occasionally incorrectly indicate that there are multiple CPUs online
3087 * when there was in fact only one the whole time, as this just adds
3088 * some overhead: RCU still operates correctly.
6d813391
PM
3089 */
3090static inline int rcu_blocking_is_gp(void)
3091{
95f0c1de
PM
3092 int ret;
3093
6d813391 3094 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3095 preempt_disable();
3096 ret = num_online_cpus() <= 1;
3097 preempt_enable();
3098 return ret;
6d813391
PM
3099}
3100
6ebb237b
PM
3101/**
3102 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3103 *
3104 * Control will return to the caller some time after a full rcu-sched
3105 * grace period has elapsed, in other words after all currently executing
3106 * rcu-sched read-side critical sections have completed. These read-side
3107 * critical sections are delimited by rcu_read_lock_sched() and
3108 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3109 * local_irq_disable(), and so on may be used in place of
3110 * rcu_read_lock_sched().
3111 *
3112 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3113 * non-threaded hardware-interrupt handlers, in progress on entry will
3114 * have completed before this primitive returns. However, this does not
3115 * guarantee that softirq handlers will have completed, since in some
3116 * kernels, these handlers can run in process context, and can block.
3117 *
3118 * Note that this guarantee implies further memory-ordering guarantees.
3119 * On systems with more than one CPU, when synchronize_sched() returns,
3120 * each CPU is guaranteed to have executed a full memory barrier since the
3121 * end of its last RCU-sched read-side critical section whose beginning
3122 * preceded the call to synchronize_sched(). In addition, each CPU having
3123 * an RCU read-side critical section that extends beyond the return from
3124 * synchronize_sched() is guaranteed to have executed a full memory barrier
3125 * after the beginning of synchronize_sched() and before the beginning of
3126 * that RCU read-side critical section. Note that these guarantees include
3127 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3128 * that are executing in the kernel.
3129 *
3130 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3131 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3132 * to have executed a full memory barrier during the execution of
3133 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3134 * again only if the system has more than one CPU).
6ebb237b
PM
3135 */
3136void synchronize_sched(void)
3137{
f78f5b90
PM
3138 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3139 lock_is_held(&rcu_lock_map) ||
3140 lock_is_held(&rcu_sched_lock_map),
3141 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3142 if (rcu_blocking_is_gp())
3143 return;
5afff48b 3144 if (rcu_gp_is_expedited())
3705b88d
AM
3145 synchronize_sched_expedited();
3146 else
3147 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3148}
3149EXPORT_SYMBOL_GPL(synchronize_sched);
3150
3151/**
3152 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3153 *
3154 * Control will return to the caller some time after a full rcu_bh grace
3155 * period has elapsed, in other words after all currently executing rcu_bh
3156 * read-side critical sections have completed. RCU read-side critical
3157 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3158 * and may be nested.
f0a0e6f2
PM
3159 *
3160 * See the description of synchronize_sched() for more detailed information
3161 * on memory ordering guarantees.
6ebb237b
PM
3162 */
3163void synchronize_rcu_bh(void)
3164{
f78f5b90
PM
3165 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3166 lock_is_held(&rcu_lock_map) ||
3167 lock_is_held(&rcu_sched_lock_map),
3168 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3169 if (rcu_blocking_is_gp())
3170 return;
5afff48b 3171 if (rcu_gp_is_expedited())
3705b88d
AM
3172 synchronize_rcu_bh_expedited();
3173 else
3174 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3175}
3176EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3177
765a3f4f
PM
3178/**
3179 * get_state_synchronize_rcu - Snapshot current RCU state
3180 *
3181 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3182 * to determine whether or not a full grace period has elapsed in the
3183 * meantime.
3184 */
3185unsigned long get_state_synchronize_rcu(void)
3186{
3187 /*
3188 * Any prior manipulation of RCU-protected data must happen
e4be81a2 3189 * before the load from ->gp_seq.
765a3f4f
PM
3190 */
3191 smp_mb(); /* ^^^ */
e4be81a2 3192 return rcu_seq_snap(&rcu_state_p->gp_seq);
765a3f4f
PM
3193}
3194EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3195
3196/**
3197 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3198 *
3199 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3200 *
3201 * If a full RCU grace period has elapsed since the earlier call to
3202 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3203 * synchronize_rcu() to wait for a full grace period.
3204 *
3205 * Yes, this function does not take counter wrap into account. But
3206 * counter wrap is harmless. If the counter wraps, we have waited for
3207 * more than 2 billion grace periods (and way more on a 64-bit system!),
3208 * so waiting for one additional grace period should be just fine.
