[PATCH] core remove PageReserved
[linux-2.6-block.git] / kernel / power / swsusp.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
2e4d5822 13 *
1da177e4
LT
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
2e4d5822 18 * Steve Doddi <dirk@loth.demon.co.uk>:
1da177e4
LT
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
c2ff18f4
AS
34 * Andreas Steinmetz <ast@domdv.de>:
35 * Added encrypted suspend option
36 *
1da177e4
LT
37 * More state savers are welcome. Especially for the scsi layer...
38 *
39 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40 */
41
42#include <linux/module.h>
43#include <linux/mm.h>
44#include <linux/suspend.h>
45#include <linux/smp_lock.h>
46#include <linux/file.h>
47#include <linux/utsname.h>
48#include <linux/version.h>
49#include <linux/delay.h>
50#include <linux/reboot.h>
51#include <linux/bitops.h>
52#include <linux/vt_kern.h>
53#include <linux/kbd_kern.h>
54#include <linux/keyboard.h>
55#include <linux/spinlock.h>
56#include <linux/genhd.h>
57#include <linux/kernel.h>
58#include <linux/major.h>
59#include <linux/swap.h>
60#include <linux/pm.h>
61#include <linux/device.h>
62#include <linux/buffer_head.h>
63#include <linux/swapops.h>
64#include <linux/bootmem.h>
65#include <linux/syscalls.h>
66#include <linux/console.h>
67#include <linux/highmem.h>
68#include <linux/bio.h>
d53d9f16 69#include <linux/mount.h>
1da177e4
LT
70
71#include <asm/uaccess.h>
72#include <asm/mmu_context.h>
73#include <asm/pgtable.h>
74#include <asm/tlbflush.h>
75#include <asm/io.h>
76
c2ff18f4
AS
77#include <linux/random.h>
78#include <linux/crypto.h>
79#include <asm/scatterlist.h>
80
1da177e4
LT
81#include "power.h"
82
c2ff18f4
AS
83#define CIPHER "aes"
84#define MAXKEY 32
85#define MAXIV 32
86
1da177e4
LT
87/* References to section boundaries */
88extern const void __nosave_begin, __nosave_end;
89
90/* Variables to be preserved over suspend */
91static int nr_copy_pages_check;
92
93extern char resume_file[];
94
95/* Local variables that should not be affected by save */
52c1da39 96static unsigned int nr_copy_pages __nosavedata = 0;
1da177e4
LT
97
98/* Suspend pagedir is allocated before final copy, therefore it
2e4d5822 99 must be freed after resume
1da177e4
LT
100
101 Warning: this is evil. There are actually two pagedirs at time of
102 resume. One is "pagedir_save", which is empty frame allocated at
2e4d5822 103 time of suspend, that must be freed. Second is "pagedir_nosave",
1da177e4
LT
104 allocated at time of resume, that travels through memory not to
105 collide with anything.
106
107 Warning: this is even more evil than it seems. Pagedirs this file
108 talks about are completely different from page directories used by
109 MMU hardware.
110 */
111suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112static suspend_pagedir_t *pagedir_save;
113
114#define SWSUSP_SIG "S1SUSPEND"
115
116static struct swsusp_header {
c2ff18f4
AS
117 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118 u8 key_iv[MAXKEY+MAXIV];
1da177e4
LT
119 swp_entry_t swsusp_info;
120 char orig_sig[10];
121 char sig[10];
122} __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124static struct swsusp_info swsusp_info;
125
126/*
127 * XXX: We try to keep some more pages free so that I/O operations succeed
128 * without paging. Might this be more?
129 */
130#define PAGES_FOR_IO 512
131
132/*
133 * Saving part...
134 */
135
136/* We memorize in swapfile_used what swap devices are used for suspension */
137#define SWAPFILE_UNUSED 0
138#define SWAPFILE_SUSPEND 1 /* This is the suspending device */
139#define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
140
141static unsigned short swapfile_used[MAX_SWAPFILES];
142static unsigned short root_swap;
143
c2ff18f4
AS
144static int write_page(unsigned long addr, swp_entry_t * loc);
145static int bio_read_page(pgoff_t page_off, void * page);
146
147static u8 key_iv[MAXKEY+MAXIV];
148
149#ifdef CONFIG_SWSUSP_ENCRYPT
150
151static int crypto_init(int mode, void **mem)
152{
153 int error = 0;
154 int len;
155 char *modemsg;
156 struct crypto_tfm *tfm;
157
158 modemsg = mode ? "suspend not possible" : "resume not possible";
159
160 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161 if(!tfm) {
162 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163 error = -EINVAL;
164 goto out;
165 }
166
167 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169 error = -ENOKEY;
170 goto fail;
171 }
172
173 if (mode)
174 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176 len = crypto_tfm_alg_max_keysize(tfm);
177 if (len > MAXKEY)
178 len = MAXKEY;
179
180 if (crypto_cipher_setkey(tfm, key_iv, len)) {
181 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182 error = -EKEYREJECTED;
183 goto fail;
184 }
185
186 len = crypto_tfm_alg_ivsize(tfm);
187
188 if (MAXIV < len) {
189 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190 error = -EOVERFLOW;
191 goto fail;
192 }
193
194 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196 *mem=(void *)tfm;
197
198 goto out;
199
200fail: crypto_free_tfm(tfm);
201out: return error;
202}
203
204static __inline__ void crypto_exit(void *mem)
205{
206 crypto_free_tfm((struct crypto_tfm *)mem);
207}
208
209static __inline__ int crypto_write(struct pbe *p, void *mem)
210{
211 int error = 0;
212 struct scatterlist src, dst;
213
214 src.page = virt_to_page(p->address);
215 src.offset = 0;
216 src.length = PAGE_SIZE;
217 dst.page = virt_to_page((void *)&swsusp_header);
218 dst.offset = 0;
219 dst.length = PAGE_SIZE;
220
221 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222 PAGE_SIZE);
223
224 if (!error)
225 error = write_page((unsigned long)&swsusp_header,
226 &(p->swap_address));
227 return error;
228}
229
230static __inline__ int crypto_read(struct pbe *p, void *mem)
231{
232 int error = 0;
233 struct scatterlist src, dst;
234
235 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236 if (!error) {
237 src.offset = 0;
238 src.length = PAGE_SIZE;
239 dst.offset = 0;
240 dst.length = PAGE_SIZE;
241 src.page = dst.page = virt_to_page((void *)p->address);
242
243 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244 &src, PAGE_SIZE);
245 }
246 return error;
247}
248#else
249static __inline__ int crypto_init(int mode, void *mem)
250{
251 return 0;
252}
253
254static __inline__ void crypto_exit(void *mem)
255{
256}
257
258static __inline__ int crypto_write(struct pbe *p, void *mem)
259{
260 return write_page(p->address, &(p->swap_address));
261}
262
263static __inline__ int crypto_read(struct pbe *p, void *mem)
264{
265 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266}
267#endif
268
1da177e4
LT
269static int mark_swapfiles(swp_entry_t prev)
270{
271 int error;
272
2e4d5822 273 rw_swap_page_sync(READ,
1da177e4
LT
274 swp_entry(root_swap, 0),
275 virt_to_page((unsigned long)&swsusp_header));
276 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
c2ff18f4 280 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
1da177e4 281 swsusp_header.swsusp_info = prev;
2e4d5822 282 error = rw_swap_page_sync(WRITE,
1da177e4
LT
283 swp_entry(root_swap, 0),
284 virt_to_page((unsigned long)
285 &swsusp_header));
286 } else {
287 pr_debug("swsusp: Partition is not swap space.\n");
288 error = -ENODEV;
289 }
290 return error;
291}
292
293/*
294 * Check whether the swap device is the specified resume
295 * device, irrespective of whether they are specified by
296 * identical names.
297 *
298 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
299 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300 * and they'll be considered the same device. This is *necessary* for
301 * devfs, since the resume code can only recognize the form /dev/hda4,
302 * but the suspend code would see the long name.)
303 */
304static int is_resume_device(const struct swap_info_struct *swap_info)
305{
306 struct file *file = swap_info->swap_file;
307 struct inode *inode = file->f_dentry->d_inode;
308
309 return S_ISBLK(inode->i_mode) &&
310 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311}
312
313static int swsusp_swap_check(void) /* This is called before saving image */
314{
315 int i, len;
2e4d5822 316
1da177e4
LT
317 len=strlen(resume_file);
318 root_swap = 0xFFFF;
2e4d5822 319
dae06ac4 320 spin_lock(&swap_lock);
2e4d5822 321 for (i=0; i<MAX_SWAPFILES; i++) {
dae06ac4 322 if (!(swap_info[i].flags & SWP_WRITEOK)) {
1da177e4
LT
323 swapfile_used[i]=SWAPFILE_UNUSED;
324 } else {
2e4d5822 325 if (!len) {
1da177e4 326 printk(KERN_WARNING "resume= option should be used to set suspend device" );
2e4d5822 327 if (root_swap == 0xFFFF) {
1da177e4
LT
328 swapfile_used[i] = SWAPFILE_SUSPEND;
329 root_swap = i;
330 } else
2e4d5822 331 swapfile_used[i] = SWAPFILE_IGNORED;
1da177e4
LT
332 } else {
333 /* we ignore all swap devices that are not the resume_file */
334 if (is_resume_device(&swap_info[i])) {
335 swapfile_used[i] = SWAPFILE_SUSPEND;
336 root_swap = i;
337 } else {
338 swapfile_used[i] = SWAPFILE_IGNORED;
339 }
340 }
341 }
342 }
dae06ac4 343 spin_unlock(&swap_lock);
1da177e4
LT
344 return (root_swap != 0xffff) ? 0 : -ENODEV;
345}
346
347/**
348 * This is called after saving image so modification
349 * will be lost after resume... and that's what we want.
350 * we make the device unusable. A new call to
2e4d5822 351 * lock_swapdevices can unlock the devices.
1da177e4
LT
352 */
353static void lock_swapdevices(void)
354{
355 int i;
356
dae06ac4 357 spin_lock(&swap_lock);
2e4d5822
PM
358 for (i = 0; i< MAX_SWAPFILES; i++)
359 if (swapfile_used[i] == SWAPFILE_IGNORED) {
dae06ac4 360 swap_info[i].flags ^= SWP_WRITEOK;
1da177e4 361 }
dae06ac4 362 spin_unlock(&swap_lock);
1da177e4
LT
363}
364
365/**
8686bcd0 366 * write_page - Write one page to a fresh swap location.
1da177e4
LT
367 * @addr: Address we're writing.
368 * @loc: Place to store the entry we used.
369 *
370 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
2e4d5822 371 * errors. That is an artifact left over from swsusp. It did not
1da177e4
LT
372 * check the return of rw_swap_page_sync() at all, since most pages
373 * written back to swap would return -EIO.
374 * This is a partial improvement, since we will at least return other
375 * errors, though we need to eventually fix the damn code.
