rcu-tasks: Add slow-IPI indicator to RCU Tasks Trace stall warnings
[linux-2.6-block.git] / kernel / rcu / tasks.h
CommitLineData
eacd6f04
PM
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8fd8ca38 8#ifdef CONFIG_TASKS_RCU_GENERIC
9b073de1 9#include "rcu_segcblist.h"
5873b8a9
PM
10
11////////////////////////////////////////////////////////////////////////
12//
13// Generic data structures.
14
15struct rcu_tasks;
16typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
e4fe5dd6
PM
17typedef void (*pregp_func_t)(void);
18typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
9796e1ae 19typedef void (*postscan_func_t)(struct list_head *hop);
e4fe5dd6 20typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
af051ca4 21typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
eacd6f04 22
07e10515 23/**
cafafd67 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
9b073de1 25 * @cblist: Callback list.
381a4f3b 26 * @lock: Lock protecting per-CPU callback list.
7d13d30b
PM
27 * @rtp_jiffies: Jiffies counter value for statistics.
28 * @rtp_n_lock_retries: Rough lock-contention statistic.
d363f833 29 * @rtp_work: Work queue for invoking callbacks.
3063b33a 30 * @rtp_irq_work: IRQ work queue for deferred wakeups.
ce9b1c66
PM
31 * @barrier_q_head: RCU callback for barrier operation.
32 * @cpu: CPU number corresponding to this entry.
33 * @rtpp: Pointer to the rcu_tasks structure.
cafafd67
PM
34 */
35struct rcu_tasks_percpu {
9b073de1 36 struct rcu_segcblist cblist;
381a4f3b 37 raw_spinlock_t __private lock;
7d13d30b
PM
38 unsigned long rtp_jiffies;
39 unsigned long rtp_n_lock_retries;
d363f833 40 struct work_struct rtp_work;
3063b33a 41 struct irq_work rtp_irq_work;
ce9b1c66 42 struct rcu_head barrier_q_head;
d363f833
PM
43 int cpu;
44 struct rcu_tasks *rtpp;
cafafd67
PM
45};
46
47/**
48 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
88db792b 49 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
cafafd67 50 * @cbs_gbl_lock: Lock protecting callback list.
d96225fd 51 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
07e10515 52 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
5873b8a9 53 * @gp_func: This flavor's grace-period-wait function.
af051ca4 54 * @gp_state: Grace period's most recent state transition (debugging).
4fe192df 55 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
2393a613 56 * @init_fract: Initial backoff sleep interval.
af051ca4
PM
57 * @gp_jiffies: Time of last @gp_state transition.
58 * @gp_start: Most recent grace-period start in jiffies.
b14fb4fb 59 * @tasks_gp_seq: Number of grace periods completed since boot.
238dbce3 60 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
7e0669c3 61 * @n_ipis_fails: Number of IPI-send failures.
e4fe5dd6
PM
62 * @pregp_func: This flavor's pre-grace-period function (optional).
63 * @pertask_func: This flavor's per-task scan function (optional).
64 * @postscan_func: This flavor's post-task scan function (optional).
85b86994 65 * @holdouts_func: This flavor's holdout-list scan function (optional).
e4fe5dd6 66 * @postgp_func: This flavor's post-grace-period function (optional).
5873b8a9 67 * @call_func: This flavor's call_rcu()-equivalent function.
cafafd67 68 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
7a30871b 69 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
2cee0789
PM
70 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
71 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
fd796e41 72 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
ce9b1c66
PM
73 * @barrier_q_mutex: Serialize barrier operations.
74 * @barrier_q_count: Number of queues being waited on.
75 * @barrier_q_completion: Barrier wait/wakeup mechanism.
76 * @barrier_q_seq: Sequence number for barrier operations.
c97d12a6
PM
77 * @name: This flavor's textual name.
78 * @kname: This flavor's kthread name.
07e10515
PM
79 */
80struct rcu_tasks {
88db792b 81 struct rcuwait cbs_wait;
cafafd67 82 raw_spinlock_t cbs_gbl_lock;
d96225fd 83 struct mutex tasks_gp_mutex;
af051ca4 84 int gp_state;
4fe192df 85 int gp_sleep;
2393a613 86 int init_fract;
af051ca4 87 unsigned long gp_jiffies;
88092d0c 88 unsigned long gp_start;
b14fb4fb 89 unsigned long tasks_gp_seq;
238dbce3 90 unsigned long n_ipis;
7e0669c3 91 unsigned long n_ipis_fails;
07e10515 92 struct task_struct *kthread_ptr;
5873b8a9 93 rcu_tasks_gp_func_t gp_func;
e4fe5dd6
PM
94 pregp_func_t pregp_func;
95 pertask_func_t pertask_func;
96 postscan_func_t postscan_func;
97 holdouts_func_t holdouts_func;
98 postgp_func_t postgp_func;
5873b8a9 99 call_rcu_func_t call_func;
cafafd67 100 struct rcu_tasks_percpu __percpu *rtpcpu;
7a30871b 101 int percpu_enqueue_shift;
8dd593fd 102 int percpu_enqueue_lim;
2cee0789 103 int percpu_dequeue_lim;
fd796e41 104 unsigned long percpu_dequeue_gpseq;
ce9b1c66
PM
105 struct mutex barrier_q_mutex;
106 atomic_t barrier_q_count;
107 struct completion barrier_q_completion;
108 unsigned long barrier_q_seq;
c97d12a6
PM
109 char *name;
110 char *kname;
07e10515
PM
111};
112
3063b33a
PM
113static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
114
cafafd67
PM
115#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
116static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \
381a4f3b 117 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \
88db792b 118 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \
cafafd67
PM
119}; \
120static struct rcu_tasks rt_name = \
121{ \
88db792b 122 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \
cafafd67 123 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \
d96225fd 124 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \
cafafd67
PM
125 .gp_func = gp, \
126 .call_func = call, \
127 .rtpcpu = &rt_name ## __percpu, \
128 .name = n, \
2bcd18e0 129 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \
8dd593fd 130 .percpu_enqueue_lim = 1, \
2cee0789 131 .percpu_dequeue_lim = 1, \
ce9b1c66
PM
132 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \
133 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \
cafafd67 134 .kname = #rt_name, \
07e10515
PM
135}
136
eacd6f04
PM
137/* Track exiting tasks in order to allow them to be waited for. */
138DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
139
b0afa0f0 140/* Avoid IPIing CPUs early in the grace period. */
574de876 141#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
b0afa0f0
PM
142static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
143module_param(rcu_task_ipi_delay, int, 0644);
144
eacd6f04
PM
145/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
146#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
147static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
148module_param(rcu_task_stall_timeout, int, 0644);
f2539003
PM
149#define RCU_TASK_STALL_INFO (HZ * 10)
150static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
151module_param(rcu_task_stall_info, int, 0644);
152static int rcu_task_stall_info_mult __read_mostly = 3;
153module_param(rcu_task_stall_info_mult, int, 0444);
eacd6f04 154
8610b656
PM
155static int rcu_task_enqueue_lim __read_mostly = -1;
156module_param(rcu_task_enqueue_lim, int, 0444);
157
ab97152f
PM
158static bool rcu_task_cb_adjust;
159static int rcu_task_contend_lim __read_mostly = 100;
160module_param(rcu_task_contend_lim, int, 0444);
fd796e41
PM
161static int rcu_task_collapse_lim __read_mostly = 10;
162module_param(rcu_task_collapse_lim, int, 0444);
ab97152f 163
af051ca4
PM
164/* RCU tasks grace-period state for debugging. */
165#define RTGS_INIT 0
166#define RTGS_WAIT_WAIT_CBS 1
167#define RTGS_WAIT_GP 2
168#define RTGS_PRE_WAIT_GP 3
169#define RTGS_SCAN_TASKLIST 4
170#define RTGS_POST_SCAN_TASKLIST 5
171#define RTGS_WAIT_SCAN_HOLDOUTS 6
172#define RTGS_SCAN_HOLDOUTS 7
173#define RTGS_POST_GP 8
174#define RTGS_WAIT_READERS 9
175#define RTGS_INVOKE_CBS 10
176#define RTGS_WAIT_CBS 11
8344496e 177#ifndef CONFIG_TINY_RCU
af051ca4
PM
178static const char * const rcu_tasks_gp_state_names[] = {
179 "RTGS_INIT",
180 "RTGS_WAIT_WAIT_CBS",
181 "RTGS_WAIT_GP",
182 "RTGS_PRE_WAIT_GP",
183 "RTGS_SCAN_TASKLIST",
184 "RTGS_POST_SCAN_TASKLIST",
185 "RTGS_WAIT_SCAN_HOLDOUTS",
186 "RTGS_SCAN_HOLDOUTS",
187 "RTGS_POST_GP",
188 "RTGS_WAIT_READERS",
189 "RTGS_INVOKE_CBS",
190 "RTGS_WAIT_CBS",
191};
8344496e 192#endif /* #ifndef CONFIG_TINY_RCU */
af051ca4 193
5873b8a9
PM
194////////////////////////////////////////////////////////////////////////
195//
196// Generic code.