3209 */
3210void cond_synchronize_rcu(unsigned long oldstate)
3211{
e4be81a2 3212 if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate))
765a3f4f 3213 synchronize_rcu();
e4be81a2
PM
3214 else
3215 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
3216}
3217EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3218
24560056
PM
3219/**
3220 * get_state_synchronize_sched - Snapshot current RCU-sched state
3221 *
3222 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3223 * to determine whether or not a full grace period has elapsed in the
3224 * meantime.
3225 */
3226unsigned long get_state_synchronize_sched(void)
3227{
3228 /*
3229 * Any prior manipulation of RCU-protected data must happen
e4be81a2 3230 * before the load from ->gp_seq.
24560056
PM
3231 */
3232 smp_mb(); /* ^^^ */
e4be81a2 3233 return rcu_seq_snap(&rcu_sched_state.gp_seq);
24560056
PM
3234}
3235EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3236
3237/**
3238 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3239 *
3240 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3241 *
3242 * If a full RCU-sched grace period has elapsed since the earlier call to
3243 * get_state_synchronize_sched(), just return. Otherwise, invoke
3244 * synchronize_sched() to wait for a full grace period.
3245 *
3246 * Yes, this function does not take counter wrap into account. But
3247 * counter wrap is harmless. If the counter wraps, we have waited for
3248 * more than 2 billion grace periods (and way more on a 64-bit system!),
3249 * so waiting for one additional grace period should be just fine.
3250 */
3251void cond_synchronize_sched(unsigned long oldstate)
3252{
e4be81a2 3253 if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate))
24560056 3254 synchronize_sched();
e4be81a2
PM
3255 else
3256 smp_mb(); /* Ensure GP ends before subsequent accesses. */
24560056
PM
3257}
3258EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3259
64db4cff
PM
3260/*
3261 * Check to see if there is any immediate RCU-related work to be done
3262 * by the current CPU, for the specified type of RCU, returning 1 if so.
3263 * The checks are in order of increasing expense: checks that can be
3264 * carried out against CPU-local state are performed first. However,
3265 * we must check for CPU stalls first, else we might not get a chance.
3266 */
3267static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3268{
2f51f988
PM
3269 struct rcu_node *rnp = rdp->mynode;
3270
64db4cff
PM
3271 /* Check for CPU stalls, if enabled. */
3272 check_cpu_stall(rsp, rdp);
3273
a096932f
PM
3274 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3275 if (rcu_nohz_full_cpu(rsp))
3276 return 0;
3277
64db4cff 3278 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 3279 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
3280 return 1;
3281
3282 /* Does this CPU have callbacks ready to invoke? */
01c495f7 3283 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
3284 return 1;
3285
3286 /* Has RCU gone idle with this CPU needing another grace period? */
c1935209
PM
3287 if (!rcu_gp_in_progress(rsp) &&
3288 rcu_segcblist_is_enabled(&rdp->cblist) &&
3289 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
3290 return 1;
3291
67e14c1e
PM
3292 /* Have RCU grace period completed or started? */
3293 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 3294 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
3295 return 1;
3296
96d3fd0d 3297 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 3298 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 3299 return 1;
96d3fd0d 3300
64db4cff
PM
3301 /* nothing to do */
3302 return 0;
3303}
3304
3305/*
3306 * Check to see if there is any immediate RCU-related work to be done
3307 * by the current CPU, returning 1 if so. This function is part of the
3308 * RCU implementation; it is -not- an exported member of the RCU API.
3309 */
e3950ecd 3310static int rcu_pending(void)
64db4cff 3311{
6ce75a23
PM
3312 struct rcu_state *rsp;
3313
3314 for_each_rcu_flavor(rsp)
e3950ecd 3315 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3316 return 1;
3317 return 0;
64db4cff
PM
3318}
3319
3320/*
c0f4dfd4
PM
3321 * Return true if the specified CPU has any callback. If all_lazy is
3322 * non-NULL, store an indication of whether all callbacks are lazy.
3323 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3324 */
82072c4f 3325static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3326{
c0f4dfd4
PM
3327 bool al = true;
3328 bool hc = false;
3329 struct rcu_data *rdp;
6ce75a23
PM
3330 struct rcu_state *rsp;
3331
c0f4dfd4 3332 for_each_rcu_flavor(rsp) {
aa6da514 3333 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3334 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3335 continue;
3336 hc = true;
15fecf89 3337 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3338 al = false;
69c8d28c
PM
3339 break;
3340 }
c0f4dfd4
PM
3341 }
3342 if (all_lazy)
3343 *all_lazy = al;
3344 return hc;
64db4cff
PM
3345}
3346
a83eff0a
PM
3347/*
3348 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3349 * the compiler is expected to optimize this away.
