Linux 5.19-rc3
[linux-block.git] / kernel / rcu / tasks.h
CommitLineData
eacd6f04
PM
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8fd8ca38 8#ifdef CONFIG_TASKS_RCU_GENERIC
9b073de1 9#include "rcu_segcblist.h"
5873b8a9
PM
10
11////////////////////////////////////////////////////////////////////////
12//
13// Generic data structures.
14
15struct rcu_tasks;
16typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
e4fe5dd6
PM
17typedef void (*pregp_func_t)(void);
18typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
9796e1ae 19typedef void (*postscan_func_t)(struct list_head *hop);
e4fe5dd6 20typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
af051ca4 21typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
eacd6f04 22
07e10515 23/**
cafafd67 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
9b073de1 25 * @cblist: Callback list.
381a4f3b 26 * @lock: Lock protecting per-CPU callback list.
7d13d30b
PM
27 * @rtp_jiffies: Jiffies counter value for statistics.
28 * @rtp_n_lock_retries: Rough lock-contention statistic.
d363f833 29 * @rtp_work: Work queue for invoking callbacks.
3063b33a 30 * @rtp_irq_work: IRQ work queue for deferred wakeups.
ce9b1c66
PM
31 * @barrier_q_head: RCU callback for barrier operation.
32 * @cpu: CPU number corresponding to this entry.
33 * @rtpp: Pointer to the rcu_tasks structure.
cafafd67
PM
34 */
35struct rcu_tasks_percpu {
9b073de1 36 struct rcu_segcblist cblist;
381a4f3b 37 raw_spinlock_t __private lock;
7d13d30b
PM
38 unsigned long rtp_jiffies;
39 unsigned long rtp_n_lock_retries;
d363f833 40 struct work_struct rtp_work;
3063b33a 41 struct irq_work rtp_irq_work;
ce9b1c66 42 struct rcu_head barrier_q_head;
d363f833
PM
43 int cpu;
44 struct rcu_tasks *rtpp;
cafafd67
PM
45};
46
47/**
48 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
88db792b 49 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
cafafd67 50 * @cbs_gbl_lock: Lock protecting callback list.
07e10515 51 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
5873b8a9 52 * @gp_func: This flavor's grace-period-wait function.
af051ca4 53 * @gp_state: Grace period's most recent state transition (debugging).
4fe192df 54 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
2393a613 55 * @init_fract: Initial backoff sleep interval.
af051ca4
PM
56 * @gp_jiffies: Time of last @gp_state transition.
57 * @gp_start: Most recent grace-period start in jiffies.
b14fb4fb 58 * @tasks_gp_seq: Number of grace periods completed since boot.
238dbce3 59 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
7e0669c3 60 * @n_ipis_fails: Number of IPI-send failures.
e4fe5dd6
PM
61 * @pregp_func: This flavor's pre-grace-period function (optional).
62 * @pertask_func: This flavor's per-task scan function (optional).
63 * @postscan_func: This flavor's post-task scan function (optional).
85b86994 64 * @holdouts_func: This flavor's holdout-list scan function (optional).
e4fe5dd6 65 * @postgp_func: This flavor's post-grace-period function (optional).
5873b8a9 66 * @call_func: This flavor's call_rcu()-equivalent function.
cafafd67 67 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
7a30871b 68 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
2cee0789
PM
69 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
70 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
fd796e41 71 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
ce9b1c66
PM
72 * @barrier_q_mutex: Serialize barrier operations.
73 * @barrier_q_count: Number of queues being waited on.
74 * @barrier_q_completion: Barrier wait/wakeup mechanism.
75 * @barrier_q_seq: Sequence number for barrier operations.
c97d12a6
PM
76 * @name: This flavor's textual name.
77 * @kname: This flavor's kthread name.
07e10515
PM
78 */
79struct rcu_tasks {
88db792b 80 struct rcuwait cbs_wait;
cafafd67 81 raw_spinlock_t cbs_gbl_lock;
af051ca4 82 int gp_state;
4fe192df 83 int gp_sleep;
2393a613 84 int init_fract;
af051ca4 85 unsigned long gp_jiffies;
88092d0c 86 unsigned long gp_start;
b14fb4fb 87 unsigned long tasks_gp_seq;
238dbce3 88 unsigned long n_ipis;
7e0669c3 89 unsigned long n_ipis_fails;
07e10515 90 struct task_struct *kthread_ptr;
5873b8a9 91 rcu_tasks_gp_func_t gp_func;
e4fe5dd6
PM
92 pregp_func_t pregp_func;
93 pertask_func_t pertask_func;
94 postscan_func_t postscan_func;
95 holdouts_func_t holdouts_func;
96 postgp_func_t postgp_func;
5873b8a9 97 call_rcu_func_t call_func;
cafafd67 98 struct rcu_tasks_percpu __percpu *rtpcpu;
7a30871b 99 int percpu_enqueue_shift;
8dd593fd 100 int percpu_enqueue_lim;
2cee0789 101 int percpu_dequeue_lim;
fd796e41 102 unsigned long percpu_dequeue_gpseq;
ce9b1c66
PM
103 struct mutex barrier_q_mutex;
104 atomic_t barrier_q_count;
105 struct completion barrier_q_completion;
106 unsigned long barrier_q_seq;
c97d12a6
PM
107 char *name;
108 char *kname;
07e10515
PM
109};
110
3063b33a
PM
111static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
112
cafafd67
PM
113#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
114static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \
381a4f3b 115 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \
88db792b 116 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \
cafafd67
PM
117}; \
118static struct rcu_tasks rt_name = \
119{ \
88db792b 120 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \
cafafd67
PM
121 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \
122 .gp_func = gp, \
123 .call_func = call, \
124 .rtpcpu = &rt_name ## __percpu, \
125 .name = n, \
2bcd18e0 126 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \
8dd593fd 127 .percpu_enqueue_lim = 1, \
2cee0789 128 .percpu_dequeue_lim = 1, \
ce9b1c66
PM
129 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \
130 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \
cafafd67 131 .kname = #rt_name, \
07e10515
PM
132}
133
eacd6f04
PM
134/* Track exiting tasks in order to allow them to be waited for. */
135DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
136
b0afa0f0 137/* Avoid IPIing CPUs early in the grace period. */
574de876 138#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
b0afa0f0
PM
139static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
140module_param(rcu_task_ipi_delay, int, 0644);
141
eacd6f04
PM
142/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
143#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
144static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
145module_param(rcu_task_stall_timeout, int, 0644);
f2539003
PM
146#define RCU_TASK_STALL_INFO (HZ * 10)
147static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
148module_param(rcu_task_stall_info, int, 0644);
149static int rcu_task_stall_info_mult __read_mostly = 3;
150module_param(rcu_task_stall_info_mult, int, 0444);
eacd6f04 151
8610b656
PM
152static int rcu_task_enqueue_lim __read_mostly = -1;
153module_param(rcu_task_enqueue_lim, int, 0444);
154
ab97152f
PM
155static bool rcu_task_cb_adjust;
156static int rcu_task_contend_lim __read_mostly = 100;
157module_param(rcu_task_contend_lim, int, 0444);
fd796e41
PM
158static int rcu_task_collapse_lim __read_mostly = 10;
159module_param(rcu_task_collapse_lim, int, 0444);
ab97152f 160
af051ca4
PM
161/* RCU tasks grace-period state for debugging. */
162#define RTGS_INIT 0
163#define RTGS_WAIT_WAIT_CBS 1
164#define RTGS_WAIT_GP 2
165#define RTGS_PRE_WAIT_GP 3
166#define RTGS_SCAN_TASKLIST 4
167#define RTGS_POST_SCAN_TASKLIST 5
168#define RTGS_WAIT_SCAN_HOLDOUTS 6
169#define RTGS_SCAN_HOLDOUTS 7
170#define RTGS_POST_GP 8
171#define RTGS_WAIT_READERS 9
172#define RTGS_INVOKE_CBS 10
173#define RTGS_WAIT_CBS 11
8344496e 174#ifndef CONFIG_TINY_RCU
af051ca4
PM
175static const char * const rcu_tasks_gp_state_names[] = {
176 "RTGS_INIT",
177 "RTGS_WAIT_WAIT_CBS",
178 "RTGS_WAIT_GP",
179 "RTGS_PRE_WAIT_GP",
180 "RTGS_SCAN_TASKLIST",
181 "RTGS_POST_SCAN_TASKLIST",
182 "RTGS_WAIT_SCAN_HOLDOUTS",
183 "RTGS_SCAN_HOLDOUTS",
184 "RTGS_POST_GP",
185 "RTGS_WAIT_READERS",
186 "RTGS_INVOKE_CBS",
187 "RTGS_WAIT_CBS",
188};
8344496e 189#endif /* #ifndef CONFIG_TINY_RCU */
af051ca4 190
5873b8a9
PM
191////////////////////////////////////////////////////////////////////////
192//
193// Generic code.
