PM: Fix typo in label name s/Platofrm_finish/Platform_finish/
[linux-2.6-block.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e
RW
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
25761b6e
RW
29
30#include <asm/uaccess.h>
31#include <asm/mmu_context.h>
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <asm/io.h>
35
25761b6e
RW
36#include "power.h"
37
74dfd666
RW
38static int swsusp_page_is_free(struct page *);
39static void swsusp_set_page_forbidden(struct page *);
40static void swsusp_unset_page_forbidden(struct page *);
41
fe419535
RW
42/*
43 * Preferred image size in bytes (tunable via /sys/power/image_size).
44 * When it is set to N, swsusp will do its best to ensure the image
45 * size will not exceed N bytes, but if that is impossible, it will
46 * try to create the smallest image possible.
47 */
48unsigned long image_size = 500 * 1024 * 1024;
49
8357376d
RW
50/* List of PBEs needed for restoring the pages that were allocated before
51 * the suspend and included in the suspend image, but have also been
52 * allocated by the "resume" kernel, so their contents cannot be written
53 * directly to their "original" page frames.
54 */
75534b50
RW
55struct pbe *restore_pblist;
56
8357376d 57/* Pointer to an auxiliary buffer (1 page) */
940864dd 58static void *buffer;
7088a5c0 59
f6143aa6
RW
60/**
61 * @safe_needed - on resume, for storing the PBE list and the image,
62 * we can only use memory pages that do not conflict with the pages
8357376d
RW
63 * used before suspend. The unsafe pages have PageNosaveFree set
64 * and we count them using unsafe_pages.
f6143aa6 65 *
8357376d
RW
66 * Each allocated image page is marked as PageNosave and PageNosaveFree
67 * so that swsusp_free() can release it.
f6143aa6
RW
68 */
69
0bcd888d
RW
70#define PG_ANY 0
71#define PG_SAFE 1
72#define PG_UNSAFE_CLEAR 1
73#define PG_UNSAFE_KEEP 0
74
940864dd 75static unsigned int allocated_unsafe_pages;
f6143aa6 76
8357376d 77static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
78{
79 void *res;
80
81 res = (void *)get_zeroed_page(gfp_mask);
82 if (safe_needed)
7be98234 83 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 84 /* The page is unsafe, mark it for swsusp_free() */
7be98234 85 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 86 allocated_unsafe_pages++;
f6143aa6
RW
87 res = (void *)get_zeroed_page(gfp_mask);
88 }
89 if (res) {
7be98234
RW
90 swsusp_set_page_forbidden(virt_to_page(res));
91 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
92 }
93 return res;
94}
95
96unsigned long get_safe_page(gfp_t gfp_mask)
97{
8357376d
RW
98 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
99}
100
5b6d15de
RW
101static struct page *alloc_image_page(gfp_t gfp_mask)
102{
8357376d
RW
103 struct page *page;
104
105 page = alloc_page(gfp_mask);
106 if (page) {
7be98234
RW
107 swsusp_set_page_forbidden(page);
108 swsusp_set_page_free(page);
8357376d
RW
109 }
110 return page;
f6143aa6
RW
111}
112
113/**
114 * free_image_page - free page represented by @addr, allocated with
8357376d 115 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
116 */
117
118static inline void free_image_page(void *addr, int clear_nosave_free)
119{
8357376d
RW
120 struct page *page;
121
122 BUG_ON(!virt_addr_valid(addr));
123
124 page = virt_to_page(addr);
125
7be98234 126 swsusp_unset_page_forbidden(page);
f6143aa6 127 if (clear_nosave_free)
7be98234 128 swsusp_unset_page_free(page);
8357376d
RW
129
130 __free_page(page);
f6143aa6
RW
131}
132
b788db79
RW
133/* struct linked_page is used to build chains of pages */
134
135#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
136
137struct linked_page {
138 struct linked_page *next;
139 char data[LINKED_PAGE_DATA_SIZE];
140} __attribute__((packed));
141
142static inline void
143free_list_of_pages(struct linked_page *list, int clear_page_nosave)
144{
145 while (list) {
146 struct linked_page *lp = list->next;
147
148 free_image_page(list, clear_page_nosave);
149 list = lp;
150 }
151}
152
153/**
154 * struct chain_allocator is used for allocating small objects out of
155 * a linked list of pages called 'the chain'.
156 *
157 * The chain grows each time when there is no room for a new object in
158 * the current page. The allocated objects cannot be freed individually.
159 * It is only possible to free them all at once, by freeing the entire
160 * chain.
161 *
162 * NOTE: The chain allocator may be inefficient if the allocated objects
163 * are not much smaller than PAGE_SIZE.
164 */
165
166struct chain_allocator {
167 struct linked_page *chain; /* the chain */
168 unsigned int used_space; /* total size of objects allocated out
169 * of the current page
170 */
171 gfp_t gfp_mask; /* mask for allocating pages */
172 int safe_needed; /* if set, only "safe" pages are allocated */
173};
174
175static void
176chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
177{
178 ca->chain = NULL;
179 ca->used_space = LINKED_PAGE_DATA_SIZE;
180 ca->gfp_mask = gfp_mask;
181 ca->safe_needed = safe_needed;
182}
183
184static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
185{
186 void *ret;
187
188 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
189 struct linked_page *lp;
190
8357376d 191 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
192 if (!lp)
193 return NULL;
194
195 lp->next = ca->chain;
196 ca->chain = lp;
197 ca->used_space = 0;
198 }
199 ret = ca->chain->data + ca->used_space;
200 ca->used_space += size;
201 return ret;
202}
203
b788db79
RW
204/**
205 * Data types related to memory bitmaps.
206 *
207 * Memory bitmap is a structure consiting of many linked lists of
208 * objects. The main list's elements are of type struct zone_bitmap
209 * and each of them corresonds to one zone. For each zone bitmap
210 * object there is a list of objects of type struct bm_block that
0d83304c 211 * represent each blocks of bitmap in which information is stored.
b788db79
RW
212 *
213 * struct memory_bitmap contains a pointer to the main list of zone
214 * bitmap objects, a struct bm_position used for browsing the bitmap,
215 * and a pointer to the list of pages used for allocating all of the
216 * zone bitmap objects and bitmap block objects.
217 *
218 * NOTE: It has to be possible to lay out the bitmap in memory
219 * using only allocations of order 0. Additionally, the bitmap is
220 * designed to work with arbitrary number of zones (this is over the
221 * top for now, but let's avoid making unnecessary assumptions ;-).
222 *
223 * struct zone_bitmap contains a pointer to a list of bitmap block
224 * objects and a pointer to the bitmap block object that has been
225 * most recently used for setting bits. Additionally, it contains the
226 * pfns that correspond to the start and end of the represented zone.
227 *
228 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
229 * information is stored (in the form of a block of bitmap)
230 * It also contains the pfns that correspond to the start and end of
231 * the represented memory area.
b788db79
RW
232 */
233
234#define BM_END_OF_MAP (~0UL)
235
b788db79
RW
236#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
237
238struct bm_block {
846705de 239 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
240 unsigned long start_pfn; /* pfn represented by the first bit */
241 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 242 unsigned long *data; /* bitmap representing pages */
b788db79
RW
243};
244
0d83304c
AM
245static inline unsigned long bm_block_bits(struct bm_block *bb)
246{
247 return bb->end_pfn - bb->start_pfn;
248}
249
b788db79
RW
250/* strcut bm_position is used for browsing memory bitmaps */
251
252struct bm_position {
b788db79 253 struct bm_block *block;
b788db79
RW
254 int bit;
255};
256
257struct memory_bitmap {
846705de 258 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
259 struct linked_page *p_list; /* list of pages used to store zone
260 * bitmap objects and bitmap block
261 * objects
262 */
263 struct bm_position cur; /* most recently used bit position */
264};
265
266/* Functions that operate on memory bitmaps */
267
b788db79
RW
268static void memory_bm_position_reset(struct memory_bitmap *bm)
269{
846705de 270 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 271 bm->cur.bit = 0;
b788db79
RW
272}
273
274static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275
276/**
277 * create_bm_block_list - create a list of block bitmap objects
846705de
RW
278 * @nr_blocks - number of blocks to allocate
279 * @list - list to put the allocated blocks into
280 * @ca - chain allocator to be used for allocating memory
b788db79 281 */
846705de
RW
282static int create_bm_block_list(unsigned long pages,
283 struct list_head *list,
284 struct chain_allocator *ca)
b788db79 285{
846705de 286 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
287
288 while (nr_blocks-- > 0) {
289 struct bm_block *bb;
290
291 bb = chain_alloc(ca, sizeof(struct bm_block));
292 if (!bb)
846705de
RW
293 return -ENOMEM;
294 list_add(&bb->hook, list);
b788db79 295 }
846705de
RW
296
297 return 0;
b788db79
RW
298}
299
846705de
RW
300struct mem_extent {
301 struct list_head hook;
302 unsigned long start;
303 unsigned long end;
304};
305
b788db79 306/**
846705de
RW
307 * free_mem_extents - free a list of memory extents
308 * @list - list of extents to empty
b788db79 309 */
846705de
RW
310static void free_mem_extents(struct list_head *list)
311{
312 struct mem_extent *ext, *aux;
b788db79 313
846705de
RW
314 list_for_each_entry_safe(ext, aux, list, hook) {
315 list_del(&ext->hook);
316 kfree(ext);
317 }
318}
319
320/**
321 * create_mem_extents - create a list of memory extents representing
322 * contiguous ranges of PFNs
323 * @list - list to put the extents into
324 * @gfp_mask - mask to use for memory allocations
325 */
326static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 327{
846705de 328 struct zone *zone;
b788db79 329
846705de 330 INIT_LIST_HEAD(list);
b788db79 331
ee99c71c 332 for_each_populated_zone(zone) {
846705de
RW
333 unsigned long zone_start, zone_end;
334 struct mem_extent *ext, *cur, *aux;
335
846705de
RW
336 zone_start = zone->zone_start_pfn;
337 zone_end = zone->zone_start_pfn + zone->spanned_pages;
338
339 list_for_each_entry(ext, list, hook)
340 if (zone_start <= ext->end)
341 break;
b788db79 342
846705de
RW
343 if (&ext->hook == list || zone_end < ext->start) {
344 /* New extent is necessary */
345 struct mem_extent *new_ext;
346
347 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
348 if (!new_ext) {
349 free_mem_extents(list);
350 return -ENOMEM;
351 }
352 new_ext->start = zone_start;
353 new_ext->end = zone_end;
354 list_add_tail(&new_ext->hook, &ext->hook);
355 continue;
356 }
357
358 /* Merge this zone's range of PFNs with the existing one */
359 if (zone_start < ext->start)
360 ext->start = zone_start;
361 if (zone_end > ext->end)
362 ext->end = zone_end;
363
364 /* More merging may be possible */
365 cur = ext;
366 list_for_each_entry_safe_continue(cur, aux, list, hook) {
367 if (zone_end < cur->start)
368 break;
369 if (zone_end < cur->end)
370 ext->end = cur->end;
371 list_del(&cur->hook);
372 kfree(cur);
373 }
b788db79 374 }
846705de
RW
375
376 return 0;
b788db79
RW
377}
378
379/**
380 * memory_bm_create - allocate memory for a memory bitmap
381 */
b788db79
RW
382static int
383memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
384{
385 struct chain_allocator ca;
846705de
RW
386 struct list_head mem_extents;
387 struct mem_extent *ext;
388 int error;
b788db79
RW
389
390 chain_init(&ca, gfp_mask, safe_needed);
846705de 391 INIT_LIST_HEAD(&bm->blocks);
b788db79 392
846705de
RW
393 error = create_mem_extents(&mem_extents, gfp_mask);
394 if (error)
395 return error;
b788db79 396
846705de
RW
397 list_for_each_entry(ext, &mem_extents, hook) {
398 struct bm_block *bb;
399 unsigned long pfn = ext->start;
400 unsigned long pages = ext->end - ext->start;
b788db79 401
846705de 402 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 403
846705de
RW
404 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
405 if (error)
406 goto Error;
b788db79 407
846705de
RW
408 list_for_each_entry_continue(bb, &bm->blocks, hook) {
409 bb->data = get_image_page(gfp_mask, safe_needed);
410 if (!bb->data) {
411 error = -ENOMEM;
412 goto Error;
413 }
b788db79
RW
414
415 bb->start_pfn = pfn;
846705de 416 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 417 pfn += BM_BITS_PER_BLOCK;
846705de 418 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
419 } else {
420 /* This is executed only once in the loop */
846705de 421 pfn += pages;
b788db79
RW
422 }
423 bb->end_pfn = pfn;
b788db79 424 }
b788db79 425 }
846705de 426
b788db79
RW
427 bm->p_list = ca.chain;
428 memory_bm_position_reset(bm);
846705de
RW
429 Exit:
430 free_mem_extents(&mem_extents);
431 return error;
b788db79 432
846705de 433 Error:
b788db79
RW
434 bm->p_list = ca.chain;
435 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 436 goto Exit;
b788db79
RW
437}
438
439/**
440 * memory_bm_free - free memory occupied by the memory bitmap @bm
441 */
b788db79
RW
442static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
443{
846705de 444 struct bm_block *bb;
b788db79 445
846705de
RW
446 list_for_each_entry(bb, &bm->blocks, hook)
447 if (bb->data)
448 free_image_page(bb->data, clear_nosave_free);
b788db79 449
b788db79 450 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
451
452 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
453}
454
455/**
74dfd666 456 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
457 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
458 * of @bm->cur_zone_bm are updated.
b788db79 459 */
a82f7119 460static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 461 void **addr, unsigned int *bit_nr)
b788db79 462{
b788db79
RW
463 struct bm_block *bb;
464
846705de
RW
465 /*
466 * Check if the pfn corresponds to the current bitmap block and find
467 * the block where it fits if this is not the case.
468 */
469 bb = bm->cur.block;
b788db79 470 if (pfn < bb->start_pfn)
846705de
RW
471 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
472 if (pfn >= bb->start_pfn)
473 break;
b788db79 474
846705de
RW
475 if (pfn >= bb->end_pfn)
476 list_for_each_entry_continue(bb, &bm->blocks, hook)
477 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
478 break;
74dfd666 479
846705de
RW
480 if (&bb->hook == &bm->blocks)
481 return -EFAULT;
482
483 /* The block has been found */
484 bm->cur.block = bb;
b788db79 485 pfn -= bb->start_pfn;
846705de 486 bm->cur.bit = pfn + 1;
0d83304c
AM
487 *bit_nr = pfn;
488 *addr = bb->data;
a82f7119 489 return 0;
74dfd666
RW
490}
491
492static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
493{
494 void *addr;
495 unsigned int bit;
a82f7119 496 int error;
74dfd666 497
a82f7119
RW
498 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
499 BUG_ON(error);
74dfd666
RW
500 set_bit(bit, addr);
501}
502
a82f7119
RW
503static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
504{
505 void *addr;
506 unsigned int bit;
507 int error;
508
509 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
510 if (!error)
511 set_bit(bit, addr);
512 return error;
513}
514
74dfd666
RW
515static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
516{
517 void *addr;
518 unsigned int bit;
a82f7119 519 int error;
74dfd666 520
a82f7119
RW
521 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
522 BUG_ON(error);
74dfd666
RW
523 clear_bit(bit, addr);
524}
525
526static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
527{
528 void *addr;
529 unsigned int bit;
a82f7119 530 int error;
74dfd666 531
a82f7119
RW
532 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
533 BUG_ON(error);
74dfd666 534 return test_bit(bit, addr);
b788db79
RW
535}
536
69643279
RW
537static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
538{
539 void *addr;
540 unsigned int bit;
541
542 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
543}
544
b788db79
RW
545/**
546 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
547 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
548 * returned.
549 *
550 * It is required to run memory_bm_position_reset() before the first call to
551 * this function.
552 */
553
554static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
555{
b788db79 556 struct bm_block *bb;
b788db79
RW
557 int bit;
558
846705de 559 bb = bm->cur.block;
b788db79 560 do {
846705de
RW
561 bit = bm->cur.bit;
562 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
563 if (bit < bm_block_bits(bb))
564 goto Return_pfn;
565
566 bb = list_entry(bb->hook.next, struct bm_block, hook);
567 bm->cur.block = bb;
568 bm->cur.bit = 0;
569 } while (&bb->hook != &bm->blocks);
570
b788db79
RW
571 memory_bm_position_reset(bm);
572 return BM_END_OF_MAP;
573
59a49335 574 Return_pfn:
0d83304c
AM
575 bm->cur.bit = bit + 1;
576 return bb->start_pfn + bit;
b788db79
RW
577}
578
74dfd666
RW
579/**
580 * This structure represents a range of page frames the contents of which
581 * should not be saved during the suspend.
582 */
583
584struct nosave_region {
585 struct list_head list;
586 unsigned long start_pfn;
587 unsigned long end_pfn;
588};
589
590static LIST_HEAD(nosave_regions);
591
592/**
593 * register_nosave_region - register a range of page frames the contents
594 * of which should not be saved during the suspend (to be used in the early
595 * initialization code)
596 */
597
598void __init
940d67f6
JB
599__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
600 int use_kmalloc)
74dfd666
RW
601{
602 struct nosave_region *region;
603
604 if (start_pfn >= end_pfn)
605 return;
606
607 if (!list_empty(&nosave_regions)) {
608 /* Try to extend the previous region (they should be sorted) */
609 region = list_entry(nosave_regions.prev,
610 struct nosave_region, list);
611 if (region->end_pfn == start_pfn) {
612 region->end_pfn = end_pfn;
613 goto Report;
614 }
615 }
940d67f6
JB
616 if (use_kmalloc) {
617 /* during init, this shouldn't fail */
618 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
619 BUG_ON(!region);
620 } else
621 /* This allocation cannot fail */
622 region = alloc_bootmem_low(sizeof(struct nosave_region));
74dfd666
RW
623 region->start_pfn = start_pfn;
624 region->end_pfn = end_pfn;
625 list_add_tail(&region->list, &nosave_regions);
626 Report:
23976728 627 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
74dfd666
RW
628 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
629}
630
631/*
632 * Set bits in this map correspond to the page frames the contents of which
633 * should not be saved during the suspend.
634 */
635static struct memory_bitmap *forbidden_pages_map;
636
637/* Set bits in this map correspond to free page frames. */
638static struct memory_bitmap *free_pages_map;
639
640/*
641 * Each page frame allocated for creating the image is marked by setting the
642 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
643 */
644
645void swsusp_set_page_free(struct page *page)
646{
647 if (free_pages_map)
648 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
649}
650
651static int swsusp_page_is_free(struct page *page)
652{
653 return free_pages_map ?
654 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
655}
656
657void swsusp_unset_page_free(struct page *page)
658{
659 if (free_pages_map)
660 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
661}
662
663static void swsusp_set_page_forbidden(struct page *page)
664{
665 if (forbidden_pages_map)
666 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
667}
668
669int swsusp_page_is_forbidden(struct page *page)
670{
671 return forbidden_pages_map ?
672 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
673}
674
675static void swsusp_unset_page_forbidden(struct page *page)
676{
677 if (forbidden_pages_map)
678 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
679}
680
681/**
682 * mark_nosave_pages - set bits corresponding to the page frames the
683 * contents of which should not be saved in a given bitmap.
684 */
685
686static void mark_nosave_pages(struct memory_bitmap *bm)
687{
688 struct nosave_region *region;
689
690 if (list_empty(&nosave_regions))
691 return;
692
693 list_for_each_entry(region, &nosave_regions, list) {
694 unsigned long pfn;
695
23976728 696 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
74dfd666
RW
697 region->start_pfn << PAGE_SHIFT,
698 region->end_pfn << PAGE_SHIFT);
699
700 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
701 if (pfn_valid(pfn)) {
702 /*
703 * It is safe to ignore the result of
704 * mem_bm_set_bit_check() here, since we won't
705 * touch the PFNs for which the error is
706 * returned anyway.
707 */
708 mem_bm_set_bit_check(bm, pfn);
709 }
74dfd666
RW
710 }
711}
712
713/**
714 * create_basic_memory_bitmaps - create bitmaps needed for marking page
715 * frames that should not be saved and free page frames. The pointers
716 * forbidden_pages_map and free_pages_map are only modified if everything
717 * goes well, because we don't want the bits to be used before both bitmaps
718 * are set up.
719 */
720
721int create_basic_memory_bitmaps(void)
722{
723 struct memory_bitmap *bm1, *bm2;
724 int error = 0;
725
726 BUG_ON(forbidden_pages_map || free_pages_map);
727
0709db60 728 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
729 if (!bm1)
730 return -ENOMEM;
731
0709db60 732 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
733 if (error)
734 goto Free_first_object;
735
0709db60 736 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
737 if (!bm2)
738 goto Free_first_bitmap;
739
0709db60 740 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
741 if (error)
742 goto Free_second_object;
743
744 forbidden_pages_map = bm1;
745 free_pages_map = bm2;
746 mark_nosave_pages(forbidden_pages_map);
747
23976728 748 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
749
750 return 0;
751
752 Free_second_object:
753 kfree(bm2);
754 Free_first_bitmap:
755 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
756 Free_first_object:
757 kfree(bm1);
758 return -ENOMEM;
759}
760
761/**
762 * free_basic_memory_bitmaps - free memory bitmaps allocated by
763 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
764 * so that the bitmaps themselves are not referred to while they are being
765 * freed.
766 */
767
768void free_basic_memory_bitmaps(void)
769{
770 struct memory_bitmap *bm1, *bm2;
771
772 BUG_ON(!(forbidden_pages_map && free_pages_map));
773
774 bm1 = forbidden_pages_map;
775 bm2 = free_pages_map;
776 forbidden_pages_map = NULL;
777 free_pages_map = NULL;
778 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 kfree(bm1);
780 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
781 kfree(bm2);
782
23976728 783 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
784}
785
b788db79
RW
786/**
787 * snapshot_additional_pages - estimate the number of additional pages
788 * be needed for setting up the suspend image data structures for given
789 * zone (usually the returned value is greater than the exact number)
790 */
791
792unsigned int snapshot_additional_pages(struct zone *zone)
793{
794 unsigned int res;
795
796 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
797 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
8357376d 798 return 2 * res;
b788db79
RW
799}
800
8357376d
RW
801#ifdef CONFIG_HIGHMEM
802/**
803 * count_free_highmem_pages - compute the total number of free highmem
804 * pages, system-wide.
805 */
806
807static unsigned int count_free_highmem_pages(void)
808{
809 struct zone *zone;
810 unsigned int cnt = 0;
811
ee99c71c
KM
812 for_each_populated_zone(zone)
813 if (is_highmem(zone))
d23ad423 814 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
815
816 return cnt;
817}
818
819/**
820 * saveable_highmem_page - Determine whether a highmem page should be
821 * included in the suspend image.
822 *
823 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
824 * and it isn't a part of a free chunk of pages.
825 */
846705de 826static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
827{
828 struct page *page;
829
830 if (!pfn_valid(pfn))
831 return NULL;
832
833 page = pfn_to_page(pfn);
846705de
RW
834 if (page_zone(page) != zone)
835 return NULL;
8357376d
RW
836
837 BUG_ON(!PageHighMem(page));
838
7be98234
RW
839 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
840 PageReserved(page))
8357376d
RW
841 return NULL;
842
843 return page;
844}
845
846/**
847 * count_highmem_pages - compute the total number of saveable highmem
848 * pages.
849 */
850
fe419535 851static unsigned int count_highmem_pages(void)
8357376d
RW
852{
853 struct zone *zone;
854 unsigned int n = 0;
855
856 for_each_zone(zone) {
857 unsigned long pfn, max_zone_pfn;
858
859 if (!is_highmem(zone))
860 continue;
861
862 mark_free_pages(zone);
863 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
864 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 865 if (saveable_highmem_page(zone, pfn))
8357376d
RW
866 n++;
867 }
868 return n;
869}
870#else
846705de
RW
871static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
872{
873 return NULL;
874}
8357376d
RW
875#endif /* CONFIG_HIGHMEM */
876
25761b6e 877/**
8a235efa
RW
878 * saveable_page - Determine whether a non-highmem page should be included
879 * in the suspend image.
25761b6e 880 *
8357376d
RW
881 * We should save the page if it isn't Nosave, and is not in the range
882 * of pages statically defined as 'unsaveable', and it isn't a part of
883 * a free chunk of pages.
25761b6e 884 */
846705de 885static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 886{
de491861 887 struct page *page;
25761b6e
RW
888
889 if (!pfn_valid(pfn))
ae83c5ee 890 return NULL;
25761b6e
RW
891
892 page = pfn_to_page(pfn);
846705de
RW
893 if (page_zone(page) != zone)
894 return NULL;
ae83c5ee 895
8357376d
RW
896 BUG_ON(PageHighMem(page));
897
7be98234 898 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 899 return NULL;
8357376d 900
8a235efa
RW
901 if (PageReserved(page)
902 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 903 return NULL;
25761b6e 904
ae83c5ee 905 return page;
25761b6e
RW
906}
907
8357376d
RW
908/**
909 * count_data_pages - compute the total number of saveable non-highmem
910 * pages.
911 */
912
fe419535 913static unsigned int count_data_pages(void)
25761b6e
RW
914{
915 struct zone *zone;
ae83c5ee 916 unsigned long pfn, max_zone_pfn;
dc19d507 917 unsigned int n = 0;
25761b6e 918
8357376d 919 for_each_zone(zone) {
25761b6e
RW
920 if (is_highmem(zone))
921 continue;
8357376d 922
25761b6e 923 mark_free_pages(zone);
ae83c5ee
RW
924 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
925 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 926 if (saveable_page(zone, pfn))
8357376d 927 n++;
25761b6e 928 }
a0f49651 929 return n;
25761b6e
RW
930}
931
8357376d
RW
932/* This is needed, because copy_page and memcpy are not usable for copying
933 * task structs.
934 */
935static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
936{
937 int n;
938
f623f0db
RW
939 for (n = PAGE_SIZE / sizeof(long); n; n--)
940 *dst++ = *src++;
941}
942
8a235efa
RW
943
944/**
945 * safe_copy_page - check if the page we are going to copy is marked as
946 * present in the kernel page tables (this always is the case if
947 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
948 * kernel_page_present() always returns 'true').
949 */
950static void safe_copy_page(void *dst, struct page *s_page)
951{
952 if (kernel_page_present(s_page)) {
953 do_copy_page(dst, page_address(s_page));
954 } else {
955 kernel_map_pages(s_page, 1, 1);
956 do_copy_page(dst, page_address(s_page));
957 kernel_map_pages(s_page, 1, 0);
958 }
959}
960
961
8357376d
RW
962#ifdef CONFIG_HIGHMEM
963static inline struct page *
964page_is_saveable(struct zone *zone, unsigned long pfn)
965{
966 return is_highmem(zone) ?
846705de 967 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
968}
969
8a235efa 970static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
971{
972 struct page *s_page, *d_page;
973 void *src, *dst;
974
975 s_page = pfn_to_page(src_pfn);
976 d_page = pfn_to_page(dst_pfn);
977 if (PageHighMem(s_page)) {
978 src = kmap_atomic(s_page, KM_USER0);
979 dst = kmap_atomic(d_page, KM_USER1);
980 do_copy_page(dst, src);
981 kunmap_atomic(src, KM_USER0);
982 kunmap_atomic(dst, KM_USER1);
983 } else {
8357376d
RW
984 if (PageHighMem(d_page)) {
985 /* Page pointed to by src may contain some kernel
986 * data modified by kmap_atomic()
987 */
8a235efa 988 safe_copy_page(buffer, s_page);
baa5835d 989 dst = kmap_atomic(d_page, KM_USER0);
8357376d
RW
990 memcpy(dst, buffer, PAGE_SIZE);
991 kunmap_atomic(dst, KM_USER0);
992 } else {
8a235efa 993 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
994 }
995 }
996}
997#else
846705de 998#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 999
8a235efa 1000static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1001{
8a235efa
RW
1002 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1003 pfn_to_page(src_pfn));
8357376d
RW
1004}
1005#endif /* CONFIG_HIGHMEM */
1006
b788db79
RW
1007static void
1008copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1009{
1010 struct zone *zone;
b788db79 1011 unsigned long pfn;
25761b6e 1012
8357376d 1013 for_each_zone(zone) {
b788db79
RW
1014 unsigned long max_zone_pfn;
1015
25761b6e 1016 mark_free_pages(zone);
ae83c5ee 1017 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
b788db79 1018 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1019 if (page_is_saveable(zone, pfn))
b788db79 1020 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1021 }
b788db79
RW
1022 memory_bm_position_reset(orig_bm);
1023 memory_bm_position_reset(copy_bm);
df7c4872 1024 for(;;) {
b788db79 1025 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1026 if (unlikely(pfn == BM_END_OF_MAP))
1027 break;
1028 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1029 }
25761b6e
RW
1030}
1031
8357376d
RW
1032/* Total number of image pages */
1033static unsigned int nr_copy_pages;
1034/* Number of pages needed for saving the original pfns of the image pages */
1035static unsigned int nr_meta_pages;
1036
25761b6e 1037/**
940864dd 1038 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1039 *
940864dd
RW
1040 * Suspend pages are alocated before the atomic copy is made, so we
1041 * need to release them after the resume.
25761b6e
RW
1042 */
1043
1044void swsusp_free(void)
1045{
1046 struct zone *zone;
ae83c5ee 1047 unsigned long pfn, max_zone_pfn;
25761b6e
RW
1048
1049 for_each_zone(zone) {
ae83c5ee
RW
1050 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 if (pfn_valid(pfn)) {
1053 struct page *page = pfn_to_page(pfn);
1054
7be98234
RW
1055 if (swsusp_page_is_forbidden(page) &&
1056 swsusp_page_is_free(page)) {
1057 swsusp_unset_page_forbidden(page);
1058 swsusp_unset_page_free(page);
8357376d 1059 __free_page(page);
25761b6e
RW
1060 }
1061 }
1062 }
f577eb30
RW
1063 nr_copy_pages = 0;
1064 nr_meta_pages = 0;
75534b50 1065 restore_pblist = NULL;
6e1819d6 1066 buffer = NULL;
25761b6e
RW
1067}
1068
fe419535
RW
1069/**
1070 * swsusp_shrink_memory - Try to free as much memory as needed
1071 *
1072 * ... but do not OOM-kill anyone
1073 *
1074 * Notice: all userland should be stopped before it is called, or
1075 * livelock is possible.
1076 */
1077
1078#define SHRINK_BITE 10000
1079static inline unsigned long __shrink_memory(long tmp)
1080{
1081 if (tmp > SHRINK_BITE)
1082 tmp = SHRINK_BITE;
1083 return shrink_all_memory(tmp);
1084}
1085
1086int swsusp_shrink_memory(void)
1087{
1088 long tmp;
1089 struct zone *zone;
1090 unsigned long pages = 0;
1091 unsigned int i = 0;
1092 char *p = "-\\|/";
1093 struct timeval start, stop;
1094
1095 printk(KERN_INFO "PM: Shrinking memory... ");
1096 do_gettimeofday(&start);
1097 do {
1098 long size, highmem_size;
1099
1100 highmem_size = count_highmem_pages();
1101 size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES;
1102 tmp = size;
1103 size += highmem_size;
1104 for_each_populated_zone(zone) {
1105 tmp += snapshot_additional_pages(zone);
1106 if (is_highmem(zone)) {
1107 highmem_size -=
1108 zone_page_state(zone, NR_FREE_PAGES);
1109 } else {
1110 tmp -= zone_page_state(zone, NR_FREE_PAGES);
1111 tmp += zone->lowmem_reserve[ZONE_NORMAL];
1112 }
1113 }
1114
1115 if (highmem_size < 0)
1116 highmem_size = 0;
1117
1118 tmp += highmem_size;
1119 if (tmp > 0) {
1120 tmp = __shrink_memory(tmp);
1121 if (!tmp)
1122 return -ENOMEM;
1123 pages += tmp;
1124 } else if (size > image_size / PAGE_SIZE) {
1125 tmp = __shrink_memory(size - (image_size / PAGE_SIZE));
1126 pages += tmp;
1127 }
1128 printk("\b%c", p[i++%4]);
1129 } while (tmp > 0);
1130 do_gettimeofday(&stop);
1131 printk("\bdone (%lu pages freed)\n", pages);
1132 swsusp_show_speed(&start, &stop, pages, "Freed");
1133
1134 return 0;
1135}
1136
8357376d
RW
1137#ifdef CONFIG_HIGHMEM
1138/**
1139 * count_pages_for_highmem - compute the number of non-highmem pages
1140 * that will be necessary for creating copies of highmem pages.
1141 */
1142
1143static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1144{
1145 unsigned int free_highmem = count_free_highmem_pages();
1146
1147 if (free_highmem >= nr_highmem)
1148 nr_highmem = 0;
1149 else
1150 nr_highmem -= free_highmem;
1151
1152 return nr_highmem;
1153}
1154#else
1155static unsigned int
1156count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1157#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1158
1159/**
8357376d
RW
1160 * enough_free_mem - Make sure we have enough free memory for the
1161 * snapshot image.
25761b6e
RW
1162 */
1163
8357376d 1164static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1165{
e5e2fa78 1166 struct zone *zone;
940864dd 1167 unsigned int free = 0, meta = 0;
e5e2fa78 1168
8357376d
RW
1169 for_each_zone(zone) {
1170 meta += snapshot_additional_pages(zone);
1171 if (!is_highmem(zone))
d23ad423 1172 free += zone_page_state(zone, NR_FREE_PAGES);
8357376d 1173 }
940864dd 1174
8357376d 1175 nr_pages += count_pages_for_highmem(nr_highmem);
23976728 1176 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
940864dd
RW
1177 nr_pages, PAGES_FOR_IO, meta, free);
1178
1179 return free > nr_pages + PAGES_FOR_IO + meta;
25761b6e
RW
1180}
1181
8357376d
RW
1182#ifdef CONFIG_HIGHMEM
1183/**
1184 * get_highmem_buffer - if there are some highmem pages in the suspend
1185 * image, we may need the buffer to copy them and/or load their data.
1186 */
1187
1188static inline int get_highmem_buffer(int safe_needed)
1189{
1190 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1191 return buffer ? 0 : -ENOMEM;
1192}
1193
1194/**
1195 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1196 * Try to allocate as many pages as needed, but if the number of free
1197 * highmem pages is lesser than that, allocate them all.
1198 */
1199
1200static inline unsigned int
1201alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1202{
1203 unsigned int to_alloc = count_free_highmem_pages();
1204
1205 if (to_alloc > nr_highmem)
1206 to_alloc = nr_highmem;
1207
1208 nr_highmem -= to_alloc;
1209 while (to_alloc-- > 0) {
1210 struct page *page;
1211
1212 page = alloc_image_page(__GFP_HIGHMEM);
1213 memory_bm_set_bit(bm, page_to_pfn(page));
1214 }
1215 return nr_highmem;
1216}
1217#else
1218static inline int get_highmem_buffer(int safe_needed) { return 0; }
1219
1220static inline unsigned int
1221alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1222#endif /* CONFIG_HIGHMEM */
1223
1224/**
1225 * swsusp_alloc - allocate memory for the suspend image
1226 *
1227 * We first try to allocate as many highmem pages as there are
1228 * saveable highmem pages in the system. If that fails, we allocate
1229 * non-highmem pages for the copies of the remaining highmem ones.
1230 *
1231 * In this approach it is likely that the copies of highmem pages will
1232 * also be located in the high memory, because of the way in which
1233 * copy_data_pages() works.
1234 */
1235
b788db79
RW
1236static int
1237swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1238 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1239{
b788db79 1240 int error;
054bd4c1 1241
b788db79
RW
1242 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1243 if (error)
1244 goto Free;
25761b6e 1245
b788db79
RW
1246 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1247 if (error)
1248 goto Free;
25761b6e 1249
8357376d
RW
1250 if (nr_highmem > 0) {
1251 error = get_highmem_buffer(PG_ANY);
1252 if (error)
1253 goto Free;
1254
1255 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1256 }
b788db79 1257 while (nr_pages-- > 0) {
8357376d
RW
1258 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1259
b788db79
RW
1260 if (!page)
1261 goto Free;
25761b6e 1262
b788db79 1263 memory_bm_set_bit(copy_bm, page_to_pfn(page));
25761b6e 1264 }
b788db79 1265 return 0;
25761b6e 1266
59a49335 1267 Free:
b788db79
RW
1268 swsusp_free();
1269 return -ENOMEM;
25761b6e
RW
1270}
1271
8357376d
RW
1272/* Memory bitmap used for marking saveable pages (during suspend) or the
1273 * suspend image pages (during resume)
1274 */
b788db79 1275static struct memory_bitmap orig_bm;
8357376d
RW
1276/* Memory bitmap used on suspend for marking allocated pages that will contain
1277 * the copies of saveable pages. During resume it is initially used for
1278 * marking the suspend image pages, but then its set bits are duplicated in
1279 * @orig_bm and it is released. Next, on systems with high memory, it may be
1280 * used for marking "safe" highmem pages, but it has to be reinitialized for
1281 * this purpose.
b788db79
RW
1282 */
1283static struct memory_bitmap copy_bm;
1284
2e32a43e 1285asmlinkage int swsusp_save(void)
25761b6e 1286{
8357376d 1287 unsigned int nr_pages, nr_highmem;
25761b6e 1288
23976728 1289 printk(KERN_INFO "PM: Creating hibernation image: \n");
25761b6e 1290
9f8f2172 1291 drain_local_pages(NULL);
a0f49651 1292 nr_pages = count_data_pages();
8357376d 1293 nr_highmem = count_highmem_pages();
23976728 1294 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1295
8357376d 1296 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1297 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1298 return -ENOMEM;
1299 }
1300
8357376d 1301 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1302 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1303 return -ENOMEM;
8357376d 1304 }
25761b6e
RW
1305
1306 /* During allocating of suspend pagedir, new cold pages may appear.
1307 * Kill them.
1308 */
9f8f2172 1309 drain_local_pages(NULL);
b788db79 1310 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1311
1312 /*
1313 * End of critical section. From now on, we can write to memory,
1314 * but we should not touch disk. This specially means we must _not_
1315 * touch swap space! Except we must write out our image of course.
1316 */
1317
8357376d 1318 nr_pages += nr_highmem;
a0f49651 1319 nr_copy_pages = nr_pages;
8357376d 1320 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1321
23976728
RW
1322 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1323 nr_pages);
8357376d 1324
25761b6e
RW
1325 return 0;
1326}
f577eb30 1327
d307c4a8
RW
1328#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1329static int init_header_complete(struct swsusp_info *info)
f577eb30 1330{
d307c4a8 1331 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1332 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1333 return 0;
1334}
1335
1336static char *check_image_kernel(struct swsusp_info *info)
1337{
1338 if (info->version_code != LINUX_VERSION_CODE)
1339 return "kernel version";
1340 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1341 return "system type";
1342 if (strcmp(info->uts.release,init_utsname()->release))
1343 return "kernel release";
1344 if (strcmp(info->uts.version,init_utsname()->version))
1345 return "version";
1346 if (strcmp(info->uts.machine,init_utsname()->machine))
1347 return "machine";
1348 return NULL;
1349}
1350#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1351
af508b34
RW
1352unsigned long snapshot_get_image_size(void)
1353{
1354 return nr_copy_pages + nr_meta_pages + 1;
1355}
1356
d307c4a8
RW
1357static int init_header(struct swsusp_info *info)
1358{
1359 memset(info, 0, sizeof(struct swsusp_info));
f577eb30 1360 info->num_physpages = num_physpages;
f577eb30 1361 info->image_pages = nr_copy_pages;
af508b34 1362 info->pages = snapshot_get_image_size();
6e1819d6
RW
1363 info->size = info->pages;
1364 info->size <<= PAGE_SHIFT;
d307c4a8 1365 return init_header_complete(info);
f577eb30
RW
1366}
1367
1368/**
940864dd
RW
1369 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1370 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1371 */
1372
b788db79 1373static inline void
940864dd 1374pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1375{
1376 int j;
1377
b788db79 1378 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1379 buf[j] = memory_bm_next_pfn(bm);
1380 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1381 break;
f577eb30 1382 }
f577eb30
RW
1383}
1384
1385/**
1386 * snapshot_read_next - used for reading the system memory snapshot.
1387 *
1388 * On the first call to it @handle should point to a zeroed
1389 * snapshot_handle structure. The structure gets updated and a pointer
1390 * to it should be passed to this function every next time.
1391 *
1392 * The @count parameter should contain the number of bytes the caller
1393 * wants to read from the snapshot. It must not be zero.
1394 *
1395 * On success the function returns a positive number. Then, the caller
1396 * is allowed to read up to the returned number of bytes from the memory
1397 * location computed by the data_of() macro. The number returned
1398 * may be smaller than @count, but this only happens if the read would
1399 * cross a page boundary otherwise.
1400 *
1401 * The function returns 0 to indicate the end of data stream condition,
1402 * and a negative number is returned on error. In such cases the
1403 * structure pointed to by @handle is not updated and should not be used
1404 * any more.
1405 */
1406
1407int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1408{
fb13a28b 1409 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1410 return 0;
b788db79 1411
f577eb30
RW
1412 if (!buffer) {
1413 /* This makes the buffer be freed by swsusp_free() */
8357376d 1414 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1415 if (!buffer)
1416 return -ENOMEM;
1417 }
1418 if (!handle->offset) {
d307c4a8
RW
1419 int error;
1420
1421 error = init_header((struct swsusp_info *)buffer);
1422 if (error)
1423 return error;
f577eb30 1424 handle->buffer = buffer;
b788db79
RW
1425 memory_bm_position_reset(&orig_bm);
1426 memory_bm_position_reset(&copy_bm);
f577eb30 1427 }
fb13a28b
RW
1428 if (handle->prev < handle->cur) {
1429 if (handle->cur <= nr_meta_pages) {
b788db79 1430 memset(buffer, 0, PAGE_SIZE);
940864dd 1431 pack_pfns(buffer, &orig_bm);
f577eb30 1432 } else {
8357376d 1433 struct page *page;
b788db79 1434
8357376d
RW
1435 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1436 if (PageHighMem(page)) {
1437 /* Highmem pages are copied to the buffer,
1438 * because we can't return with a kmapped
1439 * highmem page (we may not be called again).
1440 */
1441 void *kaddr;
1442
1443 kaddr = kmap_atomic(page, KM_USER0);
1444 memcpy(buffer, kaddr, PAGE_SIZE);
1445 kunmap_atomic(kaddr, KM_USER0);
1446 handle->buffer = buffer;
1447 } else {
1448 handle->buffer = page_address(page);
1449 }
f577eb30 1450 }
fb13a28b 1451 handle->prev = handle->cur;
f577eb30 1452 }
fb13a28b
RW
1453 handle->buf_offset = handle->cur_offset;
1454 if (handle->cur_offset + count >= PAGE_SIZE) {
1455 count = PAGE_SIZE - handle->cur_offset;
1456 handle->cur_offset = 0;
1457 handle->cur++;
f577eb30 1458 } else {
fb13a28b 1459 handle->cur_offset += count;
f577eb30
RW
1460 }
1461 handle->offset += count;
1462 return count;
1463}
1464
1465/**
1466 * mark_unsafe_pages - mark the pages that cannot be used for storing
1467 * the image during resume, because they conflict with the pages that
1468 * had been used before suspend
1469 */
1470
940864dd 1471static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1472{
1473 struct zone *zone;
ae83c5ee 1474 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1475
1476 /* Clear page flags */
8357376d 1477 for_each_zone(zone) {
ae83c5ee
RW
1478 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1479 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1480 if (pfn_valid(pfn))
7be98234 1481 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1482 }
1483
940864dd
RW
1484 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1485 memory_bm_position_reset(bm);
1486 do {
1487 pfn = memory_bm_next_pfn(bm);
1488 if (likely(pfn != BM_END_OF_MAP)) {
1489 if (likely(pfn_valid(pfn)))
7be98234 1490 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1491 else
1492 return -EFAULT;
1493 }
1494 } while (pfn != BM_END_OF_MAP);
f577eb30 1495
940864dd 1496 allocated_unsafe_pages = 0;
968808b8 1497
f577eb30
RW
1498 return 0;
1499}
1500
940864dd
RW
1501static void
1502duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1503{
940864dd
RW
1504 unsigned long pfn;
1505
1506 memory_bm_position_reset(src);
1507 pfn = memory_bm_next_pfn(src);
1508 while (pfn != BM_END_OF_MAP) {
1509 memory_bm_set_bit(dst, pfn);
1510 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1511 }
1512}
1513
d307c4a8 1514static int check_header(struct swsusp_info *info)
f577eb30 1515{
d307c4a8 1516 char *reason;
f577eb30 1517
d307c4a8
RW
1518 reason = check_image_kernel(info);
1519 if (!reason && info->num_physpages != num_physpages)
f577eb30 1520 reason = "memory size";
f577eb30 1521 if (reason) {
23976728 1522 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1523 return -EPERM;
1524 }
1525 return 0;
1526}
1527
1528/**
1529 * load header - check the image header and copy data from it
1530 */
1531
940864dd
RW
1532static int
1533load_header(struct swsusp_info *info)
f577eb30
RW
1534{
1535 int error;
f577eb30 1536
940864dd 1537 restore_pblist = NULL;
f577eb30
RW
1538 error = check_header(info);
1539 if (!error) {
f577eb30
RW
1540 nr_copy_pages = info->image_pages;
1541 nr_meta_pages = info->pages - info->image_pages - 1;
1542 }
1543 return error;
1544}
1545
1546/**
940864dd
RW
1547 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1548 * the corresponding bit in the memory bitmap @bm
f577eb30 1549 */
69643279 1550static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1551{
1552 int j;
1553
940864dd
RW
1554 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1555 if (unlikely(buf[j] == BM_END_OF_MAP))
1556 break;
1557
69643279
RW
1558 if (memory_bm_pfn_present(bm, buf[j]))
1559 memory_bm_set_bit(bm, buf[j]);
1560 else
1561 return -EFAULT;
f577eb30 1562 }
69643279
RW
1563
1564 return 0;
f577eb30
RW
1565}
1566
8357376d
RW
1567/* List of "safe" pages that may be used to store data loaded from the suspend
1568 * image
1569 */
1570static struct linked_page *safe_pages_list;
1571
1572#ifdef CONFIG_HIGHMEM
1573/* struct highmem_pbe is used for creating the list of highmem pages that
1574 * should be restored atomically during the resume from disk, because the page
1575 * frames they have occupied before the suspend are in use.
1576 */
1577struct highmem_pbe {
1578 struct page *copy_page; /* data is here now */
1579 struct page *orig_page; /* data was here before the suspend */
1580 struct highmem_pbe *next;
1581};
1582
1583/* List of highmem PBEs needed for restoring the highmem pages that were
1584 * allocated before the suspend and included in the suspend image, but have
1585 * also been allocated by the "resume" kernel, so their contents cannot be
1586 * written directly to their "original" page frames.
1587 */
1588static struct highmem_pbe *highmem_pblist;
1589
1590/**
1591 * count_highmem_image_pages - compute the number of highmem pages in the
1592 * suspend image. The bits in the memory bitmap @bm that correspond to the
1593 * image pages are assumed to be set.
1594 */
1595
1596static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1597{
1598 unsigned long pfn;
1599 unsigned int cnt = 0;
1600
1601 memory_bm_position_reset(bm);
1602 pfn = memory_bm_next_pfn(bm);
1603 while (pfn != BM_END_OF_MAP) {
1604 if (PageHighMem(pfn_to_page(pfn)))
1605 cnt++;
1606
1607 pfn = memory_bm_next_pfn(bm);
1608 }
1609 return cnt;
1610}
1611
1612/**
1613 * prepare_highmem_image - try to allocate as many highmem pages as
1614 * there are highmem image pages (@nr_highmem_p points to the variable
1615 * containing the number of highmem image pages). The pages that are
1616 * "safe" (ie. will not be overwritten when the suspend image is
1617 * restored) have the corresponding bits set in @bm (it must be
1618 * unitialized).
1619 *
1620 * NOTE: This function should not be called if there are no highmem
1621 * image pages.
1622 */
1623
1624static unsigned int safe_highmem_pages;
1625
1626static struct memory_bitmap *safe_highmem_bm;
1627
1628static int
1629prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1630{
1631 unsigned int to_alloc;
1632
1633 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1634 return -ENOMEM;
1635
1636 if (get_highmem_buffer(PG_SAFE))
1637 return -ENOMEM;
1638
1639 to_alloc = count_free_highmem_pages();
1640 if (to_alloc > *nr_highmem_p)
1641 to_alloc = *nr_highmem_p;
1642 else
1643 *nr_highmem_p = to_alloc;
1644
1645 safe_highmem_pages = 0;
1646 while (to_alloc-- > 0) {
1647 struct page *page;
1648
1649 page = alloc_page(__GFP_HIGHMEM);
7be98234 1650 if (!swsusp_page_is_free(page)) {
8357376d
RW
1651 /* The page is "safe", set its bit the bitmap */
1652 memory_bm_set_bit(bm, page_to_pfn(page));
1653 safe_highmem_pages++;
1654 }
1655 /* Mark the page as allocated */
7be98234
RW
1656 swsusp_set_page_forbidden(page);
1657 swsusp_set_page_free(page);
8357376d
RW
1658 }
1659 memory_bm_position_reset(bm);
1660 safe_highmem_bm = bm;
1661 return 0;
1662}
1663
1664/**
1665 * get_highmem_page_buffer - for given highmem image page find the buffer
1666 * that suspend_write_next() should set for its caller to write to.
1667 *
1668 * If the page is to be saved to its "original" page frame or a copy of
1669 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1670 * the copy of the page is to be made in normal memory, so the address of
1671 * the copy is returned.
1672 *
1673 * If @buffer is returned, the caller of suspend_write_next() will write
1674 * the page's contents to @buffer, so they will have to be copied to the
1675 * right location on the next call to suspend_write_next() and it is done
1676 * with the help of copy_last_highmem_page(). For this purpose, if
1677 * @buffer is returned, @last_highmem page is set to the page to which
1678 * the data will have to be copied from @buffer.
1679 */
1680
1681static struct page *last_highmem_page;
1682
1683static void *
1684get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1685{
1686 struct highmem_pbe *pbe;
1687 void *kaddr;
1688
7be98234 1689 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1690 /* We have allocated the "original" page frame and we can
1691 * use it directly to store the loaded page.
1692 */
1693 last_highmem_page = page;
1694 return buffer;
1695 }
1696 /* The "original" page frame has not been allocated and we have to
1697 * use a "safe" page frame to store the loaded page.
1698 */
1699 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1700 if (!pbe) {
1701 swsusp_free();
69643279 1702 return ERR_PTR(-ENOMEM);
8357376d
RW
1703 }
1704 pbe->orig_page = page;
1705 if (safe_highmem_pages > 0) {
1706 struct page *tmp;
1707
1708 /* Copy of the page will be stored in high memory */
1709 kaddr = buffer;
1710 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1711 safe_highmem_pages--;
1712 last_highmem_page = tmp;
1713 pbe->copy_page = tmp;
1714 } else {
1715 /* Copy of the page will be stored in normal memory */
1716 kaddr = safe_pages_list;
1717 safe_pages_list = safe_pages_list->next;
1718 pbe->copy_page = virt_to_page(kaddr);
1719 }
1720 pbe->next = highmem_pblist;
1721 highmem_pblist = pbe;
1722 return kaddr;
1723}
1724
1725/**
1726 * copy_last_highmem_page - copy the contents of a highmem image from
1727 * @buffer, where the caller of snapshot_write_next() has place them,
1728 * to the right location represented by @last_highmem_page .
1729 */
1730
1731static void copy_last_highmem_page(void)
1732{
1733 if (last_highmem_page) {
1734 void *dst;
1735
1736 dst = kmap_atomic(last_highmem_page, KM_USER0);
1737 memcpy(dst, buffer, PAGE_SIZE);
1738 kunmap_atomic(dst, KM_USER0);
1739 last_highmem_page = NULL;
1740 }
1741}
1742
1743static inline int last_highmem_page_copied(void)
1744{
1745 return !last_highmem_page;
1746}
1747
1748static inline void free_highmem_data(void)
1749{
1750 if (safe_highmem_bm)
1751 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1752
1753 if (buffer)
1754 free_image_page(buffer, PG_UNSAFE_CLEAR);
1755}
1756#else
1757static inline int get_safe_write_buffer(void) { return 0; }
1758
1759static unsigned int
1760count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1761
1762static inline int
1763prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1764{
1765 return 0;
1766}
1767
1768static inline void *
1769get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1770{
69643279 1771 return ERR_PTR(-EINVAL);
8357376d
RW
1772}
1773
1774static inline void copy_last_highmem_page(void) {}
1775static inline int last_highmem_page_copied(void) { return 1; }
1776static inline void free_highmem_data(void) {}
1777#endif /* CONFIG_HIGHMEM */
1778
f577eb30 1779/**
940864dd
RW
1780 * prepare_image - use the memory bitmap @bm to mark the pages that will
1781 * be overwritten in the process of restoring the system memory state
1782 * from the suspend image ("unsafe" pages) and allocate memory for the
1783 * image.
968808b8 1784 *
940864dd
RW
1785 * The idea is to allocate a new memory bitmap first and then allocate
1786 * as many pages as needed for the image data, but not to assign these
1787 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
1788 * allocated and create a lists of "safe" pages that will be used
1789 * later. On systems with high memory a list of "safe" highmem pages is
1790 * also created.
f577eb30
RW
1791 */
1792
940864dd
RW
1793#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1794
940864dd
RW
1795static int
1796prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 1797{
8357376d 1798 unsigned int nr_pages, nr_highmem;
940864dd
RW
1799 struct linked_page *sp_list, *lp;
1800 int error;
f577eb30 1801
8357376d
RW
1802 /* If there is no highmem, the buffer will not be necessary */
1803 free_image_page(buffer, PG_UNSAFE_CLEAR);
1804 buffer = NULL;
1805
1806 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
1807 error = mark_unsafe_pages(bm);
1808 if (error)
1809 goto Free;
1810
1811 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1812 if (error)
1813 goto Free;
1814
1815 duplicate_memory_bitmap(new_bm, bm);
1816 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
1817 if (nr_highmem > 0) {
1818 error = prepare_highmem_image(bm, &nr_highmem);
1819 if (error)
1820 goto Free;
1821 }
940864dd
RW
1822 /* Reserve some safe pages for potential later use.
1823 *
1824 * NOTE: This way we make sure there will be enough safe pages for the
1825 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1826 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1827 */
1828 sp_list = NULL;
1829 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 1830 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1831 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1832 while (nr_pages > 0) {
8357376d 1833 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 1834 if (!lp) {
f577eb30 1835 error = -ENOMEM;
940864dd
RW
1836 goto Free;
1837 }
1838 lp->next = sp_list;
1839 sp_list = lp;
1840 nr_pages--;
f577eb30 1841 }
940864dd
RW
1842 /* Preallocate memory for the image */
1843 safe_pages_list = NULL;
8357376d 1844 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1845 while (nr_pages > 0) {
1846 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1847 if (!lp) {
1848 error = -ENOMEM;
1849 goto Free;
1850 }
7be98234 1851 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
1852 /* The page is "safe", add it to the list */
1853 lp->next = safe_pages_list;
1854 safe_pages_list = lp;
968808b8 1855 }
940864dd 1856 /* Mark the page as allocated */
7be98234
RW
1857 swsusp_set_page_forbidden(virt_to_page(lp));
1858 swsusp_set_page_free(virt_to_page(lp));
940864dd 1859 nr_pages--;
968808b8 1860 }
940864dd
RW
1861 /* Free the reserved safe pages so that chain_alloc() can use them */
1862 while (sp_list) {
1863 lp = sp_list->next;
1864 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1865 sp_list = lp;
f577eb30 1866 }
940864dd
RW
1867 return 0;
1868
59a49335 1869 Free:
940864dd 1870 swsusp_free();
f577eb30
RW
1871 return error;
1872}
1873
940864dd
RW
1874/**
1875 * get_buffer - compute the address that snapshot_write_next() should
1876 * set for its caller to write to.
1877 */
1878
1879static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 1880{
940864dd 1881 struct pbe *pbe;
69643279
RW
1882 struct page *page;
1883 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 1884
69643279
RW
1885 if (pfn == BM_END_OF_MAP)
1886 return ERR_PTR(-EFAULT);
1887
1888 page = pfn_to_page(pfn);
8357376d
RW
1889 if (PageHighMem(page))
1890 return get_highmem_page_buffer(page, ca);
1891
7be98234 1892 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
1893 /* We have allocated the "original" page frame and we can
1894 * use it directly to store the loaded page.
968808b8 1895 */
940864dd
RW
1896 return page_address(page);
1897
1898 /* The "original" page frame has not been allocated and we have to
1899 * use a "safe" page frame to store the loaded page.
968808b8 1900 */
940864dd
RW
1901 pbe = chain_alloc(ca, sizeof(struct pbe));
1902 if (!pbe) {
1903 swsusp_free();
69643279 1904 return ERR_PTR(-ENOMEM);
940864dd 1905 }
8357376d
RW
1906 pbe->orig_address = page_address(page);
1907 pbe->address = safe_pages_list;
940864dd
RW
1908 safe_pages_list = safe_pages_list->next;
1909 pbe->next = restore_pblist;
1910 restore_pblist = pbe;
8357376d 1911 return pbe->address;
968808b8
RW
1912}
1913
f577eb30
RW
1914/**
1915 * snapshot_write_next - used for writing the system memory snapshot.
1916 *
1917 * On the first call to it @handle should point to a zeroed
1918 * snapshot_handle structure. The structure gets updated and a pointer
1919 * to it should be passed to this function every next time.
1920 *
1921 * The @count parameter should contain the number of bytes the caller
1922 * wants to write to the image. It must not be zero.
1923 *
1924 * On success the function returns a positive number. Then, the caller
1925 * is allowed to write up to the returned number of bytes to the memory
1926 * location computed by the data_of() macro. The number returned
1927 * may be smaller than @count, but this only happens if the write would
1928 * cross a page boundary otherwise.
1929 *
1930 * The function returns 0 to indicate the "end of file" condition,
1931 * and a negative number is returned on error. In such cases the
1932 * structure pointed to by @handle is not updated and should not be used
1933 * any more.
1934 */
1935
1936int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1937{
940864dd 1938 static struct chain_allocator ca;
f577eb30
RW
1939 int error = 0;
1940
940864dd 1941 /* Check if we have already loaded the entire image */
fb13a28b 1942 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1943 return 0;
940864dd 1944
8357376d
RW
1945 if (handle->offset == 0) {
1946 if (!buffer)
1947 /* This makes the buffer be freed by swsusp_free() */
1948 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1949
f577eb30
RW
1950 if (!buffer)
1951 return -ENOMEM;
8357376d 1952
f577eb30 1953 handle->buffer = buffer;
8357376d 1954 }
546e0d27 1955 handle->sync_read = 1;
fb13a28b 1956 if (handle->prev < handle->cur) {
940864dd
RW
1957 if (handle->prev == 0) {
1958 error = load_header(buffer);
1959 if (error)
1960 return error;
1961
1962 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
f577eb30
RW
1963 if (error)
1964 return error;
940864dd 1965
f577eb30 1966 } else if (handle->prev <= nr_meta_pages) {
69643279
RW
1967 error = unpack_orig_pfns(buffer, &copy_bm);
1968 if (error)
1969 return error;
1970
940864dd
RW
1971 if (handle->prev == nr_meta_pages) {
1972 error = prepare_image(&orig_bm, &copy_bm);
f577eb30
RW
1973 if (error)
1974 return error;
940864dd
RW
1975
1976 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1977 memory_bm_position_reset(&orig_bm);
1978 restore_pblist = NULL;
1979 handle->buffer = get_buffer(&orig_bm, &ca);
546e0d27 1980 handle->sync_read = 0;
69643279
RW
1981 if (IS_ERR(handle->buffer))
1982 return PTR_ERR(handle->buffer);
f577eb30
RW
1983 }
1984 } else {
8357376d 1985 copy_last_highmem_page();
940864dd 1986 handle->buffer = get_buffer(&orig_bm, &ca);
69643279
RW
1987 if (IS_ERR(handle->buffer))
1988 return PTR_ERR(handle->buffer);
8357376d
RW
1989 if (handle->buffer != buffer)
1990 handle->sync_read = 0;
f577eb30 1991 }
fb13a28b 1992 handle->prev = handle->cur;
f577eb30 1993 }
fb13a28b
RW
1994 handle->buf_offset = handle->cur_offset;
1995 if (handle->cur_offset + count >= PAGE_SIZE) {
1996 count = PAGE_SIZE - handle->cur_offset;
1997 handle->cur_offset = 0;
1998 handle->cur++;
f577eb30 1999 } else {
fb13a28b 2000 handle->cur_offset += count;
f577eb30
RW
2001 }
2002 handle->offset += count;
2003 return count;
2004}
2005
8357376d
RW
2006/**
2007 * snapshot_write_finalize - must be called after the last call to
2008 * snapshot_write_next() in case the last page in the image happens
2009 * to be a highmem page and its contents should be stored in the
2010 * highmem. Additionally, it releases the memory that will not be
2011 * used any more.
2012 */
2013
2014void snapshot_write_finalize(struct snapshot_handle *handle)
2015{
2016 copy_last_highmem_page();
2017 /* Free only if we have loaded the image entirely */
2018 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
2019 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2020 free_highmem_data();
2021 }
2022}
2023
f577eb30
RW
2024int snapshot_image_loaded(struct snapshot_handle *handle)
2025{
8357376d 2026 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2027 handle->cur <= nr_meta_pages + nr_copy_pages);
2028}
2029
8357376d
RW
2030#ifdef CONFIG_HIGHMEM
2031/* Assumes that @buf is ready and points to a "safe" page */
2032static inline void
2033swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2034{
8357376d
RW
2035 void *kaddr1, *kaddr2;
2036
2037 kaddr1 = kmap_atomic(p1, KM_USER0);
2038 kaddr2 = kmap_atomic(p2, KM_USER1);
2039 memcpy(buf, kaddr1, PAGE_SIZE);
2040 memcpy(kaddr1, kaddr2, PAGE_SIZE);
2041 memcpy(kaddr2, buf, PAGE_SIZE);
2042 kunmap_atomic(kaddr1, KM_USER0);
2043 kunmap_atomic(kaddr2, KM_USER1);
2044}
2045
2046/**
2047 * restore_highmem - for each highmem page that was allocated before
2048 * the suspend and included in the suspend image, and also has been
2049 * allocated by the "resume" kernel swap its current (ie. "before
2050 * resume") contents with the previous (ie. "before suspend") one.
2051 *
2052 * If the resume eventually fails, we can call this function once
2053 * again and restore the "before resume" highmem state.
2054 */
2055
2056int restore_highmem(void)
2057{
2058 struct highmem_pbe *pbe = highmem_pblist;
2059 void *buf;
2060
2061 if (!pbe)
2062 return 0;
2063
2064 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2065 if (!buf)
2066 return -ENOMEM;
2067
2068 while (pbe) {
2069 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2070 pbe = pbe->next;
2071 }
2072 free_image_page(buf, PG_UNSAFE_CLEAR);
2073 return 0;
f577eb30 2074}
8357376d 2075#endif /* CONFIG_HIGHMEM */