3350 */
e66c33d5 3351static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3352 int cpu, unsigned long done)
3353{
3354 trace_rcu_barrier(rsp->name, s, cpu,
3355 atomic_read(&rsp->barrier_cpu_count), done);
3356}
3357
b1420f1c
PM
3358/*
3359 * RCU callback function for _rcu_barrier(). If we are last, wake
3360 * up the task executing _rcu_barrier().
3361 */
24ebbca8 3362static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3363{
24ebbca8
PM
3364 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3365 struct rcu_state *rsp = rdp->rsp;
3366
a83eff0a 3367 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
d8db2e86
PM
3368 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3369 rsp->barrier_sequence);
7db74df8 3370 complete(&rsp->barrier_completion);
a83eff0a 3371 } else {
d8db2e86 3372 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
a83eff0a 3373 }
d0ec774c
PM
3374}
3375
3376/*
3377 * Called with preemption disabled, and from cross-cpu IRQ context.
3378 */
3379static void rcu_barrier_func(void *type)
3380{
037b64ed 3381 struct rcu_state *rsp = type;
fa07a58f 3382 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3383
d8db2e86 3384 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
f92c734f
PM
3385 rdp->barrier_head.func = rcu_barrier_callback;
3386 debug_rcu_head_queue(&rdp->barrier_head);
3387 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3388 atomic_inc(&rsp->barrier_cpu_count);
3389 } else {
3390 debug_rcu_head_unqueue(&rdp->barrier_head);
d8db2e86
PM
3391 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3392 rsp->barrier_sequence);
f92c734f 3393 }
d0ec774c
PM
3394}
3395
d0ec774c
PM
3396/*
3397 * Orchestrate the specified type of RCU barrier, waiting for all
3398 * RCU callbacks of the specified type to complete.
3399 */
037b64ed 3400static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3401{
b1420f1c 3402 int cpu;
b1420f1c 3403 struct rcu_data *rdp;
4f525a52 3404 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3405
d8db2e86 3406 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
b1420f1c 3407
e74f4c45 3408 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3409 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3410
4f525a52
PM
3411 /* Did someone else do our work for us? */
3412 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
d8db2e86
PM
3413 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3414 rsp->barrier_sequence);
cf3a9c48
PM
3415 smp_mb(); /* caller's subsequent code after above check. */
3416 mutex_unlock(&rsp->barrier_mutex);
3417 return;
3418 }
3419
4f525a52
PM
3420 /* Mark the start of the barrier operation. */
3421 rcu_seq_start(&rsp->barrier_sequence);
d8db2e86 3422 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
b1420f1c 3423
d0ec774c 3424 /*
b1420f1c
PM
3425 * Initialize the count to one rather than to zero in order to
3426 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3427 * (or preemption of this task). Exclude CPU-hotplug operations
3428 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3429 */
7db74df8 3430 init_completion(&rsp->barrier_completion);
24ebbca8 3431 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3432 get_online_cpus();
b1420f1c
PM
3433
3434 /*
1331e7a1
PM
3435 * Force each CPU with callbacks to register a new callback.
3436 * When that callback is invoked, we will know that all of the
3437 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3438 */
3fbfbf7a 3439 for_each_possible_cpu(cpu) {
d1e43fa5 3440 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3441 continue;
b1420f1c 3442 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3443 if (rcu_is_nocb_cpu(cpu)) {
d7e29933 3444 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
d8db2e86 3445 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
4f525a52 3446 rsp->barrier_sequence);
d7e29933 3447 } else {
d8db2e86 3448 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
4f525a52 3449 rsp->barrier_sequence);
41050a00 3450 smp_mb__before_atomic();
d7e29933
PM
3451 atomic_inc(&rsp->barrier_cpu_count);
3452 __call_rcu(&rdp->barrier_head,
3453 rcu_barrier_callback, rsp, cpu, 0);
3454 }
15fecf89 3455 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
d8db2e86 3456 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
4f525a52 3457 rsp->barrier_sequence);
037b64ed 3458 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3459 } else {
d8db2e86 3460 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
4f525a52 3461 rsp->barrier_sequence);
b1420f1c
PM
3462 }
3463 }
1331e7a1 3464 put_online_cpus();
b1420f1c
PM
3465
3466 /*
3467 * Now that we have an rcu_barrier_callback() callback on each
3468 * CPU, and thus each counted, remove the initial count.
3469 */
24ebbca8 3470 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3471 complete(&rsp->barrier_completion);
b1420f1c
PM
3472
3473 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3474 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3475
4f525a52 3476 /* Mark the end of the barrier operation. */
d8db2e86 3477 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
4f525a52
PM
3478 rcu_seq_end(&rsp->barrier_sequence);
3479
b1420f1c 3480 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3481 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3482}
d0ec774c
PM
3483
3484/**
3485 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3486 */
3487void rcu_barrier_bh(void)
3488{
037b64ed 3489 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3490}
3491EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3492
3493/**
3494 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3495 */
3496void rcu_barrier_sched(void)
3497{
037b64ed 3498 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3499}
3500EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3501
0aa04b05
PM
3502/*
3503 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3504 * first CPU in a given leaf rcu_node structure coming online. The caller
3505 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3506 * disabled.
3507 */
3508static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3509{
3510 long mask;
8d672fa6 3511 long oldmask;
0aa04b05
PM
3512 struct rcu_node *rnp = rnp_leaf;
3513
8d672fa6 3514 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 3515 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
3516 for (;;) {
3517 mask = rnp->grpmask;
3518 rnp = rnp->parent;
3519 if (rnp == NULL)
3520 return;
6cf10081 3521 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 3522 oldmask = rnp->qsmaskinit;
0aa04b05 3523 rnp->qsmaskinit |= mask;
67c583a7 3524 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
3525 if (oldmask)
3526 return;
0aa04b05
PM
3527 }
3528}
3529
64db4cff 3530/*
27569620 3531 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3532 */
27569620
PM
3533static void __init
3534rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff 3535{
394f99a9 3536 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3537
3538 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3539 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3540 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
51a1fd30 3541 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
02a5c550 3542 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
57738942
PM
3543 rdp->rcu_ofl_gp_seq = rsp->gp_seq;
3544 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3545 rdp->rcu_onl_gp_seq = rsp->gp_seq;
3546 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
27569620 3547 rdp->cpu = cpu;
d4c08f2a 3548 rdp->rsp = rsp;
3fbfbf7a 3549 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3550}
3551
3552/*
3553 * Initialize a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
3554 * offline event can be happening at a given time. Note also that we can
3555 * accept some slop in the rsp->gp_seq access due to the fact that this
3556 * CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3557 */
49fb4c62 3558static void
9b67122a 3559rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3560{
3561 unsigned long flags;
394f99a9 3562 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3563 struct rcu_node *rnp = rcu_get_root(rsp);
3564
3565 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3566 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3567 rdp->qlen_last_fqs_check = 0;
3568 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3569 rdp->blimit = blimit;
15fecf89
PM
3570 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3571 !init_nocb_callback_list(rdp))
3572 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
2342172f 3573 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3574 rcu_dynticks_eqs_online();
67c583a7 3575 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3576
0aa04b05
PM
3577 /*
3578 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3579 * propagation up the rcu_node tree will happen at the beginning
3580 * of the next grace period.
3581 */
64db4cff 3582 rnp = rdp->mynode;
2a67e741 3583 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3584 rdp->beenonline = true; /* We have now been online. */
de30ad51 3585 rdp->gp_seq = rnp->gp_seq;
7a1d0f23 3586 rdp->gp_seq_needed = rnp->gp_seq;
5b74c458 3587 rdp->cpu_no_qs.b.norm = true;
9577df9a 3588 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3589 rdp->core_needs_qs = false;
9b9500da 3590 rdp->rcu_iw_pending = false;
8aa670cd 3591 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
477351f7 3592 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 3593 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3594}
3595
deb34f36
PM
3596/*
3597 * Invoked early in the CPU-online process, when pretty much all
3598 * services are available. The incoming CPU is not present.
3599 */
4df83742 3600int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3601{
6ce75a23
PM
3602 struct rcu_state *rsp;
3603
3604 for_each_rcu_flavor(rsp)
9b67122a 3605 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3606
3607 rcu_prepare_kthreads(cpu);
3608 rcu_spawn_all_nocb_kthreads(cpu);
3609
3610 return 0;
3611}
3612
deb34f36
PM
3613/*
3614 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3615 */
4df83742
TG
3616static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3617{
3618 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3619
3620 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3621}
3622
deb34f36
PM
3623/*
3624 * Near the end of the CPU-online process. Pretty much all services
3625 * enabled, and the CPU is now very much alive.