197
d363f833
PM
198static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
199
af051ca4
PM
200/* Record grace-period phase and time. */
201static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
202{
203 rtp->gp_state = newstate;
204 rtp->gp_jiffies = jiffies;
205}
206
8344496e 207#ifndef CONFIG_TINY_RCU
af051ca4
PM
208/* Return state name. */
209static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
210{
211 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
212 int j = READ_ONCE(i); // Prevent the compiler from reading twice
213
214 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
215 return "???";
216 return rcu_tasks_gp_state_names[j];
217}
8344496e 218#endif /* #ifndef CONFIG_TINY_RCU */
af051ca4 219
cafafd67
PM
220// Initialize per-CPU callback lists for the specified flavor of
221// Tasks RCU.
222static void cblist_init_generic(struct rcu_tasks *rtp)
223{
224 int cpu;
225 unsigned long flags;
8610b656 226 int lim;
da123016 227 int shift;
cafafd67
PM
228
229 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
ab97152f
PM
230 if (rcu_task_enqueue_lim < 0) {
231 rcu_task_enqueue_lim = 1;
232 rcu_task_cb_adjust = true;
233 pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
234 } else if (rcu_task_enqueue_lim == 0) {
8610b656 235 rcu_task_enqueue_lim = 1;
ab97152f 236 }
8610b656
PM
237 lim = rcu_task_enqueue_lim;
238
239 if (lim > nr_cpu_ids)
240 lim = nr_cpu_ids;
da123016
PM
241 shift = ilog2(nr_cpu_ids / lim);
242 if (((nr_cpu_ids - 1) >> shift) >= lim)
243 shift++;
244 WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
2cee0789 245 WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
8610b656 246 smp_store_release(&rtp->percpu_enqueue_lim, lim);
cafafd67
PM
247 for_each_possible_cpu(cpu) {
248 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
249
250 WARN_ON_ONCE(!rtpcp);
251 if (cpu)
381a4f3b
PM
252 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
253 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
9b073de1
PM
254 if (rcu_segcblist_empty(&rtpcp->cblist))
255 rcu_segcblist_init(&rtpcp->cblist);
d363f833
PM
256 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
257 rtpcp->cpu = cpu;
258 rtpcp->rtpp = rtp;
381a4f3b 259 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
cafafd67
PM
260 }
261 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
8610b656 262 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
cafafd67
PM
263}
264
3063b33a
PM
265// IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
266static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
267{
268 struct rcu_tasks *rtp;
269 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
270
271 rtp = rtpcp->rtpp;
88db792b 272 rcuwait_wake_up(&rtp->cbs_wait);
3063b33a
PM
273}
274
5873b8a9
PM
275// Enqueue a callback for the specified flavor of Tasks RCU.
276static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
277 struct rcu_tasks *rtp)
eacd6f04 278{
07d95c34 279 int chosen_cpu;
eacd6f04 280 unsigned long flags;
07d95c34 281 int ideal_cpu;
7d13d30b 282 unsigned long j;
ab97152f 283 bool needadjust = false;
eacd6f04 284 bool needwake;
cafafd67 285 struct rcu_tasks_percpu *rtpcp;
eacd6f04
PM
286
287 rhp->next = NULL;
288 rhp->func = func;
cafafd67 289 local_irq_save(flags);
fd796e41 290 rcu_read_lock();
07d95c34
ED
291 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
292 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
293 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
7d13d30b
PM
294 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
295 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
296 j = jiffies;
297 if (rtpcp->rtp_jiffies != j) {
298 rtpcp->rtp_jiffies = j;
299 rtpcp->rtp_n_lock_retries = 0;
300 }
ab97152f
PM
301 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
302 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
303 needadjust = true; // Defer adjustment to avoid deadlock.
7d13d30b 304 }
9b073de1 305 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
381a4f3b 306 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
cafafd67 307 cblist_init_generic(rtp);
381a4f3b 308 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
cafafd67 309 }
9b073de1
PM
310 needwake = rcu_segcblist_empty(&rtpcp->cblist);
311 rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
381a4f3b 312 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
ab97152f
PM
313 if (unlikely(needadjust)) {
314 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
315 if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
00a8b4b5 316 WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
fd796e41 317 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
ab97152f
PM
318 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
319 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
320 }
321 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
322 }
fd796e41 323 rcu_read_unlock();
eacd6f04 324 /* We can't create the thread unless interrupts are enabled. */
07e10515 325 if (needwake && READ_ONCE(rtp->kthread_ptr))
3063b33a 326 irq_work_queue(&rtpcp->rtp_irq_work);
eacd6f04 327}
eacd6f04 328
ce9b1c66
PM
329// RCU callback function for rcu_barrier_tasks_generic().
330static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
331{
332 struct rcu_tasks *rtp;
333 struct rcu_tasks_percpu *rtpcp;
334
335 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
336 rtp = rtpcp->rtpp;
337 if (atomic_dec_and_test(&rtp->barrier_q_count))
338 complete(&rtp->barrier_q_completion);
339}
340
341// Wait for all in-flight callbacks for the specified RCU Tasks flavor.
342// Operates in a manner similar to rcu_barrier().
343static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
344{
345 int cpu;
346 unsigned long flags;
347 struct rcu_tasks_percpu *rtpcp;
348 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
349
350 mutex_lock(&rtp->barrier_q_mutex);
351 if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
352 smp_mb();
353 mutex_unlock(&rtp->barrier_q_mutex);
354 return;
355 }
356 rcu_seq_start(&rtp->barrier_q_seq);
357 init_completion(&rtp->barrier_q_completion);
358 atomic_set(&rtp->barrier_q_count, 2);
359 for_each_possible_cpu(cpu) {
2cee0789 360 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
ce9b1c66
PM
361 break;
362 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
363 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
364 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
365 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
366 atomic_inc(&rtp->barrier_q_count);
367 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
368 }
369 if (atomic_sub_and_test(2, &rtp->barrier_q_count))
370 complete(&rtp->barrier_q_completion);
371 wait_for_completion(&rtp->barrier_q_completion);
372 rcu_seq_end(&rtp->barrier_q_seq);
373 mutex_unlock(&rtp->barrier_q_mutex);
374}
375
4d1114c0
PM
376// Advance callbacks and indicate whether either a grace period or
377// callback invocation is needed.
378static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
379{
380 int cpu;
381 unsigned long flags;
fd796e41
PM
382 long n;
383 long ncbs = 0;
384 long ncbsnz = 0;
4d1114c0
PM
385 int needgpcb = 0;
386
2cee0789 387 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
4d1114c0
PM
388 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
389
390 /* Advance and accelerate any new callbacks. */
fd796e41 391 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
4d1114c0
PM
392 continue;
393 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
fd796e41
PM
394 // Should we shrink down to a single callback queue?
395 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
396 if (n) {
397 ncbs += n;
398 if (cpu > 0)
399 ncbsnz += n;
400 }
4d1114c0
PM
401 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
402 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
403 if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
404 needgpcb |= 0x3;
405 if (!rcu_segcblist_empty(&rtpcp->cblist))
406 needgpcb |= 0x1;
407 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
408 }
fd796e41
PM
409
410 // Shrink down to a single callback queue if appropriate.
411 // This is done in two stages: (1) If there are no more than
412 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
413 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period,
414 // if there has not been an increase in callbacks, limit dequeuing
415 // to CPU 0. Note the matching RCU read-side critical section in
416 // call_rcu_tasks_generic().
