[PATCH] orinoco: Fix flood of kernel log with stupid WE warnings
[linux-2.6-block.git] / kernel / power / swsusp.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
2e4d5822 13 *
1da177e4
LT
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
2e4d5822 18 * Steve Doddi <dirk@loth.demon.co.uk>:
1da177e4
LT
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
c2ff18f4
AS
34 * Andreas Steinmetz <ast@domdv.de>:
35 * Added encrypted suspend option
36 *
1da177e4
LT
37 * More state savers are welcome. Especially for the scsi layer...
38 *
39 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40 */
41
42#include <linux/module.h>
43#include <linux/mm.h>
44#include <linux/suspend.h>
45#include <linux/smp_lock.h>
46#include <linux/file.h>
47#include <linux/utsname.h>
48#include <linux/version.h>
49#include <linux/delay.h>
50#include <linux/reboot.h>
51#include <linux/bitops.h>
52#include <linux/vt_kern.h>
53#include <linux/kbd_kern.h>
54#include <linux/keyboard.h>
55#include <linux/spinlock.h>
56#include <linux/genhd.h>
57#include <linux/kernel.h>
58#include <linux/major.h>
59#include <linux/swap.h>
60#include <linux/pm.h>
61#include <linux/device.h>
62#include <linux/buffer_head.h>
63#include <linux/swapops.h>
64#include <linux/bootmem.h>
65#include <linux/syscalls.h>
66#include <linux/console.h>
67#include <linux/highmem.h>
68#include <linux/bio.h>
d53d9f16 69#include <linux/mount.h>
1da177e4
LT
70
71#include <asm/uaccess.h>
72#include <asm/mmu_context.h>
73#include <asm/pgtable.h>
74#include <asm/tlbflush.h>
75#include <asm/io.h>
76
c2ff18f4
AS
77#include <linux/random.h>
78#include <linux/crypto.h>
79#include <asm/scatterlist.h>
80
1da177e4
LT
81#include "power.h"
82
c2ff18f4
AS
83#define CIPHER "aes"
84#define MAXKEY 32
85#define MAXIV 32
86
1da177e4
LT
87/* References to section boundaries */
88extern const void __nosave_begin, __nosave_end;
89
90/* Variables to be preserved over suspend */
91static int nr_copy_pages_check;
92
93extern char resume_file[];
94
95/* Local variables that should not be affected by save */
52c1da39 96static unsigned int nr_copy_pages __nosavedata = 0;
1da177e4
LT
97
98/* Suspend pagedir is allocated before final copy, therefore it
2e4d5822 99 must be freed after resume
1da177e4
LT
100
101 Warning: this is evil. There are actually two pagedirs at time of
102 resume. One is "pagedir_save", which is empty frame allocated at
2e4d5822 103 time of suspend, that must be freed. Second is "pagedir_nosave",
1da177e4
LT
104 allocated at time of resume, that travels through memory not to
105 collide with anything.
106
107 Warning: this is even more evil than it seems. Pagedirs this file
108 talks about are completely different from page directories used by
109 MMU hardware.
110 */
111suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112static suspend_pagedir_t *pagedir_save;
113
114#define SWSUSP_SIG "S1SUSPEND"
115
116static struct swsusp_header {
c2ff18f4
AS
117 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118 u8 key_iv[MAXKEY+MAXIV];
1da177e4
LT
119 swp_entry_t swsusp_info;
120 char orig_sig[10];
121 char sig[10];
122} __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124static struct swsusp_info swsusp_info;
125
126/*
127 * XXX: We try to keep some more pages free so that I/O operations succeed
128 * without paging. Might this be more?
129 */
130#define PAGES_FOR_IO 512
131
132/*
133 * Saving part...
134 */
135
136/* We memorize in swapfile_used what swap devices are used for suspension */
137#define SWAPFILE_UNUSED 0
138#define SWAPFILE_SUSPEND 1 /* This is the suspending device */
139#define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
140
141static unsigned short swapfile_used[MAX_SWAPFILES];
142static unsigned short root_swap;
143
c2ff18f4
AS
144static int write_page(unsigned long addr, swp_entry_t * loc);
145static int bio_read_page(pgoff_t page_off, void * page);
146
147static u8 key_iv[MAXKEY+MAXIV];
148
149#ifdef CONFIG_SWSUSP_ENCRYPT
150
151static int crypto_init(int mode, void **mem)
152{
153 int error = 0;
154 int len;
155 char *modemsg;
156 struct crypto_tfm *tfm;
157
158 modemsg = mode ? "suspend not possible" : "resume not possible";
159
160 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161 if(!tfm) {
162 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163 error = -EINVAL;
164 goto out;
165 }
166
167 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169 error = -ENOKEY;
170 goto fail;
171 }
172
173 if (mode)
174 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176 len = crypto_tfm_alg_max_keysize(tfm);
177 if (len > MAXKEY)
178 len = MAXKEY;
179
180 if (crypto_cipher_setkey(tfm, key_iv, len)) {
181 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182 error = -EKEYREJECTED;
183 goto fail;
184 }
185
186 len = crypto_tfm_alg_ivsize(tfm);
187
188 if (MAXIV < len) {
189 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190 error = -EOVERFLOW;
191 goto fail;
192 }
193
194 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196 *mem=(void *)tfm;
197
198 goto out;
199
200fail: crypto_free_tfm(tfm);
201out: return error;
202}
203
204static __inline__ void crypto_exit(void *mem)
205{
206 crypto_free_tfm((struct crypto_tfm *)mem);
207}
208
209static __inline__ int crypto_write(struct pbe *p, void *mem)
210{
211 int error = 0;
212 struct scatterlist src, dst;
213
214 src.page = virt_to_page(p->address);
215 src.offset = 0;
216 src.length = PAGE_SIZE;
217 dst.page = virt_to_page((void *)&swsusp_header);
218 dst.offset = 0;
219 dst.length = PAGE_SIZE;
220
221 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222 PAGE_SIZE);
223
224 if (!error)
225 error = write_page((unsigned long)&swsusp_header,
226 &(p->swap_address));
227 return error;
228}
229
230static __inline__ int crypto_read(struct pbe *p, void *mem)
231{
232 int error = 0;
233 struct scatterlist src, dst;
234
235 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236 if (!error) {
237 src.offset = 0;
238 src.length = PAGE_SIZE;
239 dst.offset = 0;
240 dst.length = PAGE_SIZE;
241 src.page = dst.page = virt_to_page((void *)p->address);
242
243 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244 &src, PAGE_SIZE);
245 }
246 return error;
247}
248#else
249static __inline__ int crypto_init(int mode, void *mem)
250{
251 return 0;
252}
253
254static __inline__ void crypto_exit(void *mem)
255{
256}
257
258static __inline__ int crypto_write(struct pbe *p, void *mem)
259{
260 return write_page(p->address, &(p->swap_address));
261}
262
263static __inline__ int crypto_read(struct pbe *p, void *mem)
264{
265 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266}
267#endif
268
1da177e4
LT
269static int mark_swapfiles(swp_entry_t prev)
270{
271 int error;
272
2e4d5822 273 rw_swap_page_sync(READ,
1da177e4
LT
274 swp_entry(root_swap, 0),
275 virt_to_page((unsigned long)&swsusp_header));
276 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
c2ff18f4 280 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
1da177e4 281 swsusp_header.swsusp_info = prev;
2e4d5822 282 error = rw_swap_page_sync(WRITE,
1da177e4
LT
283 swp_entry(root_swap, 0),
284 virt_to_page((unsigned long)
285 &swsusp_header));
286 } else {
287 pr_debug("swsusp: Partition is not swap space.\n");
288 error = -ENODEV;
289 }
290 return error;
291}
292
293/*
294 * Check whether the swap device is the specified resume
295 * device, irrespective of whether they are specified by
296 * identical names.
297 *
298 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
299 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300 * and they'll be considered the same device. This is *necessary* for
301 * devfs, since the resume code can only recognize the form /dev/hda4,
302 * but the suspend code would see the long name.)
303 */
304static int is_resume_device(const struct swap_info_struct *swap_info)
305{
306 struct file *file = swap_info->swap_file;
307 struct inode *inode = file->f_dentry->d_inode;
308
309 return S_ISBLK(inode->i_mode) &&
310 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311}
312
313static int swsusp_swap_check(void) /* This is called before saving image */
314{
315 int i, len;
2e4d5822 316
1da177e4
LT
317 len=strlen(resume_file);
318 root_swap = 0xFFFF;
2e4d5822 319
dae06ac4 320 spin_lock(&swap_lock);
2e4d5822 321 for (i=0; i<MAX_SWAPFILES; i++) {
dae06ac4 322 if (!(swap_info[i].flags & SWP_WRITEOK)) {
1da177e4
LT
323 swapfile_used[i]=SWAPFILE_UNUSED;
324 } else {
2e4d5822 325 if (!len) {
1da177e4 326 printk(KERN_WARNING "resume= option should be used to set suspend device" );
2e4d5822 327 if (root_swap == 0xFFFF) {
1da177e4
LT
328 swapfile_used[i] = SWAPFILE_SUSPEND;
329 root_swap = i;
330 } else
2e4d5822 331 swapfile_used[i] = SWAPFILE_IGNORED;
1da177e4
LT
332 } else {
333 /* we ignore all swap devices that are not the resume_file */
334 if (is_resume_device(&swap_info[i])) {
335 swapfile_used[i] = SWAPFILE_SUSPEND;
336 root_swap = i;
337 } else {
338 swapfile_used[i] = SWAPFILE_IGNORED;
339 }
340 }
341 }
342 }
dae06ac4 343 spin_unlock(&swap_lock);
1da177e4
LT
344 return (root_swap != 0xffff) ? 0 : -ENODEV;
345}
346
347/**
348 * This is called after saving image so modification
349 * will be lost after resume... and that's what we want.
350 * we make the device unusable. A new call to
2e4d5822 351 * lock_swapdevices can unlock the devices.
1da177e4
LT
352 */
353static void lock_swapdevices(void)
354{
355 int i;
356
dae06ac4 357 spin_lock(&swap_lock);
2e4d5822
PM
358 for (i = 0; i< MAX_SWAPFILES; i++)
359 if (swapfile_used[i] == SWAPFILE_IGNORED) {
dae06ac4 360 swap_info[i].flags ^= SWP_WRITEOK;
1da177e4 361 }
dae06ac4 362 spin_unlock(&swap_lock);
1da177e4
LT
363}
364
365/**
8686bcd0 366 * write_page - Write one page to a fresh swap location.
1da177e4
LT
367 * @addr: Address we're writing.
368 * @loc: Place to store the entry we used.
369 *
370 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
2e4d5822 371 * errors. That is an artifact left over from swsusp. It did not
1da177e4
LT
372 * check the return of rw_swap_page_sync() at all, since most pages
373 * written back to swap would return -EIO.
374 * This is a partial improvement, since we will at least return other
375 * errors, though we need to eventually fix the damn code.
376 */
377static int write_page(unsigned long addr, swp_entry_t * loc)
378{
379 swp_entry_t entry;
380 int error = 0;
381
382 entry = get_swap_page();
2e4d5822 383 if (swp_offset(entry) &&
1da177e4
LT
384 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385 error = rw_swap_page_sync(WRITE, entry,
386 virt_to_page(addr));
387 if (error == -EIO)
388 error = 0;
389 if (!error)
390 *loc = entry;
391 } else
392 error = -ENOSPC;
393 return error;
394}
395
396/**
397 * data_free - Free the swap entries used by the saved image.
398 *
2e4d5822 399 * Walk the list of used swap entries and free each one.
1da177e4
LT
400 * This is only used for cleanup when suspend fails.
401 */
402static void data_free(void)
403{
404 swp_entry_t entry;
254b5477 405 struct pbe * p;
1da177e4 406
254b5477
RW
407 for_each_pbe(p, pagedir_nosave) {
408 entry = p->swap_address;
1da177e4
LT
409 if (entry.val)
410 swap_free(entry);
411 else
412 break;
1da177e4
LT
413 }
414}
415
416/**
417 * data_write - Write saved image to swap.
418 *
419 * Walk the list of pages in the image and sync each one to swap.
420 */
421static int data_write(void)
422{
423 int error = 0, i = 0;
424 unsigned int mod = nr_copy_pages / 100;
425 struct pbe *p;
c2ff18f4
AS
426 void *tfm;
427
428 if ((error = crypto_init(1, &tfm)))
429 return error;
1da177e4
LT
430
431 if (!mod)
432 mod = 1;
433
434 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
2e4d5822 435 for_each_pbe (p, pagedir_nosave) {
1da177e4
LT
436 if (!(i%mod))
437 printk( "\b\b\b\b%3d%%", i / mod );
c2ff18f4
AS
438 if ((error = crypto_write(p, tfm))) {
439 crypto_exit(tfm);
1da177e4 440 return error;
c2ff18f4 441 }
1da177e4
LT
442 i++;
443 }
444 printk("\b\b\b\bdone\n");
c2ff18f4 445 crypto_exit(tfm);
1da177e4
LT
446 return error;
447}
448
449static void dump_info(void)
450{
451 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
452 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
453 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
454 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
455 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
456 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
457 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
458 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
459 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
460 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
461 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
462}
463
464static void init_header(void)
465{
466 memset(&swsusp_info, 0, sizeof(swsusp_info));
467 swsusp_info.version_code = LINUX_VERSION_CODE;
468 swsusp_info.num_physpages = num_physpages;
469 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
470
471 swsusp_info.suspend_pagedir = pagedir_nosave;
472 swsusp_info.cpus = num_online_cpus();
473 swsusp_info.image_pages = nr_copy_pages;
474}
475
476static int close_swap(void)
477{
478 swp_entry_t entry;
479 int error;
480
481 dump_info();
482 error = write_page((unsigned long)&swsusp_info, &entry);
2e4d5822 483 if (!error) {
1da177e4
LT
484 printk( "S" );
485 error = mark_swapfiles(entry);
486 printk( "|\n" );
487 }
488 return error;
489}
490
491/**
492 * free_pagedir_entries - Free pages used by the page directory.
493 *
494 * This is used during suspend for error recovery.
495 */
496
497static void free_pagedir_entries(void)
498{
499 int i;
500
501 for (i = 0; i < swsusp_info.pagedir_pages; i++)
502 swap_free(swsusp_info.pagedir[i]);
503}
504
505
506/**
507 * write_pagedir - Write the array of pages holding the page directory.
508 * @last: Last swap entry we write (needed for header).
509 */
510
511static int write_pagedir(void)
512{
513 int error = 0;
514 unsigned n = 0;
515 struct pbe * pbe;
516
517 printk( "Writing pagedir...");
2e4d5822 518 for_each_pb_page (pbe, pagedir_nosave) {
1da177e4
LT
519 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
520 return error;
521 }
522
523 swsusp_info.pagedir_pages = n;
524 printk("done (%u pages)\n", n);
525 return error;
526}
527
528/**
529 * write_suspend_image - Write entire image and metadata.
530 *
531 */
1da177e4
LT
532static int write_suspend_image(void)
533{
534 int error;
535
536 init_header();
537 if ((error = data_write()))
538 goto FreeData;
539
540 if ((error = write_pagedir()))
541 goto FreePagedir;
542
543 if ((error = close_swap()))
544 goto FreePagedir;
545 Done:
c2ff18f4 546 memset(key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
547 return error;
548 FreePagedir:
549 free_pagedir_entries();
550 FreeData:
551 data_free();
552 goto Done;
553}
554
555
556#ifdef CONFIG_HIGHMEM
557struct highmem_page {
558 char *data;
559 struct page *page;
560 struct highmem_page *next;
561};
562
563static struct highmem_page *highmem_copy;
564
565static int save_highmem_zone(struct zone *zone)
566{
567 unsigned long zone_pfn;
568 mark_free_pages(zone);
569 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
570 struct page *page;
571 struct highmem_page *save;
572 void *kaddr;
573 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
574
575 if (!(pfn%1000))
576 printk(".");
577 if (!pfn_valid(pfn))
578 continue;
579 page = pfn_to_page(pfn);
580 /*
581 * This condition results from rvmalloc() sans vmalloc_32()
582 * and architectural memory reservations. This should be
583 * corrected eventually when the cases giving rise to this
584 * are better understood.
585 */
586 if (PageReserved(page)) {
587 printk("highmem reserved page?!\n");
588 continue;
589 }
590 BUG_ON(PageNosave(page));
591 if (PageNosaveFree(page))
592 continue;
593 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
594 if (!save)
595 return -ENOMEM;
596 save->next = highmem_copy;
597 save->page = page;
598 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
599 if (!save->data) {
600 kfree(save);
601 return -ENOMEM;
602 }
603 kaddr = kmap_atomic(page, KM_USER0);
604 memcpy(save->data, kaddr, PAGE_SIZE);
605 kunmap_atomic(kaddr, KM_USER0);
606 highmem_copy = save;
607 }
608 return 0;
609}
610#endif /* CONFIG_HIGHMEM */
611
612
613static int save_highmem(void)
614{
615#ifdef CONFIG_HIGHMEM
616 struct zone *zone;
617 int res = 0;
618
619 pr_debug("swsusp: Saving Highmem\n");
2e4d5822 620 for_each_zone (zone) {
1da177e4
LT
621 if (is_highmem(zone))
622 res = save_highmem_zone(zone);
623 if (res)
624 return res;
625 }
626#endif
627 return 0;
628}
629
630static int restore_highmem(void)
631{
632#ifdef CONFIG_HIGHMEM
633 printk("swsusp: Restoring Highmem\n");
634 while (highmem_copy) {
635 struct highmem_page *save = highmem_copy;
636 void *kaddr;
637 highmem_copy = save->next;
638
639 kaddr = kmap_atomic(save->page, KM_USER0);
640 memcpy(kaddr, save->data, PAGE_SIZE);
641 kunmap_atomic(kaddr, KM_USER0);
642 free_page((long) save->data);
643 kfree(save);
644 }
645#endif
646 return 0;
647}
648
649
650static int pfn_is_nosave(unsigned long pfn)
651{
652 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
653 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
654 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
655}
656
657/**
658 * saveable - Determine whether a page should be cloned or not.
659 * @pfn: The page
660 *
661 * We save a page if it's Reserved, and not in the range of pages
662 * statically defined as 'unsaveable', or if it isn't reserved, and
663 * isn't part of a free chunk of pages.
664 */
665
666static int saveable(struct zone * zone, unsigned long * zone_pfn)
667{
668 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
669 struct page * page;
670
671 if (!pfn_valid(pfn))
672 return 0;
673
674 page = pfn_to_page(pfn);
675 BUG_ON(PageReserved(page) && PageNosave(page));
676 if (PageNosave(page))
677 return 0;
678 if (PageReserved(page) && pfn_is_nosave(pfn)) {
679 pr_debug("[nosave pfn 0x%lx]", pfn);
680 return 0;
681 }
682 if (PageNosaveFree(page))
683 return 0;
684
685 return 1;
686}
687
688static void count_data_pages(void)
689{
690 struct zone *zone;
691 unsigned long zone_pfn;
692
693 nr_copy_pages = 0;
694
2e4d5822 695 for_each_zone (zone) {
1da177e4
LT
696 if (is_highmem(zone))
697 continue;
698 mark_free_pages(zone);
699 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
700 nr_copy_pages += saveable(zone, &zone_pfn);
701 }
702}
703
704
705static void copy_data_pages(void)
706{
707 struct zone *zone;
708 unsigned long zone_pfn;
709 struct pbe * pbe = pagedir_nosave;
2e4d5822 710
1da177e4 711 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
2e4d5822 712 for_each_zone (zone) {
1da177e4
LT
713 if (is_highmem(zone))
714 continue;
715 mark_free_pages(zone);
716 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
717 if (saveable(zone, &zone_pfn)) {
718 struct page * page;
719 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
720 BUG_ON(!pbe);
721 pbe->orig_address = (long) page_address(page);
722 /* copy_page is not usable for copying task structs. */
723 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
724 pbe = pbe->next;
725 }
726 }
727 }
728 BUG_ON(pbe);
729}
730
731
732/**
733 * calc_nr - Determine the number of pages needed for a pbe list.
734 */
735
736static int calc_nr(int nr_copy)
737{
56057e1a 738 return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1);
1da177e4
LT
739}
740
741/**
742 * free_pagedir - free pages allocated with alloc_pagedir()
743 */
744
745static inline void free_pagedir(struct pbe *pblist)
746{
747 struct pbe *pbe;
748
749 while (pblist) {
750 pbe = (pblist + PB_PAGE_SKIP)->next;
751 free_page((unsigned long)pblist);
752 pblist = pbe;
753 }
754}
755
756/**
757 * fill_pb_page - Create a list of PBEs on a given memory page
758 */
759
760static inline void fill_pb_page(struct pbe *pbpage)
761{
762 struct pbe *p;
763
764 p = pbpage;
765 pbpage += PB_PAGE_SKIP;
766 do
767 p->next = p + 1;
768 while (++p < pbpage);
769}
770
771/**
772 * create_pbe_list - Create a list of PBEs on top of a given chain
773 * of memory pages allocated with alloc_pagedir()
774 */
775
776static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
777{
778 struct pbe *pbpage, *p;
779 unsigned num = PBES_PER_PAGE;
780
781 for_each_pb_page (pbpage, pblist) {
782 if (num >= nr_pages)
783 break;
784
785 fill_pb_page(pbpage);
786 num += PBES_PER_PAGE;
787 }
788 if (pbpage) {
789 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
790 p->next = p + 1;
791 p->next = NULL;
792 }
793 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
794}
795
796/**
797 * alloc_pagedir - Allocate the page directory.
798 *
799 * First, determine exactly how many pages we need and
800 * allocate them.
801 *
802 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
803 * struct pbe elements (pbes) and the last element in the page points
804 * to the next page.
805 *
806 * On each page we set up a list of struct_pbe elements.
807 */
808
809static struct pbe * alloc_pagedir(unsigned nr_pages)
810{
811 unsigned num;
812 struct pbe *pblist, *pbe;
813
814 if (!nr_pages)
815 return NULL;
816
817 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
818 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
819 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
820 pbe = pbe->next, num += PBES_PER_PAGE) {
821 pbe += PB_PAGE_SKIP;
822 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
823 }
824 if (!pbe) { /* get_zeroed_page() failed */
825 free_pagedir(pblist);
826 pblist = NULL;
827 }
828 return pblist;
829}
830
831/**
832 * free_image_pages - Free pages allocated for snapshot
833 */
834
835static void free_image_pages(void)
836{
837 struct pbe * p;
838
2e4d5822 839 for_each_pbe (p, pagedir_save) {
1da177e4
LT
840 if (p->address) {
841 ClearPageNosave(virt_to_page(p->address));
842 free_page(p->address);
843 p->address = 0;
844 }
845 }
846}
847
848/**
849 * alloc_image_pages - Allocate pages for the snapshot.
850 */
851
852static int alloc_image_pages(void)
853{
854 struct pbe * p;
855
2e4d5822 856 for_each_pbe (p, pagedir_save) {
1da177e4
LT
857 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
858 if (!p->address)
859 return -ENOMEM;
860 SetPageNosave(virt_to_page(p->address));
861 }
862 return 0;
863}
864
8686bcd0
PM
865/* Free pages we allocated for suspend. Suspend pages are alocated
866 * before atomic copy, so we need to free them after resume.
867 */
1da177e4
LT
868void swsusp_free(void)
869{
870 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
871 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
872 free_image_pages();
873 free_pagedir(pagedir_save);
874}
875
876
877/**
878 * enough_free_mem - Make sure we enough free memory to snapshot.
879 *
2e4d5822 880 * Returns TRUE or FALSE after checking the number of available
1da177e4
LT
881 * free pages.
882 */
883
884static int enough_free_mem(void)
885{
886 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
887 pr_debug("swsusp: Not enough free pages: Have %d\n",
888 nr_free_pages());
889 return 0;
890 }
891 return 1;
892}
893
894
895/**
896 * enough_swap - Make sure we have enough swap to save the image.
897 *
2e4d5822 898 * Returns TRUE or FALSE after checking the total amount of swap
1da177e4
LT
899 * space avaiable.
900 *
901 * FIXME: si_swapinfo(&i) returns all swap devices information.
2e4d5822 902 * We should only consider resume_device.
1da177e4
LT
903 */
904
905static int enough_swap(void)
906{
907 struct sysinfo i;
908
909 si_swapinfo(&i);
910 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
911 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
912 return 0;
913 }
914 return 1;
915}
916
917static int swsusp_alloc(void)
918{
919 int error;
920
c61978b3
PM
921 pagedir_nosave = NULL;
922 nr_copy_pages = calc_nr(nr_copy_pages);
57487f43 923 nr_copy_pages_check = nr_copy_pages;
c61978b3 924
1da177e4
LT
925 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
926 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
927
1da177e4
LT
928 if (!enough_free_mem())
929 return -ENOMEM;
930
931 if (!enough_swap())
932 return -ENOSPC;
933
1da177e4
LT
934 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
935 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
936 return -ENOMEM;
937 }
938 create_pbe_list(pagedir_save, nr_copy_pages);
939 pagedir_nosave = pagedir_save;
940 if ((error = alloc_image_pages())) {
941 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
942 swsusp_free();
943 return error;
944 }
945
1da177e4
LT
946 return 0;
947}
948
949static int suspend_prepare_image(void)
950{
951 int error;
952
953 pr_debug("swsusp: critical section: \n");
954 if (save_highmem()) {
955 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
956 restore_highmem();
957 return -ENOMEM;
958 }
959
960 drain_local_pages();
961 count_data_pages();
962 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
963
964 error = swsusp_alloc();
965 if (error)
966 return error;
2e4d5822
PM
967
968 /* During allocating of suspend pagedir, new cold pages may appear.
1da177e4
LT
969 * Kill them.
970 */
971 drain_local_pages();
972 copy_data_pages();
973
974 /*
975 * End of critical section. From now on, we can write to memory,
976 * but we should not touch disk. This specially means we must _not_
977 * touch swap space! Except we must write out our image of course.
978 */
979
980 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
981 return 0;
982}
983
984
985/* It is important _NOT_ to umount filesystems at this point. We want
986 * them synced (in case something goes wrong) but we DO not want to mark
987 * filesystem clean: it is not. (And it does not matter, if we resume
988 * correctly, we'll mark system clean, anyway.)
989 */
990int swsusp_write(void)
991{
992 int error;
993 device_resume();
994 lock_swapdevices();
995 error = write_suspend_image();
996 /* This will unlock ignored swap devices since writing is finished */
997 lock_swapdevices();
998 return error;
999
1000}
1001
1002
1003extern asmlinkage int swsusp_arch_suspend(void);
1004extern asmlinkage int swsusp_arch_resume(void);
1005
1006
1007asmlinkage int swsusp_save(void)
1008{
1da177e4
LT
1009 return suspend_prepare_image();
1010}
1011
1012int swsusp_suspend(void)
1013{
1014 int error;
1015 if ((error = arch_prepare_suspend()))
1016 return error;
1017 local_irq_disable();
1018 /* At this point, device_suspend() has been called, but *not*
1019 * device_power_down(). We *must* device_power_down() now.
1020 * Otherwise, drivers for some devices (e.g. interrupt controllers)
1021 * become desynchronized with the actual state of the hardware
1022 * at resume time, and evil weirdness ensues.
1023 */
1024 if ((error = device_power_down(PMSG_FREEZE))) {
99dc7d63 1025 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
1da177e4 1026 local_irq_enable();
1da177e4
LT
1027 return error;
1028 }
47b724f3
PM
1029
1030 if ((error = swsusp_swap_check())) {
99dc7d63
PM
1031 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
1032 device_power_up();
47b724f3
PM
1033 local_irq_enable();
1034 return error;
1035 }
1036
1da177e4
LT
1037 save_processor_state();
1038 if ((error = swsusp_arch_suspend()))
99dc7d63 1039 printk(KERN_ERR "Error %d suspending\n", error);
1da177e4
LT
1040 /* Restore control flow magically appears here */
1041 restore_processor_state();
1042 BUG_ON (nr_copy_pages_check != nr_copy_pages);
1043 restore_highmem();
1044 device_power_up();
1045 local_irq_enable();
1046 return error;
1047}
1048
1049int swsusp_resume(void)
1050{
1051 int error;
1052 local_irq_disable();
1053 if (device_power_down(PMSG_FREEZE))
1054 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1055 /* We'll ignore saved state, but this gets preempt count (etc) right */
1056 save_processor_state();
1057 error = swsusp_arch_resume();
1058 /* Code below is only ever reached in case of failure. Otherwise
1059 * execution continues at place where swsusp_arch_suspend was called
1060 */
1061 BUG_ON(!error);
1062 restore_processor_state();
1063 restore_highmem();
8446f1d3 1064 touch_softlockup_watchdog();
1da177e4
LT
1065 device_power_up();
1066 local_irq_enable();
1067 return error;
1068}
1069
1da177e4
LT
1070/**
1071 * On resume, for storing the PBE list and the image,
1072 * we can only use memory pages that do not conflict with the pages
1073 * which had been used before suspend.
1074 *
1075 * We don't know which pages are usable until we allocate them.
1076 *
1077 * Allocated but unusable (ie eaten) memory pages are linked together
1078 * to create a list, so that we can free them easily
1079 *
1080 * We could have used a type other than (void *)
1081 * for this purpose, but ...
1082 */
1083static void **eaten_memory = NULL;
1084
1085static inline void eat_page(void *page)
1086{
1087 void **c;
1088
1089 c = eaten_memory;
1090 eaten_memory = page;
1091 *eaten_memory = c;
1092}
1093
1094static unsigned long get_usable_page(unsigned gfp_mask)
1095{
1096 unsigned long m;
1097
1098 m = get_zeroed_page(gfp_mask);
8f9bdf15 1099 while (!PageNosaveFree(virt_to_page(m))) {
1da177e4
LT
1100 eat_page((void *)m);
1101 m = get_zeroed_page(gfp_mask);
1102 if (!m)
1103 break;
1104 }
1105 return m;
1106}
1107
1108static void free_eaten_memory(void)
1109{
1110 unsigned long m;
1111 void **c;
1112 int i = 0;
1113
1114 c = eaten_memory;
1115 while (c) {
1116 m = (unsigned long)c;
1117 c = *c;
1118 free_page(m);
1119 i++;
1120 }
1121 eaten_memory = NULL;
1122 pr_debug("swsusp: %d unused pages freed\n", i);
1123}
1124
1125/**
1126 * check_pagedir - We ensure here that pages that the PBEs point to
1127 * won't collide with pages where we're going to restore from the loaded
1128 * pages later
1129 */
1130
1131static int check_pagedir(struct pbe *pblist)
1132{
1133 struct pbe *p;
1134
1135 /* This is necessary, so that we can free allocated pages
1136 * in case of failure
1137 */
1138 for_each_pbe (p, pblist)
1139 p->address = 0UL;
1140
1141 for_each_pbe (p, pblist) {
1142 p->address = get_usable_page(GFP_ATOMIC);
1143 if (!p->address)
1144 return -ENOMEM;
1145 }
1146 return 0;
1147}
1148
1149/**
1150 * swsusp_pagedir_relocate - It is possible, that some memory pages
1151 * occupied by the list of PBEs collide with pages where we're going to
1152 * restore from the loaded pages later. We relocate them here.
1153 */
1154
1155static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1156{
1157 struct zone *zone;
1158 unsigned long zone_pfn;
1159 struct pbe *pbpage, *tail, *p;
1160 void *m;
1161 int rel = 0, error = 0;
1162
1163 if (!pblist) /* a sanity check */
1164 return NULL;
1165
1166 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1167 swsusp_info.pagedir_pages);
1168
1169 /* Set page flags */
1170
2e4d5822 1171 for_each_zone (zone) {
1da177e4
LT
1172 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1173 SetPageNosaveFree(pfn_to_page(zone_pfn +
1174 zone->zone_start_pfn));
1175 }
1176
1177 /* Clear orig addresses */
1178
1179 for_each_pbe (p, pblist)
1180 ClearPageNosaveFree(virt_to_page(p->orig_address));
1181
1182 tail = pblist + PB_PAGE_SKIP;
1183
1184 /* Relocate colliding pages */
1185
1186 for_each_pb_page (pbpage, pblist) {
8f9bdf15 1187 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1da177e4
LT
1188 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1189 if (!m) {
1190 error = -ENOMEM;
1191 break;
1192 }
1193 memcpy(m, (void *)pbpage, PAGE_SIZE);
1194 if (pbpage == pblist)
1195 pblist = (struct pbe *)m;
1196 else
1197 tail->next = (struct pbe *)m;
1198
1199 eat_page((void *)pbpage);
1200 pbpage = (struct pbe *)m;
1201
1202 /* We have to link the PBEs again */
1203
1204 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1205 if (p->next) /* needed to save the end */
1206 p->next = p + 1;
1207
1208 rel++;
1209 }
1210 tail = pbpage + PB_PAGE_SKIP;
1211 }
1212
1213 if (error) {
1214 printk("\nswsusp: Out of memory\n\n");
1215 free_pagedir(pblist);
1216 free_eaten_memory();
1217 pblist = NULL;
8686bcd0
PM
1218 /* Is this even worth handling? It should never ever happen, and we
1219 have just lost user's state, anyway... */
1220 } else
1da177e4
LT
1221 printk("swsusp: Relocated %d pages\n", rel);
1222
1223 return pblist;
1224}
1225
4dc3b16b 1226/*
1da177e4
LT
1227 * Using bio to read from swap.
1228 * This code requires a bit more work than just using buffer heads
1229 * but, it is the recommended way for 2.5/2.6.
1230 * The following are to signal the beginning and end of I/O. Bios
1231 * finish asynchronously, while we want them to happen synchronously.
1232 * A simple atomic_t, and a wait loop take care of this problem.
1233 */
1234
1235static atomic_t io_done = ATOMIC_INIT(0);
1236
1237static int end_io(struct bio * bio, unsigned int num, int err)
1238{
1239 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1240 panic("I/O error reading memory image");
1241 atomic_set(&io_done, 0);
1242 return 0;
1243}
1244
1245static struct block_device * resume_bdev;
1246
1247/**
1248 * submit - submit BIO request.
1249 * @rw: READ or WRITE.
1250 * @off physical offset of page.
1251 * @page: page we're reading or writing.
1252 *
1253 * Straight from the textbook - allocate and initialize the bio.
1254 * If we're writing, make sure the page is marked as dirty.
1255 * Then submit it and wait.
1256 */
1257
1258static int submit(int rw, pgoff_t page_off, void * page)
1259{
1260 int error = 0;
1261 struct bio * bio;
1262
1263 bio = bio_alloc(GFP_ATOMIC, 1);
1264 if (!bio)
1265 return -ENOMEM;
1266 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1267 bio_get(bio);
1268 bio->bi_bdev = resume_bdev;
1269 bio->bi_end_io = end_io;
1270
1271 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1272 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1273 error = -EFAULT;
1274 goto Done;
1275 }
1276
1277 if (rw == WRITE)
1278 bio_set_pages_dirty(bio);
1279
1280 atomic_set(&io_done, 1);
1281 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1282 while (atomic_read(&io_done))
1283 yield();
1284
1285 Done:
1286 bio_put(bio);
1287 return error;
1288}
1289
1290static int bio_read_page(pgoff_t page_off, void * page)
1291{
1292 return submit(READ, page_off, page);
1293}
1294
1295static int bio_write_page(pgoff_t page_off, void * page)
1296{
1297 return submit(WRITE, page_off, page);
1298}
1299
1300/*
1301 * Sanity check if this image makes sense with this kernel/swap context
1302 * I really don't think that it's foolproof but more than nothing..
1303 */
1304
1305static const char * sanity_check(void)
1306{
1307 dump_info();
47b724f3 1308 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1da177e4 1309 return "kernel version";
47b724f3 1310 if (swsusp_info.num_physpages != num_physpages)
1da177e4
LT
1311 return "memory size";
1312 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1313 return "system type";
1314 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1315 return "kernel release";
1316 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1317 return "version";
1318 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1319 return "machine";
5a72e04d 1320#if 0
99dc7d63
PM
1321 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
1322 if (swsusp_info.cpus != num_possible_cpus())
1da177e4 1323 return "number of cpus";
5a72e04d 1324#endif
1da177e4
LT
1325 return NULL;
1326}
1327
1328
1329static int check_header(void)
1330{
1331 const char * reason = NULL;
1332 int error;
1333
1334 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1335 return error;
1336
1337 /* Is this same machine? */
1338 if ((reason = sanity_check())) {
1339 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1340 return -EPERM;
1341 }
1342 nr_copy_pages = swsusp_info.image_pages;
1343 return error;
1344}
1345
1346static int check_sig(void)
1347{
1348 int error;
1349
1350 memset(&swsusp_header, 0, sizeof(swsusp_header));
1351 if ((error = bio_read_page(0, &swsusp_header)))
1352 return error;
1353 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1354 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
c2ff18f4
AS
1355 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1356 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
1357
1358 /*
1359 * Reset swap signature now.
1360 */
1361 error = bio_write_page(0, &swsusp_header);
1362 } else {
1da177e4
LT
1363 return -EINVAL;
1364 }
1365 if (!error)
1366 pr_debug("swsusp: Signature found, resuming\n");
1367 return error;
1368}
1369
1370/**
1371 * data_read - Read image pages from swap.
1372 *
1373 * You do not need to check for overlaps, check_pagedir()
1374 * already did that.
1375 */
1376
1377static int data_read(struct pbe *pblist)
1378{
1379 struct pbe * p;
1380 int error = 0;
1381 int i = 0;
1382 int mod = swsusp_info.image_pages / 100;
c2ff18f4
AS
1383 void *tfm;
1384
1385 if ((error = crypto_init(0, &tfm)))
1386 return error;
1da177e4
LT
1387
1388 if (!mod)
1389 mod = 1;
1390
1391 printk("swsusp: Reading image data (%lu pages): ",
1392 swsusp_info.image_pages);
1393
1394 for_each_pbe (p, pblist) {
1395 if (!(i % mod))
1396 printk("\b\b\b\b%3d%%", i / mod);
1397
c2ff18f4
AS
1398 if ((error = crypto_read(p, tfm))) {
1399 crypto_exit(tfm);
1da177e4 1400 return error;
c2ff18f4 1401 }
1da177e4
LT
1402
1403 i++;
1404 }
1405 printk("\b\b\b\bdone\n");
c2ff18f4 1406 crypto_exit(tfm);
1da177e4
LT
1407 return error;
1408}
1409
1da177e4
LT
1410/**
1411 * read_pagedir - Read page backup list pages from swap
1412 */
1413
1414static int read_pagedir(struct pbe *pblist)
1415{
1416 struct pbe *pbpage, *p;
1417 unsigned i = 0;
1418 int error;
1419
1420 if (!pblist)
1421 return -EFAULT;
1422
1423 printk("swsusp: Reading pagedir (%lu pages)\n",
1424 swsusp_info.pagedir_pages);
1425
1426 for_each_pb_page (pbpage, pblist) {
1427 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1428
1429 error = -EFAULT;
1430 if (offset) {
1431 p = (pbpage + PB_PAGE_SKIP)->next;
1432 error = bio_read_page(offset, (void *)pbpage);
1433 (pbpage + PB_PAGE_SKIP)->next = p;
1434 }
1435 if (error)
1436 break;
1437 }
1438
1439 if (error)
f2d61379
RW
1440 free_pagedir(pblist);
1441 else
1442 BUG_ON(i != swsusp_info.pagedir_pages);
1da177e4
LT
1443
1444 return error;
1445}
1446
1447
1448static int check_suspend_image(void)
1449{
1450 int error = 0;
1451
1452 if ((error = check_sig()))
1453 return error;
1454
1455 if ((error = check_header()))
1456 return error;
1457
1458 return 0;
1459}
1460
1461static int read_suspend_image(void)
1462{
1463 int error = 0;
1464 struct pbe *p;
1465
1466 if (!(p = alloc_pagedir(nr_copy_pages)))
1467 return -ENOMEM;
1468
1469 if ((error = read_pagedir(p)))
1470 return error;
1471
1472 create_pbe_list(p, nr_copy_pages);
1473
1474 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1475 return -ENOMEM;
1476
1477 /* Allocate memory for the image and read the data from swap */
1478
1479 error = check_pagedir(pagedir_nosave);
1480 free_eaten_memory();
1481 if (!error)
1482 error = data_read(pagedir_nosave);
1483
1484 if (error) { /* We fail cleanly */
1485 for_each_pbe (p, pagedir_nosave)
1486 if (p->address) {
1487 free_page(p->address);
1488 p->address = 0UL;
1489 }
1490 free_pagedir(pagedir_nosave);
1491 }
1492 return error;
1493}
1494
1495/**
1496 * swsusp_check - Check for saved image in swap
1497 */
1498
1499int swsusp_check(void)
1500{
1501 int error;
1502
1da177e4
LT
1503 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1504 if (!IS_ERR(resume_bdev)) {
1505 set_blocksize(resume_bdev, PAGE_SIZE);
1506 error = check_suspend_image();
1507 if (error)
1508 blkdev_put(resume_bdev);
1509 } else
1510 error = PTR_ERR(resume_bdev);
1511
1512 if (!error)
1513 pr_debug("swsusp: resume file found\n");
1514 else
1515 pr_debug("swsusp: Error %d check for resume file\n", error);
1516 return error;
1517}
1518
1519/**
1520 * swsusp_read - Read saved image from swap.
1521 */
1522
1523int swsusp_read(void)
1524{
1525 int error;
1526
1527 if (IS_ERR(resume_bdev)) {
1528 pr_debug("swsusp: block device not initialised\n");
1529 return PTR_ERR(resume_bdev);
1530 }
1531
1532 error = read_suspend_image();
1533 blkdev_put(resume_bdev);
c2ff18f4 1534 memset(key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
1535
1536 if (!error)
1537 pr_debug("swsusp: Reading resume file was successful\n");
1538 else
1539 pr_debug("swsusp: Error %d resuming\n", error);
1540 return error;
1541}
1542
1543/**
1544 * swsusp_close - close swap device.
1545 */
1546
1547void swsusp_close(void)
1548{
1549 if (IS_ERR(resume_bdev)) {
1550 pr_debug("swsusp: block device not initialised\n");
1551 return;
1552 }
1553
1554 blkdev_put(resume_bdev);
1555}