3626 */
4df83742
TG
3627int rcutree_online_cpu(unsigned int cpu)
3628{
9b9500da
PM
3629 unsigned long flags;
3630 struct rcu_data *rdp;
3631 struct rcu_node *rnp;
3632 struct rcu_state *rsp;
3633
3634 for_each_rcu_flavor(rsp) {
3635 rdp = per_cpu_ptr(rsp->rda, cpu);
3636 rnp = rdp->mynode;
3637 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3638 rnp->ffmask |= rdp->grpmask;
3639 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3640 }
da915ad5
PM
3641 if (IS_ENABLED(CONFIG_TREE_SRCU))
3642 srcu_online_cpu(cpu);
9b9500da
PM
3643 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3644 return 0; /* Too early in boot for scheduler work. */
3645 sync_sched_exp_online_cleanup(cpu);
3646 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3647 return 0;
3648}
3649
deb34f36
PM
3650/*
3651 * Near the beginning of the process. The CPU is still very much alive
3652 * with pretty much all services enabled.
3653 */
4df83742
TG
3654int rcutree_offline_cpu(unsigned int cpu)
3655{
9b9500da
PM
3656 unsigned long flags;
3657 struct rcu_data *rdp;
3658 struct rcu_node *rnp;
3659 struct rcu_state *rsp;
3660
3661 for_each_rcu_flavor(rsp) {
3662 rdp = per_cpu_ptr(rsp->rda, cpu);
3663 rnp = rdp->mynode;
3664 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3665 rnp->ffmask &= ~rdp->grpmask;
3666 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3667 }
3668
4df83742 3669 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3670 if (IS_ENABLED(CONFIG_TREE_SRCU))
3671 srcu_offline_cpu(cpu);
4df83742
TG
3672 return 0;
3673}
3674
deb34f36
PM
3675/*
3676 * Near the end of the offline process. We do only tracing here.
3677 */
4df83742
TG
3678int rcutree_dying_cpu(unsigned int cpu)
3679{
3680 struct rcu_state *rsp;
3681
3682 for_each_rcu_flavor(rsp)
3683 rcu_cleanup_dying_cpu(rsp);
3684 return 0;
3685}
3686
deb34f36
PM
3687/*
3688 * The outgoing CPU is gone and we are running elsewhere.
3689 */
4df83742
TG
3690int rcutree_dead_cpu(unsigned int cpu)
3691{
3692 struct rcu_state *rsp;
3693
3694 for_each_rcu_flavor(rsp) {
3695 rcu_cleanup_dead_cpu(cpu, rsp);
3696 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3697 }
3698 return 0;
64db4cff
PM
3699}
3700
f64c6013
PZ
3701static DEFINE_PER_CPU(int, rcu_cpu_started);
3702
7ec99de3
PM
3703/*
3704 * Mark the specified CPU as being online so that subsequent grace periods
3705 * (both expedited and normal) will wait on it. Note that this means that
3706 * incoming CPUs are not allowed to use RCU read-side critical sections
3707 * until this function is called. Failing to observe this restriction
3708 * will result in lockdep splats.
deb34f36
PM
3709 *
3710 * Note that this function is special in that it is invoked directly
3711 * from the incoming CPU rather than from the cpuhp_step mechanism.
3712 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3713 */
3714void rcu_cpu_starting(unsigned int cpu)
3715{
3716 unsigned long flags;
3717 unsigned long mask;
313517fc
PM
3718 int nbits;
3719 unsigned long oldmask;
7ec99de3
PM
3720 struct rcu_data *rdp;
3721 struct rcu_node *rnp;
3722 struct rcu_state *rsp;
3723
f64c6013
PZ
3724 if (per_cpu(rcu_cpu_started, cpu))
3725 return;
3726
3727 per_cpu(rcu_cpu_started, cpu) = 1;
3728
7ec99de3 3729 for_each_rcu_flavor(rsp) {
fdbb9b31 3730 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3731 rnp = rdp->mynode;
3732 mask = rdp->grpmask;
3733 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3734 rnp->qsmaskinitnext |= mask;
313517fc 3735 oldmask = rnp->expmaskinitnext;
7ec99de3 3736 rnp->expmaskinitnext |= mask;
313517fc
PM
3737 oldmask ^= rnp->expmaskinitnext;
3738 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3739 /* Allow lockless access for expedited grace periods. */
3740 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
e05121ba 3741 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
57738942
PM
3742 rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq);
3743 rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags);
99990da1
PM
3744 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3745 /* Report QS -after- changing ->qsmaskinitnext! */
3746 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3747 } else {
3748 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3749 }
7ec99de3 3750 }
313517fc 3751 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3752}
3753
27d50c7e
TG
3754#ifdef CONFIG_HOTPLUG_CPU
3755/*
3756 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
c50cbe53 3757 * function. We now remove it from the rcu_node tree's ->qsmaskinitnext
27d50c7e
TG
3758 * bit masks.
3759 */
3760static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3761{
3762 unsigned long flags;
3763 unsigned long mask;
3764 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3765 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3766
27d50c7e
TG
3767 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3768 mask = rdp->grpmask;
1e64b15a 3769 spin_lock(&rsp->ofl_lock);
27d50c7e 3770 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
57738942
PM
3771 rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq);
3772 rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags);
fece2776
PM
3773 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3774 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3775 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3776 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3777 }
27d50c7e 3778 rnp->qsmaskinitnext &= ~mask;
710d60cb 3779 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1e64b15a 3780 spin_unlock(&rsp->ofl_lock);
27d50c7e
TG
3781}
3782
deb34f36
PM
3783/*
3784 * The outgoing function has no further need of RCU, so remove it from
3785 * the list of CPUs that RCU must track.
3786 *
3787 * Note that this function is special in that it is invoked directly
3788 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3789 * This is because this function must be invoked at a precise location.
3790 */
27d50c7e
TG
3791void rcu_report_dead(unsigned int cpu)
3792{
3793 struct rcu_state *rsp;
3794
3795 /* QS for any half-done expedited RCU-sched GP. */
3796 preempt_disable();
3797 rcu_report_exp_rdp(&rcu_sched_state,
3798 this_cpu_ptr(rcu_sched_state.rda), true);
3799 preempt_enable();
3800 for_each_rcu_flavor(rsp)
3801 rcu_cleanup_dying_idle_cpu(cpu, rsp);
f64c6013
PZ
3802
3803 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3804}
a58163d8 3805
f2dbe4a5 3806/* Migrate the dead CPU's callbacks to the current CPU. */
a58163d8
PM
3807static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3808{
3809 unsigned long flags;
b1a2d79f 3810 struct rcu_data *my_rdp;
a58163d8 3811 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
9fa46fb8 3812 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
ec4eacce 3813 bool needwake;
a58163d8 3814
95335c03
PM
3815 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3816 return; /* No callbacks to migrate. */
3817
b1a2d79f
PM
3818 local_irq_save(flags);
3819 my_rdp = this_cpu_ptr(rsp->rda);
3820 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3821 local_irq_restore(flags);
3822 return;
3823 }
9fa46fb8 3824 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce
PM
3825 /* Leverage recent GPs and set GP for new callbacks. */
3826 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
3827 rcu_advance_cbs(rsp, rnp_root, my_rdp);
f2dbe4a5 3828 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3829 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3830 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3831 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce
PM
3832 if (needwake)
3833 rcu_gp_kthread_wake(rsp);
a58163d8
PM
3834 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3835 !rcu_segcblist_empty(&rdp->cblist),
3836 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3837 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3838 rcu_segcblist_first_cb(&rdp->cblist));
3839}
3840
3841/*
3842 * The outgoing CPU has just passed through the dying-idle state,
3843 * and we are being invoked from the CPU that was IPIed to continue the
3844 * offline operation. We need to migrate the outgoing CPU's callbacks.
3845 */
3846void rcutree_migrate_callbacks(int cpu)
3847{
3848 struct rcu_state *rsp;
3849
3850 for_each_rcu_flavor(rsp)
3851 rcu_migrate_callbacks(cpu, rsp);
3852}
27d50c7e
TG
3853#endif
3854
deb34f36
PM
3855/*
3856 * On non-huge systems, use expedited RCU grace periods to make suspend
3857 * and hibernation run faster.
3858 */
d1d74d14
BP
3859static int rcu_pm_notify(struct notifier_block *self,
3860 unsigned long action, void *hcpu)
3861{
3862 switch (action) {
3863 case PM_HIBERNATION_PREPARE:
3864 case PM_SUSPEND_PREPARE:
3865 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3866 rcu_expedite_gp();
d1d74d14
BP
3867 break;
3868 case PM_POST_HIBERNATION:
3869 case PM_POST_SUSPEND:
5afff48b
PM
3870 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3871 rcu_unexpedite_gp();
d1d74d14
BP
3872 break;
3873 default:
3874 break;
3875 }
3876 return NOTIFY_OK;
3877}
3878
b3dbec76 3879/*
9386c0b7 3880 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3881 */
3882static int __init rcu_spawn_gp_kthread(void)
3883{
3884 unsigned long flags;
a94844b2 3885 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3886 struct rcu_node *rnp;
3887 struct rcu_state *rsp;
a94844b2 3888 struct sched_param sp;
b3dbec76
PM
3889 struct task_struct *t;
3890
a94844b2
PM
3891 /* Force priority into range. */
3892 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3893 kthread_prio = 1;
3894 else if (kthread_prio < 0)
3895 kthread_prio = 0;
3896 else if (kthread_prio > 99)
3897 kthread_prio = 99;
3898 if (kthread_prio != kthread_prio_in)
3899 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3900 kthread_prio, kthread_prio_in);
3901
9386c0b7 3902 rcu_scheduler_fully_active = 1;
b3dbec76 3903 for_each_rcu_flavor(rsp) {
a94844b2 3904 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3905 BUG_ON(IS_ERR(t));
3906 rnp = rcu_get_root(rsp);
6cf10081 3907 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3908 rsp->gp_kthread = t;
a94844b2
PM
3909 if (kthread_prio) {
3910 sp.sched_priority = kthread_prio;
3911 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3912 }
67c583a7 3913 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3914 wake_up_process(t);
b3dbec76 3915 }
35ce7f29 3916 rcu_spawn_nocb_kthreads();
9386c0b7 3917 rcu_spawn_boost_kthreads();
b3dbec76
PM
3918 return 0;
3919}
3920early_initcall(rcu_spawn_gp_kthread);
3921
bbad9379 3922/*
52d7e48b
PM
3923 * This function is invoked towards the end of the scheduler's
3924 * initialization process. Before this is called, the idle task might
3925 * contain synchronous grace-period primitives (during which time, this idle
3926 * task is booting the system, and such primitives are no-ops). After this
3927 * function is called, any synchronous grace-period primitives are run as
3928 * expedited, with the requesting task driving the grace period forward.
900b1028 3929 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3930 * runtime RCU functionality.
bbad9379
PM
3931 */
3932void rcu_scheduler_starting(void)
3933{
3934 WARN_ON(num_online_cpus() != 1);
3935 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3936 rcu_test_sync_prims();
3937 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3938 rcu_test_sync_prims();
bbad9379
PM
3939}
3940
64db4cff
PM
3941/*
3942 * Helper function for rcu_init() that initializes one rcu_state structure.
3943 */
a87f203e 3944static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 3945{
cb007102
AG
3946 static const char * const buf[] = RCU_NODE_NAME_INIT;
3947 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3948 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3949 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3950
199977bf 3951 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3952 int cpustride = 1;
3953 int i;
3954 int j;
3955 struct rcu_node *rnp;
3956
05b84aec 3957 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3958
3eaaaf6c
PM
3959 /* Silence gcc 4.8 false positive about array index out of range. */
3960 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3961 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3962
64db4cff
PM
3963 /* Initialize the level-tracking arrays. */
3964
f885b7f2 3965 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
3966 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
3967 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3968
3969 /* Initialize the elements themselves, starting from the leaves. */
3970
f885b7f2 3971 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3972 cpustride *= levelspread[i];
64db4cff 3973 rnp = rsp->level[i];
41f5c631 3974 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3975 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3976 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3977 &rcu_node_class[i], buf[i]);
394f2769
PM
3978 raw_spin_lock_init(&rnp->fqslock);
3979 lockdep_set_class_and_name(&rnp->fqslock,
3980 &rcu_fqs_class[i], fqs[i]);
de30ad51 3981 rnp->gp_seq = rsp->gp_seq;
7a1d0f23 3982 rnp->gp_seq_needed = rsp->gp_seq;
d43a5d32 3983 rnp->completedqs = rsp->gp_seq;
64db4cff
PM
3984 rnp->qsmask = 0;
3985 rnp->qsmaskinit = 0;
3986 rnp->grplo = j * cpustride;
3987 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3988 if (rnp->grphi >= nr_cpu_ids)
3989 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3990 if (i == 0) {
3991 rnp->grpnum = 0;
3992 rnp->grpmask = 0;
3993 rnp->parent = NULL;
3994 } else {
199977bf 3995 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
3996 rnp->grpmask = 1UL << rnp->grpnum;
3997 rnp->parent = rsp->level[i - 1] +
199977bf 3998 j / levelspread[i - 1];
64db4cff
PM
3999 }
4000 rnp->level = i;
12f5f524 4001 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4002 rcu_init_one_nocb(rnp);
f6a12f34
PM
4003 init_waitqueue_head(&rnp->exp_wq[0]);
4004 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4005 init_waitqueue_head(&rnp->exp_wq[2]);
4006 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4007 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4008 }
4009 }
0c34029a 4010
abedf8e2
PG
4011 init_swait_queue_head(&rsp->gp_wq);
4012 init_swait_queue_head(&rsp->expedited_wq);
5b4c11d5 4013 rnp = rcu_first_leaf_node(rsp);
0c34029a 4014 for_each_possible_cpu(i) {
4a90a068 4015 while (i > rnp->grphi)
0c34029a 4016 rnp++;
394f99a9 4017 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4018 rcu_boot_init_percpu_data(i, rsp);
4019 }
6ce75a23 4020 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4021}
4022
f885b7f2
PM
4023/*
4024 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4025 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4026 * the ->node array in the rcu_state structure.
4027 */
4028static void __init rcu_init_geometry(void)
4029{
026ad283 4030 ulong d;
f885b7f2 4031 int i;
05b84aec 4032 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4033
026ad283
PM
4034 /*
4035 * Initialize any unspecified boot parameters.
4036 * The default values of jiffies_till_first_fqs and
4037 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4038 * value, which is a function of HZ, then adding one for each
4039 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4040 */
4041 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4042 if (jiffies_till_first_fqs == ULONG_MAX)
4043 jiffies_till_first_fqs = d;
4044 if (jiffies_till_next_fqs == ULONG_MAX)
4045 jiffies_till_next_fqs = d;
4046
f885b7f2 4047 /* If the compile-time values are accurate, just leave. */
47d631af 4048 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4049 nr_cpu_ids == NR_CPUS)
f885b7f2 4050 return;
9b130ad5 4051 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 4052 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4053
f885b7f2 4054 /*
ee968ac6
PM
4055 * The boot-time rcu_fanout_leaf parameter must be at least two
4056 * and cannot exceed the number of bits in the rcu_node masks.
4057 * Complain and fall back to the compile-time values if this
4058 * limit is exceeded.
f885b7f2 4059 */
ee968ac6 4060 if (rcu_fanout_leaf < 2 ||
75cf15a4 4061 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4062 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4063 WARN_ON(1);
4064 return;
4065 }
4066
f885b7f2
PM
4067 /*
4068 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4069 * with the given number of levels.
f885b7f2 4070 */
9618138b 4071 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4072 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4073 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4074
4075 /*
75cf15a4 4076 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4077 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4078 */
ee968ac6
PM
4079 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4080 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4081 WARN_ON(1);
4082 return;
4083 }
f885b7f2 4084
679f9858 4085 /* Calculate the number of levels in the tree. */
9618138b 4086 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4087 }
9618138b 4088 rcu_num_lvls = i + 1;
679f9858 4089
f885b7f2 4090 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4091 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4092 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4093 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4094 }
f885b7f2
PM
4095
4096 /* Calculate the total number of rcu_node structures. */
4097 rcu_num_nodes = 0;
679f9858 4098 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4099 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4100}
4101
a3dc2948
PM
4102/*
4103 * Dump out the structure of the rcu_node combining tree associated
4104 * with the rcu_state structure referenced by rsp.
4105 */
4106static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4107{
4108 int level = 0;
4109 struct rcu_node *rnp;
4110
4111 pr_info("rcu_node tree layout dump\n");
4112 pr_info(" ");
4113 rcu_for_each_node_breadth_first(rsp, rnp) {
4114 if (rnp->level != level) {
4115 pr_cont("\n");
4116 pr_info(" ");
4117 level = rnp->level;
4118 }
4119 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4120 }
4121 pr_cont("\n");
4122}
4123
ad7c946b 4124struct workqueue_struct *rcu_gp_wq;
25f3d7ef 4125struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 4126
9f680ab4 4127void __init rcu_init(void)
64db4cff 4128{
017c4261 4129 int cpu;
9f680ab4 4130
47627678
PM
4131 rcu_early_boot_tests();
4132
f41d911f 4133 rcu_bootup_announce();
f885b7f2 4134 rcu_init_geometry();
a87f203e
PM
4135 rcu_init_one(&rcu_bh_state);
4136 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4137 if (dump_tree)
4138 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4139 __rcu_init_preempt();
b5b39360 4140 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4141
4142 /*
4143 * We don't need protection against CPU-hotplug here because
4144 * this is called early in boot, before either interrupts
4145 * or the scheduler are operational.
4146 */
d1d74d14 4147 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4148 for_each_online_cpu(cpu) {
4df83742 4149 rcutree_prepare_cpu(cpu);
7ec99de3 4150 rcu_cpu_starting(cpu);
9b9500da 4151 rcutree_online_cpu(cpu);
7ec99de3 4152 }
ad7c946b
PM
4153
4154 /* Create workqueue for expedited GPs and for Tree SRCU. */
4155 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4156 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
4157 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4158 WARN_ON(!rcu_par_gp_wq);
64db4cff
PM
4159}
4160
3549c2bc 4161#include "tree_exp.h"
4102adab 4162#include "tree_plugin.h"