417 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
418 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
419 if (rtp->percpu_enqueue_lim > 1) {
2bcd18e0 420 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
fd796e41
PM
421 smp_store_release(&rtp->percpu_enqueue_lim, 1);
422 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
423 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
424 }
425 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
426 }
427 if (rcu_task_cb_adjust && !ncbsnz &&
428 poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
429 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
430 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
431 WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
432 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
433 }
4cf0585c
PM
434 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
435 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
436
437 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
438 }
fd796e41
PM
439 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
440 }
441
4d1114c0
PM
442 return needgpcb;
443}
444
57881863 445// Advance callbacks and invoke any that are ready.
d363f833 446static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
eacd6f04 447{
57881863 448 int cpu;
d363f833 449 int cpunext;
eacd6f04 450 unsigned long flags;
9b073de1 451 int len;
9b073de1 452 struct rcu_head *rhp;
d363f833
PM
453 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
454 struct rcu_tasks_percpu *rtpcp_next;
455
456 cpu = rtpcp->cpu;
457 cpunext = cpu * 2 + 1;
2cee0789 458 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
d363f833
PM
459 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
460 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
461 cpunext++;
2cee0789 462 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
d363f833
PM
463 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
464 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
57881863 465 }
57881863 466 }
d363f833 467
ab2756ea 468 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
d363f833
PM
469 return;
470 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
471 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
472 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
473 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
474 len = rcl.len;
475 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
476 local_bh_disable();
477 rhp->func(rhp);
478 local_bh_enable();
479 cond_resched();
480 }
481 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
482 rcu_segcblist_add_len(&rtpcp->cblist, -len);
483 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
484 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
485}
486
487// Workqueue flood to advance callbacks and invoke any that are ready.
488static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
489{
490 struct rcu_tasks *rtp;
491 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
492
493 rtp = rtpcp->rtpp;
494 rcu_tasks_invoke_cbs(rtp, rtpcp);
57881863
PM
495}
496
d96225fd 497// Wait for one grace period.
4a8cc433 498static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
57881863
PM
499{
500 int needgpcb;
d96225fd
PM
501
502 mutex_lock(&rtp->tasks_gp_mutex);
d96225fd
PM
503
504 // If there were none, wait a bit and start over.
4a8cc433
PM
505 if (unlikely(midboot)) {
506 needgpcb = 0x2;
507 } else {
508 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
509 rcuwait_wait_event(&rtp->cbs_wait,
510 (needgpcb = rcu_tasks_need_gpcb(rtp)),
511 TASK_IDLE);
512 }
d96225fd
PM
513
514 if (needgpcb & 0x2) {
515 // Wait for one grace period.
516 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
517 rtp->gp_start = jiffies;
518 rcu_seq_start(&rtp->tasks_gp_seq);
519 rtp->gp_func(rtp);
520 rcu_seq_end(&rtp->tasks_gp_seq);
521 }
522
523 // Invoke callbacks.
524 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
525 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
526 mutex_unlock(&rtp->tasks_gp_mutex);
527}
528
529// RCU-tasks kthread that detects grace periods and invokes callbacks.
530static int __noreturn rcu_tasks_kthread(void *arg)
531{
07e10515 532 struct rcu_tasks *rtp = arg;
eacd6f04
PM
533
534 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
04d4e665 535 housekeeping_affine(current, HK_TYPE_RCU);
07e10515 536 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
eacd6f04
PM
537
538 /*
539 * Each pass through the following loop makes one check for
540 * newly arrived callbacks, and, if there are some, waits for
541 * one RCU-tasks grace period and then invokes the callbacks.
542 * This loop is terminated by the system going down. ;-)
543 */
544 for (;;) {
d96225fd
PM
545 // Wait for one grace period and invoke any callbacks
546 // that are ready.
4a8cc433 547 rcu_tasks_one_gp(rtp, false);
57881863 548
d96225fd 549 // Paranoid sleep to keep this from entering a tight loop.
4fe192df 550 schedule_timeout_idle(rtp->gp_sleep);
eacd6f04
PM
551 }
552}
553
68cb4720
PM
554// Wait for a grace period for the specified flavor of Tasks RCU.
555static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
556{
557 /* Complain if the scheduler has not started. */
558 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
559 "synchronize_rcu_tasks called too soon");
560
4a8cc433
PM
561 // If the grace-period kthread is running, use it.
562 if (READ_ONCE(rtp->kthread_ptr)) {
563 wait_rcu_gp(rtp->call_func);
564 return;
565 }
566 rcu_tasks_one_gp(rtp, true);
68cb4720
PM
567}
568
1b04fa99 569/* Spawn RCU-tasks grace-period kthread. */
5873b8a9 570static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
eacd6f04
PM
571{
572 struct task_struct *t;
573
c97d12a6
PM
574 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
575 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
5873b8a9 576 return;
eacd6f04 577 smp_mb(); /* Ensure others see full kthread. */
eacd6f04 578}
eacd6f04 579
eacd6f04
PM
580#ifndef CONFIG_TINY_RCU
581
582/*
583 * Print any non-default Tasks RCU settings.
584 */
585static void __init rcu_tasks_bootup_oddness(void)
586{
d5f177d3 587#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
f2539003
PM
588 int rtsimc;
589
eacd6f04
PM
590 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
591 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
f2539003
PM
592 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
593 if (rtsimc != rcu_task_stall_info_mult) {
594 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
595 rcu_task_stall_info_mult = rtsimc;
596 }
d5f177d3
PM
597#endif /* #ifdef CONFIG_TASKS_RCU */
598#ifdef CONFIG_TASKS_RCU
599 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
eacd6f04 600#endif /* #ifdef CONFIG_TASKS_RCU */
c84aad76
PM
601#ifdef CONFIG_TASKS_RUDE_RCU
602 pr_info("\tRude variant of Tasks RCU enabled.\n");
603#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
d5f177d3
PM
604#ifdef CONFIG_TASKS_TRACE_RCU
605 pr_info("\tTracing variant of Tasks RCU enabled.\n");
606#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
eacd6f04
PM
607}
608
609#endif /* #ifndef CONFIG_TINY_RCU */
5873b8a9 610
8344496e 611#ifndef CONFIG_TINY_RCU
e21408ce
PM
612/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
613static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
614{
10b3742f
PM
615 int cpu;
616 bool havecbs = false;
617
618 for_each_possible_cpu(cpu) {
619 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
620
621 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
622 havecbs = true;
623 break;
624 }
625 }
7e0669c3 626 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
e21408ce 627 rtp->kname,
7e0669c3 628 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
af051ca4 629 jiffies - data_race(rtp->gp_jiffies),
b14fb4fb 630 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
7e0669c3 631 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
e21408ce 632 ".k"[!!data_race(rtp->kthread_ptr)],
10b3742f 633 ".C"[havecbs],
e21408ce
PM
634 s);
635}
27c0f144 636#endif // #ifndef CONFIG_TINY_RCU
e21408ce 637
25246fc8
PM
638static void exit_tasks_rcu_finish_trace(struct task_struct *t);
639
640#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
5873b8a9 641
d01aa263
PM
642////////////////////////////////////////////////////////////////////////
643//
644// Shared code between task-list-scanning variants of Tasks RCU.
645
646/* Wait for one RCU-tasks grace period. */
647static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
648{
f2539003 649 struct task_struct *g;
d01aa263 650 int fract;
f2539003
PM
651 LIST_HEAD(holdouts);
652 unsigned long j;
653 unsigned long lastinfo;
654 unsigned long lastreport;
655 bool reported = false;
656 int rtsi;
657 struct task_struct *t;
d01aa263 658
af051ca4 659 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
d01aa263
PM
660 rtp->pregp_func();
661
662 /*
663 * There were callbacks, so we need to wait for an RCU-tasks
664 * grace period. Start off by scanning the task list for tasks
665 * that are not already voluntarily blocked. Mark these tasks
666 * and make a list of them in holdouts.
667 */
af051ca4 668 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
d01aa263
PM
669 rcu_read_lock();
670 for_each_process_thread(g, t)
671 rtp->pertask_func(t, &holdouts);
672 rcu_read_unlock();
673
af051ca4 674 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
9796e1ae 675 rtp->postscan_func(&holdouts);
d01aa263
PM
676
677 /*
678 * Each pass through the following loop scans the list of holdout
679 * tasks, removing any that are no longer holdouts. When the list
680 * is empty, we are done.
681 */
682 lastreport = jiffies;
f2539003
PM
683 lastinfo = lastreport;
684 rtsi = READ_ONCE(rcu_task_stall_info);
d01aa263 685
2393a613
PM
686 // Start off with initial wait and slowly back off to 1 HZ wait.
687 fract = rtp->init_fract;
d01aa263 688
77dc1741 689 while (!list_empty(&holdouts)) {
777570d9 690 ktime_t exp;
d01aa263
PM
691 bool firstreport;
692 bool needreport;
693 int rtst;
694
f2539003 695 // Slowly back off waiting for holdouts
af051ca4 696 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
bddf7122
PM
697 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
698 schedule_timeout_idle(fract);
699 } else {
700 exp = jiffies_to_nsecs(fract);
701 __set_current_state(TASK_IDLE);
702 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
703 }
d01aa263 704
75dc2da5
PM
705 if (fract < HZ)
706 fract++;
d01aa263
PM
707
708 rtst = READ_ONCE(rcu_task_stall_timeout);
709 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
f2539003 710 if (needreport) {
d01aa263 711 lastreport = jiffies;
f2539003
PM
712 reported = true;
713 }
d01aa263
PM
714 firstreport = true;
715 WARN_ON(signal_pending(current));
af051ca4 716 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
d01aa263 717 rtp->holdouts_func(&holdouts, needreport, &firstreport);
f2539003
PM
718
719 // Print pre-stall informational messages if needed.
720 j = jiffies;
721 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
722 lastinfo = j;
723 rtsi = rtsi * rcu_task_stall_info_mult;
724 pr_info("%s: %s grace period %lu is %lu jiffies old.\n",
725 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
726 }
d01aa263
PM
727 }
728
af051ca4
PM
729 set_tasks_gp_state(rtp, RTGS_POST_GP);
730 rtp->postgp_func(rtp);
d01aa263
PM
731}
732
25246fc8
PM
733#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
734
735#ifdef CONFIG_TASKS_RCU
736
5873b8a9
PM
737////////////////////////////////////////////////////////////////////////
738//
739// Simple variant of RCU whose quiescent states are voluntary context
8af9e2c7 740// switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
5873b8a9
PM
741// As such, grace periods can take one good long time. There are no
742// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
743// because this implementation is intended to get the system into a safe
744// state for some of the manipulations involved in tracing and the like.
745// Finally, this implementation does not support high call_rcu_tasks()
746// rates from multiple CPUs. If this is required, per-CPU callback lists
747// will be needed.
06a3ec92
PM
748//
749// The implementation uses rcu_tasks_wait_gp(), which relies on function
750// pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
751// function sets these function pointers up so that rcu_tasks_wait_gp()
752// invokes these functions in this order:
753//
754// rcu_tasks_pregp_step():
755// Invokes synchronize_rcu() in order to wait for all in-flight
756// t->on_rq and t->nvcsw transitions to complete. This works because
757// all such transitions are carried out with interrupts disabled.
758// rcu_tasks_pertask(), invoked on every non-idle task:
759// For every runnable non-idle task other than the current one, use
760// get_task_struct() to pin down that task, snapshot that task's
761// number of voluntary context switches, and add that task to the
762// holdout list.
763// rcu_tasks_postscan():
764// Invoke synchronize_srcu() to ensure that all tasks that were
765// in the process of exiting (and which thus might not know to
766// synchronize with this RCU Tasks grace period) have completed
767// exiting.
768// check_all_holdout_tasks(), repeatedly until holdout list is empty:
769// Scans the holdout list, attempting to identify a quiescent state
770// for each task on the list. If there is a quiescent state, the
771// corresponding task is removed from the holdout list.
772// rcu_tasks_postgp():
773// Invokes synchronize_rcu() in order to ensure that all prior
774// t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
775// to have happened before the end of this RCU Tasks grace period.
776// Again, this works because all such transitions are carried out
777// with interrupts disabled.
778//
779// For each exiting task, the exit_tasks_rcu_start() and
780// exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
781// read-side critical sections waited for by rcu_tasks_postscan().
782//
381a4f3b
PM
783// Pre-grace-period update-side code is ordered before the grace
784// via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
785// is ordered before the grace period via synchronize_rcu() call in
786// rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
06a3ec92 787// disabling.
5873b8a9 788
e4fe5dd6
PM
789/* Pre-grace-period preparation. */
790static void rcu_tasks_pregp_step(void)
791{
792 /*
793 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
794 * to complete. Invoking synchronize_rcu() suffices because all
795 * these transitions occur with interrupts disabled. Without this
796 * synchronize_rcu(), a read-side critical section that started
797 * before the grace period might be incorrectly seen as having
798 * started after the grace period.
799 *
800 * This synchronize_rcu() also dispenses with the need for a
801 * memory barrier on the first store to t->rcu_tasks_holdout,
802 * as it forces the store to happen after the beginning of the
803 * grace period.
804 */
805 synchronize_rcu();
806}
807
808/* Per-task initial processing. */
809static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
810{
811 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
812 get_task_struct(t);
813 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
814 WRITE_ONCE(t->rcu_tasks_holdout, true);
815 list_add(&t->rcu_tasks_holdout_list, hop);
816 }
817}
818
819/* Processing between scanning taskslist and draining the holdout list. */
04a3c5aa 820static void rcu_tasks_postscan(struct list_head *hop)
e4fe5dd6
PM
821{
822 /*
823 * Wait for tasks that are in the process of exiting. This
824 * does only part of the job, ensuring that all tasks that were
825 * previously exiting reach the point where they have disabled
826 * preemption, allowing the later synchronize_rcu() to finish
827 * the job.
828 */
829 synchronize_srcu(&tasks_rcu_exit_srcu);
830}
831
5873b8a9
PM
832/* See if tasks are still holding out, complain if so. */
833static void check_holdout_task(struct task_struct *t,
834 bool needreport, bool *firstreport)
835{
836 int cpu;
837
838 if (!READ_ONCE(t->rcu_tasks_holdout) ||
839 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
840 !READ_ONCE(t->on_rq) ||
841 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
842 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
843 WRITE_ONCE(t->rcu_tasks_holdout, false);
844 list_del_init(&t->rcu_tasks_holdout_list);
845 put_task_struct(t);
846 return;
847 }
848 rcu_request_urgent_qs_task(t);
849 if (!needreport)
850 return;
851 if (*firstreport) {
852 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
853 *firstreport = false;
854 }
855 cpu = task_cpu(t);
856 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
857 t, ".I"[is_idle_task(t)],
858 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
859 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
860 t->rcu_tasks_idle_cpu, cpu);
861 sched_show_task(t);
862}
863
e4fe5dd6
PM
864/* Scan the holdout lists for tasks no longer holding out. */
865static void check_all_holdout_tasks(struct list_head *hop,
866 bool needreport, bool *firstreport)
867{
868 struct task_struct *t, *t1;
869
870 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
871 check_holdout_task(t, needreport, firstreport);
872 cond_resched();
873 }
874}
875
876/* Finish off the Tasks-RCU grace period. */
af051ca4 877static void rcu_tasks_postgp(struct rcu_tasks *rtp)
e4fe5dd6
PM
878{
879 /*
880 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
881 * memory barriers prior to them in the schedule() path, memory
882 * reordering on other CPUs could cause their RCU-tasks read-side
883 * critical sections to extend past the end of the grace period.
884 * However, because these ->nvcsw updates are carried out with
885 * interrupts disabled, we can use synchronize_rcu() to force the
886 * needed ordering on all such CPUs.
887 *
888 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
889 * accesses to be within the grace period, avoiding the need for
890 * memory barriers for ->rcu_tasks_holdout accesses.
891 *
892 * In addition, this synchronize_rcu() waits for exiting tasks
893 * to complete their final preempt_disable() region of execution,
894 * cleaning up after the synchronize_srcu() above.
895 */
896 synchronize_rcu();
897}
898
5873b8a9 899void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
c97d12a6 900DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
5873b8a9
PM
901
902/**
903 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
904 * @rhp: structure to be used for queueing the RCU updates.
905 * @func: actual callback function to be invoked after the grace period
906 *
907 * The callback function will be invoked some time after a full grace
908 * period elapses, in other words after all currently executing RCU
909 * read-side critical sections have completed. call_rcu_tasks() assumes
910 * that the read-side critical sections end at a voluntary context
8af9e2c7 911 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
5873b8a9
PM
912 * or transition to usermode execution. As such, there are no read-side
913 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
914 * this primitive is intended to determine that all tasks have passed
a616aec9 915 * through a safe state, not so much for data-structure synchronization.
5873b8a9
PM
916 *
917 * See the description of call_rcu() for more detailed information on
918 * memory ordering guarantees.
919 */
920void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
921{
922 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
923}
924EXPORT_SYMBOL_GPL(call_rcu_tasks);
925
926/**
927 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
928 *
929 * Control will return to the caller some time after a full rcu-tasks
930 * grace period has elapsed, in other words after all currently
931 * executing rcu-tasks read-side critical sections have elapsed. These
932 * read-side critical sections are delimited by calls to schedule(),
933 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
934 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
935 *
936 * This is a very specialized primitive, intended only for a few uses in
937 * tracing and other situations requiring manipulation of function
938 * preambles and profiling hooks. The synchronize_rcu_tasks() function
939 * is not (yet) intended for heavy use from multiple CPUs.
940 *
941 * See the description of synchronize_rcu() for more detailed information
942 * on memory ordering guarantees.
943 */
944void synchronize_rcu_tasks(void)
945{
946 synchronize_rcu_tasks_generic(&rcu_tasks);
947}
948EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
949
950/**
951 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
952 *
953 * Although the current implementation is guaranteed to wait, it is not
954 * obligated to, for example, if there are no pending callbacks.
955 */
956void rcu_barrier_tasks(void)
957{
ce9b1c66 958 rcu_barrier_tasks_generic(&rcu_tasks);
5873b8a9
PM
959}
960EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
961
962static int __init rcu_spawn_tasks_kthread(void)
963{
cafafd67 964 cblist_init_generic(&rcu_tasks);
4fe192df 965 rcu_tasks.gp_sleep = HZ / 10;
75dc2da5 966 rcu_tasks.init_fract = HZ / 10;
e4fe5dd6
PM
967 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
968 rcu_tasks.pertask_func = rcu_tasks_pertask;
969 rcu_tasks.postscan_func = rcu_tasks_postscan;
970 rcu_tasks.holdouts_func = check_all_holdout_tasks;
971 rcu_tasks.postgp_func = rcu_tasks_postgp;
5873b8a9
PM
972 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
973 return 0;
974}
5873b8a9 975
27c0f144
PM
976#if !defined(CONFIG_TINY_RCU)
977void show_rcu_tasks_classic_gp_kthread(void)
e21408ce
PM
978{
979 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
980}
27c0f144
PM
981EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
982#endif // !defined(CONFIG_TINY_RCU)
e21408ce 983
25246fc8
PM
984/* Do the srcu_read_lock() for the above synchronize_srcu(). */
985void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
986{
987 preempt_disable();
988 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
989 preempt_enable();
990}
991
992/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
993void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
994{
995 struct task_struct *t = current;
996
997 preempt_disable();
998 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
999 preempt_enable();
1000 exit_tasks_rcu_finish_trace(t);
1001}
1002
e21408ce 1003#else /* #ifdef CONFIG_TASKS_RCU */
25246fc8
PM
1004void exit_tasks_rcu_start(void) { }
1005void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
e21408ce 1006#endif /* #else #ifdef CONFIG_TASKS_RCU */
c84aad76
PM
1007
1008#ifdef CONFIG_TASKS_RUDE_RCU
1009
1010////////////////////////////////////////////////////////////////////////
1011//
1012// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1013// passing an empty function to schedule_on_each_cpu(). This approach
e4be1f44
PM
1014// provides an asynchronous call_rcu_tasks_rude() API and batching of
1015// concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
9fc98e31
PM
1016// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1017// and induces otherwise unnecessary context switches on all online CPUs,
1018// whether idle or not.
1019//
1020// Callback handling is provided by the rcu_tasks_kthread() function.
1021//
1022// Ordering is provided by the scheduler's context-switch code.
c84aad76
PM
1023
1024// Empty function to allow workqueues to force a context switch.
1025static void rcu_tasks_be_rude(struct work_struct *work)
1026{
1027}
1028
1029// Wait for one rude RCU-tasks grace period.
1030static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1031{
f75fd4b9
PS
1032 if (num_online_cpus() <= 1)
1033 return; // Fastpath for only one CPU.
1034
238dbce3 1035 rtp->n_ipis += cpumask_weight(cpu_online_mask);
c84aad76
PM
1036 schedule_on_each_cpu(rcu_tasks_be_rude);
1037}
1038
1039void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
c97d12a6
PM
1040DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1041 "RCU Tasks Rude");
c84aad76
PM
1042
1043/**
1044 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1045 * @rhp: structure to be used for queueing the RCU updates.
1046 * @func: actual callback function to be invoked after the grace period
1047 *
1048 * The callback function will be invoked some time after a full grace
1049 * period elapses, in other words after all currently executing RCU
1050 * read-side critical sections have completed. call_rcu_tasks_rude()
1051 * assumes that the read-side critical sections end at context switch,
8af9e2c7 1052 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
a6517e9c
NU
1053 * usermode execution is schedulable). As such, there are no read-side
1054 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1055 * this primitive is intended to determine that all tasks have passed
1056 * through a safe state, not so much for data-structure synchronization.
c84aad76
PM
1057 *
1058 * See the description of call_rcu() for more detailed information on
1059 * memory ordering guarantees.
1060 */
1061void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1062{
1063 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1064}
1065EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1066
1067/**
1068 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1069 *
1070 * Control will return to the caller some time after a rude rcu-tasks
1071 * grace period has elapsed, in other words after all currently
1072 * executing rcu-tasks read-side critical sections have elapsed. These
1073 * read-side critical sections are delimited by calls to schedule(),
a6517e9c
NU
1074 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1075 * context), and (in theory, anyway) cond_resched().
c84aad76
PM
1076 *
1077 * This is a very specialized primitive, intended only for a few uses in
1078 * tracing and other situations requiring manipulation of function preambles
1079 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
1080 * (yet) intended for heavy use from multiple CPUs.
1081 *
1082 * See the description of synchronize_rcu() for more detailed information
1083 * on memory ordering guarantees.
1084 */
1085void synchronize_rcu_tasks_rude(void)
1086{
1087 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1088}
1089EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1090
1091/**
1092 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1093 *
1094 * Although the current implementation is guaranteed to wait, it is not
1095 * obligated to, for example, if there are no pending callbacks.
1096 */
1097void rcu_barrier_tasks_rude(void)
1098{
ce9b1c66 1099 rcu_barrier_tasks_generic(&rcu_tasks_rude);
c84aad76
PM
1100}
1101EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1102
1103static int __init rcu_spawn_tasks_rude_kthread(void)
1104{
cafafd67 1105 cblist_init_generic(&rcu_tasks_rude);
4fe192df 1106 rcu_tasks_rude.gp_sleep = HZ / 10;
c84aad76
PM
1107 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1108 return 0;
1109}
c84aad76 1110
27c0f144
PM
1111#if !defined(CONFIG_TINY_RCU)
1112void show_rcu_tasks_rude_gp_kthread(void)
e21408ce
PM
1113{
1114 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1115}
27c0f144
PM
1116EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1117#endif // !defined(CONFIG_TINY_RCU)
1118#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
d5f177d3
PM
1119
1120////////////////////////////////////////////////////////////////////////
1121//
1122// Tracing variant of Tasks RCU. This variant is designed to be used
1123// to protect tracing hooks, including those of BPF. This variant
1124// therefore:
1125//
1126// 1. Has explicit read-side markers to allow finite grace periods
1127// in the face of in-kernel loops for PREEMPT=n builds.
1128//
1129// 2. Protects code in the idle loop, exception entry/exit, and
1130// CPU-hotplug code paths, similar to the capabilities of SRCU.
1131//
c4f113ac 1132// 3. Avoids expensive read-side instructions, having overhead similar
d5f177d3
PM
1133// to that of Preemptible RCU.
1134//
1135// There are of course downsides. The grace-period code can send IPIs to
1136// CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
1137// It is necessary to scan the full tasklist, much as for Tasks RCU. There
1138// is a single callback queue guarded by a single lock, again, much as for
1139// Tasks RCU. If needed, these downsides can be at least partially remedied.
1140//
1141// Perhaps most important, this variant of RCU does not affect the vanilla
1142// flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
1143// readers can operate from idle, offline, and exception entry/exit in no
1144// way allows rcu_preempt and rcu_sched readers to also do so.
a434dd10
PM
1145//
1146// The implementation uses rcu_tasks_wait_gp(), which relies on function
1147// pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
1148// function sets these function pointers up so that rcu_tasks_wait_gp()
1149// invokes these functions in this order:
1150//
1151// rcu_tasks_trace_pregp_step():
1152// Initialize the count of readers and block CPU-hotplug operations.
1153// rcu_tasks_trace_pertask(), invoked on every non-idle task:
1154// Initialize per-task state and attempt to identify an immediate
1155// quiescent state for that task, or, failing that, attempt to
1156// set that task's .need_qs flag so that task's next outermost
1157// rcu_read_unlock_trace() will report the quiescent state (in which
1158// case the count of readers is incremented). If both attempts fail,
45f4b4a2
PM
1159// the task is added to a "holdout" list. Note that IPIs are used
1160// to invoke trc_read_check_handler() in the context of running tasks
1161// in order to avoid ordering overhead on common-case shared-variable
1162// accessses.
a434dd10
PM
1163// rcu_tasks_trace_postscan():
1164// Initialize state and attempt to identify an immediate quiescent
1165// state as above (but only for idle tasks), unblock CPU-hotplug
1166// operations, and wait for an RCU grace period to avoid races with
1167// tasks that are in the process of exiting.
1168// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1169// Scans the holdout list, attempting to identify a quiescent state
1170// for each task on the list. If there is a quiescent state, the
1171// corresponding task is removed from the holdout list.
1172// rcu_tasks_trace_postgp():
1173// Wait for the count of readers do drop to zero, reporting any stalls.
1174// Also execute full memory barriers to maintain ordering with code
1175// executing after the grace period.
1176//
1177// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1178//
1179// Pre-grace-period update-side code is ordered before the grace
1180// period via the ->cbs_lock and barriers in rcu_tasks_kthread().
1181// Pre-grace-period read-side code is ordered before the grace period by
1182// atomic_dec_and_test() of the count of readers (for IPIed readers) and by
1183// scheduler context-switch ordering (for locked-down non-running readers).
d5f177d3
PM
1184
1185// The lockdep state must be outside of #ifdef to be useful.
1186#ifdef CONFIG_DEBUG_LOCK_ALLOC
1187static struct lock_class_key rcu_lock_trace_key;
1188struct lockdep_map rcu_trace_lock_map =
1189 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1190EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1191#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1192
1193#ifdef CONFIG_TASKS_TRACE_RCU
1194
d5f177d3
PM
1195// Record outstanding IPIs to each CPU. No point in sending two...
1196static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1197
40471509
PM
1198// The number of detections of task quiescent state relying on
1199// heavyweight readers executing explicit memory barriers.
6731da9e
PM
1200static unsigned long n_heavy_reader_attempts;
1201static unsigned long n_heavy_reader_updates;
1202static unsigned long n_heavy_reader_ofl_updates;
40471509 1203
b0afa0f0
PM
1204void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1205DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1206 "RCU Tasks Trace");
1207
3847b645
PM
1208/* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1209static u8 rcu_ld_need_qs(struct task_struct *t)
1210{
1211 smp_mb(); // Enforce full grace-period ordering.
1212 return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1213}
1214
1215/* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1216static void rcu_st_need_qs(struct task_struct *t, u8 v)
1217{
1218 smp_store_release(&t->trc_reader_special.b.need_qs, v);
1219 smp_mb(); // Enforce full grace-period ordering.
1220}
1221
1222/*
1223 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1224 * the four-byte operand-size restriction of some platforms.
1225 * Returns the old value, which is often ignored.
1226 */
1227u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1228{
1229 union rcu_special ret;
1230 union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1231 union rcu_special trs_new = trs_old;
1232
1233 if (trs_old.b.need_qs != old)
1234 return trs_old.b.need_qs;
1235 trs_new.b.need_qs = new;
1236 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1237 return ret.b.need_qs;
1238}
1239EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1240
d5f177d3 1241/* If we are the last reader, wake up the grace-period kthread. */
a5c071cc 1242void rcu_read_unlock_trace_special(struct task_struct *t)
d5f177d3 1243{
3847b645 1244 int nqs = (rcu_ld_need_qs(t) == (TRC_NEED_QS_CHECKED | TRC_NEED_QS));
276c4104 1245
3847b645 1246 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
276c4104
PM
1247 smp_mb(); // Pairs with update-side barriers.
1248 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
3847b645
PM
1249 if (nqs) {
1250 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1251 TRC_NEED_QS_CHECKED);
1252
1253 WARN_ONCE(result != (TRC_NEED_QS_CHECKED | TRC_NEED_QS),
1254 "%s: result = %d", __func__, result);
1255 }
a5c071cc 1256 WRITE_ONCE(t->trc_reader_nesting, 0);
d5f177d3
PM
1257}
1258EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1259
1260/* Add a task to the holdout list, if it is not already on the list. */
1261static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1262{
1263 if (list_empty(&t->trc_holdout_list)) {
1264 get_task_struct(t);
1265 list_add(&t->trc_holdout_list, bhp);
1266 }
1267}
1268
1269/* Remove a task from the holdout list, if it is in fact present. */
1270static void trc_del_holdout(struct task_struct *t)
1271{
1272 if (!list_empty(&t->trc_holdout_list)) {
1273 list_del_init(&t->trc_holdout_list);
1274 put_task_struct(t);
1275 }
1276}
1277
1278/* IPI handler to check task state. */
1279static void trc_read_check_handler(void *t_in)
1280{
9ff86b4c 1281 int nesting;
d5f177d3
PM
1282 struct task_struct *t = current;
1283 struct task_struct *texp = t_in;
1284
1285 // If the task is no longer running on this CPU, leave.
3847b645 1286 if (unlikely(texp != t))
d5f177d3 1287 goto reset_ipi; // Already on holdout list, so will check later.
d5f177d3
PM
1288
1289 // If the task is not in a read-side critical section, and
1290 // if this is the last reader, awaken the grace-period kthread.
9ff86b4c
PM
1291 nesting = READ_ONCE(t->trc_reader_nesting);
1292 if (likely(!nesting)) {
3847b645 1293 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
d5f177d3
PM
1294 goto reset_ipi;
1295 }
ba3a86e4 1296 // If we are racing with an rcu_read_unlock_trace(), try again later.
9ff86b4c 1297 if (unlikely(nesting < 0))
ba3a86e4 1298 goto reset_ipi;
d5f177d3
PM
1299
1300 // Get here if the task is in a read-side critical section. Set
1301 // its state so that it will awaken the grace-period kthread upon
1302 // exit from that critical section.
55061126 1303 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
d5f177d3
PM
1304
1305reset_ipi:
1306 // Allow future IPIs to be sent on CPU and for task.
1307 // Also order this IPI handler against any later manipulations of
1308 // the intended task.
8211e922 1309 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
d5f177d3
PM
1310 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1311}
1312
1313/* Callback function for scheduler to check locked-down task. */
3847b645 1314static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
d5f177d3 1315{
3847b645 1316 struct list_head *bhp = bhp_in;
7d0c9c50 1317 int cpu = task_cpu(t);
18f08e75 1318 int nesting;
7e3b70e0 1319 bool ofl = cpu_is_offline(cpu);
7d0c9c50 1320
897ba84d 1321 if (task_curr(t) && !ofl) {
7d0c9c50 1322 // If no chance of heavyweight readers, do it the hard way.
897ba84d 1323 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
9b3c4ab3 1324 return -EINVAL;
7d0c9c50
PM
1325
1326 // If heavyweight readers are enabled on the remote task,
1327 // we can inspect its state despite its currently running.
1328 // However, we cannot safely change its state.
40471509 1329 n_heavy_reader_attempts++;
897ba84d
PM
1330 // Check for "running" idle tasks on offline CPUs.
1331 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
9b3c4ab3 1332 return -EINVAL; // No quiescent state, do it the hard way.
40471509 1333 n_heavy_reader_updates++;
18f08e75 1334 nesting = 0;
7d0c9c50 1335 } else {
bdb0cca0 1336 // The task is not running, so C-language access is safe.
18f08e75 1337 nesting = t->trc_reader_nesting;
897ba84d
PM
1338 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t));
1339 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1340 n_heavy_reader_ofl_updates++;
7d0c9c50 1341 }
d5f177d3 1342
18f08e75
PM
1343 // If not exiting a read-side critical section, mark as checked
1344 // so that the grace-period kthread will remove it from the
1345 // holdout list.
0968e892
PM
1346 if (!nesting) {
1347 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1348 return 0; // In QS, so done.
3847b645 1349 }
0968e892
PM
1350 if (nesting < 0)
1351 return -EINVAL; // QS transitioning, try again later.
7d0c9c50
PM
1352
1353 // The task is in a read-side critical section, so set up its
0968e892
PM
1354 // state so that it will update state upon exit from that critical
1355 // section.
55061126 1356 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
3847b645 1357 trc_add_holdout(t, bhp);
9b3c4ab3 1358 return 0;
d5f177d3
PM
1359}
1360
1361/* Attempt to extract the state for the specified task. */
1362static void trc_wait_for_one_reader(struct task_struct *t,
1363 struct list_head *bhp)
1364{
1365 int cpu;
1366
1367 // If a previous IPI is still in flight, let it complete.
1368 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1369 return;
1370
1371 // The current task had better be in a quiescent state.
1372 if (t == current) {
3847b645 1373 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
bdb0cca0 1374 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
d5f177d3
PM
1375 return;
1376 }
1377
1378 // Attempt to nail down the task for inspection.
1379 get_task_struct(t);
3847b645 1380 if (!task_call_func(t, trc_inspect_reader, bhp)) {
d5f177d3
PM
1381 put_task_struct(t);
1382 return;
1383 }
1384 put_task_struct(t);
1385
45f4b4a2
PM
1386 // If this task is not yet on the holdout list, then we are in
1387 // an RCU read-side critical section. Otherwise, the invocation of
d0a85858 1388 // trc_add_holdout() that added it to the list did the necessary
45f4b4a2
PM
1389 // get_task_struct(). Either way, the task cannot be freed out
1390 // from under this code.
1391
d5f177d3
PM
1392 // If currently running, send an IPI, either way, add to list.
1393 trc_add_holdout(t, bhp);
574de876
PM
1394 if (task_curr(t) &&
1395 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
d5f177d3
PM
1396 // The task is currently running, so try IPIing it.
1397 cpu = task_cpu(t);
1398
1399 // If there is already an IPI outstanding, let it happen.
1400 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1401 return;
1402
d5f177d3
PM
1403 per_cpu(trc_ipi_to_cpu, cpu) = true;
1404 t->trc_ipi_to_cpu = cpu;
238dbce3 1405 rcu_tasks_trace.n_ipis++;
96017bf9 1406 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
d5f177d3
PM
1407 // Just in case there is some other reason for
1408 // failure than the target CPU being offline.
46aa886c
NU
1409 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1410 __func__, cpu);
7e0669c3 1411 rcu_tasks_trace.n_ipis_fails++;
d5f177d3 1412 per_cpu(trc_ipi_to_cpu, cpu) = false;
46aa886c 1413 t->trc_ipi_to_cpu = -1;
d5f177d3
PM
1414 }
1415 }
1416}
1417
1418/* Initialize for a new RCU-tasks-trace grace period. */
1419static void rcu_tasks_trace_pregp_step(void)
1420{
1421 int cpu;
1422
d5f177d3
PM
1423 // There shouldn't be any old IPIs, but...
1424 for_each_possible_cpu(cpu)
1425 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
81b4a7bc
PM
1426
1427 // Disable CPU hotplug across the tasklist scan.
1428 // This also waits for all readers in CPU-hotplug code paths.
1429 cpus_read_lock();
d5f177d3
PM
1430}
1431
1432/* Do first-round processing for the specified task. */
1433static void rcu_tasks_trace_pertask(struct task_struct *t,
1434 struct list_head *hop)
1435{
1b04fa99 1436 // During early boot when there is only the one boot CPU, there
5d4c90d7
PM
1437 // is no idle task for the other CPUs. Also, the grace-period
1438 // kthread is always in a quiescent state. Either way, just return.
1439 if (unlikely(t == NULL) || t == current)
1b04fa99
URS
1440 return;
1441
3847b645 1442 rcu_st_need_qs(t, 0);
d5f177d3
PM
1443 t->trc_ipi_to_cpu = -1;
1444 trc_wait_for_one_reader(t, hop);
1445}
1446
9796e1ae
PM
1447/*
1448 * Do intermediate processing between task and holdout scans and
1449 * pick up the idle tasks.
1450 */
1451static void rcu_tasks_trace_postscan(struct list_head *hop)
d5f177d3 1452{
9796e1ae
PM
1453 int cpu;
1454
5c9a9ca4 1455 for_each_online_cpu(cpu)
9796e1ae
PM
1456 rcu_tasks_trace_pertask(idle_task(cpu), hop);
1457
81b4a7bc
PM
1458 // Re-enable CPU hotplug now that the tasklist scan has completed.
1459 cpus_read_unlock();
1460
d5f177d3
PM
1461 // Wait for late-stage exiting tasks to finish exiting.
1462 // These might have passed the call to exit_tasks_rcu_finish().
1463 synchronize_rcu();
3847b645
PM
1464 // Any tasks that exit after this point will set
1465 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
d5f177d3
PM
1466}
1467
65b629e7
NU
1468/* Communicate task state back to the RCU tasks trace stall warning request. */
1469struct trc_stall_chk_rdr {
1470 int nesting;
1471 int ipi_to_cpu;
1472 u8 needqs;
1473};
1474
1475static int trc_check_slow_task(struct task_struct *t, void *arg)
1476{
1477 struct trc_stall_chk_rdr *trc_rdrp = arg;
1478
1479 if (task_curr(t))
1480 return false; // It is running, so decline to inspect it.
1481 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1482 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
3847b645 1483 trc_rdrp->needqs = rcu_ld_need_qs(t);
65b629e7
NU
1484 return true;
1485}
1486
4593e772
PM
1487/* Show the state of a task stalling the current RCU tasks trace GP. */
1488static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1489{
1490 int cpu;
65b629e7
NU
1491 struct trc_stall_chk_rdr trc_rdr;
1492 bool is_idle_tsk = is_idle_task(t);
4593e772
PM
1493
1494 if (*firstreport) {
1495 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1496 *firstreport = false;
1497 }
4593e772 1498 cpu = task_cpu(t);
65b629e7 1499 if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
9f3eb5fb 1500 pr_alert("P%d: %c%c\n",
65b629e7 1501 t->pid,
9f3eb5fb 1502 ".I"[t->trc_ipi_to_cpu >= 0],
65b629e7
NU
1503 ".i"[is_idle_tsk]);
1504 else
1505 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1506 t->pid,
1507 ".I"[trc_rdr.ipi_to_cpu >= 0],
1508 ".i"[is_idle_tsk],
1509 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1510 trc_rdr.nesting,
1511 " N"[!!trc_rdr.needqs],
1512 cpu);
4593e772
PM
1513 sched_show_task(t);
1514}
1515
1516/* List stalled IPIs for RCU tasks trace. */
1517static void show_stalled_ipi_trace(void)
1518{
1519 int cpu;
1520
1521 for_each_possible_cpu(cpu)
1522 if (per_cpu(trc_ipi_to_cpu, cpu))
1523 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1524}
1525
d5f177d3
PM
1526/* Do one scan of the holdout list. */
1527static void check_all_holdout_tasks_trace(struct list_head *hop,
4593e772 1528 bool needreport, bool *firstreport)
d5f177d3
PM
1529{
1530 struct task_struct *g, *t;
1531
81b4a7bc
PM
1532 // Disable CPU hotplug across the holdout list scan.
1533 cpus_read_lock();
1534
d5f177d3
PM
1535 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1536 // If safe and needed, try to check the current task.
1537 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
3847b645 1538 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
d5f177d3
PM
1539 trc_wait_for_one_reader(t, hop);
1540
1541 // If check succeeded, remove this task from the list.
f5dbc594 1542 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
3847b645 1543 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
d5f177d3 1544 trc_del_holdout(t);
4593e772
PM
1545 else if (needreport)
1546 show_stalled_task_trace(t, firstreport);
1547 }
81b4a7bc
PM
1548
1549 // Re-enable CPU hotplug now that the holdout list scan has completed.
1550 cpus_read_unlock();
1551
4593e772 1552 if (needreport) {
89401176 1553 if (*firstreport)
4593e772
PM
1554 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1555 show_stalled_ipi_trace();
d5f177d3
PM
1556 }
1557}
1558
cbe0d8d9
PM
1559static void rcu_tasks_trace_empty_fn(void *unused)
1560{
1561}
1562
d5f177d3 1563/* Wait for grace period to complete and provide ordering. */
af051ca4 1564static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
d5f177d3 1565{
cbe0d8d9 1566 int cpu;
4593e772 1567
cbe0d8d9
PM
1568 // Wait for any lingering IPI handlers to complete. Note that
1569 // if a CPU has gone offline or transitioned to userspace in the
1570 // meantime, all IPI handlers should have been drained beforehand.
1571 // Yes, this assumes that CPUs process IPIs in order. If that ever
1572 // changes, there will need to be a recheck and/or timed wait.
1573 for_each_online_cpu(cpu)
f5dbc594 1574 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
cbe0d8d9
PM
1575 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1576
d5f177d3 1577 smp_mb(); // Caller's code must be ordered after wakeup.
43766c3e 1578 // Pairs with pretty much every ordering primitive.
d5f177d3
PM
1579}
1580
1581/* Report any needed quiescent state for this exiting task. */
25246fc8 1582static void exit_tasks_rcu_finish_trace(struct task_struct *t)
d5f177d3 1583{
3847b645 1584 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
bdb0cca0 1585 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
3847b645 1586 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS))
a5c071cc 1587 rcu_read_unlock_trace_special(t);
3847b645
PM
1588 else
1589 WRITE_ONCE(t->trc_reader_nesting, 0);
d5f177d3
PM
1590}
1591
d5f177d3
PM
1592/**
1593 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1594 * @rhp: structure to be used for queueing the RCU updates.
1595 * @func: actual callback function to be invoked after the grace period
1596 *
ed42c380
NU
1597 * The callback function will be invoked some time after a trace rcu-tasks
1598 * grace period elapses, in other words after all currently executing
1599 * trace rcu-tasks read-side critical sections have completed. These
1600 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1601 * and rcu_read_unlock_trace().
d5f177d3
PM
1602 *
1603 * See the description of call_rcu() for more detailed information on
1604 * memory ordering guarantees.
1605 */
1606void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1607{
1608 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1609}
1610EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1611
1612/**
1613 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1614 *
1615 * Control will return to the caller some time after a trace rcu-tasks
c7dcf810 1616 * grace period has elapsed, in other words after all currently executing
ed42c380 1617 * trace rcu-tasks read-side critical sections have elapsed. These read-side
c7dcf810
PM
1618 * critical sections are delimited by calls to rcu_read_lock_trace()
1619 * and rcu_read_unlock_trace().
d5f177d3
PM
1620 *
1621 * This is a very specialized primitive, intended only for a few uses in
1622 * tracing and other situations requiring manipulation of function preambles
1623 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1624 * (yet) intended for heavy use from multiple CPUs.
1625 *
1626 * See the description of synchronize_rcu() for more detailed information
1627 * on memory ordering guarantees.
1628 */
1629void synchronize_rcu_tasks_trace(void)
1630{
1631 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1632 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1633}
1634EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1635
1636/**
1637 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1638 *
1639 * Although the current implementation is guaranteed to wait, it is not
1640 * obligated to, for example, if there are no pending callbacks.
1641 */
1642void rcu_barrier_tasks_trace(void)
1643{
ce9b1c66 1644 rcu_barrier_tasks_generic(&rcu_tasks_trace);
d5f177d3
PM
1645}
1646EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1647
1648static int __init rcu_spawn_tasks_trace_kthread(void)
1649{
cafafd67 1650 cblist_init_generic(&rcu_tasks_trace);
2393a613 1651 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
4fe192df 1652 rcu_tasks_trace.gp_sleep = HZ / 10;
75dc2da5 1653 rcu_tasks_trace.init_fract = HZ / 10;
2393a613 1654 } else {
4fe192df
PM
1655 rcu_tasks_trace.gp_sleep = HZ / 200;
1656 if (rcu_tasks_trace.gp_sleep <= 0)
1657 rcu_tasks_trace.gp_sleep = 1;
75dc2da5 1658 rcu_tasks_trace.init_fract = HZ / 200;
2393a613
PM
1659 if (rcu_tasks_trace.init_fract <= 0)
1660 rcu_tasks_trace.init_fract = 1;
1661 }
d5f177d3
PM
1662 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1663 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1664 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1665 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1666 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1667 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1668 return 0;
1669}
d5f177d3 1670
27c0f144
PM
1671#if !defined(CONFIG_TINY_RCU)
1672void show_rcu_tasks_trace_gp_kthread(void)
e21408ce 1673{
40471509 1674 char buf[64];
e21408ce 1675
55061126 1676 sprintf(buf, "h:%lu/%lu/%lu",
edf3775f 1677 data_race(n_heavy_reader_ofl_updates),
40471509
PM
1678 data_race(n_heavy_reader_updates),
1679 data_race(n_heavy_reader_attempts));
e21408ce
PM
1680 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1681}
27c0f144
PM
1682EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1683#endif // !defined(CONFIG_TINY_RCU)
e21408ce 1684
d5f177d3 1685#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
25246fc8 1686static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
d5f177d3 1687#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
8fd8ca38 1688
8344496e 1689#ifndef CONFIG_TINY_RCU
e21408ce
PM
1690void show_rcu_tasks_gp_kthreads(void)
1691{
1692 show_rcu_tasks_classic_gp_kthread();
1693 show_rcu_tasks_rude_gp_kthread();
1694 show_rcu_tasks_trace_gp_kthread();
1695}
8344496e 1696#endif /* #ifndef CONFIG_TINY_RCU */
e21408ce 1697
bfba7ed0
URS
1698#ifdef CONFIG_PROVE_RCU
1699struct rcu_tasks_test_desc {
1700 struct rcu_head rh;
1701 const char *name;
1702 bool notrun;
1703};
1704
1705static struct rcu_tasks_test_desc tests[] = {
1706 {
1707 .name = "call_rcu_tasks()",
1708 /* If not defined, the test is skipped. */
1709 .notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1710 },
1711 {
1712 .name = "call_rcu_tasks_rude()",
1713 /* If not defined, the test is skipped. */
1714 .notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1715 },
1716 {
1717 .name = "call_rcu_tasks_trace()",
1718 /* If not defined, the test is skipped. */
1719 .notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1720 }
1721};
1722
1723static void test_rcu_tasks_callback(struct rcu_head *rhp)
1724{
1725 struct rcu_tasks_test_desc *rttd =
1726 container_of(rhp, struct rcu_tasks_test_desc, rh);
1727
1728 pr_info("Callback from %s invoked.\n", rttd->name);
1729
1730 rttd->notrun = true;
1731}
1732
1733static void rcu_tasks_initiate_self_tests(void)
1734{
1735 pr_info("Running RCU-tasks wait API self tests\n");
1736#ifdef CONFIG_TASKS_RCU
1737 synchronize_rcu_tasks();
1738 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1739#endif
1740
1741#ifdef CONFIG_TASKS_RUDE_RCU
1742 synchronize_rcu_tasks_rude();
1743 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1744#endif
1745
1746#ifdef CONFIG_TASKS_TRACE_RCU
1747 synchronize_rcu_tasks_trace();
1748 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1749#endif
1750}
1751
1752static int rcu_tasks_verify_self_tests(void)
1753{
1754 int ret = 0;
1755 int i;
1756
1757 for (i = 0; i < ARRAY_SIZE(tests); i++) {
1758 if (!tests[i].notrun) { // still hanging.
1759 pr_err("%s has been failed.\n", tests[i].name);
1760 ret = -1;
1761 }
1762 }
1763
1764 if (ret)
1765 WARN_ON(1);
1766
1767 return ret;
1768}
1769late_initcall(rcu_tasks_verify_self_tests);
1770#else /* #ifdef CONFIG_PROVE_RCU */
1771static void rcu_tasks_initiate_self_tests(void) { }
1772#endif /* #else #ifdef CONFIG_PROVE_RCU */
1773
1b04fa99
URS
1774void __init rcu_init_tasks_generic(void)
1775{
1776#ifdef CONFIG_TASKS_RCU
1777 rcu_spawn_tasks_kthread();
1778#endif
1779
1780#ifdef CONFIG_TASKS_RUDE_RCU
1781 rcu_spawn_tasks_rude_kthread();
1782#endif
1783
1784#ifdef CONFIG_TASKS_TRACE_RCU
1785 rcu_spawn_tasks_trace_kthread();
1786#endif
bfba7ed0
URS
1787
1788 // Run the self-tests.
1789 rcu_tasks_initiate_self_tests();
1b04fa99
URS
1790}
1791
8fd8ca38
PM
1792#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1793static inline void rcu_tasks_bootup_oddness(void) {}
1794#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */