PM: sleep: enable dynamic debug support within pm_pr_dbg()
[linux-2.6-block.git] / kernel / power / snapshot.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
25761b6e 2/*
96bc7aec 3 * linux/kernel/power/snapshot.c
25761b6e 4 *
8357376d 5 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 6 *
a2531293 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e
RW
9 */
10
7a7b99bf 11#define pr_fmt(fmt) "PM: hibernation: " fmt
64ec72a1 12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
57c8a661 24#include <linux/memblock.h>
38b8d208 25#include <linux/nmi.h>
25761b6e
RW
26#include <linux/syscalls.h>
27#include <linux/console.h>
28#include <linux/highmem.h>
846705de 29#include <linux/list.h>
5a0e3ad6 30#include <linux/slab.h>
52f5684c 31#include <linux/compiler.h>
db597605 32#include <linux/ktime.h>
61f6d09a 33#include <linux/set_memory.h>
25761b6e 34
7c0f6ba6 35#include <linux/uaccess.h>
25761b6e 36#include <asm/mmu_context.h>
25761b6e
RW
37#include <asm/tlbflush.h>
38#include <asm/io.h>
39
25761b6e
RW
40#include "power.h"
41
49368a47 42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
4c0b6c10
RW
43static bool hibernate_restore_protection;
44static bool hibernate_restore_protection_active;
45
46void enable_restore_image_protection(void)
47{
48 hibernate_restore_protection = true;
49}
50
51static inline void hibernate_restore_protection_begin(void)
52{
53 hibernate_restore_protection_active = hibernate_restore_protection;
54}
55
56static inline void hibernate_restore_protection_end(void)
57{
58 hibernate_restore_protection_active = false;
59}
60
61static inline void hibernate_restore_protect_page(void *page_address)
62{
63 if (hibernate_restore_protection_active)
64 set_memory_ro((unsigned long)page_address, 1);
65}
66
67static inline void hibernate_restore_unprotect_page(void *page_address)
68{
69 if (hibernate_restore_protection_active)
70 set_memory_rw((unsigned long)page_address, 1);
71}
72#else
73static inline void hibernate_restore_protection_begin(void) {}
74static inline void hibernate_restore_protection_end(void) {}
75static inline void hibernate_restore_protect_page(void *page_address) {}
76static inline void hibernate_restore_unprotect_page(void *page_address) {}
49368a47 77#endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
4c0b6c10 78
2abf962a
MR
79
80/*
81 * The calls to set_direct_map_*() should not fail because remapping a page
82 * here means that we only update protection bits in an existing PTE.
83 * It is still worth to have a warning here if something changes and this
84 * will no longer be the case.
85 */
86static inline void hibernate_map_page(struct page *page)
87{
88 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 int ret = set_direct_map_default_noflush(page);
90
91 if (ret)
92 pr_warn_once("Failed to remap page\n");
93 } else {
94 debug_pagealloc_map_pages(page, 1);
95 }
96}
97
98static inline void hibernate_unmap_page(struct page *page)
99{
100 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 unsigned long addr = (unsigned long)page_address(page);
102 int ret = set_direct_map_invalid_noflush(page);
103
104 if (ret)
105 pr_warn_once("Failed to remap page\n");
106
107 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 } else {
109 debug_pagealloc_unmap_pages(page, 1);
110 }
111}
112
74dfd666
RW
113static int swsusp_page_is_free(struct page *);
114static void swsusp_set_page_forbidden(struct page *);
115static void swsusp_unset_page_forbidden(struct page *);
116
ddeb6487
RW
117/*
118 * Number of bytes to reserve for memory allocations made by device drivers
119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120 * cause image creation to fail (tunable via /sys/power/reserved_size).
121 */
122unsigned long reserved_size;
123
124void __init hibernate_reserved_size_init(void)
125{
126 reserved_size = SPARE_PAGES * PAGE_SIZE;
127}
128
fe419535
RW
129/*
130 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
131 * When it is set to N, swsusp will do its best to ensure the image
132 * size will not exceed N bytes, but if that is impossible, it will
133 * try to create the smallest image possible.
fe419535 134 */
ac5c24ec
RW
135unsigned long image_size;
136
137void __init hibernate_image_size_init(void)
138{
ca79b0c2 139 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
ac5c24ec 140}
fe419535 141
ef96f639
RW
142/*
143 * List of PBEs needed for restoring the pages that were allocated before
8357376d
RW
144 * the suspend and included in the suspend image, but have also been
145 * allocated by the "resume" kernel, so their contents cannot be written
146 * directly to their "original" page frames.
147 */
75534b50
RW
148struct pbe *restore_pblist;
149
9c744481
RW
150/* struct linked_page is used to build chains of pages */
151
152#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
153
154struct linked_page {
155 struct linked_page *next;
156 char data[LINKED_PAGE_DATA_SIZE];
157} __packed;
158
159/*
160 * List of "safe" pages (ie. pages that were not used by the image kernel
161 * before hibernation) that may be used as temporary storage for image kernel
162 * memory contents.
163 */
164static struct linked_page *safe_pages_list;
165
8357376d 166/* Pointer to an auxiliary buffer (1 page) */
940864dd 167static void *buffer;
7088a5c0 168
0bcd888d
RW
169#define PG_ANY 0
170#define PG_SAFE 1
171#define PG_UNSAFE_CLEAR 1
172#define PG_UNSAFE_KEEP 0
173
940864dd 174static unsigned int allocated_unsafe_pages;
f6143aa6 175
ef96f639
RW
176/**
177 * get_image_page - Allocate a page for a hibernation image.
178 * @gfp_mask: GFP mask for the allocation.
179 * @safe_needed: Get pages that were not used before hibernation (restore only)
180 *
181 * During image restoration, for storing the PBE list and the image data, we can
182 * only use memory pages that do not conflict with the pages used before
183 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
184 * using allocated_unsafe_pages.
185 *
186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187 * swsusp_free() can release it.
188 */
8357376d 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
190{
191 void *res;
192
193 res = (void *)get_zeroed_page(gfp_mask);
194 if (safe_needed)
7be98234 195 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 196 /* The page is unsafe, mark it for swsusp_free() */
7be98234 197 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 198 allocated_unsafe_pages++;
f6143aa6
RW
199 res = (void *)get_zeroed_page(gfp_mask);
200 }
201 if (res) {
7be98234
RW
202 swsusp_set_page_forbidden(virt_to_page(res));
203 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
204 }
205 return res;
206}
207
9c744481
RW
208static void *__get_safe_page(gfp_t gfp_mask)
209{
210 if (safe_pages_list) {
211 void *ret = safe_pages_list;
212
213 safe_pages_list = safe_pages_list->next;
214 memset(ret, 0, PAGE_SIZE);
215 return ret;
216 }
217 return get_image_page(gfp_mask, PG_SAFE);
218}
219
f6143aa6
RW
220unsigned long get_safe_page(gfp_t gfp_mask)
221{
9c744481 222 return (unsigned long)__get_safe_page(gfp_mask);
8357376d
RW
223}
224
5b6d15de
RW
225static struct page *alloc_image_page(gfp_t gfp_mask)
226{
8357376d
RW
227 struct page *page;
228
229 page = alloc_page(gfp_mask);
230 if (page) {
7be98234
RW
231 swsusp_set_page_forbidden(page);
232 swsusp_set_page_free(page);
8357376d
RW
233 }
234 return page;
f6143aa6
RW
235}
236
307c5971
RW
237static void recycle_safe_page(void *page_address)
238{
239 struct linked_page *lp = page_address;
240
241 lp->next = safe_pages_list;
242 safe_pages_list = lp;
243}
244
f6143aa6 245/**
ef96f639
RW
246 * free_image_page - Free a page allocated for hibernation image.
247 * @addr: Address of the page to free.
248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249 *
250 * The page to free should have been allocated by get_image_page() (page flags
251 * set by it are affected).
f6143aa6 252 */
f6143aa6
RW
253static inline void free_image_page(void *addr, int clear_nosave_free)
254{
8357376d
RW
255 struct page *page;
256
257 BUG_ON(!virt_addr_valid(addr));
258
259 page = virt_to_page(addr);
260
7be98234 261 swsusp_unset_page_forbidden(page);
f6143aa6 262 if (clear_nosave_free)
7be98234 263 swsusp_unset_page_free(page);
8357376d
RW
264
265 __free_page(page);
f6143aa6
RW
266}
267
efd5a852
RW
268static inline void free_list_of_pages(struct linked_page *list,
269 int clear_page_nosave)
b788db79
RW
270{
271 while (list) {
272 struct linked_page *lp = list->next;
273
274 free_image_page(list, clear_page_nosave);
275 list = lp;
276 }
277}
278
ef96f639
RW
279/*
280 * struct chain_allocator is used for allocating small objects out of
281 * a linked list of pages called 'the chain'.
282 *
283 * The chain grows each time when there is no room for a new object in
284 * the current page. The allocated objects cannot be freed individually.
285 * It is only possible to free them all at once, by freeing the entire
286 * chain.
287 *
288 * NOTE: The chain allocator may be inefficient if the allocated objects
289 * are not much smaller than PAGE_SIZE.
290 */
b788db79
RW
291struct chain_allocator {
292 struct linked_page *chain; /* the chain */
293 unsigned int used_space; /* total size of objects allocated out
ef96f639 294 of the current page */
b788db79
RW
295 gfp_t gfp_mask; /* mask for allocating pages */
296 int safe_needed; /* if set, only "safe" pages are allocated */
297};
298
efd5a852
RW
299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 int safe_needed)
b788db79
RW
301{
302 ca->chain = NULL;
303 ca->used_space = LINKED_PAGE_DATA_SIZE;
304 ca->gfp_mask = gfp_mask;
305 ca->safe_needed = safe_needed;
306}
307
308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309{
310 void *ret;
311
312 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 struct linked_page *lp;
314
9c744481
RW
315 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 get_image_page(ca->gfp_mask, PG_ANY);
b788db79
RW
317 if (!lp)
318 return NULL;
319
320 lp->next = ca->chain;
321 ca->chain = lp;
322 ca->used_space = 0;
323 }
324 ret = ca->chain->data + ca->used_space;
325 ca->used_space += size;
326 return ret;
327}
328
b788db79 329/**
ef96f639 330 * Data types related to memory bitmaps.
b788db79 331 *
e4b2897a 332 * Memory bitmap is a structure consisting of many linked lists of
ef96f639 333 * objects. The main list's elements are of type struct zone_bitmap
6be2408a 334 * and each of them corresponds to one zone. For each zone bitmap
ef96f639
RW
335 * object there is a list of objects of type struct bm_block that
336 * represent each blocks of bitmap in which information is stored.
b788db79 337 *
ef96f639
RW
338 * struct memory_bitmap contains a pointer to the main list of zone
339 * bitmap objects, a struct bm_position used for browsing the bitmap,
340 * and a pointer to the list of pages used for allocating all of the
341 * zone bitmap objects and bitmap block objects.
b788db79 342 *
ef96f639
RW
343 * NOTE: It has to be possible to lay out the bitmap in memory
344 * using only allocations of order 0. Additionally, the bitmap is
345 * designed to work with arbitrary number of zones (this is over the
346 * top for now, but let's avoid making unnecessary assumptions ;-).
b788db79 347 *
ef96f639
RW
348 * struct zone_bitmap contains a pointer to a list of bitmap block
349 * objects and a pointer to the bitmap block object that has been
350 * most recently used for setting bits. Additionally, it contains the
351 * PFNs that correspond to the start and end of the represented zone.
b788db79 352 *
ef96f639
RW
353 * struct bm_block contains a pointer to the memory page in which
354 * information is stored (in the form of a block of bitmap)
355 * It also contains the pfns that correspond to the start and end of
356 * the represented memory area.
f469f02d 357 *
ef96f639
RW
358 * The memory bitmap is organized as a radix tree to guarantee fast random
359 * access to the bits. There is one radix tree for each zone (as returned
360 * from create_mem_extents).
f469f02d 361 *
ef96f639
RW
362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363 * two linked lists for the nodes of the tree, one for the inner nodes and
364 * one for the leave nodes. The linked leave nodes are used for fast linear
365 * access of the memory bitmap.
f469f02d 366 *
ef96f639 367 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
368 */
369
370#define BM_END_OF_MAP (~0UL)
371
8de03073 372#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
373#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
374#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79 375
f469f02d
JR
376/*
377 * struct rtree_node is a wrapper struct to link the nodes
378 * of the rtree together for easy linear iteration over
379 * bits and easy freeing
380 */
381struct rtree_node {
382 struct list_head list;
383 unsigned long *data;
384};
385
386/*
387 * struct mem_zone_bm_rtree represents a bitmap used for one
388 * populated memory zone.
389 */
390struct mem_zone_bm_rtree {
391 struct list_head list; /* Link Zones together */
392 struct list_head nodes; /* Radix Tree inner nodes */
393 struct list_head leaves; /* Radix Tree leaves */
394 unsigned long start_pfn; /* Zone start page frame */
395 unsigned long end_pfn; /* Zone end page frame + 1 */
396 struct rtree_node *rtree; /* Radix Tree Root */
397 int levels; /* Number of Radix Tree Levels */
398 unsigned int blocks; /* Number of Bitmap Blocks */
399};
400
b788db79
RW
401/* strcut bm_position is used for browsing memory bitmaps */
402
403struct bm_position {
3a20cb17
JR
404 struct mem_zone_bm_rtree *zone;
405 struct rtree_node *node;
406 unsigned long node_pfn;
407 int node_bit;
b788db79
RW
408};
409
410struct memory_bitmap {
f469f02d 411 struct list_head zones;
b788db79 412 struct linked_page *p_list; /* list of pages used to store zone
ef96f639
RW
413 bitmap objects and bitmap block
414 objects */
b788db79
RW
415 struct bm_position cur; /* most recently used bit position */
416};
417
418/* Functions that operate on memory bitmaps */
419
f469f02d
JR
420#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
421#if BITS_PER_LONG == 32
422#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
423#else
424#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
425#endif
426#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
427
ef96f639
RW
428/**
429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
f469f02d 430 *
ef96f639
RW
431 * This function is used to allocate inner nodes as well as the
432 * leave nodes of the radix tree. It also adds the node to the
433 * corresponding linked list passed in by the *list parameter.
f469f02d
JR
434 */
435static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
436 struct chain_allocator *ca,
437 struct list_head *list)
438{
439 struct rtree_node *node;
440
441 node = chain_alloc(ca, sizeof(struct rtree_node));
442 if (!node)
443 return NULL;
444
445 node->data = get_image_page(gfp_mask, safe_needed);
446 if (!node->data)
447 return NULL;
448
449 list_add_tail(&node->list, list);
450
451 return node;
452}
453
ef96f639
RW
454/**
455 * add_rtree_block - Add a new leave node to the radix tree.
f469f02d 456 *
ef96f639
RW
457 * The leave nodes need to be allocated in order to keep the leaves
458 * linked list in order. This is guaranteed by the zone->blocks
459 * counter.
f469f02d
JR
460 */
461static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
462 int safe_needed, struct chain_allocator *ca)
463{
464 struct rtree_node *node, *block, **dst;
465 unsigned int levels_needed, block_nr;
466 int i;
467
468 block_nr = zone->blocks;
469 levels_needed = 0;
470
471 /* How many levels do we need for this block nr? */
472 while (block_nr) {
473 levels_needed += 1;
474 block_nr >>= BM_RTREE_LEVEL_SHIFT;
475 }
476
477 /* Make sure the rtree has enough levels */
478 for (i = zone->levels; i < levels_needed; i++) {
479 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
480 &zone->nodes);
481 if (!node)
482 return -ENOMEM;
483
484 node->data[0] = (unsigned long)zone->rtree;
485 zone->rtree = node;
486 zone->levels += 1;
487 }
488
489 /* Allocate new block */
490 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
491 if (!block)
492 return -ENOMEM;
493
494 /* Now walk the rtree to insert the block */
495 node = zone->rtree;
496 dst = &zone->rtree;
497 block_nr = zone->blocks;
498 for (i = zone->levels; i > 0; i--) {
499 int index;
500
501 if (!node) {
502 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
503 &zone->nodes);
504 if (!node)
505 return -ENOMEM;
506 *dst = node;
507 }
508
509 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
510 index &= BM_RTREE_LEVEL_MASK;
511 dst = (struct rtree_node **)&((*dst)->data[index]);
512 node = *dst;
513 }
514
515 zone->blocks += 1;
516 *dst = block;
517
518 return 0;
519}
520
521static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
522 int clear_nosave_free);
523
ef96f639
RW
524/**
525 * create_zone_bm_rtree - Create a radix tree for one zone.
f469f02d 526 *
ef96f639
RW
527 * Allocated the mem_zone_bm_rtree structure and initializes it.
528 * This function also allocated and builds the radix tree for the
529 * zone.
f469f02d 530 */
efd5a852
RW
531static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
532 int safe_needed,
533 struct chain_allocator *ca,
534 unsigned long start,
535 unsigned long end)
f469f02d
JR
536{
537 struct mem_zone_bm_rtree *zone;
538 unsigned int i, nr_blocks;
539 unsigned long pages;
540
541 pages = end - start;
542 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
543 if (!zone)
544 return NULL;
545
546 INIT_LIST_HEAD(&zone->nodes);
547 INIT_LIST_HEAD(&zone->leaves);
548 zone->start_pfn = start;
549 zone->end_pfn = end;
550 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
551
552 for (i = 0; i < nr_blocks; i++) {
553 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
554 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
555 return NULL;
556 }
557 }
558
559 return zone;
560}
561
ef96f639
RW
562/**
563 * free_zone_bm_rtree - Free the memory of the radix tree.
f469f02d 564 *
ef96f639
RW
565 * Free all node pages of the radix tree. The mem_zone_bm_rtree
566 * structure itself is not freed here nor are the rtree_node
567 * structs.
f469f02d
JR
568 */
569static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
570 int clear_nosave_free)
571{
572 struct rtree_node *node;
573
574 list_for_each_entry(node, &zone->nodes, list)
575 free_image_page(node->data, clear_nosave_free);
576
577 list_for_each_entry(node, &zone->leaves, list)
578 free_image_page(node->data, clear_nosave_free);
579}
580
b788db79
RW
581static void memory_bm_position_reset(struct memory_bitmap *bm)
582{
3a20cb17
JR
583 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
584 list);
585 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
586 struct rtree_node, list);
587 bm->cur.node_pfn = 0;
588 bm->cur.node_bit = 0;
b788db79
RW
589}
590
591static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
592
846705de
RW
593struct mem_extent {
594 struct list_head hook;
595 unsigned long start;
596 unsigned long end;
597};
598
b788db79 599/**
ef96f639
RW
600 * free_mem_extents - Free a list of memory extents.
601 * @list: List of extents to free.
b788db79 602 */
846705de
RW
603static void free_mem_extents(struct list_head *list)
604{
605 struct mem_extent *ext, *aux;
b788db79 606
846705de
RW
607 list_for_each_entry_safe(ext, aux, list, hook) {
608 list_del(&ext->hook);
609 kfree(ext);
610 }
611}
612
613/**
ef96f639
RW
614 * create_mem_extents - Create a list of memory extents.
615 * @list: List to put the extents into.
616 * @gfp_mask: Mask to use for memory allocations.
617 *
618 * The extents represent contiguous ranges of PFNs.
846705de
RW
619 */
620static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 621{
846705de 622 struct zone *zone;
b788db79 623
846705de 624 INIT_LIST_HEAD(list);
b788db79 625
ee99c71c 626 for_each_populated_zone(zone) {
846705de
RW
627 unsigned long zone_start, zone_end;
628 struct mem_extent *ext, *cur, *aux;
629
846705de 630 zone_start = zone->zone_start_pfn;
c33bc315 631 zone_end = zone_end_pfn(zone);
846705de
RW
632
633 list_for_each_entry(ext, list, hook)
634 if (zone_start <= ext->end)
635 break;
b788db79 636
846705de
RW
637 if (&ext->hook == list || zone_end < ext->start) {
638 /* New extent is necessary */
639 struct mem_extent *new_ext;
640
641 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
642 if (!new_ext) {
643 free_mem_extents(list);
644 return -ENOMEM;
645 }
646 new_ext->start = zone_start;
647 new_ext->end = zone_end;
648 list_add_tail(&new_ext->hook, &ext->hook);
649 continue;
650 }
651
652 /* Merge this zone's range of PFNs with the existing one */
653 if (zone_start < ext->start)
654 ext->start = zone_start;
655 if (zone_end > ext->end)
656 ext->end = zone_end;
657
658 /* More merging may be possible */
659 cur = ext;
660 list_for_each_entry_safe_continue(cur, aux, list, hook) {
661 if (zone_end < cur->start)
662 break;
663 if (zone_end < cur->end)
664 ext->end = cur->end;
665 list_del(&cur->hook);
666 kfree(cur);
667 }
b788db79 668 }
846705de
RW
669
670 return 0;
b788db79
RW
671}
672
673/**
ef96f639
RW
674 * memory_bm_create - Allocate memory for a memory bitmap.
675 */
efd5a852
RW
676static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
677 int safe_needed)
b788db79
RW
678{
679 struct chain_allocator ca;
846705de
RW
680 struct list_head mem_extents;
681 struct mem_extent *ext;
682 int error;
b788db79
RW
683
684 chain_init(&ca, gfp_mask, safe_needed);
f469f02d 685 INIT_LIST_HEAD(&bm->zones);
b788db79 686
846705de
RW
687 error = create_mem_extents(&mem_extents, gfp_mask);
688 if (error)
689 return error;
b788db79 690
846705de 691 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 692 struct mem_zone_bm_rtree *zone;
f469f02d
JR
693
694 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
695 ext->start, ext->end);
9047eb62
JR
696 if (!zone) {
697 error = -ENOMEM;
f469f02d 698 goto Error;
9047eb62 699 }
f469f02d 700 list_add_tail(&zone->list, &bm->zones);
b788db79 701 }
846705de 702
b788db79
RW
703 bm->p_list = ca.chain;
704 memory_bm_position_reset(bm);
846705de
RW
705 Exit:
706 free_mem_extents(&mem_extents);
707 return error;
b788db79 708
846705de 709 Error:
b788db79
RW
710 bm->p_list = ca.chain;
711 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 712 goto Exit;
b788db79
RW
713}
714
715/**
ef96f639
RW
716 * memory_bm_free - Free memory occupied by the memory bitmap.
717 * @bm: Memory bitmap.
718 */
b788db79
RW
719static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
720{
f469f02d 721 struct mem_zone_bm_rtree *zone;
b788db79 722
f469f02d
JR
723 list_for_each_entry(zone, &bm->zones, list)
724 free_zone_bm_rtree(zone, clear_nosave_free);
725
b788db79 726 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 727
f469f02d 728 INIT_LIST_HEAD(&bm->zones);
b788db79
RW
729}
730
731/**
ef96f639 732 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
07a33823 733 *
ef96f639
RW
734 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
735 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
736 *
737 * Walk the radix tree to find the page containing the bit that represents @pfn
738 * and return the position of the bit in @addr and @bit_nr.
07a33823 739 */
9047eb62
JR
740static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
741 void **addr, unsigned int *bit_nr)
07a33823
JR
742{
743 struct mem_zone_bm_rtree *curr, *zone;
744 struct rtree_node *node;
745 int i, block_nr;
746
3a20cb17
JR
747 zone = bm->cur.zone;
748
749 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
750 goto zone_found;
751
07a33823
JR
752 zone = NULL;
753
754 /* Find the right zone */
755 list_for_each_entry(curr, &bm->zones, list) {
756 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
757 zone = curr;
758 break;
759 }
760 }
761
762 if (!zone)
763 return -EFAULT;
764
3a20cb17 765zone_found:
07a33823 766 /*
ef96f639
RW
767 * We have found the zone. Now walk the radix tree to find the leaf node
768 * for our PFN.
07a33823 769 */
da6043fe
AW
770
771 /*
7b7b8a2c 772 * If the zone we wish to scan is the current zone and the
da6043fe
AW
773 * pfn falls into the current node then we do not need to walk
774 * the tree.
775 */
3a20cb17 776 node = bm->cur.node;
da6043fe
AW
777 if (zone == bm->cur.zone &&
778 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
3a20cb17
JR
779 goto node_found;
780
07a33823
JR
781 node = zone->rtree;
782 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
783
784 for (i = zone->levels; i > 0; i--) {
785 int index;
786
787 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
788 index &= BM_RTREE_LEVEL_MASK;
789 BUG_ON(node->data[index] == 0);
790 node = (struct rtree_node *)node->data[index];
791 }
792
3a20cb17
JR
793node_found:
794 /* Update last position */
795 bm->cur.zone = zone;
796 bm->cur.node = node;
797 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
798
07a33823
JR
799 /* Set return values */
800 *addr = node->data;
801 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
802
803 return 0;
804}
805
74dfd666
RW
806static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
807{
808 void *addr;
809 unsigned int bit;
a82f7119 810 int error;
74dfd666 811
a82f7119
RW
812 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
813 BUG_ON(error);
74dfd666
RW
814 set_bit(bit, addr);
815}
816
a82f7119
RW
817static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
818{
819 void *addr;
820 unsigned int bit;
821 int error;
822
823 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
07a33823
JR
824 if (!error)
825 set_bit(bit, addr);
826
a82f7119
RW
827 return error;
828}
829
74dfd666
RW
830static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
831{
832 void *addr;
833 unsigned int bit;
a82f7119 834 int error;
74dfd666 835
a82f7119
RW
836 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
837 BUG_ON(error);
74dfd666
RW
838 clear_bit(bit, addr);
839}
840
fdd64ed5
JR
841static void memory_bm_clear_current(struct memory_bitmap *bm)
842{
843 int bit;
844
845 bit = max(bm->cur.node_bit - 1, 0);
846 clear_bit(bit, bm->cur.node->data);
847}
848
74dfd666
RW
849static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
850{
851 void *addr;
852 unsigned int bit;
9047eb62 853 int error;
74dfd666 854
a82f7119
RW
855 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
856 BUG_ON(error);
9047eb62 857 return test_bit(bit, addr);
b788db79
RW
858}
859
69643279
RW
860static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
861{
862 void *addr;
863 unsigned int bit;
07a33823 864
9047eb62 865 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
b788db79
RW
866}
867
3a20cb17 868/*
ef96f639 869 * rtree_next_node - Jump to the next leaf node.
3a20cb17 870 *
ef96f639
RW
871 * Set the position to the beginning of the next node in the
872 * memory bitmap. This is either the next node in the current
873 * zone's radix tree or the first node in the radix tree of the
874 * next zone.
3a20cb17 875 *
ef96f639 876 * Return true if there is a next node, false otherwise.
3a20cb17
JR
877 */
878static bool rtree_next_node(struct memory_bitmap *bm)
879{
924d8696
JM
880 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
881 bm->cur.node = list_entry(bm->cur.node->list.next,
882 struct rtree_node, list);
3a20cb17
JR
883 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
884 bm->cur.node_bit = 0;
0f7d83e8 885 touch_softlockup_watchdog();
3a20cb17
JR
886 return true;
887 }
888
889 /* No more nodes, goto next zone */
924d8696
JM
890 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
891 bm->cur.zone = list_entry(bm->cur.zone->list.next,
3a20cb17 892 struct mem_zone_bm_rtree, list);
3a20cb17
JR
893 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
894 struct rtree_node, list);
895 bm->cur.node_pfn = 0;
896 bm->cur.node_bit = 0;
897 return true;
898 }
899
900 /* No more zones */
901 return false;
902}
903
9047eb62 904/**
ef96f639
RW
905 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
906 * @bm: Memory bitmap.
3a20cb17 907 *
ef96f639
RW
908 * Starting from the last returned position this function searches for the next
909 * set bit in @bm and returns the PFN represented by it. If no more bits are
910 * set, BM_END_OF_MAP is returned.
9047eb62 911 *
ef96f639
RW
912 * It is required to run memory_bm_position_reset() before the first call to
913 * this function for the given memory bitmap.
3a20cb17 914 */
9047eb62 915static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
3a20cb17
JR
916{
917 unsigned long bits, pfn, pages;
918 int bit;
919
920 do {
921 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
922 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
923 bit = find_next_bit(bm->cur.node->data, bits,
924 bm->cur.node_bit);
925 if (bit < bits) {
926 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
927 bm->cur.node_bit = bit + 1;
928 return pfn;
929 }
930 } while (rtree_next_node(bm));
931
932 return BM_END_OF_MAP;
933}
934
ef96f639
RW
935/*
936 * This structure represents a range of page frames the contents of which
937 * should not be saved during hibernation.
74dfd666 938 */
74dfd666
RW
939struct nosave_region {
940 struct list_head list;
941 unsigned long start_pfn;
942 unsigned long end_pfn;
943};
944
945static LIST_HEAD(nosave_regions);
946
307c5971
RW
947static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
948{
949 struct rtree_node *node;
950
951 list_for_each_entry(node, &zone->nodes, list)
952 recycle_safe_page(node->data);
953
954 list_for_each_entry(node, &zone->leaves, list)
955 recycle_safe_page(node->data);
956}
957
958static void memory_bm_recycle(struct memory_bitmap *bm)
959{
960 struct mem_zone_bm_rtree *zone;
961 struct linked_page *p_list;
962
963 list_for_each_entry(zone, &bm->zones, list)
964 recycle_zone_bm_rtree(zone);
965
966 p_list = bm->p_list;
967 while (p_list) {
968 struct linked_page *lp = p_list;
969
970 p_list = lp->next;
971 recycle_safe_page(lp);
972 }
973}
974
74dfd666 975/**
ef96f639
RW
976 * register_nosave_region - Register a region of unsaveable memory.
977 *
978 * Register a range of page frames the contents of which should not be saved
979 * during hibernation (to be used in the early initialization code).
74dfd666 980 */
33569ef3 981void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
74dfd666
RW
982{
983 struct nosave_region *region;
984
985 if (start_pfn >= end_pfn)
986 return;
987
988 if (!list_empty(&nosave_regions)) {
989 /* Try to extend the previous region (they should be sorted) */
990 region = list_entry(nosave_regions.prev,
991 struct nosave_region, list);
992 if (region->end_pfn == start_pfn) {
993 region->end_pfn = end_pfn;
994 goto Report;
995 }
996 }
33569ef3
AS
997 /* This allocation cannot fail */
998 region = memblock_alloc(sizeof(struct nosave_region),
999 SMP_CACHE_BYTES);
1000 if (!region)
1001 panic("%s: Failed to allocate %zu bytes\n", __func__,
1002 sizeof(struct nosave_region));
74dfd666
RW
1003 region->start_pfn = start_pfn;
1004 region->end_pfn = end_pfn;
1005 list_add_tail(&region->list, &nosave_regions);
1006 Report:
64ec72a1 1007 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
cd38ca85
BH
1008 (unsigned long long) start_pfn << PAGE_SHIFT,
1009 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
1010}
1011
1012/*
1013 * Set bits in this map correspond to the page frames the contents of which
1014 * should not be saved during the suspend.
1015 */
1016static struct memory_bitmap *forbidden_pages_map;
1017
1018/* Set bits in this map correspond to free page frames. */
1019static struct memory_bitmap *free_pages_map;
1020
1021/*
1022 * Each page frame allocated for creating the image is marked by setting the
1023 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1024 */
1025
1026void swsusp_set_page_free(struct page *page)
1027{
1028 if (free_pages_map)
1029 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1030}
1031
1032static int swsusp_page_is_free(struct page *page)
1033{
1034 return free_pages_map ?
1035 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1036}
1037
1038void swsusp_unset_page_free(struct page *page)
1039{
1040 if (free_pages_map)
1041 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1042}
1043
1044static void swsusp_set_page_forbidden(struct page *page)
1045{
1046 if (forbidden_pages_map)
1047 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1048}
1049
1050int swsusp_page_is_forbidden(struct page *page)
1051{
1052 return forbidden_pages_map ?
1053 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1054}
1055
1056static void swsusp_unset_page_forbidden(struct page *page)
1057{
1058 if (forbidden_pages_map)
1059 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1060}
1061
1062/**
ef96f639
RW
1063 * mark_nosave_pages - Mark pages that should not be saved.
1064 * @bm: Memory bitmap.
1065 *
1066 * Set the bits in @bm that correspond to the page frames the contents of which
1067 * should not be saved.
74dfd666 1068 */
74dfd666
RW
1069static void mark_nosave_pages(struct memory_bitmap *bm)
1070{
1071 struct nosave_region *region;
1072
1073 if (list_empty(&nosave_regions))
1074 return;
1075
1076 list_for_each_entry(region, &nosave_regions, list) {
1077 unsigned long pfn;
1078
64ec72a1 1079 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
69f1d475
BH
1080 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1081 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1082 - 1);
74dfd666
RW
1083
1084 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1085 if (pfn_valid(pfn)) {
1086 /*
1087 * It is safe to ignore the result of
1088 * mem_bm_set_bit_check() here, since we won't
1089 * touch the PFNs for which the error is
1090 * returned anyway.
1091 */
1092 mem_bm_set_bit_check(bm, pfn);
1093 }
74dfd666
RW
1094 }
1095}
1096
1097/**
ef96f639
RW
1098 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1099 *
1100 * Create bitmaps needed for marking page frames that should not be saved and
1101 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1102 * only modified if everything goes well, because we don't want the bits to be
1103 * touched before both bitmaps are set up.
74dfd666 1104 */
74dfd666
RW
1105int create_basic_memory_bitmaps(void)
1106{
1107 struct memory_bitmap *bm1, *bm2;
1108 int error = 0;
1109
aab17289
RW
1110 if (forbidden_pages_map && free_pages_map)
1111 return 0;
1112 else
1113 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1114
0709db60 1115 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1116 if (!bm1)
1117 return -ENOMEM;
1118
0709db60 1119 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1120 if (error)
1121 goto Free_first_object;
1122
0709db60 1123 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1124 if (!bm2)
1125 goto Free_first_bitmap;
1126
0709db60 1127 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1128 if (error)
1129 goto Free_second_object;
1130
1131 forbidden_pages_map = bm1;
1132 free_pages_map = bm2;
1133 mark_nosave_pages(forbidden_pages_map);
1134
64ec72a1 1135 pr_debug("Basic memory bitmaps created\n");
74dfd666
RW
1136
1137 return 0;
1138
1139 Free_second_object:
1140 kfree(bm2);
1141 Free_first_bitmap:
480f0de6 1142 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
74dfd666
RW
1143 Free_first_object:
1144 kfree(bm1);
1145 return -ENOMEM;
1146}
1147
1148/**
ef96f639
RW
1149 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1150 *
1151 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1152 * auxiliary pointers are necessary so that the bitmaps themselves are not
1153 * referred to while they are being freed.
74dfd666 1154 */
74dfd666
RW
1155void free_basic_memory_bitmaps(void)
1156{
1157 struct memory_bitmap *bm1, *bm2;
1158
6a0c7cd3
RW
1159 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1160 return;
74dfd666
RW
1161
1162 bm1 = forbidden_pages_map;
1163 bm2 = free_pages_map;
1164 forbidden_pages_map = NULL;
1165 free_pages_map = NULL;
1166 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1167 kfree(bm1);
1168 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1169 kfree(bm2);
1170
64ec72a1 1171 pr_debug("Basic memory bitmaps freed\n");
74dfd666
RW
1172}
1173
03b6c9a3
VB
1174static void clear_or_poison_free_page(struct page *page)
1175{
1176 if (page_poisoning_enabled_static())
1177 __kernel_poison_pages(page, 1);
1178 else if (want_init_on_free())
1179 clear_highpage(page);
1180}
1181
1182void clear_or_poison_free_pages(void)
1ad1410f 1183{
1ad1410f
AA
1184 struct memory_bitmap *bm = free_pages_map;
1185 unsigned long pfn;
1186
1187 if (WARN_ON(!(free_pages_map)))
1188 return;
1189
03b6c9a3 1190 if (page_poisoning_enabled() || want_init_on_free()) {
18451f9f 1191 memory_bm_position_reset(bm);
1ad1410f 1192 pfn = memory_bm_next_pfn(bm);
18451f9f
AP
1193 while (pfn != BM_END_OF_MAP) {
1194 if (pfn_valid(pfn))
03b6c9a3 1195 clear_or_poison_free_page(pfn_to_page(pfn));
18451f9f
AP
1196
1197 pfn = memory_bm_next_pfn(bm);
1198 }
1199 memory_bm_position_reset(bm);
1200 pr_info("free pages cleared after restore\n");
1ad1410f 1201 }
1ad1410f
AA
1202}
1203
b788db79 1204/**
ef96f639
RW
1205 * snapshot_additional_pages - Estimate the number of extra pages needed.
1206 * @zone: Memory zone to carry out the computation for.
1207 *
1208 * Estimate the number of additional pages needed for setting up a hibernation
1209 * image data structures for @zone (usually, the returned value is greater than
1210 * the exact number).
b788db79 1211 */
b788db79
RW
1212unsigned int snapshot_additional_pages(struct zone *zone)
1213{
f469f02d 1214 unsigned int rtree, nodes;
b788db79 1215
f469f02d
JR
1216 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1217 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1218 LINKED_PAGE_DATA_SIZE);
1219 while (nodes > 1) {
1220 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1221 rtree += nodes;
1222 }
1223
9047eb62 1224 return 2 * rtree;
b788db79
RW
1225}
1226
8357376d
RW
1227#ifdef CONFIG_HIGHMEM
1228/**
ef96f639
RW
1229 * count_free_highmem_pages - Compute the total number of free highmem pages.
1230 *
1231 * The returned number is system-wide.
8357376d 1232 */
8357376d
RW
1233static unsigned int count_free_highmem_pages(void)
1234{
1235 struct zone *zone;
1236 unsigned int cnt = 0;
1237
ee99c71c
KM
1238 for_each_populated_zone(zone)
1239 if (is_highmem(zone))
d23ad423 1240 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1241
1242 return cnt;
1243}
1244
1245/**
ef96f639
RW
1246 * saveable_highmem_page - Check if a highmem page is saveable.
1247 *
1248 * Determine whether a highmem page should be included in a hibernation image.
8357376d 1249 *
ef96f639
RW
1250 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1251 * and it isn't part of a free chunk of pages.
8357376d 1252 */
846705de 1253static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1254{
1255 struct page *page;
1256
1257 if (!pfn_valid(pfn))
1258 return NULL;
1259
5b56db37
DH
1260 page = pfn_to_online_page(pfn);
1261 if (!page || page_zone(page) != zone)
846705de 1262 return NULL;
8357376d
RW
1263
1264 BUG_ON(!PageHighMem(page));
1265
abd02ac6
DH
1266 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1267 return NULL;
1268
1269 if (PageReserved(page) || PageOffline(page))
8357376d
RW
1270 return NULL;
1271
c6968e73
SG
1272 if (page_is_guard(page))
1273 return NULL;
1274
8357376d
RW
1275 return page;
1276}
1277
1278/**
ef96f639 1279 * count_highmem_pages - Compute the total number of saveable highmem pages.
8357376d 1280 */
fe419535 1281static unsigned int count_highmem_pages(void)
8357376d
RW
1282{
1283 struct zone *zone;
1284 unsigned int n = 0;
1285
98e73dc5 1286 for_each_populated_zone(zone) {
8357376d
RW
1287 unsigned long pfn, max_zone_pfn;
1288
1289 if (!is_highmem(zone))
1290 continue;
1291
1292 mark_free_pages(zone);
c33bc315 1293 max_zone_pfn = zone_end_pfn(zone);
8357376d 1294 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1295 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1296 n++;
1297 }
1298 return n;
1299}
1300#else
846705de
RW
1301static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1302{
1303 return NULL;
1304}
8357376d
RW
1305#endif /* CONFIG_HIGHMEM */
1306
25761b6e 1307/**
ef96f639
RW
1308 * saveable_page - Check if the given page is saveable.
1309 *
1310 * Determine whether a non-highmem page should be included in a hibernation
1311 * image.
25761b6e 1312 *
ef96f639
RW
1313 * We should save the page if it isn't Nosave, and is not in the range
1314 * of pages statically defined as 'unsaveable', and it isn't part of
1315 * a free chunk of pages.
25761b6e 1316 */
846705de 1317static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1318{
de491861 1319 struct page *page;
25761b6e
RW
1320
1321 if (!pfn_valid(pfn))
ae83c5ee 1322 return NULL;
25761b6e 1323
5b56db37
DH
1324 page = pfn_to_online_page(pfn);
1325 if (!page || page_zone(page) != zone)
846705de 1326 return NULL;
ae83c5ee 1327
8357376d
RW
1328 BUG_ON(PageHighMem(page));
1329
7be98234 1330 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1331 return NULL;
8357376d 1332
abd02ac6
DH
1333 if (PageOffline(page))
1334 return NULL;
1335
8a235efa
RW
1336 if (PageReserved(page)
1337 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1338 return NULL;
25761b6e 1339
c6968e73
SG
1340 if (page_is_guard(page))
1341 return NULL;
1342
ae83c5ee 1343 return page;
25761b6e
RW
1344}
1345
8357376d 1346/**
ef96f639 1347 * count_data_pages - Compute the total number of saveable non-highmem pages.
8357376d 1348 */
fe419535 1349static unsigned int count_data_pages(void)
25761b6e
RW
1350{
1351 struct zone *zone;
ae83c5ee 1352 unsigned long pfn, max_zone_pfn;
dc19d507 1353 unsigned int n = 0;
25761b6e 1354
98e73dc5 1355 for_each_populated_zone(zone) {
25761b6e
RW
1356 if (is_highmem(zone))
1357 continue;
8357376d 1358
25761b6e 1359 mark_free_pages(zone);
c33bc315 1360 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1361 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1362 if (saveable_page(zone, pfn))
8357376d 1363 n++;
25761b6e 1364 }
a0f49651 1365 return n;
25761b6e
RW
1366}
1367
ef96f639
RW
1368/*
1369 * This is needed, because copy_page and memcpy are not usable for copying
8357376d
RW
1370 * task structs.
1371 */
1372static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1373{
1374 int n;
1375
f623f0db
RW
1376 for (n = PAGE_SIZE / sizeof(long); n; n--)
1377 *dst++ = *src++;
1378}
1379
8a235efa 1380/**
ef96f639
RW
1381 * safe_copy_page - Copy a page in a safe way.
1382 *
1383 * Check if the page we are going to copy is marked as present in the kernel
d6332692
RE
1384 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1385 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1386 * always returns 'true'.
8a235efa
RW
1387 */
1388static void safe_copy_page(void *dst, struct page *s_page)
1389{
1390 if (kernel_page_present(s_page)) {
1391 do_copy_page(dst, page_address(s_page));
1392 } else {
2abf962a 1393 hibernate_map_page(s_page);
8a235efa 1394 do_copy_page(dst, page_address(s_page));
2abf962a 1395 hibernate_unmap_page(s_page);
8a235efa
RW
1396 }
1397}
1398
8357376d 1399#ifdef CONFIG_HIGHMEM
efd5a852 1400static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
8357376d
RW
1401{
1402 return is_highmem(zone) ?
846705de 1403 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1404}
1405
8a235efa 1406static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1407{
1408 struct page *s_page, *d_page;
1409 void *src, *dst;
1410
1411 s_page = pfn_to_page(src_pfn);
1412 d_page = pfn_to_page(dst_pfn);
1413 if (PageHighMem(s_page)) {
0de9a1e2
CW
1414 src = kmap_atomic(s_page);
1415 dst = kmap_atomic(d_page);
8357376d 1416 do_copy_page(dst, src);
0de9a1e2
CW
1417 kunmap_atomic(dst);
1418 kunmap_atomic(src);
8357376d 1419 } else {
8357376d 1420 if (PageHighMem(d_page)) {
ef96f639
RW
1421 /*
1422 * The page pointed to by src may contain some kernel
8357376d
RW
1423 * data modified by kmap_atomic()
1424 */
8a235efa 1425 safe_copy_page(buffer, s_page);
0de9a1e2 1426 dst = kmap_atomic(d_page);
3ecb01df 1427 copy_page(dst, buffer);
0de9a1e2 1428 kunmap_atomic(dst);
8357376d 1429 } else {
8a235efa 1430 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1431 }
1432 }
1433}
1434#else
846705de 1435#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1436
8a235efa 1437static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1438{
8a235efa
RW
1439 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1440 pfn_to_page(src_pfn));
8357376d
RW
1441}
1442#endif /* CONFIG_HIGHMEM */
1443
efd5a852
RW
1444static void copy_data_pages(struct memory_bitmap *copy_bm,
1445 struct memory_bitmap *orig_bm)
25761b6e
RW
1446{
1447 struct zone *zone;
b788db79 1448 unsigned long pfn;
25761b6e 1449
98e73dc5 1450 for_each_populated_zone(zone) {
b788db79
RW
1451 unsigned long max_zone_pfn;
1452
25761b6e 1453 mark_free_pages(zone);
c33bc315 1454 max_zone_pfn = zone_end_pfn(zone);
b788db79 1455 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1456 if (page_is_saveable(zone, pfn))
b788db79 1457 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1458 }
b788db79
RW
1459 memory_bm_position_reset(orig_bm);
1460 memory_bm_position_reset(copy_bm);
df7c4872 1461 for(;;) {
b788db79 1462 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1463 if (unlikely(pfn == BM_END_OF_MAP))
1464 break;
1465 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1466 }
25761b6e
RW
1467}
1468
8357376d
RW
1469/* Total number of image pages */
1470static unsigned int nr_copy_pages;
1471/* Number of pages needed for saving the original pfns of the image pages */
1472static unsigned int nr_meta_pages;
64a473cb
RW
1473/*
1474 * Numbers of normal and highmem page frames allocated for hibernation image
1475 * before suspending devices.
1476 */
0bae5fd3 1477static unsigned int alloc_normal, alloc_highmem;
64a473cb
RW
1478/*
1479 * Memory bitmap used for marking saveable pages (during hibernation) or
1480 * hibernation image pages (during restore)
1481 */
1482static struct memory_bitmap orig_bm;
1483/*
1484 * Memory bitmap used during hibernation for marking allocated page frames that
1485 * will contain copies of saveable pages. During restore it is initially used
1486 * for marking hibernation image pages, but then the set bits from it are
1487 * duplicated in @orig_bm and it is released. On highmem systems it is next
1488 * used for marking "safe" highmem pages, but it has to be reinitialized for
1489 * this purpose.
1490 */
1491static struct memory_bitmap copy_bm;
8357376d 1492
25761b6e 1493/**
ef96f639 1494 * swsusp_free - Free pages allocated for hibernation image.
cd560bb2 1495 *
6be2408a 1496 * Image pages are allocated before snapshot creation, so they need to be
ef96f639 1497 * released after resume.
25761b6e 1498 */
25761b6e
RW
1499void swsusp_free(void)
1500{
fdd64ed5 1501 unsigned long fb_pfn, fr_pfn;
6efde38f 1502
fdd64ed5
JR
1503 if (!forbidden_pages_map || !free_pages_map)
1504 goto out;
1505
1506 memory_bm_position_reset(forbidden_pages_map);
1507 memory_bm_position_reset(free_pages_map);
1508
1509loop:
1510 fr_pfn = memory_bm_next_pfn(free_pages_map);
1511 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1512
1513 /*
1514 * Find the next bit set in both bitmaps. This is guaranteed to
1515 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1516 */
1517 do {
1518 if (fb_pfn < fr_pfn)
1519 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1520 if (fr_pfn < fb_pfn)
1521 fr_pfn = memory_bm_next_pfn(free_pages_map);
1522 } while (fb_pfn != fr_pfn);
1523
1524 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1525 struct page *page = pfn_to_page(fr_pfn);
1526
1527 memory_bm_clear_current(forbidden_pages_map);
1528 memory_bm_clear_current(free_pages_map);
4c0b6c10 1529 hibernate_restore_unprotect_page(page_address(page));
fdd64ed5
JR
1530 __free_page(page);
1531 goto loop;
25761b6e 1532 }
fdd64ed5
JR
1533
1534out:
f577eb30
RW
1535 nr_copy_pages = 0;
1536 nr_meta_pages = 0;
75534b50 1537 restore_pblist = NULL;
6e1819d6 1538 buffer = NULL;
64a473cb
RW
1539 alloc_normal = 0;
1540 alloc_highmem = 0;
4c0b6c10 1541 hibernate_restore_protection_end();
25761b6e
RW
1542}
1543
4bb33435
RW
1544/* Helper functions used for the shrinking of memory. */
1545
1546#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1547
fe419535 1548/**
ef96f639 1549 * preallocate_image_pages - Allocate a number of pages for hibernation image.
4bb33435
RW
1550 * @nr_pages: Number of page frames to allocate.
1551 * @mask: GFP flags to use for the allocation.
fe419535 1552 *
4bb33435
RW
1553 * Return value: Number of page frames actually allocated
1554 */
1555static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1556{
1557 unsigned long nr_alloc = 0;
1558
1559 while (nr_pages > 0) {
64a473cb
RW
1560 struct page *page;
1561
1562 page = alloc_image_page(mask);
1563 if (!page)
4bb33435 1564 break;
64a473cb
RW
1565 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1566 if (PageHighMem(page))
1567 alloc_highmem++;
1568 else
1569 alloc_normal++;
4bb33435
RW
1570 nr_pages--;
1571 nr_alloc++;
1572 }
1573
1574 return nr_alloc;
1575}
1576
6715045d
RW
1577static unsigned long preallocate_image_memory(unsigned long nr_pages,
1578 unsigned long avail_normal)
4bb33435 1579{
6715045d
RW
1580 unsigned long alloc;
1581
1582 if (avail_normal <= alloc_normal)
1583 return 0;
1584
1585 alloc = avail_normal - alloc_normal;
1586 if (nr_pages < alloc)
1587 alloc = nr_pages;
1588
1589 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1590}
1591
1592#ifdef CONFIG_HIGHMEM
1593static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1594{
1595 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1596}
1597
1598/**
ef96f639 1599 * __fraction - Compute (an approximation of) x * (multiplier / base).
fe419535 1600 */
4bb33435
RW
1601static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1602{
809ed78a 1603 return div64_u64(x * multiplier, base);
4bb33435 1604}
fe419535 1605
4bb33435 1606static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1607 unsigned long highmem,
1608 unsigned long total)
fe419535 1609{
4bb33435
RW
1610 unsigned long alloc = __fraction(nr_pages, highmem, total);
1611
1612 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1613}
4bb33435
RW
1614#else /* CONFIG_HIGHMEM */
1615static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1616{
1617 return 0;
1618}
1619
1620static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1621 unsigned long highmem,
1622 unsigned long total)
4bb33435
RW
1623{
1624 return 0;
1625}
1626#endif /* CONFIG_HIGHMEM */
fe419535 1627
4bb33435 1628/**
ef96f639 1629 * free_unnecessary_pages - Release preallocated pages not needed for the image.
64a473cb 1630 */
a64fc82c 1631static unsigned long free_unnecessary_pages(void)
64a473cb 1632{
a64fc82c 1633 unsigned long save, to_free_normal, to_free_highmem, free;
64a473cb 1634
6715045d
RW
1635 save = count_data_pages();
1636 if (alloc_normal >= save) {
1637 to_free_normal = alloc_normal - save;
1638 save = 0;
1639 } else {
1640 to_free_normal = 0;
1641 save -= alloc_normal;
1642 }
1643 save += count_highmem_pages();
1644 if (alloc_highmem >= save) {
1645 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1646 } else {
1647 to_free_highmem = 0;
4d4cf23c
RW
1648 save -= alloc_highmem;
1649 if (to_free_normal > save)
1650 to_free_normal -= save;
1651 else
1652 to_free_normal = 0;
64a473cb 1653 }
a64fc82c 1654 free = to_free_normal + to_free_highmem;
64a473cb
RW
1655
1656 memory_bm_position_reset(&copy_bm);
1657
a9c9b442 1658 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1659 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1660 struct page *page = pfn_to_page(pfn);
1661
1662 if (PageHighMem(page)) {
1663 if (!to_free_highmem)
1664 continue;
1665 to_free_highmem--;
1666 alloc_highmem--;
1667 } else {
1668 if (!to_free_normal)
1669 continue;
1670 to_free_normal--;
1671 alloc_normal--;
1672 }
1673 memory_bm_clear_bit(&copy_bm, pfn);
1674 swsusp_unset_page_forbidden(page);
1675 swsusp_unset_page_free(page);
1676 __free_page(page);
1677 }
a64fc82c
WK
1678
1679 return free;
64a473cb
RW
1680}
1681
ef4aede3 1682/**
ef96f639 1683 * minimum_image_size - Estimate the minimum acceptable size of an image.
ef4aede3
RW
1684 * @saveable: Number of saveable pages in the system.
1685 *
1686 * We want to avoid attempting to free too much memory too hard, so estimate the
1687 * minimum acceptable size of a hibernation image to use as the lower limit for
1688 * preallocating memory.
1689 *
1690 * We assume that the minimum image size should be proportional to
1691 *
1692 * [number of saveable pages] - [number of pages that can be freed in theory]
1693 *
1694 * where the second term is the sum of (1) reclaimable slab pages, (2) active
bdbc98ab 1695 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
ef4aede3
RW
1696 */
1697static unsigned long minimum_image_size(unsigned long saveable)
1698{
1699 unsigned long size;
1700
d42f3245 1701 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
599d0c95
MG
1702 + global_node_page_state(NR_ACTIVE_ANON)
1703 + global_node_page_state(NR_INACTIVE_ANON)
1704 + global_node_page_state(NR_ACTIVE_FILE)
bdbc98ab 1705 + global_node_page_state(NR_INACTIVE_FILE);
ef4aede3
RW
1706
1707 return saveable <= size ? 0 : saveable - size;
1708}
1709
64a473cb 1710/**
ef96f639 1711 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
4bb33435
RW
1712 *
1713 * To create a hibernation image it is necessary to make a copy of every page
1714 * frame in use. We also need a number of page frames to be free during
1715 * hibernation for allocations made while saving the image and for device
1716 * drivers, in case they need to allocate memory from their hibernation
ddeb6487 1717 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
b0c609ab 1718 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
ddeb6487
RW
1719 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1720 * total number of available page frames and allocate at least
4bb33435 1721 *
ddeb6487
RW
1722 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1723 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1724 *
1725 * of them, which corresponds to the maximum size of a hibernation image.
1726 *
1727 * If image_size is set below the number following from the above formula,
1728 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1729 * pages in the system is below the requested image size or the minimum
1730 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1731 */
64a473cb 1732int hibernate_preallocate_memory(void)
fe419535 1733{
fe419535 1734 struct zone *zone;
4bb33435 1735 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1736 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
db597605 1737 ktime_t start, stop;
64a473cb 1738 int error;
fe419535 1739
7a7b99bf 1740 pr_info("Preallocating image memory\n");
db597605 1741 start = ktime_get();
fe419535 1742
64a473cb 1743 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
7a7b99bf
LS
1744 if (error) {
1745 pr_err("Cannot allocate original bitmap\n");
64a473cb 1746 goto err_out;
7a7b99bf 1747 }
64a473cb
RW
1748
1749 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
7a7b99bf
LS
1750 if (error) {
1751 pr_err("Cannot allocate copy bitmap\n");
64a473cb 1752 goto err_out;
7a7b99bf 1753 }
64a473cb
RW
1754
1755 alloc_normal = 0;
1756 alloc_highmem = 0;
1757
4bb33435 1758 /* Count the number of saveable data pages. */
64a473cb 1759 save_highmem = count_highmem_pages();
4bb33435 1760 saveable = count_data_pages();
fe419535 1761
4bb33435
RW
1762 /*
1763 * Compute the total number of page frames we can use (count) and the
1764 * number of pages needed for image metadata (size).
1765 */
1766 count = saveable;
64a473cb
RW
1767 saveable += save_highmem;
1768 highmem = save_highmem;
4bb33435
RW
1769 size = 0;
1770 for_each_populated_zone(zone) {
1771 size += snapshot_additional_pages(zone);
1772 if (is_highmem(zone))
1773 highmem += zone_page_state(zone, NR_FREE_PAGES);
1774 else
1775 count += zone_page_state(zone, NR_FREE_PAGES);
1776 }
6715045d 1777 avail_normal = count;
4bb33435
RW
1778 count += highmem;
1779 count -= totalreserve_pages;
1780
1781 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1782 max_size = (count - (size + PAGES_FOR_IO)) / 2
1783 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1784 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1785 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1786 if (size > max_size)
1787 size = max_size;
1788 /*
266f1a25
RW
1789 * If the desired number of image pages is at least as large as the
1790 * current number of saveable pages in memory, allocate page frames for
1791 * the image and we're done.
4bb33435 1792 */
64a473cb
RW
1793 if (size >= saveable) {
1794 pages = preallocate_image_highmem(save_highmem);
6715045d 1795 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1796 goto out;
64a473cb 1797 }
4bb33435 1798
ef4aede3
RW
1799 /* Estimate the minimum size of the image. */
1800 pages = minimum_image_size(saveable);
6715045d
RW
1801 /*
1802 * To avoid excessive pressure on the normal zone, leave room in it to
1803 * accommodate an image of the minimum size (unless it's already too
1804 * small, in which case don't preallocate pages from it at all).
1805 */
1806 if (avail_normal > pages)
1807 avail_normal -= pages;
1808 else
1809 avail_normal = 0;
ef4aede3
RW
1810 if (size < pages)
1811 size = min_t(unsigned long, pages, max_size);
1812
4bb33435
RW
1813 /*
1814 * Let the memory management subsystem know that we're going to need a
1815 * large number of page frames to allocate and make it free some memory.
1816 * NOTE: If this is not done, performance will be hurt badly in some
1817 * test cases.
1818 */
1819 shrink_all_memory(saveable - size);
1820
1821 /*
1822 * The number of saveable pages in memory was too high, so apply some
1823 * pressure to decrease it. First, make room for the largest possible
1824 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1825 * of the image as much as indicated by 'size' using allocations from
1826 * highmem and non-highmem zones separately.
4bb33435
RW
1827 */
1828 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1829 alloc = count - max_size;
1830 if (alloc > pages_highmem)
1831 alloc -= pages_highmem;
1832 else
1833 alloc = 0;
6715045d
RW
1834 pages = preallocate_image_memory(alloc, avail_normal);
1835 if (pages < alloc) {
1836 /* We have exhausted non-highmem pages, try highmem. */
1837 alloc -= pages;
1838 pages += pages_highmem;
1839 pages_highmem = preallocate_image_highmem(alloc);
7a7b99bf
LS
1840 if (pages_highmem < alloc) {
1841 pr_err("Image allocation is %lu pages short\n",
1842 alloc - pages_highmem);
6715045d 1843 goto err_out;
7a7b99bf 1844 }
6715045d
RW
1845 pages += pages_highmem;
1846 /*
1847 * size is the desired number of saveable pages to leave in
1848 * memory, so try to preallocate (all memory - size) pages.
1849 */
1850 alloc = (count - pages) - size;
1851 pages += preallocate_image_highmem(alloc);
1852 } else {
1853 /*
1854 * There are approximately max_size saveable pages at this point
1855 * and we want to reduce this number down to size.
1856 */
1857 alloc = max_size - size;
1858 size = preallocate_highmem_fraction(alloc, highmem, count);
1859 pages_highmem += size;
1860 alloc -= size;
1861 size = preallocate_image_memory(alloc, avail_normal);
1862 pages_highmem += preallocate_image_highmem(alloc - size);
1863 pages += pages_highmem + size;
1864 }
4bb33435 1865
64a473cb
RW
1866 /*
1867 * We only need as many page frames for the image as there are saveable
1868 * pages in memory, but we have allocated more. Release the excessive
1869 * ones now.
1870 */
a64fc82c 1871 pages -= free_unnecessary_pages();
4bb33435
RW
1872
1873 out:
db597605 1874 stop = ktime_get();
5c0e9de0 1875 pr_info("Allocated %lu pages for snapshot\n", pages);
db597605 1876 swsusp_show_speed(start, stop, pages, "Allocated");
fe419535
RW
1877
1878 return 0;
64a473cb
RW
1879
1880 err_out:
64a473cb
RW
1881 swsusp_free();
1882 return -ENOMEM;
fe419535
RW
1883}
1884
8357376d
RW
1885#ifdef CONFIG_HIGHMEM
1886/**
ef96f639
RW
1887 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1888 *
1889 * Compute the number of non-highmem pages that will be necessary for creating
1890 * copies of highmem pages.
1891 */
8357376d
RW
1892static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1893{
64a473cb 1894 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1895
1896 if (free_highmem >= nr_highmem)
1897 nr_highmem = 0;
1898 else
1899 nr_highmem -= free_highmem;
1900
1901 return nr_highmem;
1902}
1903#else
efd5a852 1904static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
8357376d 1905#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1906
1907/**
ef96f639 1908 * enough_free_mem - Check if there is enough free memory for the image.
25761b6e 1909 */
8357376d 1910static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1911{
e5e2fa78 1912 struct zone *zone;
64a473cb 1913 unsigned int free = alloc_normal;
e5e2fa78 1914
98e73dc5 1915 for_each_populated_zone(zone)
8357376d 1916 if (!is_highmem(zone))
d23ad423 1917 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1918
8357376d 1919 nr_pages += count_pages_for_highmem(nr_highmem);
64ec72a1
JP
1920 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1921 nr_pages, PAGES_FOR_IO, free);
940864dd 1922
64a473cb 1923 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1924}
1925
8357376d
RW
1926#ifdef CONFIG_HIGHMEM
1927/**
ef96f639
RW
1928 * get_highmem_buffer - Allocate a buffer for highmem pages.
1929 *
1930 * If there are some highmem pages in the hibernation image, we may need a
1931 * buffer to copy them and/or load their data.
8357376d 1932 */
8357376d
RW
1933static inline int get_highmem_buffer(int safe_needed)
1934{
453f85d4 1935 buffer = get_image_page(GFP_ATOMIC, safe_needed);
8357376d
RW
1936 return buffer ? 0 : -ENOMEM;
1937}
1938
1939/**
ef96f639
RW
1940 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1941 *
1942 * Try to allocate as many pages as needed, but if the number of free highmem
1943 * pages is less than that, allocate them all.
8357376d 1944 */
efd5a852
RW
1945static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1946 unsigned int nr_highmem)
8357376d
RW
1947{
1948 unsigned int to_alloc = count_free_highmem_pages();
1949
1950 if (to_alloc > nr_highmem)
1951 to_alloc = nr_highmem;
1952
1953 nr_highmem -= to_alloc;
1954 while (to_alloc-- > 0) {
1955 struct page *page;
1956
d0164adc 1957 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
8357376d
RW
1958 memory_bm_set_bit(bm, page_to_pfn(page));
1959 }
1960 return nr_highmem;
1961}
1962#else
1963static inline int get_highmem_buffer(int safe_needed) { return 0; }
1964
efd5a852
RW
1965static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1966 unsigned int n) { return 0; }
8357376d
RW
1967#endif /* CONFIG_HIGHMEM */
1968
1969/**
ef96f639 1970 * swsusp_alloc - Allocate memory for hibernation image.
8357376d 1971 *
ef96f639
RW
1972 * We first try to allocate as many highmem pages as there are
1973 * saveable highmem pages in the system. If that fails, we allocate
1974 * non-highmem pages for the copies of the remaining highmem ones.
8357376d 1975 *
ef96f639
RW
1976 * In this approach it is likely that the copies of highmem pages will
1977 * also be located in the high memory, because of the way in which
1978 * copy_data_pages() works.
8357376d 1979 */
eba74c29 1980static int swsusp_alloc(struct memory_bitmap *copy_bm,
efd5a852 1981 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1982{
8357376d 1983 if (nr_highmem > 0) {
2e725a06 1984 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1985 goto err_out;
1986 if (nr_highmem > alloc_highmem) {
1987 nr_highmem -= alloc_highmem;
1988 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1989 }
8357376d 1990 }
64a473cb
RW
1991 if (nr_pages > alloc_normal) {
1992 nr_pages -= alloc_normal;
1993 while (nr_pages-- > 0) {
1994 struct page *page;
1995
453f85d4 1996 page = alloc_image_page(GFP_ATOMIC);
64a473cb
RW
1997 if (!page)
1998 goto err_out;
1999 memory_bm_set_bit(copy_bm, page_to_pfn(page));
2000 }
25761b6e 2001 }
64a473cb 2002
b788db79 2003 return 0;
25761b6e 2004
64a473cb 2005 err_out:
b788db79 2006 swsusp_free();
2e725a06 2007 return -ENOMEM;
25761b6e
RW
2008}
2009
722a9f92 2010asmlinkage __visible int swsusp_save(void)
25761b6e 2011{
8357376d 2012 unsigned int nr_pages, nr_highmem;
25761b6e 2013
7a7b99bf 2014 pr_info("Creating image:\n");
25761b6e 2015
9f8f2172 2016 drain_local_pages(NULL);
a0f49651 2017 nr_pages = count_data_pages();
8357376d 2018 nr_highmem = count_highmem_pages();
64ec72a1 2019 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 2020
8357376d 2021 if (!enough_free_mem(nr_pages, nr_highmem)) {
64ec72a1 2022 pr_err("Not enough free memory\n");
25761b6e
RW
2023 return -ENOMEM;
2024 }
2025
eba74c29 2026 if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
64ec72a1 2027 pr_err("Memory allocation failed\n");
a0f49651 2028 return -ENOMEM;
8357376d 2029 }
25761b6e 2030
ef96f639
RW
2031 /*
2032 * During allocating of suspend pagedir, new cold pages may appear.
25761b6e
RW
2033 * Kill them.
2034 */
9f8f2172 2035 drain_local_pages(NULL);
b788db79 2036 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
2037
2038 /*
2039 * End of critical section. From now on, we can write to memory,
2040 * but we should not touch disk. This specially means we must _not_
2041 * touch swap space! Except we must write out our image of course.
2042 */
2043
8357376d 2044 nr_pages += nr_highmem;
a0f49651 2045 nr_copy_pages = nr_pages;
8357376d 2046 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 2047
7a7b99bf 2048 pr_info("Image created (%d pages copied)\n", nr_pages);
8357376d 2049
25761b6e
RW
2050 return 0;
2051}
f577eb30 2052
d307c4a8
RW
2053#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2054static int init_header_complete(struct swsusp_info *info)
f577eb30 2055{
d307c4a8 2056 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 2057 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
2058 return 0;
2059}
2060
02d7f400 2061static const char *check_image_kernel(struct swsusp_info *info)
d307c4a8
RW
2062{
2063 if (info->version_code != LINUX_VERSION_CODE)
2064 return "kernel version";
2065 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2066 return "system type";
2067 if (strcmp(info->uts.release,init_utsname()->release))
2068 return "kernel release";
2069 if (strcmp(info->uts.version,init_utsname()->version))
2070 return "version";
2071 if (strcmp(info->uts.machine,init_utsname()->machine))
2072 return "machine";
2073 return NULL;
2074}
2075#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2076
af508b34
RW
2077unsigned long snapshot_get_image_size(void)
2078{
2079 return nr_copy_pages + nr_meta_pages + 1;
2080}
2081
d307c4a8
RW
2082static int init_header(struct swsusp_info *info)
2083{
2084 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 2085 info->num_physpages = get_num_physpages();
f577eb30 2086 info->image_pages = nr_copy_pages;
af508b34 2087 info->pages = snapshot_get_image_size();
6e1819d6
RW
2088 info->size = info->pages;
2089 info->size <<= PAGE_SHIFT;
d307c4a8 2090 return init_header_complete(info);
f577eb30
RW
2091}
2092
2093/**
ef96f639
RW
2094 * pack_pfns - Prepare PFNs for saving.
2095 * @bm: Memory bitmap.
2096 * @buf: Memory buffer to store the PFNs in.
2097 *
2098 * PFNs corresponding to set bits in @bm are stored in the area of memory
2099 * pointed to by @buf (1 page at a time).
f577eb30 2100 */
efd5a852 2101static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2102{
2103 int j;
2104
b788db79 2105 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
2106 buf[j] = memory_bm_next_pfn(bm);
2107 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 2108 break;
f577eb30 2109 }
f577eb30
RW
2110}
2111
2112/**
ef96f639
RW
2113 * snapshot_read_next - Get the address to read the next image page from.
2114 * @handle: Snapshot handle to be used for the reading.
f577eb30 2115 *
ef96f639
RW
2116 * On the first call, @handle should point to a zeroed snapshot_handle
2117 * structure. The structure gets populated then and a pointer to it should be
2118 * passed to this function every next time.
f577eb30 2119 *
ef96f639
RW
2120 * On success, the function returns a positive number. Then, the caller
2121 * is allowed to read up to the returned number of bytes from the memory
2122 * location computed by the data_of() macro.
f577eb30 2123 *
ef96f639
RW
2124 * The function returns 0 to indicate the end of the data stream condition,
2125 * and negative numbers are returned on errors. If that happens, the structure
2126 * pointed to by @handle is not updated and should not be used any more.
f577eb30 2127 */
d3c1b24c 2128int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2129{
fb13a28b 2130 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2131 return 0;
b788db79 2132
f577eb30
RW
2133 if (!buffer) {
2134 /* This makes the buffer be freed by swsusp_free() */
8357376d 2135 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2136 if (!buffer)
2137 return -ENOMEM;
2138 }
d3c1b24c 2139 if (!handle->cur) {
d307c4a8
RW
2140 int error;
2141
2142 error = init_header((struct swsusp_info *)buffer);
2143 if (error)
2144 return error;
f577eb30 2145 handle->buffer = buffer;
b788db79
RW
2146 memory_bm_position_reset(&orig_bm);
2147 memory_bm_position_reset(&copy_bm);
d3c1b24c 2148 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2149 clear_page(buffer);
d3c1b24c
JS
2150 pack_pfns(buffer, &orig_bm);
2151 } else {
2152 struct page *page;
b788db79 2153
d3c1b24c
JS
2154 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2155 if (PageHighMem(page)) {
ef96f639
RW
2156 /*
2157 * Highmem pages are copied to the buffer,
d3c1b24c
JS
2158 * because we can't return with a kmapped
2159 * highmem page (we may not be called again).
2160 */
2161 void *kaddr;
8357376d 2162
0de9a1e2 2163 kaddr = kmap_atomic(page);
3ecb01df 2164 copy_page(buffer, kaddr);
0de9a1e2 2165 kunmap_atomic(kaddr);
d3c1b24c
JS
2166 handle->buffer = buffer;
2167 } else {
2168 handle->buffer = page_address(page);
f577eb30 2169 }
f577eb30 2170 }
d3c1b24c
JS
2171 handle->cur++;
2172 return PAGE_SIZE;
f577eb30
RW
2173}
2174
6dbecfd3
RW
2175static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2176 struct memory_bitmap *src)
2177{
2178 unsigned long pfn;
2179
2180 memory_bm_position_reset(src);
2181 pfn = memory_bm_next_pfn(src);
2182 while (pfn != BM_END_OF_MAP) {
2183 memory_bm_set_bit(dst, pfn);
2184 pfn = memory_bm_next_pfn(src);
2185 }
2186}
2187
f577eb30 2188/**
ef96f639
RW
2189 * mark_unsafe_pages - Mark pages that were used before hibernation.
2190 *
2191 * Mark the pages that cannot be used for storing the image during restoration,
2192 * because they conflict with the pages that had been used before hibernation.
f577eb30 2193 */
6dbecfd3 2194static void mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30 2195{
6dbecfd3 2196 unsigned long pfn;
f577eb30 2197
6dbecfd3
RW
2198 /* Clear the "free"/"unsafe" bit for all PFNs */
2199 memory_bm_position_reset(free_pages_map);
2200 pfn = memory_bm_next_pfn(free_pages_map);
2201 while (pfn != BM_END_OF_MAP) {
2202 memory_bm_clear_current(free_pages_map);
2203 pfn = memory_bm_next_pfn(free_pages_map);
f577eb30
RW
2204 }
2205
6dbecfd3
RW
2206 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2207 duplicate_memory_bitmap(free_pages_map, bm);
f577eb30 2208
940864dd 2209 allocated_unsafe_pages = 0;
f577eb30
RW
2210}
2211
d307c4a8 2212static int check_header(struct swsusp_info *info)
f577eb30 2213{
02d7f400 2214 const char *reason;
f577eb30 2215
d307c4a8 2216 reason = check_image_kernel(info);
0ed5fd13 2217 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2218 reason = "memory size";
f577eb30 2219 if (reason) {
64ec72a1 2220 pr_err("Image mismatch: %s\n", reason);
f577eb30
RW
2221 return -EPERM;
2222 }
2223 return 0;
2224}
2225
2226/**
ef96f639 2227 * load header - Check the image header and copy the data from it.
f577eb30 2228 */
efd5a852 2229static int load_header(struct swsusp_info *info)
f577eb30
RW
2230{
2231 int error;
f577eb30 2232
940864dd 2233 restore_pblist = NULL;
f577eb30
RW
2234 error = check_header(info);
2235 if (!error) {
f577eb30
RW
2236 nr_copy_pages = info->image_pages;
2237 nr_meta_pages = info->pages - info->image_pages - 1;
2238 }
2239 return error;
2240}
2241
2242/**
ef96f639
RW
2243 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2244 * @bm: Memory bitmap.
2245 * @buf: Area of memory containing the PFNs.
2246 *
2247 * For each element of the array pointed to by @buf (1 page at a time), set the
2248 * corresponding bit in @bm.
f577eb30 2249 */
69643279 2250static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2251{
2252 int j;
2253
940864dd
RW
2254 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2255 if (unlikely(buf[j] == BM_END_OF_MAP))
2256 break;
2257
6dbecfd3 2258 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
69643279
RW
2259 memory_bm_set_bit(bm, buf[j]);
2260 else
2261 return -EFAULT;
f577eb30 2262 }
69643279
RW
2263
2264 return 0;
f577eb30
RW
2265}
2266
8357376d 2267#ifdef CONFIG_HIGHMEM
ef96f639
RW
2268/*
2269 * struct highmem_pbe is used for creating the list of highmem pages that
8357376d
RW
2270 * should be restored atomically during the resume from disk, because the page
2271 * frames they have occupied before the suspend are in use.
2272 */
2273struct highmem_pbe {
2274 struct page *copy_page; /* data is here now */
2275 struct page *orig_page; /* data was here before the suspend */
2276 struct highmem_pbe *next;
2277};
2278
ef96f639
RW
2279/*
2280 * List of highmem PBEs needed for restoring the highmem pages that were
8357376d
RW
2281 * allocated before the suspend and included in the suspend image, but have
2282 * also been allocated by the "resume" kernel, so their contents cannot be
2283 * written directly to their "original" page frames.
2284 */
2285static struct highmem_pbe *highmem_pblist;
2286
2287/**
ef96f639
RW
2288 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2289 * @bm: Memory bitmap.
2290 *
2291 * The bits in @bm that correspond to image pages are assumed to be set.
8357376d 2292 */
8357376d
RW
2293static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2294{
2295 unsigned long pfn;
2296 unsigned int cnt = 0;
2297
2298 memory_bm_position_reset(bm);
2299 pfn = memory_bm_next_pfn(bm);
2300 while (pfn != BM_END_OF_MAP) {
2301 if (PageHighMem(pfn_to_page(pfn)))
2302 cnt++;
2303
2304 pfn = memory_bm_next_pfn(bm);
2305 }
2306 return cnt;
2307}
2308
8357376d
RW
2309static unsigned int safe_highmem_pages;
2310
2311static struct memory_bitmap *safe_highmem_bm;
2312
ef96f639
RW
2313/**
2314 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2315 * @bm: Pointer to an uninitialized memory bitmap structure.
2316 * @nr_highmem_p: Pointer to the number of highmem image pages.
2317 *
2318 * Try to allocate as many highmem pages as there are highmem image pages
2319 * (@nr_highmem_p points to the variable containing the number of highmem image
2320 * pages). The pages that are "safe" (ie. will not be overwritten when the
2321 * hibernation image is restored entirely) have the corresponding bits set in
6be2408a 2322 * @bm (it must be uninitialized).
ef96f639
RW
2323 *
2324 * NOTE: This function should not be called if there are no highmem image pages.
2325 */
efd5a852
RW
2326static int prepare_highmem_image(struct memory_bitmap *bm,
2327 unsigned int *nr_highmem_p)
8357376d
RW
2328{
2329 unsigned int to_alloc;
2330
2331 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2332 return -ENOMEM;
2333
2334 if (get_highmem_buffer(PG_SAFE))
2335 return -ENOMEM;
2336
2337 to_alloc = count_free_highmem_pages();
2338 if (to_alloc > *nr_highmem_p)
2339 to_alloc = *nr_highmem_p;
2340 else
2341 *nr_highmem_p = to_alloc;
2342
2343 safe_highmem_pages = 0;
2344 while (to_alloc-- > 0) {
2345 struct page *page;
2346
2347 page = alloc_page(__GFP_HIGHMEM);
7be98234 2348 if (!swsusp_page_is_free(page)) {
8357376d
RW
2349 /* The page is "safe", set its bit the bitmap */
2350 memory_bm_set_bit(bm, page_to_pfn(page));
2351 safe_highmem_pages++;
2352 }
2353 /* Mark the page as allocated */
7be98234
RW
2354 swsusp_set_page_forbidden(page);
2355 swsusp_set_page_free(page);
8357376d
RW
2356 }
2357 memory_bm_position_reset(bm);
2358 safe_highmem_bm = bm;
2359 return 0;
2360}
2361
ef96f639
RW
2362static struct page *last_highmem_page;
2363
8357376d 2364/**
ef96f639
RW
2365 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2366 *
2367 * For a given highmem image page get a buffer that suspend_write_next() should
2368 * return to its caller to write to.
8357376d 2369 *
ef96f639
RW
2370 * If the page is to be saved to its "original" page frame or a copy of
2371 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2372 * the copy of the page is to be made in normal memory, so the address of
2373 * the copy is returned.
8357376d 2374 *
ef96f639
RW
2375 * If @buffer is returned, the caller of suspend_write_next() will write
2376 * the page's contents to @buffer, so they will have to be copied to the
2377 * right location on the next call to suspend_write_next() and it is done
2378 * with the help of copy_last_highmem_page(). For this purpose, if
2379 * @buffer is returned, @last_highmem_page is set to the page to which
2380 * the data will have to be copied from @buffer.
8357376d 2381 */
efd5a852
RW
2382static void *get_highmem_page_buffer(struct page *page,
2383 struct chain_allocator *ca)
8357376d
RW
2384{
2385 struct highmem_pbe *pbe;
2386 void *kaddr;
2387
7be98234 2388 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
ef96f639
RW
2389 /*
2390 * We have allocated the "original" page frame and we can
8357376d
RW
2391 * use it directly to store the loaded page.
2392 */
2393 last_highmem_page = page;
2394 return buffer;
2395 }
ef96f639
RW
2396 /*
2397 * The "original" page frame has not been allocated and we have to
8357376d
RW
2398 * use a "safe" page frame to store the loaded page.
2399 */
2400 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2401 if (!pbe) {
2402 swsusp_free();
69643279 2403 return ERR_PTR(-ENOMEM);
8357376d
RW
2404 }
2405 pbe->orig_page = page;
2406 if (safe_highmem_pages > 0) {
2407 struct page *tmp;
2408
2409 /* Copy of the page will be stored in high memory */
2410 kaddr = buffer;
2411 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2412 safe_highmem_pages--;
2413 last_highmem_page = tmp;
2414 pbe->copy_page = tmp;
2415 } else {
2416 /* Copy of the page will be stored in normal memory */
2417 kaddr = safe_pages_list;
2418 safe_pages_list = safe_pages_list->next;
2419 pbe->copy_page = virt_to_page(kaddr);
2420 }
2421 pbe->next = highmem_pblist;
2422 highmem_pblist = pbe;
2423 return kaddr;
2424}
2425
2426/**
ef96f639
RW
2427 * copy_last_highmem_page - Copy most the most recent highmem image page.
2428 *
2429 * Copy the contents of a highmem image from @buffer, where the caller of
2430 * snapshot_write_next() has stored them, to the right location represented by
2431 * @last_highmem_page .
8357376d 2432 */
8357376d
RW
2433static void copy_last_highmem_page(void)
2434{
2435 if (last_highmem_page) {
2436 void *dst;
2437
0de9a1e2 2438 dst = kmap_atomic(last_highmem_page);
3ecb01df 2439 copy_page(dst, buffer);
0de9a1e2 2440 kunmap_atomic(dst);
8357376d
RW
2441 last_highmem_page = NULL;
2442 }
2443}
2444
2445static inline int last_highmem_page_copied(void)
2446{
2447 return !last_highmem_page;
2448}
2449
2450static inline void free_highmem_data(void)
2451{
2452 if (safe_highmem_bm)
2453 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2454
2455 if (buffer)
2456 free_image_page(buffer, PG_UNSAFE_CLEAR);
2457}
2458#else
efd5a852 2459static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
8357376d 2460
efd5a852
RW
2461static inline int prepare_highmem_image(struct memory_bitmap *bm,
2462 unsigned int *nr_highmem_p) { return 0; }
8357376d 2463
efd5a852
RW
2464static inline void *get_highmem_page_buffer(struct page *page,
2465 struct chain_allocator *ca)
8357376d 2466{
69643279 2467 return ERR_PTR(-EINVAL);
8357376d
RW
2468}
2469
2470static inline void copy_last_highmem_page(void) {}
2471static inline int last_highmem_page_copied(void) { return 1; }
2472static inline void free_highmem_data(void) {}
2473#endif /* CONFIG_HIGHMEM */
2474
ef96f639
RW
2475#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2476
f577eb30 2477/**
ef96f639 2478 * prepare_image - Make room for loading hibernation image.
6be2408a 2479 * @new_bm: Uninitialized memory bitmap structure.
ef96f639
RW
2480 * @bm: Memory bitmap with unsafe pages marked.
2481 *
2482 * Use @bm to mark the pages that will be overwritten in the process of
2483 * restoring the system memory state from the suspend image ("unsafe" pages)
2484 * and allocate memory for the image.
968808b8 2485 *
ef96f639
RW
2486 * The idea is to allocate a new memory bitmap first and then allocate
2487 * as many pages as needed for image data, but without specifying what those
2488 * pages will be used for just yet. Instead, we mark them all as allocated and
2489 * create a lists of "safe" pages to be used later. On systems with high
2490 * memory a list of "safe" highmem pages is created too.
f577eb30 2491 */
efd5a852 2492static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2493{
8357376d 2494 unsigned int nr_pages, nr_highmem;
9c744481 2495 struct linked_page *lp;
940864dd 2496 int error;
f577eb30 2497
8357376d
RW
2498 /* If there is no highmem, the buffer will not be necessary */
2499 free_image_page(buffer, PG_UNSAFE_CLEAR);
2500 buffer = NULL;
2501
2502 nr_highmem = count_highmem_image_pages(bm);
6dbecfd3 2503 mark_unsafe_pages(bm);
940864dd
RW
2504
2505 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2506 if (error)
2507 goto Free;
2508
2509 duplicate_memory_bitmap(new_bm, bm);
2510 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2511 if (nr_highmem > 0) {
2512 error = prepare_highmem_image(bm, &nr_highmem);
2513 if (error)
2514 goto Free;
2515 }
ef96f639
RW
2516 /*
2517 * Reserve some safe pages for potential later use.
940864dd
RW
2518 *
2519 * NOTE: This way we make sure there will be enough safe pages for the
2520 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2521 * nr_copy_pages cannot be greater than 50% of the memory anyway.
9c744481
RW
2522 *
2523 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
940864dd 2524 */
8357376d 2525 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2526 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2527 while (nr_pages > 0) {
8357376d 2528 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2529 if (!lp) {
f577eb30 2530 error = -ENOMEM;
940864dd
RW
2531 goto Free;
2532 }
9c744481
RW
2533 lp->next = safe_pages_list;
2534 safe_pages_list = lp;
940864dd 2535 nr_pages--;
f577eb30 2536 }
940864dd 2537 /* Preallocate memory for the image */
8357376d 2538 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2539 while (nr_pages > 0) {
2540 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2541 if (!lp) {
2542 error = -ENOMEM;
2543 goto Free;
2544 }
7be98234 2545 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2546 /* The page is "safe", add it to the list */
2547 lp->next = safe_pages_list;
2548 safe_pages_list = lp;
968808b8 2549 }
940864dd 2550 /* Mark the page as allocated */
7be98234
RW
2551 swsusp_set_page_forbidden(virt_to_page(lp));
2552 swsusp_set_page_free(virt_to_page(lp));
940864dd 2553 nr_pages--;
968808b8 2554 }
940864dd
RW
2555 return 0;
2556
59a49335 2557 Free:
940864dd 2558 swsusp_free();
f577eb30
RW
2559 return error;
2560}
2561
940864dd 2562/**
ef96f639
RW
2563 * get_buffer - Get the address to store the next image data page.
2564 *
2565 * Get the address that snapshot_write_next() should return to its caller to
2566 * write to.
940864dd 2567 */
940864dd 2568static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2569{
940864dd 2570 struct pbe *pbe;
69643279
RW
2571 struct page *page;
2572 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2573
69643279
RW
2574 if (pfn == BM_END_OF_MAP)
2575 return ERR_PTR(-EFAULT);
2576
2577 page = pfn_to_page(pfn);
8357376d
RW
2578 if (PageHighMem(page))
2579 return get_highmem_page_buffer(page, ca);
2580
7be98234 2581 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
ef96f639
RW
2582 /*
2583 * We have allocated the "original" page frame and we can
940864dd 2584 * use it directly to store the loaded page.
968808b8 2585 */
940864dd
RW
2586 return page_address(page);
2587
ef96f639
RW
2588 /*
2589 * The "original" page frame has not been allocated and we have to
940864dd 2590 * use a "safe" page frame to store the loaded page.
968808b8 2591 */
940864dd
RW
2592 pbe = chain_alloc(ca, sizeof(struct pbe));
2593 if (!pbe) {
2594 swsusp_free();
69643279 2595 return ERR_PTR(-ENOMEM);
940864dd 2596 }
8357376d
RW
2597 pbe->orig_address = page_address(page);
2598 pbe->address = safe_pages_list;
940864dd
RW
2599 safe_pages_list = safe_pages_list->next;
2600 pbe->next = restore_pblist;
2601 restore_pblist = pbe;
8357376d 2602 return pbe->address;
968808b8
RW
2603}
2604
f577eb30 2605/**
ef96f639
RW
2606 * snapshot_write_next - Get the address to store the next image page.
2607 * @handle: Snapshot handle structure to guide the writing.
f577eb30 2608 *
ef96f639
RW
2609 * On the first call, @handle should point to a zeroed snapshot_handle
2610 * structure. The structure gets populated then and a pointer to it should be
2611 * passed to this function every next time.
f577eb30 2612 *
ef96f639
RW
2613 * On success, the function returns a positive number. Then, the caller
2614 * is allowed to write up to the returned number of bytes to the memory
2615 * location computed by the data_of() macro.
f577eb30 2616 *
ef96f639
RW
2617 * The function returns 0 to indicate the "end of file" condition. Negative
2618 * numbers are returned on errors, in which cases the structure pointed to by
2619 * @handle is not updated and should not be used any more.
f577eb30 2620 */
d3c1b24c 2621int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2622{
940864dd 2623 static struct chain_allocator ca;
f577eb30
RW
2624 int error = 0;
2625
940864dd 2626 /* Check if we have already loaded the entire image */
d3c1b24c 2627 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2628 return 0;
940864dd 2629
d3c1b24c
JS
2630 handle->sync_read = 1;
2631
2632 if (!handle->cur) {
8357376d
RW
2633 if (!buffer)
2634 /* This makes the buffer be freed by swsusp_free() */
2635 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2636
f577eb30
RW
2637 if (!buffer)
2638 return -ENOMEM;
8357376d 2639
f577eb30 2640 handle->buffer = buffer;
d3c1b24c
JS
2641 } else if (handle->cur == 1) {
2642 error = load_header(buffer);
2643 if (error)
2644 return error;
940864dd 2645
9c744481
RW
2646 safe_pages_list = NULL;
2647
d3c1b24c
JS
2648 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2649 if (error)
2650 return error;
2651
4c0b6c10 2652 hibernate_restore_protection_begin();
d3c1b24c
JS
2653 } else if (handle->cur <= nr_meta_pages + 1) {
2654 error = unpack_orig_pfns(buffer, &copy_bm);
2655 if (error)
2656 return error;
940864dd 2657
d3c1b24c
JS
2658 if (handle->cur == nr_meta_pages + 1) {
2659 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2660 if (error)
2661 return error;
2662
d3c1b24c
JS
2663 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2664 memory_bm_position_reset(&orig_bm);
2665 restore_pblist = NULL;
940864dd 2666 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2667 handle->sync_read = 0;
69643279
RW
2668 if (IS_ERR(handle->buffer))
2669 return PTR_ERR(handle->buffer);
f577eb30 2670 }
f577eb30 2671 } else {
d3c1b24c 2672 copy_last_highmem_page();
4c0b6c10 2673 hibernate_restore_protect_page(handle->buffer);
d3c1b24c
JS
2674 handle->buffer = get_buffer(&orig_bm, &ca);
2675 if (IS_ERR(handle->buffer))
2676 return PTR_ERR(handle->buffer);
2677 if (handle->buffer != buffer)
2678 handle->sync_read = 0;
f577eb30 2679 }
d3c1b24c
JS
2680 handle->cur++;
2681 return PAGE_SIZE;
f577eb30
RW
2682}
2683
8357376d 2684/**
ef96f639
RW
2685 * snapshot_write_finalize - Complete the loading of a hibernation image.
2686 *
2687 * Must be called after the last call to snapshot_write_next() in case the last
2688 * page in the image happens to be a highmem page and its contents should be
2689 * stored in highmem. Additionally, it recycles bitmap memory that's not
2690 * necessary any more.
8357376d 2691 */
8357376d
RW
2692void snapshot_write_finalize(struct snapshot_handle *handle)
2693{
2694 copy_last_highmem_page();
4c0b6c10 2695 hibernate_restore_protect_page(handle->buffer);
307c5971 2696 /* Do that only if we have loaded the image entirely */
d3c1b24c 2697 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
307c5971 2698 memory_bm_recycle(&orig_bm);
8357376d
RW
2699 free_highmem_data();
2700 }
2701}
2702
f577eb30
RW
2703int snapshot_image_loaded(struct snapshot_handle *handle)
2704{
8357376d 2705 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2706 handle->cur <= nr_meta_pages + nr_copy_pages);
2707}
2708
8357376d
RW
2709#ifdef CONFIG_HIGHMEM
2710/* Assumes that @buf is ready and points to a "safe" page */
efd5a852
RW
2711static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2712 void *buf)
940864dd 2713{
8357376d
RW
2714 void *kaddr1, *kaddr2;
2715
0de9a1e2
CW
2716 kaddr1 = kmap_atomic(p1);
2717 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2718 copy_page(buf, kaddr1);
2719 copy_page(kaddr1, kaddr2);
2720 copy_page(kaddr2, buf);
0de9a1e2
CW
2721 kunmap_atomic(kaddr2);
2722 kunmap_atomic(kaddr1);
8357376d
RW
2723}
2724
2725/**
ef96f639
RW
2726 * restore_highmem - Put highmem image pages into their original locations.
2727 *
2728 * For each highmem page that was in use before hibernation and is included in
2729 * the image, and also has been allocated by the "restore" kernel, swap its
2730 * current contents with the previous (ie. "before hibernation") ones.
8357376d 2731 *
ef96f639
RW
2732 * If the restore eventually fails, we can call this function once again and
2733 * restore the highmem state as seen by the restore kernel.
8357376d 2734 */
8357376d
RW
2735int restore_highmem(void)
2736{
2737 struct highmem_pbe *pbe = highmem_pblist;
2738 void *buf;
2739
2740 if (!pbe)
2741 return 0;
2742
2743 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2744 if (!buf)
2745 return -ENOMEM;
2746
2747 while (pbe) {
2748 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2749 pbe = pbe->next;
2750 }
2751 free_image_page(buf, PG_UNSAFE_CLEAR);
2752 return 0;
f577eb30 2753}
8357376d 2754#endif /* CONFIG_HIGHMEM */