Merge tag 'pci-v6.8-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-block.git] / kernel / rcu / tree.c
CommitLineData
22e40925 1// SPDX-License-Identifier: GPL-2.0+
64db4cff 2/*
65bb0dc4 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
64db4cff 4 *
64db4cff
PM
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
65bb0dc4 9 * Paul E. McKenney <paulmck@linux.ibm.com>
64db4cff 10 *
22e40925 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
64db4cff
PM
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 15 * Documentation/RCU
64db4cff 16 */
a7538352
JP
17
18#define pr_fmt(fmt) "rcu: " fmt
19
64db4cff
PM
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
f9411ebe 25#include <linux/rcupdate_wait.h>
64db4cff
PM
26#include <linux/interrupt.h>
27#include <linux/sched.h>
b17b0153 28#include <linux/sched/debug.h>
c1dc0b9c 29#include <linux/nmi.h>
8826f3b0 30#include <linux/atomic.h>
64db4cff 31#include <linux/bitops.h>
9984de1a 32#include <linux/export.h>
64db4cff 33#include <linux/completion.h>
5f98fd03 34#include <linux/kmemleak.h>
64db4cff 35#include <linux/moduleparam.h>
f39650de
AS
36#include <linux/panic.h>
37#include <linux/panic_notifier.h>
64db4cff
PM
38#include <linux/percpu.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/mutex.h>
42#include <linux/time.h>
bbad9379 43#include <linux/kernel_stat.h>
a26ac245
PM
44#include <linux/wait.h>
45#include <linux/kthread.h>
ae7e81c0 46#include <uapi/linux/sched/types.h>
268bb0ce 47#include <linux/prefetch.h>
3d3b7db0 48#include <linux/delay.h>
661a85dc 49#include <linux/random.h>
af658dca 50#include <linux/trace_events.h>
d1d74d14 51#include <linux/suspend.h>
a278d471 52#include <linux/ftrace.h>
d3052109 53#include <linux/tick.h>
2ccaff10 54#include <linux/sysrq.h>
c13324a5 55#include <linux/kprobes.h>
48d07c04
SAS
56#include <linux/gfp.h>
57#include <linux/oom.h>
58#include <linux/smpboot.h>
59#include <linux/jiffies.h>
77a40f97 60#include <linux/slab.h>
48d07c04 61#include <linux/sched/isolation.h>
cfcdef5e 62#include <linux/sched/clock.h>
5f3c8d62
URS
63#include <linux/vmalloc.h>
64#include <linux/mm.h>
26e760c9 65#include <linux/kasan.h>
17211455 66#include <linux/context_tracking.h>
48d07c04 67#include "../time/tick-internal.h"
64db4cff 68
4102adab 69#include "tree.h"
29c00b4a 70#include "rcu.h"
9f77da9f 71
4102adab
PM
72#ifdef MODULE_PARAM_PREFIX
73#undef MODULE_PARAM_PREFIX
74#endif
75#define MODULE_PARAM_PREFIX "rcutree."
76
64db4cff
PM
77/* Data structures. */
78
4c5273bf 79static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
a5d1b0b6 80 .gpwrap = true,
8d346d43 81#ifdef CONFIG_RCU_NOCB_CPU
213d56bf 82 .cblist.flags = SEGCBLIST_RCU_CORE,
8d346d43 83#endif
4c5273bf 84};
c30fe541 85static struct rcu_state rcu_state = {
358be2d3 86 .level = { &rcu_state.node[0] },
358be2d3
PM
87 .gp_state = RCU_GP_IDLE,
88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
80b3fd47 90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
358be2d3
PM
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
82980b16 95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
358be2d3 96};
27f4d280 97
a3dc2948
PM
98/* Dump rcu_node combining tree at boot to verify correct setup. */
99static bool dump_tree;
100module_param(dump_tree, bool, 0444);
48d07c04 101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
8b9a0ecc
SW
102static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103#ifndef CONFIG_PREEMPT_RT
48d07c04 104module_param(use_softirq, bool, 0444);
8b9a0ecc 105#endif
7fa27001
PM
106/* Control rcu_node-tree auto-balancing at boot time. */
107static bool rcu_fanout_exact;
108module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
109/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 113/* Number of rcu_nodes at specified level. */
e95d68d2 114int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
115int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116
b0d30417 117/*
52d7e48b
PM
118 * The rcu_scheduler_active variable is initialized to the value
119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
121 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 122 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124 * to detect real grace periods. This variable is also used to suppress
125 * boot-time false positives from lockdep-RCU error checking. Finally, it
126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 128 */
bbad9379
PM
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
b0d30417
PM
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
b50912d0
PM
146static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 unsigned long gps, unsigned long flags);
5d01bbd1 148static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 149static void invoke_rcu_core(void);
63d4c8c9 150static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 151static void sync_sched_exp_online_cleanup(int cpu);
b2b00ddf 152static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
3820b513 153static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
5a04848d
PM
154static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155static bool rcu_init_invoked(void);
156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
a26ac245 158
8f489b4d
URS
159/*
160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161 * real-time priority(enabling/disabling) is controlled by
162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163 */
26730f55 164static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
3ffe3d1a 165module_param(kthread_prio, int, 0444);
a94844b2 166
8d7dc928 167/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 168
90040c9e
PM
169static int gp_preinit_delay;
170module_param(gp_preinit_delay, int, 0444);
171static int gp_init_delay;
172module_param(gp_init_delay, int, 0444);
173static int gp_cleanup_delay;
174module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 175
aa40c138
PM
176// Add delay to rcu_read_unlock() for strict grace periods.
177static int rcu_unlock_delay;
178#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179module_param(rcu_unlock_delay, int, 0444);
180#endif
181
53c72b59
URS
182/*
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
187 */
56292e86 188static int rcu_min_cached_objs = 5;
53c72b59
URS
189module_param(rcu_min_cached_objs, int, 0444);
190
d0bfa8b3
ZQ
191// A page shrinker can ask for pages to be freed to make them
192// available for other parts of the system. This usually happens
193// under low memory conditions, and in that case we should also
194// defer page-cache filling for a short time period.
195//
196// The default value is 5 seconds, which is long enough to reduce
197// interference with the shrinker while it asks other systems to
198// drain their caches.
199static int rcu_delay_page_cache_fill_msec = 5000;
200module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201
4cf439a2 202/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
203int rcu_get_gp_kthreads_prio(void)
204{
205 return kthread_prio;
206}
207EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208
eab128e8
PM
209/*
210 * Number of grace periods between delays, normalized by the duration of
bfd090be 211 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
212 * each delay. The reason for this normalization is that it means that,
213 * for non-zero delays, the overall slowdown of grace periods is constant
214 * regardless of the duration of the delay. This arrangement balances
215 * the need for long delays to increase some race probabilities with the
216 * need for fast grace periods to increase other race probabilities.
217 */
277ffe1b 218#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
37745d28 219
fc2219d4 220/*
7d0ae808 221 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
222 * permit this function to be invoked without holding the root rcu_node
223 * structure's ->lock, but of course results can be subject to change.
224 */
de8e8730 225static int rcu_gp_in_progress(void)
fc2219d4 226{
de8e8730 227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
b1f77b05
IM
228}
229
903ee83d
PM
230/*
231 * Return the number of callbacks queued on the specified CPU.
232 * Handles both the nocbs and normal cases.
233 */
234static long rcu_get_n_cbs_cpu(int cpu)
235{
236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237
c035280f 238 if (rcu_segcblist_is_enabled(&rdp->cblist))
903ee83d 239 return rcu_segcblist_n_cbs(&rdp->cblist);
c035280f 240 return 0;
903ee83d
PM
241}
242
d28139c4 243void rcu_softirq_qs(void)
b1f77b05 244{
45975c7d 245 rcu_qs();
d28139c4 246 rcu_preempt_deferred_qs(current);
cf868c2a 247 rcu_tasks_qs(current, false);
b1f77b05 248}
64db4cff 249
2625d469
PM
250/*
251 * Reset the current CPU's ->dynticks counter to indicate that the
252 * newly onlined CPU is no longer in an extended quiescent state.
253 * This will either leave the counter unchanged, or increment it
254 * to the next non-quiescent value.
255 *
256 * The non-atomic test/increment sequence works because the upper bits
257 * of the ->dynticks counter are manipulated only by the corresponding CPU,
258 * or when the corresponding CPU is offline.
259 */
260static void rcu_dynticks_eqs_online(void)
261{
17147677 262 if (ct_dynticks() & RCU_DYNTICKS_IDX)
2625d469 263 return;
17147677 264 ct_state_inc(RCU_DYNTICKS_IDX);
02a5c550
PM
265}
266
8b2f63ab
PM
267/*
268 * Snapshot the ->dynticks counter with full ordering so as to allow
269 * stable comparison of this counter with past and future snapshots.
270 */
62e2412d 271static int rcu_dynticks_snap(int cpu)
8b2f63ab 272{
2be57f73 273 smp_mb(); // Fundamental RCU ordering guarantee.
62e2412d 274 return ct_dynticks_cpu_acquire(cpu);
8b2f63ab
PM
275}
276
02a5c550
PM
277/*
278 * Return true if the snapshot returned from rcu_dynticks_snap()
279 * indicates that RCU is in an extended quiescent state.
280 */
281static bool rcu_dynticks_in_eqs(int snap)
282{
17147677 283 return !(snap & RCU_DYNTICKS_IDX);
02a5c550
PM
284}
285
286/*
dc5a4f29 287 * Return true if the CPU corresponding to the specified rcu_data
02a5c550
PM
288 * structure has spent some time in an extended quiescent state since
289 * rcu_dynticks_snap() returned the specified snapshot.
290 */
dc5a4f29 291static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
02a5c550 292{
62e2412d 293 return snap != rcu_dynticks_snap(rdp->cpu);
02a5c550
PM
294}
295
7d0c9c50
PM
296/*
297 * Return true if the referenced integer is zero while the specified
298 * CPU remains within a single extended quiescent state.
299 */
300bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301{
7d0c9c50
PM
302 int snap;
303
304 // If not quiescent, force back to earlier extended quiescent state.
17147677 305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
7d0c9c50
PM
306 smp_rmb(); // Order ->dynticks and *vp reads.
307 if (READ_ONCE(*vp))
308 return false; // Non-zero, so report failure;
309 smp_rmb(); // Order *vp read and ->dynticks re-read.
310
311 // If still in the same extended quiescent state, we are good!
62e2412d 312 return snap == ct_dynticks_cpu(cpu);
6563de9d 313}
5cd37193 314
4a81e832
PM
315/*
316 * Let the RCU core know that this CPU has gone through the scheduler,
317 * which is a quiescent state. This is called when the need for a
318 * quiescent state is urgent, so we burn an atomic operation and full
319 * memory barriers to let the RCU core know about it, regardless of what
320 * this CPU might (or might not) do in the near future.
321 *
0f9be8ca 322 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 323 *
3b57a399 324 * The caller must have disabled interrupts and must not be idle.
4a81e832 325 */
4230e2de 326notrace void rcu_momentary_dyntick_idle(void)
4a81e832 327{
2be57f73 328 int seq;
3b57a399 329
2dba13f0 330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
17147677 331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
3b57a399 332 /* It is illegal to call this from idle state. */
17147677 333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
3e310098 334 rcu_preempt_deferred_qs(current);
4a81e832 335}
79ba7ff5 336EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
4a81e832 337
45975c7d 338/**
806f04e9 339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
bb73c52b 340 *
eddded80 341 * If the current CPU is idle and running at a first-level (not nested)
806f04e9
PZ
342 * interrupt, or directly, from idle, return true.
343 *
344 * The caller must have at least disabled IRQs.
5cd37193 345 */
45975c7d 346static int rcu_is_cpu_rrupt_from_idle(void)
5cd37193 347{
806f04e9
PZ
348 long nesting;
349
350 /*
351 * Usually called from the tick; but also used from smp_function_call()
352 * for expedited grace periods. This latter can result in running from
353 * the idle task, instead of an actual IPI.
354 */
355 lockdep_assert_irqs_disabled();
eddded80
JFG
356
357 /* Check for counter underflows */
904e600e 358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
eddded80 359 "RCU dynticks_nesting counter underflow!");
95e04f48 360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
eddded80
JFG
361 "RCU dynticks_nmi_nesting counter underflow/zero!");
362
363 /* Are we at first interrupt nesting level? */
95e04f48 364 nesting = ct_dynticks_nmi_nesting();
806f04e9 365 if (nesting > 1)
eddded80
JFG
366 return false;
367
806f04e9
PZ
368 /*
369 * If we're not in an interrupt, we must be in the idle task!
370 */
371 WARN_ON_ONCE(!nesting && !is_idle_task(current));
372
eddded80 373 /* Does CPU appear to be idle from an RCU standpoint? */
904e600e 374 return ct_dynticks_nesting() == 0;
5cd37193 375}
5cd37193 376
29fc5f93
PM
377#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 // Maximum callbacks per rcu_do_batch ...
379#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
17c7798b 380static long blimit = DEFAULT_RCU_BLIMIT;
29fc5f93 381#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
17c7798b 382static long qhimark = DEFAULT_RCU_QHIMARK;
29fc5f93 383#define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
17c7798b 384static long qlowmark = DEFAULT_RCU_QLOMARK;
b2b00ddf
PM
385#define DEFAULT_RCU_QOVLD_MULT 2
386#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
29fc5f93
PM
387static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388static long qovld_calc = -1; // No pre-initialization lock acquisitions!
64db4cff 389
878d7439
ED
390module_param(blimit, long, 0444);
391module_param(qhimark, long, 0444);
392module_param(qlowmark, long, 0444);
b2b00ddf 393module_param(qovld, long, 0444);
3d76c082 394
aecd34b9 395static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
026ad283 396static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 397static bool rcu_kick_kthreads;
cfcdef5e
ED
398static int rcu_divisor = 7;
399module_param(rcu_divisor, int, 0644);
400
401/* Force an exit from rcu_do_batch() after 3 milliseconds. */
402static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403module_param(rcu_resched_ns, long, 0644);
d40011f6 404
c06aed0e
PM
405/*
406 * How long the grace period must be before we start recruiting
407 * quiescent-state help from rcu_note_context_switch().
408 */
409static ulong jiffies_till_sched_qs = ULONG_MAX;
410module_param(jiffies_till_sched_qs, ulong, 0444);
85f2b60c 411static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
c06aed0e
PM
412module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413
414/*
415 * Make sure that we give the grace-period kthread time to detect any
416 * idle CPUs before taking active measures to force quiescent states.
417 * However, don't go below 100 milliseconds, adjusted upwards for really
418 * large systems.
419 */
420static void adjust_jiffies_till_sched_qs(void)
421{
422 unsigned long j;
423
424 /* If jiffies_till_sched_qs was specified, respect the request. */
425 if (jiffies_till_sched_qs != ULONG_MAX) {
426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 return;
428 }
85f2b60c 429 /* Otherwise, set to third fqs scan, but bound below on large system. */
c06aed0e
PM
430 j = READ_ONCE(jiffies_till_first_fqs) +
431 2 * READ_ONCE(jiffies_till_next_fqs);
432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 WRITE_ONCE(jiffies_to_sched_qs, j);
436}
437
67abb96c
BP
438static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439{
440 ulong j;
441 int ret = kstrtoul(val, 0, &j);
442
c06aed0e 443 if (!ret) {
67abb96c 444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
445 adjust_jiffies_till_sched_qs();
446 }
67abb96c
BP
447 return ret;
448}
449
450static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451{
452 ulong j;
453 int ret = kstrtoul(val, 0, &j);
454
c06aed0e 455 if (!ret) {
67abb96c 456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
457 adjust_jiffies_till_sched_qs();
458 }
67abb96c
BP
459 return ret;
460}
461
7c47ee5a 462static const struct kernel_param_ops first_fqs_jiffies_ops = {
67abb96c
BP
463 .set = param_set_first_fqs_jiffies,
464 .get = param_get_ulong,
465};
466
7c47ee5a 467static const struct kernel_param_ops next_fqs_jiffies_ops = {
67abb96c
BP
468 .set = param_set_next_fqs_jiffies,
469 .get = param_get_ulong,
470};
471
472module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 474module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 475
8ff0b907 476static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
dd7dafd1 477static int rcu_pending(int user);
64db4cff
PM
478
479/*
17ef2fe9 480 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 481 */
17ef2fe9 482unsigned long rcu_get_gp_seq(void)
917963d0 483{
16fc9c60 484 return READ_ONCE(rcu_state.gp_seq);
917963d0 485}
17ef2fe9 486EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 487
291783b8
PM
488/*
489 * Return the number of RCU expedited batches completed thus far for
490 * debug & stats. Odd numbers mean that a batch is in progress, even
491 * numbers mean idle. The value returned will thus be roughly double
492 * the cumulative batches since boot.
493 */
494unsigned long rcu_exp_batches_completed(void)
495{
16fc9c60 496 return rcu_state.expedited_sequence;
291783b8
PM
497}
498EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499
fd897573
PM
500/*
501 * Return the root node of the rcu_state structure.
502 */
503static struct rcu_node *rcu_get_root(void)
504{
505 return &rcu_state.node[0];
506}
507
ad0dc7f9
PM
508/*
509 * Send along grace-period-related data for rcutorture diagnostics.
510 */
511void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 512 unsigned long *gp_seq)
ad0dc7f9 513{
ad0dc7f9
PM
514 switch (test_type) {
515 case RCU_FLAVOR:
f7dd7d44
PM
516 *flags = READ_ONCE(rcu_state.gp_flags);
517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
518 break;
519 default:
520 break;
521 }
ad0dc7f9
PM
522}
523EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524
17211455 525#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
f8bb5cae
FW
526/*
527 * An empty function that will trigger a reschedule on
4ae7dc97 528 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
f8bb5cae
FW
529 */
530static void late_wakeup_func(struct irq_work *work)
531{
532}
533
534static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 IRQ_WORK_INIT(late_wakeup_func);
536
4ae7dc97
FW
537/*
538 * If either:
539 *
540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542 *
543 * In these cases the late RCU wake ups aren't supported in the resched loops and our
544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545 * get re-enabled again.
546 */
56450649 547noinstr void rcu_irq_work_resched(void)
4ae7dc97
FW
548{
549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550
551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 return;
553
554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 return;
556
557 instrumentation_begin();
558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 }
561 instrumentation_end();
562}
17211455 563#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
7c9906ca 564
07325d4a
TG
565#ifdef CONFIG_PROVE_RCU
566/**
567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568 */
569void rcu_irq_exit_check_preempt(void)
570{
571 lockdep_assert_irqs_disabled();
572
904e600e 573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
07325d4a 574 "RCU dynticks_nesting counter underflow/zero!");
95e04f48 575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
07325d4a
TG
576 DYNTICK_IRQ_NONIDLE,
577 "Bad RCU dynticks_nmi_nesting counter\n");
578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 "RCU in extended quiescent state!");
580}
581#endif /* #ifdef CONFIG_PROVE_RCU */
582
d1ec4c34 583#ifdef CONFIG_NO_HZ_FULL
aaf2bc50
PM
584/**
585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586 *
587 * The scheduler tick is not normally enabled when CPUs enter the kernel
588 * from nohz_full userspace execution. After all, nohz_full userspace
589 * execution is an RCU quiescent state and the time executing in the kernel
590 * is quite short. Except of course when it isn't. And it is not hard to
591 * cause a large system to spend tens of seconds or even minutes looping
592 * in the kernel, which can cause a number of problems, include RCU CPU
593 * stall warnings.
594 *
595 * Therefore, if a nohz_full CPU fails to report a quiescent state
596 * in a timely manner, the RCU grace-period kthread sets that CPU's
597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598 * exception will invoke this function, which will turn on the scheduler
599 * tick, which will enable RCU to detect that CPU's quiescent states,
600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601 * The tick will be disabled once a quiescent state is reported for
602 * this CPU.
603 *
604 * Of course, in carefully tuned systems, there might never be an
605 * interrupt or exception. In that case, the RCU grace-period kthread
606 * will eventually cause one to happen. However, in less carefully
607 * controlled environments, this function allows RCU to get what it
608 * needs without creating otherwise useless interruptions.
609 */
610void __rcu_irq_enter_check_tick(void)
611{
612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613
6dbce04d
PZ
614 // If we're here from NMI there's nothing to do.
615 if (in_nmi())
aaf2bc50
PM
616 return;
617
618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620
621 if (!tick_nohz_full_cpu(rdp->cpu) ||
622 !READ_ONCE(rdp->rcu_urgent_qs) ||
623 READ_ONCE(rdp->rcu_forced_tick)) {
624 // RCU doesn't need nohz_full help from this CPU, or it is
625 // already getting that help.
626 return;
627 }
628
629 // We get here only when not in an extended quiescent state and
630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
631 // already watching and (2) The fact that we are in an interrupt
632 // handler and that the rcu_node lock is an irq-disabled lock
633 // prevents self-deadlock. So we can safely recheck under the lock.
634 // Note that the nohz_full state currently cannot change.
635 raw_spin_lock_rcu_node(rdp->mynode);
343640cb 636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
aaf2bc50
PM
637 // A nohz_full CPU is in the kernel and RCU needs a
638 // quiescent state. Turn on the tick!
639 WRITE_ONCE(rdp->rcu_forced_tick, true);
640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 }
642 raw_spin_unlock_rcu_node(rdp->mynode);
643}
7a29fb4a 644NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
d1ec4c34 645#endif /* CONFIG_NO_HZ_FULL */
19dd1591 646
bc849e91
PM
647/*
648 * Check to see if any future non-offloaded RCU-related work will need
649 * to be done by the current CPU, even if none need be done immediately,
650 * returning 1 if so. This function is part of the RCU implementation;
651 * it is -not- an exported member of the RCU API. This is used by
652 * the idle-entry code to figure out whether it is safe to disable the
653 * scheduler-clock interrupt.
654 *
655 * Just check whether or not this CPU has non-offloaded RCU callbacks
656 * queued.
657 */
29845399 658int rcu_needs_cpu(void)
bc849e91 659{
bc849e91
PM
660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662}
663
66e4c33b 664/*
516e5ae0
JFG
665 * If any sort of urgency was applied to the current CPU (for example,
666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667 * to get to a quiescent state, disable it.
66e4c33b 668 */
516e5ae0 669static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
66e4c33b 670{
5b14557b 671 raw_lockdep_assert_held_rcu_node(rdp->mynode);
516e5ae0
JFG
672 WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
66e4c33b
PM
674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
2a2ae872 676 WRITE_ONCE(rdp->rcu_forced_tick, false);
66e4c33b
PM
677 }
678}
679
5c173eb8 680/**
c924bf5a 681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
64db4cff 682 *
c924bf5a
PM
683 * Return @true if RCU is watching the running CPU and @false otherwise.
684 * An @true return means that this CPU can safely enter RCU read-side
685 * critical sections.
686 *
687 * Although calls to rcu_is_watching() from most parts of the kernel
688 * will return @true, there are important exceptions. For example, if the
689 * current CPU is deep within its idle loop, in kernel entry/exit code,
690 * or offline, rcu_is_watching() will return @false.
d2098b44
PZ
691 *
692 * Make notrace because it can be called by the internal functions of
693 * ftrace, and making this notrace removes unnecessary recursion calls.
64db4cff 694 */
d2098b44 695notrace bool rcu_is_watching(void)
64db4cff 696{
f534ed1f 697 bool ret;
34240697 698
46f00d18 699 preempt_disable_notrace();
791875d1 700 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 701 preempt_enable_notrace();
34240697 702 return ret;
64db4cff 703}
5c173eb8 704EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 705
bcbfdd01
PM
706/*
707 * If a holdout task is actually running, request an urgent quiescent
708 * state from its CPU. This is unsynchronized, so migrations can cause
709 * the request to go to the wrong CPU. Which is OK, all that will happen
710 * is that the CPU's next context switch will be a bit slower and next
711 * time around this task will generate another request.
712 */
713void rcu_request_urgent_qs_task(struct task_struct *t)
714{
715 int cpu;
716
717 barrier();
718 cpu = task_cpu(t);
719 if (!task_curr(t))
720 return; /* This task is not running on that CPU. */
2dba13f0 721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
722}
723
9b9500da 724/*
277ffe1b 725 * When trying to report a quiescent state on behalf of some other CPU,
9b9500da 726 * it is our responsibility to check for and handle potential overflow
a66ae8ae 727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
728 * After all, the CPU might be in deep idle state, and thus executing no
729 * code whatsoever.
730 */
731static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732{
a32e01ee 733 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 rnp->gp_seq))
9b9500da 736 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
739}
740
64db4cff
PM
741/*
742 * Snapshot the specified CPU's dynticks counter so that we can later
743 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 744 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 745 */
fe5ac724 746static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 747{
62e2412d 748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
02a5c550 749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 751 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 752 return 1;
7941dbde 753 }
23a9bacd 754 return 0;
64db4cff
PM
755}
756
757/*
85d68222
PZ
758 * Returns positive if the specified CPU has passed through a quiescent state
759 * by virtue of being in or having passed through an dynticks idle state since
760 * the last call to dyntick_save_progress_counter() for this same CPU, or by
761 * virtue of having been offline.
762 *
763 * Returns negative if the specified CPU needs a force resched.
764 *
765 * Returns zero otherwise.
64db4cff 766 */
fe5ac724 767static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 768{
3a19b46a 769 unsigned long jtsq;
85d68222 770 int ret = 0;
9b9500da 771 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
772
773 /*
774 * If the CPU passed through or entered a dynticks idle phase with
775 * no active irq/NMI handlers, then we can safely pretend that the CPU
776 * already acknowledged the request to pass through a quiescent
777 * state. Either way, that CPU cannot possibly be in an RCU
778 * read-side critical section that started before the beginning
779 * of the current RCU grace period.
780 */
dc5a4f29 781 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
88d1bead 782 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 783 rcu_gpnum_ovf(rnp, rdp);
3a19b46a
PM
784 return 1;
785 }
786
666ca290
JFG
787 /*
788 * Complain if a CPU that is considered to be offline from RCU's
789 * perspective has not yet reported a quiescent state. After all,
790 * the offline CPU should have reported a quiescent state during
791 * the CPU-offline process, or, failing that, by rcu_gp_init()
792 * if it ran concurrently with either the CPU going offline or the
793 * last task on a leaf rcu_node structure exiting its RCU read-side
794 * critical section while all CPUs corresponding to that structure
795 * are offline. This added warning detects bugs in any of these
796 * code paths.
797 *
798 * The rcu_node structure's ->lock is held here, which excludes
799 * the relevant portions the CPU-hotplug code, the grace-period
800 * initialization code, and the rcu_read_unlock() code paths.
801 *
802 * For more detail, please refer to the "Hotplug CPU" section
803 * of RCU's Requirements documentation.
804 */
5ae0f1b5 805 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
f2e2df59
PM
806 struct rcu_node *rnp1;
807
f2e2df59
PM
808 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809 __func__, rnp->grplo, rnp->grphi, rnp->level,
810 (long)rnp->gp_seq, (long)rnp->completedqs);
811 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
f2e2df59 814 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
5ae0f1b5 815 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
f2e2df59
PM
816 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818 return 1; /* Break things loose after complaining. */
819 }
820
65d798f0 821 /*
4a81e832 822 * A CPU running for an extended time within the kernel can
c06aed0e
PM
823 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
825 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
826 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827 * variable are safe because the assignments are repeated if this
828 * CPU failed to pass through a quiescent state. This code
c06aed0e 829 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 830 * is set way high.
6193c76a 831 */
c06aed0e 832 jtsq = READ_ONCE(jiffies_to_sched_qs);
88ee23ef 833 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
7e28c5af 834 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
b2b00ddf
PM
835 time_after(jiffies, rcu_state.jiffies_resched) ||
836 rcu_state.cbovld)) {
88ee23ef 837 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
9226b10d 838 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
9424b867 839 smp_store_release(&rdp->rcu_urgent_qs, true);
7e28c5af 840 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
9424b867 841 WRITE_ONCE(rdp->rcu_urgent_qs, true);
6193c76a
PM
842 }
843
28053bc7 844 /*
c98cac60 845 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
d3052109
PM
846 * The above code handles this, but only for straight cond_resched().
847 * And some in-kernel loops check need_resched() before calling
848 * cond_resched(), which defeats the above code for CPUs that are
849 * running in-kernel with scheduling-clock interrupts disabled.
850 * So hit them over the head with the resched_cpu() hammer!
28053bc7 851 */
d3052109 852 if (tick_nohz_full_cpu(rdp->cpu) &&
b2b00ddf
PM
853 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854 rcu_state.cbovld)) {
9424b867 855 WRITE_ONCE(rdp->rcu_urgent_qs, true);
d3052109 856 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
85d68222 857 ret = -1;
d3052109
PM
858 }
859
860 /*
861 * If more than halfway to RCU CPU stall-warning time, invoke
862 * resched_cpu() more frequently to try to loosen things up a bit.
863 * Also check to see if the CPU is getting hammered with interrupts,
864 * but only once per grace period, just to keep the IPIs down to
865 * a dull roar.
866 */
867 if (time_after(jiffies, rcu_state.jiffies_resched)) {
868 if (time_after(jiffies,
869 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
d3052109 870 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
85d68222 871 ret = -1;
d3052109 872 }
9b9500da 873 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 874 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da 875 (rnp->ffmask & rdp->grpmask)) {
9b9500da 876 rdp->rcu_iw_pending = true;
8aa670cd 877 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
878 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
879 }
be42f00b
ZL
880
881 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882 int cpu = rdp->cpu;
883 struct rcu_snap_record *rsrp;
884 struct kernel_cpustat *kcsp;
885
886 kcsp = &kcpustat_cpu(cpu);
887
888 rsrp = &rdp->snap_record;
889 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
890 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
891 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
892 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
893 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
894 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
895 rsrp->jiffies = jiffies;
896 rsrp->gp_seq = rdp->gp_seq;
897 }
9b9500da 898 }
4914950a 899
85d68222 900 return ret;
64db4cff
PM
901}
902
41e80595
PM
903/* Trace-event wrapper function for trace_rcu_future_grace_period. */
904static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 905 unsigned long gp_seq_req, const char *s)
0446be48 906{
0937d045
PM
907 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
908 gp_seq_req, rnp->level,
909 rnp->grplo, rnp->grphi, s);
0446be48
PM
910}
911
912/*
b73de91d 913 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 914 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
915 * @rdp: The rcu_data corresponding to the CPU from which to start.
916 * @gp_seq_req: The gp_seq of the grace period to start.
917 *
41e80595 918 * Start the specified grace period, as needed to handle newly arrived
0446be48 919 * callbacks. The required future grace periods are recorded in each
7a1d0f23 920 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 921 * is reason to awaken the grace-period kthread.
0446be48 922 *
d5cd9685
PM
923 * The caller must hold the specified rcu_node structure's ->lock, which
924 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
925 *
926 * Returns true if the GP thread needs to be awakened else false.
0446be48 927 */
df2bf8f7 928static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 929 unsigned long gp_seq_req)
0446be48 930{
48a7639c 931 bool ret = false;
df2bf8f7 932 struct rcu_node *rnp;
0446be48
PM
933
934 /*
360e0da6
PM
935 * Use funnel locking to either acquire the root rcu_node
936 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
937 * has already been recorded -- or if that grace period has in
938 * fact already started. If there is already a grace period in
939 * progress in a non-leaf node, no recording is needed because the
940 * end of the grace period will scan the leaf rcu_node structures.
941 * Note that rnp_start->lock must not be released.
0446be48 942 */
df2bf8f7
JFG
943 raw_lockdep_assert_held_rcu_node(rnp_start);
944 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945 for (rnp = rnp_start; 1; rnp = rnp->parent) {
946 if (rnp != rnp_start)
947 raw_spin_lock_rcu_node(rnp);
948 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
950 (rnp != rnp_start &&
951 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
952 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 953 TPS("Prestarted"));
360e0da6
PM
954 goto unlock_out;
955 }
8ff37290 956 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
226ca5e7 957 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 958 /*
226ca5e7
JFG
959 * We just marked the leaf or internal node, and a
960 * grace period is in progress, which means that
961 * rcu_gp_cleanup() will see the marking. Bail to
962 * reduce contention.
a2165e41 963 */
df2bf8f7 964 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 965 TPS("Startedleaf"));
a2165e41
PM
966 goto unlock_out;
967 }
df2bf8f7
JFG
968 if (rnp != rnp_start && rnp->parent != NULL)
969 raw_spin_unlock_rcu_node(rnp);
970 if (!rnp->parent)
360e0da6 971 break; /* At root, and perhaps also leaf. */
0446be48
PM
972 }
973
360e0da6 974 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 975 if (rcu_gp_in_progress()) {
df2bf8f7 976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
977 goto unlock_out;
978 }
df2bf8f7 979 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97 980 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
2906d215 981 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5648d659 982 if (!READ_ONCE(rcu_state.gp_kthread)) {
df2bf8f7 983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 984 goto unlock_out;
0446be48 985 }
62ae1951 986 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
360e0da6 987 ret = true; /* Caller must wake GP kthread. */
0446be48 988unlock_out:
ab5e869c 989 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7 990 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
8ff37290
PM
991 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
ab5e869c 993 }
df2bf8f7
JFG
994 if (rnp != rnp_start)
995 raw_spin_unlock_rcu_node(rnp);
48a7639c 996 return ret;
0446be48
PM
997}
998
999/*
1000 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1001 * whether any additional grace periods have been requested.
0446be48 1002 */
3481f2ea 1003static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1004{
fb31340f 1005 bool needmore;
da1df50d 1006 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1007
7a1d0f23
PM
1008 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009 if (!needmore)
1010 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1011 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1012 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1013 return needmore;
1014}
1015
e787644c
FW
1016static void swake_up_one_online_ipi(void *arg)
1017{
1018 struct swait_queue_head *wqh = arg;
1019
1020 swake_up_one(wqh);
1021}
1022
1023static void swake_up_one_online(struct swait_queue_head *wqh)
1024{
1025 int cpu = get_cpu();
1026
1027 /*
1028 * If called from rcutree_report_cpu_starting(), wake up
1029 * is dangerous that late in the CPU-down hotplug process. The
1030 * scheduler might queue an ignored hrtimer. Defer the wake up
1031 * to an online CPU instead.
1032 */
1033 if (unlikely(cpu_is_offline(cpu))) {
1034 int target;
1035
1036 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1037 cpu_online_mask);
1038
1039 smp_call_function_single(target, swake_up_one_online_ipi,
1040 wqh, 0);
1041 put_cpu();
1042 } else {
1043 put_cpu();
1044 swake_up_one(wqh);
1045 }
1046}
1047
48a7639c 1048/*
5648d659
PM
1049 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1050 * interrupt or softirq handler, in which case we just might immediately
1051 * sleep upon return, resulting in a grace-period hang), and don't bother
1052 * awakening when there is nothing for the grace-period kthread to do
1053 * (as in several CPUs raced to awaken, we lost), and finally don't try
1054 * to awaken a kthread that has not yet been created. If all those checks
1055 * are passed, track some debug information and awaken.
1d1f898d
ZJ
1056 *
1057 * So why do the self-wakeup when in an interrupt or softirq handler
1058 * in the grace-period kthread's context? Because the kthread might have
1059 * been interrupted just as it was going to sleep, and just after the final
1060 * pre-sleep check of the awaken condition. In this case, a wakeup really
1061 * is required, and is therefore supplied.
48a7639c 1062 */
532c00c9 1063static void rcu_gp_kthread_wake(void)
48a7639c 1064{
5648d659
PM
1065 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1066
2407a64f 1067 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
5648d659 1068 !READ_ONCE(rcu_state.gp_flags) || !t)
48a7639c 1069 return;
fd897573
PM
1070 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1071 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
e787644c 1072 swake_up_one_online(&rcu_state.gp_wq);
48a7639c
PM
1073}
1074
dc35c893 1075/*
29365e56
PM
1076 * If there is room, assign a ->gp_seq number to any callbacks on this
1077 * CPU that have not already been assigned. Also accelerate any callbacks
1078 * that were previously assigned a ->gp_seq number that has since proven
1079 * to be too conservative, which can happen if callbacks get assigned a
1080 * ->gp_seq number while RCU is idle, but with reference to a non-root
1081 * rcu_node structure. This function is idempotent, so it does not hurt
1082 * to call it repeatedly. Returns an flag saying that we should awaken
1083 * the RCU grace-period kthread.
dc35c893
PM
1084 *
1085 * The caller must hold rnp->lock with interrupts disabled.
1086 */
02f50142 1087static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1088{
b73de91d 1089 unsigned long gp_seq_req;
15fecf89 1090 bool ret = false;
dc35c893 1091
d1b222c6 1092 rcu_lockdep_assert_cblist_protected(rdp);
a32e01ee 1093 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1094
15fecf89
PM
1095 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1096 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1097 return false;
dc35c893 1098
3afe7fa5
JFG
1099 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1100
dc35c893 1101 /*
15fecf89
PM
1102 * Callbacks are often registered with incomplete grace-period
1103 * information. Something about the fact that getting exact
1104 * information requires acquiring a global lock... RCU therefore
1105 * makes a conservative estimate of the grace period number at which
1106 * a given callback will become ready to invoke. The following
1107 * code checks this estimate and improves it when possible, thus
1108 * accelerating callback invocation to an earlier grace-period
1109 * number.
dc35c893 1110 */
9cbc5b97 1111 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1112 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1113 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1114
1115 /* Trace depending on how much we were able to accelerate. */
15fecf89 1116 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
a7886e89 1117 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
6d4b418c 1118 else
a7886e89
JFG
1119 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1120
3afe7fa5
JFG
1121 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1122
48a7639c 1123 return ret;
dc35c893
PM
1124}
1125
e44e73ca
PM
1126/*
1127 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1128 * rcu_node structure's ->lock be held. It consults the cached value
1129 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1130 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1131 * while holding the leaf rcu_node structure's ->lock.
1132 */
c6e09b97 1133static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1134 struct rcu_data *rdp)
1135{
1136 unsigned long c;
1137 bool needwake;
1138
d1b222c6 1139 rcu_lockdep_assert_cblist_protected(rdp);
c6e09b97 1140 c = rcu_seq_snap(&rcu_state.gp_seq);
a5b89501 1141 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
e44e73ca
PM
1142 /* Old request still live, so mark recent callbacks. */
1143 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1144 return;
1145 }
1146 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1147 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1148 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1149 if (needwake)
532c00c9 1150 rcu_gp_kthread_wake();
e44e73ca
PM
1151}
1152
dc35c893
PM
1153/*
1154 * Move any callbacks whose grace period has completed to the
1155 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1156 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1157 * sublist. This function is idempotent, so it does not hurt to
1158 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1159 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1160 *
1161 * The caller must hold rnp->lock with interrupts disabled.
1162 */
834f56bf 1163static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1164{
d1b222c6 1165 rcu_lockdep_assert_cblist_protected(rdp);
a32e01ee 1166 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1167
15fecf89
PM
1168 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1169 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1170 return false;
dc35c893
PM
1171
1172 /*
29365e56 1173 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1174 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1175 */
29365e56 1176 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1177
1178 /* Classify any remaining callbacks. */
02f50142 1179 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1180}
1181
7f36ef82
PM
1182/*
1183 * Move and classify callbacks, but only if doing so won't require
1184 * that the RCU grace-period kthread be awakened.
1185 */
1186static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1187 struct rcu_data *rdp)
1188{
d1b222c6 1189 rcu_lockdep_assert_cblist_protected(rdp);
614ddad1 1190 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
7f36ef82 1191 return;
614ddad1
PM
1192 // The grace period cannot end while we hold the rcu_node lock.
1193 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1194 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
6608c3a0 1195 raw_spin_unlock_rcu_node(rnp);
7f36ef82
PM
1196}
1197
1a2f5d57
PM
1198/*
1199 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1200 * quiescent state. This is intended to be invoked when the CPU notices
1201 * a new grace period.
1202 */
1203static void rcu_strict_gp_check_qs(void)
1204{
1205 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1206 rcu_read_lock();
1207 rcu_read_unlock();
1208 }
1209}
1210
d09b62df 1211/*
ba9fbe95
PM
1212 * Update CPU-local rcu_data state to record the beginnings and ends of
1213 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1214 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1215 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1216 */
c7e48f7b 1217static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1218{
5d6742b3 1219 bool ret = false;
b5ea0370 1220 bool need_qs;
3820b513 1221 const bool offloaded = rcu_rdp_is_offloaded(rdp);
48a7639c 1222
a32e01ee 1223 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1224
67e14c1e
PM
1225 if (rdp->gp_seq == rnp->gp_seq)
1226 return false; /* Nothing to do. */
d09b62df 1227
67e14c1e
PM
1228 /* Handle the ends of any preceding grace periods first. */
1229 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1230 unlikely(READ_ONCE(rdp->gpwrap))) {
5d6742b3
PM
1231 if (!offloaded)
1232 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
b5ea0370 1233 rdp->core_needs_qs = false;
9cbc5b97 1234 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1235 } else {
5d6742b3
PM
1236 if (!offloaded)
1237 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
b5ea0370
PM
1238 if (rdp->core_needs_qs)
1239 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
d09b62df 1240 }
398ebe60 1241
67e14c1e
PM
1242 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1243 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1244 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1245 /*
1246 * If the current grace period is waiting for this CPU,
1247 * set up to detect a quiescent state, otherwise don't
1248 * go looking for one.
1249 */
9cbc5b97 1250 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
b5ea0370
PM
1251 need_qs = !!(rnp->qsmask & rdp->grpmask);
1252 rdp->cpu_no_qs.b.norm = need_qs;
1253 rdp->core_needs_qs = need_qs;
6eaef633
PM
1254 zero_cpu_stall_ticks(rdp);
1255 }
67e14c1e 1256 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
13dc7d0c 1257 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
8ff37290 1258 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
c708b08c
PM
1259 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1260 WRITE_ONCE(rdp->last_sched_clock, jiffies);
3d18469a
PM
1261 WRITE_ONCE(rdp->gpwrap, false);
1262 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1263 return ret;
6eaef633
PM
1264}
1265
15cabdff 1266static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1267{
1268 unsigned long flags;
48a7639c 1269 bool needwake;
6eaef633
PM
1270 struct rcu_node *rnp;
1271
1272 local_irq_save(flags);
1273 rnp = rdp->mynode;
67e14c1e 1274 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1275 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1276 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1277 local_irq_restore(flags);
1278 return;
1279 }
c7e48f7b 1280 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1a2f5d57 1282 rcu_strict_gp_check_qs();
48a7639c 1283 if (needwake)
532c00c9 1284 rcu_gp_kthread_wake();
6eaef633
PM
1285}
1286
99d6a2ac
PM
1287static atomic_t *rcu_gp_slow_suppress;
1288
1289/* Register a counter to suppress debugging grace-period delays. */
1290void rcu_gp_slow_register(atomic_t *rgssp)
1291{
1292 WARN_ON_ONCE(rcu_gp_slow_suppress);
1293
1294 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1295}
1296EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1297
1298/* Unregister a counter, with NULL for not caring which. */
1299void rcu_gp_slow_unregister(atomic_t *rgssp)
1300{
0ae9942f 1301 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
99d6a2ac
PM
1302
1303 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1304}
1305EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1306
1307static bool rcu_gp_slow_is_suppressed(void)
1308{
1309 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1310
1311 return rgssp && atomic_read(rgssp);
1312}
1313
22212332 1314static void rcu_gp_slow(int delay)
0f41c0dd 1315{
99d6a2ac
PM
1316 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1317 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
77865dea 1318 schedule_timeout_idle(delay);
0f41c0dd
PM
1319}
1320
55b2dcf5
PM
1321static unsigned long sleep_duration;
1322
1323/* Allow rcutorture to stall the grace-period kthread. */
1324void rcu_gp_set_torture_wait(int duration)
1325{
1326 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1327 WRITE_ONCE(sleep_duration, duration);
1328}
1329EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1330
1331/* Actually implement the aforementioned wait. */
1332static void rcu_gp_torture_wait(void)
1333{
1334 unsigned long duration;
1335
1336 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1337 return;
1338 duration = xchg(&sleep_duration, 0UL);
1339 if (duration > 0) {
1340 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
77865dea 1341 schedule_timeout_idle(duration);
55b2dcf5
PM
1342 pr_alert("%s: Wait complete\n", __func__);
1343 }
1344}
1345
933ada2c
PM
1346/*
1347 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1348 * processing.
1349 */
1350static void rcu_strict_gp_boundary(void *unused)
1351{
1352 invoke_rcu_core();
1353}
1354
bf95b2bc
PM
1355// Make the polled API aware of the beginning of a grace period.
1356static void rcu_poll_gp_seq_start(unsigned long *snap)
1357{
1358 struct rcu_node *rnp = rcu_get_root();
1359
3f6c3d29 1360 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
bf95b2bc
PM
1361 raw_lockdep_assert_held_rcu_node(rnp);
1362
1363 // If RCU was idle, note beginning of GP.
1364 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1365 rcu_seq_start(&rcu_state.gp_seq_polled);
1366
1367 // Either way, record current state.
1368 *snap = rcu_state.gp_seq_polled;
1369}
1370
1371// Make the polled API aware of the end of a grace period.
1372static void rcu_poll_gp_seq_end(unsigned long *snap)
1373{
1374 struct rcu_node *rnp = rcu_get_root();
1375
3f6c3d29 1376 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
bf95b2bc
PM
1377 raw_lockdep_assert_held_rcu_node(rnp);
1378
1379 // If the previously noted GP is still in effect, record the
1380 // end of that GP. Either way, zero counter to avoid counter-wrap
1381 // problems.
1382 if (*snap && *snap == rcu_state.gp_seq_polled) {
1383 rcu_seq_end(&rcu_state.gp_seq_polled);
1384 rcu_state.gp_seq_polled_snap = 0;
dd041405 1385 rcu_state.gp_seq_polled_exp_snap = 0;
bf95b2bc
PM
1386 } else {
1387 *snap = 0;
1388 }
1389}
1390
1391// Make the polled API aware of the beginning of a grace period, but
1392// where caller does not hold the root rcu_node structure's lock.
1393static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1394{
31d8aaa8 1395 unsigned long flags;
bf95b2bc
PM
1396 struct rcu_node *rnp = rcu_get_root();
1397
1398 if (rcu_init_invoked()) {
3f6c3d29
PM
1399 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1400 lockdep_assert_irqs_enabled();
31d8aaa8 1401 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bf95b2bc
PM
1402 }
1403 rcu_poll_gp_seq_start(snap);
1404 if (rcu_init_invoked())
31d8aaa8 1405 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
bf95b2bc
PM
1406}
1407
1408// Make the polled API aware of the end of a grace period, but where
1409// caller does not hold the root rcu_node structure's lock.
1410static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1411{
31d8aaa8 1412 unsigned long flags;
bf95b2bc
PM
1413 struct rcu_node *rnp = rcu_get_root();
1414
1415 if (rcu_init_invoked()) {
3f6c3d29
PM
1416 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1417 lockdep_assert_irqs_enabled();
31d8aaa8 1418 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bf95b2bc
PM
1419 }
1420 rcu_poll_gp_seq_end(snap);
1421 if (rcu_init_invoked())
31d8aaa8 1422 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
bf95b2bc
PM
1423}
1424
b3dbec76 1425/*
45fed3e7 1426 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1427 */
f74126dc 1428static noinline_for_stack bool rcu_gp_init(void)
b3dbec76 1429{
ec2c2976 1430 unsigned long flags;
0aa04b05 1431 unsigned long oldmask;
ec2c2976 1432 unsigned long mask;
b3dbec76 1433 struct rcu_data *rdp;
336a4f6c 1434 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1435
9cbc5b97 1436 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1437 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1438 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1439 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1440 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1441 return false;
f7be8209 1442 }
9cbc5b97 1443 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1444
de8e8730 1445 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1446 /*
1447 * Grace period already in progress, don't start another.
1448 * Not supposed to be able to happen.
1449 */
67c583a7 1450 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1451 return false;
7fdefc10
PM
1452 }
1453
7fdefc10 1454 /* Advance to a new grace period and initialize state. */
ad3832e9 1455 record_gp_stall_check_time();
ff3bb6f4 1456 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97 1457 rcu_seq_start(&rcu_state.gp_seq);
62ae1951 1458 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
9cbc5b97 1459 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
bf95b2bc 1460 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
67c583a7 1461 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1462
0aa04b05 1463 /*
f37599e6
JFG
1464 * Apply per-leaf buffered online and offline operations to
1465 * the rcu_node tree. Note that this new grace period need not
1466 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1467 * offlining path, when combined with checks in this function,
1468 * will handle CPUs that are currently going offline or that will
1469 * go offline later. Please also refer to "Hotplug CPU" section
1470 * of RCU's Requirements documentation.
0aa04b05 1471 */
683954e5 1472 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
82980b16 1473 /* Exclude CPU hotplug operations. */
aedf4ba9 1474 rcu_for_each_leaf_node(rnp) {
82980b16
DW
1475 local_irq_save(flags);
1476 arch_spin_lock(&rcu_state.ofl_lock);
1477 raw_spin_lock_rcu_node(rnp);
0aa04b05
PM
1478 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1479 !rnp->wait_blkd_tasks) {
1480 /* Nothing to do on this leaf rcu_node structure. */
82980b16
DW
1481 raw_spin_unlock_rcu_node(rnp);
1482 arch_spin_unlock(&rcu_state.ofl_lock);
1483 local_irq_restore(flags);
0aa04b05
PM
1484 continue;
1485 }
1486
1487 /* Record old state, apply changes to ->qsmaskinit field. */
1488 oldmask = rnp->qsmaskinit;
1489 rnp->qsmaskinit = rnp->qsmaskinitnext;
1490
1491 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1492 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1493 if (!oldmask) { /* First online CPU for rcu_node. */
1494 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1495 rcu_init_new_rnp(rnp);
1496 } else if (rcu_preempt_has_tasks(rnp)) {
1497 rnp->wait_blkd_tasks = true; /* blocked tasks */
1498 } else { /* Last offline CPU and can propagate. */
0aa04b05 1499 rcu_cleanup_dead_rnp(rnp);
962aff03 1500 }
0aa04b05
PM
1501 }
1502
1503 /*
1504 * If all waited-on tasks from prior grace period are
1505 * done, and if all this rcu_node structure's CPUs are
1506 * still offline, propagate up the rcu_node tree and
1507 * clear ->wait_blkd_tasks. Otherwise, if one of this
1508 * rcu_node structure's CPUs has since come back online,
962aff03 1509 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1510 */
1511 if (rnp->wait_blkd_tasks &&
962aff03 1512 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1513 rnp->wait_blkd_tasks = false;
962aff03
PM
1514 if (!rnp->qsmaskinit)
1515 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1516 }
1517
82980b16
DW
1518 raw_spin_unlock_rcu_node(rnp);
1519 arch_spin_unlock(&rcu_state.ofl_lock);
1520 local_irq_restore(flags);
0aa04b05 1521 }
22212332 1522 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1523
1524 /*
1525 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1526 * structures for all currently online CPUs in breadth-first
1527 * order, starting from the root rcu_node structure, relying on the
1528 * layout of the tree within the rcu_state.node[] array. Note that
1529 * other CPUs will access only the leaves of the hierarchy, thus
1530 * seeing that no grace period is in progress, at least until the
1531 * corresponding leaf node has been initialized.
7fdefc10
PM
1532 *
1533 * The grace period cannot complete until the initialization
1534 * process finishes, because this kthread handles both.
1535 */
683954e5 1536 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
aedf4ba9 1537 rcu_for_each_node_breadth_first(rnp) {
22212332 1538 rcu_gp_slow(gp_init_delay);
ec2c2976 1539 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1540 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1541 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1542 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1543 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1544 if (rnp == rdp->mynode)
c7e48f7b 1545 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1546 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1547 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1548 rnp->level, rnp->grplo,
1549 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1550 /* Quiescent states for tasks on any now-offline CPUs. */
1551 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1552 rnp->rcu_gp_init_mask = mask;
ec2c2976 1553 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1554 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1555 else
1556 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1557 cond_resched_tasks_rcu_qs();
9cbc5b97 1558 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1559 }
b3dbec76 1560
933ada2c
PM
1561 // If strict, make all CPUs aware of new grace period.
1562 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1563 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1564
45fed3e7 1565 return true;
7fdefc10 1566}
b3dbec76 1567
b9a425cf 1568/*
b3dae109 1569 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1570 * time.
b9a425cf 1571 */
0854a05c 1572static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1573{
336a4f6c 1574 struct rcu_node *rnp = rcu_get_root();
b9a425cf 1575
1fca4d12
PM
1576 // If under overload conditions, force an immediate FQS scan.
1577 if (*gfp & RCU_GP_FLAG_OVLD)
1578 return true;
1579
1580 // Someone like call_rcu() requested a force-quiescent-state scan.
0854a05c 1581 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1582 if (*gfp & RCU_GP_FLAG_FQS)
1583 return true;
1584
1fca4d12 1585 // The current grace period has completed.
b9a425cf
PM
1586 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1587 return true;
1588
1589 return false;
1590}
1591
4cdfc175
PM
1592/*
1593 * Do one round of quiescent-state forcing.
1594 */
0854a05c 1595static void rcu_gp_fqs(bool first_time)
4cdfc175 1596{
b96e7a5f 1597 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
336a4f6c 1598 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1599
9cbc5b97 1600 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2431774f 1601 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
b96e7a5f
JFG
1602
1603 WARN_ON_ONCE(nr_fqs > 3);
1604 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1605 if (nr_fqs) {
1606 if (nr_fqs == 1) {
1607 WRITE_ONCE(rcu_state.jiffies_stall,
1608 jiffies + rcu_jiffies_till_stall_check());
1609 }
1610 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1611 }
1612
77f81fe0 1613 if (first_time) {
4cdfc175 1614 /* Collect dyntick-idle snapshots. */
e9ecb780 1615 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1616 } else {
1617 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1618 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1619 }
1620 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1621 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1622 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1623 WRITE_ONCE(rcu_state.gp_flags,
1624 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1625 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1626 }
4cdfc175
PM
1627}
1628
c3854a05
PM
1629/*
1630 * Loop doing repeated quiescent-state forcing until the grace period ends.
1631 */
f74126dc 1632static noinline_for_stack void rcu_gp_fqs_loop(void)
c3854a05 1633{
9bdb5b3a 1634 bool first_gp_fqs = true;
1fca4d12 1635 int gf = 0;
c3854a05
PM
1636 unsigned long j;
1637 int ret;
1638 struct rcu_node *rnp = rcu_get_root();
1639
c06aed0e 1640 j = READ_ONCE(jiffies_till_first_fqs);
1fca4d12
PM
1641 if (rcu_state.cbovld)
1642 gf = RCU_GP_FLAG_OVLD;
c3854a05
PM
1643 ret = 0;
1644 for (;;) {
fb77dccf
PM
1645 if (rcu_state.cbovld) {
1646 j = (j + 2) / 3;
1647 if (j <= 0)
1648 j = 1;
1649 }
1650 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
683954e5
NU
1651 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1652 /*
1653 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1654 * update; required for stall checks.
1655 */
1656 smp_wmb();
c3854a05 1657 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
9cf422a8 1658 jiffies + (j ? 3 * j : 2));
c3854a05 1659 }
0f11ad32 1660 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05 1661 TPS("fqswait"));
683954e5 1662 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
eb880949
LS
1663 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1664 rcu_gp_fqs_check_wake(&gf), j);
55b2dcf5 1665 rcu_gp_torture_wait();
683954e5 1666 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
c3854a05 1667 /* Locking provides needed memory barriers. */
a03ae49c
NU
1668 /*
1669 * Exit the loop if the root rcu_node structure indicates that the grace period
1670 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1671 * is required only for single-node rcu_node trees because readers blocking
1672 * the current grace period are queued only on leaf rcu_node structures.
1673 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1674 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1675 * the corresponding leaf nodes have passed through their quiescent state.
1676 */
c3854a05
PM
1677 if (!READ_ONCE(rnp->qsmask) &&
1678 !rcu_preempt_blocked_readers_cgp(rnp))
1679 break;
1680 /* If time for quiescent-state forcing, do it. */
29ffebc5 1681 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
9c392453 1682 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
0f11ad32 1683 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1684 TPS("fqsstart"));
1685 rcu_gp_fqs(first_gp_fqs);
1fca4d12
PM
1686 gf = 0;
1687 if (first_gp_fqs) {
1688 first_gp_fqs = false;
1689 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1690 }
0f11ad32 1691 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1692 TPS("fqsend"));
1693 cond_resched_tasks_rcu_qs();
1694 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1696 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1697 } else {
1698 /* Deal with stray signal. */
1699 cond_resched_tasks_rcu_qs();
1700 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1701 WARN_ON(signal_pending(current));
0f11ad32 1702 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1703 TPS("fqswaitsig"));
1704 ret = 1; /* Keep old FQS timing. */
1705 j = jiffies;
1706 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1707 j = 1;
1708 else
1709 j = rcu_state.jiffies_force_qs - j;
1fca4d12 1710 gf = 0;
c3854a05
PM
1711 }
1712 }
1713}
1714
7fdefc10
PM
1715/*
1716 * Clean up after the old grace period.
1717 */
2f20de99 1718static noinline void rcu_gp_cleanup(void)
7fdefc10 1719{
b2b00ddf 1720 int cpu;
48a7639c 1721 bool needgp = false;
b2b00ddf 1722 unsigned long gp_duration;
de30ad51 1723 unsigned long new_gp_seq;
5d6742b3 1724 bool offloaded;
7fdefc10 1725 struct rcu_data *rdp;
336a4f6c 1726 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1727 struct swait_queue_head *sq;
b3dbec76 1728
9cbc5b97 1729 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1730 raw_spin_lock_irq_rcu_node(rnp);
c51d7b5e
PM
1731 rcu_state.gp_end = jiffies;
1732 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
9cbc5b97
PM
1733 if (gp_duration > rcu_state.gp_max)
1734 rcu_state.gp_max = gp_duration;
b3dbec76 1735
7fdefc10
PM
1736 /*
1737 * We know the grace period is complete, but to everyone else
1738 * it appears to still be ongoing. But it is also the case
1739 * that to everyone else it looks like there is nothing that
1740 * they can do to advance the grace period. It is therefore
1741 * safe for us to drop the lock in order to mark the grace
1742 * period as completed in all of the rcu_node structures.
7fdefc10 1743 */
bf95b2bc 1744 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
67c583a7 1745 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 1746
5d4b8659 1747 /*
ff3bb6f4
PM
1748 * Propagate new ->gp_seq value to rcu_node structures so that
1749 * other CPUs don't have to wait until the start of the next grace
1750 * period to process their callbacks. This also avoids some nasty
1751 * RCU grace-period initialization races by forcing the end of
1752 * the current grace period to be completely recorded in all of
1753 * the rcu_node structures before the beginning of the next grace
1754 * period is recorded in any of the rcu_node structures.
5d4b8659 1755 */
9cbc5b97 1756 new_gp_seq = rcu_state.gp_seq;
de30ad51 1757 rcu_seq_end(&new_gp_seq);
aedf4ba9 1758 rcu_for_each_node_breadth_first(rnp) {
2a67e741 1759 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 1760 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 1761 dump_blkd_tasks(rnp, 10);
5c60d25f 1762 WARN_ON_ONCE(rnp->qsmask);
de30ad51 1763 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
3fdefca9
PM
1764 if (!rnp->parent)
1765 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
da1df50d 1766 rdp = this_cpu_ptr(&rcu_data);
b11cc576 1767 if (rnp == rdp->mynode)
c7e48f7b 1768 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 1769 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 1770 needgp = rcu_future_gp_cleanup(rnp) || needgp;
b2b00ddf
PM
1771 // Reset overload indication for CPUs no longer overloaded
1772 if (rcu_is_leaf_node(rnp))
1773 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1774 rdp = per_cpu_ptr(&rcu_data, cpu);
1775 check_cb_ovld_locked(rdp, rnp);
1776 }
065bb78c 1777 sq = rcu_nocb_gp_get(rnp);
67c583a7 1778 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 1779 rcu_nocb_gp_cleanup(sq);
cee43939 1780 cond_resched_tasks_rcu_qs();
9cbc5b97 1781 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 1782 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 1783 }
336a4f6c 1784 rnp = rcu_get_root();
9cbc5b97 1785 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 1786
0a89e5a4 1787 /* Declare grace period done, trace first to use old GP number. */
9cbc5b97 1788 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
0a89e5a4 1789 rcu_seq_end(&rcu_state.gp_seq);
62ae1951 1790 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
683954e5 1791 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
fb31340f 1792 /* Check for GP requests since above loop. */
da1df50d 1793 rdp = this_cpu_ptr(&rcu_data);
5b55072f 1794 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 1795 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 1796 TPS("CleanupMore"));
fb31340f
PM
1797 needgp = true;
1798 }
48a7639c 1799 /* Advance CBs to reduce false positives below. */
3820b513 1800 offloaded = rcu_rdp_is_offloaded(rdp);
5d6742b3 1801 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
75182a4e
PM
1802
1803 // We get here if a grace period was needed (“needgp”)
1804 // and the above call to rcu_accelerate_cbs() did not set
1805 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1806 // the need for another grace period).  The purpose
1807 // of the “offloaded” check is to avoid invoking
1808 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1809 // hold the ->nocb_lock needed to safely access an offloaded
1810 // ->cblist.  We do not want to acquire that lock because
1811 // it can be heavily contended during callback floods.
1812
9cbc5b97 1813 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2906d215 1814 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
75182a4e 1815 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
18390aea 1816 } else {
75182a4e
PM
1817
1818 // We get here either if there is no need for an
1819 // additional grace period or if rcu_accelerate_cbs() has
1820 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1821 // So all we need to do is to clear all of the other
1822 // ->gp_flags bits.
1823
1824 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 1825 }
67c583a7 1826 raw_spin_unlock_irq_rcu_node(rnp);
4e025f52
PM
1827
1828 // If strict, make all CPUs aware of the end of the old grace period.
1829 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1830 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
7fdefc10
PM
1831}
1832
1833/*
1834 * Body of kthread that handles grace periods.
1835 */
0854a05c 1836static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 1837{
5871968d 1838 rcu_bind_gp_kthread();
7fdefc10
PM
1839 for (;;) {
1840
1841 /* Handle grace-period start. */
1842 for (;;) {
0f11ad32 1843 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
63c4db78 1844 TPS("reqwait"));
683954e5 1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
9cbc5b97
PM
1846 swait_event_idle_exclusive(rcu_state.gp_wq,
1847 READ_ONCE(rcu_state.gp_flags) &
1848 RCU_GP_FLAG_INIT);
55b2dcf5 1849 rcu_gp_torture_wait();
683954e5 1850 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
78e4bc34 1851 /* Locking provides needed memory barrier. */
0854a05c 1852 if (rcu_gp_init())
7fdefc10 1853 break;
cee43939 1854 cond_resched_tasks_rcu_qs();
9cbc5b97 1855 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 1856 WARN_ON(signal_pending(current));
0f11ad32 1857 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
63c4db78 1858 TPS("reqwaitsig"));
7fdefc10 1859 }
cabc49c1 1860
4cdfc175 1861 /* Handle quiescent-state forcing. */
c3854a05 1862 rcu_gp_fqs_loop();
4cdfc175
PM
1863
1864 /* Handle grace-period end. */
683954e5 1865 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
0854a05c 1866 rcu_gp_cleanup();
683954e5 1867 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
b3dbec76 1868 }
b3dbec76
PM
1869}
1870
f41d911f 1871/*
49918a54
PM
1872 * Report a full set of quiescent states to the rcu_state data structure.
1873 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1874 * another grace period is required. Whether we wake the grace-period
1875 * kthread or it awakens itself for the next round of quiescent-state
1876 * forcing, that kthread will clean up after the just-completed grace
1877 * period. Note that the caller must hold rnp->lock, which is released
1878 * before return.
f41d911f 1879 */
aff4e9ed 1880static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 1881 __releases(rcu_get_root()->lock)
f41d911f 1882{
336a4f6c 1883 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 1884 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
1885 WRITE_ONCE(rcu_state.gp_flags,
1886 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 1887 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 1888 rcu_gp_kthread_wake();
f41d911f
PM
1889}
1890
64db4cff 1891/*
d3f6bad3
PM
1892 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1893 * Allows quiescent states for a group of CPUs to be reported at one go
1894 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
1895 * must be represented by the same rcu_node structure (which need not be a
1896 * leaf rcu_node structure, though it often will be). The gps parameter
1897 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 1898 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 1899 * must be held upon entry, and it is released before return.
ec2c2976
PM
1900 *
1901 * As a special case, if mask is zero, the bit-already-cleared check is
1902 * disabled. This allows propagating quiescent state due to resumed tasks
1903 * during grace-period initialization.
64db4cff 1904 */
b50912d0
PM
1905static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1906 unsigned long gps, unsigned long flags)
64db4cff
PM
1907 __releases(rnp->lock)
1908{
654e9533 1909 unsigned long oldmask = 0;
28ecd580
PM
1910 struct rcu_node *rnp_c;
1911
a32e01ee 1912 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1913
64db4cff
PM
1914 /* Walk up the rcu_node hierarchy. */
1915 for (;;) {
ec2c2976 1916 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 1917
654e9533
PM
1918 /*
1919 * Our bit has already been cleared, or the
1920 * relevant grace period is already over, so done.
1921 */
67c583a7 1922 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1923 return;
1924 }
654e9533 1925 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 1926 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 1927 rcu_preempt_blocked_readers_cgp(rnp));
7672d647 1928 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
67a0edbf 1929 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
1930 mask, rnp->qsmask, rnp->level,
1931 rnp->grplo, rnp->grphi,
1932 !!rnp->gp_tasks);
27f4d280 1933 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1934
1935 /* Other bits still set at this level, so done. */
67c583a7 1936 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1937 return;
1938 }
d43a5d32 1939 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
1940 mask = rnp->grpmask;
1941 if (rnp->parent == NULL) {
1942
1943 /* No more levels. Exit loop holding root lock. */
1944
1945 break;
1946 }
67c583a7 1947 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 1948 rnp_c = rnp;
64db4cff 1949 rnp = rnp->parent;
2a67e741 1950 raw_spin_lock_irqsave_rcu_node(rnp, flags);
0937d045 1951 oldmask = READ_ONCE(rnp_c->qsmask);
64db4cff
PM
1952 }
1953
1954 /*
1955 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1956 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1957 * to clean up and start the next grace period if one is needed.
64db4cff 1958 */
aff4e9ed 1959 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
1960}
1961
cc99a310
PM
1962/*
1963 * Record a quiescent state for all tasks that were previously queued
1964 * on the specified rcu_node structure and that were blocking the current
49918a54 1965 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
1966 * irqs disabled, and this lock is released upon return, but irqs remain
1967 * disabled.
1968 */
17a8212b 1969static void __maybe_unused
139ad4da 1970rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
1971 __releases(rnp->lock)
1972{
654e9533 1973 unsigned long gps;
cc99a310
PM
1974 unsigned long mask;
1975 struct rcu_node *rnp_p;
1976
a32e01ee 1977 raw_lockdep_assert_held_rcu_node(rnp);
c130d2dc 1978 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
c74859d1
PM
1979 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1980 rnp->qsmask != 0) {
67c583a7 1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
1982 return; /* Still need more quiescent states! */
1983 }
1984
77cfc7bf 1985 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
1986 rnp_p = rnp->parent;
1987 if (rnp_p == NULL) {
1988 /*
a77da14c
PM
1989 * Only one rcu_node structure in the tree, so don't
1990 * try to report up to its nonexistent parent!
cc99a310 1991 */
aff4e9ed 1992 rcu_report_qs_rsp(flags);
cc99a310
PM
1993 return;
1994 }
1995
c9a24e2d
PM
1996 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1997 gps = rnp->gp_seq;
cc99a310 1998 mask = rnp->grpmask;
67c583a7 1999 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2000 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 2001 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
2002}
2003
64db4cff 2004/*
d3f6bad3 2005 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2006 * structure. This must be called from the specified CPU.
64db4cff
PM
2007 */
2008static void
cfeac397 2009rcu_report_qs_rdp(struct rcu_data *rdp)
64db4cff
PM
2010{
2011 unsigned long flags;
2012 unsigned long mask;
b3bb02fe 2013 bool needacc = false;
64db4cff
PM
2014 struct rcu_node *rnp;
2015
cfeac397 2016 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
64db4cff 2017 rnp = rdp->mynode;
2a67e741 2018 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
2019 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2020 rdp->gpwrap) {
64db4cff
PM
2021
2022 /*
e4cc1f22
PM
2023 * The grace period in which this quiescent state was
2024 * recorded has ended, so don't report it upwards.
2025 * We will instead need a new quiescent state that lies
2026 * within the current grace period.
64db4cff 2027 */
5b74c458 2028 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 2029 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2030 return;
2031 }
2032 mask = rdp->grpmask;
cfeac397 2033 rdp->core_needs_qs = false;
64db4cff 2034 if ((rnp->qsmask & mask) == 0) {
67c583a7 2035 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2036 } else {
64db4cff
PM
2037 /*
2038 * This GP can't end until cpu checks in, so all of our
2039 * callbacks can be processed during the next GP.
24ee940d 2040 *
b3bb02fe 2041 * NOCB kthreads have their own way to deal with that...
64db4cff 2042 */
b3bb02fe 2043 if (!rcu_rdp_is_offloaded(rdp)) {
46103fe0
Z
2044 /*
2045 * The current GP has not yet ended, so it
2046 * should not be possible for rcu_accelerate_cbs()
2047 * to return true. So complain, but don't awaken.
2048 */
2049 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
b3bb02fe
FW
2050 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2051 /*
2052 * ...but NOCB kthreads may miss or delay callbacks acceleration
2053 * if in the middle of a (de-)offloading process.
2054 */
2055 needacc = true;
2056 }
64db4cff 2057
516e5ae0 2058 rcu_disable_urgency_upon_qs(rdp);
b50912d0 2059 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 2060 /* ^^^ Released rnp->lock */
b3bb02fe
FW
2061
2062 if (needacc) {
2063 rcu_nocb_lock_irqsave(rdp, flags);
2064 rcu_accelerate_cbs_unlocked(rnp, rdp);
2065 rcu_nocb_unlock_irqrestore(rdp, flags);
2066 }
64db4cff
PM
2067 }
2068}
2069
2070/*
2071 * Check to see if there is a new grace period of which this CPU
2072 * is not yet aware, and if so, set up local rcu_data state for it.
2073 * Otherwise, see if this CPU has just passed through its first
2074 * quiescent state for this grace period, and record that fact if so.
2075 */
2076static void
8087d3e3 2077rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 2078{
05eb552b 2079 /* Check for grace-period ends and beginnings. */
15cabdff 2080 note_gp_changes(rdp);
64db4cff
PM
2081
2082 /*
2083 * Does this CPU still need to do its part for current grace period?
2084 * If no, return and let the other CPUs do their part as well.
2085 */
97c668b8 2086 if (!rdp->core_needs_qs)
64db4cff
PM
2087 return;
2088
2089 /*
2090 * Was there a quiescent state since the beginning of the grace
2091 * period? If no, then exit and wait for the next call.
2092 */
3a19b46a 2093 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2094 return;
2095
d3f6bad3
PM
2096 /*
2097 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2098 * judge of that).
2099 */
cfeac397 2100 rcu_report_qs_rdp(rdp);
64db4cff
PM
2101}
2102
fea1c1f0 2103/* Return true if callback-invocation time limit exceeded. */
f51164a8
PM
2104static bool rcu_do_batch_check_time(long count, long tlimit,
2105 bool jlimit_check, unsigned long jlimit)
fea1c1f0
PM
2106{
2107 // Invoke local_clock() only once per 32 consecutive callbacks.
f51164a8
PM
2108 return unlikely(tlimit) &&
2109 (!likely(count & 31) ||
2110 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2111 jlimit_check && time_after(jiffies, jlimit))) &&
2112 local_clock() >= tlimit;
fea1c1f0
PM
2113}
2114
64db4cff
PM
2115/*
2116 * Invoke any RCU callbacks that have made it to the end of their grace
a616aec9 2117 * period. Throttle as specified by rdp->blimit.
64db4cff 2118 */
5bb5d09c 2119static void rcu_do_batch(struct rcu_data *rdp)
64db4cff 2120{
f51164a8
PM
2121 long bl;
2122 long count = 0;
b5374b2d 2123 int div;
b4e6039e 2124 bool __maybe_unused empty;
64db4cff 2125 unsigned long flags;
f51164a8
PM
2126 unsigned long jlimit;
2127 bool jlimit_check = false;
2128 long pending;
15fecf89 2129 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
f51164a8
PM
2130 struct rcu_head *rhp;
2131 long tlimit = 0;
64db4cff 2132
dc35c893 2133 /* If no callbacks are ready, just return. */
15fecf89 2134 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2135 trace_rcu_batch_start(rcu_state.name,
15fecf89 2136 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2137 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2138 !rcu_segcblist_empty(&rdp->cblist),
4968c300 2139 need_resched(), is_idle_task(current),
51038506 2140 rcu_is_callbacks_kthread(rdp));
64db4cff 2141 return;
29c00b4a 2142 }
64db4cff
PM
2143
2144 /*
7b65dfa3 2145 * Extract the list of ready callbacks, disabling IRQs to prevent
15fecf89
PM
2146 * races with call_rcu() from interrupt handlers. Leave the
2147 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff 2148 */
7b65dfa3 2149 rcu_nocb_lock_irqsave(rdp, flags);
8146c4e2 2150 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
253cbbff 2151 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
b5374b2d
PM
2152 div = READ_ONCE(rcu_divisor);
2153 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2154 bl = max(rdp->blimit, pending >> div);
fea1c1f0 2155 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
f51164a8
PM
2156 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2157 const long npj = NSEC_PER_SEC / HZ;
a2b354b9
PM
2158 long rrn = READ_ONCE(rcu_resched_ns);
2159
2160 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2161 tlimit = local_clock() + rrn;
f51164a8
PM
2162 jlimit = jiffies + (rrn + npj + 1) / npj;
2163 jlimit_check = true;
a2b354b9 2164 }
3c779dfe 2165 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2166 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2167 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
344e219d 2168 if (rcu_rdp_is_offloaded(rdp))
7f36ef82 2169 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3afe7fa5
JFG
2170
2171 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
5d6742b3 2172 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff
PM
2173
2174 /* Invoke callbacks. */
6a949b7a 2175 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
15fecf89 2176 rhp = rcu_cblist_dequeue(&rcl);
3afe7fa5 2177
15fecf89 2178 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
77a40f97
JFG
2179 rcu_callback_t f;
2180
6bc33582 2181 count++;
15fecf89 2182 debug_rcu_head_unqueue(rhp);
77a40f97
JFG
2183
2184 rcu_lock_acquire(&rcu_callback_map);
2185 trace_rcu_invoke_callback(rcu_state.name, rhp);
2186
2187 f = rhp->func;
2cbc482d 2188 debug_rcu_head_callback(rhp);
77a40f97
JFG
2189 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2190 f(rhp);
2191
2192 rcu_lock_release(&rcu_callback_map);
2193
15fecf89
PM
2194 /*
2195 * Stop only if limit reached and CPU has something to do.
15fecf89 2196 */
3e61e95e
FW
2197 if (in_serving_softirq()) {
2198 if (count >= bl && (need_resched() || !is_idle_task(current)))
2199 break;
a554ba28
FW
2200 /*
2201 * Make sure we don't spend too much time here and deprive other
2202 * softirq vectors of CPU cycles.
2203 */
f51164a8 2204 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
a554ba28 2205 break;
3e61e95e 2206 } else {
fea1c1f0
PM
2207 // In rcuc/rcuoc context, so no worries about
2208 // depriving other softirq vectors of CPU cycles.
5d6742b3
PM
2209 local_bh_enable();
2210 lockdep_assert_irqs_enabled();
2211 cond_resched_tasks_rcu_qs();
2212 lockdep_assert_irqs_enabled();
2213 local_bh_disable();
fea1c1f0
PM
2214 // But rcuc kthreads can delay quiescent-state
2215 // reporting, so check time limits for them.
2216 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
f51164a8 2217 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
fea1c1f0
PM
2218 rdp->rcu_cpu_has_work = 1;
2219 break;
2220 }
5d6742b3 2221 }
64db4cff
PM
2222 }
2223
7b65dfa3 2224 rcu_nocb_lock_irqsave(rdp, flags);
e816d56f 2225 rdp->n_cbs_invoked += count;
3c779dfe 2226 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
51038506 2227 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
64db4cff 2228
15fecf89
PM
2229 /* Update counts and requeue any remaining callbacks. */
2230 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
6bc33582 2231 rcu_segcblist_add_len(&rdp->cblist, -count);
64db4cff
PM
2232
2233 /* Reinstate batch limit if we have worked down the excess. */
15fecf89 2234 count = rcu_segcblist_n_cbs(&rdp->cblist);
d5a9a8c3 2235 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
64db4cff
PM
2236 rdp->blimit = blimit;
2237
37c72e56 2238 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2239 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2240 rdp->qlen_last_fqs_check = 0;
2431774f 2241 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
15fecf89
PM
2242 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2243 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2244
2245 /*
2246 * The following usually indicates a double call_rcu(). To track
2247 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2248 */
b4e6039e
JFG
2249 empty = rcu_segcblist_empty(&rdp->cblist);
2250 WARN_ON_ONCE(count == 0 && !empty);
d1b222c6 2251 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
b4e6039e
JFG
2252 count != 0 && empty);
2253 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2254 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
37c72e56 2255
5d6742b3 2256 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff 2257
6a949b7a 2258 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
64db4cff
PM
2259}
2260
2261/*
c98cac60
PM
2262 * This function is invoked from each scheduling-clock interrupt,
2263 * and checks to see if this CPU is in a non-context-switch quiescent
2264 * state, for example, user mode or idle loop. It also schedules RCU
2265 * core processing. If the current grace period has gone on too long,
2266 * it will ask the scheduler to manufacture a context switch for the sole
277ffe1b 2267 * purpose of providing the needed quiescent state.
64db4cff 2268 */
c98cac60 2269void rcu_sched_clock_irq(int user)
64db4cff 2270{
c708b08c
PM
2271 unsigned long j;
2272
2273 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2274 j = jiffies;
2275 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2276 __this_cpu_write(rcu_data.last_sched_clock, j);
2277 }
f7f7bac9 2278 trace_rcu_utilization(TPS("Start scheduler-tick"));
a649d25d 2279 lockdep_assert_irqs_disabled();
4e95020c 2280 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2281 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2282 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2283 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2284 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2285 set_tsk_need_resched(current);
2286 set_preempt_need_resched();
2287 }
2dba13f0 2288 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
64db4cff 2289 }
c98cac60 2290 rcu_flavor_sched_clock_irq(user);
dd7dafd1 2291 if (rcu_pending(user))
a46e0899 2292 invoke_rcu_core();
528262f5
Z
2293 if (user || rcu_is_cpu_rrupt_from_idle())
2294 rcu_note_voluntary_context_switch(current);
a649d25d 2295 lockdep_assert_irqs_disabled();
07f27570 2296
f7f7bac9 2297 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2298}
2299
64db4cff 2300/*
5d8a752e
ZZ
2301 * Scan the leaf rcu_node structures. For each structure on which all
2302 * CPUs have reported a quiescent state and on which there are tasks
2303 * blocking the current grace period, initiate RCU priority boosting.
2304 * Otherwise, invoke the specified function to check dyntick state for
2305 * each CPU that has not yet reported a quiescent state.
64db4cff 2306 */
8ff0b907 2307static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2308{
64db4cff
PM
2309 int cpu;
2310 unsigned long flags;
a0b6c9a7 2311 struct rcu_node *rnp;
64db4cff 2312
b2b00ddf
PM
2313 rcu_state.cbovld = rcu_state.cbovldnext;
2314 rcu_state.cbovldnext = false;
aedf4ba9 2315 rcu_for_each_leaf_node(rnp) {
85d68222
PZ
2316 unsigned long mask = 0;
2317 unsigned long rsmask = 0;
2318
cee43939 2319 cond_resched_tasks_rcu_qs();
2a67e741 2320 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b2b00ddf 2321 rcu_state.cbovldnext |= !!rnp->cbovldmask;
a0b6c9a7 2322 if (rnp->qsmask == 0) {
9b1ce0ac 2323 if (rcu_preempt_blocked_readers_cgp(rnp)) {
a77da14c
PM
2324 /*
2325 * No point in scanning bits because they
2326 * are all zero. But we might need to
2327 * priority-boost blocked readers.
2328 */
2329 rcu_initiate_boost(rnp, flags);
2330 /* rcu_initiate_boost() releases rnp->lock */
2331 continue;
2332 }
92816435
PM
2333 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2334 continue;
64db4cff 2335 }
7441e766 2336 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
85d68222
PZ
2337 struct rcu_data *rdp;
2338 int ret;
2339
7441e766 2340 rdp = per_cpu_ptr(&rcu_data, cpu);
85d68222
PZ
2341 ret = f(rdp);
2342 if (ret > 0) {
7441e766
PM
2343 mask |= rdp->grpmask;
2344 rcu_disable_urgency_upon_qs(rdp);
0edd1b17 2345 }
85d68222
PZ
2346 if (ret < 0)
2347 rsmask |= rdp->grpmask;
64db4cff 2348 }
45f014c5 2349 if (mask != 0) {
c9a24e2d 2350 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2351 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2352 } else {
2353 /* Nothing to do here, so just drop the lock. */
67c583a7 2354 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2355 }
85d68222
PZ
2356
2357 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2358 resched_cpu(cpu);
64db4cff 2359 }
64db4cff
PM
2360}
2361
2362/*
2363 * Force quiescent states on reluctant CPUs, and also detect which
2364 * CPUs are in dyntick-idle mode.
2365 */
cd920e5a 2366void rcu_force_quiescent_state(void)
64db4cff
PM
2367{
2368 unsigned long flags;
394f2769
PM
2369 bool ret;
2370 struct rcu_node *rnp;
2371 struct rcu_node *rnp_old = NULL;
2372
dee39c0c
Z
2373 if (!rcu_gp_in_progress())
2374 return;
394f2769 2375 /* Funnel through hierarchy to reduce memory contention. */
ceb1c8c9 2376 rnp = raw_cpu_read(rcu_data.mynode);
394f2769 2377 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2378 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
66e4c33b 2379 !raw_spin_trylock(&rnp->fqslock);
394f2769
PM
2380 if (rnp_old != NULL)
2381 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2382 if (ret)
394f2769 2383 return;
394f2769
PM
2384 rnp_old = rnp;
2385 }
336a4f6c 2386 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2387
394f2769 2388 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2389 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2390 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2391 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2392 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2393 return; /* Someone beat us to it. */
46a1e34e 2394 }
67a0edbf
PM
2395 WRITE_ONCE(rcu_state.gp_flags,
2396 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2397 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2398 rcu_gp_kthread_wake();
64db4cff 2399}
cd920e5a 2400EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
64db4cff 2401
a657f261
PM
2402// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2403// grace periods.
2404static void strict_work_handler(struct work_struct *work)
2405{
2406 rcu_read_lock();
2407 rcu_read_unlock();
2408}
2409
fb60e533 2410/* Perform RCU core processing work for the current CPU. */
48d07c04 2411static __latent_entropy void rcu_core(void)
64db4cff
PM
2412{
2413 unsigned long flags;
da1df50d 2414 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2415 struct rcu_node *rnp = rdp->mynode;
fbb94cbd
FW
2416 /*
2417 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2418 * Therefore this function can race with concurrent NOCB (de-)offloading
2419 * on this CPU and the below condition must be considered volatile.
2420 * However if we race with:
2421 *
2422 * _ Offloading: In the worst case we accelerate or process callbacks
2423 * concurrently with NOCB kthreads. We are guaranteed to
2424 * call rcu_nocb_lock() if that happens.
2425 *
2426 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2427 * processing. This is fine because the early stage
2428 * of deoffloading invokes rcu_core() after setting
2429 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2430 * what could have been dismissed without the need to wait
2431 * for the next rcu_pending() check in the next jiffy.
2432 */
32aa2f41 2433 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
64db4cff 2434
b049fdf8
PM
2435 if (cpu_is_offline(smp_processor_id()))
2436 return;
2437 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2438 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2439
3e310098 2440 /* Report any deferred quiescent states if preemption enabled. */
790da248 2441 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
3e310098 2442 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2443 } else if (rcu_preempt_need_deferred_qs(current)) {
2444 set_tsk_need_resched(current);
2445 set_preempt_need_resched();
2446 }
3e310098 2447
64db4cff 2448 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2449 rcu_check_quiescent_state(rdp);
64db4cff 2450
bd7af846 2451 /* No grace period and unregistered callbacks? */
de8e8730 2452 if (!rcu_gp_in_progress() &&
634954c2
FW
2453 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2454 rcu_nocb_lock_irqsave(rdp, flags);
e44e73ca 2455 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2456 rcu_accelerate_cbs_unlocked(rnp, rdp);
634954c2 2457 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff
PM
2458 }
2459
791416c4 2460 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
26d950a9 2461
64db4cff 2462 /* If there are callbacks ready, invoke them. */
32aa2f41 2463 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
0598a4d4 2464 likely(READ_ONCE(rcu_scheduler_fully_active))) {
43e903ad 2465 rcu_do_batch(rdp);
0598a4d4
FW
2466 /* Re-invoke RCU core processing if there are callbacks remaining. */
2467 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2468 invoke_rcu_core();
2469 }
96d3fd0d
PM
2470
2471 /* Do any needed deferred wakeups of rcuo kthreads. */
2472 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2473 trace_rcu_utilization(TPS("End RCU core"));
a657f261
PM
2474
2475 // If strict GPs, schedule an RCU reader in a clean environment.
2476 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2477 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
64db4cff
PM
2478}
2479
48d07c04
SAS
2480static void rcu_core_si(struct softirq_action *h)
2481{
2482 rcu_core();
2483}
2484
2485static void rcu_wake_cond(struct task_struct *t, int status)
2486{
2487 /*
2488 * If the thread is yielding, only wake it when this
2489 * is invoked from idle
2490 */
2491 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2492 wake_up_process(t);
2493}
2494
2495static void invoke_rcu_core_kthread(void)
2496{
2497 struct task_struct *t;
2498 unsigned long flags;
2499
2500 local_irq_save(flags);
2501 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2502 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2503 if (t != NULL && t != current)
2504 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2505 local_irq_restore(flags);
2506}
2507
48d07c04
SAS
2508/*
2509 * Wake up this CPU's rcuc kthread to do RCU core processing.
2510 */
a46e0899 2511static void invoke_rcu_core(void)
09223371 2512{
48d07c04
SAS
2513 if (!cpu_online(smp_processor_id()))
2514 return;
2515 if (use_softirq)
b0f74036 2516 raise_softirq(RCU_SOFTIRQ);
48d07c04
SAS
2517 else
2518 invoke_rcu_core_kthread();
2519}
2520
2521static void rcu_cpu_kthread_park(unsigned int cpu)
2522{
2523 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2524}
2525
2526static int rcu_cpu_kthread_should_run(unsigned int cpu)
2527{
2528 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2529}
2530
2531/*
2532 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2533 * the RCU softirq used in configurations of RCU that do not support RCU
2534 * priority boosting.
2535 */
2536static void rcu_cpu_kthread(unsigned int cpu)
2537{
2538 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2539 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
c9515875 2540 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
48d07c04
SAS
2541 int spincnt;
2542
2488a5e6 2543 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
48d07c04 2544 for (spincnt = 0; spincnt < 10; spincnt++) {
c9515875 2545 WRITE_ONCE(*j, jiffies);
48d07c04
SAS
2546 local_bh_disable();
2547 *statusp = RCU_KTHREAD_RUNNING;
2548 local_irq_disable();
2549 work = *workp;
a24c1aab 2550 WRITE_ONCE(*workp, 0);
48d07c04
SAS
2551 local_irq_enable();
2552 if (work)
2553 rcu_core();
2554 local_bh_enable();
a24c1aab 2555 if (!READ_ONCE(*workp)) {
48d07c04
SAS
2556 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2557 *statusp = RCU_KTHREAD_WAITING;
2558 return;
2559 }
2560 }
2561 *statusp = RCU_KTHREAD_YIELDING;
2562 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
77865dea 2563 schedule_timeout_idle(2);
48d07c04
SAS
2564 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2565 *statusp = RCU_KTHREAD_WAITING;
c9515875 2566 WRITE_ONCE(*j, jiffies);
48d07c04
SAS
2567}
2568
2569static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2570 .store = &rcu_data.rcu_cpu_kthread_task,
2571 .thread_should_run = rcu_cpu_kthread_should_run,
2572 .thread_fn = rcu_cpu_kthread,
2573 .thread_comm = "rcuc/%u",
2574 .setup = rcu_cpu_kthread_setup,
2575 .park = rcu_cpu_kthread_park,
2576};
2577
2578/*
2579 * Spawn per-CPU RCU core processing kthreads.
2580 */
2581static int __init rcu_spawn_core_kthreads(void)
2582{
2583 int cpu;
2584
2585 for_each_possible_cpu(cpu)
2586 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
4b4399b2 2587 if (use_softirq)
48d07c04
SAS
2588 return 0;
2589 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2590 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2591 return 0;
09223371
SL
2592}
2593
29154c57
PM
2594/*
2595 * Handle any core-RCU processing required by a call_rcu() invocation.
2596 */
5c7d8967
PM
2597static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2598 unsigned long flags)
64db4cff 2599{
62fde6ed
PM
2600 /*
2601 * If called from an extended quiescent state, invoke the RCU
2602 * core in order to force a re-evaluation of RCU's idleness.
2603 */
9910affa 2604 if (!rcu_is_watching())
62fde6ed
PM
2605 invoke_rcu_core();
2606
a16b7a69 2607 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2608 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2609 return;
64db4cff 2610
37c72e56
PM
2611 /*
2612 * Force the grace period if too many callbacks or too long waiting.
cd920e5a 2613 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
37c72e56 2614 * if some other CPU has recently done so. Also, don't bother
cd920e5a 2615 * invoking rcu_force_quiescent_state() if the newly enqueued callback
37c72e56
PM
2616 * is the only one waiting for a grace period to complete.
2617 */
15fecf89
PM
2618 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2619 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2620
2621 /* Are we ignoring a completed grace period? */
15cabdff 2622 note_gp_changes(rdp);
b52573d2
PM
2623
2624 /* Start a new grace period if one not already started. */
de8e8730 2625 if (!rcu_gp_in_progress()) {
c6e09b97 2626 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2627 } else {
2628 /* Give the grace period a kick. */
d5a9a8c3 2629 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2431774f 2630 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
15fecf89 2631 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
cd920e5a 2632 rcu_force_quiescent_state();
2431774f 2633 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
15fecf89 2634 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2635 }
4cdfc175 2636 }
29154c57
PM
2637}
2638
ae150184
PM
2639/*
2640 * RCU callback function to leak a callback.
2641 */
2642static void rcu_leak_callback(struct rcu_head *rhp)
2643{
2644}
2645
3fbfbf7a 2646/*
b2b00ddf
PM
2647 * Check and if necessary update the leaf rcu_node structure's
2648 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2649 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2650 * structure's ->lock.
3fbfbf7a 2651 */
b2b00ddf
PM
2652static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2653{
2654 raw_lockdep_assert_held_rcu_node(rnp);
2655 if (qovld_calc <= 0)
2656 return; // Early boot and wildcard value set.
2657 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2658 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2659 else
2660 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2661}
2662
2663/*
2664 * Check and if necessary update the leaf rcu_node structure's
2665 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2666 * number of queued RCU callbacks. No locks need be held, but the
2667 * caller must have disabled interrupts.
2668 *
2669 * Note that this function ignores the possibility that there are a lot
2670 * of callbacks all of which have already seen the end of their respective
2671 * grace periods. This omission is due to the need for no-CBs CPUs to
2672 * be holding ->nocb_lock to do this check, which is too heavy for a
2673 * common-case operation.
3fbfbf7a 2674 */
b2b00ddf
PM
2675static void check_cb_ovld(struct rcu_data *rdp)
2676{
2677 struct rcu_node *const rnp = rdp->mynode;
2678
2679 if (qovld_calc <= 0 ||
2680 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2681 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2682 return; // Early boot wildcard value or already set correctly.
2683 raw_spin_lock_rcu_node(rnp);
2684 check_cb_ovld_locked(rdp, rnp);
2685 raw_spin_unlock_rcu_node(rnp);
2686}
2687
3cb278e7 2688static void
cf7066b9 2689__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
64db4cff 2690{
b4b7914a 2691 static atomic_t doublefrees;
64db4cff 2692 unsigned long flags;
cf7066b9 2693 bool lazy;
64db4cff 2694 struct rcu_data *rdp;
5d6742b3 2695 bool was_alldone;
64db4cff 2696
b8f2ed53
PM
2697 /* Misaligned rcu_head! */
2698 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2699
ae150184 2700 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2701 /*
2702 * Probable double call_rcu(), so leak the callback.
2703 * Use rcu:rcu_callback trace event to find the previous
1fe09ebe 2704 * time callback was passed to call_rcu().
fa3c6647 2705 */
b4b7914a
PM
2706 if (atomic_inc_return(&doublefrees) < 4) {
2707 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2708 mem_dump_obj(head);
2709 }
7d0ae808 2710 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2711 return;
2712 }
64db4cff
PM
2713 head->func = func;
2714 head->next = NULL;
300c0c5e 2715 kasan_record_aux_stack_noalloc(head);
d818cc76 2716 local_irq_save(flags);
da1df50d 2717 rdp = this_cpu_ptr(&rcu_data);
cf7066b9 2718 lazy = lazy_in && !rcu_async_should_hurry();
64db4cff
PM
2719
2720 /* Add the callback to our list. */
5d6742b3
PM
2721 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2722 // This can trigger due to call_rcu() from offline CPU:
2723 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
34404ca8 2724 WARN_ON_ONCE(!rcu_is_watching());
5d6742b3
PM
2725 // Very early boot, before rcu_init(). Initialize if needed
2726 // and then drop through to queue the callback.
15fecf89
PM
2727 if (rcu_segcblist_empty(&rdp->cblist))
2728 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2729 }
77a40f97 2730
b2b00ddf 2731 check_cb_ovld(rdp);
3cb278e7 2732 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
d1b222c6 2733 return; // Enqueued onto ->nocb_bypass, so just leave.
b692dc4a 2734 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
77a40f97 2735 rcu_segcblist_enqueue(&rdp->cblist, head);
c408b215
URS
2736 if (__is_kvfree_rcu_offset((unsigned long)func))
2737 trace_rcu_kvfree_callback(rcu_state.name, head,
3c779dfe 2738 (unsigned long)func,
15fecf89 2739 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2740 else
3c779dfe 2741 trace_rcu_callback(rcu_state.name, head,
15fecf89 2742 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2743
3afe7fa5
JFG
2744 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2745
29154c57 2746 /* Go handle any RCU core processing required. */
3820b513 2747 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
5d6742b3
PM
2748 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2749 } else {
2750 __call_rcu_core(rdp, head, flags);
2751 local_irq_restore(flags);
2752 }
64db4cff 2753}
64db4cff 2754
3cb278e7
JFG
2755#ifdef CONFIG_RCU_LAZY
2756/**
2757 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2758 * flush all lazy callbacks (including the new one) to the main ->cblist while
2759 * doing so.
2760 *
2761 * @head: structure to be used for queueing the RCU updates.
2762 * @func: actual callback function to be invoked after the grace period
2763 *
2764 * The callback function will be invoked some time after a full grace
2765 * period elapses, in other words after all pre-existing RCU read-side
2766 * critical sections have completed.
2767 *
2768 * Use this API instead of call_rcu() if you don't want the callback to be
2769 * invoked after very long periods of time, which can happen on systems without
2770 * memory pressure and on systems which are lightly loaded or mostly idle.
2771 * This function will cause callbacks to be invoked sooner than later at the
2772 * expense of extra power. Other than that, this function is identical to, and
2773 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2774 * ordering and other functionality.
2775 */
2776void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2777{
4502138a 2778 __call_rcu_common(head, func, false);
3cb278e7
JFG
2779}
2780EXPORT_SYMBOL_GPL(call_rcu_hurry);
2781#endif
2782
2783/**
2784 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2785 * By default the callbacks are 'lazy' and are kept hidden from the main
2786 * ->cblist to prevent starting of grace periods too soon.
2787 * If you desire grace periods to start very soon, use call_rcu_hurry().
2788 *
2789 * @head: structure to be used for queueing the RCU updates.
2790 * @func: actual callback function to be invoked after the grace period
2791 *
2792 * The callback function will be invoked some time after a full grace
2793 * period elapses, in other words after all pre-existing RCU read-side
2794 * critical sections have completed. However, the callback function
2795 * might well execute concurrently with RCU read-side critical sections
2796 * that started after call_rcu() was invoked.
2797 *
2798 * RCU read-side critical sections are delimited by rcu_read_lock()
2799 * and rcu_read_unlock(), and may be nested. In addition, but only in
2800 * v5.0 and later, regions of code across which interrupts, preemption,
2801 * or softirqs have been disabled also serve as RCU read-side critical
2802 * sections. This includes hardware interrupt handlers, softirq handlers,
2803 * and NMI handlers.
2804 *
2805 * Note that all CPUs must agree that the grace period extended beyond
2806 * all pre-existing RCU read-side critical section. On systems with more
2807 * than one CPU, this means that when "func()" is invoked, each CPU is
2808 * guaranteed to have executed a full memory barrier since the end of its
2809 * last RCU read-side critical section whose beginning preceded the call
2810 * to call_rcu(). It also means that each CPU executing an RCU read-side
2811 * critical section that continues beyond the start of "func()" must have
2812 * executed a memory barrier after the call_rcu() but before the beginning
2813 * of that RCU read-side critical section. Note that these guarantees
2814 * include CPUs that are offline, idle, or executing in user mode, as
2815 * well as CPUs that are executing in the kernel.
2816 *
2817 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2818 * resulting RCU callback function "func()", then both CPU A and CPU B are
2819 * guaranteed to execute a full memory barrier during the time interval
2820 * between the call to call_rcu() and the invocation of "func()" -- even
2821 * if CPU A and CPU B are the same CPU (but again only if the system has
2822 * more than one CPU).
2823 *
2824 * Implementation of these memory-ordering guarantees is described here:
2825 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2826 */
2827void call_rcu(struct rcu_head *head, rcu_callback_t func)
2828{
4502138a 2829 __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
3cb278e7
JFG
2830}
2831EXPORT_SYMBOL_GPL(call_rcu);
a35d1690
BP
2832
2833/* Maximum number of jiffies to wait before draining a batch. */
51824b78 2834#define KFREE_DRAIN_JIFFIES (5 * HZ)
0392bebe 2835#define KFREE_N_BATCHES 2
5f3c8d62 2836#define FREE_N_CHANNELS 2
34c88174
URS
2837
2838/**
5f3c8d62 2839 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
27538e18 2840 * @list: List node. All blocks are linked between each other
cc37d520 2841 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
34c88174 2842 * @nr_records: Number of active pointers in the array
5f3c8d62 2843 * @records: Array of the kvfree_rcu() pointers
34c88174 2844 */
5f3c8d62 2845struct kvfree_rcu_bulk_data {
27538e18 2846 struct list_head list;
cdfa0f6f 2847 struct rcu_gp_oldstate gp_snap;
34c88174 2848 unsigned long nr_records;
3af84862 2849 void *records[];
34c88174
URS
2850};
2851
3af84862
URS
2852/*
2853 * This macro defines how many entries the "records" array
2854 * will contain. It is based on the fact that the size of
5f3c8d62 2855 * kvfree_rcu_bulk_data structure becomes exactly one page.
3af84862 2856 */
5f3c8d62
URS
2857#define KVFREE_BULK_MAX_ENTR \
2858 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3af84862 2859
a35d1690 2860/**
0392bebe 2861 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
a35d1690 2862 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
0392bebe 2863 * @head_free: List of kfree_rcu() objects waiting for a grace period
f32276a3 2864 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
27538e18 2865 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
0392bebe
JFG
2866 * @krcp: Pointer to @kfree_rcu_cpu structure
2867 */
2868
2869struct kfree_rcu_cpu_work {
2870 struct rcu_work rcu_work;
2871 struct rcu_head *head_free;
f32276a3 2872 struct rcu_gp_oldstate head_free_gp_snap;
27538e18 2873 struct list_head bulk_head_free[FREE_N_CHANNELS];
0392bebe
JFG
2874 struct kfree_rcu_cpu *krcp;
2875};
2876
2877/**
2878 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
a35d1690 2879 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2ca836b1 2880 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
27538e18 2881 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
0392bebe 2882 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
a35d1690
BP
2883 * @lock: Synchronize access to this structure
2884 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
69f08d39 2885 * @initialized: The @rcu_work fields have been initialized
4c33464a
URS
2886 * @head_count: Number of objects in rcu_head singular list
2887 * @bulk_count: Number of objects in bulk-list
72a2fbda
MCC
2888 * @bkvcache:
2889 * A simple cache list that contains objects for reuse purpose.
2890 * In order to save some per-cpu space the list is singular.
2891 * Even though it is lockless an access has to be protected by the
2892 * per-cpu lock.
56292e86 2893 * @page_cache_work: A work to refill the cache when it is empty
d0bfa8b3 2894 * @backoff_page_cache_fill: Delay cache refills
56292e86
URS
2895 * @work_in_progress: Indicates that page_cache_work is running
2896 * @hrtimer: A hrtimer for scheduling a page_cache_work
72a2fbda 2897 * @nr_bkv_objs: number of allocated objects at @bkvcache.
a35d1690
BP
2898 *
2899 * This is a per-CPU structure. The reason that it is not included in
2900 * the rcu_data structure is to permit this code to be extracted from
2901 * the RCU files. Such extraction could allow further optimization of
2902 * the interactions with the slab allocators.
2903 */
2904struct kfree_rcu_cpu {
4c33464a
URS
2905 // Objects queued on a linked list
2906 // through their rcu_head structures.
a35d1690 2907 struct rcu_head *head;
2ca836b1 2908 unsigned long head_gp_snap;
4c33464a
URS
2909 atomic_t head_count;
2910
2911 // Objects queued on a bulk-list.
27538e18 2912 struct list_head bulk_head[FREE_N_CHANNELS];
4c33464a
URS
2913 atomic_t bulk_count[FREE_N_CHANNELS];
2914
0392bebe 2915 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
8ac88f71 2916 raw_spinlock_t lock;
a35d1690 2917 struct delayed_work monitor_work;
a35d1690 2918 bool initialized;
56292e86 2919
d0bfa8b3
ZQ
2920 struct delayed_work page_cache_work;
2921 atomic_t backoff_page_cache_fill;
56292e86
URS
2922 atomic_t work_in_progress;
2923 struct hrtimer hrtimer;
2924
53c72b59
URS
2925 struct llist_head bkvcache;
2926 int nr_bkv_objs;
a35d1690
BP
2927};
2928
69f08d39
SAS
2929static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2930 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2931};
a35d1690 2932
34c88174 2933static __always_inline void
5f3c8d62 2934debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
34c88174
URS
2935{
2936#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
446044eb
JFG
2937 int i;
2938
2939 for (i = 0; i < bhead->nr_records; i++)
2940 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
34c88174
URS
2941#endif
2942}
2943
952371d6
URS
2944static inline struct kfree_rcu_cpu *
2945krc_this_cpu_lock(unsigned long *flags)
2946{
2947 struct kfree_rcu_cpu *krcp;
2948
2949 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2950 krcp = this_cpu_ptr(&krc);
69f08d39 2951 raw_spin_lock(&krcp->lock);
952371d6
URS
2952
2953 return krcp;
2954}
2955
2956static inline void
2957krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2958{
7ffc9ec8 2959 raw_spin_unlock_irqrestore(&krcp->lock, flags);
952371d6
URS
2960}
2961
5f3c8d62 2962static inline struct kvfree_rcu_bulk_data *
53c72b59
URS
2963get_cached_bnode(struct kfree_rcu_cpu *krcp)
2964{
2965 if (!krcp->nr_bkv_objs)
2966 return NULL;
2967
ac7625eb 2968 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
5f3c8d62 2969 return (struct kvfree_rcu_bulk_data *)
53c72b59
URS
2970 llist_del_first(&krcp->bkvcache);
2971}
2972
2973static inline bool
2974put_cached_bnode(struct kfree_rcu_cpu *krcp,
5f3c8d62 2975 struct kvfree_rcu_bulk_data *bnode)
53c72b59
URS
2976{
2977 // Check the limit.
2978 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2979 return false;
2980
2981 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
ac7625eb 2982 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
53c72b59 2983 return true;
53c72b59
URS
2984}
2985
d0bfa8b3
ZQ
2986static int
2987drain_page_cache(struct kfree_rcu_cpu *krcp)
2988{
2989 unsigned long flags;
2990 struct llist_node *page_list, *pos, *n;
2991 int freed = 0;
53c72b59 2992
6b706e56
Z
2993 if (!rcu_min_cached_objs)
2994 return 0;
2995
d0bfa8b3
ZQ
2996 raw_spin_lock_irqsave(&krcp->lock, flags);
2997 page_list = llist_del_all(&krcp->bkvcache);
ac7625eb 2998 WRITE_ONCE(krcp->nr_bkv_objs, 0);
d0bfa8b3 2999 raw_spin_unlock_irqrestore(&krcp->lock, flags);
53c72b59 3000
d0bfa8b3
ZQ
3001 llist_for_each_safe(pos, n, page_list) {
3002 free_page((unsigned long)pos);
3003 freed++;
3004 }
3005
3006 return freed;
53c72b59
URS
3007}
3008
8c15a9e8
URS
3009static void
3010kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3011 struct kvfree_rcu_bulk_data *bnode, int idx)
3012{
3013 unsigned long flags;
3014 int i;
3015
cdfa0f6f 3016 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
1e237994 3017 debug_rcu_bhead_unqueue(bnode);
cdfa0f6f
PM
3018 rcu_lock_acquire(&rcu_callback_map);
3019 if (idx == 0) { // kmalloc() / kfree().
3020 trace_rcu_invoke_kfree_bulk_callback(
3021 rcu_state.name, bnode->nr_records,
3022 bnode->records);
3023
3024 kfree_bulk(bnode->nr_records, bnode->records);
3025 } else { // vmalloc() / vfree().
3026 for (i = 0; i < bnode->nr_records; i++) {
3027 trace_rcu_invoke_kvfree_callback(
3028 rcu_state.name, bnode->records[i], 0);
3029
3030 vfree(bnode->records[i]);
3031 }
8c15a9e8 3032 }
cdfa0f6f 3033 rcu_lock_release(&rcu_callback_map);
8c15a9e8 3034 }
8c15a9e8
URS
3035
3036 raw_spin_lock_irqsave(&krcp->lock, flags);
3037 if (put_cached_bnode(krcp, bnode))
3038 bnode = NULL;
3039 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3040
3041 if (bnode)
3042 free_page((unsigned long) bnode);
3043
3044 cond_resched_tasks_rcu_qs();
3045}
3046
3047static void
3048kvfree_rcu_list(struct rcu_head *head)
3049{
3050 struct rcu_head *next;
3051
3052 for (; head; head = next) {
3053 void *ptr = (void *) head->func;
3054 unsigned long offset = (void *) head - ptr;
3055
3056 next = head->next;
3057 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3058 rcu_lock_acquire(&rcu_callback_map);
3059 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3060
3061 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3062 kvfree(ptr);
3063
3064 rcu_lock_release(&rcu_callback_map);
3065 cond_resched_tasks_rcu_qs();
3066 }
3067}
3068
495aa969 3069/*
a35d1690 3070 * This function is invoked in workqueue context after a grace period.
27538e18 3071 * It frees all the objects queued on ->bulk_head_free or ->head_free.
495aa969 3072 */
a35d1690
BP
3073static void kfree_rcu_work(struct work_struct *work)
3074{
3075 unsigned long flags;
27538e18
URS
3076 struct kvfree_rcu_bulk_data *bnode, *n;
3077 struct list_head bulk_head[FREE_N_CHANNELS];
8c15a9e8 3078 struct rcu_head *head;
a35d1690 3079 struct kfree_rcu_cpu *krcp;
0392bebe 3080 struct kfree_rcu_cpu_work *krwp;
f32276a3 3081 struct rcu_gp_oldstate head_gp_snap;
8c15a9e8 3082 int i;
a35d1690 3083
0392bebe 3084 krwp = container_of(to_rcu_work(work),
cc37d520 3085 struct kfree_rcu_cpu_work, rcu_work);
0392bebe 3086 krcp = krwp->krcp;
34c88174 3087
8ac88f71 3088 raw_spin_lock_irqsave(&krcp->lock, flags);
5f3c8d62 3089 // Channels 1 and 2.
27538e18
URS
3090 for (i = 0; i < FREE_N_CHANNELS; i++)
3091 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
34c88174 3092
5f3c8d62 3093 // Channel 3.
0392bebe
JFG
3094 head = krwp->head_free;
3095 krwp->head_free = NULL;
f32276a3 3096 head_gp_snap = krwp->head_free_gp_snap;
8ac88f71 3097 raw_spin_unlock_irqrestore(&krcp->lock, flags);
a35d1690 3098
277ffe1b 3099 // Handle the first two channels.
5f3c8d62 3100 for (i = 0; i < FREE_N_CHANNELS; i++) {
cc37d520 3101 // Start from the tail page, so a GP is likely passed for it.
8c15a9e8
URS
3102 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3103 kvfree_rcu_bulk(krcp, bnode, i);
34c88174
URS
3104 }
3105
3106 /*
d8628f35
URS
3107 * This is used when the "bulk" path can not be used for the
3108 * double-argument of kvfree_rcu(). This happens when the
3109 * page-cache is empty, which means that objects are instead
3110 * queued on a linked list through their rcu_head structures.
3111 * This list is named "Channel 3".
34c88174 3112 */
f32276a3
URS
3113 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3114 kvfree_rcu_list(head);
a35d1690
BP
3115}
3116
82d26c36
JFG
3117static bool
3118need_offload_krc(struct kfree_rcu_cpu *krcp)
3119{
3120 int i;
3121
3122 for (i = 0; i < FREE_N_CHANNELS; i++)
27538e18 3123 if (!list_empty(&krcp->bulk_head[i]))
82d26c36
JFG
3124 return true;
3125
96274561 3126 return !!READ_ONCE(krcp->head);
82d26c36
JFG
3127}
3128
5da7cb19
ZD
3129static bool
3130need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3131{
3132 int i;
3133
3134 for (i = 0; i < FREE_N_CHANNELS; i++)
3135 if (!list_empty(&krwp->bulk_head_free[i]))
3136 return true;
3137
3138 return !!krwp->head_free;
3139}
3140
4c33464a
URS
3141static int krc_count(struct kfree_rcu_cpu *krcp)
3142{
3143 int sum = atomic_read(&krcp->head_count);
3144 int i;
3145
3146 for (i = 0; i < FREE_N_CHANNELS; i++)
3147 sum += atomic_read(&krcp->bulk_count[i]);
3148
3149 return sum;
82d26c36
JFG
3150}
3151
51824b78
URS
3152static void
3153schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3154{
3155 long delay, delay_left;
3156
4c33464a 3157 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
51824b78
URS
3158 if (delayed_work_pending(&krcp->monitor_work)) {
3159 delay_left = krcp->monitor_work.timer.expires - jiffies;
3160 if (delay < delay_left)
3161 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3162 return;
3163 }
3164 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3165}
3166
2ca836b1
URS
3167static void
3168kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3169{
3170 struct list_head bulk_ready[FREE_N_CHANNELS];
3171 struct kvfree_rcu_bulk_data *bnode, *n;
3172 struct rcu_head *head_ready = NULL;
3173 unsigned long flags;
3174 int i;
3175
3176 raw_spin_lock_irqsave(&krcp->lock, flags);
3177 for (i = 0; i < FREE_N_CHANNELS; i++) {
3178 INIT_LIST_HEAD(&bulk_ready[i]);
3179
3180 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
cdfa0f6f 3181 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
2ca836b1
URS
3182 break;
3183
3184 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3185 list_move(&bnode->list, &bulk_ready[i]);
3186 }
3187 }
3188
3189 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3190 head_ready = krcp->head;
3191 atomic_set(&krcp->head_count, 0);
3192 WRITE_ONCE(krcp->head, NULL);
3193 }
3194 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3195
3196 for (i = 0; i < FREE_N_CHANNELS; i++) {
3197 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3198 kvfree_rcu_bulk(krcp, bnode, i);
3199 }
3200
3201 if (head_ready)
3202 kvfree_rcu_list(head_ready);
3203}
3204
495aa969 3205/*
a78d4a2a 3206 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
a35d1690 3207 */
a78d4a2a 3208static void kfree_rcu_monitor(struct work_struct *work)
a35d1690 3209{
a78d4a2a
URS
3210 struct kfree_rcu_cpu *krcp = container_of(work,
3211 struct kfree_rcu_cpu, monitor_work.work);
3212 unsigned long flags;
5f3c8d62 3213 int i, j;
0392bebe 3214
2ca836b1
URS
3215 // Drain ready for reclaim.
3216 kvfree_rcu_drain_ready(krcp);
3217
a78d4a2a 3218 raw_spin_lock_irqsave(&krcp->lock, flags);
a35d1690 3219
a78d4a2a 3220 // Attempt to start a new batch.
34c88174 3221 for (i = 0; i < KFREE_N_BATCHES; i++) {
a78d4a2a 3222 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
a35d1690 3223
5da7cb19
ZD
3224 // Try to detach bulk_head or head and attach it, only when
3225 // all channels are free. Any channel is not free means at krwp
3226 // there is on-going rcu work to handle krwp's free business.
3227 if (need_wait_for_krwp_work(krwp))
3228 continue;
27538e18 3229
5da7cb19
ZD
3230 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3231 if (need_offload_krc(krcp)) {
d8628f35
URS
3232 // Channel 1 corresponds to the SLAB-pointer bulk path.
3233 // Channel 2 corresponds to vmalloc-pointer bulk path.
5f3c8d62 3234 for (j = 0; j < FREE_N_CHANNELS; j++) {
4c33464a 3235 if (list_empty(&krwp->bulk_head_free[j])) {
4c33464a 3236 atomic_set(&krcp->bulk_count[j], 0);
2ca836b1
URS
3237 list_replace_init(&krcp->bulk_head[j],
3238 &krwp->bulk_head_free[j]);
5f3c8d62 3239 }
34c88174
URS
3240 }
3241
d8628f35
URS
3242 // Channel 3 corresponds to both SLAB and vmalloc
3243 // objects queued on the linked list.
34c88174
URS
3244 if (!krwp->head_free) {
3245 krwp->head_free = krcp->head;
f32276a3 3246 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
4c33464a 3247 atomic_set(&krcp->head_count, 0);
2ca836b1 3248 WRITE_ONCE(krcp->head, NULL);
34c88174
URS
3249 }
3250
a78d4a2a
URS
3251 // One work is per one batch, so there are three
3252 // "free channels", the batch can handle. It can
3253 // be that the work is in the pending state when
3254 // channels have been detached following by each
3255 // other.
34c88174 3256 queue_rcu_work(system_wq, &krwp->rcu_work);
34c88174
URS
3257 }
3258 }
3259
8fc5494a
URS
3260 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3261
a78d4a2a
URS
3262 // If there is nothing to detach, it means that our job is
3263 // successfully done here. In case of having at least one
3264 // of the channels that is still busy we should rearm the
3265 // work to repeat an attempt. Because previous batches are
3266 // still in progress.
82d26c36 3267 if (need_offload_krc(krcp))
51824b78 3268 schedule_delayed_monitor_work(krcp);
a35d1690
BP
3269}
3270
56292e86
URS
3271static enum hrtimer_restart
3272schedule_page_work_fn(struct hrtimer *t)
3273{
3274 struct kfree_rcu_cpu *krcp =
3275 container_of(t, struct kfree_rcu_cpu, hrtimer);
3276
d0bfa8b3 3277 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
56292e86
URS
3278 return HRTIMER_NORESTART;
3279}
3280
3281static void fill_page_cache_func(struct work_struct *work)
3282{
3283 struct kvfree_rcu_bulk_data *bnode;
3284 struct kfree_rcu_cpu *krcp =
3285 container_of(work, struct kfree_rcu_cpu,
d0bfa8b3 3286 page_cache_work.work);
56292e86 3287 unsigned long flags;
d0bfa8b3 3288 int nr_pages;
56292e86
URS
3289 bool pushed;
3290 int i;
3291
d0bfa8b3
ZQ
3292 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3293 1 : rcu_min_cached_objs;
3294
60888b77 3295 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
56292e86 3296 bnode = (struct kvfree_rcu_bulk_data *)
ee6ddf58 3297 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
56292e86 3298
093590c1
MH
3299 if (!bnode)
3300 break;
56292e86 3301
093590c1
MH
3302 raw_spin_lock_irqsave(&krcp->lock, flags);
3303 pushed = put_cached_bnode(krcp, bnode);
3304 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3305
3306 if (!pushed) {
3307 free_page((unsigned long) bnode);
3308 break;
56292e86
URS
3309 }
3310 }
3311
3312 atomic_set(&krcp->work_in_progress, 0);
d0bfa8b3 3313 atomic_set(&krcp->backoff_page_cache_fill, 0);
56292e86
URS
3314}
3315
3316static void
3317run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3318{
021a5ff8
URS
3319 // If cache disabled, bail out.
3320 if (!rcu_min_cached_objs)
3321 return;
3322
56292e86
URS
3323 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3324 !atomic_xchg(&krcp->work_in_progress, 1)) {
d0bfa8b3
ZQ
3325 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3326 queue_delayed_work(system_wq,
3327 &krcp->page_cache_work,
3328 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3329 } else {
3330 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3331 krcp->hrtimer.function = schedule_page_work_fn;
3332 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3333 }
56292e86
URS
3334 }
3335}
3336
148e3731
URS
3337// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3338// state specified by flags. If can_alloc is true, the caller must
3339// be schedulable and not be holding any locks or mutexes that might be
3340// acquired by the memory allocator or anything that it might invoke.
3341// Returns true if ptr was successfully recorded, else the caller must
3342// use a fallback.
34c88174 3343static inline bool
148e3731
URS
3344add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3345 unsigned long *flags, void *ptr, bool can_alloc)
34c88174 3346{
5f3c8d62
URS
3347 struct kvfree_rcu_bulk_data *bnode;
3348 int idx;
34c88174 3349
148e3731
URS
3350 *krcp = krc_this_cpu_lock(flags);
3351 if (unlikely(!(*krcp)->initialized))
34c88174
URS
3352 return false;
3353
5f3c8d62 3354 idx = !!is_vmalloc_addr(ptr);
27538e18
URS
3355 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3356 struct kvfree_rcu_bulk_data, list);
34c88174
URS
3357
3358 /* Check if a new block is required. */
27538e18 3359 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
148e3731
URS
3360 bnode = get_cached_bnode(*krcp);
3361 if (!bnode && can_alloc) {
3362 krc_this_cpu_unlock(*krcp, *flags);
3e7ce7a1
URS
3363
3364 // __GFP_NORETRY - allows a light-weight direct reclaim
3365 // what is OK from minimizing of fallback hitting point of
3366 // view. Apart of that it forbids any OOM invoking what is
3367 // also beneficial since we are about to release memory soon.
3368 //
3369 // __GFP_NOMEMALLOC - prevents from consuming of all the
3370 // memory reserves. Please note we have a fallback path.
3371 //
3372 // __GFP_NOWARN - it is supposed that an allocation can
3373 // be failed under low memory or high memory pressure
3374 // scenarios.
148e3731 3375 bnode = (struct kvfree_rcu_bulk_data *)
3e7ce7a1 3376 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
309a4316 3377 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
148e3731
URS
3378 }
3379
56292e86 3380 if (!bnode)
34c88174
URS
3381 return false;
3382
27538e18 3383 // Initialize the new block and attach it.
34c88174 3384 bnode->nr_records = 0;
27538e18 3385 list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
34c88174
URS
3386 }
3387
cc37d520 3388 // Finally insert and update the GP for this page.
27538e18 3389 bnode->records[bnode->nr_records++] = ptr;
cdfa0f6f 3390 get_state_synchronize_rcu_full(&bnode->gp_snap);
4c33464a 3391 atomic_inc(&(*krcp)->bulk_count[idx]);
34c88174
URS
3392
3393 return true;
3394}
3395
a35d1690 3396/*
277ffe1b
ZZ
3397 * Queue a request for lazy invocation of the appropriate free routine
3398 * after a grace period. Please note that three paths are maintained,
3399 * two for the common case using arrays of pointers and a third one that
3400 * is used only when the main paths cannot be used, for example, due to
3401 * memory pressure.
a35d1690 3402 *
c408b215 3403 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
34c88174
URS
3404 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3405 * be free'd in workqueue context. This allows us to: batch requests together to
5f3c8d62 3406 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
495aa969 3407 */
04a522b7 3408void kvfree_call_rcu(struct rcu_head *head, void *ptr)
495aa969 3409{
a35d1690
BP
3410 unsigned long flags;
3411 struct kfree_rcu_cpu *krcp;
3042f83f 3412 bool success;
a35d1690 3413
04a522b7
URS
3414 /*
3415 * Please note there is a limitation for the head-less
3416 * variant, that is why there is a clear rule for such
3417 * objects: it can be used from might_sleep() context
3418 * only. For other places please embed an rcu_head to
3419 * your data.
3420 */
3421 if (!head)
3042f83f 3422 might_sleep();
3042f83f 3423
a35d1690 3424 // Queue the object but don't yet schedule the batch.
446044eb 3425 if (debug_rcu_head_queue(ptr)) {
e99637be
JFG
3426 // Probable double kfree_rcu(), just leak.
3427 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3428 __func__, head);
3042f83f
URS
3429
3430 // Mark as success and leave.
148e3731 3431 return;
e99637be 3432 }
34c88174 3433
300c0c5e 3434 kasan_record_aux_stack_noalloc(ptr);
148e3731 3435 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3042f83f 3436 if (!success) {
56292e86
URS
3437 run_page_cache_worker(krcp);
3438
3042f83f
URS
3439 if (head == NULL)
3440 // Inline if kvfree_rcu(one_arg) call.
3441 goto unlock_return;
3442
04a522b7 3443 head->func = ptr;
34c88174 3444 head->next = krcp->head;
8fc5494a 3445 WRITE_ONCE(krcp->head, head);
4c33464a 3446 atomic_inc(&krcp->head_count);
2ca836b1
URS
3447
3448 // Take a snapshot for this krcp.
3449 krcp->head_gp_snap = get_state_synchronize_rcu();
3042f83f 3450 success = true;
34c88174 3451 }
a35d1690 3452
5f98fd03
CM
3453 /*
3454 * The kvfree_rcu() caller considers the pointer freed at this point
3455 * and likely removes any references to it. Since the actual slab
3456 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3457 * this object (no scanning or false positives reporting).
3458 */
3459 kmemleak_ignore(ptr);
3460
a35d1690 3461 // Set timer to drain after KFREE_DRAIN_JIFFIES.
82d26c36 3462 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
51824b78 3463 schedule_delayed_monitor_work(krcp);
a35d1690 3464
e99637be 3465unlock_return:
952371d6 3466 krc_this_cpu_unlock(krcp, flags);
3042f83f
URS
3467
3468 /*
3469 * Inline kvfree() after synchronize_rcu(). We can do
3470 * it from might_sleep() context only, so the current
3471 * CPU can pass the QS state.
3472 */
3473 if (!success) {
3474 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3475 synchronize_rcu();
3476 kvfree(ptr);
3477 }
495aa969 3478}
c408b215 3479EXPORT_SYMBOL_GPL(kvfree_call_rcu);
495aa969 3480
9154244c
JFG
3481static unsigned long
3482kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3483{
3484 int cpu;
a6a82ce1 3485 unsigned long count = 0;
9154244c
JFG
3486
3487 /* Snapshot count of all CPUs */
70060b87 3488 for_each_possible_cpu(cpu) {
9154244c
JFG
3489 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3490
4c33464a 3491 count += krc_count(krcp);
ac7625eb 3492 count += READ_ONCE(krcp->nr_bkv_objs);
d0bfa8b3 3493 atomic_set(&krcp->backoff_page_cache_fill, 1);
9154244c
JFG
3494 }
3495
38269096 3496 return count == 0 ? SHRINK_EMPTY : count;
9154244c
JFG
3497}
3498
3499static unsigned long
3500kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3501{
3502 int cpu, freed = 0;
9154244c 3503
70060b87 3504 for_each_possible_cpu(cpu) {
9154244c
JFG
3505 int count;
3506 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3507
4c33464a 3508 count = krc_count(krcp);
d0bfa8b3 3509 count += drain_page_cache(krcp);
7fe1da33 3510 kfree_rcu_monitor(&krcp->monitor_work.work);
9154244c
JFG
3511
3512 sc->nr_to_scan -= count;
3513 freed += count;
3514
3515 if (sc->nr_to_scan <= 0)
3516 break;
3517 }
3518
c6dfd72b 3519 return freed == 0 ? SHRINK_STOP : freed;
9154244c
JFG
3520}
3521
a35d1690
BP
3522void __init kfree_rcu_scheduler_running(void)
3523{
3524 int cpu;
a35d1690 3525
70060b87 3526 for_each_possible_cpu(cpu) {
a35d1690
BP
3527 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3528
82d26c36 3529 if (need_offload_krc(krcp))
51824b78 3530 schedule_delayed_monitor_work(krcp);
a35d1690
BP
3531 }
3532}
3533
e5bc3af7
PM
3534/*
3535 * During early boot, any blocking grace-period wait automatically
258f887a 3536 * implies a grace period.
e5bc3af7 3537 *
258f887a
PM
3538 * Later on, this could in theory be the case for kernels built with
3539 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3540 * is not a common case. Furthermore, this optimization would cause
3541 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3542 * grace-period optimization is ignored once the scheduler is running.
e5bc3af7
PM
3543 */
3544static int rcu_blocking_is_gp(void)
3545{
3d1adf7a
Z
3546 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3547 might_sleep();
258f887a 3548 return false;
3d1adf7a 3549 }
258f887a 3550 return true;
e5bc3af7
PM
3551}
3552
3553/**
3554 * synchronize_rcu - wait until a grace period has elapsed.
3555 *
3556 * Control will return to the caller some time after a full grace
3557 * period has elapsed, in other words after all currently executing RCU
3558 * read-side critical sections have completed. Note, however, that
3559 * upon return from synchronize_rcu(), the caller might well be executing
3560 * concurrently with new RCU read-side critical sections that began while
1893afd6
PM
3561 * synchronize_rcu() was waiting.
3562 *
3563 * RCU read-side critical sections are delimited by rcu_read_lock()
3564 * and rcu_read_unlock(), and may be nested. In addition, but only in
3565 * v5.0 and later, regions of code across which interrupts, preemption,
3566 * or softirqs have been disabled also serve as RCU read-side critical
e5bc3af7
PM
3567 * sections. This includes hardware interrupt handlers, softirq handlers,
3568 * and NMI handlers.
3569 *
3570 * Note that this guarantee implies further memory-ordering guarantees.
3571 * On systems with more than one CPU, when synchronize_rcu() returns,
3572 * each CPU is guaranteed to have executed a full memory barrier since
3573 * the end of its last RCU read-side critical section whose beginning
3574 * preceded the call to synchronize_rcu(). In addition, each CPU having
3575 * an RCU read-side critical section that extends beyond the return from
3576 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3577 * after the beginning of synchronize_rcu() and before the beginning of
3578 * that RCU read-side critical section. Note that these guarantees include
3579 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3580 * that are executing in the kernel.
3581 *
3582 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3583 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3584 * to have executed a full memory barrier during the execution of
3585 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3586 * again only if the system has more than one CPU).
3d3a0d1b
PM
3587 *
3588 * Implementation of these memory-ordering guarantees is described here:
3589 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
e5bc3af7
PM
3590 */
3591void synchronize_rcu(void)
3592{
910e1209
PM
3593 unsigned long flags;
3594 struct rcu_node *rnp;
3595
e5bc3af7
PM
3596 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3597 lock_is_held(&rcu_lock_map) ||
3598 lock_is_held(&rcu_sched_lock_map),
3599 "Illegal synchronize_rcu() in RCU read-side critical section");
910e1209
PM
3600 if (!rcu_blocking_is_gp()) {
3601 if (rcu_gp_is_expedited())
3602 synchronize_rcu_expedited();
3603 else
3cb278e7 3604 wait_rcu_gp(call_rcu_hurry);
910e1209 3605 return;
bf95b2bc 3606 }
910e1209
PM
3607
3608 // Context allows vacuous grace periods.
3609 // Note well that this code runs with !PREEMPT && !SMP.
3610 // In addition, all code that advances grace periods runs at
3611 // process level. Therefore, this normal GP overlaps with other
3612 // normal GPs only by being fully nested within them, which allows
3613 // reuse of ->gp_seq_polled_snap.
3614 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3615 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3616
d761de8a
PM
3617 // Update the normal grace-period counters to record
3618 // this grace period, but only those used by the boot CPU.
3619 // The rcu_scheduler_starting() will take care of the rest of
3620 // these counters.
910e1209
PM
3621 local_irq_save(flags);
3622 WARN_ON_ONCE(num_online_cpus() > 1);
3623 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
d761de8a 3624 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
910e1209
PM
3625 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3626 local_irq_restore(flags);
e5bc3af7
PM
3627}
3628EXPORT_SYMBOL_GPL(synchronize_rcu);
3629
91a967fd
PM
3630/**
3631 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3632 * @rgosp: Place to put state cookie
3633 *
3634 * Stores into @rgosp a value that will always be treated by functions
3635 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3636 * has already completed.
3637 */
3638void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3639{
3640 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3641 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
91a967fd
PM
3642}
3643EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3644
765a3f4f
PM
3645/**
3646 * get_state_synchronize_rcu - Snapshot current RCU state
3647 *
3648 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
7abb18bd
PM
3649 * or poll_state_synchronize_rcu() to determine whether or not a full
3650 * grace period has elapsed in the meantime.
765a3f4f
PM
3651 */
3652unsigned long get_state_synchronize_rcu(void)
3653{
3654 /*
3655 * Any prior manipulation of RCU-protected data must happen
e4be81a2 3656 * before the load from ->gp_seq.
765a3f4f
PM
3657 */
3658 smp_mb(); /* ^^^ */
bf95b2bc 3659 return rcu_seq_snap(&rcu_state.gp_seq_polled);
765a3f4f
PM
3660}
3661EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3662
7abb18bd 3663/**
3fdefca9
PM
3664 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3665 * @rgosp: location to place combined normal/expedited grace-period state
7abb18bd 3666 *
3fdefca9
PM
3667 * Places the normal and expedited grace-period states in @rgosp. This
3668 * state value can be passed to a later call to cond_synchronize_rcu_full()
3669 * or poll_state_synchronize_rcu_full() to determine whether or not a
3670 * grace period (whether normal or expedited) has elapsed in the meantime.
3671 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3672 * long, but is guaranteed to see all grace periods. In contrast, the
3673 * combined state occupies less memory, but can sometimes fail to take
3674 * grace periods into account.
7abb18bd 3675 *
3fdefca9
PM
3676 * This does not guarantee that the needed grace period will actually
3677 * start.
7abb18bd 3678 */
3fdefca9
PM
3679void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3680{
3681 struct rcu_node *rnp = rcu_get_root();
3682
3683 /*
3684 * Any prior manipulation of RCU-protected data must happen
3685 * before the loads from ->gp_seq and ->expedited_sequence.
3686 */
3687 smp_mb(); /* ^^^ */
3688 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3689 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3fdefca9
PM
3690}
3691EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3692
76ea3641
PM
3693/*
3694 * Helper function for start_poll_synchronize_rcu() and
3695 * start_poll_synchronize_rcu_full().
7abb18bd 3696 */
76ea3641 3697static void start_poll_synchronize_rcu_common(void)
7abb18bd
PM
3698{
3699 unsigned long flags;
7abb18bd
PM
3700 bool needwake;
3701 struct rcu_data *rdp;
3702 struct rcu_node *rnp;
3703
3704 lockdep_assert_irqs_enabled();
3705 local_irq_save(flags);
3706 rdp = this_cpu_ptr(&rcu_data);
3707 rnp = rdp->mynode;
3708 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
bf95b2bc
PM
3709 // Note it is possible for a grace period to have elapsed between
3710 // the above call to get_state_synchronize_rcu() and the below call
3711 // to rcu_seq_snap. This is OK, the worst that happens is that we
3712 // get a grace period that no one needed. These accesses are ordered
3713 // by smp_mb(), and we are accessing them in the opposite order
3714 // from which they are updated at grace-period start, as required.
3715 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
7abb18bd
PM
3716 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3717 if (needwake)
3718 rcu_gp_kthread_wake();
76ea3641
PM
3719}
3720
3721/**
3722 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3723 *
3724 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3725 * or poll_state_synchronize_rcu() to determine whether or not a full
3726 * grace period has elapsed in the meantime. If the needed grace period
3727 * is not already slated to start, notifies RCU core of the need for that
3728 * grace period.
3729 *
3730 * Interrupts must be enabled for the case where it is necessary to awaken
3731 * the grace-period kthread.
3732 */
3733unsigned long start_poll_synchronize_rcu(void)
3734{
3735 unsigned long gp_seq = get_state_synchronize_rcu();
3736
3737 start_poll_synchronize_rcu_common();
7abb18bd
PM
3738 return gp_seq;
3739}
3740EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3741
3742/**
76ea3641
PM
3743 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3744 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
7abb18bd 3745 *
76ea3641
PM
3746 * Places the normal and expedited grace-period states in *@rgos. This
3747 * state value can be passed to a later call to cond_synchronize_rcu_full()
3748 * or poll_state_synchronize_rcu_full() to determine whether or not a
3749 * grace period (whether normal or expedited) has elapsed in the meantime.
3750 * If the needed grace period is not already slated to start, notifies
3751 * RCU core of the need for that grace period.
3752 *
3753 * Interrupts must be enabled for the case where it is necessary to awaken
3754 * the grace-period kthread.
3755 */
3756void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3757{
3758 get_state_synchronize_rcu_full(rgosp);
3759
3760 start_poll_synchronize_rcu_common();
3761}
3762EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3763
7abb18bd 3764/**
91a967fd 3765 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3d3a0d1b 3766 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
7abb18bd
PM
3767 *
3768 * If a full RCU grace period has elapsed since the earlier call from
f21e0143 3769 * which @oldstate was obtained, return @true, otherwise return @false.
a616aec9 3770 * If @false is returned, it is the caller's responsibility to invoke this
7abb18bd
PM
3771 * function later on until it does return @true. Alternatively, the caller
3772 * can explicitly wait for a grace period, for example, by passing @oldstate
95ff24ee
PM
3773 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3774 * on the one hand or by directly invoking either synchronize_rcu() or
3775 * synchronize_rcu_expedited() on the other.
7abb18bd
PM
3776 *
3777 * Yes, this function does not take counter wrap into account.
3778 * But counter wrap is harmless. If the counter wraps, we have waited for
2403e804 3779 * more than a billion grace periods (and way more on a 64-bit system!).
f21e0143 3780 * Those needing to keep old state values for very long time periods
91a967fd
PM
3781 * (many hours even on 32-bit systems) should check them occasionally and
3782 * either refresh them or set a flag indicating that the grace period has
3783 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3784 * to get a guaranteed-completed grace-period state.
3d3a0d1b 3785 *
95ff24ee
PM
3786 * In addition, because oldstate compresses the grace-period state for
3787 * both normal and expedited grace periods into a single unsigned long,
3788 * it can miss a grace period when synchronize_rcu() runs concurrently
3789 * with synchronize_rcu_expedited(). If this is unacceptable, please
3790 * instead use the _full() variant of these polling APIs.
3791 *
3d3a0d1b
PM
3792 * This function provides the same memory-ordering guarantees that
3793 * would be provided by a synchronize_rcu() that was invoked at the call
3794 * to the function that provided @oldstate, and that returned at the end
3795 * of this function.
7abb18bd
PM
3796 */
3797bool poll_state_synchronize_rcu(unsigned long oldstate)
3798{
414c1238 3799 if (oldstate == RCU_GET_STATE_COMPLETED ||
bf95b2bc 3800 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
7abb18bd
PM
3801 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3802 return true;
3803 }
3804 return false;
3805}
3806EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3807
765a3f4f 3808/**
91a967fd
PM
3809 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3810 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
765a3f4f 3811 *
91a967fd
PM
3812 * If a full RCU grace period has elapsed since the earlier call from
3813 * which *rgosp was obtained, return @true, otherwise return @false.
3814 * If @false is returned, it is the caller's responsibility to invoke this
3815 * function later on until it does return @true. Alternatively, the caller
3816 * can explicitly wait for a grace period, for example, by passing @rgosp
3817 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3818 *
3819 * Yes, this function does not take counter wrap into account.
3820 * But counter wrap is harmless. If the counter wraps, we have waited
3821 * for more than a billion grace periods (and way more on a 64-bit
3822 * system!). Those needing to keep rcu_gp_oldstate values for very
3823 * long time periods (many hours even on 32-bit systems) should check
3824 * them occasionally and either refresh them or set a flag indicating
3825 * that the grace period has completed. Alternatively, they can use
3826 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3827 * grace-period state.
765a3f4f 3828 *
91a967fd
PM
3829 * This function provides the same memory-ordering guarantees that would
3830 * be provided by a synchronize_rcu() that was invoked at the call to
3831 * the function that provided @rgosp, and that returned at the end of this
3832 * function. And this guarantee requires that the root rcu_node structure's
3833 * ->gp_seq field be checked instead of that of the rcu_state structure.
3834 * The problem is that the just-ending grace-period's callbacks can be
3835 * invoked between the time that the root rcu_node structure's ->gp_seq
3836 * field is updated and the time that the rcu_state structure's ->gp_seq
3837 * field is updated. Therefore, if a single synchronize_rcu() is to
3838 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3839 * then the root rcu_node structure is the one that needs to be polled.
3840 */
3841bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3842{
3843 struct rcu_node *rnp = rcu_get_root();
3844
3845 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3846 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3847 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3848 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
7ecef087 3849 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
91a967fd
PM
3850 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3851 return true;
3852 }
3853 return false;
3854}
3855EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3856
765a3f4f
PM
3857/**
3858 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
d96c52fe 3859 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
765a3f4f
PM
3860 *
3861 * If a full RCU grace period has elapsed since the earlier call to
7abb18bd
PM
3862 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3863 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
765a3f4f 3864 *
d96c52fe
PM
3865 * Yes, this function does not take counter wrap into account.
3866 * But counter wrap is harmless. If the counter wraps, we have waited for
765a3f4f 3867 * more than 2 billion grace periods (and way more on a 64-bit system!),
d96c52fe 3868 * so waiting for a couple of additional grace periods should be just fine.
3d3a0d1b
PM
3869 *
3870 * This function provides the same memory-ordering guarantees that
3871 * would be provided by a synchronize_rcu() that was invoked at the call
d96c52fe 3872 * to the function that provided @oldstate and that returned at the end
3d3a0d1b 3873 * of this function.
765a3f4f
PM
3874 */
3875void cond_synchronize_rcu(unsigned long oldstate)
3876{
7abb18bd 3877 if (!poll_state_synchronize_rcu(oldstate))
765a3f4f
PM
3878 synchronize_rcu();
3879}
3880EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3881
b6fe4917
PM
3882/**
3883 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3884 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3885 *
3886 * If a full RCU grace period has elapsed since the call to
3887 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3888 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3889 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3890 * for a full grace period.
3891 *
3892 * Yes, this function does not take counter wrap into account.
3893 * But counter wrap is harmless. If the counter wraps, we have waited for
3894 * more than 2 billion grace periods (and way more on a 64-bit system!),
3895 * so waiting for a couple of additional grace periods should be just fine.
3896 *
3897 * This function provides the same memory-ordering guarantees that
3898 * would be provided by a synchronize_rcu() that was invoked at the call
3899 * to the function that provided @rgosp and that returned at the end of
3900 * this function.
3901 */
3902void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3903{
3904 if (!poll_state_synchronize_rcu_full(rgosp))
3905 synchronize_rcu();
3906}
3907EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3908
64db4cff 3909/*
98ece508 3910 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
3911 * the current CPU, returning 1 if so and zero otherwise. The checks are
3912 * in order of increasing expense: checks that can be carried out against
3913 * CPU-local state are performed first. However, we must check for CPU
3914 * stalls first, else we might not get a chance.
64db4cff 3915 */
dd7dafd1 3916static int rcu_pending(int user)
64db4cff 3917{
ed93dfc6 3918 bool gp_in_progress;
98ece508 3919 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
3920 struct rcu_node *rnp = rdp->mynode;
3921
a649d25d
PM
3922 lockdep_assert_irqs_disabled();
3923
64db4cff 3924 /* Check for CPU stalls, if enabled. */
ea12ff2b 3925 check_cpu_stall(rdp);
64db4cff 3926
85f69b32 3927 /* Does this CPU need a deferred NOCB wakeup? */
87090516 3928 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
85f69b32
PM
3929 return 1;
3930
dd7dafd1
PM
3931 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3932 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
a096932f
PM
3933 return 0;
3934
64db4cff 3935 /* Is the RCU core waiting for a quiescent state from this CPU? */
ed93dfc6
PM
3936 gp_in_progress = rcu_gp_in_progress();
3937 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
64db4cff
PM
3938 return 1;
3939
3940 /* Does this CPU have callbacks ready to invoke? */
3820b513 3941 if (!rcu_rdp_is_offloaded(rdp) &&
bd56e0a4 3942 rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
3943 return 1;
3944
3945 /* Has RCU gone idle with this CPU needing another grace period? */
ed93dfc6 3946 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3820b513 3947 !rcu_rdp_is_offloaded(rdp) &&
c1935209 3948 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
3949 return 1;
3950
67e14c1e
PM
3951 /* Have RCU grace period completed or started? */
3952 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 3953 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
3954 return 1;
3955
64db4cff
PM
3956 /* nothing to do */
3957 return 0;
3958}
3959
a83eff0a 3960/*
dd46a788 3961 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
3962 * the compiler is expected to optimize this away.
3963 */
dd46a788 3964static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 3965{
8344b871
PM
3966 trace_rcu_barrier(rcu_state.name, s, cpu,
3967 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
3968}
3969
b1420f1c 3970/*
dd46a788
PM
3971 * RCU callback function for rcu_barrier(). If we are last, wake
3972 * up the task executing rcu_barrier().
aa24f937
PM
3973 *
3974 * Note that the value of rcu_state.barrier_sequence must be captured
3975 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3976 * other CPUs might count the value down to zero before this CPU gets
3977 * around to invoking rcu_barrier_trace(), which might result in bogus
3978 * data from the next instance of rcu_barrier().
b1420f1c 3979 */
24ebbca8 3980static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3981{
aa24f937
PM
3982 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3983
ec9f5835 3984 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
aa24f937 3985 rcu_barrier_trace(TPS("LastCB"), -1, s);
ec9f5835 3986 complete(&rcu_state.barrier_completion);
a83eff0a 3987 } else {
aa24f937 3988 rcu_barrier_trace(TPS("CB"), -1, s);
a83eff0a 3989 }
d0ec774c
PM
3990}
3991
3992/*
a16578dd 3993 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
d0ec774c 3994 */
a16578dd 3995static void rcu_barrier_entrain(struct rcu_data *rdp)
d0ec774c 3996{
a16578dd
PM
3997 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3998 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
b8f7aca3
FW
3999 bool wake_nocb = false;
4000 bool was_alldone = false;
d0ec774c 4001
80b3fd47 4002 lockdep_assert_held(&rcu_state.barrier_lock);
a16578dd
PM
4003 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4004 return;
dd46a788 4005 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
4006 rdp->barrier_head.func = rcu_barrier_callback;
4007 debug_rcu_head_queue(&rdp->barrier_head);
5d6742b3 4008 rcu_nocb_lock(rdp);
b8f7aca3
FW
4009 /*
4010 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4011 * queue. This way we don't wait for bypass timer that can reach seconds
4012 * if it's fully lazy.
4013 */
4014 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3cb278e7 4015 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
b8f7aca3 4016 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
77a40f97 4017 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
ec9f5835 4018 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
4019 } else {
4020 debug_rcu_head_unqueue(&rdp->barrier_head);
a16578dd 4021 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
f92c734f 4022 }
5d6742b3 4023 rcu_nocb_unlock(rdp);
b8f7aca3
FW
4024 if (wake_nocb)
4025 wake_nocb_gp(rdp, false);
a16578dd
PM
4026 smp_store_release(&rdp->barrier_seq_snap, gseq);
4027}
4028
4029/*
4030 * Called with preemption disabled, and from cross-cpu IRQ context.
4031 */
4032static void rcu_barrier_handler(void *cpu_in)
4033{
4034 uintptr_t cpu = (uintptr_t)cpu_in;
4035 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4036
4037 lockdep_assert_irqs_disabled();
4038 WARN_ON_ONCE(cpu != rdp->cpu);
4039 WARN_ON_ONCE(cpu != smp_processor_id());
80b3fd47 4040 raw_spin_lock(&rcu_state.barrier_lock);
a16578dd 4041 rcu_barrier_entrain(rdp);
80b3fd47 4042 raw_spin_unlock(&rcu_state.barrier_lock);
d0ec774c
PM
4043}
4044
dd46a788
PM
4045/**
4046 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4047 *
4048 * Note that this primitive does not necessarily wait for an RCU grace period
4049 * to complete. For example, if there are no RCU callbacks queued anywhere
4050 * in the system, then rcu_barrier() is within its rights to return
4051 * immediately, without waiting for anything, much less an RCU grace period.
d0ec774c 4052 */
dd46a788 4053void rcu_barrier(void)
d0ec774c 4054{
127e2981 4055 uintptr_t cpu;
a16578dd
PM
4056 unsigned long flags;
4057 unsigned long gseq;
b1420f1c 4058 struct rcu_data *rdp;
ec9f5835 4059 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 4060
dd46a788 4061 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 4062
e74f4c45 4063 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 4064 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 4065
4f525a52 4066 /* Did someone else do our work for us? */
ec9f5835 4067 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
0cabb47a 4068 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
cf3a9c48 4069 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 4070 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
4071 return;
4072 }
4073
4f525a52 4074 /* Mark the start of the barrier operation. */
80b3fd47 4075 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
ec9f5835 4076 rcu_seq_start(&rcu_state.barrier_sequence);
a16578dd 4077 gseq = rcu_state.barrier_sequence;
dd46a788 4078 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 4079
d0ec774c 4080 /*
127e2981
PM
4081 * Initialize the count to two rather than to zero in order
4082 * to avoid a too-soon return to zero in case of an immediate
4083 * invocation of the just-enqueued callback (or preemption of
4084 * this task). Exclude CPU-hotplug operations to ensure that no
4085 * offline non-offloaded CPU has callbacks queued.
d0ec774c 4086 */
ec9f5835 4087 init_completion(&rcu_state.barrier_completion);
127e2981 4088 atomic_set(&rcu_state.barrier_cpu_count, 2);
80b3fd47 4089 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
b1420f1c
PM
4090
4091 /*
1331e7a1
PM
4092 * Force each CPU with callbacks to register a new callback.
4093 * When that callback is invoked, we will know that all of the
4094 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 4095 */
3fbfbf7a 4096 for_each_possible_cpu(cpu) {
da1df50d 4097 rdp = per_cpu_ptr(&rcu_data, cpu);
a16578dd
PM
4098retry:
4099 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
ce5215c1 4100 continue;
80b3fd47 4101 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
0cabb47a 4102 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
a16578dd 4103 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
80b3fd47 4104 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
0cabb47a 4105 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
ce5215c1 4106 continue;
0cabb47a 4107 }
a16578dd
PM
4108 if (!rcu_rdp_cpu_online(rdp)) {
4109 rcu_barrier_entrain(rdp);
4110 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
80b3fd47 4111 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
0cabb47a 4112 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
a16578dd 4113 continue;
b1420f1c 4114 }
80b3fd47 4115 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
a16578dd
PM
4116 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4117 schedule_timeout_uninterruptible(1);
4118 goto retry;
b1420f1c 4119 }
a16578dd
PM
4120 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4121 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
b1420f1c 4122 }
b1420f1c
PM
4123
4124 /*
4125 * Now that we have an rcu_barrier_callback() callback on each
4126 * CPU, and thus each counted, remove the initial count.
4127 */
127e2981 4128 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
ec9f5835 4129 complete(&rcu_state.barrier_completion);
b1420f1c
PM
4130
4131 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 4132 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 4133
4f525a52 4134 /* Mark the end of the barrier operation. */
dd46a788 4135 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 4136 rcu_seq_end(&rcu_state.barrier_sequence);
a16578dd
PM
4137 gseq = rcu_state.barrier_sequence;
4138 for_each_possible_cpu(cpu) {
4139 rdp = per_cpu_ptr(&rcu_data, cpu);
4140
4141 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4142 }
4f525a52 4143
b1420f1c 4144 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 4145 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 4146}
45975c7d 4147EXPORT_SYMBOL_GPL(rcu_barrier);
d0ec774c 4148
16128b1f
PM
4149static unsigned long rcu_barrier_last_throttle;
4150
4151/**
4152 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4153 *
4154 * This can be thought of as guard rails around rcu_barrier() that
4155 * permits unrestricted userspace use, at least assuming the hardware's
4156 * try_cmpxchg() is robust. There will be at most one call per second to
4157 * rcu_barrier() system-wide from use of this function, which means that
4158 * callers might needlessly wait a second or three.
4159 *
4160 * This is intended for use by test suites to avoid OOM by flushing RCU
4161 * callbacks from the previous test before starting the next. See the
4162 * rcutree.do_rcu_barrier module parameter for more information.
4163 *
4164 * Why not simply make rcu_barrier() more scalable? That might be
4165 * the eventual endpoint, but let's keep it simple for the time being.
4166 * Note that the module parameter infrastructure serializes calls to a
4167 * given .set() function, but should concurrent .set() invocation ever be
4168 * possible, we are ready!
4169 */
4170static void rcu_barrier_throttled(void)
4171{
4172 unsigned long j = jiffies;
4173 unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4174 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4175
4176 while (time_in_range(j, old, old + HZ / 16) ||
4177 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4178 schedule_timeout_idle(HZ / 16);
4179 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4180 smp_mb(); /* caller's subsequent code after above check. */
4181 return;
4182 }
4183 j = jiffies;
4184 old = READ_ONCE(rcu_barrier_last_throttle);
4185 }
4186 rcu_barrier();
4187}
4188
4189/*
4190 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4191 * request arrives. We insist on a true value to allow for possible
4192 * future expansion.
4193 */
4194static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4195{
4196 bool b;
4197 int ret;
4198
4199 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4200 return -EAGAIN;
4201 ret = kstrtobool(val, &b);
4202 if (!ret && b) {
4203 atomic_inc((atomic_t *)kp->arg);
4204 rcu_barrier_throttled();
4205 atomic_dec((atomic_t *)kp->arg);
4206 }
4207 return ret;
4208}
4209
4210/*
4211 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4212 */
4213static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4214{
4215 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4216}
4217
4218static const struct kernel_param_ops do_rcu_barrier_ops = {
4219 .set = param_set_do_rcu_barrier,
4220 .get = param_get_do_rcu_barrier,
4221};
4222static atomic_t do_rcu_barrier;
4223module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4224
5a04848d
PM
4225/*
4226 * Compute the mask of online CPUs for the specified rcu_node structure.
4227 * This will not be stable unless the rcu_node structure's ->lock is
4228 * held, but the bit corresponding to the current CPU will be stable
4229 * in most contexts.
4230 */
4231static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4232{
4233 return READ_ONCE(rnp->qsmaskinitnext);
4234}
4235
4236/*
4237 * Is the CPU corresponding to the specified rcu_data structure online
4238 * from RCU's perspective? This perspective is given by that structure's
4239 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4240 */
4241static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4242{
4243 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4244}
4245
2be4686d
FW
4246bool rcu_cpu_online(int cpu)
4247{
4248 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4249
4250 return rcu_rdp_cpu_online(rdp);
4251}
4252
5a04848d
PM
4253#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4254
4255/*
4256 * Is the current CPU online as far as RCU is concerned?
4257 *
4258 * Disable preemption to avoid false positives that could otherwise
4259 * happen due to the current CPU number being sampled, this task being
4260 * preempted, its old CPU being taken offline, resuming on some other CPU,
4261 * then determining that its old CPU is now offline.
4262 *
4263 * Disable checking if in an NMI handler because we cannot safely
4264 * report errors from NMI handlers anyway. In addition, it is OK to use
4265 * RCU on an offline processor during initial boot, hence the check for
4266 * rcu_scheduler_fully_active.
4267 */
4268bool rcu_lockdep_current_cpu_online(void)
4269{
4270 struct rcu_data *rdp;
4271 bool ret = false;
4272
4273 if (in_nmi() || !rcu_scheduler_fully_active)
4274 return true;
4275 preempt_disable_notrace();
4276 rdp = this_cpu_ptr(&rcu_data);
4277 /*
4278 * Strictly, we care here about the case where the current CPU is
448e9f34 4279 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
5a04848d
PM
4280 * not being up to date. So arch_spin_is_locked() might have a
4281 * false positive if it's held by some *other* CPU, but that's
4282 * OK because that just means a false *negative* on the warning.
4283 */
4284 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4285 ret = true;
4286 preempt_enable_notrace();
4287 return ret;
4288}
4289EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4290
4291#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4292
4293// Has rcu_init() been invoked? This is used (for example) to determine
4294// whether spinlocks may be acquired safely.
4295static bool rcu_init_invoked(void)
4296{
4297 return !!rcu_state.n_online_cpus;
4298}
4299
5a04848d
PM
4300/*
4301 * All CPUs for the specified rcu_node structure have gone offline,
4302 * and all tasks that were preempted within an RCU read-side critical
4303 * section while running on one of those CPUs have since exited their RCU
4304 * read-side critical section. Some other CPU is reporting this fact with
4305 * the specified rcu_node structure's ->lock held and interrupts disabled.
4306 * This function therefore goes up the tree of rcu_node structures,
4307 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4308 * the leaf rcu_node structure's ->qsmaskinit field has already been
4309 * updated.
4310 *
4311 * This function does check that the specified rcu_node structure has
4312 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4313 * prematurely. That said, invoking it after the fact will cost you
4314 * a needless lock acquisition. So once it has done its work, don't
4315 * invoke it again.
4316 */
4317static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4318{
4319 long mask;
4320 struct rcu_node *rnp = rnp_leaf;
4321
4322 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4323 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4324 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4325 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4326 return;
4327 for (;;) {
4328 mask = rnp->grpmask;
4329 rnp = rnp->parent;
4330 if (!rnp)
4331 break;
4332 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4333 rnp->qsmaskinit &= ~mask;
4334 /* Between grace periods, so better already be zero! */
4335 WARN_ON_ONCE(rnp->qsmask);
4336 if (rnp->qsmaskinit) {
4337 raw_spin_unlock_rcu_node(rnp);
4338 /* irqs remain disabled. */
4339 return;
4340 }
4341 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4342 }
4343}
4344
0aa04b05
PM
4345/*
4346 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4347 * first CPU in a given leaf rcu_node structure coming online. The caller
a616aec9 4348 * must hold the corresponding leaf rcu_node ->lock with interrupts
0aa04b05
PM
4349 * disabled.
4350 */
4351static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4352{
4353 long mask;
8d672fa6 4354 long oldmask;
0aa04b05
PM
4355 struct rcu_node *rnp = rnp_leaf;
4356
8d672fa6 4357 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 4358 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
4359 for (;;) {
4360 mask = rnp->grpmask;
4361 rnp = rnp->parent;
4362 if (rnp == NULL)
4363 return;
6cf10081 4364 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 4365 oldmask = rnp->qsmaskinit;
0aa04b05 4366 rnp->qsmaskinit |= mask;
67c583a7 4367 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
4368 if (oldmask)
4369 return;
0aa04b05
PM
4370 }
4371}
4372
64db4cff 4373/*
27569620 4374 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 4375 */
27569620 4376static void __init
53b46303 4377rcu_boot_init_percpu_data(int cpu)
64db4cff 4378{
904e600e 4379 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
da1df50d 4380 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
4381
4382 /* Set up local state, ensuring consistent view of global state. */
bc75e999 4383 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
a657f261 4384 INIT_WORK(&rdp->strict_work, strict_work_handler);
904e600e 4385 WARN_ON_ONCE(ct->dynticks_nesting != 1);
62e2412d 4386 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
a16578dd 4387 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
53b46303 4388 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 4389 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 4390 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 4391 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
c708b08c 4392 rdp->last_sched_clock = jiffies;
27569620 4393 rdp->cpu = cpu;
3fbfbf7a 4394 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
4395}
4396
4397/*
53b46303
PM
4398 * Invoked early in the CPU-online process, when pretty much all services
4399 * are available. The incoming CPU is not present.
4400 *
4401 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
4402 * offline event can be happening at a given time. Note also that we can
4403 * accept some slop in the rsp->gp_seq access due to the fact that this
e83e73f5
PM
4404 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4405 * And any offloaded callbacks are being numbered elsewhere.
64db4cff 4406 */
53b46303 4407int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
4408{
4409 unsigned long flags;
904e600e 4410 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
da1df50d 4411 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 4412 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
4413
4414 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4415 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 4416 rdp->qlen_last_fqs_check = 0;
2431774f 4417 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
64db4cff 4418 rdp->blimit = blimit;
904e600e 4419 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
67c583a7 4420 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
ec711bc1 4421
126d9d49 4422 /*
ec711bc1
FW
4423 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4424 * (re-)initialized.
126d9d49 4425 */
ec711bc1 4426 if (!rcu_segcblist_is_enabled(&rdp->cblist))
126d9d49 4427 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
64db4cff 4428
0aa04b05
PM
4429 /*
4430 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4431 * propagation up the rcu_node tree will happen at the beginning
4432 * of the next grace period.
4433 */
64db4cff 4434 rnp = rdp->mynode;
2a67e741 4435 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8ff37290
PM
4436 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4437 rdp->gp_seq_needed = rdp->gp_seq;
5b74c458 4438 rdp->cpu_no_qs.b.norm = true;
97c668b8 4439 rdp->core_needs_qs = false;
9b9500da 4440 rdp->rcu_iw_pending = false;
7a9f50a0 4441 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
8ff37290 4442 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
53b46303 4443 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 4444 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3ef5a1c3 4445 rcu_spawn_one_boost_kthread(rnp);
ad368d15 4446 rcu_spawn_cpu_nocb_kthread(cpu);
ed73860c 4447 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4df83742
TG
4448
4449 return 0;
4450}
4451
deb34f36
PM
4452/*
4453 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4454 */
4df83742
TG
4455static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4456{
da1df50d 4457 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
4458
4459 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4460}
4461
401b0de3
PM
4462/*
4463 * Has the specified (known valid) CPU ever been fully online?
4464 */
4465bool rcu_cpu_beenfullyonline(int cpu)
4466{
4467 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4468
4469 return smp_load_acquire(&rdp->beenonline);
4470}
4471
deb34f36
PM
4472/*
4473 * Near the end of the CPU-online process. Pretty much all services
4474 * enabled, and the CPU is now very much alive.
4475 */
4df83742
TG
4476int rcutree_online_cpu(unsigned int cpu)
4477{
9b9500da
PM
4478 unsigned long flags;
4479 struct rcu_data *rdp;
4480 struct rcu_node *rnp;
9b9500da 4481
b97d23c5
PM
4482 rdp = per_cpu_ptr(&rcu_data, cpu);
4483 rnp = rdp->mynode;
4484 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4485 rnp->ffmask |= rdp->grpmask;
4486 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da
PM
4487 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4488 return 0; /* Too early in boot for scheduler work. */
4489 sync_sched_exp_online_cleanup(cpu);
4490 rcutree_affinity_setting(cpu, -1);
96926686
PM
4491
4492 // Stop-machine done, so allow nohz_full to disable tick.
4493 tick_dep_clear(TICK_DEP_BIT_RCU);
4df83742
TG
4494 return 0;
4495}
4496
7ec99de3
PM
4497/*
4498 * Mark the specified CPU as being online so that subsequent grace periods
4499 * (both expedited and normal) will wait on it. Note that this means that
4500 * incoming CPUs are not allowed to use RCU read-side critical sections
4501 * until this function is called. Failing to observe this restriction
4502 * will result in lockdep splats.
deb34f36
PM
4503 *
4504 * Note that this function is special in that it is invoked directly
4505 * from the incoming CPU rather than from the cpuhp_step mechanism.
4506 * This is because this function must be invoked at a precise location.
15d44dfa 4507 * This incoming CPU must not have enabled interrupts yet.
448e9f34
FW
4508 *
4509 * This mirrors the effects of rcutree_report_cpu_dead().
7ec99de3 4510 */
448e9f34 4511void rcutree_report_cpu_starting(unsigned int cpu)
7ec99de3 4512{
7ec99de3
PM
4513 unsigned long mask;
4514 struct rcu_data *rdp;
4515 struct rcu_node *rnp;
abfce041 4516 bool newcpu;
7ec99de3 4517
15d44dfa 4518 lockdep_assert_irqs_disabled();
c0f97f20
PM
4519 rdp = per_cpu_ptr(&rcu_data, cpu);
4520 if (rdp->cpu_started)
f64c6013 4521 return;
c0f97f20 4522 rdp->cpu_started = true;
f64c6013 4523
b97d23c5
PM
4524 rnp = rdp->mynode;
4525 mask = rdp->grpmask;
82980b16 4526 arch_spin_lock(&rcu_state.ofl_lock);
2caebefb 4527 rcu_dynticks_eqs_online();
80b3fd47 4528 raw_spin_lock(&rcu_state.barrier_lock);
82980b16 4529 raw_spin_lock_rcu_node(rnp);
105abf82 4530 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
80b3fd47 4531 raw_spin_unlock(&rcu_state.barrier_lock);
abfce041 4532 newcpu = !(rnp->expmaskinitnext & mask);
b97d23c5 4533 rnp->expmaskinitnext |= mask;
b97d23c5 4534 /* Allow lockless access for expedited grace periods. */
abfce041 4535 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
2f084695 4536 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
b97d23c5 4537 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
4538 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4539 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
9f866dac
JFG
4540
4541 /* An incoming CPU should never be blocking a grace period. */
4542 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
82980b16 4543 /* rcu_report_qs_rnp() *really* wants some flags to restore */
15d44dfa 4544 unsigned long flags;
82980b16 4545
15d44dfa 4546 local_irq_save(flags);
516e5ae0 4547 rcu_disable_urgency_upon_qs(rdp);
b97d23c5 4548 /* Report QS -after- changing ->qsmaskinitnext! */
15d44dfa 4549 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
b97d23c5 4550 } else {
82980b16 4551 raw_spin_unlock_rcu_node(rnp);
7ec99de3 4552 }
82980b16 4553 arch_spin_unlock(&rcu_state.ofl_lock);
401b0de3 4554 smp_store_release(&rdp->beenonline, true);
313517fc 4555 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
4556}
4557
27d50c7e 4558/*
53b46303
PM
4559 * The outgoing function has no further need of RCU, so remove it from
4560 * the rcu_node tree's ->qsmaskinitnext bit masks.
4561 *
4562 * Note that this function is special in that it is invoked directly
4563 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4564 * This is because this function must be invoked at a precise location.
448e9f34
FW
4565 *
4566 * This mirrors the effect of rcutree_report_cpu_starting().
27d50c7e 4567 */
448e9f34 4568void rcutree_report_cpu_dead(void)
27d50c7e 4569{
358662a9 4570 unsigned long flags;
27d50c7e 4571 unsigned long mask;
c964c1f5 4572 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
27d50c7e
TG
4573 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4574
358662a9
FW
4575 /*
4576 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4577 * may introduce a new READ-side while it is actually off the QS masks.
4578 */
4579 lockdep_assert_irqs_disabled();
147c6852
PM
4580 // Do any dangling deferred wakeups.
4581 do_nocb_deferred_wakeup(rdp);
4582
53b46303
PM
4583 rcu_preempt_deferred_qs(current);
4584
27d50c7e
TG
4585 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4586 mask = rdp->grpmask;
82980b16 4587 arch_spin_lock(&rcu_state.ofl_lock);
27d50c7e 4588 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
4589 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4590 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
4591 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4592 /* Report quiescent state -before- changing ->qsmaskinitnext! */
e2bb1288 4593 rcu_disable_urgency_upon_qs(rdp);
b50912d0 4594 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
4595 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4596 }
105abf82 4597 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
710d60cb 4598 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
82980b16 4599 arch_spin_unlock(&rcu_state.ofl_lock);
c0f97f20 4600 rdp->cpu_started = false;
27d50c7e 4601}
a58163d8 4602
04e613de 4603#ifdef CONFIG_HOTPLUG_CPU
53b46303
PM
4604/*
4605 * The outgoing CPU has just passed through the dying-idle state, and we
4606 * are being invoked from the CPU that was IPIed to continue the offline
4607 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4608 */
4609void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
4610{
4611 unsigned long flags;
b1a2d79f 4612 struct rcu_data *my_rdp;
c00045be 4613 struct rcu_node *my_rnp;
da1df50d 4614 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
ec4eacce 4615 bool needwake;
a58163d8 4616
3820b513 4617 if (rcu_rdp_is_offloaded(rdp) ||
ce5215c1 4618 rcu_segcblist_empty(&rdp->cblist))
95335c03
PM
4619 return; /* No callbacks to migrate. */
4620
80b3fd47 4621 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
a16578dd
PM
4622 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4623 rcu_barrier_entrain(rdp);
da1df50d 4624 my_rdp = this_cpu_ptr(&rcu_data);
c00045be 4625 my_rnp = my_rdp->mynode;
5d6742b3 4626 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3cb278e7 4627 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
c00045be 4628 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
ec4eacce 4629 /* Leverage recent GPs and set GP for new callbacks. */
c00045be
PM
4630 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4631 rcu_advance_cbs(my_rnp, my_rdp);
f2dbe4a5 4632 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
80b3fd47 4633 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
23651d9b 4634 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
c035280f 4635 rcu_segcblist_disable(&rdp->cblist);
a16578dd 4636 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
52c1d81e 4637 check_cb_ovld_locked(my_rdp, my_rnp);
3820b513 4638 if (rcu_rdp_is_offloaded(my_rdp)) {
5d6742b3
PM
4639 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4640 __call_rcu_nocb_wake(my_rdp, true, flags);
4641 } else {
4642 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4643 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4644 }
ec4eacce 4645 if (needwake)
532c00c9 4646 rcu_gp_kthread_wake();
5d6742b3 4647 lockdep_assert_irqs_enabled();
a58163d8
PM
4648 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4649 !rcu_segcblist_empty(&rdp->cblist),
4650 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4651 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4652 rcu_segcblist_first_cb(&rdp->cblist));
4653}
2cb1f6e9
FW
4654
4655/*
4656 * The CPU has been completely removed, and some other CPU is reporting
4657 * this fact from process context. Do the remainder of the cleanup.
4658 * There can only be one CPU hotplug operation at a time, so no need for
4659 * explicit locking.
4660 */
4661int rcutree_dead_cpu(unsigned int cpu)
4662{
4663 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4664 // Stop-machine done, so allow nohz_full to disable tick.
4665 tick_dep_clear(TICK_DEP_BIT_RCU);
4666 return 0;
4667}
4668
4669/*
4670 * Near the end of the offline process. Trace the fact that this CPU
4671 * is going offline.
4672 */
4673int rcutree_dying_cpu(unsigned int cpu)
4674{
4675 bool blkd;
4676 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4677 struct rcu_node *rnp = rdp->mynode;
4678
4679 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4680 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4681 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4682 return 0;
4683}
4684
4685/*
4686 * Near the beginning of the process. The CPU is still very much alive
4687 * with pretty much all services enabled.
4688 */
4689int rcutree_offline_cpu(unsigned int cpu)
4690{
4691 unsigned long flags;
4692 struct rcu_data *rdp;
4693 struct rcu_node *rnp;
4694
4695 rdp = per_cpu_ptr(&rcu_data, cpu);
4696 rnp = rdp->mynode;
4697 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4698 rnp->ffmask &= ~rdp->grpmask;
4699 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4700
4701 rcutree_affinity_setting(cpu, cpu);
4702
4703 // nohz_full CPUs need the tick for stop-machine to work quickly
4704 tick_dep_set(TICK_DEP_BIT_RCU);
4705 return 0;
4706}
4707#endif /* #ifdef CONFIG_HOTPLUG_CPU */
27d50c7e 4708
deb34f36
PM
4709/*
4710 * On non-huge systems, use expedited RCU grace periods to make suspend
4711 * and hibernation run faster.
4712 */
d1d74d14
BP
4713static int rcu_pm_notify(struct notifier_block *self,
4714 unsigned long action, void *hcpu)
4715{
4716 switch (action) {
4717 case PM_HIBERNATION_PREPARE:
4718 case PM_SUSPEND_PREPARE:
6efdda8b 4719 rcu_async_hurry();
e85e6a21 4720 rcu_expedite_gp();
d1d74d14
BP
4721 break;
4722 case PM_POST_HIBERNATION:
4723 case PM_POST_SUSPEND:
e85e6a21 4724 rcu_unexpedite_gp();
6efdda8b 4725 rcu_async_relax();
d1d74d14
BP
4726 break;
4727 default:
4728 break;
4729 }
4730 return NOTIFY_OK;
4731}
4732
9621fbee
KS
4733#ifdef CONFIG_RCU_EXP_KTHREAD
4734struct kthread_worker *rcu_exp_gp_kworker;
4735struct kthread_worker *rcu_exp_par_gp_kworker;
4736
4737static void __init rcu_start_exp_gp_kworkers(void)
4738{
4739 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4740 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4741 struct sched_param param = { .sched_priority = kthread_prio };
4742
4743 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4744 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4745 pr_err("Failed to create %s!\n", gp_kworker_name);
4746 return;
4747 }
4748
4749 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4750 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4751 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4752 kthread_destroy_worker(rcu_exp_gp_kworker);
4753 return;
4754 }
4755
4756 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4757 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4758 &param);
4759}
4760
4761static inline void rcu_alloc_par_gp_wq(void)
4762{
4763}
4764#else /* !CONFIG_RCU_EXP_KTHREAD */
4765struct workqueue_struct *rcu_par_gp_wq;
4766
4767static void __init rcu_start_exp_gp_kworkers(void)
4768{
4769}
4770
4771static inline void rcu_alloc_par_gp_wq(void)
4772{
4773 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4774 WARN_ON(!rcu_par_gp_wq);
4775}
4776#endif /* CONFIG_RCU_EXP_KTHREAD */
4777
b3dbec76 4778/*
49918a54 4779 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
4780 */
4781static int __init rcu_spawn_gp_kthread(void)
4782{
4783 unsigned long flags;
4784 struct rcu_node *rnp;
a94844b2 4785 struct sched_param sp;
b3dbec76 4786 struct task_struct *t;
3352911f 4787 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b3dbec76 4788
9386c0b7 4789 rcu_scheduler_fully_active = 1;
b97d23c5 4790 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
08543bda
PM
4791 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4792 return 0;
b97d23c5
PM
4793 if (kthread_prio) {
4794 sp.sched_priority = kthread_prio;
4795 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 4796 }
b97d23c5
PM
4797 rnp = rcu_get_root();
4798 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5648d659
PM
4799 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4800 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4801 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4802 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
b97d23c5
PM
4803 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4804 wake_up_process(t);
3352911f
FW
4805 /* This is a pre-SMP initcall, we expect a single CPU */
4806 WARN_ON(num_online_cpus() > 1);
87c5adf0
FW
4807 /*
4808 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4809 * due to rcu_scheduler_fully_active.
4810 */
4811 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
3352911f 4812 rcu_spawn_one_boost_kthread(rdp->mynode);
8e4b1d2b 4813 rcu_spawn_core_kthreads();
9621fbee
KS
4814 /* Create kthread worker for expedited GPs */
4815 rcu_start_exp_gp_kworkers();
b3dbec76
PM
4816 return 0;
4817}
4818early_initcall(rcu_spawn_gp_kthread);
4819
bbad9379 4820/*
52d7e48b
PM
4821 * This function is invoked towards the end of the scheduler's
4822 * initialization process. Before this is called, the idle task might
4823 * contain synchronous grace-period primitives (during which time, this idle
4824 * task is booting the system, and such primitives are no-ops). After this
4825 * function is called, any synchronous grace-period primitives are run as
4826 * expedited, with the requesting task driving the grace period forward.
900b1028 4827 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4828 * runtime RCU functionality.
bbad9379
PM
4829 */
4830void rcu_scheduler_starting(void)
4831{
d761de8a
PM
4832 unsigned long flags;
4833 struct rcu_node *rnp;
4834
bbad9379
PM
4835 WARN_ON(num_online_cpus() != 1);
4836 WARN_ON(nr_context_switches() > 0);
52d7e48b 4837 rcu_test_sync_prims();
d761de8a
PM
4838
4839 // Fix up the ->gp_seq counters.
4840 local_irq_save(flags);
4841 rcu_for_each_node_breadth_first(rnp)
4842 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4843 local_irq_restore(flags);
4844
4845 // Switch out of early boot mode.
52d7e48b
PM
4846 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4847 rcu_test_sync_prims();
bbad9379
PM
4848}
4849
64db4cff 4850/*
49918a54 4851 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 4852 */
b8bb1f63 4853static void __init rcu_init_one(void)
64db4cff 4854{
cb007102
AG
4855 static const char * const buf[] = RCU_NODE_NAME_INIT;
4856 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4857 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4858 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4859
199977bf 4860 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4861 int cpustride = 1;
4862 int i;
4863 int j;
4864 struct rcu_node *rnp;
4865
05b84aec 4866 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4867
3eaaaf6c
PM
4868 /* Silence gcc 4.8 false positive about array index out of range. */
4869 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4870 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4871
64db4cff
PM
4872 /* Initialize the level-tracking arrays. */
4873
f885b7f2 4874 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
4875 rcu_state.level[i] =
4876 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 4877 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4878
4879 /* Initialize the elements themselves, starting from the leaves. */
4880
f885b7f2 4881 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4882 cpustride *= levelspread[i];
eb7a6653 4883 rnp = rcu_state.level[i];
41f5c631 4884 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4885 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4886 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4887 &rcu_node_class[i], buf[i]);
394f2769
PM
4888 raw_spin_lock_init(&rnp->fqslock);
4889 lockdep_set_class_and_name(&rnp->fqslock,
4890 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
4891 rnp->gp_seq = rcu_state.gp_seq;
4892 rnp->gp_seq_needed = rcu_state.gp_seq;
4893 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
4894 rnp->qsmask = 0;
4895 rnp->qsmaskinit = 0;
4896 rnp->grplo = j * cpustride;
4897 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4898 if (rnp->grphi >= nr_cpu_ids)
4899 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4900 if (i == 0) {
4901 rnp->grpnum = 0;
4902 rnp->grpmask = 0;
4903 rnp->parent = NULL;
4904 } else {
199977bf 4905 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 4906 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 4907 rnp->parent = rcu_state.level[i - 1] +
199977bf 4908 j / levelspread[i - 1];
64db4cff
PM
4909 }
4910 rnp->level = i;
12f5f524 4911 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4912 rcu_init_one_nocb(rnp);
f6a12f34
PM
4913 init_waitqueue_head(&rnp->exp_wq[0]);
4914 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4915 init_waitqueue_head(&rnp->exp_wq[2]);
4916 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4917 spin_lock_init(&rnp->exp_lock);
218b957a 4918 mutex_init(&rnp->boost_kthread_mutex);
d96c52fe
PM
4919 raw_spin_lock_init(&rnp->exp_poll_lock);
4920 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4921 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
64db4cff
PM
4922 }
4923 }
0c34029a 4924
eb7a6653
PM
4925 init_swait_queue_head(&rcu_state.gp_wq);
4926 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 4927 rnp = rcu_first_leaf_node();
0c34029a 4928 for_each_possible_cpu(i) {
4a90a068 4929 while (i > rnp->grphi)
0c34029a 4930 rnp++;
da1df50d 4931 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 4932 rcu_boot_init_percpu_data(i);
0c34029a 4933 }
64db4cff
PM
4934}
4935
c8db27dd
AC
4936/*
4937 * Force priority from the kernel command-line into range.
4938 */
4939static void __init sanitize_kthread_prio(void)
4940{
4941 int kthread_prio_in = kthread_prio;
4942
4943 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4944 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4945 kthread_prio = 2;
4946 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4947 kthread_prio = 1;
4948 else if (kthread_prio < 0)
4949 kthread_prio = 0;
4950 else if (kthread_prio > 99)
4951 kthread_prio = 99;
4952
4953 if (kthread_prio != kthread_prio_in)
4954 pr_alert("%s: Limited prio to %d from %d\n",
4955 __func__, kthread_prio, kthread_prio_in);
4956}
4957
f885b7f2
PM
4958/*
4959 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4960 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4961 * the ->node array in the rcu_state structure.
4962 */
b5befe84 4963void rcu_init_geometry(void)
f885b7f2 4964{
026ad283 4965 ulong d;
f885b7f2 4966 int i;
b5befe84 4967 static unsigned long old_nr_cpu_ids;
05b84aec 4968 int rcu_capacity[RCU_NUM_LVLS];
b5befe84
FW
4969 static bool initialized;
4970
4971 if (initialized) {
4972 /*
4973 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4974 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4975 */
4976 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4977 return;
4978 }
4979
4980 old_nr_cpu_ids = nr_cpu_ids;
4981 initialized = true;
f885b7f2 4982
026ad283
PM
4983 /*
4984 * Initialize any unspecified boot parameters.
4985 * The default values of jiffies_till_first_fqs and
4986 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4987 * value, which is a function of HZ, then adding one for each
4988 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4989 */
4990 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4991 if (jiffies_till_first_fqs == ULONG_MAX)
4992 jiffies_till_first_fqs = d;
4993 if (jiffies_till_next_fqs == ULONG_MAX)
4994 jiffies_till_next_fqs = d;
6973032a 4995 adjust_jiffies_till_sched_qs();
026ad283 4996
f885b7f2 4997 /* If the compile-time values are accurate, just leave. */
47d631af 4998 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4999 nr_cpu_ids == NR_CPUS)
f885b7f2 5000 return;
a7538352 5001 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 5002 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 5003
f885b7f2 5004 /*
ee968ac6
PM
5005 * The boot-time rcu_fanout_leaf parameter must be at least two
5006 * and cannot exceed the number of bits in the rcu_node masks.
5007 * Complain and fall back to the compile-time values if this
5008 * limit is exceeded.
f885b7f2 5009 */
ee968ac6 5010 if (rcu_fanout_leaf < 2 ||
75cf15a4 5011 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 5012 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
5013 WARN_ON(1);
5014 return;
5015 }
5016
f885b7f2
PM
5017 /*
5018 * Compute number of nodes that can be handled an rcu_node tree
9618138b 5019 * with the given number of levels.
f885b7f2 5020 */
9618138b 5021 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 5022 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 5023 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
5024
5025 /*
75cf15a4 5026 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 5027 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 5028 */
ee968ac6
PM
5029 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5030 rcu_fanout_leaf = RCU_FANOUT_LEAF;
5031 WARN_ON(1);
5032 return;
5033 }
f885b7f2 5034
679f9858 5035 /* Calculate the number of levels in the tree. */
9618138b 5036 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 5037 }
9618138b 5038 rcu_num_lvls = i + 1;
679f9858 5039
f885b7f2 5040 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 5041 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 5042 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
5043 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5044 }
f885b7f2
PM
5045
5046 /* Calculate the total number of rcu_node structures. */
5047 rcu_num_nodes = 0;
679f9858 5048 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 5049 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
5050}
5051
a3dc2948
PM
5052/*
5053 * Dump out the structure of the rcu_node combining tree associated
49918a54 5054 * with the rcu_state structure.
a3dc2948 5055 */
b8bb1f63 5056static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
5057{
5058 int level = 0;
5059 struct rcu_node *rnp;
5060
5061 pr_info("rcu_node tree layout dump\n");
5062 pr_info(" ");
aedf4ba9 5063 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
5064 if (rnp->level != level) {
5065 pr_cont("\n");
5066 pr_info(" ");
5067 level = rnp->level;
5068 }
5069 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
5070 }
5071 pr_cont("\n");
5072}
5073
ad7c946b
PM
5074struct workqueue_struct *rcu_gp_wq;
5075
a35d1690
BP
5076static void __init kfree_rcu_batch_init(void)
5077{
5078 int cpu;
27538e18 5079 int i, j;
21e0b932 5080 struct shrinker *kfree_rcu_shrinker;
a35d1690 5081
d0bfa8b3
ZQ
5082 /* Clamp it to [0:100] seconds interval. */
5083 if (rcu_delay_page_cache_fill_msec < 0 ||
5084 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5085
5086 rcu_delay_page_cache_fill_msec =
5087 clamp(rcu_delay_page_cache_fill_msec, 0,
5088 (int) (100 * MSEC_PER_SEC));
5089
5090 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5091 rcu_delay_page_cache_fill_msec);
5092 }
5093
a35d1690
BP
5094 for_each_possible_cpu(cpu) {
5095 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5096
34c88174
URS
5097 for (i = 0; i < KFREE_N_BATCHES; i++) {
5098 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
0392bebe 5099 krcp->krw_arr[i].krcp = krcp;
27538e18
URS
5100
5101 for (j = 0; j < FREE_N_CHANNELS; j++)
5102 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
34c88174
URS
5103 }
5104
27538e18
URS
5105 for (i = 0; i < FREE_N_CHANNELS; i++)
5106 INIT_LIST_HEAD(&krcp->bulk_head[i]);
5107
a35d1690 5108 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
d0bfa8b3 5109 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
a35d1690
BP
5110 krcp->initialized = true;
5111 }
21e0b932
QZ
5112
5113 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5114 if (!kfree_rcu_shrinker) {
5115 pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5116 return;
5117 }
5118
5119 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5120 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5121
5122 shrinker_register(kfree_rcu_shrinker);
a35d1690
BP
5123}
5124
9f680ab4 5125void __init rcu_init(void)
64db4cff 5126{
2eed973a 5127 int cpu = smp_processor_id();
9f680ab4 5128
47627678
PM
5129 rcu_early_boot_tests();
5130
a35d1690 5131 kfree_rcu_batch_init();
f41d911f 5132 rcu_bootup_announce();
c8db27dd 5133 sanitize_kthread_prio();
f885b7f2 5134 rcu_init_geometry();
b8bb1f63 5135 rcu_init_one();
a3dc2948 5136 if (dump_tree)
b8bb1f63 5137 rcu_dump_rcu_node_tree();
48d07c04
SAS
5138 if (use_softirq)
5139 open_softirq(RCU_SOFTIRQ, rcu_core_si);
9f680ab4
PM
5140
5141 /*
5142 * We don't need protection against CPU-hotplug here because
5143 * this is called early in boot, before either interrupts
5144 * or the scheduler are operational.
5145 */
d1d74d14 5146 pm_notifier(rcu_pm_notify, 0);
2eed973a
FW
5147 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5148 rcutree_prepare_cpu(cpu);
448e9f34 5149 rcutree_report_cpu_starting(cpu);
2eed973a 5150 rcutree_online_cpu(cpu);
ad7c946b 5151
277ffe1b 5152 /* Create workqueue for Tree SRCU and for expedited GPs. */
ad7c946b
PM
5153 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5154 WARN_ON(!rcu_gp_wq);
9621fbee 5155 rcu_alloc_par_gp_wq();
b2b00ddf
PM
5156
5157 /* Fill in default value for rcutree.qovld boot parameter. */
5158 /* -After- the rcu_node ->lock fields are initialized! */
5159 if (qovld < 0)
5160 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5161 else
5162 qovld_calc = qovld;
d96c52fe 5163
7ea91307
Z
5164 // Kick-start in case any polled grace periods started early.
5165 (void)start_poll_synchronize_rcu_expedited();
748bf47a
PM
5166
5167 rcu_test_sync_prims();
64db4cff
PM
5168}
5169
10462d6f 5170#include "tree_stall.h"
3549c2bc 5171#include "tree_exp.h"
dfcb2754 5172#include "tree_nocb.h"
4102adab 5173#include "tree_plugin.h"