376 */
377static int write_page(unsigned long addr, swp_entry_t * loc)
378{
379 swp_entry_t entry;
380 int error = 0;
381
382 entry = get_swap_page();
2e4d5822 383 if (swp_offset(entry) &&
1da177e4
LT
384 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385 error = rw_swap_page_sync(WRITE, entry,
386 virt_to_page(addr));
387 if (error == -EIO)
388 error = 0;
389 if (!error)
390 *loc = entry;
391 } else
392 error = -ENOSPC;
393 return error;
394}
395
396/**
397 * data_free - Free the swap entries used by the saved image.
398 *
2e4d5822 399 * Walk the list of used swap entries and free each one.
1da177e4
LT
400 * This is only used for cleanup when suspend fails.
401 */
402static void data_free(void)
403{
404 swp_entry_t entry;
254b5477 405 struct pbe * p;
1da177e4 406
254b5477
RW
407 for_each_pbe(p, pagedir_nosave) {
408 entry = p->swap_address;
1da177e4
LT
409 if (entry.val)
410 swap_free(entry);
411 else
412 break;
1da177e4
LT
413 }
414}
415
416/**
417 * data_write - Write saved image to swap.
418 *
419 * Walk the list of pages in the image and sync each one to swap.
420 */
421static int data_write(void)
422{
423 int error = 0, i = 0;
424 unsigned int mod = nr_copy_pages / 100;
425 struct pbe *p;
c2ff18f4
AS
426 void *tfm;
427
428 if ((error = crypto_init(1, &tfm)))
429 return error;
1da177e4
LT
430
431 if (!mod)
432 mod = 1;
433
434 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
2e4d5822 435 for_each_pbe (p, pagedir_nosave) {
1da177e4
LT
436 if (!(i%mod))
437 printk( "\b\b\b\b%3d%%", i / mod );
c2ff18f4
AS
438 if ((error = crypto_write(p, tfm))) {
439 crypto_exit(tfm);
1da177e4 440 return error;
c2ff18f4 441 }
1da177e4
LT
442 i++;
443 }
444 printk("\b\b\b\bdone\n");
c2ff18f4 445 crypto_exit(tfm);
1da177e4
LT
446 return error;
447}
448
449static void dump_info(void)
450{
451 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
452 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
453 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
454 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
455 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
456 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
457 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
458 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
459 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
460 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
461 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
462}
463
464static void init_header(void)
465{
466 memset(&swsusp_info, 0, sizeof(swsusp_info));
467 swsusp_info.version_code = LINUX_VERSION_CODE;
468 swsusp_info.num_physpages = num_physpages;
469 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
470
471 swsusp_info.suspend_pagedir = pagedir_nosave;
472 swsusp_info.cpus = num_online_cpus();
473 swsusp_info.image_pages = nr_copy_pages;
474}
475
476static int close_swap(void)
477{
478 swp_entry_t entry;
479 int error;
480
481 dump_info();
482 error = write_page((unsigned long)&swsusp_info, &entry);
2e4d5822 483 if (!error) {
1da177e4
LT
484 printk( "S" );
485 error = mark_swapfiles(entry);
486 printk( "|\n" );
487 }
488 return error;
489}
490
491/**
492 * free_pagedir_entries - Free pages used by the page directory.
493 *
494 * This is used during suspend for error recovery.
495 */
496
497static void free_pagedir_entries(void)
498{
499 int i;
500
501 for (i = 0; i < swsusp_info.pagedir_pages; i++)
502 swap_free(swsusp_info.pagedir[i]);
503}
504
505
506/**
507 * write_pagedir - Write the array of pages holding the page directory.
508 * @last: Last swap entry we write (needed for header).
509 */
510
511static int write_pagedir(void)
512{
513 int error = 0;
514 unsigned n = 0;
515 struct pbe * pbe;
516
517 printk( "Writing pagedir...");
2e4d5822 518 for_each_pb_page (pbe, pagedir_nosave) {
1da177e4
LT
519 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
520 return error;
521 }
522
523 swsusp_info.pagedir_pages = n;
524 printk("done (%u pages)\n", n);
525 return error;
526}
527
528/**
529 * write_suspend_image - Write entire image and metadata.
530 *
531 */
1da177e4
LT
532static int write_suspend_image(void)
533{
534 int error;
535
536 init_header();
537 if ((error = data_write()))
538 goto FreeData;
539
540 if ((error = write_pagedir()))
541 goto FreePagedir;
542
543 if ((error = close_swap()))
544 goto FreePagedir;
545 Done:
c2ff18f4 546 memset(key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
547 return error;
548 FreePagedir:
549 free_pagedir_entries();
550 FreeData:
551 data_free();
552 goto Done;
553}
554
555
556#ifdef CONFIG_HIGHMEM
557struct highmem_page {
558 char *data;
559 struct page *page;
560 struct highmem_page *next;
561};
562
563static struct highmem_page *highmem_copy;
564
565static int save_highmem_zone(struct zone *zone)
566{
567 unsigned long zone_pfn;
568 mark_free_pages(zone);
569 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
570 struct page *page;
571 struct highmem_page *save;
572 void *kaddr;
573 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
574
575 if (!(pfn%1000))
576 printk(".");
577 if (!pfn_valid(pfn))
578 continue;
579 page = pfn_to_page(pfn);
580 /*
b5810039
NP
581 * PageReserved results from rvmalloc() sans vmalloc_32()
582 * and architectural memory reservations.
583 *
584 * rvmalloc should not cause this, because all implementations
585 * appear to always be using vmalloc_32 on architectures with
586 * highmem. This is a good thing, because we would like to save
587 * rvmalloc pages.
588 *
589 * It appears to be triggered by pages which do not point to
590 * valid memory (see arch/i386/mm/init.c:one_highpage_init(),
591 * which sets PageReserved if the page does not point to valid
592 * RAM.
593 *
594 * XXX: must remove usage of PageReserved!
1da177e4 595 */
b5810039 596 if (PageReserved(page))
1da177e4 597 continue;
1da177e4
LT
598 BUG_ON(PageNosave(page));
599 if (PageNosaveFree(page))
600 continue;
601 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
602 if (!save)
603 return -ENOMEM;
604 save->next = highmem_copy;
605 save->page = page;
606 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
607 if (!save->data) {
608 kfree(save);
609 return -ENOMEM;
610 }
611 kaddr = kmap_atomic(page, KM_USER0);
612 memcpy(save->data, kaddr, PAGE_SIZE);
613 kunmap_atomic(kaddr, KM_USER0);
614 highmem_copy = save;
615 }
616 return 0;
617}
618#endif /* CONFIG_HIGHMEM */
619
620
621static int save_highmem(void)
622{
623#ifdef CONFIG_HIGHMEM
624 struct zone *zone;
625 int res = 0;
626
627 pr_debug("swsusp: Saving Highmem\n");
2e4d5822 628 for_each_zone (zone) {
1da177e4
LT
629 if (is_highmem(zone))
630 res = save_highmem_zone(zone);
631 if (res)
632 return res;
633 }
634#endif
635 return 0;
636}
637
638static int restore_highmem(void)
639{
640#ifdef CONFIG_HIGHMEM
641 printk("swsusp: Restoring Highmem\n");
642 while (highmem_copy) {
643 struct highmem_page *save = highmem_copy;
644 void *kaddr;
645 highmem_copy = save->next;
646
647 kaddr = kmap_atomic(save->page, KM_USER0);
648 memcpy(kaddr, save->data, PAGE_SIZE);
649 kunmap_atomic(kaddr, KM_USER0);
650 free_page((long) save->data);
651 kfree(save);
652 }
653#endif
654 return 0;
655}
656
657
658static int pfn_is_nosave(unsigned long pfn)
659{
660 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
661 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
662 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
663}
664
665/**
666 * saveable - Determine whether a page should be cloned or not.
667 * @pfn: The page
668 *
669 * We save a page if it's Reserved, and not in the range of pages
670 * statically defined as 'unsaveable', or if it isn't reserved, and
671 * isn't part of a free chunk of pages.
672 */
673
674static int saveable(struct zone * zone, unsigned long * zone_pfn)
675{
676 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
677 struct page * page;
678
679 if (!pfn_valid(pfn))
680 return 0;
681
682 page = pfn_to_page(pfn);
1da177e4
LT
683 if (PageNosave(page))
684 return 0;
b5810039 685 if (pfn_is_nosave(pfn)) {
1da177e4
LT
686 pr_debug("[nosave pfn 0x%lx]", pfn);
687 return 0;
688 }
689 if (PageNosaveFree(page))
690 return 0;
691
692 return 1;
693}
694
695static void count_data_pages(void)
696{
697 struct zone *zone;
698 unsigned long zone_pfn;
699
700 nr_copy_pages = 0;
701
2e4d5822 702 for_each_zone (zone) {
1da177e4
LT
703 if (is_highmem(zone))
704 continue;
705 mark_free_pages(zone);
706 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
707 nr_copy_pages += saveable(zone, &zone_pfn);
708 }
709}
710
711
712static void copy_data_pages(void)
713{
714 struct zone *zone;
715 unsigned long zone_pfn;
716 struct pbe * pbe = pagedir_nosave;
2e4d5822 717
1da177e4 718 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
2e4d5822 719 for_each_zone (zone) {
1da177e4
LT
720 if (is_highmem(zone))
721 continue;
722 mark_free_pages(zone);
723 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
724 if (saveable(zone, &zone_pfn)) {
725 struct page * page;
726 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
727 BUG_ON(!pbe);
728 pbe->orig_address = (long) page_address(page);
729 /* copy_page is not usable for copying task structs. */
730 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
731 pbe = pbe->next;
732 }
733 }
734 }
735 BUG_ON(pbe);
736}
737
738
739/**
740 * calc_nr - Determine the number of pages needed for a pbe list.
741 */
742
743static int calc_nr(int nr_copy)
744{
56057e1a 745 return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1);
1da177e4
LT
746}
747
748/**
749 * free_pagedir - free pages allocated with alloc_pagedir()
750 */
751
752static inline void free_pagedir(struct pbe *pblist)
753{
754 struct pbe *pbe;
755
756 while (pblist) {
757 pbe = (pblist + PB_PAGE_SKIP)->next;
758 free_page((unsigned long)pblist);
759 pblist = pbe;
760 }
761}
762
763/**
764 * fill_pb_page - Create a list of PBEs on a given memory page
765 */
766
767static inline void fill_pb_page(struct pbe *pbpage)
768{
769 struct pbe *p;
770
771 p = pbpage;
772 pbpage += PB_PAGE_SKIP;
773 do
774 p->next = p + 1;
775 while (++p < pbpage);
776}
777
778/**
779 * create_pbe_list - Create a list of PBEs on top of a given chain
780 * of memory pages allocated with alloc_pagedir()
781 */
782
783static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
784{
785 struct pbe *pbpage, *p;
786 unsigned num = PBES_PER_PAGE;
787
788 for_each_pb_page (pbpage, pblist) {
789 if (num >= nr_pages)
790 break;
791
792 fill_pb_page(pbpage);
793 num += PBES_PER_PAGE;
794 }
795 if (pbpage) {
796 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
797 p->next = p + 1;
798 p->next = NULL;
799 }
800 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
801}
802
803/**
804 * alloc_pagedir - Allocate the page directory.
805 *
806 * First, determine exactly how many pages we need and
807 * allocate them.
808 *
809 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
810 * struct pbe elements (pbes) and the last element in the page points
811 * to the next page.
812 *
813 * On each page we set up a list of struct_pbe elements.
814 */
815
816static struct pbe * alloc_pagedir(unsigned nr_pages)
817{
818 unsigned num;
819 struct pbe *pblist, *pbe;
820
821 if (!nr_pages)
822 return NULL;
823
824 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
825 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
826 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
827 pbe = pbe->next, num += PBES_PER_PAGE) {
828 pbe += PB_PAGE_SKIP;
829 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
830 }
831 if (!pbe) { /* get_zeroed_page() failed */
832 free_pagedir(pblist);
833 pblist = NULL;
834 }
835 return pblist;
836}
837
838/**
839 * free_image_pages - Free pages allocated for snapshot
840 */
841
842static void free_image_pages(void)
843{
844 struct pbe * p;
845
2e4d5822 846 for_each_pbe (p, pagedir_save) {
1da177e4
LT
847 if (p->address) {
848 ClearPageNosave(virt_to_page(p->address));
849 free_page(p->address);
850 p->address = 0;
851 }
852 }
853}
854
855/**
856 * alloc_image_pages - Allocate pages for the snapshot.
857 */
858
859static int alloc_image_pages(void)
860{
861 struct pbe * p;
862
2e4d5822 863 for_each_pbe (p, pagedir_save) {
1da177e4
LT
864 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
865 if (!p->address)
866 return -ENOMEM;
867 SetPageNosave(virt_to_page(p->address));
868 }
869 return 0;
870}
871
8686bcd0
PM
872/* Free pages we allocated for suspend. Suspend pages are alocated
873 * before atomic copy, so we need to free them after resume.
874 */
1da177e4
LT
875void swsusp_free(void)
876{
877 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
878 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
879 free_image_pages();
880 free_pagedir(pagedir_save);
881}
882
883
884/**
885 * enough_free_mem - Make sure we enough free memory to snapshot.
886 *
2e4d5822 887 * Returns TRUE or FALSE after checking the number of available
1da177e4
LT
888 * free pages.
889 */
890
891static int enough_free_mem(void)
892{
893 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
894 pr_debug("swsusp: Not enough free pages: Have %d\n",
895 nr_free_pages());
896 return 0;
897 }
898 return 1;
899}
900
901
902/**
903 * enough_swap - Make sure we have enough swap to save the image.
904 *
2e4d5822 905 * Returns TRUE or FALSE after checking the total amount of swap
1da177e4
LT
906 * space avaiable.
907 *
908 * FIXME: si_swapinfo(&i) returns all swap devices information.
2e4d5822 909 * We should only consider resume_device.
1da177e4
LT
910 */
911
912static int enough_swap(void)
913{
914 struct sysinfo i;
915
916 si_swapinfo(&i);
917 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
918 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
919 return 0;
920 }
921 return 1;
922}
923
924static int swsusp_alloc(void)
925{
926 int error;
927
c61978b3
PM
928 pagedir_nosave = NULL;
929 nr_copy_pages = calc_nr(nr_copy_pages);
57487f43 930 nr_copy_pages_check = nr_copy_pages;
c61978b3 931
1da177e4
LT
932 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
933 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
934
1da177e4
LT
935 if (!enough_free_mem())
936 return -ENOMEM;
937
938 if (!enough_swap())
939 return -ENOSPC;
940
0f7347c2
RW
941 if (MAX_PBES < nr_copy_pages / PBES_PER_PAGE +
942 !!(nr_copy_pages % PBES_PER_PAGE))
943 return -ENOSPC;
944
1da177e4
LT
945 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
946 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
947 return -ENOMEM;
948 }
949 create_pbe_list(pagedir_save, nr_copy_pages);
950 pagedir_nosave = pagedir_save;
951 if ((error = alloc_image_pages())) {
952 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
953 swsusp_free();
954 return error;
955 }
956
1da177e4
LT
957 return 0;
958}
959
960static int suspend_prepare_image(void)
961{
962 int error;
963
964 pr_debug("swsusp: critical section: \n");
965 if (save_highmem()) {
966 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
967 restore_highmem();
968 return -ENOMEM;
969 }
970
971 drain_local_pages();
972 count_data_pages();
973 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
974
975 error = swsusp_alloc();
976 if (error)
977 return error;
2e4d5822
PM
978
979 /* During allocating of suspend pagedir, new cold pages may appear.
1da177e4
LT
980 * Kill them.
981 */
982 drain_local_pages();
983 copy_data_pages();
984
985 /*
986 * End of critical section. From now on, we can write to memory,
987 * but we should not touch disk. This specially means we must _not_
988 * touch swap space! Except we must write out our image of course.
989 */
990
991 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
992 return 0;
993}
994
995
996/* It is important _NOT_ to umount filesystems at this point. We want
997 * them synced (in case something goes wrong) but we DO not want to mark
998 * filesystem clean: it is not. (And it does not matter, if we resume
999 * correctly, we'll mark system clean, anyway.)
1000 */
1001int swsusp_write(void)
1002{
1003 int error;
1004 device_resume();
1005 lock_swapdevices();
1006 error = write_suspend_image();
1007 /* This will unlock ignored swap devices since writing is finished */
1008 lock_swapdevices();
1009 return error;
1010
1011}
1012
1013
1014extern asmlinkage int swsusp_arch_suspend(void);
1015extern asmlinkage int swsusp_arch_resume(void);
1016
1017
1018asmlinkage int swsusp_save(void)
1019{
1da177e4
LT
1020 return suspend_prepare_image();
1021}
1022
1023int swsusp_suspend(void)
1024{
1025 int error;
1026 if ((error = arch_prepare_suspend()))
1027 return error;
1028 local_irq_disable();
1029 /* At this point, device_suspend() has been called, but *not*
1030 * device_power_down(). We *must* device_power_down() now.
1031 * Otherwise, drivers for some devices (e.g. interrupt controllers)
1032 * become desynchronized with the actual state of the hardware
1033 * at resume time, and evil weirdness ensues.
1034 */
1035 if ((error = device_power_down(PMSG_FREEZE))) {
99dc7d63 1036 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
1da177e4 1037 local_irq_enable();
1da177e4
LT
1038 return error;
1039 }
47b724f3
PM
1040
1041 if ((error = swsusp_swap_check())) {
99dc7d63
PM
1042 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
1043 device_power_up();
47b724f3
PM
1044 local_irq_enable();
1045 return error;
1046 }
1047
1da177e4
LT
1048 save_processor_state();
1049 if ((error = swsusp_arch_suspend()))
99dc7d63 1050 printk(KERN_ERR "Error %d suspending\n", error);
1da177e4
LT
1051 /* Restore control flow magically appears here */
1052 restore_processor_state();
1053 BUG_ON (nr_copy_pages_check != nr_copy_pages);
1054 restore_highmem();
1055 device_power_up();
1056 local_irq_enable();
1057 return error;
1058}
1059
1060int swsusp_resume(void)
1061{
1062 int error;
1063 local_irq_disable();
1064 if (device_power_down(PMSG_FREEZE))
1065 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1066 /* We'll ignore saved state, but this gets preempt count (etc) right */
1067 save_processor_state();
1068 error = swsusp_arch_resume();
1069 /* Code below is only ever reached in case of failure. Otherwise
1070 * execution continues at place where swsusp_arch_suspend was called
1071 */
1072 BUG_ON(!error);
1073 restore_processor_state();
1074 restore_highmem();
8446f1d3 1075 touch_softlockup_watchdog();
1da177e4
LT
1076 device_power_up();
1077 local_irq_enable();
1078 return error;
1079}
1080
1da177e4
LT
1081/**
1082 * On resume, for storing the PBE list and the image,
1083 * we can only use memory pages that do not conflict with the pages
1084 * which had been used before suspend.
1085 *
1086 * We don't know which pages are usable until we allocate them.
1087 *
1088 * Allocated but unusable (ie eaten) memory pages are linked together
1089 * to create a list, so that we can free them easily
1090 *
1091 * We could have used a type other than (void *)
1092 * for this purpose, but ...
1093 */
1094static void **eaten_memory = NULL;
1095
1096static inline void eat_page(void *page)
1097{
1098 void **c;
1099
1100 c = eaten_memory;
1101 eaten_memory = page;
1102 *eaten_memory = c;
1103}
1104
9796fdd8 1105unsigned long get_usable_page(gfp_t gfp_mask)
1da177e4
LT
1106{
1107 unsigned long m;
1108
1109 m = get_zeroed_page(gfp_mask);
8f9bdf15 1110 while (!PageNosaveFree(virt_to_page(m))) {
1da177e4
LT
1111 eat_page((void *)m);
1112 m = get_zeroed_page(gfp_mask);
1113 if (!m)
1114 break;
1115 }
1116 return m;
1117}
1118
3dd08325 1119void free_eaten_memory(void)
1da177e4
LT
1120{
1121 unsigned long m;
1122 void **c;
1123 int i = 0;
1124
1125 c = eaten_memory;
1126 while (c) {
1127 m = (unsigned long)c;
1128 c = *c;
1129 free_page(m);
1130 i++;
1131 }
1132 eaten_memory = NULL;
1133 pr_debug("swsusp: %d unused pages freed\n", i);
1134}
1135
1136/**
1137 * check_pagedir - We ensure here that pages that the PBEs point to
1138 * won't collide with pages where we're going to restore from the loaded
1139 * pages later
1140 */
1141
1142static int check_pagedir(struct pbe *pblist)
1143{
1144 struct pbe *p;
1145
1146 /* This is necessary, so that we can free allocated pages
1147 * in case of failure
1148 */
1149 for_each_pbe (p, pblist)
1150 p->address = 0UL;
1151
1152 for_each_pbe (p, pblist) {
1153 p->address = get_usable_page(GFP_ATOMIC);
1154 if (!p->address)
1155 return -ENOMEM;
1156 }
1157 return 0;
1158}
1159
1160/**
1161 * swsusp_pagedir_relocate - It is possible, that some memory pages
1162 * occupied by the list of PBEs collide with pages where we're going to
1163 * restore from the loaded pages later. We relocate them here.
1164 */
1165
1166static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1167{
1168 struct zone *zone;
1169 unsigned long zone_pfn;
1170 struct pbe *pbpage, *tail, *p;
1171 void *m;
1172 int rel = 0, error = 0;
1173
1174 if (!pblist) /* a sanity check */
1175 return NULL;
1176
1177 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1178 swsusp_info.pagedir_pages);
1179
1180 /* Set page flags */
1181
2e4d5822 1182 for_each_zone (zone) {
1da177e4
LT
1183 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1184 SetPageNosaveFree(pfn_to_page(zone_pfn +
1185 zone->zone_start_pfn));
1186 }
1187
1188 /* Clear orig addresses */
1189
1190 for_each_pbe (p, pblist)
1191 ClearPageNosaveFree(virt_to_page(p->orig_address));
1192
1193 tail = pblist + PB_PAGE_SKIP;
1194
1195 /* Relocate colliding pages */
1196
1197 for_each_pb_page (pbpage, pblist) {
8f9bdf15 1198 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1da177e4
LT
1199 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1200 if (!m) {
1201 error = -ENOMEM;
1202 break;
1203 }
1204 memcpy(m, (void *)pbpage, PAGE_SIZE);
1205 if (pbpage == pblist)
1206 pblist = (struct pbe *)m;
1207 else
1208 tail->next = (struct pbe *)m;
1209
1210 eat_page((void *)pbpage);
1211 pbpage = (struct pbe *)m;
1212
1213 /* We have to link the PBEs again */
1214
1215 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1216 if (p->next) /* needed to save the end */
1217 p->next = p + 1;
1218
1219 rel++;
1220 }
1221 tail = pbpage + PB_PAGE_SKIP;
1222 }
1223
1224 if (error) {
1225 printk("\nswsusp: Out of memory\n\n");
1226 free_pagedir(pblist);
1227 free_eaten_memory();
1228 pblist = NULL;
8686bcd0
PM
1229 /* Is this even worth handling? It should never ever happen, and we
1230 have just lost user's state, anyway... */
1231 } else
1da177e4
LT
1232 printk("swsusp: Relocated %d pages\n", rel);
1233
1234 return pblist;
1235}
1236
4dc3b16b 1237/*
1da177e4
LT
1238 * Using bio to read from swap.
1239 * This code requires a bit more work than just using buffer heads
1240 * but, it is the recommended way for 2.5/2.6.
1241 * The following are to signal the beginning and end of I/O. Bios
1242 * finish asynchronously, while we want them to happen synchronously.
1243 * A simple atomic_t, and a wait loop take care of this problem.
1244 */
1245
1246static atomic_t io_done = ATOMIC_INIT(0);
1247
1248static int end_io(struct bio * bio, unsigned int num, int err)
1249{
1250 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1251 panic("I/O error reading memory image");
1252 atomic_set(&io_done, 0);
1253 return 0;
1254}
1255
1256static struct block_device * resume_bdev;
1257
1258/**
1259 * submit - submit BIO request.
1260 * @rw: READ or WRITE.
1261 * @off physical offset of page.
1262 * @page: page we're reading or writing.
1263 *
1264 * Straight from the textbook - allocate and initialize the bio.
1265 * If we're writing, make sure the page is marked as dirty.
1266 * Then submit it and wait.
1267 */
1268
1269static int submit(int rw, pgoff_t page_off, void * page)
1270{
1271 int error = 0;
1272 struct bio * bio;
1273
1274 bio = bio_alloc(GFP_ATOMIC, 1);
1275 if (!bio)
1276 return -ENOMEM;
1277 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1278 bio_get(bio);
1279 bio->bi_bdev = resume_bdev;
1280 bio->bi_end_io = end_io;
1281
1282 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1283 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1284 error = -EFAULT;
1285 goto Done;
1286 }
1287
1288 if (rw == WRITE)
1289 bio_set_pages_dirty(bio);
1290
1291 atomic_set(&io_done, 1);
1292 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1293 while (atomic_read(&io_done))
1294 yield();
1295
1296 Done:
1297 bio_put(bio);
1298 return error;
1299}
1300
1301static int bio_read_page(pgoff_t page_off, void * page)
1302{
1303 return submit(READ, page_off, page);
1304}
1305
1306static int bio_write_page(pgoff_t page_off, void * page)
1307{
1308 return submit(WRITE, page_off, page);
1309}
1310
1311/*
1312 * Sanity check if this image makes sense with this kernel/swap context
1313 * I really don't think that it's foolproof but more than nothing..
1314 */
1315
1316static const char * sanity_check(void)
1317{
1318 dump_info();
47b724f3 1319 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1da177e4 1320 return "kernel version";
47b724f3 1321 if (swsusp_info.num_physpages != num_physpages)
1da177e4
LT
1322 return "memory size";
1323 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1324 return "system type";
1325 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1326 return "kernel release";
1327 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1328 return "version";
1329 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1330 return "machine";
5a72e04d 1331#if 0
99dc7d63
PM
1332 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
1333 if (swsusp_info.cpus != num_possible_cpus())
1da177e4 1334 return "number of cpus";
5a72e04d 1335#endif
1da177e4
LT
1336 return NULL;
1337}
1338
1339
1340static int check_header(void)
1341{
1342 const char * reason = NULL;
1343 int error;
1344
1345 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1346 return error;
1347
1348 /* Is this same machine? */
1349 if ((reason = sanity_check())) {
1350 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1351 return -EPERM;
1352 }
1353 nr_copy_pages = swsusp_info.image_pages;
1354 return error;
1355}
1356
1357static int check_sig(void)
1358{
1359 int error;
1360
1361 memset(&swsusp_header, 0, sizeof(swsusp_header));
1362 if ((error = bio_read_page(0, &swsusp_header)))
1363 return error;
1364 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1365 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
c2ff18f4
AS
1366 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1367 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
1368
1369 /*
1370 * Reset swap signature now.
1371 */
1372 error = bio_write_page(0, &swsusp_header);
1373 } else {
1da177e4
LT
1374 return -EINVAL;
1375 }
1376 if (!error)
1377 pr_debug("swsusp: Signature found, resuming\n");
1378 return error;
1379}
1380
1381/**
1382 * data_read - Read image pages from swap.
1383 *
1384 * You do not need to check for overlaps, check_pagedir()
1385 * already did that.
1386 */
1387
1388static int data_read(struct pbe *pblist)
1389{
1390 struct pbe * p;
1391 int error = 0;
1392 int i = 0;
1393 int mod = swsusp_info.image_pages / 100;
c2ff18f4
AS
1394 void *tfm;
1395
1396 if ((error = crypto_init(0, &tfm)))
1397 return error;
1da177e4
LT
1398
1399 if (!mod)
1400 mod = 1;
1401
1402 printk("swsusp: Reading image data (%lu pages): ",
1403 swsusp_info.image_pages);
1404
1405 for_each_pbe (p, pblist) {
1406 if (!(i % mod))
1407 printk("\b\b\b\b%3d%%", i / mod);
1408
c2ff18f4
AS
1409 if ((error = crypto_read(p, tfm))) {
1410 crypto_exit(tfm);
1da177e4 1411 return error;
c2ff18f4 1412 }
1da177e4
LT
1413
1414 i++;
1415 }
1416 printk("\b\b\b\bdone\n");
c2ff18f4 1417 crypto_exit(tfm);
1da177e4
LT
1418 return error;
1419}
1420
1da177e4
LT
1421/**
1422 * read_pagedir - Read page backup list pages from swap
1423 */
1424
1425static int read_pagedir(struct pbe *pblist)
1426{
1427 struct pbe *pbpage, *p;
1428 unsigned i = 0;
1429 int error;
1430
1431 if (!pblist)
1432 return -EFAULT;
1433
1434 printk("swsusp: Reading pagedir (%lu pages)\n",
1435 swsusp_info.pagedir_pages);
1436
1437 for_each_pb_page (pbpage, pblist) {
1438 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1439
1440 error = -EFAULT;
1441 if (offset) {
1442 p = (pbpage + PB_PAGE_SKIP)->next;
1443 error = bio_read_page(offset, (void *)pbpage);
1444 (pbpage + PB_PAGE_SKIP)->next = p;
1445 }
1446 if (error)
1447 break;
1448 }
1449
1450 if (error)
f2d61379
RW
1451 free_pagedir(pblist);
1452 else
1453 BUG_ON(i != swsusp_info.pagedir_pages);
1da177e4
LT
1454
1455 return error;
1456}
1457
1458
1459static int check_suspend_image(void)
1460{
1461 int error = 0;
1462
1463 if ((error = check_sig()))
1464 return error;
1465
1466 if ((error = check_header()))
1467 return error;
1468
1469 return 0;
1470}
1471
1472static int read_suspend_image(void)
1473{
1474 int error = 0;
1475 struct pbe *p;
1476
1477 if (!(p = alloc_pagedir(nr_copy_pages)))
1478 return -ENOMEM;
1479
1480 if ((error = read_pagedir(p)))
1481 return error;
1482
1483 create_pbe_list(p, nr_copy_pages);
1484
1485 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1486 return -ENOMEM;
1487
1488 /* Allocate memory for the image and read the data from swap */
1489
1490 error = check_pagedir(pagedir_nosave);
3dd08325 1491
1da177e4
LT
1492 if (!error)
1493 error = data_read(pagedir_nosave);
1494
1495 if (error) { /* We fail cleanly */
3dd08325 1496 free_eaten_memory();
1da177e4
LT
1497 for_each_pbe (p, pagedir_nosave)
1498 if (p->address) {
1499 free_page(p->address);
1500 p->address = 0UL;
1501 }
1502 free_pagedir(pagedir_nosave);
1503 }
1504 return error;
1505}
1506
1507/**
1508 * swsusp_check - Check for saved image in swap
1509 */
1510
1511int swsusp_check(void)
1512{
1513 int error;
1514
1da177e4
LT
1515 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1516 if (!IS_ERR(resume_bdev)) {
1517 set_blocksize(resume_bdev, PAGE_SIZE);
1518 error = check_suspend_image();
1519 if (error)
1520 blkdev_put(resume_bdev);
1521 } else
1522 error = PTR_ERR(resume_bdev);
1523
1524 if (!error)
1525 pr_debug("swsusp: resume file found\n");
1526 else
1527 pr_debug("swsusp: Error %d check for resume file\n", error);
1528 return error;
1529}
1530
1531/**
1532 * swsusp_read - Read saved image from swap.
1533 */
1534
1535int swsusp_read(void)
1536{
1537 int error;
1538
1539 if (IS_ERR(resume_bdev)) {
1540 pr_debug("swsusp: block device not initialised\n");
1541 return PTR_ERR(resume_bdev);
1542 }
1543
1544 error = read_suspend_image();
1545 blkdev_put(resume_bdev);
c2ff18f4 1546 memset(key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
1547
1548 if (!error)
1549 pr_debug("swsusp: Reading resume file was successful\n");
1550 else
1551 pr_debug("swsusp: Error %d resuming\n", error);
1552 return error;
1553}
1554
1555/**
1556 * swsusp_close - close swap device.
1557 */
1558
1559void swsusp_close(void)
1560{
1561 if (IS_ERR(resume_bdev)) {
1562 pr_debug("swsusp: block device not initialised\n");
1563 return;
1564 }
1565
1566 blkdev_put(resume_bdev);
1567}