rcu: Eliminate flavor scan in rcu_momentary_dyntick_idle()
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
64db4cff 60
4102adab 61#include "tree.h"
29c00b4a 62#include "rcu.h"
9f77da9f 63
4102adab
PM
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f7f7bac9
SRRH
71/*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
a8a29b3b
AB
79#ifdef CONFIG_TRACING
80# define DEFINE_RCU_TPS(sname) \
f7f7bac9 81static char sname##_varname[] = #sname; \
a8a29b3b
AB
82static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83# define RCU_STATE_NAME(sname) sname##_varname
84#else
85# define DEFINE_RCU_TPS(sname)
86# define RCU_STATE_NAME(sname) __stringify(sname)
87#endif
88
89#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90DEFINE_RCU_TPS(sname) \
c92fb057 91static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 92struct rcu_state sname##_state = { \
6c90cc7b 93 .level = { &sname##_state.node[0] }, \
2723249a 94 .rda = &sname##_data, \
037b64ed 95 .call = cr, \
77f81fe0 96 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
7b2e6011 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 103 .name = RCU_STATE_NAME(sname), \
a4889858 104 .abbr = sabbr, \
f6a12f34 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 107}
64db4cff 108
a41bfeb2
SRRH
109RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 111
b28a7c01 112static struct rcu_state *const rcu_state_p;
6ce75a23 113LIST_HEAD(rcu_struct_flavors);
27f4d280 114
a3dc2948
PM
115/* Dump rcu_node combining tree at boot to verify correct setup. */
116static bool dump_tree;
117module_param(dump_tree, bool, 0444);
7fa27001
PM
118/* Control rcu_node-tree auto-balancing at boot time. */
119static bool rcu_fanout_exact;
120module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
121/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 123module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 124int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
125/* Number of rcu_nodes at specified level. */
126static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
128/* panic() on RCU Stall sysctl. */
129int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 130
b0d30417 131/*
52d7e48b
PM
132 * The rcu_scheduler_active variable is initialized to the value
133 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
134 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
135 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 136 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
137 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
138 * to detect real grace periods. This variable is also used to suppress
139 * boot-time false positives from lockdep-RCU error checking. Finally, it
140 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
141 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 142 */
bbad9379
PM
143int rcu_scheduler_active __read_mostly;
144EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145
b0d30417
PM
146/*
147 * The rcu_scheduler_fully_active variable transitions from zero to one
148 * during the early_initcall() processing, which is after the scheduler
149 * is capable of creating new tasks. So RCU processing (for example,
150 * creating tasks for RCU priority boosting) must be delayed until after
151 * rcu_scheduler_fully_active transitions from zero to one. We also
152 * currently delay invocation of any RCU callbacks until after this point.
153 *
154 * It might later prove better for people registering RCU callbacks during
155 * early boot to take responsibility for these callbacks, but one step at
156 * a time.
157 */
158static int rcu_scheduler_fully_active __read_mostly;
159
0aa04b05
PM
160static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 162static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
163static void invoke_rcu_core(void);
164static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
165static void rcu_report_exp_rdp(struct rcu_state *rsp,
166 struct rcu_data *rdp, bool wake);
3549c2bc 167static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 168
a94844b2 169/* rcuc/rcub kthread realtime priority */
26730f55 170#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 171static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
172#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
173static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
174#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
175module_param(kthread_prio, int, 0644);
176
8d7dc928 177/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
178
179#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
180static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
181module_param(gp_preinit_delay, int, 0644);
182#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183static const int gp_preinit_delay;
184#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
185
8d7dc928
PM
186#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
187static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 188module_param(gp_init_delay, int, 0644);
8d7dc928
PM
189#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190static const int gp_init_delay;
191#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 192
0f41c0dd
PM
193#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
194static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
195module_param(gp_cleanup_delay, int, 0644);
196#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197static const int gp_cleanup_delay;
198#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
199
eab128e8
PM
200/*
201 * Number of grace periods between delays, normalized by the duration of
202 * the delay. The longer the the delay, the more the grace periods between
203 * each delay. The reason for this normalization is that it means that,
204 * for non-zero delays, the overall slowdown of grace periods is constant
205 * regardless of the duration of the delay. This arrangement balances
206 * the need for long delays to increase some race probabilities with the
207 * need for fast grace periods to increase other race probabilities.
208 */
209#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 210
4a298656
PM
211/*
212 * Track the rcutorture test sequence number and the update version
213 * number within a given test. The rcutorture_testseq is incremented
214 * on every rcutorture module load and unload, so has an odd value
215 * when a test is running. The rcutorture_vernum is set to zero
216 * when rcutorture starts and is incremented on each rcutorture update.
217 * These variables enable correlating rcutorture output with the
218 * RCU tracing information.
219 */
220unsigned long rcutorture_testseq;
221unsigned long rcutorture_vernum;
222
0aa04b05
PM
223/*
224 * Compute the mask of online CPUs for the specified rcu_node structure.
225 * This will not be stable unless the rcu_node structure's ->lock is
226 * held, but the bit corresponding to the current CPU will be stable
227 * in most contexts.
228 */
229unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
230{
7d0ae808 231 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
232}
233
fc2219d4 234/*
7d0ae808 235 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
236 * permit this function to be invoked without holding the root rcu_node
237 * structure's ->lock, but of course results can be subject to change.
238 */
239static int rcu_gp_in_progress(struct rcu_state *rsp)
240{
7d0ae808 241 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
242}
243
b1f77b05 244/*
d6714c22 245 * Note a quiescent state. Because we do not need to know
b1f77b05 246 * how many quiescent states passed, just if there was at least
d6714c22 247 * one since the start of the grace period, this just sets a flag.
e4cc1f22 248 * The caller must have disabled preemption.
b1f77b05 249 */
284a8c93 250void rcu_sched_qs(void)
b1f77b05 251{
fecbf6f0
PM
252 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
253 return;
254 trace_rcu_grace_period(TPS("rcu_sched"),
255 __this_cpu_read(rcu_sched_data.gpnum),
256 TPS("cpuqs"));
257 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
258 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
259 return;
46a5d164
PM
260 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 rcu_report_exp_rdp(&rcu_sched_state,
262 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
263}
264
284a8c93 265void rcu_bh_qs(void)
b1f77b05 266{
5b74c458 267 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
268 trace_rcu_grace_period(TPS("rcu_bh"),
269 __this_cpu_read(rcu_bh_data.gpnum),
270 TPS("cpuqs"));
5b74c458 271 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 272 }
b1f77b05 273}
64db4cff 274
b8c17e66
PM
275/*
276 * Steal a bit from the bottom of ->dynticks for idle entry/exit
277 * control. Initially this is for TLB flushing.
278 */
279#define RCU_DYNTICK_CTRL_MASK 0x1
280#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
281#ifndef rcu_eqs_special_exit
282#define rcu_eqs_special_exit() do { } while (0)
283#endif
284
4a81e832
PM
285static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
286 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 287 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
288#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
289 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
290 .dynticks_idle = ATOMIC_INIT(1),
291#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
292};
293
2625d469
PM
294/*
295 * Record entry into an extended quiescent state. This is only to be
296 * called when not already in an extended quiescent state.
297 */
298static void rcu_dynticks_eqs_enter(void)
299{
300 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 301 int seq;
2625d469
PM
302
303 /*
b8c17e66 304 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
305 * critical sections, and we also must force ordering with the
306 * next idle sojourn.
307 */
b8c17e66
PM
308 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
309 /* Better be in an extended quiescent state! */
310 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
311 (seq & RCU_DYNTICK_CTRL_CTR));
312 /* Better not have special action (TLB flush) pending! */
313 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
314 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
315}
316
317/*
318 * Record exit from an extended quiescent state. This is only to be
319 * called from an extended quiescent state.
320 */
321static void rcu_dynticks_eqs_exit(void)
322{
323 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 324 int seq;
2625d469
PM
325
326 /*
b8c17e66 327 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
328 * and we also must force ordering with the next RCU read-side
329 * critical section.
330 */
b8c17e66
PM
331 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
332 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
333 !(seq & RCU_DYNTICK_CTRL_CTR));
334 if (seq & RCU_DYNTICK_CTRL_MASK) {
335 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
336 smp_mb__after_atomic(); /* _exit after clearing mask. */
337 /* Prefer duplicate flushes to losing a flush. */
338 rcu_eqs_special_exit();
339 }
2625d469
PM
340}
341
342/*
343 * Reset the current CPU's ->dynticks counter to indicate that the
344 * newly onlined CPU is no longer in an extended quiescent state.
345 * This will either leave the counter unchanged, or increment it
346 * to the next non-quiescent value.
347 *
348 * The non-atomic test/increment sequence works because the upper bits
349 * of the ->dynticks counter are manipulated only by the corresponding CPU,
350 * or when the corresponding CPU is offline.
351 */
352static void rcu_dynticks_eqs_online(void)
353{
354 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
355
b8c17e66 356 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 357 return;
b8c17e66 358 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
359}
360
02a5c550
PM
361/*
362 * Is the current CPU in an extended quiescent state?
363 *
364 * No ordering, as we are sampling CPU-local information.
365 */
366bool rcu_dynticks_curr_cpu_in_eqs(void)
367{
368 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
369
b8c17e66 370 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
371}
372
8b2f63ab
PM
373/*
374 * Snapshot the ->dynticks counter with full ordering so as to allow
375 * stable comparison of this counter with past and future snapshots.
376 */
02a5c550 377int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
378{
379 int snap = atomic_add_return(0, &rdtp->dynticks);
380
b8c17e66 381 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
382}
383
02a5c550
PM
384/*
385 * Return true if the snapshot returned from rcu_dynticks_snap()
386 * indicates that RCU is in an extended quiescent state.
387 */
388static bool rcu_dynticks_in_eqs(int snap)
389{
b8c17e66 390 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
391}
392
393/*
394 * Return true if the CPU corresponding to the specified rcu_dynticks
395 * structure has spent some time in an extended quiescent state since
396 * rcu_dynticks_snap() returned the specified snapshot.
397 */
398static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
399{
400 return snap != rcu_dynticks_snap(rdtp);
401}
402
6563de9d
PM
403/*
404 * Do a double-increment of the ->dynticks counter to emulate a
405 * momentary idle-CPU quiescent state.
406 */
407static void rcu_dynticks_momentary_idle(void)
408{
409 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
410 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
411 &rdtp->dynticks);
6563de9d
PM
412
413 /* It is illegal to call this from idle state. */
b8c17e66
PM
414 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
415}
416
417/*
418 * Set the special (bottom) bit of the specified CPU so that it
419 * will take special action (such as flushing its TLB) on the
420 * next exit from an extended quiescent state. Returns true if
421 * the bit was successfully set, or false if the CPU was not in
422 * an extended quiescent state.
423 */
424bool rcu_eqs_special_set(int cpu)
425{
426 int old;
427 int new;
428 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
429
430 do {
431 old = atomic_read(&rdtp->dynticks);
432 if (old & RCU_DYNTICK_CTRL_CTR)
433 return false;
434 new = old | RCU_DYNTICK_CTRL_MASK;
435 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
436 return true;
6563de9d
PM
437}
438
4a81e832
PM
439/*
440 * Let the RCU core know that this CPU has gone through the scheduler,
441 * which is a quiescent state. This is called when the need for a
442 * quiescent state is urgent, so we burn an atomic operation and full
443 * memory barriers to let the RCU core know about it, regardless of what
444 * this CPU might (or might not) do in the near future.
445 *
0f9be8ca 446 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
447 *
448 * The caller must have disabled interrupts.
4a81e832
PM
449 */
450static void rcu_momentary_dyntick_idle(void)
451{
0f9be8ca
PM
452 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
453 rcu_dynticks_momentary_idle();
4a81e832
PM
454}
455
25502a6c
PM
456/*
457 * Note a context switch. This is a quiescent state for RCU-sched,
458 * and requires special handling for preemptible RCU.
46a5d164 459 * The caller must have disabled interrupts.
25502a6c 460 */
38200cf2 461void rcu_note_context_switch(void)
25502a6c 462{
bb73c52b 463 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 464 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 465 rcu_sched_qs();
38200cf2 466 rcu_preempt_note_context_switch();
0f9be8ca 467 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 468 rcu_momentary_dyntick_idle();
f7f7bac9 469 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 470 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 471}
29ce8310 472EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 473
5cd37193 474/*
1925d196 475 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
476 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
477 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 478 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
479 * be none of them). Either way, do a lightweight quiescent state for
480 * all RCU flavors.
bb73c52b
BF
481 *
482 * The barrier() calls are redundant in the common case when this is
483 * called externally, but just in case this is called from within this
484 * file.
485 *
5cd37193
PM
486 */
487void rcu_all_qs(void)
488{
46a5d164
PM
489 unsigned long flags;
490
bb73c52b 491 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 492 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 493 local_irq_save(flags);
5cd37193 494 rcu_momentary_dyntick_idle();
46a5d164
PM
495 local_irq_restore(flags);
496 }
a1e12248
PM
497 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
498 /*
499 * Yes, we just checked a per-CPU variable with preemption
500 * enabled, so we might be migrated to some other CPU at
501 * this point. That is OK because in that case, the
502 * migration will supply the needed quiescent state.
503 * We might end up needlessly disabling preemption and
504 * invoking rcu_sched_qs() on the destination CPU, but
505 * the probability and cost are both quite low, so this
506 * should not be a problem in practice.
507 */
508 preempt_disable();
509 rcu_sched_qs();
510 preempt_enable();
511 }
9577df9a 512 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 513 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
514}
515EXPORT_SYMBOL_GPL(rcu_all_qs);
516
878d7439
ED
517static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
518static long qhimark = 10000; /* If this many pending, ignore blimit. */
519static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 520
878d7439
ED
521module_param(blimit, long, 0444);
522module_param(qhimark, long, 0444);
523module_param(qlowmark, long, 0444);
3d76c082 524
026ad283
PM
525static ulong jiffies_till_first_fqs = ULONG_MAX;
526static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 527static bool rcu_kick_kthreads;
d40011f6
PM
528
529module_param(jiffies_till_first_fqs, ulong, 0644);
530module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 531module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 532
4a81e832
PM
533/*
534 * How long the grace period must be before we start recruiting
535 * quiescent-state help from rcu_note_context_switch().
536 */
537static ulong jiffies_till_sched_qs = HZ / 20;
538module_param(jiffies_till_sched_qs, ulong, 0644);
539
48a7639c 540static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 541 struct rcu_data *rdp);
217af2a2
PM
542static void force_qs_rnp(struct rcu_state *rsp,
543 int (*f)(struct rcu_data *rsp, bool *isidle,
544 unsigned long *maxj),
545 bool *isidle, unsigned long *maxj);
4cdfc175 546static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 547static int rcu_pending(void);
64db4cff
PM
548
549/*
917963d0 550 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 551 */
917963d0
PM
552unsigned long rcu_batches_started(void)
553{
554 return rcu_state_p->gpnum;
555}
556EXPORT_SYMBOL_GPL(rcu_batches_started);
557
558/*
559 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 560 */
917963d0
PM
561unsigned long rcu_batches_started_sched(void)
562{
563 return rcu_sched_state.gpnum;
564}
565EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
566
567/*
568 * Return the number of RCU BH batches started thus far for debug & stats.
569 */
570unsigned long rcu_batches_started_bh(void)
571{
572 return rcu_bh_state.gpnum;
573}
574EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
575
576/*
577 * Return the number of RCU batches completed thus far for debug & stats.
578 */
579unsigned long rcu_batches_completed(void)
580{
581 return rcu_state_p->completed;
582}
583EXPORT_SYMBOL_GPL(rcu_batches_completed);
584
585/*
586 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 587 */
9733e4f0 588unsigned long rcu_batches_completed_sched(void)
64db4cff 589{
d6714c22 590 return rcu_sched_state.completed;
64db4cff 591}
d6714c22 592EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
593
594/*
917963d0 595 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 596 */
9733e4f0 597unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
598{
599 return rcu_bh_state.completed;
600}
601EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
602
291783b8
PM
603/*
604 * Return the number of RCU expedited batches completed thus far for
605 * debug & stats. Odd numbers mean that a batch is in progress, even
606 * numbers mean idle. The value returned will thus be roughly double
607 * the cumulative batches since boot.
608 */
609unsigned long rcu_exp_batches_completed(void)
610{
611 return rcu_state_p->expedited_sequence;
612}
613EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
614
615/*
616 * Return the number of RCU-sched expedited batches completed thus far
617 * for debug & stats. Similar to rcu_exp_batches_completed().
618 */
619unsigned long rcu_exp_batches_completed_sched(void)
620{
621 return rcu_sched_state.expedited_sequence;
622}
623EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
624
a381d757
ACB
625/*
626 * Force a quiescent state.
627 */
628void rcu_force_quiescent_state(void)
629{
e534165b 630 force_quiescent_state(rcu_state_p);
a381d757
ACB
631}
632EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
633
bf66f18e
PM
634/*
635 * Force a quiescent state for RCU BH.
636 */
637void rcu_bh_force_quiescent_state(void)
638{
4cdfc175 639 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
640}
641EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
642
e7580f33
PM
643/*
644 * Force a quiescent state for RCU-sched.
645 */
646void rcu_sched_force_quiescent_state(void)
647{
648 force_quiescent_state(&rcu_sched_state);
649}
650EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
651
afea227f
PM
652/*
653 * Show the state of the grace-period kthreads.
654 */
655void show_rcu_gp_kthreads(void)
656{
657 struct rcu_state *rsp;
658
659 for_each_rcu_flavor(rsp) {
660 pr_info("%s: wait state: %d ->state: %#lx\n",
661 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
662 /* sched_show_task(rsp->gp_kthread); */
663 }
664}
665EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
666
4a298656
PM
667/*
668 * Record the number of times rcutorture tests have been initiated and
669 * terminated. This information allows the debugfs tracing stats to be
670 * correlated to the rcutorture messages, even when the rcutorture module
671 * is being repeatedly loaded and unloaded. In other words, we cannot
672 * store this state in rcutorture itself.
673 */
674void rcutorture_record_test_transition(void)
675{
676 rcutorture_testseq++;
677 rcutorture_vernum = 0;
678}
679EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
680
ad0dc7f9
PM
681/*
682 * Send along grace-period-related data for rcutorture diagnostics.
683 */
684void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
685 unsigned long *gpnum, unsigned long *completed)
686{
687 struct rcu_state *rsp = NULL;
688
689 switch (test_type) {
690 case RCU_FLAVOR:
e534165b 691 rsp = rcu_state_p;
ad0dc7f9
PM
692 break;
693 case RCU_BH_FLAVOR:
694 rsp = &rcu_bh_state;
695 break;
696 case RCU_SCHED_FLAVOR:
697 rsp = &rcu_sched_state;
698 break;
699 default:
700 break;
701 }
702 if (rsp != NULL) {
7d0ae808
PM
703 *flags = READ_ONCE(rsp->gp_flags);
704 *gpnum = READ_ONCE(rsp->gpnum);
705 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
706 return;
707 }
708 *flags = 0;
709 *gpnum = 0;
710 *completed = 0;
711}
712EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
713
4a298656
PM
714/*
715 * Record the number of writer passes through the current rcutorture test.
716 * This is also used to correlate debugfs tracing stats with the rcutorture
717 * messages.
718 */
719void rcutorture_record_progress(unsigned long vernum)
720{
721 rcutorture_vernum++;
722}
723EXPORT_SYMBOL_GPL(rcutorture_record_progress);
724
64db4cff
PM
725/*
726 * Does the CPU have callbacks ready to be invoked?
727 */
728static int
729cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
730{
3fbfbf7a 731 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
630c7ed9 732 rdp->nxttail[RCU_NEXT_TAIL] != NULL;
64db4cff
PM
733}
734
365187fb
PM
735/*
736 * Return the root node of the specified rcu_state structure.
737 */
738static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
739{
740 return &rsp->node[0];
741}
742
743/*
744 * Is there any need for future grace periods?
745 * Interrupts must be disabled. If the caller does not hold the root
746 * rnp_node structure's ->lock, the results are advisory only.
747 */
748static int rcu_future_needs_gp(struct rcu_state *rsp)
749{
750 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 751 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
752 int *fp = &rnp->need_future_gp[idx];
753
7d0ae808 754 return READ_ONCE(*fp);
365187fb
PM
755}
756
64db4cff 757/*
dc35c893
PM
758 * Does the current CPU require a not-yet-started grace period?
759 * The caller must have disabled interrupts to prevent races with
760 * normal callback registry.
64db4cff 761 */
d117c8aa 762static bool
64db4cff
PM
763cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
764{
dc35c893 765 int i;
3fbfbf7a 766
dc35c893 767 if (rcu_gp_in_progress(rsp))
d117c8aa 768 return false; /* No, a grace period is already in progress. */
365187fb 769 if (rcu_future_needs_gp(rsp))
d117c8aa 770 return true; /* Yes, a no-CBs CPU needs one. */
dc35c893 771 if (!rdp->nxttail[RCU_NEXT_TAIL])
d117c8aa 772 return false; /* No, this is a no-CBs (or offline) CPU. */
dc35c893 773 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
d117c8aa 774 return true; /* Yes, CPU has newly registered callbacks. */
dc35c893
PM
775 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
776 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 777 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893 778 rdp->nxtcompleted[i]))
d117c8aa
PM
779 return true; /* Yes, CBs for future grace period. */
780 return false; /* No grace period needed. */
64db4cff
PM
781}
782
9b2e4f18 783/*
adf5091e 784 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
785 *
786 * If the new value of the ->dynticks_nesting counter now is zero,
787 * we really have entered idle, and must do the appropriate accounting.
788 * The caller must have disabled interrupts.
789 */
28ced795 790static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 791{
96d3fd0d
PM
792 struct rcu_state *rsp;
793 struct rcu_data *rdp;
2625d469 794 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
96d3fd0d 795
f7f7bac9 796 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
797 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
798 !user && !is_idle_task(current)) {
289828e6
PM
799 struct task_struct *idle __maybe_unused =
800 idle_task(smp_processor_id());
0989cb46 801
f7f7bac9 802 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
274529ba 803 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
804 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
805 current->pid, current->comm,
806 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 807 }
96d3fd0d
PM
808 for_each_rcu_flavor(rsp) {
809 rdp = this_cpu_ptr(rsp->rda);
810 do_nocb_deferred_wakeup(rdp);
811 }
198bbf81 812 rcu_prepare_for_idle();
2625d469 813 rcu_dynticks_eqs_enter();
176f8f7a 814 rcu_dynticks_task_enter();
c44e2cdd
PM
815
816 /*
adf5091e 817 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
818 * in an RCU read-side critical section.
819 */
f78f5b90
PM
820 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
821 "Illegal idle entry in RCU read-side critical section.");
822 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
823 "Illegal idle entry in RCU-bh read-side critical section.");
824 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
825 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 826}
64db4cff 827
adf5091e
FW
828/*
829 * Enter an RCU extended quiescent state, which can be either the
830 * idle loop or adaptive-tickless usermode execution.
64db4cff 831 */
adf5091e 832static void rcu_eqs_enter(bool user)
64db4cff 833{
4145fa7f 834 long long oldval;
64db4cff
PM
835 struct rcu_dynticks *rdtp;
836
c9d4b0af 837 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 838 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
839 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
840 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 841 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 842 rdtp->dynticks_nesting = 0;
28ced795 843 rcu_eqs_enter_common(oldval, user);
3a592405 844 } else {
29e37d81 845 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 846 }
64db4cff 847}
adf5091e
FW
848
849/**
850 * rcu_idle_enter - inform RCU that current CPU is entering idle
851 *
852 * Enter idle mode, in other words, -leave- the mode in which RCU
853 * read-side critical sections can occur. (Though RCU read-side
854 * critical sections can occur in irq handlers in idle, a possibility
855 * handled by irq_enter() and irq_exit().)
856 *
857 * We crowbar the ->dynticks_nesting field to zero to allow for
858 * the possibility of usermode upcalls having messed up our count
859 * of interrupt nesting level during the prior busy period.
860 */
861void rcu_idle_enter(void)
862{
c5d900bf
FW
863 unsigned long flags;
864
865 local_irq_save(flags);
cb349ca9 866 rcu_eqs_enter(false);
28ced795 867 rcu_sysidle_enter(0);
c5d900bf 868 local_irq_restore(flags);
adf5091e 869}
8a2ecf47 870EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 871
d1ec4c34 872#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
873/**
874 * rcu_user_enter - inform RCU that we are resuming userspace.
875 *
876 * Enter RCU idle mode right before resuming userspace. No use of RCU
877 * is permitted between this call and rcu_user_exit(). This way the
878 * CPU doesn't need to maintain the tick for RCU maintenance purposes
879 * when the CPU runs in userspace.
880 */
881void rcu_user_enter(void)
882{
91d1aa43 883 rcu_eqs_enter(1);
adf5091e 884}
d1ec4c34 885#endif /* CONFIG_NO_HZ_FULL */
19dd1591 886
9b2e4f18
PM
887/**
888 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
889 *
890 * Exit from an interrupt handler, which might possibly result in entering
891 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 892 * sections can occur. The caller must have disabled interrupts.
64db4cff 893 *
9b2e4f18
PM
894 * This code assumes that the idle loop never does anything that might
895 * result in unbalanced calls to irq_enter() and irq_exit(). If your
896 * architecture violates this assumption, RCU will give you what you
897 * deserve, good and hard. But very infrequently and irreproducibly.
898 *
899 * Use things like work queues to work around this limitation.
900 *
901 * You have been warned.
64db4cff 902 */
9b2e4f18 903void rcu_irq_exit(void)
64db4cff 904{
4145fa7f 905 long long oldval;
64db4cff
PM
906 struct rcu_dynticks *rdtp;
907
7c9906ca 908 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 909 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 910 oldval = rdtp->dynticks_nesting;
9b2e4f18 911 rdtp->dynticks_nesting--;
1ce46ee5
PM
912 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
913 rdtp->dynticks_nesting < 0);
b6fc6020 914 if (rdtp->dynticks_nesting)
f7f7bac9 915 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 916 else
28ced795
CL
917 rcu_eqs_enter_common(oldval, true);
918 rcu_sysidle_enter(1);
7c9906ca
PM
919}
920
921/*
922 * Wrapper for rcu_irq_exit() where interrupts are enabled.
923 */
924void rcu_irq_exit_irqson(void)
925{
926 unsigned long flags;
927
928 local_irq_save(flags);
929 rcu_irq_exit();
9b2e4f18
PM
930 local_irq_restore(flags);
931}
932
933/*
adf5091e 934 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
935 *
936 * If the new value of the ->dynticks_nesting counter was previously zero,
937 * we really have exited idle, and must do the appropriate accounting.
938 * The caller must have disabled interrupts.
939 */
28ced795 940static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 941{
2625d469 942 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 943
176f8f7a 944 rcu_dynticks_task_exit();
2625d469 945 rcu_dynticks_eqs_exit();
8fa7845d 946 rcu_cleanup_after_idle();
f7f7bac9 947 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
948 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
949 !user && !is_idle_task(current)) {
289828e6
PM
950 struct task_struct *idle __maybe_unused =
951 idle_task(smp_processor_id());
0989cb46 952
f7f7bac9 953 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 954 oldval, rdtp->dynticks_nesting);
274529ba 955 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
956 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
957 current->pid, current->comm,
958 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
959 }
960}
961
adf5091e
FW
962/*
963 * Exit an RCU extended quiescent state, which can be either the
964 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 965 */
adf5091e 966static void rcu_eqs_exit(bool user)
9b2e4f18 967{
9b2e4f18
PM
968 struct rcu_dynticks *rdtp;
969 long long oldval;
970
c9d4b0af 971 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 972 oldval = rdtp->dynticks_nesting;
1ce46ee5 973 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 974 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 975 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 976 } else {
29e37d81 977 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 978 rcu_eqs_exit_common(oldval, user);
3a592405 979 }
9b2e4f18 980}
adf5091e
FW
981
982/**
983 * rcu_idle_exit - inform RCU that current CPU is leaving idle
984 *
985 * Exit idle mode, in other words, -enter- the mode in which RCU
986 * read-side critical sections can occur.
987 *
988 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
989 * allow for the possibility of usermode upcalls messing up our count
990 * of interrupt nesting level during the busy period that is just
991 * now starting.
992 */
993void rcu_idle_exit(void)
994{
c5d900bf
FW
995 unsigned long flags;
996
997 local_irq_save(flags);
cb349ca9 998 rcu_eqs_exit(false);
28ced795 999 rcu_sysidle_exit(0);
c5d900bf 1000 local_irq_restore(flags);
adf5091e 1001}
8a2ecf47 1002EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 1003
d1ec4c34 1004#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
1005/**
1006 * rcu_user_exit - inform RCU that we are exiting userspace.
1007 *
1008 * Exit RCU idle mode while entering the kernel because it can
1009 * run a RCU read side critical section anytime.
1010 */
1011void rcu_user_exit(void)
1012{
91d1aa43 1013 rcu_eqs_exit(1);
adf5091e 1014}
d1ec4c34 1015#endif /* CONFIG_NO_HZ_FULL */
19dd1591 1016
9b2e4f18
PM
1017/**
1018 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1019 *
1020 * Enter an interrupt handler, which might possibly result in exiting
1021 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1022 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1023 *
1024 * Note that the Linux kernel is fully capable of entering an interrupt
1025 * handler that it never exits, for example when doing upcalls to
1026 * user mode! This code assumes that the idle loop never does upcalls to
1027 * user mode. If your architecture does do upcalls from the idle loop (or
1028 * does anything else that results in unbalanced calls to the irq_enter()
1029 * and irq_exit() functions), RCU will give you what you deserve, good
1030 * and hard. But very infrequently and irreproducibly.
1031 *
1032 * Use things like work queues to work around this limitation.
1033 *
1034 * You have been warned.
1035 */
1036void rcu_irq_enter(void)
1037{
9b2e4f18
PM
1038 struct rcu_dynticks *rdtp;
1039 long long oldval;
1040
7c9906ca 1041 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1042 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1043 oldval = rdtp->dynticks_nesting;
1044 rdtp->dynticks_nesting++;
1ce46ee5
PM
1045 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1046 rdtp->dynticks_nesting == 0);
b6fc6020 1047 if (oldval)
f7f7bac9 1048 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1049 else
28ced795
CL
1050 rcu_eqs_exit_common(oldval, true);
1051 rcu_sysidle_exit(1);
7c9906ca
PM
1052}
1053
1054/*
1055 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1056 */
1057void rcu_irq_enter_irqson(void)
1058{
1059 unsigned long flags;
1060
1061 local_irq_save(flags);
1062 rcu_irq_enter();
64db4cff 1063 local_irq_restore(flags);
64db4cff
PM
1064}
1065
1066/**
1067 * rcu_nmi_enter - inform RCU of entry to NMI context
1068 *
734d1680
PM
1069 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1070 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1071 * that the CPU is active. This implementation permits nested NMIs, as
1072 * long as the nesting level does not overflow an int. (You will probably
1073 * run out of stack space first.)
64db4cff
PM
1074 */
1075void rcu_nmi_enter(void)
1076{
c9d4b0af 1077 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1078 int incby = 2;
64db4cff 1079
734d1680
PM
1080 /* Complain about underflow. */
1081 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1082
1083 /*
1084 * If idle from RCU viewpoint, atomically increment ->dynticks
1085 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1086 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1087 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1088 * to be in the outermost NMI handler that interrupted an RCU-idle
1089 * period (observation due to Andy Lutomirski).
1090 */
02a5c550 1091 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1092 rcu_dynticks_eqs_exit();
734d1680
PM
1093 incby = 1;
1094 }
1095 rdtp->dynticks_nmi_nesting += incby;
1096 barrier();
64db4cff
PM
1097}
1098
1099/**
1100 * rcu_nmi_exit - inform RCU of exit from NMI context
1101 *
734d1680
PM
1102 * If we are returning from the outermost NMI handler that interrupted an
1103 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1104 * to let the RCU grace-period handling know that the CPU is back to
1105 * being RCU-idle.
64db4cff
PM
1106 */
1107void rcu_nmi_exit(void)
1108{
c9d4b0af 1109 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1110
734d1680
PM
1111 /*
1112 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1113 * (We are exiting an NMI handler, so RCU better be paying attention
1114 * to us!)
1115 */
1116 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1117 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1118
1119 /*
1120 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1121 * leave it in non-RCU-idle state.
1122 */
1123 if (rdtp->dynticks_nmi_nesting != 1) {
1124 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1125 return;
734d1680
PM
1126 }
1127
1128 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1129 rdtp->dynticks_nmi_nesting = 0;
2625d469 1130 rcu_dynticks_eqs_enter();
64db4cff
PM
1131}
1132
1133/**
5c173eb8
PM
1134 * __rcu_is_watching - are RCU read-side critical sections safe?
1135 *
1136 * Return true if RCU is watching the running CPU, which means that
1137 * this CPU can safely enter RCU read-side critical sections. Unlike
1138 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1139 * least disabled preemption.
1140 */
9418fb20 1141bool notrace __rcu_is_watching(void)
5c173eb8 1142{
02a5c550 1143 return !rcu_dynticks_curr_cpu_in_eqs();
5c173eb8
PM
1144}
1145
1146/**
1147 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1148 *
9b2e4f18 1149 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1150 * or NMI handler, return true.
64db4cff 1151 */
9418fb20 1152bool notrace rcu_is_watching(void)
64db4cff 1153{
f534ed1f 1154 bool ret;
34240697 1155
46f00d18 1156 preempt_disable_notrace();
5c173eb8 1157 ret = __rcu_is_watching();
46f00d18 1158 preempt_enable_notrace();
34240697 1159 return ret;
64db4cff 1160}
5c173eb8 1161EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1162
62fde6ed 1163#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1164
1165/*
1166 * Is the current CPU online? Disable preemption to avoid false positives
1167 * that could otherwise happen due to the current CPU number being sampled,
1168 * this task being preempted, its old CPU being taken offline, resuming
1169 * on some other CPU, then determining that its old CPU is now offline.
1170 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1171 * the check for rcu_scheduler_fully_active. Note also that it is OK
1172 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1173 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1174 * offline to continue to use RCU for one jiffy after marking itself
1175 * offline in the cpu_online_mask. This leniency is necessary given the
1176 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1177 * the fact that a CPU enters the scheduler after completing the teardown
1178 * of the CPU.
2036d94a 1179 *
4df83742
TG
1180 * This is also why RCU internally marks CPUs online during in the
1181 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1182 *
1183 * Disable checking if in an NMI handler because we cannot safely report
1184 * errors from NMI handlers anyway.
1185 */
1186bool rcu_lockdep_current_cpu_online(void)
1187{
2036d94a
PM
1188 struct rcu_data *rdp;
1189 struct rcu_node *rnp;
c0d6d01b
PM
1190 bool ret;
1191
1192 if (in_nmi())
f6f7ee9a 1193 return true;
c0d6d01b 1194 preempt_disable();
c9d4b0af 1195 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1196 rnp = rdp->mynode;
0aa04b05 1197 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1198 !rcu_scheduler_fully_active;
1199 preempt_enable();
1200 return ret;
1201}
1202EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1203
62fde6ed 1204#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1205
64db4cff 1206/**
9b2e4f18 1207 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1208 *
9b2e4f18
PM
1209 * If the current CPU is idle or running at a first-level (not nested)
1210 * interrupt from idle, return true. The caller must have at least
1211 * disabled preemption.
64db4cff 1212 */
62e3cb14 1213static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1214{
c9d4b0af 1215 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1216}
1217
64db4cff
PM
1218/*
1219 * Snapshot the specified CPU's dynticks counter so that we can later
1220 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1221 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1222 */
217af2a2
PM
1223static int dyntick_save_progress_counter(struct rcu_data *rdp,
1224 bool *isidle, unsigned long *maxj)
64db4cff 1225{
8b2f63ab 1226 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
0edd1b17 1227 rcu_sysidle_check_cpu(rdp, isidle, maxj);
02a5c550 1228 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1229 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1230 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1231 rdp->mynode->gpnum))
7d0ae808 1232 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1233 return 1;
7941dbde 1234 }
23a9bacd 1235 return 0;
64db4cff
PM
1236}
1237
1238/*
1239 * Return true if the specified CPU has passed through a quiescent
1240 * state by virtue of being in or having passed through an dynticks
1241 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1242 * for this same CPU, or by virtue of having been offline.
64db4cff 1243 */
217af2a2
PM
1244static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1245 bool *isidle, unsigned long *maxj)
64db4cff 1246{
3a19b46a 1247 unsigned long jtsq;
0f9be8ca 1248 bool *rnhqp;
3a19b46a
PM
1249 unsigned long rjtsc;
1250 struct rcu_node *rnp;
64db4cff
PM
1251
1252 /*
1253 * If the CPU passed through or entered a dynticks idle phase with
1254 * no active irq/NMI handlers, then we can safely pretend that the CPU
1255 * already acknowledged the request to pass through a quiescent
1256 * state. Either way, that CPU cannot possibly be in an RCU
1257 * read-side critical section that started before the beginning
1258 * of the current RCU grace period.
1259 */
02a5c550 1260 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1261 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1262 rdp->dynticks_fqs++;
1263 return 1;
1264 }
1265
3a19b46a
PM
1266 /* Compute and saturate jiffies_till_sched_qs. */
1267 jtsq = jiffies_till_sched_qs;
1268 rjtsc = rcu_jiffies_till_stall_check();
1269 if (jtsq > rjtsc / 2) {
1270 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1271 jtsq = rjtsc / 2;
1272 } else if (jtsq < 1) {
1273 WRITE_ONCE(jiffies_till_sched_qs, 1);
1274 jtsq = 1;
1275 }
1276
a82dcc76 1277 /*
3a19b46a
PM
1278 * Has this CPU encountered a cond_resched_rcu_qs() since the
1279 * beginning of the grace period? For this to be the case,
1280 * the CPU has to have noticed the current grace period. This
1281 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1282 */
3a19b46a
PM
1283 rnp = rdp->mynode;
1284 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1285 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1286 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1287 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1288 return 1;
1289 }
1290
38d30b33
PM
1291 /* Check for the CPU being offline. */
1292 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1293 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1294 rdp->offline_fqs++;
1295 return 1;
1296 }
65d798f0
PM
1297
1298 /*
4a81e832
PM
1299 * A CPU running for an extended time within the kernel can
1300 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1301 * even context-switching back and forth between a pair of
1302 * in-kernel CPU-bound tasks cannot advance grace periods.
1303 * So if the grace period is old enough, make the CPU pay attention.
1304 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1305 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1306 * bits can be lost, but they will be set again on the next
1307 * force-quiescent-state pass. So lost bit sets do not result
1308 * in incorrect behavior, merely in a grace period lasting
1309 * a few jiffies longer than it might otherwise. Because
1310 * there are at most four threads involved, and because the
1311 * updates are only once every few jiffies, the probability of
1312 * lossage (and thus of slight grace-period extension) is
1313 * quite low.
1314 *
1315 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1316 * is set too high, we override with half of the RCU CPU stall
1317 * warning delay.
6193c76a 1318 */
0f9be8ca
PM
1319 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1320 if (!READ_ONCE(*rnhqp) &&
1321 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1322 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1323 WRITE_ONCE(*rnhqp, true);
4914950a 1324 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1325 }
1326
28053bc7
PM
1327 /*
1328 * If more than halfway to RCU CPU stall-warning time, do
1329 * a resched_cpu() to try to loosen things up a bit.
1330 */
1331 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1332 resched_cpu(rdp->cpu);
4914950a 1333
a82dcc76 1334 return 0;
64db4cff
PM
1335}
1336
64db4cff
PM
1337static void record_gp_stall_check_time(struct rcu_state *rsp)
1338{
cb1e78cf 1339 unsigned long j = jiffies;
6193c76a 1340 unsigned long j1;
26cdfedf
PM
1341
1342 rsp->gp_start = j;
1343 smp_wmb(); /* Record start time before stall time. */
6193c76a 1344 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1345 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1346 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1347 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1348}
1349
6b50e119
PM
1350/*
1351 * Convert a ->gp_state value to a character string.
1352 */
1353static const char *gp_state_getname(short gs)
1354{
1355 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1356 return "???";
1357 return gp_state_names[gs];
1358}
1359
fb81a44b
PM
1360/*
1361 * Complain about starvation of grace-period kthread.
1362 */
1363static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1364{
1365 unsigned long gpa;
1366 unsigned long j;
1367
1368 j = jiffies;
7d0ae808 1369 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1370 if (j - gpa > 2 * HZ) {
6b50e119 1371 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1372 rsp->name, j - gpa,
319362c9 1373 rsp->gpnum, rsp->completed,
6b50e119
PM
1374 rsp->gp_flags,
1375 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1376 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1377 if (rsp->gp_kthread) {
b1adb3e2 1378 sched_show_task(rsp->gp_kthread);
86057b80
PM
1379 wake_up_process(rsp->gp_kthread);
1380 }
b1adb3e2 1381 }
64db4cff
PM
1382}
1383
b637a328 1384/*
7aa92230
PM
1385 * Dump stacks of all tasks running on stalled CPUs. First try using
1386 * NMIs, but fall back to manual remote stack tracing on architectures
1387 * that don't support NMI-based stack dumps. The NMI-triggered stack
1388 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1389 */
1390static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1391{
1392 int cpu;
1393 unsigned long flags;
1394 struct rcu_node *rnp;
1395
1396 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1397 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1398 for_each_leaf_node_possible_cpu(rnp, cpu)
1399 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1400 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1401 dump_cpu_task(cpu);
67c583a7 1402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1403 }
1404}
1405
8c7c4829
PM
1406/*
1407 * If too much time has passed in the current grace period, and if
1408 * so configured, go kick the relevant kthreads.
1409 */
1410static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1411{
1412 unsigned long j;
1413
1414 if (!rcu_kick_kthreads)
1415 return;
1416 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1417 if (time_after(jiffies, j) && rsp->gp_kthread &&
1418 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1419 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1420 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1421 wake_up_process(rsp->gp_kthread);
1422 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1423 }
1424}
1425
088e9d25
DBO
1426static inline void panic_on_rcu_stall(void)
1427{
1428 if (sysctl_panic_on_rcu_stall)
1429 panic("RCU Stall\n");
1430}
1431
6ccd2ecd 1432static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1433{
1434 int cpu;
1435 long delta;
1436 unsigned long flags;
6ccd2ecd
PM
1437 unsigned long gpa;
1438 unsigned long j;
285fe294 1439 int ndetected = 0;
64db4cff 1440 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1441 long totqlen = 0;
64db4cff 1442
8c7c4829
PM
1443 /* Kick and suppress, if so configured. */
1444 rcu_stall_kick_kthreads(rsp);
1445 if (rcu_cpu_stall_suppress)
1446 return;
1447
64db4cff
PM
1448 /* Only let one CPU complain about others per time interval. */
1449
6cf10081 1450 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1451 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1452 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1453 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1454 return;
1455 }
7d0ae808
PM
1456 WRITE_ONCE(rsp->jiffies_stall,
1457 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1458 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1459
8cdd32a9
PM
1460 /*
1461 * OK, time to rat on our buddy...
1462 * See Documentation/RCU/stallwarn.txt for info on how to debug
1463 * RCU CPU stall warnings.
1464 */
d7f3e207 1465 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1466 rsp->name);
a858af28 1467 print_cpu_stall_info_begin();
a0b6c9a7 1468 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1469 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1470 ndetected += rcu_print_task_stall(rnp);
c8020a67 1471 if (rnp->qsmask != 0) {
bc75e999
MR
1472 for_each_leaf_node_possible_cpu(rnp, cpu)
1473 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1474 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1475 ndetected++;
1476 }
1477 }
67c583a7 1478 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1479 }
a858af28 1480
a858af28 1481 print_cpu_stall_info_end();
53bb857c
PM
1482 for_each_possible_cpu(cpu)
1483 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1484 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1485 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1486 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1487 if (ndetected) {
b637a328 1488 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1489
1490 /* Complain about tasks blocking the grace period. */
1491 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1492 } else {
7d0ae808
PM
1493 if (READ_ONCE(rsp->gpnum) != gpnum ||
1494 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1495 pr_err("INFO: Stall ended before state dump start\n");
1496 } else {
1497 j = jiffies;
7d0ae808 1498 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1499 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1500 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1501 jiffies_till_next_fqs,
1502 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1503 /* In this case, the current CPU might be at fault. */
1504 sched_show_task(current);
1505 }
1506 }
c1dc0b9c 1507
fb81a44b
PM
1508 rcu_check_gp_kthread_starvation(rsp);
1509
088e9d25
DBO
1510 panic_on_rcu_stall();
1511
4cdfc175 1512 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1513}
1514
1515static void print_cpu_stall(struct rcu_state *rsp)
1516{
53bb857c 1517 int cpu;
64db4cff
PM
1518 unsigned long flags;
1519 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1520 long totqlen = 0;
64db4cff 1521
8c7c4829
PM
1522 /* Kick and suppress, if so configured. */
1523 rcu_stall_kick_kthreads(rsp);
1524 if (rcu_cpu_stall_suppress)
1525 return;
1526
8cdd32a9
PM
1527 /*
1528 * OK, time to rat on ourselves...
1529 * See Documentation/RCU/stallwarn.txt for info on how to debug
1530 * RCU CPU stall warnings.
1531 */
d7f3e207 1532 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1533 print_cpu_stall_info_begin();
1534 print_cpu_stall_info(rsp, smp_processor_id());
1535 print_cpu_stall_info_end();
53bb857c
PM
1536 for_each_possible_cpu(cpu)
1537 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1538 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1539 jiffies - rsp->gp_start,
1540 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1541
1542 rcu_check_gp_kthread_starvation(rsp);
1543
bc1dce51 1544 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1545
6cf10081 1546 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1547 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1548 WRITE_ONCE(rsp->jiffies_stall,
1549 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1550 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1551
088e9d25
DBO
1552 panic_on_rcu_stall();
1553
b021fe3e
PZ
1554 /*
1555 * Attempt to revive the RCU machinery by forcing a context switch.
1556 *
1557 * A context switch would normally allow the RCU state machine to make
1558 * progress and it could be we're stuck in kernel space without context
1559 * switches for an entirely unreasonable amount of time.
1560 */
1561 resched_cpu(smp_processor_id());
64db4cff
PM
1562}
1563
1564static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1565{
26cdfedf
PM
1566 unsigned long completed;
1567 unsigned long gpnum;
1568 unsigned long gps;
bad6e139
PM
1569 unsigned long j;
1570 unsigned long js;
64db4cff
PM
1571 struct rcu_node *rnp;
1572
8c7c4829
PM
1573 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1574 !rcu_gp_in_progress(rsp))
c68de209 1575 return;
8c7c4829 1576 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1577 j = jiffies;
26cdfedf
PM
1578
1579 /*
1580 * Lots of memory barriers to reject false positives.
1581 *
1582 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1583 * then rsp->gp_start, and finally rsp->completed. These values
1584 * are updated in the opposite order with memory barriers (or
1585 * equivalent) during grace-period initialization and cleanup.
1586 * Now, a false positive can occur if we get an new value of
1587 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1588 * the memory barriers, the only way that this can happen is if one
1589 * grace period ends and another starts between these two fetches.
1590 * Detect this by comparing rsp->completed with the previous fetch
1591 * from rsp->gpnum.
1592 *
1593 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1594 * and rsp->gp_start suffice to forestall false positives.
1595 */
7d0ae808 1596 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1597 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1598 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1599 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1600 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1601 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1602 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1603 if (ULONG_CMP_GE(completed, gpnum) ||
1604 ULONG_CMP_LT(j, js) ||
1605 ULONG_CMP_GE(gps, js))
1606 return; /* No stall or GP completed since entering function. */
64db4cff 1607 rnp = rdp->mynode;
c96ea7cf 1608 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1609 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1610
1611 /* We haven't checked in, so go dump stack. */
1612 print_cpu_stall(rsp);
1613
bad6e139
PM
1614 } else if (rcu_gp_in_progress(rsp) &&
1615 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1616
bad6e139 1617 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1618 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1619 }
1620}
1621
53d84e00
PM
1622/**
1623 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1624 *
1625 * Set the stall-warning timeout way off into the future, thus preventing
1626 * any RCU CPU stall-warning messages from appearing in the current set of
1627 * RCU grace periods.
1628 *
1629 * The caller must disable hard irqs.
1630 */
1631void rcu_cpu_stall_reset(void)
1632{
6ce75a23
PM
1633 struct rcu_state *rsp;
1634
1635 for_each_rcu_flavor(rsp)
7d0ae808 1636 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1637}
1638
3f5d3ea6 1639/*
d3f3f3f2
PM
1640 * Initialize the specified rcu_data structure's default callback list
1641 * to empty. The default callback list is the one that is not used by
1642 * no-callbacks CPUs.
3f5d3ea6 1643 */
d3f3f3f2 1644static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1645{
1646 int i;
1647
1648 rdp->nxtlist = NULL;
1649 for (i = 0; i < RCU_NEXT_SIZE; i++)
1650 rdp->nxttail[i] = &rdp->nxtlist;
1651}
1652
d3f3f3f2
PM
1653/*
1654 * Initialize the specified rcu_data structure's callback list to empty.
1655 */
1656static void init_callback_list(struct rcu_data *rdp)
1657{
1658 if (init_nocb_callback_list(rdp))
1659 return;
1660 init_default_callback_list(rdp);
1661}
1662
dc35c893
PM
1663/*
1664 * Determine the value that ->completed will have at the end of the
1665 * next subsequent grace period. This is used to tag callbacks so that
1666 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1667 * been dyntick-idle for an extended period with callbacks under the
1668 * influence of RCU_FAST_NO_HZ.
1669 *
1670 * The caller must hold rnp->lock with interrupts disabled.
1671 */
1672static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1673 struct rcu_node *rnp)
1674{
1675 /*
1676 * If RCU is idle, we just wait for the next grace period.
1677 * But we can only be sure that RCU is idle if we are looking
1678 * at the root rcu_node structure -- otherwise, a new grace
1679 * period might have started, but just not yet gotten around
1680 * to initializing the current non-root rcu_node structure.
1681 */
1682 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1683 return rnp->completed + 1;
1684
1685 /*
1686 * Otherwise, wait for a possible partial grace period and
1687 * then the subsequent full grace period.
1688 */
1689 return rnp->completed + 2;
1690}
1691
0446be48
PM
1692/*
1693 * Trace-event helper function for rcu_start_future_gp() and
1694 * rcu_nocb_wait_gp().
1695 */
1696static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1697 unsigned long c, const char *s)
0446be48
PM
1698{
1699 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1700 rnp->completed, c, rnp->level,
1701 rnp->grplo, rnp->grphi, s);
1702}
1703
1704/*
1705 * Start some future grace period, as needed to handle newly arrived
1706 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1707 * rcu_node structure's ->need_future_gp field. Returns true if there
1708 * is reason to awaken the grace-period kthread.
0446be48
PM
1709 *
1710 * The caller must hold the specified rcu_node structure's ->lock.
1711 */
48a7639c
PM
1712static bool __maybe_unused
1713rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1714 unsigned long *c_out)
0446be48
PM
1715{
1716 unsigned long c;
1717 int i;
48a7639c 1718 bool ret = false;
0446be48
PM
1719 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1720
1721 /*
1722 * Pick up grace-period number for new callbacks. If this
1723 * grace period is already marked as needed, return to the caller.
1724 */
1725 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1726 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1727 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1728 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1729 goto out;
0446be48
PM
1730 }
1731
1732 /*
1733 * If either this rcu_node structure or the root rcu_node structure
1734 * believe that a grace period is in progress, then we must wait
1735 * for the one following, which is in "c". Because our request
1736 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1737 * need to explicitly start one. We only do the lockless check
1738 * of rnp_root's fields if the current rcu_node structure thinks
1739 * there is no grace period in flight, and because we hold rnp->lock,
1740 * the only possible change is when rnp_root's two fields are
1741 * equal, in which case rnp_root->gpnum might be concurrently
1742 * incremented. But that is OK, as it will just result in our
1743 * doing some extra useless work.
0446be48
PM
1744 */
1745 if (rnp->gpnum != rnp->completed ||
7d0ae808 1746 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1747 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1748 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1749 goto out;
0446be48
PM
1750 }
1751
1752 /*
1753 * There might be no grace period in progress. If we don't already
1754 * hold it, acquire the root rcu_node structure's lock in order to
1755 * start one (if needed).
1756 */
2a67e741
PZ
1757 if (rnp != rnp_root)
1758 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1759
1760 /*
1761 * Get a new grace-period number. If there really is no grace
1762 * period in progress, it will be smaller than the one we obtained
1763 * earlier. Adjust callbacks as needed. Note that even no-CBs
1764 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1765 */
1766 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1767 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1768 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1769 rdp->nxtcompleted[i] = c;
1770
1771 /*
1772 * If the needed for the required grace period is already
1773 * recorded, trace and leave.
1774 */
1775 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1776 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1777 goto unlock_out;
1778 }
1779
1780 /* Record the need for the future grace period. */
1781 rnp_root->need_future_gp[c & 0x1]++;
1782
1783 /* If a grace period is not already in progress, start one. */
1784 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1785 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1786 } else {
f7f7bac9 1787 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1788 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1789 }
1790unlock_out:
1791 if (rnp != rnp_root)
67c583a7 1792 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1793out:
1794 if (c_out != NULL)
1795 *c_out = c;
1796 return ret;
0446be48
PM
1797}
1798
1799/*
1800 * Clean up any old requests for the just-ended grace period. Also return
1801 * whether any additional grace periods have been requested. Also invoke
1802 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1803 * waiting for this grace period to complete.
1804 */
1805static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1806{
1807 int c = rnp->completed;
1808 int needmore;
1809 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1810
0446be48
PM
1811 rnp->need_future_gp[c & 0x1] = 0;
1812 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1813 trace_rcu_future_gp(rnp, rdp, c,
1814 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1815 return needmore;
1816}
1817
48a7639c
PM
1818/*
1819 * Awaken the grace-period kthread for the specified flavor of RCU.
1820 * Don't do a self-awaken, and don't bother awakening when there is
1821 * nothing for the grace-period kthread to do (as in several CPUs
1822 * raced to awaken, and we lost), and finally don't try to awaken
1823 * a kthread that has not yet been created.
1824 */
1825static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1826{
1827 if (current == rsp->gp_kthread ||
7d0ae808 1828 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1829 !rsp->gp_kthread)
1830 return;
abedf8e2 1831 swake_up(&rsp->gp_wq);
48a7639c
PM
1832}
1833
dc35c893
PM
1834/*
1835 * If there is room, assign a ->completed number to any callbacks on
1836 * this CPU that have not already been assigned. Also accelerate any
1837 * callbacks that were previously assigned a ->completed number that has
1838 * since proven to be too conservative, which can happen if callbacks get
1839 * assigned a ->completed number while RCU is idle, but with reference to
1840 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1841 * not hurt to call it repeatedly. Returns an flag saying that we should
1842 * awaken the RCU grace-period kthread.
dc35c893
PM
1843 *
1844 * The caller must hold rnp->lock with interrupts disabled.
1845 */
48a7639c 1846static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1847 struct rcu_data *rdp)
1848{
1849 unsigned long c;
1850 int i;
48a7639c 1851 bool ret;
dc35c893
PM
1852
1853 /* If the CPU has no callbacks, nothing to do. */
1854 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1855 return false;
dc35c893
PM
1856
1857 /*
1858 * Starting from the sublist containing the callbacks most
1859 * recently assigned a ->completed number and working down, find the
1860 * first sublist that is not assignable to an upcoming grace period.
1861 * Such a sublist has something in it (first two tests) and has
1862 * a ->completed number assigned that will complete sooner than
1863 * the ->completed number for newly arrived callbacks (last test).
1864 *
1865 * The key point is that any later sublist can be assigned the
1866 * same ->completed number as the newly arrived callbacks, which
1867 * means that the callbacks in any of these later sublist can be
1868 * grouped into a single sublist, whether or not they have already
1869 * been assigned a ->completed number.
1870 */
1871 c = rcu_cbs_completed(rsp, rnp);
1872 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1873 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1874 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1875 break;
1876
1877 /*
1878 * If there are no sublist for unassigned callbacks, leave.
1879 * At the same time, advance "i" one sublist, so that "i" will
1880 * index into the sublist where all the remaining callbacks should
1881 * be grouped into.
1882 */
1883 if (++i >= RCU_NEXT_TAIL)
48a7639c 1884 return false;
dc35c893
PM
1885
1886 /*
1887 * Assign all subsequent callbacks' ->completed number to the next
1888 * full grace period and group them all in the sublist initially
1889 * indexed by "i".
1890 */
1891 for (; i <= RCU_NEXT_TAIL; i++) {
1892 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1893 rdp->nxtcompleted[i] = c;
1894 }
910ee45d 1895 /* Record any needed additional grace periods. */
48a7639c 1896 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1897
1898 /* Trace depending on how much we were able to accelerate. */
1899 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1900 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1901 else
f7f7bac9 1902 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1903 return ret;
dc35c893
PM
1904}
1905
1906/*
1907 * Move any callbacks whose grace period has completed to the
1908 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1909 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1910 * sublist. This function is idempotent, so it does not hurt to
1911 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1912 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1913 *
1914 * The caller must hold rnp->lock with interrupts disabled.
1915 */
48a7639c 1916static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1917 struct rcu_data *rdp)
1918{
1919 int i, j;
1920
1921 /* If the CPU has no callbacks, nothing to do. */
1922 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1923 return false;
dc35c893
PM
1924
1925 /*
1926 * Find all callbacks whose ->completed numbers indicate that they
1927 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1928 */
1929 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1930 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1931 break;
1932 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1933 }
1934 /* Clean up any sublist tail pointers that were misordered above. */
1935 for (j = RCU_WAIT_TAIL; j < i; j++)
1936 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1937
1938 /* Copy down callbacks to fill in empty sublists. */
1939 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1940 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1941 break;
1942 rdp->nxttail[j] = rdp->nxttail[i];
1943 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1944 }
1945
1946 /* Classify any remaining callbacks. */
48a7639c 1947 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1948}
1949
d09b62df 1950/*
ba9fbe95
PM
1951 * Update CPU-local rcu_data state to record the beginnings and ends of
1952 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1953 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1954 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1955 */
48a7639c
PM
1956static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1957 struct rcu_data *rdp)
d09b62df 1958{
48a7639c 1959 bool ret;
3563a438 1960 bool need_gp;
48a7639c 1961
ba9fbe95 1962 /* Handle the ends of any preceding grace periods first. */
e3663b10 1963 if (rdp->completed == rnp->completed &&
7d0ae808 1964 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1965
ba9fbe95 1966 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1967 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1968
dc35c893
PM
1969 } else {
1970
1971 /* Advance callbacks. */
48a7639c 1972 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1973
1974 /* Remember that we saw this grace-period completion. */
1975 rdp->completed = rnp->completed;
f7f7bac9 1976 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1977 }
398ebe60 1978
7d0ae808 1979 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1980 /*
1981 * If the current grace period is waiting for this CPU,
1982 * set up to detect a quiescent state, otherwise don't
1983 * go looking for one.
1984 */
1985 rdp->gpnum = rnp->gpnum;
f7f7bac9 1986 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1987 need_gp = !!(rnp->qsmask & rdp->grpmask);
1988 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1989 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1990 rdp->core_needs_qs = need_gp;
6eaef633 1991 zero_cpu_stall_ticks(rdp);
7d0ae808 1992 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1993 }
48a7639c 1994 return ret;
6eaef633
PM
1995}
1996
d34ea322 1997static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1998{
1999 unsigned long flags;
48a7639c 2000 bool needwake;
6eaef633
PM
2001 struct rcu_node *rnp;
2002
2003 local_irq_save(flags);
2004 rnp = rdp->mynode;
7d0ae808
PM
2005 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
2006 rdp->completed == READ_ONCE(rnp->completed) &&
2007 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 2008 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
2009 local_irq_restore(flags);
2010 return;
2011 }
48a7639c 2012 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 2013 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
2014 if (needwake)
2015 rcu_gp_kthread_wake(rsp);
6eaef633
PM
2016}
2017
0f41c0dd
PM
2018static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2019{
2020 if (delay > 0 &&
2021 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2022 schedule_timeout_uninterruptible(delay);
2023}
2024
b3dbec76 2025/*
45fed3e7 2026 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 2027 */
45fed3e7 2028static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 2029{
0aa04b05 2030 unsigned long oldmask;
b3dbec76 2031 struct rcu_data *rdp;
7fdefc10 2032 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 2033
7d0ae808 2034 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2035 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 2036 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 2037 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 2038 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2039 return false;
f7be8209 2040 }
7d0ae808 2041 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 2042
f7be8209
PM
2043 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2044 /*
2045 * Grace period already in progress, don't start another.
2046 * Not supposed to be able to happen.
2047 */
67c583a7 2048 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2049 return false;
7fdefc10
PM
2050 }
2051
7fdefc10 2052 /* Advance to a new grace period and initialize state. */
26cdfedf 2053 record_gp_stall_check_time(rsp);
765a3f4f
PM
2054 /* Record GP times before starting GP, hence smp_store_release(). */
2055 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 2056 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 2057 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 2058
0aa04b05
PM
2059 /*
2060 * Apply per-leaf buffered online and offline operations to the
2061 * rcu_node tree. Note that this new grace period need not wait
2062 * for subsequent online CPUs, and that quiescent-state forcing
2063 * will handle subsequent offline CPUs.
2064 */
2065 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2066 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2067 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2068 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2069 !rnp->wait_blkd_tasks) {
2070 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2071 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2072 continue;
2073 }
2074
2075 /* Record old state, apply changes to ->qsmaskinit field. */
2076 oldmask = rnp->qsmaskinit;
2077 rnp->qsmaskinit = rnp->qsmaskinitnext;
2078
2079 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2080 if (!oldmask != !rnp->qsmaskinit) {
2081 if (!oldmask) /* First online CPU for this rcu_node. */
2082 rcu_init_new_rnp(rnp);
2083 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2084 rnp->wait_blkd_tasks = true;
2085 else /* Last offline CPU and can propagate. */
2086 rcu_cleanup_dead_rnp(rnp);
2087 }
2088
2089 /*
2090 * If all waited-on tasks from prior grace period are
2091 * done, and if all this rcu_node structure's CPUs are
2092 * still offline, propagate up the rcu_node tree and
2093 * clear ->wait_blkd_tasks. Otherwise, if one of this
2094 * rcu_node structure's CPUs has since come back online,
2095 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2096 * checks for this, so just call it unconditionally).
2097 */
2098 if (rnp->wait_blkd_tasks &&
2099 (!rcu_preempt_has_tasks(rnp) ||
2100 rnp->qsmaskinit)) {
2101 rnp->wait_blkd_tasks = false;
2102 rcu_cleanup_dead_rnp(rnp);
2103 }
2104
67c583a7 2105 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2106 }
7fdefc10
PM
2107
2108 /*
2109 * Set the quiescent-state-needed bits in all the rcu_node
2110 * structures for all currently online CPUs in breadth-first order,
2111 * starting from the root rcu_node structure, relying on the layout
2112 * of the tree within the rsp->node[] array. Note that other CPUs
2113 * will access only the leaves of the hierarchy, thus seeing that no
2114 * grace period is in progress, at least until the corresponding
590d1757 2115 * leaf node has been initialized.
7fdefc10
PM
2116 *
2117 * The grace period cannot complete until the initialization
2118 * process finishes, because this kthread handles both.
2119 */
2120 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2121 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2122 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2123 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2124 rcu_preempt_check_blocked_tasks(rnp);
2125 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2126 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2127 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2128 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2129 if (rnp == rdp->mynode)
48a7639c 2130 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2131 rcu_preempt_boost_start_gp(rnp);
2132 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2133 rnp->level, rnp->grplo,
2134 rnp->grphi, rnp->qsmask);
67c583a7 2135 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2136 cond_resched_rcu_qs();
7d0ae808 2137 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2138 }
b3dbec76 2139
45fed3e7 2140 return true;
7fdefc10 2141}
b3dbec76 2142
b9a425cf
PM
2143/*
2144 * Helper function for wait_event_interruptible_timeout() wakeup
2145 * at force-quiescent-state time.
2146 */
2147static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2148{
2149 struct rcu_node *rnp = rcu_get_root(rsp);
2150
2151 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2152 *gfp = READ_ONCE(rsp->gp_flags);
2153 if (*gfp & RCU_GP_FLAG_FQS)
2154 return true;
2155
2156 /* The current grace period has completed. */
2157 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2158 return true;
2159
2160 return false;
2161}
2162
4cdfc175
PM
2163/*
2164 * Do one round of quiescent-state forcing.
2165 */
77f81fe0 2166static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2167{
217af2a2
PM
2168 bool isidle = false;
2169 unsigned long maxj;
4cdfc175
PM
2170 struct rcu_node *rnp = rcu_get_root(rsp);
2171
7d0ae808 2172 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2173 rsp->n_force_qs++;
77f81fe0 2174 if (first_time) {
4cdfc175 2175 /* Collect dyntick-idle snapshots. */
0edd1b17 2176 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2177 isidle = true;
0edd1b17
PM
2178 maxj = jiffies - ULONG_MAX / 4;
2179 }
217af2a2
PM
2180 force_qs_rnp(rsp, dyntick_save_progress_counter,
2181 &isidle, &maxj);
0edd1b17 2182 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2183 } else {
2184 /* Handle dyntick-idle and offline CPUs. */
675da67f 2185 isidle = true;
217af2a2 2186 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2187 }
2188 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2189 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2190 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2191 WRITE_ONCE(rsp->gp_flags,
2192 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2193 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2194 }
4cdfc175
PM
2195}
2196
7fdefc10
PM
2197/*
2198 * Clean up after the old grace period.
2199 */
4cdfc175 2200static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2201{
2202 unsigned long gp_duration;
48a7639c 2203 bool needgp = false;
dae6e64d 2204 int nocb = 0;
7fdefc10
PM
2205 struct rcu_data *rdp;
2206 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2207 struct swait_queue_head *sq;
b3dbec76 2208
7d0ae808 2209 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2210 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2211 gp_duration = jiffies - rsp->gp_start;
2212 if (gp_duration > rsp->gp_max)
2213 rsp->gp_max = gp_duration;
b3dbec76 2214
7fdefc10
PM
2215 /*
2216 * We know the grace period is complete, but to everyone else
2217 * it appears to still be ongoing. But it is also the case
2218 * that to everyone else it looks like there is nothing that
2219 * they can do to advance the grace period. It is therefore
2220 * safe for us to drop the lock in order to mark the grace
2221 * period as completed in all of the rcu_node structures.
7fdefc10 2222 */
67c583a7 2223 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2224
5d4b8659
PM
2225 /*
2226 * Propagate new ->completed value to rcu_node structures so
2227 * that other CPUs don't have to wait until the start of the next
2228 * grace period to process their callbacks. This also avoids
2229 * some nasty RCU grace-period initialization races by forcing
2230 * the end of the current grace period to be completely recorded in
2231 * all of the rcu_node structures before the beginning of the next
2232 * grace period is recorded in any of the rcu_node structures.
2233 */
2234 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2235 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2236 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2237 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2238 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2239 rdp = this_cpu_ptr(rsp->rda);
2240 if (rnp == rdp->mynode)
48a7639c 2241 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2242 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2243 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2244 sq = rcu_nocb_gp_get(rnp);
67c583a7 2245 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2246 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2247 cond_resched_rcu_qs();
7d0ae808 2248 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2249 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2250 }
5d4b8659 2251 rnp = rcu_get_root(rsp);
2a67e741 2252 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2253 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2254
765a3f4f 2255 /* Declare grace period done. */
7d0ae808 2256 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2257 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2258 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2259 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2260 /* Advance CBs to reduce false positives below. */
2261 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2262 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2263 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2264 trace_rcu_grace_period(rsp->name,
7d0ae808 2265 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2266 TPS("newreq"));
2267 }
67c583a7 2268 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2269}
2270
2271/*
2272 * Body of kthread that handles grace periods.
2273 */
2274static int __noreturn rcu_gp_kthread(void *arg)
2275{
77f81fe0 2276 bool first_gp_fqs;
88d6df61 2277 int gf;
d40011f6 2278 unsigned long j;
4cdfc175 2279 int ret;
7fdefc10
PM
2280 struct rcu_state *rsp = arg;
2281 struct rcu_node *rnp = rcu_get_root(rsp);
2282
5871968d 2283 rcu_bind_gp_kthread();
7fdefc10
PM
2284 for (;;) {
2285
2286 /* Handle grace-period start. */
2287 for (;;) {
63c4db78 2288 trace_rcu_grace_period(rsp->name,
7d0ae808 2289 READ_ONCE(rsp->gpnum),
63c4db78 2290 TPS("reqwait"));
afea227f 2291 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2292 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2293 READ_ONCE(rsp->gp_flags) &
4cdfc175 2294 RCU_GP_FLAG_INIT);
319362c9 2295 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2296 /* Locking provides needed memory barrier. */
f7be8209 2297 if (rcu_gp_init(rsp))
7fdefc10 2298 break;
bde6c3aa 2299 cond_resched_rcu_qs();
7d0ae808 2300 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2301 WARN_ON(signal_pending(current));
63c4db78 2302 trace_rcu_grace_period(rsp->name,
7d0ae808 2303 READ_ONCE(rsp->gpnum),
63c4db78 2304 TPS("reqwaitsig"));
7fdefc10 2305 }
cabc49c1 2306
4cdfc175 2307 /* Handle quiescent-state forcing. */
77f81fe0 2308 first_gp_fqs = true;
d40011f6
PM
2309 j = jiffies_till_first_fqs;
2310 if (j > HZ) {
2311 j = HZ;
2312 jiffies_till_first_fqs = HZ;
2313 }
88d6df61 2314 ret = 0;
cabc49c1 2315 for (;;) {
8c7c4829 2316 if (!ret) {
88d6df61 2317 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2318 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2319 jiffies + 3 * j);
2320 }
63c4db78 2321 trace_rcu_grace_period(rsp->name,
7d0ae808 2322 READ_ONCE(rsp->gpnum),
63c4db78 2323 TPS("fqswait"));
afea227f 2324 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2325 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2326 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2327 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2328 /* Locking provides needed memory barriers. */
4cdfc175 2329 /* If grace period done, leave loop. */
7d0ae808 2330 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2331 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2332 break;
4cdfc175 2333 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2334 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2335 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2336 trace_rcu_grace_period(rsp->name,
7d0ae808 2337 READ_ONCE(rsp->gpnum),
63c4db78 2338 TPS("fqsstart"));
77f81fe0
PM
2339 rcu_gp_fqs(rsp, first_gp_fqs);
2340 first_gp_fqs = false;
63c4db78 2341 trace_rcu_grace_period(rsp->name,
7d0ae808 2342 READ_ONCE(rsp->gpnum),
63c4db78 2343 TPS("fqsend"));
bde6c3aa 2344 cond_resched_rcu_qs();
7d0ae808 2345 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2346 ret = 0; /* Force full wait till next FQS. */
2347 j = jiffies_till_next_fqs;
2348 if (j > HZ) {
2349 j = HZ;
2350 jiffies_till_next_fqs = HZ;
2351 } else if (j < 1) {
2352 j = 1;
2353 jiffies_till_next_fqs = 1;
2354 }
4cdfc175
PM
2355 } else {
2356 /* Deal with stray signal. */
bde6c3aa 2357 cond_resched_rcu_qs();
7d0ae808 2358 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2359 WARN_ON(signal_pending(current));
63c4db78 2360 trace_rcu_grace_period(rsp->name,
7d0ae808 2361 READ_ONCE(rsp->gpnum),
63c4db78 2362 TPS("fqswaitsig"));
fcfd0a23
PM
2363 ret = 1; /* Keep old FQS timing. */
2364 j = jiffies;
2365 if (time_after(jiffies, rsp->jiffies_force_qs))
2366 j = 1;
2367 else
2368 j = rsp->jiffies_force_qs - j;
d40011f6 2369 }
cabc49c1 2370 }
4cdfc175
PM
2371
2372 /* Handle grace-period end. */
319362c9 2373 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2374 rcu_gp_cleanup(rsp);
319362c9 2375 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2376 }
b3dbec76
PM
2377}
2378
64db4cff
PM
2379/*
2380 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2381 * in preparation for detecting the next grace period. The caller must hold
b8462084 2382 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2383 *
2384 * Note that it is legal for a dying CPU (which is marked as offline) to
2385 * invoke this function. This can happen when the dying CPU reports its
2386 * quiescent state.
48a7639c
PM
2387 *
2388 * Returns true if the grace-period kthread must be awakened.
64db4cff 2389 */
48a7639c 2390static bool
910ee45d
PM
2391rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2392 struct rcu_data *rdp)
64db4cff 2393{
b8462084 2394 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2395 /*
b3dbec76 2396 * Either we have not yet spawned the grace-period
62da1921
PM
2397 * task, this CPU does not need another grace period,
2398 * or a grace period is already in progress.
b3dbec76 2399 * Either way, don't start a new grace period.
afe24b12 2400 */
48a7639c 2401 return false;
afe24b12 2402 }
7d0ae808
PM
2403 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2404 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2405 TPS("newreq"));
62da1921 2406
016a8d5b
SR
2407 /*
2408 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2409 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2410 * the wakeup to our caller.
016a8d5b 2411 */
48a7639c 2412 return true;
64db4cff
PM
2413}
2414
910ee45d
PM
2415/*
2416 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2417 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2418 * is invoked indirectly from rcu_advance_cbs(), which would result in
2419 * endless recursion -- or would do so if it wasn't for the self-deadlock
2420 * that is encountered beforehand.
48a7639c
PM
2421 *
2422 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2423 */
48a7639c 2424static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2425{
2426 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2427 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2428 bool ret = false;
910ee45d
PM
2429
2430 /*
2431 * If there is no grace period in progress right now, any
2432 * callbacks we have up to this point will be satisfied by the
2433 * next grace period. Also, advancing the callbacks reduces the
2434 * probability of false positives from cpu_needs_another_gp()
2435 * resulting in pointless grace periods. So, advance callbacks
2436 * then start the grace period!
2437 */
48a7639c
PM
2438 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2439 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2440 return ret;
910ee45d
PM
2441}
2442
f41d911f 2443/*
8994515c
PM
2444 * Report a full set of quiescent states to the specified rcu_state data
2445 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2446 * kthread if another grace period is required. Whether we wake
2447 * the grace-period kthread or it awakens itself for the next round
2448 * of quiescent-state forcing, that kthread will clean up after the
2449 * just-completed grace period. Note that the caller must hold rnp->lock,
2450 * which is released before return.
f41d911f 2451 */
d3f6bad3 2452static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2453 __releases(rcu_get_root(rsp)->lock)
f41d911f 2454{
fc2219d4 2455 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2456 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2457 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2458 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2459}
2460
64db4cff 2461/*
d3f6bad3
PM
2462 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2463 * Allows quiescent states for a group of CPUs to be reported at one go
2464 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2465 * must be represented by the same rcu_node structure (which need not be a
2466 * leaf rcu_node structure, though it often will be). The gps parameter
2467 * is the grace-period snapshot, which means that the quiescent states
2468 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2469 * must be held upon entry, and it is released before return.
64db4cff
PM
2470 */
2471static void
d3f6bad3 2472rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2473 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2474 __releases(rnp->lock)
2475{
654e9533 2476 unsigned long oldmask = 0;
28ecd580
PM
2477 struct rcu_node *rnp_c;
2478
64db4cff
PM
2479 /* Walk up the rcu_node hierarchy. */
2480 for (;;) {
654e9533 2481 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2482
654e9533
PM
2483 /*
2484 * Our bit has already been cleared, or the
2485 * relevant grace period is already over, so done.
2486 */
67c583a7 2487 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2488 return;
2489 }
654e9533 2490 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2491 rnp->qsmask &= ~mask;
d4c08f2a
PM
2492 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2493 mask, rnp->qsmask, rnp->level,
2494 rnp->grplo, rnp->grphi,
2495 !!rnp->gp_tasks);
27f4d280 2496 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2497
2498 /* Other bits still set at this level, so done. */
67c583a7 2499 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2500 return;
2501 }
2502 mask = rnp->grpmask;
2503 if (rnp->parent == NULL) {
2504
2505 /* No more levels. Exit loop holding root lock. */
2506
2507 break;
2508 }
67c583a7 2509 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2510 rnp_c = rnp;
64db4cff 2511 rnp = rnp->parent;
2a67e741 2512 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2513 oldmask = rnp_c->qsmask;
64db4cff
PM
2514 }
2515
2516 /*
2517 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2518 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2519 * to clean up and start the next grace period if one is needed.
64db4cff 2520 */
d3f6bad3 2521 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2522}
2523
cc99a310
PM
2524/*
2525 * Record a quiescent state for all tasks that were previously queued
2526 * on the specified rcu_node structure and that were blocking the current
2527 * RCU grace period. The caller must hold the specified rnp->lock with
2528 * irqs disabled, and this lock is released upon return, but irqs remain
2529 * disabled.
2530 */
0aa04b05 2531static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2532 struct rcu_node *rnp, unsigned long flags)
2533 __releases(rnp->lock)
2534{
654e9533 2535 unsigned long gps;
cc99a310
PM
2536 unsigned long mask;
2537 struct rcu_node *rnp_p;
2538
a77da14c
PM
2539 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2540 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2541 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2542 return; /* Still need more quiescent states! */
2543 }
2544
2545 rnp_p = rnp->parent;
2546 if (rnp_p == NULL) {
2547 /*
a77da14c
PM
2548 * Only one rcu_node structure in the tree, so don't
2549 * try to report up to its nonexistent parent!
cc99a310
PM
2550 */
2551 rcu_report_qs_rsp(rsp, flags);
2552 return;
2553 }
2554
654e9533
PM
2555 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2556 gps = rnp->gpnum;
cc99a310 2557 mask = rnp->grpmask;
67c583a7 2558 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2559 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2560 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2561}
2562
64db4cff 2563/*
d3f6bad3 2564 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2565 * structure. This must be called from the specified CPU.
64db4cff
PM
2566 */
2567static void
d7d6a11e 2568rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2569{
2570 unsigned long flags;
2571 unsigned long mask;
48a7639c 2572 bool needwake;
64db4cff
PM
2573 struct rcu_node *rnp;
2574
2575 rnp = rdp->mynode;
2a67e741 2576 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2577 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2578 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2579
2580 /*
e4cc1f22
PM
2581 * The grace period in which this quiescent state was
2582 * recorded has ended, so don't report it upwards.
2583 * We will instead need a new quiescent state that lies
2584 * within the current grace period.
64db4cff 2585 */
5b74c458 2586 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2587 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2588 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2589 return;
2590 }
2591 mask = rdp->grpmask;
2592 if ((rnp->qsmask & mask) == 0) {
67c583a7 2593 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2594 } else {
bb53e416 2595 rdp->core_needs_qs = false;
64db4cff
PM
2596
2597 /*
2598 * This GP can't end until cpu checks in, so all of our
2599 * callbacks can be processed during the next GP.
2600 */
48a7639c 2601 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2602
654e9533
PM
2603 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2604 /* ^^^ Released rnp->lock */
48a7639c
PM
2605 if (needwake)
2606 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2607 }
2608}
2609
2610/*
2611 * Check to see if there is a new grace period of which this CPU
2612 * is not yet aware, and if so, set up local rcu_data state for it.
2613 * Otherwise, see if this CPU has just passed through its first
2614 * quiescent state for this grace period, and record that fact if so.
2615 */
2616static void
2617rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2618{
05eb552b
PM
2619 /* Check for grace-period ends and beginnings. */
2620 note_gp_changes(rsp, rdp);
64db4cff
PM
2621
2622 /*
2623 * Does this CPU still need to do its part for current grace period?
2624 * If no, return and let the other CPUs do their part as well.
2625 */
97c668b8 2626 if (!rdp->core_needs_qs)
64db4cff
PM
2627 return;
2628
2629 /*
2630 * Was there a quiescent state since the beginning of the grace
2631 * period? If no, then exit and wait for the next call.
2632 */
3a19b46a 2633 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2634 return;
2635
d3f6bad3
PM
2636 /*
2637 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2638 * judge of that).
2639 */
d7d6a11e 2640 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2641}
2642
e74f4c45 2643/*
b1420f1c
PM
2644 * Send the specified CPU's RCU callbacks to the orphanage. The
2645 * specified CPU must be offline, and the caller must hold the
7b2e6011 2646 * ->orphan_lock.
e74f4c45 2647 */
b1420f1c
PM
2648static void
2649rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2650 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2651{
3fbfbf7a 2652 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2653 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2654 return;
2655
b1420f1c
PM
2656 /*
2657 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2658 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2659 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2660 */
a50c3af9 2661 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2662 rsp->qlen_lazy += rdp->qlen_lazy;
2663 rsp->qlen += rdp->qlen;
2664 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2665 rdp->qlen_lazy = 0;
7d0ae808 2666 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2667 }
2668
2669 /*
b1420f1c
PM
2670 * Next, move those callbacks still needing a grace period to
2671 * the orphanage, where some other CPU will pick them up.
2672 * Some of the callbacks might have gone partway through a grace
2673 * period, but that is too bad. They get to start over because we
2674 * cannot assume that grace periods are synchronized across CPUs.
2675 * We don't bother updating the ->nxttail[] array yet, instead
2676 * we just reset the whole thing later on.
a50c3af9 2677 */
b1420f1c
PM
2678 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2679 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2680 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2681 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2682 }
2683
2684 /*
b1420f1c
PM
2685 * Then move the ready-to-invoke callbacks to the orphanage,
2686 * where some other CPU will pick them up. These will not be
2687 * required to pass though another grace period: They are done.
a50c3af9 2688 */
e5601400 2689 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2690 *rsp->orphan_donetail = rdp->nxtlist;
2691 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2692 }
e74f4c45 2693
b33078b6
PM
2694 /*
2695 * Finally, initialize the rcu_data structure's list to empty and
2696 * disallow further callbacks on this CPU.
2697 */
3f5d3ea6 2698 init_callback_list(rdp);
b33078b6 2699 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2700}
2701
2702/*
2703 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2704 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2705 */
96d3fd0d 2706static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2707{
2708 int i;
fa07a58f 2709 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2710
3fbfbf7a 2711 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2712 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2713 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2714 return;
2715
b1420f1c
PM
2716 /* Do the accounting first. */
2717 rdp->qlen_lazy += rsp->qlen_lazy;
2718 rdp->qlen += rsp->qlen;
2719 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2720 if (rsp->qlen_lazy != rsp->qlen)
2721 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2722 rsp->qlen_lazy = 0;
2723 rsp->qlen = 0;
2724
2725 /*
2726 * We do not need a memory barrier here because the only way we
2727 * can get here if there is an rcu_barrier() in flight is if
2728 * we are the task doing the rcu_barrier().
2729 */
2730
2731 /* First adopt the ready-to-invoke callbacks. */
2732 if (rsp->orphan_donelist != NULL) {
2733 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2734 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2735 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2736 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2737 rdp->nxttail[i] = rsp->orphan_donetail;
2738 rsp->orphan_donelist = NULL;
2739 rsp->orphan_donetail = &rsp->orphan_donelist;
2740 }
2741
2742 /* And then adopt the callbacks that still need a grace period. */
2743 if (rsp->orphan_nxtlist != NULL) {
2744 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2745 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2746 rsp->orphan_nxtlist = NULL;
2747 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2748 }
2749}
2750
2751/*
2752 * Trace the fact that this CPU is going offline.
2753 */
2754static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2755{
88a4976d
PM
2756 RCU_TRACE(unsigned long mask;)
2757 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2758 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2759
ea46351c
PM
2760 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2761 return;
2762
88a4976d 2763 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2764 trace_rcu_grace_period(rsp->name,
2765 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2766 TPS("cpuofl"));
64db4cff
PM
2767}
2768
8af3a5e7
PM
2769/*
2770 * All CPUs for the specified rcu_node structure have gone offline,
2771 * and all tasks that were preempted within an RCU read-side critical
2772 * section while running on one of those CPUs have since exited their RCU
2773 * read-side critical section. Some other CPU is reporting this fact with
2774 * the specified rcu_node structure's ->lock held and interrupts disabled.
2775 * This function therefore goes up the tree of rcu_node structures,
2776 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2777 * the leaf rcu_node structure's ->qsmaskinit field has already been
2778 * updated
2779 *
2780 * This function does check that the specified rcu_node structure has
2781 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2782 * prematurely. That said, invoking it after the fact will cost you
2783 * a needless lock acquisition. So once it has done its work, don't
2784 * invoke it again.
2785 */
2786static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2787{
2788 long mask;
2789 struct rcu_node *rnp = rnp_leaf;
2790
ea46351c
PM
2791 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2792 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2793 return;
2794 for (;;) {
2795 mask = rnp->grpmask;
2796 rnp = rnp->parent;
2797 if (!rnp)
2798 break;
2a67e741 2799 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2800 rnp->qsmaskinit &= ~mask;
0aa04b05 2801 rnp->qsmask &= ~mask;
8af3a5e7 2802 if (rnp->qsmaskinit) {
67c583a7
BF
2803 raw_spin_unlock_rcu_node(rnp);
2804 /* irqs remain disabled. */
8af3a5e7
PM
2805 return;
2806 }
67c583a7 2807 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2808 }
2809}
2810
64db4cff 2811/*
e5601400 2812 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2813 * this fact from process context. Do the remainder of the cleanup,
2814 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2815 * adopting them. There can only be one CPU hotplug operation at a time,
2816 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2817 */
e5601400 2818static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2819{
2036d94a 2820 unsigned long flags;
e5601400 2821 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2822 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2823
ea46351c
PM
2824 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2825 return;
2826
2036d94a 2827 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2828 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2829
b1420f1c 2830 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2831 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2832 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2833 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2834 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2835
cf01537e
PM
2836 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2837 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2838 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2839}
2840
64db4cff
PM
2841/*
2842 * Invoke any RCU callbacks that have made it to the end of their grace
2843 * period. Thottle as specified by rdp->blimit.
2844 */
37c72e56 2845static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2846{
2847 unsigned long flags;
2848 struct rcu_head *next, *list, **tail;
878d7439
ED
2849 long bl, count, count_lazy;
2850 int i;
64db4cff 2851
dc35c893 2852 /* If no callbacks are ready, just return. */
29c00b4a 2853 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2854 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2855 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2856 need_resched(), is_idle_task(current),
2857 rcu_is_callbacks_kthread());
64db4cff 2858 return;
29c00b4a 2859 }
64db4cff
PM
2860
2861 /*
2862 * Extract the list of ready callbacks, disabling to prevent
2863 * races with call_rcu() from interrupt handlers.
2864 */
2865 local_irq_save(flags);
8146c4e2 2866 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2867 bl = rdp->blimit;
486e2593 2868 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2869 list = rdp->nxtlist;
2870 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2871 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2872 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2873 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2874 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2875 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2876 local_irq_restore(flags);
2877
2878 /* Invoke callbacks. */
486e2593 2879 count = count_lazy = 0;
64db4cff
PM
2880 while (list) {
2881 next = list->next;
2882 prefetch(next);
551d55a9 2883 debug_rcu_head_unqueue(list);
486e2593
PM
2884 if (__rcu_reclaim(rsp->name, list))
2885 count_lazy++;
64db4cff 2886 list = next;
dff1672d
PM
2887 /* Stop only if limit reached and CPU has something to do. */
2888 if (++count >= bl &&
2889 (need_resched() ||
2890 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2891 break;
2892 }
2893
2894 local_irq_save(flags);
4968c300
PM
2895 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2896 is_idle_task(current),
2897 rcu_is_callbacks_kthread());
64db4cff
PM
2898
2899 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2900 if (list != NULL) {
2901 *tail = rdp->nxtlist;
2902 rdp->nxtlist = list;
b41772ab
PM
2903 for (i = 0; i < RCU_NEXT_SIZE; i++)
2904 if (&rdp->nxtlist == rdp->nxttail[i])
2905 rdp->nxttail[i] = tail;
64db4cff
PM
2906 else
2907 break;
2908 }
b1420f1c
PM
2909 smp_mb(); /* List handling before counting for rcu_barrier(). */
2910 rdp->qlen_lazy -= count_lazy;
7d0ae808 2911 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2912 rdp->n_cbs_invoked += count;
64db4cff
PM
2913
2914 /* Reinstate batch limit if we have worked down the excess. */
2915 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2916 rdp->blimit = blimit;
2917
37c72e56
PM
2918 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2919 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2920 rdp->qlen_last_fqs_check = 0;
2921 rdp->n_force_qs_snap = rsp->n_force_qs;
2922 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2923 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2924 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2925
64db4cff
PM
2926 local_irq_restore(flags);
2927
e0f23060 2928 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2929 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2930 invoke_rcu_core();
64db4cff
PM
2931}
2932
2933/*
2934 * Check to see if this CPU is in a non-context-switch quiescent state
2935 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2936 * Also schedule RCU core processing.
64db4cff 2937 *
9b2e4f18 2938 * This function must be called from hardirq context. It is normally
5403d367 2939 * invoked from the scheduling-clock interrupt.
64db4cff 2940 */
c3377c2d 2941void rcu_check_callbacks(int user)
64db4cff 2942{
f7f7bac9 2943 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2944 increment_cpu_stall_ticks();
9b2e4f18 2945 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2946
2947 /*
2948 * Get here if this CPU took its interrupt from user
2949 * mode or from the idle loop, and if this is not a
2950 * nested interrupt. In this case, the CPU is in
d6714c22 2951 * a quiescent state, so note it.
64db4cff
PM
2952 *
2953 * No memory barrier is required here because both
d6714c22
PM
2954 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2955 * variables that other CPUs neither access nor modify,
2956 * at least not while the corresponding CPU is online.
64db4cff
PM
2957 */
2958
284a8c93
PM
2959 rcu_sched_qs();
2960 rcu_bh_qs();
64db4cff
PM
2961
2962 } else if (!in_softirq()) {
2963
2964 /*
2965 * Get here if this CPU did not take its interrupt from
2966 * softirq, in other words, if it is not interrupting
2967 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2968 * critical section, so note it.
64db4cff
PM
2969 */
2970
284a8c93 2971 rcu_bh_qs();
64db4cff 2972 }
86aea0e6 2973 rcu_preempt_check_callbacks();
e3950ecd 2974 if (rcu_pending())
a46e0899 2975 invoke_rcu_core();
8315f422
PM
2976 if (user)
2977 rcu_note_voluntary_context_switch(current);
f7f7bac9 2978 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2979}
2980
64db4cff
PM
2981/*
2982 * Scan the leaf rcu_node structures, processing dyntick state for any that
2983 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2984 * Also initiate boosting for any threads blocked on the root rcu_node.
2985 *
ee47eb9f 2986 * The caller must have suppressed start of new grace periods.
64db4cff 2987 */
217af2a2
PM
2988static void force_qs_rnp(struct rcu_state *rsp,
2989 int (*f)(struct rcu_data *rsp, bool *isidle,
2990 unsigned long *maxj),
2991 bool *isidle, unsigned long *maxj)
64db4cff 2992{
64db4cff
PM
2993 int cpu;
2994 unsigned long flags;
2995 unsigned long mask;
a0b6c9a7 2996 struct rcu_node *rnp;
64db4cff 2997
a0b6c9a7 2998 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2999 cond_resched_rcu_qs();
64db4cff 3000 mask = 0;
2a67e741 3001 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 3002 if (rnp->qsmask == 0) {
a77da14c
PM
3003 if (rcu_state_p == &rcu_sched_state ||
3004 rsp != rcu_state_p ||
3005 rcu_preempt_blocked_readers_cgp(rnp)) {
3006 /*
3007 * No point in scanning bits because they
3008 * are all zero. But we might need to
3009 * priority-boost blocked readers.
3010 */
3011 rcu_initiate_boost(rnp, flags);
3012 /* rcu_initiate_boost() releases rnp->lock */
3013 continue;
3014 }
3015 if (rnp->parent &&
3016 (rnp->parent->qsmask & rnp->grpmask)) {
3017 /*
3018 * Race between grace-period
3019 * initialization and task exiting RCU
3020 * read-side critical section: Report.
3021 */
3022 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
3023 /* rcu_report_unblock_qs_rnp() rlses ->lock */
3024 continue;
3025 }
64db4cff 3026 }
bc75e999
MR
3027 for_each_leaf_node_possible_cpu(rnp, cpu) {
3028 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 3029 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
3030 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
3031 mask |= bit;
3032 }
64db4cff 3033 }
45f014c5 3034 if (mask != 0) {
654e9533
PM
3035 /* Idle/offline CPUs, report (releases rnp->lock. */
3036 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
3037 } else {
3038 /* Nothing to do here, so just drop the lock. */
67c583a7 3039 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 3040 }
64db4cff 3041 }
64db4cff
PM
3042}
3043
3044/*
3045 * Force quiescent states on reluctant CPUs, and also detect which
3046 * CPUs are in dyntick-idle mode.
3047 */
4cdfc175 3048static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
3049{
3050 unsigned long flags;
394f2769
PM
3051 bool ret;
3052 struct rcu_node *rnp;
3053 struct rcu_node *rnp_old = NULL;
3054
3055 /* Funnel through hierarchy to reduce memory contention. */
d860d403 3056 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 3057 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 3058 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
3059 !raw_spin_trylock(&rnp->fqslock);
3060 if (rnp_old != NULL)
3061 raw_spin_unlock(&rnp_old->fqslock);
3062 if (ret) {
a792563b 3063 rsp->n_force_qs_lh++;
394f2769
PM
3064 return;
3065 }
3066 rnp_old = rnp;
3067 }
3068 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 3069
394f2769 3070 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 3071 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 3072 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 3073 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 3074 rsp->n_force_qs_lh++;
67c583a7 3075 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 3076 return; /* Someone beat us to it. */
46a1e34e 3077 }
7d0ae808 3078 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 3079 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 3080 rcu_gp_kthread_wake(rsp);
64db4cff
PM
3081}
3082
64db4cff 3083/*
e0f23060
PM
3084 * This does the RCU core processing work for the specified rcu_state
3085 * and rcu_data structures. This may be called only from the CPU to
3086 * whom the rdp belongs.
64db4cff
PM
3087 */
3088static void
1bca8cf1 3089__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
3090{
3091 unsigned long flags;
48a7639c 3092 bool needwake;
fa07a58f 3093 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 3094
2e597558
PM
3095 WARN_ON_ONCE(rdp->beenonline == 0);
3096
64db4cff
PM
3097 /* Update RCU state based on any recent quiescent states. */
3098 rcu_check_quiescent_state(rsp, rdp);
3099
3100 /* Does this CPU require a not-yet-started grace period? */
dc35c893 3101 local_irq_save(flags);
64db4cff 3102 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 3103 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 3104 needwake = rcu_start_gp(rsp);
67c583a7 3105 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
3106 if (needwake)
3107 rcu_gp_kthread_wake(rsp);
dc35c893
PM
3108 } else {
3109 local_irq_restore(flags);
64db4cff
PM
3110 }
3111
3112 /* If there are callbacks ready, invoke them. */
09223371 3113 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 3114 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3115
3116 /* Do any needed deferred wakeups of rcuo kthreads. */
3117 do_nocb_deferred_wakeup(rdp);
09223371
SL
3118}
3119
64db4cff 3120/*
e0f23060 3121 * Do RCU core processing for the current CPU.
64db4cff 3122 */
0766f788 3123static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3124{
6ce75a23
PM
3125 struct rcu_state *rsp;
3126
bfa00b4c
PM
3127 if (cpu_is_offline(smp_processor_id()))
3128 return;
f7f7bac9 3129 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3130 for_each_rcu_flavor(rsp)
3131 __rcu_process_callbacks(rsp);
f7f7bac9 3132 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3133}
3134
a26ac245 3135/*
e0f23060
PM
3136 * Schedule RCU callback invocation. If the specified type of RCU
3137 * does not support RCU priority boosting, just do a direct call,
3138 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3139 * are running on the current CPU with softirqs disabled, the
e0f23060 3140 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3141 */
a46e0899 3142static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3143{
7d0ae808 3144 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3145 return;
a46e0899
PM
3146 if (likely(!rsp->boost)) {
3147 rcu_do_batch(rsp, rdp);
a26ac245
PM
3148 return;
3149 }
a46e0899 3150 invoke_rcu_callbacks_kthread();
a26ac245
PM
3151}
3152
a46e0899 3153static void invoke_rcu_core(void)
09223371 3154{
b0f74036
PM
3155 if (cpu_online(smp_processor_id()))
3156 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3157}
3158
29154c57
PM
3159/*
3160 * Handle any core-RCU processing required by a call_rcu() invocation.
3161 */
3162static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3163 struct rcu_head *head, unsigned long flags)
64db4cff 3164{
48a7639c
PM
3165 bool needwake;
3166
62fde6ed
PM
3167 /*
3168 * If called from an extended quiescent state, invoke the RCU
3169 * core in order to force a re-evaluation of RCU's idleness.
3170 */
9910affa 3171 if (!rcu_is_watching())
62fde6ed
PM
3172 invoke_rcu_core();
3173
a16b7a69 3174 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3175 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3176 return;
64db4cff 3177
37c72e56
PM
3178 /*
3179 * Force the grace period if too many callbacks or too long waiting.
3180 * Enforce hysteresis, and don't invoke force_quiescent_state()
3181 * if some other CPU has recently done so. Also, don't bother
3182 * invoking force_quiescent_state() if the newly enqueued callback
3183 * is the only one waiting for a grace period to complete.
3184 */
2655d57e 3185 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3186
3187 /* Are we ignoring a completed grace period? */
470716fc 3188 note_gp_changes(rsp, rdp);
b52573d2
PM
3189
3190 /* Start a new grace period if one not already started. */
3191 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3192 struct rcu_node *rnp_root = rcu_get_root(rsp);
3193
2a67e741 3194 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3195 needwake = rcu_start_gp(rsp);
67c583a7 3196 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3197 if (needwake)
3198 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3199 } else {
3200 /* Give the grace period a kick. */
3201 rdp->blimit = LONG_MAX;
3202 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3203 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3204 force_quiescent_state(rsp);
b52573d2
PM
3205 rdp->n_force_qs_snap = rsp->n_force_qs;
3206 rdp->qlen_last_fqs_check = rdp->qlen;
3207 }
4cdfc175 3208 }
29154c57
PM
3209}
3210
ae150184
PM
3211/*
3212 * RCU callback function to leak a callback.
3213 */
3214static void rcu_leak_callback(struct rcu_head *rhp)
3215{
3216}
3217
3fbfbf7a
PM
3218/*
3219 * Helper function for call_rcu() and friends. The cpu argument will
3220 * normally be -1, indicating "currently running CPU". It may specify
3221 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3222 * is expected to specify a CPU.
3223 */
64db4cff 3224static void
b6a4ae76 3225__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3226 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3227{
3228 unsigned long flags;
3229 struct rcu_data *rdp;
3230
b8f2ed53
PM
3231 /* Misaligned rcu_head! */
3232 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3233
ae150184
PM
3234 if (debug_rcu_head_queue(head)) {
3235 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3236 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3237 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3238 return;
3239 }
64db4cff
PM
3240 head->func = func;
3241 head->next = NULL;
64db4cff 3242 local_irq_save(flags);
394f99a9 3243 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3244
3245 /* Add the callback to our list. */
3fbfbf7a
PM
3246 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3247 int offline;
3248
3249 if (cpu != -1)
3250 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3251 if (likely(rdp->mynode)) {
3252 /* Post-boot, so this should be for a no-CBs CPU. */
3253 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3254 WARN_ON_ONCE(offline);
3255 /* Offline CPU, _call_rcu() illegal, leak callback. */
3256 local_irq_restore(flags);
3257 return;
3258 }
3259 /*
3260 * Very early boot, before rcu_init(). Initialize if needed
3261 * and then drop through to queue the callback.
3262 */
3263 BUG_ON(cpu != -1);
34404ca8 3264 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3265 if (!likely(rdp->nxtlist))
3266 init_default_callback_list(rdp);
0d8ee37e 3267 }
7d0ae808 3268 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3269 if (lazy)
3270 rdp->qlen_lazy++;
c57afe80
PM
3271 else
3272 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3273 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3274 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3275 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3276
d4c08f2a
PM
3277 if (__is_kfree_rcu_offset((unsigned long)func))
3278 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3279 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3280 else
486e2593 3281 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3282
29154c57
PM
3283 /* Go handle any RCU core processing required. */
3284 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3285 local_irq_restore(flags);
3286}
3287
3288/*
d6714c22 3289 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3290 */
b6a4ae76 3291void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3292{
3fbfbf7a 3293 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3294}
d6714c22 3295EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3296
3297/*
486e2593 3298 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3299 */
b6a4ae76 3300void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3301{
3fbfbf7a 3302 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3303}
3304EXPORT_SYMBOL_GPL(call_rcu_bh);
3305
495aa969
ACB
3306/*
3307 * Queue an RCU callback for lazy invocation after a grace period.
3308 * This will likely be later named something like "call_rcu_lazy()",
3309 * but this change will require some way of tagging the lazy RCU
3310 * callbacks in the list of pending callbacks. Until then, this
3311 * function may only be called from __kfree_rcu().
3312 */
3313void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3314 rcu_callback_t func)
495aa969 3315{
e534165b 3316 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3317}
3318EXPORT_SYMBOL_GPL(kfree_call_rcu);
3319
6d813391
PM
3320/*
3321 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3322 * any blocking grace-period wait automatically implies a grace period
3323 * if there is only one CPU online at any point time during execution
3324 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3325 * occasionally incorrectly indicate that there are multiple CPUs online
3326 * when there was in fact only one the whole time, as this just adds
3327 * some overhead: RCU still operates correctly.
6d813391
PM
3328 */
3329static inline int rcu_blocking_is_gp(void)
3330{
95f0c1de
PM
3331 int ret;
3332
6d813391 3333 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3334 preempt_disable();
3335 ret = num_online_cpus() <= 1;
3336 preempt_enable();
3337 return ret;
6d813391
PM
3338}
3339
6ebb237b
PM
3340/**
3341 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3342 *
3343 * Control will return to the caller some time after a full rcu-sched
3344 * grace period has elapsed, in other words after all currently executing
3345 * rcu-sched read-side critical sections have completed. These read-side
3346 * critical sections are delimited by rcu_read_lock_sched() and
3347 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3348 * local_irq_disable(), and so on may be used in place of
3349 * rcu_read_lock_sched().
3350 *
3351 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3352 * non-threaded hardware-interrupt handlers, in progress on entry will
3353 * have completed before this primitive returns. However, this does not
3354 * guarantee that softirq handlers will have completed, since in some
3355 * kernels, these handlers can run in process context, and can block.
3356 *
3357 * Note that this guarantee implies further memory-ordering guarantees.
3358 * On systems with more than one CPU, when synchronize_sched() returns,
3359 * each CPU is guaranteed to have executed a full memory barrier since the
3360 * end of its last RCU-sched read-side critical section whose beginning
3361 * preceded the call to synchronize_sched(). In addition, each CPU having
3362 * an RCU read-side critical section that extends beyond the return from
3363 * synchronize_sched() is guaranteed to have executed a full memory barrier
3364 * after the beginning of synchronize_sched() and before the beginning of
3365 * that RCU read-side critical section. Note that these guarantees include
3366 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3367 * that are executing in the kernel.
3368 *
3369 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3370 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3371 * to have executed a full memory barrier during the execution of
3372 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3373 * again only if the system has more than one CPU).
6ebb237b
PM
3374 *
3375 * This primitive provides the guarantees made by the (now removed)
3376 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3377 * guarantees that rcu_read_lock() sections will have completed.
3378 * In "classic RCU", these two guarantees happen to be one and
3379 * the same, but can differ in realtime RCU implementations.
3380 */
3381void synchronize_sched(void)
3382{
f78f5b90
PM
3383 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3384 lock_is_held(&rcu_lock_map) ||
3385 lock_is_held(&rcu_sched_lock_map),
3386 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3387 if (rcu_blocking_is_gp())
3388 return;
5afff48b 3389 if (rcu_gp_is_expedited())
3705b88d
AM
3390 synchronize_sched_expedited();
3391 else
3392 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3393}
3394EXPORT_SYMBOL_GPL(synchronize_sched);
3395
3396/**
3397 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3398 *
3399 * Control will return to the caller some time after a full rcu_bh grace
3400 * period has elapsed, in other words after all currently executing rcu_bh
3401 * read-side critical sections have completed. RCU read-side critical
3402 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3403 * and may be nested.
f0a0e6f2
PM
3404 *
3405 * See the description of synchronize_sched() for more detailed information
3406 * on memory ordering guarantees.
6ebb237b
PM
3407 */
3408void synchronize_rcu_bh(void)
3409{
f78f5b90
PM
3410 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3411 lock_is_held(&rcu_lock_map) ||
3412 lock_is_held(&rcu_sched_lock_map),
3413 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3414 if (rcu_blocking_is_gp())
3415 return;
5afff48b 3416 if (rcu_gp_is_expedited())
3705b88d
AM
3417 synchronize_rcu_bh_expedited();
3418 else
3419 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3420}
3421EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3422
765a3f4f
PM
3423/**
3424 * get_state_synchronize_rcu - Snapshot current RCU state
3425 *
3426 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3427 * to determine whether or not a full grace period has elapsed in the
3428 * meantime.
3429 */
3430unsigned long get_state_synchronize_rcu(void)
3431{
3432 /*
3433 * Any prior manipulation of RCU-protected data must happen
3434 * before the load from ->gpnum.
3435 */
3436 smp_mb(); /* ^^^ */
3437
3438 /*
3439 * Make sure this load happens before the purportedly
3440 * time-consuming work between get_state_synchronize_rcu()
3441 * and cond_synchronize_rcu().
3442 */
e534165b 3443 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3444}
3445EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3446
3447/**
3448 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3449 *
3450 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3451 *
3452 * If a full RCU grace period has elapsed since the earlier call to
3453 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3454 * synchronize_rcu() to wait for a full grace period.
3455 *
3456 * Yes, this function does not take counter wrap into account. But
3457 * counter wrap is harmless. If the counter wraps, we have waited for
3458 * more than 2 billion grace periods (and way more on a 64-bit system!),
3459 * so waiting for one additional grace period should be just fine.
3460 */
3461void cond_synchronize_rcu(unsigned long oldstate)
3462{
3463 unsigned long newstate;
3464
3465 /*
3466 * Ensure that this load happens before any RCU-destructive
3467 * actions the caller might carry out after we return.
3468 */
e534165b 3469 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3470 if (ULONG_CMP_GE(oldstate, newstate))
3471 synchronize_rcu();
3472}
3473EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3474
24560056
PM
3475/**
3476 * get_state_synchronize_sched - Snapshot current RCU-sched state
3477 *
3478 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3479 * to determine whether or not a full grace period has elapsed in the
3480 * meantime.
3481 */
3482unsigned long get_state_synchronize_sched(void)
3483{
3484 /*
3485 * Any prior manipulation of RCU-protected data must happen
3486 * before the load from ->gpnum.
3487 */
3488 smp_mb(); /* ^^^ */
3489
3490 /*
3491 * Make sure this load happens before the purportedly
3492 * time-consuming work between get_state_synchronize_sched()
3493 * and cond_synchronize_sched().
3494 */
3495 return smp_load_acquire(&rcu_sched_state.gpnum);
3496}
3497EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3498
3499/**
3500 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3501 *
3502 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3503 *
3504 * If a full RCU-sched grace period has elapsed since the earlier call to
3505 * get_state_synchronize_sched(), just return. Otherwise, invoke
3506 * synchronize_sched() to wait for a full grace period.
3507 *
3508 * Yes, this function does not take counter wrap into account. But
3509 * counter wrap is harmless. If the counter wraps, we have waited for
3510 * more than 2 billion grace periods (and way more on a 64-bit system!),
3511 * so waiting for one additional grace period should be just fine.
3512 */
3513void cond_synchronize_sched(unsigned long oldstate)
3514{
3515 unsigned long newstate;
3516
3517 /*
3518 * Ensure that this load happens before any RCU-destructive
3519 * actions the caller might carry out after we return.
3520 */
3521 newstate = smp_load_acquire(&rcu_sched_state.completed);
3522 if (ULONG_CMP_GE(oldstate, newstate))
3523 synchronize_sched();
3524}
3525EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3526
28f00767
PM
3527/* Adjust sequence number for start of update-side operation. */
3528static void rcu_seq_start(unsigned long *sp)
3529{
3530 WRITE_ONCE(*sp, *sp + 1);
3531 smp_mb(); /* Ensure update-side operation after counter increment. */
3532 WARN_ON_ONCE(!(*sp & 0x1));
3533}
3534
3535/* Adjust sequence number for end of update-side operation. */
3536static void rcu_seq_end(unsigned long *sp)
3537{
3538 smp_mb(); /* Ensure update-side operation before counter increment. */
3539 WRITE_ONCE(*sp, *sp + 1);
3540 WARN_ON_ONCE(*sp & 0x1);
3541}
3542
3543/* Take a snapshot of the update side's sequence number. */
3544static unsigned long rcu_seq_snap(unsigned long *sp)
3545{
3546 unsigned long s;
3547
28f00767
PM
3548 s = (READ_ONCE(*sp) + 3) & ~0x1;
3549 smp_mb(); /* Above access must not bleed into critical section. */
3550 return s;
3551}
3552
3553/*
3554 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3555 * full update-side operation has occurred.
3556 */
3557static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3558{
3559 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3560}
3561
64db4cff
PM
3562/*
3563 * Check to see if there is any immediate RCU-related work to be done
3564 * by the current CPU, for the specified type of RCU, returning 1 if so.
3565 * The checks are in order of increasing expense: checks that can be
3566 * carried out against CPU-local state are performed first. However,
3567 * we must check for CPU stalls first, else we might not get a chance.
3568 */
3569static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3570{
2f51f988
PM
3571 struct rcu_node *rnp = rdp->mynode;
3572
64db4cff
PM
3573 rdp->n_rcu_pending++;
3574
3575 /* Check for CPU stalls, if enabled. */
3576 check_cpu_stall(rsp, rdp);
3577
a096932f
PM
3578 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3579 if (rcu_nohz_full_cpu(rsp))
3580 return 0;
3581
64db4cff 3582 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3583 if (rcu_scheduler_fully_active &&
5b74c458 3584 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3585 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3586 rdp->n_rp_core_needs_qs++;
3a19b46a 3587 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3588 rdp->n_rp_report_qs++;
64db4cff 3589 return 1;
7ba5c840 3590 }
64db4cff
PM
3591
3592 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3593 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3594 rdp->n_rp_cb_ready++;
64db4cff 3595 return 1;
7ba5c840 3596 }
64db4cff
PM
3597
3598 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3599 if (cpu_needs_another_gp(rsp, rdp)) {
3600 rdp->n_rp_cpu_needs_gp++;
64db4cff 3601 return 1;
7ba5c840 3602 }
64db4cff
PM
3603
3604 /* Has another RCU grace period completed? */
7d0ae808 3605 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3606 rdp->n_rp_gp_completed++;
64db4cff 3607 return 1;
7ba5c840 3608 }
64db4cff
PM
3609
3610 /* Has a new RCU grace period started? */
7d0ae808
PM
3611 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3612 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3613 rdp->n_rp_gp_started++;
64db4cff 3614 return 1;
7ba5c840 3615 }
64db4cff 3616
96d3fd0d
PM
3617 /* Does this CPU need a deferred NOCB wakeup? */
3618 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3619 rdp->n_rp_nocb_defer_wakeup++;
3620 return 1;
3621 }
3622
64db4cff 3623 /* nothing to do */
7ba5c840 3624 rdp->n_rp_need_nothing++;
64db4cff
PM
3625 return 0;
3626}
3627
3628/*
3629 * Check to see if there is any immediate RCU-related work to be done
3630 * by the current CPU, returning 1 if so. This function is part of the
3631 * RCU implementation; it is -not- an exported member of the RCU API.
3632 */
e3950ecd 3633static int rcu_pending(void)
64db4cff 3634{
6ce75a23
PM
3635 struct rcu_state *rsp;
3636
3637 for_each_rcu_flavor(rsp)
e3950ecd 3638 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3639 return 1;
3640 return 0;
64db4cff
PM
3641}
3642
3643/*
c0f4dfd4
PM
3644 * Return true if the specified CPU has any callback. If all_lazy is
3645 * non-NULL, store an indication of whether all callbacks are lazy.
3646 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3647 */
82072c4f 3648static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3649{
c0f4dfd4
PM
3650 bool al = true;
3651 bool hc = false;
3652 struct rcu_data *rdp;
6ce75a23
PM
3653 struct rcu_state *rsp;
3654
c0f4dfd4 3655 for_each_rcu_flavor(rsp) {
aa6da514 3656 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3657 if (!rdp->nxtlist)
3658 continue;
3659 hc = true;
3660 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3661 al = false;
69c8d28c
PM
3662 break;
3663 }
c0f4dfd4
PM
3664 }
3665 if (all_lazy)
3666 *all_lazy = al;
3667 return hc;
64db4cff
PM
3668}
3669
a83eff0a
PM
3670/*
3671 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3672 * the compiler is expected to optimize this away.
3673 */
e66c33d5 3674static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3675 int cpu, unsigned long done)
3676{
3677 trace_rcu_barrier(rsp->name, s, cpu,
3678 atomic_read(&rsp->barrier_cpu_count), done);
3679}
3680
b1420f1c
PM
3681/*
3682 * RCU callback function for _rcu_barrier(). If we are last, wake
3683 * up the task executing _rcu_barrier().
3684 */
24ebbca8 3685static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3686{
24ebbca8
PM
3687 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3688 struct rcu_state *rsp = rdp->rsp;
3689
a83eff0a 3690 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3691 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3692 complete(&rsp->barrier_completion);
a83eff0a 3693 } else {
4f525a52 3694 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3695 }
d0ec774c
PM
3696}
3697
3698/*
3699 * Called with preemption disabled, and from cross-cpu IRQ context.
3700 */
3701static void rcu_barrier_func(void *type)
3702{
037b64ed 3703 struct rcu_state *rsp = type;
fa07a58f 3704 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3705
4f525a52 3706 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3707 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3708 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3709}
3710
d0ec774c
PM
3711/*
3712 * Orchestrate the specified type of RCU barrier, waiting for all
3713 * RCU callbacks of the specified type to complete.
3714 */
037b64ed 3715static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3716{
b1420f1c 3717 int cpu;
b1420f1c 3718 struct rcu_data *rdp;
4f525a52 3719 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3720
4f525a52 3721 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3722
e74f4c45 3723 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3724 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3725
4f525a52
PM
3726 /* Did someone else do our work for us? */
3727 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3728 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3729 smp_mb(); /* caller's subsequent code after above check. */
3730 mutex_unlock(&rsp->barrier_mutex);
3731 return;
3732 }
3733
4f525a52
PM
3734 /* Mark the start of the barrier operation. */
3735 rcu_seq_start(&rsp->barrier_sequence);
3736 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3737
d0ec774c 3738 /*
b1420f1c
PM
3739 * Initialize the count to one rather than to zero in order to
3740 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3741 * (or preemption of this task). Exclude CPU-hotplug operations
3742 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3743 */
7db74df8 3744 init_completion(&rsp->barrier_completion);
24ebbca8 3745 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3746 get_online_cpus();
b1420f1c
PM
3747
3748 /*
1331e7a1
PM
3749 * Force each CPU with callbacks to register a new callback.
3750 * When that callback is invoked, we will know that all of the
3751 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3752 */
3fbfbf7a 3753 for_each_possible_cpu(cpu) {
d1e43fa5 3754 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3755 continue;
b1420f1c 3756 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3757 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3758 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3759 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3760 rsp->barrier_sequence);
d7e29933
PM
3761 } else {
3762 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3763 rsp->barrier_sequence);
41050a00 3764 smp_mb__before_atomic();
d7e29933
PM
3765 atomic_inc(&rsp->barrier_cpu_count);
3766 __call_rcu(&rdp->barrier_head,
3767 rcu_barrier_callback, rsp, cpu, 0);
3768 }
7d0ae808 3769 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 3770 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3771 rsp->barrier_sequence);
037b64ed 3772 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3773 } else {
a83eff0a 3774 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3775 rsp->barrier_sequence);
b1420f1c
PM
3776 }
3777 }
1331e7a1 3778 put_online_cpus();
b1420f1c
PM
3779
3780 /*
3781 * Now that we have an rcu_barrier_callback() callback on each
3782 * CPU, and thus each counted, remove the initial count.
3783 */
24ebbca8 3784 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3785 complete(&rsp->barrier_completion);
b1420f1c
PM
3786
3787 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3788 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3789
4f525a52
PM
3790 /* Mark the end of the barrier operation. */
3791 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3792 rcu_seq_end(&rsp->barrier_sequence);
3793
b1420f1c 3794 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3795 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3796}
d0ec774c
PM
3797
3798/**
3799 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3800 */
3801void rcu_barrier_bh(void)
3802{
037b64ed 3803 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3804}
3805EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3806
3807/**
3808 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3809 */
3810void rcu_barrier_sched(void)
3811{
037b64ed 3812 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3813}
3814EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3815
0aa04b05
PM
3816/*
3817 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3818 * first CPU in a given leaf rcu_node structure coming online. The caller
3819 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3820 * disabled.
3821 */
3822static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3823{
3824 long mask;
3825 struct rcu_node *rnp = rnp_leaf;
3826
3827 for (;;) {
3828 mask = rnp->grpmask;
3829 rnp = rnp->parent;
3830 if (rnp == NULL)
3831 return;
6cf10081 3832 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3833 rnp->qsmaskinit |= mask;
67c583a7 3834 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3835 }
3836}
3837
64db4cff 3838/*
27569620 3839 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3840 */
27569620
PM
3841static void __init
3842rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3843{
3844 unsigned long flags;
394f99a9 3845 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3846 struct rcu_node *rnp = rcu_get_root(rsp);
3847
3848 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3849 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3850 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3851 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3852 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3853 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3854 rdp->cpu = cpu;
d4c08f2a 3855 rdp->rsp = rsp;
3fbfbf7a 3856 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3857 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3858}
3859
3860/*
3861 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3862 * offline event can be happening at a given time. Note also that we
3863 * can accept some slop in the rsp->completed access due to the fact
3864 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3865 */
49fb4c62 3866static void
9b67122a 3867rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3868{
3869 unsigned long flags;
394f99a9 3870 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3871 struct rcu_node *rnp = rcu_get_root(rsp);
3872
3873 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3874 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3875 rdp->qlen_last_fqs_check = 0;
3876 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3877 rdp->blimit = blimit;
39c8d313
PM
3878 if (!rdp->nxtlist)
3879 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3880 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3881 rcu_sysidle_init_percpu_data(rdp->dynticks);
2625d469 3882 rcu_dynticks_eqs_online();
67c583a7 3883 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3884
0aa04b05
PM
3885 /*
3886 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3887 * propagation up the rcu_node tree will happen at the beginning
3888 * of the next grace period.
3889 */
64db4cff 3890 rnp = rdp->mynode;
2a67e741 3891 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3892 if (!rdp->beenonline)
3893 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3894 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3895 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3896 rdp->completed = rnp->completed;
5b74c458 3897 rdp->cpu_no_qs.b.norm = true;
9577df9a 3898 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3899 rdp->core_needs_qs = false;
0aa04b05 3900 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3901 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3902}
3903
4df83742 3904int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3905{
6ce75a23
PM
3906 struct rcu_state *rsp;
3907
3908 for_each_rcu_flavor(rsp)
9b67122a 3909 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3910
3911 rcu_prepare_kthreads(cpu);
3912 rcu_spawn_all_nocb_kthreads(cpu);
3913
3914 return 0;
3915}
3916
3917static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3918{
3919 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3920
3921 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3922}
3923
3924int rcutree_online_cpu(unsigned int cpu)
3925{
3926 sync_sched_exp_online_cleanup(cpu);
3927 rcutree_affinity_setting(cpu, -1);
3928 return 0;
3929}
3930
3931int rcutree_offline_cpu(unsigned int cpu)
3932{
3933 rcutree_affinity_setting(cpu, cpu);
3934 return 0;
3935}
3936
3937
3938int rcutree_dying_cpu(unsigned int cpu)
3939{
3940 struct rcu_state *rsp;
3941
3942 for_each_rcu_flavor(rsp)
3943 rcu_cleanup_dying_cpu(rsp);
3944 return 0;
3945}
3946
3947int rcutree_dead_cpu(unsigned int cpu)
3948{
3949 struct rcu_state *rsp;
3950
3951 for_each_rcu_flavor(rsp) {
3952 rcu_cleanup_dead_cpu(cpu, rsp);
3953 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3954 }
3955 return 0;
64db4cff
PM
3956}
3957
7ec99de3
PM
3958/*
3959 * Mark the specified CPU as being online so that subsequent grace periods
3960 * (both expedited and normal) will wait on it. Note that this means that
3961 * incoming CPUs are not allowed to use RCU read-side critical sections
3962 * until this function is called. Failing to observe this restriction
3963 * will result in lockdep splats.
3964 */
3965void rcu_cpu_starting(unsigned int cpu)
3966{
3967 unsigned long flags;
3968 unsigned long mask;
3969 struct rcu_data *rdp;
3970 struct rcu_node *rnp;
3971 struct rcu_state *rsp;
3972
3973 for_each_rcu_flavor(rsp) {
fdbb9b31 3974 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3975 rnp = rdp->mynode;
3976 mask = rdp->grpmask;
3977 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3978 rnp->qsmaskinitnext |= mask;
3979 rnp->expmaskinitnext |= mask;
3980 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3981 }
3982}
3983
27d50c7e
TG
3984#ifdef CONFIG_HOTPLUG_CPU
3985/*
710d60cb
LT
3986 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3987 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3988 * bit masks.
27d50c7e
TG
3989 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3990 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3991 * bit masks.
3992 */
3993static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3994{
3995 unsigned long flags;
3996 unsigned long mask;
3997 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3998 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3999
27d50c7e
TG
4000 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4001 mask = rdp->grpmask;
4002 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4003 rnp->qsmaskinitnext &= ~mask;
710d60cb 4004 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
4005}
4006
4007void rcu_report_dead(unsigned int cpu)
4008{
4009 struct rcu_state *rsp;
4010
4011 /* QS for any half-done expedited RCU-sched GP. */
4012 preempt_disable();
4013 rcu_report_exp_rdp(&rcu_sched_state,
4014 this_cpu_ptr(rcu_sched_state.rda), true);
4015 preempt_enable();
4016 for_each_rcu_flavor(rsp)
4017 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4018}
4019#endif
4020
d1d74d14
BP
4021static int rcu_pm_notify(struct notifier_block *self,
4022 unsigned long action, void *hcpu)
4023{
4024 switch (action) {
4025 case PM_HIBERNATION_PREPARE:
4026 case PM_SUSPEND_PREPARE:
4027 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4028 rcu_expedite_gp();
d1d74d14
BP
4029 break;
4030 case PM_POST_HIBERNATION:
4031 case PM_POST_SUSPEND:
5afff48b
PM
4032 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4033 rcu_unexpedite_gp();
d1d74d14
BP
4034 break;
4035 default:
4036 break;
4037 }
4038 return NOTIFY_OK;
4039}
4040
b3dbec76 4041/*
9386c0b7 4042 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4043 */
4044static int __init rcu_spawn_gp_kthread(void)
4045{
4046 unsigned long flags;
a94844b2 4047 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4048 struct rcu_node *rnp;
4049 struct rcu_state *rsp;
a94844b2 4050 struct sched_param sp;
b3dbec76
PM
4051 struct task_struct *t;
4052
a94844b2
PM
4053 /* Force priority into range. */
4054 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4055 kthread_prio = 1;
4056 else if (kthread_prio < 0)
4057 kthread_prio = 0;
4058 else if (kthread_prio > 99)
4059 kthread_prio = 99;
4060 if (kthread_prio != kthread_prio_in)
4061 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4062 kthread_prio, kthread_prio_in);
4063
9386c0b7 4064 rcu_scheduler_fully_active = 1;
b3dbec76 4065 for_each_rcu_flavor(rsp) {
a94844b2 4066 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4067 BUG_ON(IS_ERR(t));
4068 rnp = rcu_get_root(rsp);
6cf10081 4069 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4070 rsp->gp_kthread = t;
a94844b2
PM
4071 if (kthread_prio) {
4072 sp.sched_priority = kthread_prio;
4073 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4074 }
67c583a7 4075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4076 wake_up_process(t);
b3dbec76 4077 }
35ce7f29 4078 rcu_spawn_nocb_kthreads();
9386c0b7 4079 rcu_spawn_boost_kthreads();
b3dbec76
PM
4080 return 0;
4081}
4082early_initcall(rcu_spawn_gp_kthread);
4083
bbad9379 4084/*
52d7e48b
PM
4085 * This function is invoked towards the end of the scheduler's
4086 * initialization process. Before this is called, the idle task might
4087 * contain synchronous grace-period primitives (during which time, this idle
4088 * task is booting the system, and such primitives are no-ops). After this
4089 * function is called, any synchronous grace-period primitives are run as
4090 * expedited, with the requesting task driving the grace period forward.
4091 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4092 * runtime RCU functionality.
bbad9379
PM
4093 */
4094void rcu_scheduler_starting(void)
4095{
4096 WARN_ON(num_online_cpus() != 1);
4097 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4098 rcu_test_sync_prims();
4099 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4100 rcu_test_sync_prims();
bbad9379
PM
4101}
4102
64db4cff
PM
4103/*
4104 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4105 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4106 */
199977bf 4107static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4108{
64db4cff
PM
4109 int i;
4110
7fa27001 4111 if (rcu_fanout_exact) {
199977bf 4112 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4113 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4114 levelspread[i] = RCU_FANOUT;
66292405
PM
4115 } else {
4116 int ccur;
4117 int cprv;
4118
4119 cprv = nr_cpu_ids;
4120 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4121 ccur = levelcnt[i];
4122 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4123 cprv = ccur;
4124 }
64db4cff
PM
4125 }
4126}
64db4cff
PM
4127
4128/*
4129 * Helper function for rcu_init() that initializes one rcu_state structure.
4130 */
a87f203e 4131static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4132{
cb007102
AG
4133 static const char * const buf[] = RCU_NODE_NAME_INIT;
4134 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4135 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4136 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf
AG
4137
4138 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4139 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4140 int cpustride = 1;
4141 int i;
4142 int j;
4143 struct rcu_node *rnp;
4144
05b84aec 4145 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4146
3eaaaf6c
PM
4147 /* Silence gcc 4.8 false positive about array index out of range. */
4148 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4149 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4150
64db4cff
PM
4151 /* Initialize the level-tracking arrays. */
4152
f885b7f2 4153 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4154 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4155 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4156 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4157 rcu_init_levelspread(levelspread, levelcnt);
64db4cff
PM
4158
4159 /* Initialize the elements themselves, starting from the leaves. */
4160
f885b7f2 4161 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4162 cpustride *= levelspread[i];
64db4cff 4163 rnp = rsp->level[i];
199977bf 4164 for (j = 0; j < levelcnt[i]; j++, rnp++) {
67c583a7
BF
4165 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4166 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4167 &rcu_node_class[i], buf[i]);
394f2769
PM
4168 raw_spin_lock_init(&rnp->fqslock);
4169 lockdep_set_class_and_name(&rnp->fqslock,
4170 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4171 rnp->gpnum = rsp->gpnum;
4172 rnp->completed = rsp->completed;
64db4cff
PM
4173 rnp->qsmask = 0;
4174 rnp->qsmaskinit = 0;
4175 rnp->grplo = j * cpustride;
4176 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4177 if (rnp->grphi >= nr_cpu_ids)
4178 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4179 if (i == 0) {
4180 rnp->grpnum = 0;
4181 rnp->grpmask = 0;
4182 rnp->parent = NULL;
4183 } else {
199977bf 4184 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4185 rnp->grpmask = 1UL << rnp->grpnum;
4186 rnp->parent = rsp->level[i - 1] +
199977bf 4187 j / levelspread[i - 1];
64db4cff
PM
4188 }
4189 rnp->level = i;
12f5f524 4190 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4191 rcu_init_one_nocb(rnp);
f6a12f34
PM
4192 init_waitqueue_head(&rnp->exp_wq[0]);
4193 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4194 init_waitqueue_head(&rnp->exp_wq[2]);
4195 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4196 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4197 }
4198 }
0c34029a 4199
abedf8e2
PG
4200 init_swait_queue_head(&rsp->gp_wq);
4201 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4202 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4203 for_each_possible_cpu(i) {
4a90a068 4204 while (i > rnp->grphi)
0c34029a 4205 rnp++;
394f99a9 4206 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4207 rcu_boot_init_percpu_data(i, rsp);
4208 }
6ce75a23 4209 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4210}
4211
f885b7f2
PM
4212/*
4213 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4214 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4215 * the ->node array in the rcu_state structure.
4216 */
4217static void __init rcu_init_geometry(void)
4218{
026ad283 4219 ulong d;
f885b7f2 4220 int i;
05b84aec 4221 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4222
026ad283
PM
4223 /*
4224 * Initialize any unspecified boot parameters.
4225 * The default values of jiffies_till_first_fqs and
4226 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4227 * value, which is a function of HZ, then adding one for each
4228 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4229 */
4230 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4231 if (jiffies_till_first_fqs == ULONG_MAX)
4232 jiffies_till_first_fqs = d;
4233 if (jiffies_till_next_fqs == ULONG_MAX)
4234 jiffies_till_next_fqs = d;
4235
f885b7f2 4236 /* If the compile-time values are accurate, just leave. */
47d631af 4237 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4238 nr_cpu_ids == NR_CPUS)
f885b7f2 4239 return;
39479098
PM
4240 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4241 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4242
f885b7f2 4243 /*
ee968ac6
PM
4244 * The boot-time rcu_fanout_leaf parameter must be at least two
4245 * and cannot exceed the number of bits in the rcu_node masks.
4246 * Complain and fall back to the compile-time values if this
4247 * limit is exceeded.
f885b7f2 4248 */
ee968ac6 4249 if (rcu_fanout_leaf < 2 ||
75cf15a4 4250 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4251 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4252 WARN_ON(1);
4253 return;
4254 }
4255
f885b7f2
PM
4256 /*
4257 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4258 * with the given number of levels.
f885b7f2 4259 */
9618138b 4260 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4261 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4262 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4263
4264 /*
75cf15a4 4265 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4266 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4267 */
ee968ac6
PM
4268 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4269 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4270 WARN_ON(1);
4271 return;
4272 }
f885b7f2 4273
679f9858 4274 /* Calculate the number of levels in the tree. */
9618138b 4275 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4276 }
9618138b 4277 rcu_num_lvls = i + 1;
679f9858 4278
f885b7f2 4279 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4280 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4281 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4282 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4283 }
f885b7f2
PM
4284
4285 /* Calculate the total number of rcu_node structures. */
4286 rcu_num_nodes = 0;
679f9858 4287 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4288 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4289}
4290
a3dc2948
PM
4291/*
4292 * Dump out the structure of the rcu_node combining tree associated
4293 * with the rcu_state structure referenced by rsp.
4294 */
4295static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4296{
4297 int level = 0;
4298 struct rcu_node *rnp;
4299
4300 pr_info("rcu_node tree layout dump\n");
4301 pr_info(" ");
4302 rcu_for_each_node_breadth_first(rsp, rnp) {
4303 if (rnp->level != level) {
4304 pr_cont("\n");
4305 pr_info(" ");
4306 level = rnp->level;
4307 }
4308 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4309 }
4310 pr_cont("\n");
4311}
4312
9f680ab4 4313void __init rcu_init(void)
64db4cff 4314{
017c4261 4315 int cpu;
9f680ab4 4316
47627678
PM
4317 rcu_early_boot_tests();
4318
f41d911f 4319 rcu_bootup_announce();
f885b7f2 4320 rcu_init_geometry();
a87f203e
PM
4321 rcu_init_one(&rcu_bh_state);
4322 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4323 if (dump_tree)
4324 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4325 __rcu_init_preempt();
b5b39360 4326 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4327
4328 /*
4329 * We don't need protection against CPU-hotplug here because
4330 * this is called early in boot, before either interrupts
4331 * or the scheduler are operational.
4332 */
d1d74d14 4333 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4334 for_each_online_cpu(cpu) {
4df83742 4335 rcutree_prepare_cpu(cpu);
7ec99de3
PM
4336 rcu_cpu_starting(cpu);
4337 }
64db4cff
PM
4338}
4339
3549c2bc 4340#include "tree_exp.h"
4102adab 4341#include "tree_plugin.h"