194
d363f833
PM
195static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
196
af051ca4
PM
197/* Record grace-period phase and time. */
198static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
199{
200 rtp->gp_state = newstate;
201 rtp->gp_jiffies = jiffies;
202}
203
8344496e 204#ifndef CONFIG_TINY_RCU
af051ca4
PM
205/* Return state name. */
206static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
207{
208 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
209 int j = READ_ONCE(i); // Prevent the compiler from reading twice
210
211 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
212 return "???";
213 return rcu_tasks_gp_state_names[j];
214}
8344496e 215#endif /* #ifndef CONFIG_TINY_RCU */
af051ca4 216
cafafd67
PM
217// Initialize per-CPU callback lists for the specified flavor of
218// Tasks RCU.
219static void cblist_init_generic(struct rcu_tasks *rtp)
220{
221 int cpu;
222 unsigned long flags;
8610b656 223 int lim;
da123016 224 int shift;
cafafd67
PM
225
226 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
ab97152f
PM
227 if (rcu_task_enqueue_lim < 0) {
228 rcu_task_enqueue_lim = 1;
229 rcu_task_cb_adjust = true;
230 pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
231 } else if (rcu_task_enqueue_lim == 0) {
8610b656 232 rcu_task_enqueue_lim = 1;
ab97152f 233 }
8610b656
PM
234 lim = rcu_task_enqueue_lim;
235
236 if (lim > nr_cpu_ids)
237 lim = nr_cpu_ids;
da123016
PM
238 shift = ilog2(nr_cpu_ids / lim);
239 if (((nr_cpu_ids - 1) >> shift) >= lim)
240 shift++;
241 WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
2cee0789 242 WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
8610b656 243 smp_store_release(&rtp->percpu_enqueue_lim, lim);
cafafd67
PM
244 for_each_possible_cpu(cpu) {
245 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
246
247 WARN_ON_ONCE(!rtpcp);
248 if (cpu)
381a4f3b
PM
249 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
250 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
9b073de1
PM
251 if (rcu_segcblist_empty(&rtpcp->cblist))
252 rcu_segcblist_init(&rtpcp->cblist);
d363f833
PM
253 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
254 rtpcp->cpu = cpu;
255 rtpcp->rtpp = rtp;
381a4f3b 256 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
cafafd67
PM
257 }
258 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
8610b656 259 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
cafafd67
PM
260}
261
3063b33a
PM
262// IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
263static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
264{
265 struct rcu_tasks *rtp;
266 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
267
268 rtp = rtpcp->rtpp;
88db792b 269 rcuwait_wake_up(&rtp->cbs_wait);
3063b33a
PM
270}
271
5873b8a9
PM
272// Enqueue a callback for the specified flavor of Tasks RCU.
273static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
274 struct rcu_tasks *rtp)
eacd6f04 275{
07d95c34 276 int chosen_cpu;
eacd6f04 277 unsigned long flags;
07d95c34 278 int ideal_cpu;
7d13d30b 279 unsigned long j;
ab97152f 280 bool needadjust = false;
eacd6f04 281 bool needwake;
cafafd67 282 struct rcu_tasks_percpu *rtpcp;
eacd6f04
PM
283
284 rhp->next = NULL;
285 rhp->func = func;
cafafd67 286 local_irq_save(flags);
fd796e41 287 rcu_read_lock();
07d95c34
ED
288 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
289 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
290 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
7d13d30b
PM
291 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
292 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
293 j = jiffies;
294 if (rtpcp->rtp_jiffies != j) {
295 rtpcp->rtp_jiffies = j;
296 rtpcp->rtp_n_lock_retries = 0;
297 }
ab97152f
PM
298 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
299 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
300 needadjust = true; // Defer adjustment to avoid deadlock.
7d13d30b 301 }
9b073de1 302 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
381a4f3b 303 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
cafafd67 304 cblist_init_generic(rtp);
381a4f3b 305 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
cafafd67 306 }
9b073de1
PM
307 needwake = rcu_segcblist_empty(&rtpcp->cblist);
308 rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
381a4f3b 309 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
ab97152f
PM
310 if (unlikely(needadjust)) {
311 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
312 if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
00a8b4b5 313 WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
fd796e41 314 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
ab97152f
PM
315 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
316 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
317 }
318 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
319 }
fd796e41 320 rcu_read_unlock();
eacd6f04 321 /* We can't create the thread unless interrupts are enabled. */
07e10515 322 if (needwake && READ_ONCE(rtp->kthread_ptr))
3063b33a 323 irq_work_queue(&rtpcp->rtp_irq_work);
eacd6f04 324}
eacd6f04 325
5873b8a9
PM
326// Wait for a grace period for the specified flavor of Tasks RCU.
327static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
eacd6f04
PM
328{
329 /* Complain if the scheduler has not started. */
330 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
331 "synchronize_rcu_tasks called too soon");
332
333 /* Wait for the grace period. */
5873b8a9 334 wait_rcu_gp(rtp->call_func);
eacd6f04
PM
335}
336
ce9b1c66
PM
337// RCU callback function for rcu_barrier_tasks_generic().
338static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
339{
340 struct rcu_tasks *rtp;
341 struct rcu_tasks_percpu *rtpcp;
342
343 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
344 rtp = rtpcp->rtpp;
345 if (atomic_dec_and_test(&rtp->barrier_q_count))
346 complete(&rtp->barrier_q_completion);
347}
348
349// Wait for all in-flight callbacks for the specified RCU Tasks flavor.
350// Operates in a manner similar to rcu_barrier().
351static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
352{
353 int cpu;
354 unsigned long flags;
355 struct rcu_tasks_percpu *rtpcp;
356 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
357
358 mutex_lock(&rtp->barrier_q_mutex);
359 if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
360 smp_mb();
361 mutex_unlock(&rtp->barrier_q_mutex);
362 return;
363 }
364 rcu_seq_start(&rtp->barrier_q_seq);
365 init_completion(&rtp->barrier_q_completion);
366 atomic_set(&rtp->barrier_q_count, 2);
367 for_each_possible_cpu(cpu) {
2cee0789 368 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
ce9b1c66
PM
369 break;
370 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
371 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
372 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
373 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
374 atomic_inc(&rtp->barrier_q_count);
375 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
376 }
377 if (atomic_sub_and_test(2, &rtp->barrier_q_count))
378 complete(&rtp->barrier_q_completion);
379 wait_for_completion(&rtp->barrier_q_completion);
380 rcu_seq_end(&rtp->barrier_q_seq);
381 mutex_unlock(&rtp->barrier_q_mutex);
382}
383
4d1114c0
PM
384// Advance callbacks and indicate whether either a grace period or
385// callback invocation is needed.
386static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
387{
388 int cpu;
389 unsigned long flags;
fd796e41
PM
390 long n;
391 long ncbs = 0;
392 long ncbsnz = 0;
4d1114c0
PM
393 int needgpcb = 0;
394
2cee0789 395 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
4d1114c0
PM
396 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
397
398 /* Advance and accelerate any new callbacks. */
fd796e41 399 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
4d1114c0
PM
400 continue;
401 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
fd796e41
PM
402 // Should we shrink down to a single callback queue?
403 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
404 if (n) {
405 ncbs += n;
406 if (cpu > 0)
407 ncbsnz += n;
408 }
4d1114c0
PM
409 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
410 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
411 if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
412 needgpcb |= 0x3;
413 if (!rcu_segcblist_empty(&rtpcp->cblist))
414 needgpcb |= 0x1;
415 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
416 }
fd796e41
PM
417
418 // Shrink down to a single callback queue if appropriate.
419 // This is done in two stages: (1) If there are no more than
420 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
421 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period,
422 // if there has not been an increase in callbacks, limit dequeuing
423 // to CPU 0. Note the matching RCU read-side critical section in
424 // call_rcu_tasks_generic().
425 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
426 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
427 if (rtp->percpu_enqueue_lim > 1) {
2bcd18e0 428 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
fd796e41
PM
429 smp_store_release(&rtp->percpu_enqueue_lim, 1);
430 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
431 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
432 }
433 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
434 }
435 if (rcu_task_cb_adjust && !ncbsnz &&
436 poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
437 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
438 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
439 WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
440 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
441 }
442 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
443 }
444
4d1114c0
PM
445 return needgpcb;
446}
447
57881863 448// Advance callbacks and invoke any that are ready.
d363f833 449static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
eacd6f04 450{
57881863 451 int cpu;
d363f833 452 int cpunext;
eacd6f04 453 unsigned long flags;
9b073de1 454 int len;
9b073de1 455 struct rcu_head *rhp;
d363f833
PM
456 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
457 struct rcu_tasks_percpu *rtpcp_next;
458
459 cpu = rtpcp->cpu;
460 cpunext = cpu * 2 + 1;
2cee0789 461 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
d363f833
PM
462 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
463 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
464 cpunext++;
2cee0789 465 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
d363f833
PM
466 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
467 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
57881863 468 }
57881863 469 }
d363f833 470
ab2756ea 471 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
d363f833
PM
472 return;
473 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
474 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
475 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
476 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
477 len = rcl.len;
478 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
479 local_bh_disable();
480 rhp->func(rhp);
481 local_bh_enable();
482 cond_resched();
483 }
484 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
485 rcu_segcblist_add_len(&rtpcp->cblist, -len);
486 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
487 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
488}
489
490// Workqueue flood to advance callbacks and invoke any that are ready.
491static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
492{
493 struct rcu_tasks *rtp;
494 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
495
496 rtp = rtpcp->rtpp;
497 rcu_tasks_invoke_cbs(rtp, rtpcp);
57881863
PM
498}
499
500/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
501static int __noreturn rcu_tasks_kthread(void *arg)
502{
503 int needgpcb;
07e10515 504 struct rcu_tasks *rtp = arg;
eacd6f04
PM
505
506 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
04d4e665 507 housekeeping_affine(current, HK_TYPE_RCU);
07e10515 508 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
eacd6f04
PM
509
510 /*
511 * Each pass through the following loop makes one check for
512 * newly arrived callbacks, and, if there are some, waits for
513 * one RCU-tasks grace period and then invokes the callbacks.
514 * This loop is terminated by the system going down. ;-)
515 */
516 for (;;) {
0db7c32a 517 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
eacd6f04 518
eacd6f04 519 /* If there were none, wait a bit and start over. */
88db792b
SAS
520 rcuwait_wait_event(&rtp->cbs_wait,
521 (needgpcb = rcu_tasks_need_gpcb(rtp)),
522 TASK_IDLE);
eacd6f04 523
4d1114c0
PM
524 if (needgpcb & 0x2) {
525 // Wait for one grace period.
526 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
527 rtp->gp_start = jiffies;
528 rcu_seq_start(&rtp->tasks_gp_seq);
529 rtp->gp_func(rtp);
530 rcu_seq_end(&rtp->tasks_gp_seq);
531 }
eacd6f04 532
57881863 533 /* Invoke callbacks. */
af051ca4 534 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
d363f833 535 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
57881863 536
eacd6f04 537 /* Paranoid sleep to keep this from entering a tight loop */
4fe192df 538 schedule_timeout_idle(rtp->gp_sleep);
eacd6f04
PM
539 }
540}
541
1b04fa99 542/* Spawn RCU-tasks grace-period kthread. */
5873b8a9 543static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
eacd6f04
PM
544{
545 struct task_struct *t;
546
c97d12a6
PM
547 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
548 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
5873b8a9 549 return;
eacd6f04 550 smp_mb(); /* Ensure others see full kthread. */
eacd6f04 551}
eacd6f04 552
eacd6f04
PM
553#ifndef CONFIG_TINY_RCU
554
555/*
556 * Print any non-default Tasks RCU settings.
557 */
558static void __init rcu_tasks_bootup_oddness(void)
559{
d5f177d3 560#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
f2539003
PM
561 int rtsimc;
562
eacd6f04
PM
563 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
564 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
f2539003
PM
565 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
566 if (rtsimc != rcu_task_stall_info_mult) {
567 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
568 rcu_task_stall_info_mult = rtsimc;
569 }
d5f177d3
PM
570#endif /* #ifdef CONFIG_TASKS_RCU */
571#ifdef CONFIG_TASKS_RCU
572 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
eacd6f04 573#endif /* #ifdef CONFIG_TASKS_RCU */
c84aad76
PM
574#ifdef CONFIG_TASKS_RUDE_RCU
575 pr_info("\tRude variant of Tasks RCU enabled.\n");
576#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
d5f177d3
PM
577#ifdef CONFIG_TASKS_TRACE_RCU
578 pr_info("\tTracing variant of Tasks RCU enabled.\n");
579#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
eacd6f04
PM
580}
581
582#endif /* #ifndef CONFIG_TINY_RCU */
5873b8a9 583
8344496e 584#ifndef CONFIG_TINY_RCU
e21408ce
PM
585/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
586static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
587{
10b3742f
PM
588 int cpu;
589 bool havecbs = false;
590
591 for_each_possible_cpu(cpu) {
592 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
593
594 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
595 havecbs = true;
596 break;
597 }
598 }
7e0669c3 599 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
e21408ce 600 rtp->kname,
7e0669c3 601 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
af051ca4 602 jiffies - data_race(rtp->gp_jiffies),
b14fb4fb 603 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
7e0669c3 604 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
e21408ce 605 ".k"[!!data_race(rtp->kthread_ptr)],
10b3742f 606 ".C"[havecbs],
e21408ce
PM
607 s);
608}
27c0f144 609#endif // #ifndef CONFIG_TINY_RCU
e21408ce 610
25246fc8
PM
611static void exit_tasks_rcu_finish_trace(struct task_struct *t);
612
613#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
5873b8a9 614
d01aa263
PM
615////////////////////////////////////////////////////////////////////////
616//
617// Shared code between task-list-scanning variants of Tasks RCU.
618
619/* Wait for one RCU-tasks grace period. */
620static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
621{
f2539003 622 struct task_struct *g;
d01aa263 623 int fract;
f2539003
PM
624 LIST_HEAD(holdouts);
625 unsigned long j;
626 unsigned long lastinfo;
627 unsigned long lastreport;
628 bool reported = false;
629 int rtsi;
630 struct task_struct *t;
d01aa263 631
af051ca4 632 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
d01aa263
PM
633 rtp->pregp_func();
634
635 /*
636 * There were callbacks, so we need to wait for an RCU-tasks
637 * grace period. Start off by scanning the task list for tasks
638 * that are not already voluntarily blocked. Mark these tasks
639 * and make a list of them in holdouts.
640 */
af051ca4 641 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
d01aa263
PM
642 rcu_read_lock();
643 for_each_process_thread(g, t)
644 rtp->pertask_func(t, &holdouts);
645 rcu_read_unlock();
646
af051ca4 647 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
9796e1ae 648 rtp->postscan_func(&holdouts);
d01aa263
PM
649
650 /*
651 * Each pass through the following loop scans the list of holdout
652 * tasks, removing any that are no longer holdouts. When the list
653 * is empty, we are done.
654 */
655 lastreport = jiffies;
f2539003
PM
656 lastinfo = lastreport;
657 rtsi = READ_ONCE(rcu_task_stall_info);
d01aa263 658
2393a613
PM
659 // Start off with initial wait and slowly back off to 1 HZ wait.
660 fract = rtp->init_fract;
d01aa263 661
77dc1741 662 while (!list_empty(&holdouts)) {
777570d9 663 ktime_t exp;
d01aa263
PM
664 bool firstreport;
665 bool needreport;
666 int rtst;
667
f2539003 668 // Slowly back off waiting for holdouts
af051ca4 669 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
bddf7122
PM
670 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
671 schedule_timeout_idle(fract);
672 } else {
673 exp = jiffies_to_nsecs(fract);
674 __set_current_state(TASK_IDLE);
675 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
676 }
d01aa263 677
75dc2da5
PM
678 if (fract < HZ)
679 fract++;
d01aa263
PM
680
681 rtst = READ_ONCE(rcu_task_stall_timeout);
682 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
f2539003 683 if (needreport) {
d01aa263 684 lastreport = jiffies;
f2539003
PM
685 reported = true;
686 }
d01aa263
PM
687 firstreport = true;
688 WARN_ON(signal_pending(current));
af051ca4 689 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
d01aa263 690 rtp->holdouts_func(&holdouts, needreport, &firstreport);
f2539003
PM
691
692 // Print pre-stall informational messages if needed.
693 j = jiffies;
694 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
695 lastinfo = j;
696 rtsi = rtsi * rcu_task_stall_info_mult;
697 pr_info("%s: %s grace period %lu is %lu jiffies old.\n",
698 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
699 }
d01aa263
PM
700 }
701
af051ca4
PM
702 set_tasks_gp_state(rtp, RTGS_POST_GP);
703 rtp->postgp_func(rtp);
d01aa263
PM
704}
705
25246fc8
PM
706#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
707
708#ifdef CONFIG_TASKS_RCU
709
5873b8a9
PM
710////////////////////////////////////////////////////////////////////////
711//
712// Simple variant of RCU whose quiescent states are voluntary context
8af9e2c7 713// switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
5873b8a9
PM
714// As such, grace periods can take one good long time. There are no
715// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
716// because this implementation is intended to get the system into a safe
717// state for some of the manipulations involved in tracing and the like.
718// Finally, this implementation does not support high call_rcu_tasks()
719// rates from multiple CPUs. If this is required, per-CPU callback lists
720// will be needed.
06a3ec92
PM
721//
722// The implementation uses rcu_tasks_wait_gp(), which relies on function
723// pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
724// function sets these function pointers up so that rcu_tasks_wait_gp()
725// invokes these functions in this order:
726//
727// rcu_tasks_pregp_step():
728// Invokes synchronize_rcu() in order to wait for all in-flight
729// t->on_rq and t->nvcsw transitions to complete. This works because
730// all such transitions are carried out with interrupts disabled.
731// rcu_tasks_pertask(), invoked on every non-idle task:
732// For every runnable non-idle task other than the current one, use
733// get_task_struct() to pin down that task, snapshot that task's
734// number of voluntary context switches, and add that task to the
735// holdout list.
736// rcu_tasks_postscan():
737// Invoke synchronize_srcu() to ensure that all tasks that were
738// in the process of exiting (and which thus might not know to
739// synchronize with this RCU Tasks grace period) have completed
740// exiting.
741// check_all_holdout_tasks(), repeatedly until holdout list is empty:
742// Scans the holdout list, attempting to identify a quiescent state
743// for each task on the list. If there is a quiescent state, the
744// corresponding task is removed from the holdout list.
745// rcu_tasks_postgp():
746// Invokes synchronize_rcu() in order to ensure that all prior
747// t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
748// to have happened before the end of this RCU Tasks grace period.
749// Again, this works because all such transitions are carried out
750// with interrupts disabled.
751//
752// For each exiting task, the exit_tasks_rcu_start() and
753// exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
754// read-side critical sections waited for by rcu_tasks_postscan().
755//
381a4f3b
PM
756// Pre-grace-period update-side code is ordered before the grace
757// via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
758// is ordered before the grace period via synchronize_rcu() call in
759// rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
06a3ec92 760// disabling.
5873b8a9 761
e4fe5dd6
PM
762/* Pre-grace-period preparation. */
763static void rcu_tasks_pregp_step(void)
764{
765 /*
766 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
767 * to complete. Invoking synchronize_rcu() suffices because all
768 * these transitions occur with interrupts disabled. Without this
769 * synchronize_rcu(), a read-side critical section that started
770 * before the grace period might be incorrectly seen as having
771 * started after the grace period.
772 *
773 * This synchronize_rcu() also dispenses with the need for a
774 * memory barrier on the first store to t->rcu_tasks_holdout,
775 * as it forces the store to happen after the beginning of the
776 * grace period.
777 */
778 synchronize_rcu();
779}
780
781/* Per-task initial processing. */
782static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
783{
784 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
785 get_task_struct(t);
786 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
787 WRITE_ONCE(t->rcu_tasks_holdout, true);
788 list_add(&t->rcu_tasks_holdout_list, hop);
789 }
790}
791
792/* Processing between scanning taskslist and draining the holdout list. */
04a3c5aa 793static void rcu_tasks_postscan(struct list_head *hop)
e4fe5dd6
PM
794{
795 /*
796 * Wait for tasks that are in the process of exiting. This
797 * does only part of the job, ensuring that all tasks that were
798 * previously exiting reach the point where they have disabled
799 * preemption, allowing the later synchronize_rcu() to finish
800 * the job.
801 */
802 synchronize_srcu(&tasks_rcu_exit_srcu);
803}
804
5873b8a9
PM
805/* See if tasks are still holding out, complain if so. */
806static void check_holdout_task(struct task_struct *t,
807 bool needreport, bool *firstreport)
808{
809 int cpu;
810
811 if (!READ_ONCE(t->rcu_tasks_holdout) ||
812 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
813 !READ_ONCE(t->on_rq) ||
814 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
815 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
816 WRITE_ONCE(t->rcu_tasks_holdout, false);
817 list_del_init(&t->rcu_tasks_holdout_list);
818 put_task_struct(t);
819 return;
820 }
821 rcu_request_urgent_qs_task(t);
822 if (!needreport)
823 return;
824 if (*firstreport) {
825 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
826 *firstreport = false;
827 }
828 cpu = task_cpu(t);
829 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
830 t, ".I"[is_idle_task(t)],
831 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
832 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
833 t->rcu_tasks_idle_cpu, cpu);
834 sched_show_task(t);
835}
836
e4fe5dd6
PM
837/* Scan the holdout lists for tasks no longer holding out. */
838static void check_all_holdout_tasks(struct list_head *hop,
839 bool needreport, bool *firstreport)
840{
841 struct task_struct *t, *t1;
842
843 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
844 check_holdout_task(t, needreport, firstreport);
845 cond_resched();
846 }
847}
848
849/* Finish off the Tasks-RCU grace period. */
af051ca4 850static void rcu_tasks_postgp(struct rcu_tasks *rtp)
e4fe5dd6
PM
851{
852 /*
853 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
854 * memory barriers prior to them in the schedule() path, memory
855 * reordering on other CPUs could cause their RCU-tasks read-side
856 * critical sections to extend past the end of the grace period.
857 * However, because these ->nvcsw updates are carried out with
858 * interrupts disabled, we can use synchronize_rcu() to force the
859 * needed ordering on all such CPUs.
860 *
861 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
862 * accesses to be within the grace period, avoiding the need for
863 * memory barriers for ->rcu_tasks_holdout accesses.
864 *
865 * In addition, this synchronize_rcu() waits for exiting tasks
866 * to complete their final preempt_disable() region of execution,
867 * cleaning up after the synchronize_srcu() above.
868 */
869 synchronize_rcu();
870}
871
5873b8a9 872void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
c97d12a6 873DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
5873b8a9
PM
874
875/**
876 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
877 * @rhp: structure to be used for queueing the RCU updates.
878 * @func: actual callback function to be invoked after the grace period
879 *
880 * The callback function will be invoked some time after a full grace
881 * period elapses, in other words after all currently executing RCU
882 * read-side critical sections have completed. call_rcu_tasks() assumes
883 * that the read-side critical sections end at a voluntary context
8af9e2c7 884 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
5873b8a9
PM
885 * or transition to usermode execution. As such, there are no read-side
886 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
887 * this primitive is intended to determine that all tasks have passed
a616aec9 888 * through a safe state, not so much for data-structure synchronization.
5873b8a9
PM
889 *
890 * See the description of call_rcu() for more detailed information on
891 * memory ordering guarantees.
892 */
893void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
894{
895 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
896}
897EXPORT_SYMBOL_GPL(call_rcu_tasks);
898
899/**
900 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
901 *
902 * Control will return to the caller some time after a full rcu-tasks
903 * grace period has elapsed, in other words after all currently
904 * executing rcu-tasks read-side critical sections have elapsed. These
905 * read-side critical sections are delimited by calls to schedule(),
906 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
907 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
908 *
909 * This is a very specialized primitive, intended only for a few uses in
910 * tracing and other situations requiring manipulation of function
911 * preambles and profiling hooks. The synchronize_rcu_tasks() function
912 * is not (yet) intended for heavy use from multiple CPUs.
913 *
914 * See the description of synchronize_rcu() for more detailed information
915 * on memory ordering guarantees.
916 */
917void synchronize_rcu_tasks(void)
918{
919 synchronize_rcu_tasks_generic(&rcu_tasks);
920}
921EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
922
923/**
924 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
925 *
926 * Although the current implementation is guaranteed to wait, it is not
927 * obligated to, for example, if there are no pending callbacks.
928 */
929void rcu_barrier_tasks(void)
930{
ce9b1c66 931 rcu_barrier_tasks_generic(&rcu_tasks);
5873b8a9
PM
932}
933EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
934
935static int __init rcu_spawn_tasks_kthread(void)
936{
cafafd67 937 cblist_init_generic(&rcu_tasks);
4fe192df 938 rcu_tasks.gp_sleep = HZ / 10;
75dc2da5 939 rcu_tasks.init_fract = HZ / 10;
e4fe5dd6
PM
940 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
941 rcu_tasks.pertask_func = rcu_tasks_pertask;
942 rcu_tasks.postscan_func = rcu_tasks_postscan;
943 rcu_tasks.holdouts_func = check_all_holdout_tasks;
944 rcu_tasks.postgp_func = rcu_tasks_postgp;
5873b8a9
PM
945 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
946 return 0;
947}
5873b8a9 948
27c0f144
PM
949#if !defined(CONFIG_TINY_RCU)
950void show_rcu_tasks_classic_gp_kthread(void)
e21408ce
PM
951{
952 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
953}
27c0f144
PM
954EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
955#endif // !defined(CONFIG_TINY_RCU)
e21408ce 956
25246fc8
PM
957/* Do the srcu_read_lock() for the above synchronize_srcu(). */
958void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
959{
960 preempt_disable();
961 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
962 preempt_enable();
963}
964
965/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
966void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
967{
968 struct task_struct *t = current;
969
970 preempt_disable();
971 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
972 preempt_enable();
973 exit_tasks_rcu_finish_trace(t);
974}
975
e21408ce 976#else /* #ifdef CONFIG_TASKS_RCU */
25246fc8
PM
977void exit_tasks_rcu_start(void) { }
978void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
e21408ce 979#endif /* #else #ifdef CONFIG_TASKS_RCU */
c84aad76
PM
980
981#ifdef CONFIG_TASKS_RUDE_RCU
982
983////////////////////////////////////////////////////////////////////////
984//
985// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
986// passing an empty function to schedule_on_each_cpu(). This approach
e4be1f44
PM
987// provides an asynchronous call_rcu_tasks_rude() API and batching of
988// concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
9fc98e31
PM
989// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
990// and induces otherwise unnecessary context switches on all online CPUs,
991// whether idle or not.
992//
993// Callback handling is provided by the rcu_tasks_kthread() function.
994//
995// Ordering is provided by the scheduler's context-switch code.
c84aad76
PM
996
997// Empty function to allow workqueues to force a context switch.
998static void rcu_tasks_be_rude(struct work_struct *work)
999{
1000}
1001
1002// Wait for one rude RCU-tasks grace period.
1003static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1004{
f75fd4b9
PS
1005 if (num_online_cpus() <= 1)
1006 return; // Fastpath for only one CPU.
1007
238dbce3 1008 rtp->n_ipis += cpumask_weight(cpu_online_mask);
c84aad76
PM
1009 schedule_on_each_cpu(rcu_tasks_be_rude);
1010}
1011
1012void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
c97d12a6
PM
1013DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1014 "RCU Tasks Rude");
c84aad76
PM
1015
1016/**
1017 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1018 * @rhp: structure to be used for queueing the RCU updates.
1019 * @func: actual callback function to be invoked after the grace period
1020 *
1021 * The callback function will be invoked some time after a full grace
1022 * period elapses, in other words after all currently executing RCU
1023 * read-side critical sections have completed. call_rcu_tasks_rude()
1024 * assumes that the read-side critical sections end at context switch,
8af9e2c7 1025 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
a6517e9c
NU
1026 * usermode execution is schedulable). As such, there are no read-side
1027 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1028 * this primitive is intended to determine that all tasks have passed
1029 * through a safe state, not so much for data-structure synchronization.
c84aad76
PM
1030 *
1031 * See the description of call_rcu() for more detailed information on
1032 * memory ordering guarantees.
1033 */
1034void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1035{
1036 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1037}
1038EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1039
1040/**
1041 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1042 *
1043 * Control will return to the caller some time after a rude rcu-tasks
1044 * grace period has elapsed, in other words after all currently
1045 * executing rcu-tasks read-side critical sections have elapsed. These
1046 * read-side critical sections are delimited by calls to schedule(),
a6517e9c
NU
1047 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1048 * context), and (in theory, anyway) cond_resched().
c84aad76
PM
1049 *
1050 * This is a very specialized primitive, intended only for a few uses in
1051 * tracing and other situations requiring manipulation of function preambles
1052 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
1053 * (yet) intended for heavy use from multiple CPUs.
1054 *
1055 * See the description of synchronize_rcu() for more detailed information
1056 * on memory ordering guarantees.
1057 */
1058void synchronize_rcu_tasks_rude(void)
1059{
1060 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1061}
1062EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1063
1064/**
1065 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1066 *
1067 * Although the current implementation is guaranteed to wait, it is not
1068 * obligated to, for example, if there are no pending callbacks.
1069 */
1070void rcu_barrier_tasks_rude(void)
1071{
ce9b1c66 1072 rcu_barrier_tasks_generic(&rcu_tasks_rude);
c84aad76
PM
1073}
1074EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1075
1076static int __init rcu_spawn_tasks_rude_kthread(void)
1077{
cafafd67 1078 cblist_init_generic(&rcu_tasks_rude);
4fe192df 1079 rcu_tasks_rude.gp_sleep = HZ / 10;
c84aad76
PM
1080 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1081 return 0;
1082}
c84aad76 1083
27c0f144
PM
1084#if !defined(CONFIG_TINY_RCU)
1085void show_rcu_tasks_rude_gp_kthread(void)
e21408ce
PM
1086{
1087 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1088}
27c0f144
PM
1089EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1090#endif // !defined(CONFIG_TINY_RCU)
1091#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
d5f177d3
PM
1092
1093////////////////////////////////////////////////////////////////////////
1094//
1095// Tracing variant of Tasks RCU. This variant is designed to be used
1096// to protect tracing hooks, including those of BPF. This variant
1097// therefore:
1098//
1099// 1. Has explicit read-side markers to allow finite grace periods
1100// in the face of in-kernel loops for PREEMPT=n builds.
1101//
1102// 2. Protects code in the idle loop, exception entry/exit, and
1103// CPU-hotplug code paths, similar to the capabilities of SRCU.
1104//
c4f113ac 1105// 3. Avoids expensive read-side instructions, having overhead similar
d5f177d3
PM
1106// to that of Preemptible RCU.
1107//
1108// There are of course downsides. The grace-period code can send IPIs to
1109// CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
1110// It is necessary to scan the full tasklist, much as for Tasks RCU. There
1111// is a single callback queue guarded by a single lock, again, much as for
1112// Tasks RCU. If needed, these downsides can be at least partially remedied.
1113//
1114// Perhaps most important, this variant of RCU does not affect the vanilla
1115// flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
1116// readers can operate from idle, offline, and exception entry/exit in no
1117// way allows rcu_preempt and rcu_sched readers to also do so.
a434dd10
PM
1118//
1119// The implementation uses rcu_tasks_wait_gp(), which relies on function
1120// pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
1121// function sets these function pointers up so that rcu_tasks_wait_gp()
1122// invokes these functions in this order:
1123//
1124// rcu_tasks_trace_pregp_step():
1125// Initialize the count of readers and block CPU-hotplug operations.
1126// rcu_tasks_trace_pertask(), invoked on every non-idle task:
1127// Initialize per-task state and attempt to identify an immediate
1128// quiescent state for that task, or, failing that, attempt to
1129// set that task's .need_qs flag so that task's next outermost
1130// rcu_read_unlock_trace() will report the quiescent state (in which
1131// case the count of readers is incremented). If both attempts fail,
45f4b4a2
PM
1132// the task is added to a "holdout" list. Note that IPIs are used
1133// to invoke trc_read_check_handler() in the context of running tasks
1134// in order to avoid ordering overhead on common-case shared-variable
1135// accessses.
a434dd10
PM
1136// rcu_tasks_trace_postscan():
1137// Initialize state and attempt to identify an immediate quiescent
1138// state as above (but only for idle tasks), unblock CPU-hotplug
1139// operations, and wait for an RCU grace period to avoid races with
1140// tasks that are in the process of exiting.
1141// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1142// Scans the holdout list, attempting to identify a quiescent state
1143// for each task on the list. If there is a quiescent state, the
1144// corresponding task is removed from the holdout list.
1145// rcu_tasks_trace_postgp():
1146// Wait for the count of readers do drop to zero, reporting any stalls.
1147// Also execute full memory barriers to maintain ordering with code
1148// executing after the grace period.
1149//
1150// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1151//
1152// Pre-grace-period update-side code is ordered before the grace
1153// period via the ->cbs_lock and barriers in rcu_tasks_kthread().
1154// Pre-grace-period read-side code is ordered before the grace period by
1155// atomic_dec_and_test() of the count of readers (for IPIed readers) and by
1156// scheduler context-switch ordering (for locked-down non-running readers).
d5f177d3
PM
1157
1158// The lockdep state must be outside of #ifdef to be useful.
1159#ifdef CONFIG_DEBUG_LOCK_ALLOC
1160static struct lock_class_key rcu_lock_trace_key;
1161struct lockdep_map rcu_trace_lock_map =
1162 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1163EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1164#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1165
1166#ifdef CONFIG_TASKS_TRACE_RCU
1167
30d8aa51
PM
1168static atomic_t trc_n_readers_need_end; // Number of waited-for readers.
1169static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks.
d5f177d3
PM
1170
1171// Record outstanding IPIs to each CPU. No point in sending two...
1172static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1173
40471509
PM
1174// The number of detections of task quiescent state relying on
1175// heavyweight readers executing explicit memory barriers.
6731da9e
PM
1176static unsigned long n_heavy_reader_attempts;
1177static unsigned long n_heavy_reader_updates;
1178static unsigned long n_heavy_reader_ofl_updates;
40471509 1179
b0afa0f0
PM
1180void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1181DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1182 "RCU Tasks Trace");
1183
b38f57c1
PM
1184/*
1185 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
1186 * while the scheduler locks are held.
1187 */
1188static void rcu_read_unlock_iw(struct irq_work *iwp)
1189{
1190 wake_up(&trc_wait);
1191}
1192static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
1193
d5f177d3 1194/* If we are the last reader, wake up the grace-period kthread. */
a5c071cc 1195void rcu_read_unlock_trace_special(struct task_struct *t)
d5f177d3 1196{
f8ab3fad 1197 int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
276c4104 1198
9ae58d7b
PM
1199 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
1200 t->trc_reader_special.b.need_mb)
276c4104
PM
1201 smp_mb(); // Pairs with update-side barriers.
1202 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1203 if (nq)
1204 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
a5c071cc 1205 WRITE_ONCE(t->trc_reader_nesting, 0);
276c4104 1206 if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
b38f57c1 1207 irq_work_queue(&rcu_tasks_trace_iw);
d5f177d3
PM
1208}
1209EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1210
1211/* Add a task to the holdout list, if it is not already on the list. */
1212static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1213{
1214 if (list_empty(&t->trc_holdout_list)) {
1215 get_task_struct(t);
1216 list_add(&t->trc_holdout_list, bhp);
1217 }
1218}
1219
1220/* Remove a task from the holdout list, if it is in fact present. */
1221static void trc_del_holdout(struct task_struct *t)
1222{
1223 if (!list_empty(&t->trc_holdout_list)) {
1224 list_del_init(&t->trc_holdout_list);
1225 put_task_struct(t);
1226 }
1227}
1228
1229/* IPI handler to check task state. */
1230static void trc_read_check_handler(void *t_in)
1231{
1232 struct task_struct *t = current;
1233 struct task_struct *texp = t_in;
1234
1235 // If the task is no longer running on this CPU, leave.
1236 if (unlikely(texp != t)) {
d5f177d3
PM
1237 goto reset_ipi; // Already on holdout list, so will check later.
1238 }
1239
1240 // If the task is not in a read-side critical section, and
1241 // if this is the last reader, awaken the grace-period kthread.
bdb0cca0 1242 if (likely(!READ_ONCE(t->trc_reader_nesting))) {
d5f177d3
PM
1243 WRITE_ONCE(t->trc_reader_checked, true);
1244 goto reset_ipi;
1245 }
ba3a86e4 1246 // If we are racing with an rcu_read_unlock_trace(), try again later.
96017bf9 1247 if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0))
ba3a86e4 1248 goto reset_ipi;
d5f177d3
PM
1249 WRITE_ONCE(t->trc_reader_checked, true);
1250
1251 // Get here if the task is in a read-side critical section. Set
1252 // its state so that it will awaken the grace-period kthread upon
1253 // exit from that critical section.
96017bf9 1254 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
f8ab3fad 1255 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
276c4104 1256 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
d5f177d3
PM
1257
1258reset_ipi:
1259 // Allow future IPIs to be sent on CPU and for task.
1260 // Also order this IPI handler against any later manipulations of
1261 // the intended task.
8211e922 1262 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
d5f177d3
PM
1263 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1264}
1265
1266/* Callback function for scheduler to check locked-down task. */
9b3c4ab3 1267static int trc_inspect_reader(struct task_struct *t, void *arg)
d5f177d3 1268{
7d0c9c50 1269 int cpu = task_cpu(t);
18f08e75 1270 int nesting;
7e3b70e0 1271 bool ofl = cpu_is_offline(cpu);
7d0c9c50
PM
1272
1273 if (task_curr(t)) {
30d8aa51 1274 WARN_ON_ONCE(ofl && !is_idle_task(t));
7e3b70e0 1275
7d0c9c50 1276 // If no chance of heavyweight readers, do it the hard way.
7e3b70e0 1277 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
9b3c4ab3 1278 return -EINVAL;
7d0c9c50
PM
1279
1280 // If heavyweight readers are enabled on the remote task,
1281 // we can inspect its state despite its currently running.
1282 // However, we cannot safely change its state.
40471509 1283 n_heavy_reader_attempts++;
7e3b70e0
PM
1284 if (!ofl && // Check for "running" idle tasks on offline CPUs.
1285 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
9b3c4ab3 1286 return -EINVAL; // No quiescent state, do it the hard way.
40471509 1287 n_heavy_reader_updates++;
edf3775f
PM
1288 if (ofl)
1289 n_heavy_reader_ofl_updates++;
18f08e75 1290 nesting = 0;
7d0c9c50 1291 } else {
bdb0cca0 1292 // The task is not running, so C-language access is safe.
18f08e75 1293 nesting = t->trc_reader_nesting;
7d0c9c50 1294 }
d5f177d3 1295
18f08e75
PM
1296 // If not exiting a read-side critical section, mark as checked
1297 // so that the grace-period kthread will remove it from the
1298 // holdout list.
1299 t->trc_reader_checked = nesting >= 0;
1300 if (nesting <= 0)
6fedc280 1301 return nesting ? -EINVAL : 0; // If in QS, done, otherwise try again later.
7d0c9c50
PM
1302
1303 // The task is in a read-side critical section, so set up its
1304 // state so that it will awaken the grace-period kthread upon exit
1305 // from that critical section.
1306 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
f8ab3fad 1307 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
7d0c9c50 1308 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
9b3c4ab3 1309 return 0;
d5f177d3
PM
1310}
1311
1312/* Attempt to extract the state for the specified task. */
1313static void trc_wait_for_one_reader(struct task_struct *t,
1314 struct list_head *bhp)
1315{
1316 int cpu;
1317
1318 // If a previous IPI is still in flight, let it complete.
1319 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1320 return;
1321
1322 // The current task had better be in a quiescent state.
1323 if (t == current) {
1324 t->trc_reader_checked = true;
bdb0cca0 1325 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
d5f177d3
PM
1326 return;
1327 }
1328
1329 // Attempt to nail down the task for inspection.
1330 get_task_struct(t);
9b3c4ab3 1331 if (!task_call_func(t, trc_inspect_reader, NULL)) {
d5f177d3
PM
1332 put_task_struct(t);
1333 return;
1334 }
1335 put_task_struct(t);
1336
45f4b4a2
PM
1337 // If this task is not yet on the holdout list, then we are in
1338 // an RCU read-side critical section. Otherwise, the invocation of
d0a85858 1339 // trc_add_holdout() that added it to the list did the necessary
45f4b4a2
PM
1340 // get_task_struct(). Either way, the task cannot be freed out
1341 // from under this code.
1342
d5f177d3
PM
1343 // If currently running, send an IPI, either way, add to list.
1344 trc_add_holdout(t, bhp);
574de876
PM
1345 if (task_curr(t) &&
1346 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
d5f177d3
PM
1347 // The task is currently running, so try IPIing it.
1348 cpu = task_cpu(t);
1349
1350 // If there is already an IPI outstanding, let it happen.
1351 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1352 return;
1353
d5f177d3
PM
1354 per_cpu(trc_ipi_to_cpu, cpu) = true;
1355 t->trc_ipi_to_cpu = cpu;
238dbce3 1356 rcu_tasks_trace.n_ipis++;
96017bf9 1357 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
d5f177d3
PM
1358 // Just in case there is some other reason for
1359 // failure than the target CPU being offline.
46aa886c
NU
1360 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1361 __func__, cpu);
7e0669c3 1362 rcu_tasks_trace.n_ipis_fails++;
d5f177d3 1363 per_cpu(trc_ipi_to_cpu, cpu) = false;
46aa886c 1364 t->trc_ipi_to_cpu = -1;
d5f177d3
PM
1365 }
1366 }
1367}
1368
1369/* Initialize for a new RCU-tasks-trace grace period. */
1370static void rcu_tasks_trace_pregp_step(void)
1371{
1372 int cpu;
1373
d5f177d3
PM
1374 // Allow for fast-acting IPIs.
1375 atomic_set(&trc_n_readers_need_end, 1);
1376
1377 // There shouldn't be any old IPIs, but...
1378 for_each_possible_cpu(cpu)
1379 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
81b4a7bc
PM
1380
1381 // Disable CPU hotplug across the tasklist scan.
1382 // This also waits for all readers in CPU-hotplug code paths.
1383 cpus_read_lock();
d5f177d3
PM
1384}
1385
1386/* Do first-round processing for the specified task. */
1387static void rcu_tasks_trace_pertask(struct task_struct *t,
1388 struct list_head *hop)
1389{
1b04fa99
URS
1390 // During early boot when there is only the one boot CPU, there
1391 // is no idle task for the other CPUs. Just return.
1392 if (unlikely(t == NULL))
1393 return;
1394
276c4104 1395 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
43766c3e 1396 WRITE_ONCE(t->trc_reader_checked, false);
d5f177d3
PM
1397 t->trc_ipi_to_cpu = -1;
1398 trc_wait_for_one_reader(t, hop);
1399}
1400
9796e1ae
PM
1401/*
1402 * Do intermediate processing between task and holdout scans and
1403 * pick up the idle tasks.
1404 */
1405static void rcu_tasks_trace_postscan(struct list_head *hop)
d5f177d3 1406{
9796e1ae
PM
1407 int cpu;
1408
1409 for_each_possible_cpu(cpu)
1410 rcu_tasks_trace_pertask(idle_task(cpu), hop);
1411
81b4a7bc
PM
1412 // Re-enable CPU hotplug now that the tasklist scan has completed.
1413 cpus_read_unlock();
1414
d5f177d3
PM
1415 // Wait for late-stage exiting tasks to finish exiting.
1416 // These might have passed the call to exit_tasks_rcu_finish().
1417 synchronize_rcu();
1418 // Any tasks that exit after this point will set ->trc_reader_checked.
1419}
1420
65b629e7
NU
1421/* Communicate task state back to the RCU tasks trace stall warning request. */
1422struct trc_stall_chk_rdr {
1423 int nesting;
1424 int ipi_to_cpu;
1425 u8 needqs;
1426};
1427
1428static int trc_check_slow_task(struct task_struct *t, void *arg)
1429{
1430 struct trc_stall_chk_rdr *trc_rdrp = arg;
1431
1432 if (task_curr(t))
1433 return false; // It is running, so decline to inspect it.
1434 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1435 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1436 trc_rdrp->needqs = READ_ONCE(t->trc_reader_special.b.need_qs);
1437 return true;
1438}
1439
4593e772
PM
1440/* Show the state of a task stalling the current RCU tasks trace GP. */
1441static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1442{
1443 int cpu;
65b629e7
NU
1444 struct trc_stall_chk_rdr trc_rdr;
1445 bool is_idle_tsk = is_idle_task(t);
4593e772
PM
1446
1447 if (*firstreport) {
1448 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1449 *firstreport = false;
1450 }
4593e772 1451 cpu = task_cpu(t);
65b629e7
NU
1452 if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1453 pr_alert("P%d: %c\n",
1454 t->pid,
1455 ".i"[is_idle_tsk]);
1456 else
1457 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1458 t->pid,
1459 ".I"[trc_rdr.ipi_to_cpu >= 0],
1460 ".i"[is_idle_tsk],
1461 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1462 trc_rdr.nesting,
1463 " N"[!!trc_rdr.needqs],
1464 cpu);
4593e772
PM
1465 sched_show_task(t);
1466}
1467
1468/* List stalled IPIs for RCU tasks trace. */
1469static void show_stalled_ipi_trace(void)
1470{
1471 int cpu;
1472
1473 for_each_possible_cpu(cpu)
1474 if (per_cpu(trc_ipi_to_cpu, cpu))
1475 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1476}
1477
d5f177d3
PM
1478/* Do one scan of the holdout list. */
1479static void check_all_holdout_tasks_trace(struct list_head *hop,
4593e772 1480 bool needreport, bool *firstreport)
d5f177d3
PM
1481{
1482 struct task_struct *g, *t;
1483
81b4a7bc
PM
1484 // Disable CPU hotplug across the holdout list scan.
1485 cpus_read_lock();
1486
d5f177d3
PM
1487 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1488 // If safe and needed, try to check the current task.
1489 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1490 !READ_ONCE(t->trc_reader_checked))
1491 trc_wait_for_one_reader(t, hop);
1492
1493 // If check succeeded, remove this task from the list.
f5dbc594
PM
1494 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1495 READ_ONCE(t->trc_reader_checked))
d5f177d3 1496 trc_del_holdout(t);
4593e772
PM
1497 else if (needreport)
1498 show_stalled_task_trace(t, firstreport);
1499 }
81b4a7bc
PM
1500
1501 // Re-enable CPU hotplug now that the holdout list scan has completed.
1502 cpus_read_unlock();
1503
4593e772 1504 if (needreport) {
89401176 1505 if (*firstreport)
4593e772
PM
1506 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1507 show_stalled_ipi_trace();
d5f177d3
PM
1508 }
1509}
1510
cbe0d8d9
PM
1511static void rcu_tasks_trace_empty_fn(void *unused)
1512{
1513}
1514
d5f177d3 1515/* Wait for grace period to complete and provide ordering. */
af051ca4 1516static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
d5f177d3 1517{
cbe0d8d9 1518 int cpu;
4593e772
PM
1519 bool firstreport;
1520 struct task_struct *g, *t;
1521 LIST_HEAD(holdouts);
1522 long ret;
1523
cbe0d8d9
PM
1524 // Wait for any lingering IPI handlers to complete. Note that
1525 // if a CPU has gone offline or transitioned to userspace in the
1526 // meantime, all IPI handlers should have been drained beforehand.
1527 // Yes, this assumes that CPUs process IPIs in order. If that ever
1528 // changes, there will need to be a recheck and/or timed wait.
1529 for_each_online_cpu(cpu)
f5dbc594 1530 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
cbe0d8d9
PM
1531 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1532
d5f177d3
PM
1533 // Remove the safety count.
1534 smp_mb__before_atomic(); // Order vs. earlier atomics
1535 atomic_dec(&trc_n_readers_need_end);
1536 smp_mb__after_atomic(); // Order vs. later atomics
1537
1538 // Wait for readers.
af051ca4 1539 set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
4593e772
PM
1540 for (;;) {
1541 ret = wait_event_idle_exclusive_timeout(
1542 trc_wait,
1543 atomic_read(&trc_n_readers_need_end) == 0,
1544 READ_ONCE(rcu_task_stall_timeout));
1545 if (ret)
1546 break; // Count reached zero.
af051ca4 1547 // Stall warning time, so make a list of the offenders.
f747c7e1 1548 rcu_read_lock();
4593e772 1549 for_each_process_thread(g, t)
276c4104 1550 if (READ_ONCE(t->trc_reader_special.b.need_qs))
4593e772 1551 trc_add_holdout(t, &holdouts);
f747c7e1 1552 rcu_read_unlock();
4593e772 1553 firstreport = true;
592031cc
PM
1554 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1555 if (READ_ONCE(t->trc_reader_special.b.need_qs))
4593e772 1556 show_stalled_task_trace(t, &firstreport);
592031cc
PM
1557 trc_del_holdout(t); // Release task_struct reference.
1558 }
4593e772
PM
1559 if (firstreport)
1560 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1561 show_stalled_ipi_trace();
1562 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1563 }
d5f177d3 1564 smp_mb(); // Caller's code must be ordered after wakeup.
43766c3e 1565 // Pairs with pretty much every ordering primitive.
d5f177d3
PM
1566}
1567
1568/* Report any needed quiescent state for this exiting task. */
25246fc8 1569static void exit_tasks_rcu_finish_trace(struct task_struct *t)
d5f177d3
PM
1570{
1571 WRITE_ONCE(t->trc_reader_checked, true);
bdb0cca0 1572 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
d5f177d3 1573 WRITE_ONCE(t->trc_reader_nesting, 0);
276c4104 1574 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
a5c071cc 1575 rcu_read_unlock_trace_special(t);
d5f177d3
PM
1576}
1577
d5f177d3
PM
1578/**
1579 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1580 * @rhp: structure to be used for queueing the RCU updates.
1581 * @func: actual callback function to be invoked after the grace period
1582 *
ed42c380
NU
1583 * The callback function will be invoked some time after a trace rcu-tasks
1584 * grace period elapses, in other words after all currently executing
1585 * trace rcu-tasks read-side critical sections have completed. These
1586 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1587 * and rcu_read_unlock_trace().
d5f177d3
PM
1588 *
1589 * See the description of call_rcu() for more detailed information on
1590 * memory ordering guarantees.
1591 */
1592void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1593{
1594 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1595}
1596EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1597
1598/**
1599 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1600 *
1601 * Control will return to the caller some time after a trace rcu-tasks
c7dcf810 1602 * grace period has elapsed, in other words after all currently executing
ed42c380 1603 * trace rcu-tasks read-side critical sections have elapsed. These read-side
c7dcf810
PM
1604 * critical sections are delimited by calls to rcu_read_lock_trace()
1605 * and rcu_read_unlock_trace().
d5f177d3
PM
1606 *
1607 * This is a very specialized primitive, intended only for a few uses in
1608 * tracing and other situations requiring manipulation of function preambles
1609 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1610 * (yet) intended for heavy use from multiple CPUs.
1611 *
1612 * See the description of synchronize_rcu() for more detailed information
1613 * on memory ordering guarantees.
1614 */
1615void synchronize_rcu_tasks_trace(void)
1616{
1617 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1618 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1619}
1620EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1621
1622/**
1623 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1624 *
1625 * Although the current implementation is guaranteed to wait, it is not
1626 * obligated to, for example, if there are no pending callbacks.
1627 */
1628void rcu_barrier_tasks_trace(void)
1629{
ce9b1c66 1630 rcu_barrier_tasks_generic(&rcu_tasks_trace);
d5f177d3
PM
1631}
1632EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1633
1634static int __init rcu_spawn_tasks_trace_kthread(void)
1635{
cafafd67 1636 cblist_init_generic(&rcu_tasks_trace);
2393a613 1637 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
4fe192df 1638 rcu_tasks_trace.gp_sleep = HZ / 10;
75dc2da5 1639 rcu_tasks_trace.init_fract = HZ / 10;
2393a613 1640 } else {
4fe192df
PM
1641 rcu_tasks_trace.gp_sleep = HZ / 200;
1642 if (rcu_tasks_trace.gp_sleep <= 0)
1643 rcu_tasks_trace.gp_sleep = 1;
75dc2da5 1644 rcu_tasks_trace.init_fract = HZ / 200;
2393a613
PM
1645 if (rcu_tasks_trace.init_fract <= 0)
1646 rcu_tasks_trace.init_fract = 1;
1647 }
d5f177d3
PM
1648 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1649 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1650 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1651 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1652 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1653 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1654 return 0;
1655}
d5f177d3 1656
27c0f144
PM
1657#if !defined(CONFIG_TINY_RCU)
1658void show_rcu_tasks_trace_gp_kthread(void)
e21408ce 1659{
40471509 1660 char buf[64];
e21408ce 1661
edf3775f
PM
1662 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1663 data_race(n_heavy_reader_ofl_updates),
40471509
PM
1664 data_race(n_heavy_reader_updates),
1665 data_race(n_heavy_reader_attempts));
e21408ce
PM
1666 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1667}
27c0f144
PM
1668EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1669#endif // !defined(CONFIG_TINY_RCU)
e21408ce 1670
d5f177d3 1671#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
25246fc8 1672static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
d5f177d3 1673#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
8fd8ca38 1674
8344496e 1675#ifndef CONFIG_TINY_RCU
e21408ce
PM
1676void show_rcu_tasks_gp_kthreads(void)
1677{
1678 show_rcu_tasks_classic_gp_kthread();
1679 show_rcu_tasks_rude_gp_kthread();
1680 show_rcu_tasks_trace_gp_kthread();
1681}
8344496e 1682#endif /* #ifndef CONFIG_TINY_RCU */
e21408ce 1683
bfba7ed0
URS
1684#ifdef CONFIG_PROVE_RCU
1685struct rcu_tasks_test_desc {
1686 struct rcu_head rh;
1687 const char *name;
1688 bool notrun;
1689};
1690
1691static struct rcu_tasks_test_desc tests[] = {
1692 {
1693 .name = "call_rcu_tasks()",
1694 /* If not defined, the test is skipped. */
1695 .notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1696 },
1697 {
1698 .name = "call_rcu_tasks_rude()",
1699 /* If not defined, the test is skipped. */
1700 .notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1701 },
1702 {
1703 .name = "call_rcu_tasks_trace()",
1704 /* If not defined, the test is skipped. */
1705 .notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1706 }
1707};
1708
1709static void test_rcu_tasks_callback(struct rcu_head *rhp)
1710{
1711 struct rcu_tasks_test_desc *rttd =
1712 container_of(rhp, struct rcu_tasks_test_desc, rh);
1713
1714 pr_info("Callback from %s invoked.\n", rttd->name);
1715
1716 rttd->notrun = true;
1717}
1718
1719static void rcu_tasks_initiate_self_tests(void)
1720{
1721 pr_info("Running RCU-tasks wait API self tests\n");
1722#ifdef CONFIG_TASKS_RCU
1723 synchronize_rcu_tasks();
1724 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1725#endif
1726
1727#ifdef CONFIG_TASKS_RUDE_RCU
1728 synchronize_rcu_tasks_rude();
1729 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1730#endif
1731
1732#ifdef CONFIG_TASKS_TRACE_RCU
1733 synchronize_rcu_tasks_trace();
1734 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1735#endif
1736}
1737
1738static int rcu_tasks_verify_self_tests(void)
1739{
1740 int ret = 0;
1741 int i;
1742
1743 for (i = 0; i < ARRAY_SIZE(tests); i++) {
1744 if (!tests[i].notrun) { // still hanging.
1745 pr_err("%s has been failed.\n", tests[i].name);
1746 ret = -1;
1747 }
1748 }
1749
1750 if (ret)
1751 WARN_ON(1);
1752
1753 return ret;
1754}
1755late_initcall(rcu_tasks_verify_self_tests);
1756#else /* #ifdef CONFIG_PROVE_RCU */
1757static void rcu_tasks_initiate_self_tests(void) { }
1758#endif /* #else #ifdef CONFIG_PROVE_RCU */
1759
1b04fa99
URS
1760void __init rcu_init_tasks_generic(void)
1761{
1762#ifdef CONFIG_TASKS_RCU
1763 rcu_spawn_tasks_kthread();
1764#endif
1765
1766#ifdef CONFIG_TASKS_RUDE_RCU
1767 rcu_spawn_tasks_rude_kthread();
1768#endif
1769
1770#ifdef CONFIG_TASKS_TRACE_RCU
1771 rcu_spawn_tasks_trace_kthread();
1772#endif
bfba7ed0
URS
1773
1774 // Run the self-tests.
1775 rcu_tasks_initiate_self_tests();
1b04fa99
URS
1776}
1777
8fd8ca38
PM
1778#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1779static inline void rcu_tasks_bootup_oddness(void) {}
1780#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */