PM: hibernate: improve arithmetic division in preallocate_highmem_fraction()
[linux-block.git] / kernel / power / snapshot.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
25761b6e 2/*
96bc7aec 3 * linux/kernel/power/snapshot.c
25761b6e 4 *
8357376d 5 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 6 *
a2531293 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e
RW
9 */
10
64ec72a1
JP
11#define pr_fmt(fmt) "PM: " fmt
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
57c8a661 24#include <linux/memblock.h>
38b8d208 25#include <linux/nmi.h>
25761b6e
RW
26#include <linux/syscalls.h>
27#include <linux/console.h>
28#include <linux/highmem.h>
846705de 29#include <linux/list.h>
5a0e3ad6 30#include <linux/slab.h>
52f5684c 31#include <linux/compiler.h>
db597605 32#include <linux/ktime.h>
61f6d09a 33#include <linux/set_memory.h>
25761b6e 34
7c0f6ba6 35#include <linux/uaccess.h>
25761b6e
RW
36#include <asm/mmu_context.h>
37#include <asm/pgtable.h>
38#include <asm/tlbflush.h>
39#include <asm/io.h>
40
25761b6e
RW
41#include "power.h"
42
49368a47 43#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
4c0b6c10
RW
44static bool hibernate_restore_protection;
45static bool hibernate_restore_protection_active;
46
47void enable_restore_image_protection(void)
48{
49 hibernate_restore_protection = true;
50}
51
52static inline void hibernate_restore_protection_begin(void)
53{
54 hibernate_restore_protection_active = hibernate_restore_protection;
55}
56
57static inline void hibernate_restore_protection_end(void)
58{
59 hibernate_restore_protection_active = false;
60}
61
62static inline void hibernate_restore_protect_page(void *page_address)
63{
64 if (hibernate_restore_protection_active)
65 set_memory_ro((unsigned long)page_address, 1);
66}
67
68static inline void hibernate_restore_unprotect_page(void *page_address)
69{
70 if (hibernate_restore_protection_active)
71 set_memory_rw((unsigned long)page_address, 1);
72}
73#else
74static inline void hibernate_restore_protection_begin(void) {}
75static inline void hibernate_restore_protection_end(void) {}
76static inline void hibernate_restore_protect_page(void *page_address) {}
77static inline void hibernate_restore_unprotect_page(void *page_address) {}
49368a47 78#endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
4c0b6c10 79
74dfd666
RW
80static int swsusp_page_is_free(struct page *);
81static void swsusp_set_page_forbidden(struct page *);
82static void swsusp_unset_page_forbidden(struct page *);
83
ddeb6487
RW
84/*
85 * Number of bytes to reserve for memory allocations made by device drivers
86 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
87 * cause image creation to fail (tunable via /sys/power/reserved_size).
88 */
89unsigned long reserved_size;
90
91void __init hibernate_reserved_size_init(void)
92{
93 reserved_size = SPARE_PAGES * PAGE_SIZE;
94}
95
fe419535
RW
96/*
97 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
98 * When it is set to N, swsusp will do its best to ensure the image
99 * size will not exceed N bytes, but if that is impossible, it will
100 * try to create the smallest image possible.
fe419535 101 */
ac5c24ec
RW
102unsigned long image_size;
103
104void __init hibernate_image_size_init(void)
105{
ca79b0c2 106 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
ac5c24ec 107}
fe419535 108
ef96f639
RW
109/*
110 * List of PBEs needed for restoring the pages that were allocated before
8357376d
RW
111 * the suspend and included in the suspend image, but have also been
112 * allocated by the "resume" kernel, so their contents cannot be written
113 * directly to their "original" page frames.
114 */
75534b50
RW
115struct pbe *restore_pblist;
116
9c744481
RW
117/* struct linked_page is used to build chains of pages */
118
119#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
120
121struct linked_page {
122 struct linked_page *next;
123 char data[LINKED_PAGE_DATA_SIZE];
124} __packed;
125
126/*
127 * List of "safe" pages (ie. pages that were not used by the image kernel
128 * before hibernation) that may be used as temporary storage for image kernel
129 * memory contents.
130 */
131static struct linked_page *safe_pages_list;
132
8357376d 133/* Pointer to an auxiliary buffer (1 page) */
940864dd 134static void *buffer;
7088a5c0 135
0bcd888d
RW
136#define PG_ANY 0
137#define PG_SAFE 1
138#define PG_UNSAFE_CLEAR 1
139#define PG_UNSAFE_KEEP 0
140
940864dd 141static unsigned int allocated_unsafe_pages;
f6143aa6 142
ef96f639
RW
143/**
144 * get_image_page - Allocate a page for a hibernation image.
145 * @gfp_mask: GFP mask for the allocation.
146 * @safe_needed: Get pages that were not used before hibernation (restore only)
147 *
148 * During image restoration, for storing the PBE list and the image data, we can
149 * only use memory pages that do not conflict with the pages used before
150 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
151 * using allocated_unsafe_pages.
152 *
153 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
154 * swsusp_free() can release it.
155 */
8357376d 156static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
157{
158 void *res;
159
160 res = (void *)get_zeroed_page(gfp_mask);
161 if (safe_needed)
7be98234 162 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 163 /* The page is unsafe, mark it for swsusp_free() */
7be98234 164 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 165 allocated_unsafe_pages++;
f6143aa6
RW
166 res = (void *)get_zeroed_page(gfp_mask);
167 }
168 if (res) {
7be98234
RW
169 swsusp_set_page_forbidden(virt_to_page(res));
170 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
171 }
172 return res;
173}
174
9c744481
RW
175static void *__get_safe_page(gfp_t gfp_mask)
176{
177 if (safe_pages_list) {
178 void *ret = safe_pages_list;
179
180 safe_pages_list = safe_pages_list->next;
181 memset(ret, 0, PAGE_SIZE);
182 return ret;
183 }
184 return get_image_page(gfp_mask, PG_SAFE);
185}
186
f6143aa6
RW
187unsigned long get_safe_page(gfp_t gfp_mask)
188{
9c744481 189 return (unsigned long)__get_safe_page(gfp_mask);
8357376d
RW
190}
191
5b6d15de
RW
192static struct page *alloc_image_page(gfp_t gfp_mask)
193{
8357376d
RW
194 struct page *page;
195
196 page = alloc_page(gfp_mask);
197 if (page) {
7be98234
RW
198 swsusp_set_page_forbidden(page);
199 swsusp_set_page_free(page);
8357376d
RW
200 }
201 return page;
f6143aa6
RW
202}
203
307c5971
RW
204static void recycle_safe_page(void *page_address)
205{
206 struct linked_page *lp = page_address;
207
208 lp->next = safe_pages_list;
209 safe_pages_list = lp;
210}
211
f6143aa6 212/**
ef96f639
RW
213 * free_image_page - Free a page allocated for hibernation image.
214 * @addr: Address of the page to free.
215 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
216 *
217 * The page to free should have been allocated by get_image_page() (page flags
218 * set by it are affected).
f6143aa6 219 */
f6143aa6
RW
220static inline void free_image_page(void *addr, int clear_nosave_free)
221{
8357376d
RW
222 struct page *page;
223
224 BUG_ON(!virt_addr_valid(addr));
225
226 page = virt_to_page(addr);
227
7be98234 228 swsusp_unset_page_forbidden(page);
f6143aa6 229 if (clear_nosave_free)
7be98234 230 swsusp_unset_page_free(page);
8357376d
RW
231
232 __free_page(page);
f6143aa6
RW
233}
234
efd5a852
RW
235static inline void free_list_of_pages(struct linked_page *list,
236 int clear_page_nosave)
b788db79
RW
237{
238 while (list) {
239 struct linked_page *lp = list->next;
240
241 free_image_page(list, clear_page_nosave);
242 list = lp;
243 }
244}
245
ef96f639
RW
246/*
247 * struct chain_allocator is used for allocating small objects out of
248 * a linked list of pages called 'the chain'.
249 *
250 * The chain grows each time when there is no room for a new object in
251 * the current page. The allocated objects cannot be freed individually.
252 * It is only possible to free them all at once, by freeing the entire
253 * chain.
254 *
255 * NOTE: The chain allocator may be inefficient if the allocated objects
256 * are not much smaller than PAGE_SIZE.
257 */
b788db79
RW
258struct chain_allocator {
259 struct linked_page *chain; /* the chain */
260 unsigned int used_space; /* total size of objects allocated out
ef96f639 261 of the current page */
b788db79
RW
262 gfp_t gfp_mask; /* mask for allocating pages */
263 int safe_needed; /* if set, only "safe" pages are allocated */
264};
265
efd5a852
RW
266static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
267 int safe_needed)
b788db79
RW
268{
269 ca->chain = NULL;
270 ca->used_space = LINKED_PAGE_DATA_SIZE;
271 ca->gfp_mask = gfp_mask;
272 ca->safe_needed = safe_needed;
273}
274
275static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
276{
277 void *ret;
278
279 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
280 struct linked_page *lp;
281
9c744481
RW
282 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
283 get_image_page(ca->gfp_mask, PG_ANY);
b788db79
RW
284 if (!lp)
285 return NULL;
286
287 lp->next = ca->chain;
288 ca->chain = lp;
289 ca->used_space = 0;
290 }
291 ret = ca->chain->data + ca->used_space;
292 ca->used_space += size;
293 return ret;
294}
295
b788db79 296/**
ef96f639 297 * Data types related to memory bitmaps.
b788db79 298 *
ef96f639
RW
299 * Memory bitmap is a structure consiting of many linked lists of
300 * objects. The main list's elements are of type struct zone_bitmap
301 * and each of them corresonds to one zone. For each zone bitmap
302 * object there is a list of objects of type struct bm_block that
303 * represent each blocks of bitmap in which information is stored.
b788db79 304 *
ef96f639
RW
305 * struct memory_bitmap contains a pointer to the main list of zone
306 * bitmap objects, a struct bm_position used for browsing the bitmap,
307 * and a pointer to the list of pages used for allocating all of the
308 * zone bitmap objects and bitmap block objects.
b788db79 309 *
ef96f639
RW
310 * NOTE: It has to be possible to lay out the bitmap in memory
311 * using only allocations of order 0. Additionally, the bitmap is
312 * designed to work with arbitrary number of zones (this is over the
313 * top for now, but let's avoid making unnecessary assumptions ;-).
b788db79 314 *
ef96f639
RW
315 * struct zone_bitmap contains a pointer to a list of bitmap block
316 * objects and a pointer to the bitmap block object that has been
317 * most recently used for setting bits. Additionally, it contains the
318 * PFNs that correspond to the start and end of the represented zone.
b788db79 319 *
ef96f639
RW
320 * struct bm_block contains a pointer to the memory page in which
321 * information is stored (in the form of a block of bitmap)
322 * It also contains the pfns that correspond to the start and end of
323 * the represented memory area.
f469f02d 324 *
ef96f639
RW
325 * The memory bitmap is organized as a radix tree to guarantee fast random
326 * access to the bits. There is one radix tree for each zone (as returned
327 * from create_mem_extents).
f469f02d 328 *
ef96f639
RW
329 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
330 * two linked lists for the nodes of the tree, one for the inner nodes and
331 * one for the leave nodes. The linked leave nodes are used for fast linear
332 * access of the memory bitmap.
f469f02d 333 *
ef96f639 334 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
335 */
336
337#define BM_END_OF_MAP (~0UL)
338
8de03073 339#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
340#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
341#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79 342
f469f02d
JR
343/*
344 * struct rtree_node is a wrapper struct to link the nodes
345 * of the rtree together for easy linear iteration over
346 * bits and easy freeing
347 */
348struct rtree_node {
349 struct list_head list;
350 unsigned long *data;
351};
352
353/*
354 * struct mem_zone_bm_rtree represents a bitmap used for one
355 * populated memory zone.
356 */
357struct mem_zone_bm_rtree {
358 struct list_head list; /* Link Zones together */
359 struct list_head nodes; /* Radix Tree inner nodes */
360 struct list_head leaves; /* Radix Tree leaves */
361 unsigned long start_pfn; /* Zone start page frame */
362 unsigned long end_pfn; /* Zone end page frame + 1 */
363 struct rtree_node *rtree; /* Radix Tree Root */
364 int levels; /* Number of Radix Tree Levels */
365 unsigned int blocks; /* Number of Bitmap Blocks */
366};
367
b788db79
RW
368/* strcut bm_position is used for browsing memory bitmaps */
369
370struct bm_position {
3a20cb17
JR
371 struct mem_zone_bm_rtree *zone;
372 struct rtree_node *node;
373 unsigned long node_pfn;
374 int node_bit;
b788db79
RW
375};
376
377struct memory_bitmap {
f469f02d 378 struct list_head zones;
b788db79 379 struct linked_page *p_list; /* list of pages used to store zone
ef96f639
RW
380 bitmap objects and bitmap block
381 objects */
b788db79
RW
382 struct bm_position cur; /* most recently used bit position */
383};
384
385/* Functions that operate on memory bitmaps */
386
f469f02d
JR
387#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
388#if BITS_PER_LONG == 32
389#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
390#else
391#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
392#endif
393#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
394
ef96f639
RW
395/**
396 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
f469f02d 397 *
ef96f639
RW
398 * This function is used to allocate inner nodes as well as the
399 * leave nodes of the radix tree. It also adds the node to the
400 * corresponding linked list passed in by the *list parameter.
f469f02d
JR
401 */
402static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
403 struct chain_allocator *ca,
404 struct list_head *list)
405{
406 struct rtree_node *node;
407
408 node = chain_alloc(ca, sizeof(struct rtree_node));
409 if (!node)
410 return NULL;
411
412 node->data = get_image_page(gfp_mask, safe_needed);
413 if (!node->data)
414 return NULL;
415
416 list_add_tail(&node->list, list);
417
418 return node;
419}
420
ef96f639
RW
421/**
422 * add_rtree_block - Add a new leave node to the radix tree.
f469f02d 423 *
ef96f639
RW
424 * The leave nodes need to be allocated in order to keep the leaves
425 * linked list in order. This is guaranteed by the zone->blocks
426 * counter.
f469f02d
JR
427 */
428static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
429 int safe_needed, struct chain_allocator *ca)
430{
431 struct rtree_node *node, *block, **dst;
432 unsigned int levels_needed, block_nr;
433 int i;
434
435 block_nr = zone->blocks;
436 levels_needed = 0;
437
438 /* How many levels do we need for this block nr? */
439 while (block_nr) {
440 levels_needed += 1;
441 block_nr >>= BM_RTREE_LEVEL_SHIFT;
442 }
443
444 /* Make sure the rtree has enough levels */
445 for (i = zone->levels; i < levels_needed; i++) {
446 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
447 &zone->nodes);
448 if (!node)
449 return -ENOMEM;
450
451 node->data[0] = (unsigned long)zone->rtree;
452 zone->rtree = node;
453 zone->levels += 1;
454 }
455
456 /* Allocate new block */
457 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
458 if (!block)
459 return -ENOMEM;
460
461 /* Now walk the rtree to insert the block */
462 node = zone->rtree;
463 dst = &zone->rtree;
464 block_nr = zone->blocks;
465 for (i = zone->levels; i > 0; i--) {
466 int index;
467
468 if (!node) {
469 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
470 &zone->nodes);
471 if (!node)
472 return -ENOMEM;
473 *dst = node;
474 }
475
476 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
477 index &= BM_RTREE_LEVEL_MASK;
478 dst = (struct rtree_node **)&((*dst)->data[index]);
479 node = *dst;
480 }
481
482 zone->blocks += 1;
483 *dst = block;
484
485 return 0;
486}
487
488static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
489 int clear_nosave_free);
490
ef96f639
RW
491/**
492 * create_zone_bm_rtree - Create a radix tree for one zone.
f469f02d 493 *
ef96f639
RW
494 * Allocated the mem_zone_bm_rtree structure and initializes it.
495 * This function also allocated and builds the radix tree for the
496 * zone.
f469f02d 497 */
efd5a852
RW
498static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
499 int safe_needed,
500 struct chain_allocator *ca,
501 unsigned long start,
502 unsigned long end)
f469f02d
JR
503{
504 struct mem_zone_bm_rtree *zone;
505 unsigned int i, nr_blocks;
506 unsigned long pages;
507
508 pages = end - start;
509 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
510 if (!zone)
511 return NULL;
512
513 INIT_LIST_HEAD(&zone->nodes);
514 INIT_LIST_HEAD(&zone->leaves);
515 zone->start_pfn = start;
516 zone->end_pfn = end;
517 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
518
519 for (i = 0; i < nr_blocks; i++) {
520 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
521 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
522 return NULL;
523 }
524 }
525
526 return zone;
527}
528
ef96f639
RW
529/**
530 * free_zone_bm_rtree - Free the memory of the radix tree.
f469f02d 531 *
ef96f639
RW
532 * Free all node pages of the radix tree. The mem_zone_bm_rtree
533 * structure itself is not freed here nor are the rtree_node
534 * structs.
f469f02d
JR
535 */
536static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
537 int clear_nosave_free)
538{
539 struct rtree_node *node;
540
541 list_for_each_entry(node, &zone->nodes, list)
542 free_image_page(node->data, clear_nosave_free);
543
544 list_for_each_entry(node, &zone->leaves, list)
545 free_image_page(node->data, clear_nosave_free);
546}
547
b788db79
RW
548static void memory_bm_position_reset(struct memory_bitmap *bm)
549{
3a20cb17
JR
550 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
551 list);
552 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
553 struct rtree_node, list);
554 bm->cur.node_pfn = 0;
555 bm->cur.node_bit = 0;
b788db79
RW
556}
557
558static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
559
846705de
RW
560struct mem_extent {
561 struct list_head hook;
562 unsigned long start;
563 unsigned long end;
564};
565
b788db79 566/**
ef96f639
RW
567 * free_mem_extents - Free a list of memory extents.
568 * @list: List of extents to free.
b788db79 569 */
846705de
RW
570static void free_mem_extents(struct list_head *list)
571{
572 struct mem_extent *ext, *aux;
b788db79 573
846705de
RW
574 list_for_each_entry_safe(ext, aux, list, hook) {
575 list_del(&ext->hook);
576 kfree(ext);
577 }
578}
579
580/**
ef96f639
RW
581 * create_mem_extents - Create a list of memory extents.
582 * @list: List to put the extents into.
583 * @gfp_mask: Mask to use for memory allocations.
584 *
585 * The extents represent contiguous ranges of PFNs.
846705de
RW
586 */
587static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 588{
846705de 589 struct zone *zone;
b788db79 590
846705de 591 INIT_LIST_HEAD(list);
b788db79 592
ee99c71c 593 for_each_populated_zone(zone) {
846705de
RW
594 unsigned long zone_start, zone_end;
595 struct mem_extent *ext, *cur, *aux;
596
846705de 597 zone_start = zone->zone_start_pfn;
c33bc315 598 zone_end = zone_end_pfn(zone);
846705de
RW
599
600 list_for_each_entry(ext, list, hook)
601 if (zone_start <= ext->end)
602 break;
b788db79 603
846705de
RW
604 if (&ext->hook == list || zone_end < ext->start) {
605 /* New extent is necessary */
606 struct mem_extent *new_ext;
607
608 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
609 if (!new_ext) {
610 free_mem_extents(list);
611 return -ENOMEM;
612 }
613 new_ext->start = zone_start;
614 new_ext->end = zone_end;
615 list_add_tail(&new_ext->hook, &ext->hook);
616 continue;
617 }
618
619 /* Merge this zone's range of PFNs with the existing one */
620 if (zone_start < ext->start)
621 ext->start = zone_start;
622 if (zone_end > ext->end)
623 ext->end = zone_end;
624
625 /* More merging may be possible */
626 cur = ext;
627 list_for_each_entry_safe_continue(cur, aux, list, hook) {
628 if (zone_end < cur->start)
629 break;
630 if (zone_end < cur->end)
631 ext->end = cur->end;
632 list_del(&cur->hook);
633 kfree(cur);
634 }
b788db79 635 }
846705de
RW
636
637 return 0;
b788db79
RW
638}
639
640/**
ef96f639
RW
641 * memory_bm_create - Allocate memory for a memory bitmap.
642 */
efd5a852
RW
643static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
644 int safe_needed)
b788db79
RW
645{
646 struct chain_allocator ca;
846705de
RW
647 struct list_head mem_extents;
648 struct mem_extent *ext;
649 int error;
b788db79
RW
650
651 chain_init(&ca, gfp_mask, safe_needed);
f469f02d 652 INIT_LIST_HEAD(&bm->zones);
b788db79 653
846705de
RW
654 error = create_mem_extents(&mem_extents, gfp_mask);
655 if (error)
656 return error;
b788db79 657
846705de 658 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 659 struct mem_zone_bm_rtree *zone;
f469f02d
JR
660
661 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
662 ext->start, ext->end);
9047eb62
JR
663 if (!zone) {
664 error = -ENOMEM;
f469f02d 665 goto Error;
9047eb62 666 }
f469f02d 667 list_add_tail(&zone->list, &bm->zones);
b788db79 668 }
846705de 669
b788db79
RW
670 bm->p_list = ca.chain;
671 memory_bm_position_reset(bm);
846705de
RW
672 Exit:
673 free_mem_extents(&mem_extents);
674 return error;
b788db79 675
846705de 676 Error:
b788db79
RW
677 bm->p_list = ca.chain;
678 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 679 goto Exit;
b788db79
RW
680}
681
682/**
ef96f639
RW
683 * memory_bm_free - Free memory occupied by the memory bitmap.
684 * @bm: Memory bitmap.
685 */
b788db79
RW
686static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
687{
f469f02d 688 struct mem_zone_bm_rtree *zone;
b788db79 689
f469f02d
JR
690 list_for_each_entry(zone, &bm->zones, list)
691 free_zone_bm_rtree(zone, clear_nosave_free);
692
b788db79 693 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 694
f469f02d 695 INIT_LIST_HEAD(&bm->zones);
b788db79
RW
696}
697
698/**
ef96f639 699 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
07a33823 700 *
ef96f639
RW
701 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
702 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
703 *
704 * Walk the radix tree to find the page containing the bit that represents @pfn
705 * and return the position of the bit in @addr and @bit_nr.
07a33823 706 */
9047eb62
JR
707static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
708 void **addr, unsigned int *bit_nr)
07a33823
JR
709{
710 struct mem_zone_bm_rtree *curr, *zone;
711 struct rtree_node *node;
712 int i, block_nr;
713
3a20cb17
JR
714 zone = bm->cur.zone;
715
716 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
717 goto zone_found;
718
07a33823
JR
719 zone = NULL;
720
721 /* Find the right zone */
722 list_for_each_entry(curr, &bm->zones, list) {
723 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
724 zone = curr;
725 break;
726 }
727 }
728
729 if (!zone)
730 return -EFAULT;
731
3a20cb17 732zone_found:
07a33823 733 /*
ef96f639
RW
734 * We have found the zone. Now walk the radix tree to find the leaf node
735 * for our PFN.
07a33823 736 */
da6043fe
AW
737
738 /*
739 * If the zone we wish to scan is the the current zone and the
740 * pfn falls into the current node then we do not need to walk
741 * the tree.
742 */
3a20cb17 743 node = bm->cur.node;
da6043fe
AW
744 if (zone == bm->cur.zone &&
745 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
3a20cb17
JR
746 goto node_found;
747
07a33823
JR
748 node = zone->rtree;
749 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
750
751 for (i = zone->levels; i > 0; i--) {
752 int index;
753
754 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
755 index &= BM_RTREE_LEVEL_MASK;
756 BUG_ON(node->data[index] == 0);
757 node = (struct rtree_node *)node->data[index];
758 }
759
3a20cb17
JR
760node_found:
761 /* Update last position */
762 bm->cur.zone = zone;
763 bm->cur.node = node;
764 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
765
07a33823
JR
766 /* Set return values */
767 *addr = node->data;
768 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
769
770 return 0;
771}
772
74dfd666
RW
773static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
774{
775 void *addr;
776 unsigned int bit;
a82f7119 777 int error;
74dfd666 778
a82f7119
RW
779 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
780 BUG_ON(error);
74dfd666
RW
781 set_bit(bit, addr);
782}
783
a82f7119
RW
784static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
785{
786 void *addr;
787 unsigned int bit;
788 int error;
789
790 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
07a33823
JR
791 if (!error)
792 set_bit(bit, addr);
793
a82f7119
RW
794 return error;
795}
796
74dfd666
RW
797static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
798{
799 void *addr;
800 unsigned int bit;
a82f7119 801 int error;
74dfd666 802
a82f7119
RW
803 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
804 BUG_ON(error);
74dfd666
RW
805 clear_bit(bit, addr);
806}
807
fdd64ed5
JR
808static void memory_bm_clear_current(struct memory_bitmap *bm)
809{
810 int bit;
811
812 bit = max(bm->cur.node_bit - 1, 0);
813 clear_bit(bit, bm->cur.node->data);
814}
815
74dfd666
RW
816static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
817{
818 void *addr;
819 unsigned int bit;
9047eb62 820 int error;
74dfd666 821
a82f7119
RW
822 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
823 BUG_ON(error);
9047eb62 824 return test_bit(bit, addr);
b788db79
RW
825}
826
69643279
RW
827static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
828{
829 void *addr;
830 unsigned int bit;
07a33823 831
9047eb62 832 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
b788db79
RW
833}
834
3a20cb17 835/*
ef96f639 836 * rtree_next_node - Jump to the next leaf node.
3a20cb17 837 *
ef96f639
RW
838 * Set the position to the beginning of the next node in the
839 * memory bitmap. This is either the next node in the current
840 * zone's radix tree or the first node in the radix tree of the
841 * next zone.
3a20cb17 842 *
ef96f639 843 * Return true if there is a next node, false otherwise.
3a20cb17
JR
844 */
845static bool rtree_next_node(struct memory_bitmap *bm)
846{
924d8696
JM
847 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
848 bm->cur.node = list_entry(bm->cur.node->list.next,
849 struct rtree_node, list);
3a20cb17
JR
850 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
851 bm->cur.node_bit = 0;
0f7d83e8 852 touch_softlockup_watchdog();
3a20cb17
JR
853 return true;
854 }
855
856 /* No more nodes, goto next zone */
924d8696
JM
857 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
858 bm->cur.zone = list_entry(bm->cur.zone->list.next,
3a20cb17 859 struct mem_zone_bm_rtree, list);
3a20cb17
JR
860 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
861 struct rtree_node, list);
862 bm->cur.node_pfn = 0;
863 bm->cur.node_bit = 0;
864 return true;
865 }
866
867 /* No more zones */
868 return false;
869}
870
9047eb62 871/**
ef96f639
RW
872 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
873 * @bm: Memory bitmap.
3a20cb17 874 *
ef96f639
RW
875 * Starting from the last returned position this function searches for the next
876 * set bit in @bm and returns the PFN represented by it. If no more bits are
877 * set, BM_END_OF_MAP is returned.
9047eb62 878 *
ef96f639
RW
879 * It is required to run memory_bm_position_reset() before the first call to
880 * this function for the given memory bitmap.
3a20cb17 881 */
9047eb62 882static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
3a20cb17
JR
883{
884 unsigned long bits, pfn, pages;
885 int bit;
886
887 do {
888 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
889 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
890 bit = find_next_bit(bm->cur.node->data, bits,
891 bm->cur.node_bit);
892 if (bit < bits) {
893 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
894 bm->cur.node_bit = bit + 1;
895 return pfn;
896 }
897 } while (rtree_next_node(bm));
898
899 return BM_END_OF_MAP;
900}
901
ef96f639
RW
902/*
903 * This structure represents a range of page frames the contents of which
904 * should not be saved during hibernation.
74dfd666 905 */
74dfd666
RW
906struct nosave_region {
907 struct list_head list;
908 unsigned long start_pfn;
909 unsigned long end_pfn;
910};
911
912static LIST_HEAD(nosave_regions);
913
307c5971
RW
914static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
915{
916 struct rtree_node *node;
917
918 list_for_each_entry(node, &zone->nodes, list)
919 recycle_safe_page(node->data);
920
921 list_for_each_entry(node, &zone->leaves, list)
922 recycle_safe_page(node->data);
923}
924
925static void memory_bm_recycle(struct memory_bitmap *bm)
926{
927 struct mem_zone_bm_rtree *zone;
928 struct linked_page *p_list;
929
930 list_for_each_entry(zone, &bm->zones, list)
931 recycle_zone_bm_rtree(zone);
932
933 p_list = bm->p_list;
934 while (p_list) {
935 struct linked_page *lp = p_list;
936
937 p_list = lp->next;
938 recycle_safe_page(lp);
939 }
940}
941
74dfd666 942/**
ef96f639
RW
943 * register_nosave_region - Register a region of unsaveable memory.
944 *
945 * Register a range of page frames the contents of which should not be saved
946 * during hibernation (to be used in the early initialization code).
74dfd666 947 */
efd5a852
RW
948void __init __register_nosave_region(unsigned long start_pfn,
949 unsigned long end_pfn, int use_kmalloc)
74dfd666
RW
950{
951 struct nosave_region *region;
952
953 if (start_pfn >= end_pfn)
954 return;
955
956 if (!list_empty(&nosave_regions)) {
957 /* Try to extend the previous region (they should be sorted) */
958 region = list_entry(nosave_regions.prev,
959 struct nosave_region, list);
960 if (region->end_pfn == start_pfn) {
961 region->end_pfn = end_pfn;
962 goto Report;
963 }
964 }
940d67f6 965 if (use_kmalloc) {
ef96f639 966 /* During init, this shouldn't fail */
940d67f6
JB
967 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
968 BUG_ON(!region);
d5f32af3 969 } else {
940d67f6 970 /* This allocation cannot fail */
7e1c4e27
MR
971 region = memblock_alloc(sizeof(struct nosave_region),
972 SMP_CACHE_BYTES);
8a7f97b9
MR
973 if (!region)
974 panic("%s: Failed to allocate %zu bytes\n", __func__,
975 sizeof(struct nosave_region));
d5f32af3 976 }
74dfd666
RW
977 region->start_pfn = start_pfn;
978 region->end_pfn = end_pfn;
979 list_add_tail(&region->list, &nosave_regions);
980 Report:
64ec72a1 981 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
cd38ca85
BH
982 (unsigned long long) start_pfn << PAGE_SHIFT,
983 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
984}
985
986/*
987 * Set bits in this map correspond to the page frames the contents of which
988 * should not be saved during the suspend.
989 */
990static struct memory_bitmap *forbidden_pages_map;
991
992/* Set bits in this map correspond to free page frames. */
993static struct memory_bitmap *free_pages_map;
994
995/*
996 * Each page frame allocated for creating the image is marked by setting the
997 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
998 */
999
1000void swsusp_set_page_free(struct page *page)
1001{
1002 if (free_pages_map)
1003 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1004}
1005
1006static int swsusp_page_is_free(struct page *page)
1007{
1008 return free_pages_map ?
1009 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1010}
1011
1012void swsusp_unset_page_free(struct page *page)
1013{
1014 if (free_pages_map)
1015 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1016}
1017
1018static void swsusp_set_page_forbidden(struct page *page)
1019{
1020 if (forbidden_pages_map)
1021 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1022}
1023
1024int swsusp_page_is_forbidden(struct page *page)
1025{
1026 return forbidden_pages_map ?
1027 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1028}
1029
1030static void swsusp_unset_page_forbidden(struct page *page)
1031{
1032 if (forbidden_pages_map)
1033 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1034}
1035
1036/**
ef96f639
RW
1037 * mark_nosave_pages - Mark pages that should not be saved.
1038 * @bm: Memory bitmap.
1039 *
1040 * Set the bits in @bm that correspond to the page frames the contents of which
1041 * should not be saved.
74dfd666 1042 */
74dfd666
RW
1043static void mark_nosave_pages(struct memory_bitmap *bm)
1044{
1045 struct nosave_region *region;
1046
1047 if (list_empty(&nosave_regions))
1048 return;
1049
1050 list_for_each_entry(region, &nosave_regions, list) {
1051 unsigned long pfn;
1052
64ec72a1 1053 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
69f1d475
BH
1054 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1055 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1056 - 1);
74dfd666
RW
1057
1058 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1059 if (pfn_valid(pfn)) {
1060 /*
1061 * It is safe to ignore the result of
1062 * mem_bm_set_bit_check() here, since we won't
1063 * touch the PFNs for which the error is
1064 * returned anyway.
1065 */
1066 mem_bm_set_bit_check(bm, pfn);
1067 }
74dfd666
RW
1068 }
1069}
1070
1071/**
ef96f639
RW
1072 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1073 *
1074 * Create bitmaps needed for marking page frames that should not be saved and
1075 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1076 * only modified if everything goes well, because we don't want the bits to be
1077 * touched before both bitmaps are set up.
74dfd666 1078 */
74dfd666
RW
1079int create_basic_memory_bitmaps(void)
1080{
1081 struct memory_bitmap *bm1, *bm2;
1082 int error = 0;
1083
aab17289
RW
1084 if (forbidden_pages_map && free_pages_map)
1085 return 0;
1086 else
1087 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1088
0709db60 1089 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1090 if (!bm1)
1091 return -ENOMEM;
1092
0709db60 1093 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1094 if (error)
1095 goto Free_first_object;
1096
0709db60 1097 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1098 if (!bm2)
1099 goto Free_first_bitmap;
1100
0709db60 1101 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1102 if (error)
1103 goto Free_second_object;
1104
1105 forbidden_pages_map = bm1;
1106 free_pages_map = bm2;
1107 mark_nosave_pages(forbidden_pages_map);
1108
64ec72a1 1109 pr_debug("Basic memory bitmaps created\n");
74dfd666
RW
1110
1111 return 0;
1112
1113 Free_second_object:
1114 kfree(bm2);
1115 Free_first_bitmap:
1116 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1117 Free_first_object:
1118 kfree(bm1);
1119 return -ENOMEM;
1120}
1121
1122/**
ef96f639
RW
1123 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1124 *
1125 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1126 * auxiliary pointers are necessary so that the bitmaps themselves are not
1127 * referred to while they are being freed.
74dfd666 1128 */
74dfd666
RW
1129void free_basic_memory_bitmaps(void)
1130{
1131 struct memory_bitmap *bm1, *bm2;
1132
6a0c7cd3
RW
1133 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1134 return;
74dfd666
RW
1135
1136 bm1 = forbidden_pages_map;
1137 bm2 = free_pages_map;
1138 forbidden_pages_map = NULL;
1139 free_pages_map = NULL;
1140 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1141 kfree(bm1);
1142 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1143 kfree(bm2);
1144
64ec72a1 1145 pr_debug("Basic memory bitmaps freed\n");
74dfd666
RW
1146}
1147
1ad1410f
AA
1148void clear_free_pages(void)
1149{
1150#ifdef CONFIG_PAGE_POISONING_ZERO
1151 struct memory_bitmap *bm = free_pages_map;
1152 unsigned long pfn;
1153
1154 if (WARN_ON(!(free_pages_map)))
1155 return;
1156
1157 memory_bm_position_reset(bm);
1158 pfn = memory_bm_next_pfn(bm);
1159 while (pfn != BM_END_OF_MAP) {
1160 if (pfn_valid(pfn))
1161 clear_highpage(pfn_to_page(pfn));
1162
1163 pfn = memory_bm_next_pfn(bm);
1164 }
1165 memory_bm_position_reset(bm);
64ec72a1 1166 pr_info("free pages cleared after restore\n");
1ad1410f
AA
1167#endif /* PAGE_POISONING_ZERO */
1168}
1169
b788db79 1170/**
ef96f639
RW
1171 * snapshot_additional_pages - Estimate the number of extra pages needed.
1172 * @zone: Memory zone to carry out the computation for.
1173 *
1174 * Estimate the number of additional pages needed for setting up a hibernation
1175 * image data structures for @zone (usually, the returned value is greater than
1176 * the exact number).
b788db79 1177 */
b788db79
RW
1178unsigned int snapshot_additional_pages(struct zone *zone)
1179{
f469f02d 1180 unsigned int rtree, nodes;
b788db79 1181
f469f02d
JR
1182 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1183 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1184 LINKED_PAGE_DATA_SIZE);
1185 while (nodes > 1) {
1186 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1187 rtree += nodes;
1188 }
1189
9047eb62 1190 return 2 * rtree;
b788db79
RW
1191}
1192
8357376d
RW
1193#ifdef CONFIG_HIGHMEM
1194/**
ef96f639
RW
1195 * count_free_highmem_pages - Compute the total number of free highmem pages.
1196 *
1197 * The returned number is system-wide.
8357376d 1198 */
8357376d
RW
1199static unsigned int count_free_highmem_pages(void)
1200{
1201 struct zone *zone;
1202 unsigned int cnt = 0;
1203
ee99c71c
KM
1204 for_each_populated_zone(zone)
1205 if (is_highmem(zone))
d23ad423 1206 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1207
1208 return cnt;
1209}
1210
1211/**
ef96f639
RW
1212 * saveable_highmem_page - Check if a highmem page is saveable.
1213 *
1214 * Determine whether a highmem page should be included in a hibernation image.
8357376d 1215 *
ef96f639
RW
1216 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1217 * and it isn't part of a free chunk of pages.
8357376d 1218 */
846705de 1219static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1220{
1221 struct page *page;
1222
1223 if (!pfn_valid(pfn))
1224 return NULL;
1225
5b56db37
DH
1226 page = pfn_to_online_page(pfn);
1227 if (!page || page_zone(page) != zone)
846705de 1228 return NULL;
8357376d
RW
1229
1230 BUG_ON(!PageHighMem(page));
1231
abd02ac6
DH
1232 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1233 return NULL;
1234
1235 if (PageReserved(page) || PageOffline(page))
8357376d
RW
1236 return NULL;
1237
c6968e73
SG
1238 if (page_is_guard(page))
1239 return NULL;
1240
8357376d
RW
1241 return page;
1242}
1243
1244/**
ef96f639 1245 * count_highmem_pages - Compute the total number of saveable highmem pages.
8357376d 1246 */
fe419535 1247static unsigned int count_highmem_pages(void)
8357376d
RW
1248{
1249 struct zone *zone;
1250 unsigned int n = 0;
1251
98e73dc5 1252 for_each_populated_zone(zone) {
8357376d
RW
1253 unsigned long pfn, max_zone_pfn;
1254
1255 if (!is_highmem(zone))
1256 continue;
1257
1258 mark_free_pages(zone);
c33bc315 1259 max_zone_pfn = zone_end_pfn(zone);
8357376d 1260 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1261 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1262 n++;
1263 }
1264 return n;
1265}
1266#else
846705de
RW
1267static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1268{
1269 return NULL;
1270}
8357376d
RW
1271#endif /* CONFIG_HIGHMEM */
1272
25761b6e 1273/**
ef96f639
RW
1274 * saveable_page - Check if the given page is saveable.
1275 *
1276 * Determine whether a non-highmem page should be included in a hibernation
1277 * image.
25761b6e 1278 *
ef96f639
RW
1279 * We should save the page if it isn't Nosave, and is not in the range
1280 * of pages statically defined as 'unsaveable', and it isn't part of
1281 * a free chunk of pages.
25761b6e 1282 */
846705de 1283static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1284{
de491861 1285 struct page *page;
25761b6e
RW
1286
1287 if (!pfn_valid(pfn))
ae83c5ee 1288 return NULL;
25761b6e 1289
5b56db37
DH
1290 page = pfn_to_online_page(pfn);
1291 if (!page || page_zone(page) != zone)
846705de 1292 return NULL;
ae83c5ee 1293
8357376d
RW
1294 BUG_ON(PageHighMem(page));
1295
7be98234 1296 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1297 return NULL;
8357376d 1298
abd02ac6
DH
1299 if (PageOffline(page))
1300 return NULL;
1301
8a235efa
RW
1302 if (PageReserved(page)
1303 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1304 return NULL;
25761b6e 1305
c6968e73
SG
1306 if (page_is_guard(page))
1307 return NULL;
1308
ae83c5ee 1309 return page;
25761b6e
RW
1310}
1311
8357376d 1312/**
ef96f639 1313 * count_data_pages - Compute the total number of saveable non-highmem pages.
8357376d 1314 */
fe419535 1315static unsigned int count_data_pages(void)
25761b6e
RW
1316{
1317 struct zone *zone;
ae83c5ee 1318 unsigned long pfn, max_zone_pfn;
dc19d507 1319 unsigned int n = 0;
25761b6e 1320
98e73dc5 1321 for_each_populated_zone(zone) {
25761b6e
RW
1322 if (is_highmem(zone))
1323 continue;
8357376d 1324
25761b6e 1325 mark_free_pages(zone);
c33bc315 1326 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1327 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1328 if (saveable_page(zone, pfn))
8357376d 1329 n++;
25761b6e 1330 }
a0f49651 1331 return n;
25761b6e
RW
1332}
1333
ef96f639
RW
1334/*
1335 * This is needed, because copy_page and memcpy are not usable for copying
8357376d
RW
1336 * task structs.
1337 */
1338static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1339{
1340 int n;
1341
f623f0db
RW
1342 for (n = PAGE_SIZE / sizeof(long); n; n--)
1343 *dst++ = *src++;
1344}
1345
8a235efa 1346/**
ef96f639
RW
1347 * safe_copy_page - Copy a page in a safe way.
1348 *
1349 * Check if the page we are going to copy is marked as present in the kernel
d6332692
RE
1350 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1351 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1352 * always returns 'true'.
8a235efa
RW
1353 */
1354static void safe_copy_page(void *dst, struct page *s_page)
1355{
1356 if (kernel_page_present(s_page)) {
1357 do_copy_page(dst, page_address(s_page));
1358 } else {
1359 kernel_map_pages(s_page, 1, 1);
1360 do_copy_page(dst, page_address(s_page));
1361 kernel_map_pages(s_page, 1, 0);
1362 }
1363}
1364
8357376d 1365#ifdef CONFIG_HIGHMEM
efd5a852 1366static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
8357376d
RW
1367{
1368 return is_highmem(zone) ?
846705de 1369 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1370}
1371
8a235efa 1372static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1373{
1374 struct page *s_page, *d_page;
1375 void *src, *dst;
1376
1377 s_page = pfn_to_page(src_pfn);
1378 d_page = pfn_to_page(dst_pfn);
1379 if (PageHighMem(s_page)) {
0de9a1e2
CW
1380 src = kmap_atomic(s_page);
1381 dst = kmap_atomic(d_page);
8357376d 1382 do_copy_page(dst, src);
0de9a1e2
CW
1383 kunmap_atomic(dst);
1384 kunmap_atomic(src);
8357376d 1385 } else {
8357376d 1386 if (PageHighMem(d_page)) {
ef96f639
RW
1387 /*
1388 * The page pointed to by src may contain some kernel
8357376d
RW
1389 * data modified by kmap_atomic()
1390 */
8a235efa 1391 safe_copy_page(buffer, s_page);
0de9a1e2 1392 dst = kmap_atomic(d_page);
3ecb01df 1393 copy_page(dst, buffer);
0de9a1e2 1394 kunmap_atomic(dst);
8357376d 1395 } else {
8a235efa 1396 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1397 }
1398 }
1399}
1400#else
846705de 1401#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1402
8a235efa 1403static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1404{
8a235efa
RW
1405 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1406 pfn_to_page(src_pfn));
8357376d
RW
1407}
1408#endif /* CONFIG_HIGHMEM */
1409
efd5a852
RW
1410static void copy_data_pages(struct memory_bitmap *copy_bm,
1411 struct memory_bitmap *orig_bm)
25761b6e
RW
1412{
1413 struct zone *zone;
b788db79 1414 unsigned long pfn;
25761b6e 1415
98e73dc5 1416 for_each_populated_zone(zone) {
b788db79
RW
1417 unsigned long max_zone_pfn;
1418
25761b6e 1419 mark_free_pages(zone);
c33bc315 1420 max_zone_pfn = zone_end_pfn(zone);
b788db79 1421 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1422 if (page_is_saveable(zone, pfn))
b788db79 1423 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1424 }
b788db79
RW
1425 memory_bm_position_reset(orig_bm);
1426 memory_bm_position_reset(copy_bm);
df7c4872 1427 for(;;) {
b788db79 1428 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1429 if (unlikely(pfn == BM_END_OF_MAP))
1430 break;
1431 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1432 }
25761b6e
RW
1433}
1434
8357376d
RW
1435/* Total number of image pages */
1436static unsigned int nr_copy_pages;
1437/* Number of pages needed for saving the original pfns of the image pages */
1438static unsigned int nr_meta_pages;
64a473cb
RW
1439/*
1440 * Numbers of normal and highmem page frames allocated for hibernation image
1441 * before suspending devices.
1442 */
0bae5fd3 1443static unsigned int alloc_normal, alloc_highmem;
64a473cb
RW
1444/*
1445 * Memory bitmap used for marking saveable pages (during hibernation) or
1446 * hibernation image pages (during restore)
1447 */
1448static struct memory_bitmap orig_bm;
1449/*
1450 * Memory bitmap used during hibernation for marking allocated page frames that
1451 * will contain copies of saveable pages. During restore it is initially used
1452 * for marking hibernation image pages, but then the set bits from it are
1453 * duplicated in @orig_bm and it is released. On highmem systems it is next
1454 * used for marking "safe" highmem pages, but it has to be reinitialized for
1455 * this purpose.
1456 */
1457static struct memory_bitmap copy_bm;
8357376d 1458
25761b6e 1459/**
ef96f639 1460 * swsusp_free - Free pages allocated for hibernation image.
cd560bb2 1461 *
ef96f639
RW
1462 * Image pages are alocated before snapshot creation, so they need to be
1463 * released after resume.
25761b6e 1464 */
25761b6e
RW
1465void swsusp_free(void)
1466{
fdd64ed5 1467 unsigned long fb_pfn, fr_pfn;
6efde38f 1468
fdd64ed5
JR
1469 if (!forbidden_pages_map || !free_pages_map)
1470 goto out;
1471
1472 memory_bm_position_reset(forbidden_pages_map);
1473 memory_bm_position_reset(free_pages_map);
1474
1475loop:
1476 fr_pfn = memory_bm_next_pfn(free_pages_map);
1477 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1478
1479 /*
1480 * Find the next bit set in both bitmaps. This is guaranteed to
1481 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1482 */
1483 do {
1484 if (fb_pfn < fr_pfn)
1485 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1486 if (fr_pfn < fb_pfn)
1487 fr_pfn = memory_bm_next_pfn(free_pages_map);
1488 } while (fb_pfn != fr_pfn);
1489
1490 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1491 struct page *page = pfn_to_page(fr_pfn);
1492
1493 memory_bm_clear_current(forbidden_pages_map);
1494 memory_bm_clear_current(free_pages_map);
4c0b6c10 1495 hibernate_restore_unprotect_page(page_address(page));
fdd64ed5
JR
1496 __free_page(page);
1497 goto loop;
25761b6e 1498 }
fdd64ed5
JR
1499
1500out:
f577eb30
RW
1501 nr_copy_pages = 0;
1502 nr_meta_pages = 0;
75534b50 1503 restore_pblist = NULL;
6e1819d6 1504 buffer = NULL;
64a473cb
RW
1505 alloc_normal = 0;
1506 alloc_highmem = 0;
4c0b6c10 1507 hibernate_restore_protection_end();
25761b6e
RW
1508}
1509
4bb33435
RW
1510/* Helper functions used for the shrinking of memory. */
1511
1512#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1513
fe419535 1514/**
ef96f639 1515 * preallocate_image_pages - Allocate a number of pages for hibernation image.
4bb33435
RW
1516 * @nr_pages: Number of page frames to allocate.
1517 * @mask: GFP flags to use for the allocation.
fe419535 1518 *
4bb33435
RW
1519 * Return value: Number of page frames actually allocated
1520 */
1521static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1522{
1523 unsigned long nr_alloc = 0;
1524
1525 while (nr_pages > 0) {
64a473cb
RW
1526 struct page *page;
1527
1528 page = alloc_image_page(mask);
1529 if (!page)
4bb33435 1530 break;
64a473cb
RW
1531 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1532 if (PageHighMem(page))
1533 alloc_highmem++;
1534 else
1535 alloc_normal++;
4bb33435
RW
1536 nr_pages--;
1537 nr_alloc++;
1538 }
1539
1540 return nr_alloc;
1541}
1542
6715045d
RW
1543static unsigned long preallocate_image_memory(unsigned long nr_pages,
1544 unsigned long avail_normal)
4bb33435 1545{
6715045d
RW
1546 unsigned long alloc;
1547
1548 if (avail_normal <= alloc_normal)
1549 return 0;
1550
1551 alloc = avail_normal - alloc_normal;
1552 if (nr_pages < alloc)
1553 alloc = nr_pages;
1554
1555 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1556}
1557
1558#ifdef CONFIG_HIGHMEM
1559static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1560{
1561 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1562}
1563
1564/**
ef96f639 1565 * __fraction - Compute (an approximation of) x * (multiplier / base).
fe419535 1566 */
4bb33435
RW
1567static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1568{
809ed78a 1569 return div64_u64(x * multiplier, base);
4bb33435 1570}
fe419535 1571
4bb33435 1572static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1573 unsigned long highmem,
1574 unsigned long total)
fe419535 1575{
4bb33435
RW
1576 unsigned long alloc = __fraction(nr_pages, highmem, total);
1577
1578 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1579}
4bb33435
RW
1580#else /* CONFIG_HIGHMEM */
1581static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1582{
1583 return 0;
1584}
1585
1586static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1587 unsigned long highmem,
1588 unsigned long total)
4bb33435
RW
1589{
1590 return 0;
1591}
1592#endif /* CONFIG_HIGHMEM */
fe419535 1593
4bb33435 1594/**
ef96f639 1595 * free_unnecessary_pages - Release preallocated pages not needed for the image.
64a473cb 1596 */
a64fc82c 1597static unsigned long free_unnecessary_pages(void)
64a473cb 1598{
a64fc82c 1599 unsigned long save, to_free_normal, to_free_highmem, free;
64a473cb 1600
6715045d
RW
1601 save = count_data_pages();
1602 if (alloc_normal >= save) {
1603 to_free_normal = alloc_normal - save;
1604 save = 0;
1605 } else {
1606 to_free_normal = 0;
1607 save -= alloc_normal;
1608 }
1609 save += count_highmem_pages();
1610 if (alloc_highmem >= save) {
1611 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1612 } else {
1613 to_free_highmem = 0;
4d4cf23c
RW
1614 save -= alloc_highmem;
1615 if (to_free_normal > save)
1616 to_free_normal -= save;
1617 else
1618 to_free_normal = 0;
64a473cb 1619 }
a64fc82c 1620 free = to_free_normal + to_free_highmem;
64a473cb
RW
1621
1622 memory_bm_position_reset(&copy_bm);
1623
a9c9b442 1624 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1625 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1626 struct page *page = pfn_to_page(pfn);
1627
1628 if (PageHighMem(page)) {
1629 if (!to_free_highmem)
1630 continue;
1631 to_free_highmem--;
1632 alloc_highmem--;
1633 } else {
1634 if (!to_free_normal)
1635 continue;
1636 to_free_normal--;
1637 alloc_normal--;
1638 }
1639 memory_bm_clear_bit(&copy_bm, pfn);
1640 swsusp_unset_page_forbidden(page);
1641 swsusp_unset_page_free(page);
1642 __free_page(page);
1643 }
a64fc82c
WK
1644
1645 return free;
64a473cb
RW
1646}
1647
ef4aede3 1648/**
ef96f639 1649 * minimum_image_size - Estimate the minimum acceptable size of an image.
ef4aede3
RW
1650 * @saveable: Number of saveable pages in the system.
1651 *
1652 * We want to avoid attempting to free too much memory too hard, so estimate the
1653 * minimum acceptable size of a hibernation image to use as the lower limit for
1654 * preallocating memory.
1655 *
1656 * We assume that the minimum image size should be proportional to
1657 *
1658 * [number of saveable pages] - [number of pages that can be freed in theory]
1659 *
1660 * where the second term is the sum of (1) reclaimable slab pages, (2) active
bdbc98ab 1661 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
ef4aede3
RW
1662 */
1663static unsigned long minimum_image_size(unsigned long saveable)
1664{
1665 unsigned long size;
1666
d507e2eb 1667 size = global_node_page_state(NR_SLAB_RECLAIMABLE)
599d0c95
MG
1668 + global_node_page_state(NR_ACTIVE_ANON)
1669 + global_node_page_state(NR_INACTIVE_ANON)
1670 + global_node_page_state(NR_ACTIVE_FILE)
bdbc98ab 1671 + global_node_page_state(NR_INACTIVE_FILE);
ef4aede3
RW
1672
1673 return saveable <= size ? 0 : saveable - size;
1674}
1675
64a473cb 1676/**
ef96f639 1677 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
4bb33435
RW
1678 *
1679 * To create a hibernation image it is necessary to make a copy of every page
1680 * frame in use. We also need a number of page frames to be free during
1681 * hibernation for allocations made while saving the image and for device
1682 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1683 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1684 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1685 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1686 * total number of available page frames and allocate at least
4bb33435 1687 *
ddeb6487
RW
1688 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1689 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1690 *
1691 * of them, which corresponds to the maximum size of a hibernation image.
1692 *
1693 * If image_size is set below the number following from the above formula,
1694 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1695 * pages in the system is below the requested image size or the minimum
1696 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1697 */
64a473cb 1698int hibernate_preallocate_memory(void)
fe419535 1699{
fe419535 1700 struct zone *zone;
4bb33435 1701 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1702 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
db597605 1703 ktime_t start, stop;
64a473cb 1704 int error;
fe419535 1705
64ec72a1 1706 pr_info("Preallocating image memory... ");
db597605 1707 start = ktime_get();
fe419535 1708
64a473cb
RW
1709 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1710 if (error)
1711 goto err_out;
1712
1713 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1714 if (error)
1715 goto err_out;
1716
1717 alloc_normal = 0;
1718 alloc_highmem = 0;
1719
4bb33435 1720 /* Count the number of saveable data pages. */
64a473cb 1721 save_highmem = count_highmem_pages();
4bb33435 1722 saveable = count_data_pages();
fe419535 1723
4bb33435
RW
1724 /*
1725 * Compute the total number of page frames we can use (count) and the
1726 * number of pages needed for image metadata (size).
1727 */
1728 count = saveable;
64a473cb
RW
1729 saveable += save_highmem;
1730 highmem = save_highmem;
4bb33435
RW
1731 size = 0;
1732 for_each_populated_zone(zone) {
1733 size += snapshot_additional_pages(zone);
1734 if (is_highmem(zone))
1735 highmem += zone_page_state(zone, NR_FREE_PAGES);
1736 else
1737 count += zone_page_state(zone, NR_FREE_PAGES);
1738 }
6715045d 1739 avail_normal = count;
4bb33435
RW
1740 count += highmem;
1741 count -= totalreserve_pages;
1742
85055dd8
MS
1743 /* Add number of pages required for page keys (s390 only). */
1744 size += page_key_additional_pages(saveable);
1745
4bb33435 1746 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1747 max_size = (count - (size + PAGES_FOR_IO)) / 2
1748 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1749 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1750 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1751 if (size > max_size)
1752 size = max_size;
1753 /*
266f1a25
RW
1754 * If the desired number of image pages is at least as large as the
1755 * current number of saveable pages in memory, allocate page frames for
1756 * the image and we're done.
4bb33435 1757 */
64a473cb
RW
1758 if (size >= saveable) {
1759 pages = preallocate_image_highmem(save_highmem);
6715045d 1760 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1761 goto out;
64a473cb 1762 }
4bb33435 1763
ef4aede3
RW
1764 /* Estimate the minimum size of the image. */
1765 pages = minimum_image_size(saveable);
6715045d
RW
1766 /*
1767 * To avoid excessive pressure on the normal zone, leave room in it to
1768 * accommodate an image of the minimum size (unless it's already too
1769 * small, in which case don't preallocate pages from it at all).
1770 */
1771 if (avail_normal > pages)
1772 avail_normal -= pages;
1773 else
1774 avail_normal = 0;
ef4aede3
RW
1775 if (size < pages)
1776 size = min_t(unsigned long, pages, max_size);
1777
4bb33435
RW
1778 /*
1779 * Let the memory management subsystem know that we're going to need a
1780 * large number of page frames to allocate and make it free some memory.
1781 * NOTE: If this is not done, performance will be hurt badly in some
1782 * test cases.
1783 */
1784 shrink_all_memory(saveable - size);
1785
1786 /*
1787 * The number of saveable pages in memory was too high, so apply some
1788 * pressure to decrease it. First, make room for the largest possible
1789 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1790 * of the image as much as indicated by 'size' using allocations from
1791 * highmem and non-highmem zones separately.
4bb33435
RW
1792 */
1793 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1794 alloc = count - max_size;
1795 if (alloc > pages_highmem)
1796 alloc -= pages_highmem;
1797 else
1798 alloc = 0;
6715045d
RW
1799 pages = preallocate_image_memory(alloc, avail_normal);
1800 if (pages < alloc) {
1801 /* We have exhausted non-highmem pages, try highmem. */
1802 alloc -= pages;
1803 pages += pages_highmem;
1804 pages_highmem = preallocate_image_highmem(alloc);
1805 if (pages_highmem < alloc)
1806 goto err_out;
1807 pages += pages_highmem;
1808 /*
1809 * size is the desired number of saveable pages to leave in
1810 * memory, so try to preallocate (all memory - size) pages.
1811 */
1812 alloc = (count - pages) - size;
1813 pages += preallocate_image_highmem(alloc);
1814 } else {
1815 /*
1816 * There are approximately max_size saveable pages at this point
1817 * and we want to reduce this number down to size.
1818 */
1819 alloc = max_size - size;
1820 size = preallocate_highmem_fraction(alloc, highmem, count);
1821 pages_highmem += size;
1822 alloc -= size;
1823 size = preallocate_image_memory(alloc, avail_normal);
1824 pages_highmem += preallocate_image_highmem(alloc - size);
1825 pages += pages_highmem + size;
1826 }
4bb33435 1827
64a473cb
RW
1828 /*
1829 * We only need as many page frames for the image as there are saveable
1830 * pages in memory, but we have allocated more. Release the excessive
1831 * ones now.
1832 */
a64fc82c 1833 pages -= free_unnecessary_pages();
4bb33435
RW
1834
1835 out:
db597605 1836 stop = ktime_get();
64ec72a1 1837 pr_cont("done (allocated %lu pages)\n", pages);
db597605 1838 swsusp_show_speed(start, stop, pages, "Allocated");
fe419535
RW
1839
1840 return 0;
64a473cb
RW
1841
1842 err_out:
64ec72a1 1843 pr_cont("\n");
64a473cb
RW
1844 swsusp_free();
1845 return -ENOMEM;
fe419535
RW
1846}
1847
8357376d
RW
1848#ifdef CONFIG_HIGHMEM
1849/**
ef96f639
RW
1850 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1851 *
1852 * Compute the number of non-highmem pages that will be necessary for creating
1853 * copies of highmem pages.
1854 */
8357376d
RW
1855static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1856{
64a473cb 1857 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1858
1859 if (free_highmem >= nr_highmem)
1860 nr_highmem = 0;
1861 else
1862 nr_highmem -= free_highmem;
1863
1864 return nr_highmem;
1865}
1866#else
efd5a852 1867static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
8357376d 1868#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1869
1870/**
ef96f639 1871 * enough_free_mem - Check if there is enough free memory for the image.
25761b6e 1872 */
8357376d 1873static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1874{
e5e2fa78 1875 struct zone *zone;
64a473cb 1876 unsigned int free = alloc_normal;
e5e2fa78 1877
98e73dc5 1878 for_each_populated_zone(zone)
8357376d 1879 if (!is_highmem(zone))
d23ad423 1880 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1881
8357376d 1882 nr_pages += count_pages_for_highmem(nr_highmem);
64ec72a1
JP
1883 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1884 nr_pages, PAGES_FOR_IO, free);
940864dd 1885
64a473cb 1886 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1887}
1888
8357376d
RW
1889#ifdef CONFIG_HIGHMEM
1890/**
ef96f639
RW
1891 * get_highmem_buffer - Allocate a buffer for highmem pages.
1892 *
1893 * If there are some highmem pages in the hibernation image, we may need a
1894 * buffer to copy them and/or load their data.
8357376d 1895 */
8357376d
RW
1896static inline int get_highmem_buffer(int safe_needed)
1897{
453f85d4 1898 buffer = get_image_page(GFP_ATOMIC, safe_needed);
8357376d
RW
1899 return buffer ? 0 : -ENOMEM;
1900}
1901
1902/**
ef96f639
RW
1903 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1904 *
1905 * Try to allocate as many pages as needed, but if the number of free highmem
1906 * pages is less than that, allocate them all.
8357376d 1907 */
efd5a852
RW
1908static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1909 unsigned int nr_highmem)
8357376d
RW
1910{
1911 unsigned int to_alloc = count_free_highmem_pages();
1912
1913 if (to_alloc > nr_highmem)
1914 to_alloc = nr_highmem;
1915
1916 nr_highmem -= to_alloc;
1917 while (to_alloc-- > 0) {
1918 struct page *page;
1919
d0164adc 1920 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
8357376d
RW
1921 memory_bm_set_bit(bm, page_to_pfn(page));
1922 }
1923 return nr_highmem;
1924}
1925#else
1926static inline int get_highmem_buffer(int safe_needed) { return 0; }
1927
efd5a852
RW
1928static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1929 unsigned int n) { return 0; }
8357376d
RW
1930#endif /* CONFIG_HIGHMEM */
1931
1932/**
ef96f639 1933 * swsusp_alloc - Allocate memory for hibernation image.
8357376d 1934 *
ef96f639
RW
1935 * We first try to allocate as many highmem pages as there are
1936 * saveable highmem pages in the system. If that fails, we allocate
1937 * non-highmem pages for the copies of the remaining highmem ones.
8357376d 1938 *
ef96f639
RW
1939 * In this approach it is likely that the copies of highmem pages will
1940 * also be located in the high memory, because of the way in which
1941 * copy_data_pages() works.
8357376d 1942 */
eba74c29 1943static int swsusp_alloc(struct memory_bitmap *copy_bm,
efd5a852 1944 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1945{
8357376d 1946 if (nr_highmem > 0) {
2e725a06 1947 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1948 goto err_out;
1949 if (nr_highmem > alloc_highmem) {
1950 nr_highmem -= alloc_highmem;
1951 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1952 }
8357376d 1953 }
64a473cb
RW
1954 if (nr_pages > alloc_normal) {
1955 nr_pages -= alloc_normal;
1956 while (nr_pages-- > 0) {
1957 struct page *page;
1958
453f85d4 1959 page = alloc_image_page(GFP_ATOMIC);
64a473cb
RW
1960 if (!page)
1961 goto err_out;
1962 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1963 }
25761b6e 1964 }
64a473cb 1965
b788db79 1966 return 0;
25761b6e 1967
64a473cb 1968 err_out:
b788db79 1969 swsusp_free();
2e725a06 1970 return -ENOMEM;
25761b6e
RW
1971}
1972
722a9f92 1973asmlinkage __visible int swsusp_save(void)
25761b6e 1974{
8357376d 1975 unsigned int nr_pages, nr_highmem;
25761b6e 1976
64ec72a1 1977 pr_info("Creating hibernation image:\n");
25761b6e 1978
9f8f2172 1979 drain_local_pages(NULL);
a0f49651 1980 nr_pages = count_data_pages();
8357376d 1981 nr_highmem = count_highmem_pages();
64ec72a1 1982 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1983
8357376d 1984 if (!enough_free_mem(nr_pages, nr_highmem)) {
64ec72a1 1985 pr_err("Not enough free memory\n");
25761b6e
RW
1986 return -ENOMEM;
1987 }
1988
eba74c29 1989 if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
64ec72a1 1990 pr_err("Memory allocation failed\n");
a0f49651 1991 return -ENOMEM;
8357376d 1992 }
25761b6e 1993
ef96f639
RW
1994 /*
1995 * During allocating of suspend pagedir, new cold pages may appear.
25761b6e
RW
1996 * Kill them.
1997 */
9f8f2172 1998 drain_local_pages(NULL);
b788db79 1999 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
2000
2001 /*
2002 * End of critical section. From now on, we can write to memory,
2003 * but we should not touch disk. This specially means we must _not_
2004 * touch swap space! Except we must write out our image of course.
2005 */
2006
8357376d 2007 nr_pages += nr_highmem;
a0f49651 2008 nr_copy_pages = nr_pages;
8357376d 2009 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 2010
64ec72a1 2011 pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
8357376d 2012
25761b6e
RW
2013 return 0;
2014}
f577eb30 2015
d307c4a8
RW
2016#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2017static int init_header_complete(struct swsusp_info *info)
f577eb30 2018{
d307c4a8 2019 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 2020 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
2021 return 0;
2022}
2023
2024static char *check_image_kernel(struct swsusp_info *info)
2025{
2026 if (info->version_code != LINUX_VERSION_CODE)
2027 return "kernel version";
2028 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2029 return "system type";
2030 if (strcmp(info->uts.release,init_utsname()->release))
2031 return "kernel release";
2032 if (strcmp(info->uts.version,init_utsname()->version))
2033 return "version";
2034 if (strcmp(info->uts.machine,init_utsname()->machine))
2035 return "machine";
2036 return NULL;
2037}
2038#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2039
af508b34
RW
2040unsigned long snapshot_get_image_size(void)
2041{
2042 return nr_copy_pages + nr_meta_pages + 1;
2043}
2044
d307c4a8
RW
2045static int init_header(struct swsusp_info *info)
2046{
2047 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 2048 info->num_physpages = get_num_physpages();
f577eb30 2049 info->image_pages = nr_copy_pages;
af508b34 2050 info->pages = snapshot_get_image_size();
6e1819d6
RW
2051 info->size = info->pages;
2052 info->size <<= PAGE_SHIFT;
d307c4a8 2053 return init_header_complete(info);
f577eb30
RW
2054}
2055
2056/**
ef96f639
RW
2057 * pack_pfns - Prepare PFNs for saving.
2058 * @bm: Memory bitmap.
2059 * @buf: Memory buffer to store the PFNs in.
2060 *
2061 * PFNs corresponding to set bits in @bm are stored in the area of memory
2062 * pointed to by @buf (1 page at a time).
f577eb30 2063 */
efd5a852 2064static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2065{
2066 int j;
2067
b788db79 2068 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
2069 buf[j] = memory_bm_next_pfn(bm);
2070 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 2071 break;
85055dd8
MS
2072 /* Save page key for data page (s390 only). */
2073 page_key_read(buf + j);
f577eb30 2074 }
f577eb30
RW
2075}
2076
2077/**
ef96f639
RW
2078 * snapshot_read_next - Get the address to read the next image page from.
2079 * @handle: Snapshot handle to be used for the reading.
f577eb30 2080 *
ef96f639
RW
2081 * On the first call, @handle should point to a zeroed snapshot_handle
2082 * structure. The structure gets populated then and a pointer to it should be
2083 * passed to this function every next time.
f577eb30 2084 *
ef96f639
RW
2085 * On success, the function returns a positive number. Then, the caller
2086 * is allowed to read up to the returned number of bytes from the memory
2087 * location computed by the data_of() macro.
f577eb30 2088 *
ef96f639
RW
2089 * The function returns 0 to indicate the end of the data stream condition,
2090 * and negative numbers are returned on errors. If that happens, the structure
2091 * pointed to by @handle is not updated and should not be used any more.
f577eb30 2092 */
d3c1b24c 2093int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2094{
fb13a28b 2095 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2096 return 0;
b788db79 2097
f577eb30
RW
2098 if (!buffer) {
2099 /* This makes the buffer be freed by swsusp_free() */
8357376d 2100 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2101 if (!buffer)
2102 return -ENOMEM;
2103 }
d3c1b24c 2104 if (!handle->cur) {
d307c4a8
RW
2105 int error;
2106
2107 error = init_header((struct swsusp_info *)buffer);
2108 if (error)
2109 return error;
f577eb30 2110 handle->buffer = buffer;
b788db79
RW
2111 memory_bm_position_reset(&orig_bm);
2112 memory_bm_position_reset(&copy_bm);
d3c1b24c 2113 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2114 clear_page(buffer);
d3c1b24c
JS
2115 pack_pfns(buffer, &orig_bm);
2116 } else {
2117 struct page *page;
b788db79 2118
d3c1b24c
JS
2119 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2120 if (PageHighMem(page)) {
ef96f639
RW
2121 /*
2122 * Highmem pages are copied to the buffer,
d3c1b24c
JS
2123 * because we can't return with a kmapped
2124 * highmem page (we may not be called again).
2125 */
2126 void *kaddr;
8357376d 2127
0de9a1e2 2128 kaddr = kmap_atomic(page);
3ecb01df 2129 copy_page(buffer, kaddr);
0de9a1e2 2130 kunmap_atomic(kaddr);
d3c1b24c
JS
2131 handle->buffer = buffer;
2132 } else {
2133 handle->buffer = page_address(page);
f577eb30 2134 }
f577eb30 2135 }
d3c1b24c
JS
2136 handle->cur++;
2137 return PAGE_SIZE;
f577eb30
RW
2138}
2139
6dbecfd3
RW
2140static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2141 struct memory_bitmap *src)
2142{
2143 unsigned long pfn;
2144
2145 memory_bm_position_reset(src);
2146 pfn = memory_bm_next_pfn(src);
2147 while (pfn != BM_END_OF_MAP) {
2148 memory_bm_set_bit(dst, pfn);
2149 pfn = memory_bm_next_pfn(src);
2150 }
2151}
2152
f577eb30 2153/**
ef96f639
RW
2154 * mark_unsafe_pages - Mark pages that were used before hibernation.
2155 *
2156 * Mark the pages that cannot be used for storing the image during restoration,
2157 * because they conflict with the pages that had been used before hibernation.
f577eb30 2158 */
6dbecfd3 2159static void mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30 2160{
6dbecfd3 2161 unsigned long pfn;
f577eb30 2162
6dbecfd3
RW
2163 /* Clear the "free"/"unsafe" bit for all PFNs */
2164 memory_bm_position_reset(free_pages_map);
2165 pfn = memory_bm_next_pfn(free_pages_map);
2166 while (pfn != BM_END_OF_MAP) {
2167 memory_bm_clear_current(free_pages_map);
2168 pfn = memory_bm_next_pfn(free_pages_map);
f577eb30
RW
2169 }
2170
6dbecfd3
RW
2171 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2172 duplicate_memory_bitmap(free_pages_map, bm);
f577eb30 2173
940864dd 2174 allocated_unsafe_pages = 0;
f577eb30
RW
2175}
2176
d307c4a8 2177static int check_header(struct swsusp_info *info)
f577eb30 2178{
d307c4a8 2179 char *reason;
f577eb30 2180
d307c4a8 2181 reason = check_image_kernel(info);
0ed5fd13 2182 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2183 reason = "memory size";
f577eb30 2184 if (reason) {
64ec72a1 2185 pr_err("Image mismatch: %s\n", reason);
f577eb30
RW
2186 return -EPERM;
2187 }
2188 return 0;
2189}
2190
2191/**
ef96f639 2192 * load header - Check the image header and copy the data from it.
f577eb30 2193 */
efd5a852 2194static int load_header(struct swsusp_info *info)
f577eb30
RW
2195{
2196 int error;
f577eb30 2197
940864dd 2198 restore_pblist = NULL;
f577eb30
RW
2199 error = check_header(info);
2200 if (!error) {
f577eb30
RW
2201 nr_copy_pages = info->image_pages;
2202 nr_meta_pages = info->pages - info->image_pages - 1;
2203 }
2204 return error;
2205}
2206
2207/**
ef96f639
RW
2208 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2209 * @bm: Memory bitmap.
2210 * @buf: Area of memory containing the PFNs.
2211 *
2212 * For each element of the array pointed to by @buf (1 page at a time), set the
2213 * corresponding bit in @bm.
f577eb30 2214 */
69643279 2215static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2216{
2217 int j;
2218
940864dd
RW
2219 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2220 if (unlikely(buf[j] == BM_END_OF_MAP))
2221 break;
2222
85055dd8
MS
2223 /* Extract and buffer page key for data page (s390 only). */
2224 page_key_memorize(buf + j);
2225
6dbecfd3 2226 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
69643279
RW
2227 memory_bm_set_bit(bm, buf[j]);
2228 else
2229 return -EFAULT;
f577eb30 2230 }
69643279
RW
2231
2232 return 0;
f577eb30
RW
2233}
2234
8357376d 2235#ifdef CONFIG_HIGHMEM
ef96f639
RW
2236/*
2237 * struct highmem_pbe is used for creating the list of highmem pages that
8357376d
RW
2238 * should be restored atomically during the resume from disk, because the page
2239 * frames they have occupied before the suspend are in use.
2240 */
2241struct highmem_pbe {
2242 struct page *copy_page; /* data is here now */
2243 struct page *orig_page; /* data was here before the suspend */
2244 struct highmem_pbe *next;
2245};
2246
ef96f639
RW
2247/*
2248 * List of highmem PBEs needed for restoring the highmem pages that were
8357376d
RW
2249 * allocated before the suspend and included in the suspend image, but have
2250 * also been allocated by the "resume" kernel, so their contents cannot be
2251 * written directly to their "original" page frames.
2252 */
2253static struct highmem_pbe *highmem_pblist;
2254
2255/**
ef96f639
RW
2256 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2257 * @bm: Memory bitmap.
2258 *
2259 * The bits in @bm that correspond to image pages are assumed to be set.
8357376d 2260 */
8357376d
RW
2261static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2262{
2263 unsigned long pfn;
2264 unsigned int cnt = 0;
2265
2266 memory_bm_position_reset(bm);
2267 pfn = memory_bm_next_pfn(bm);
2268 while (pfn != BM_END_OF_MAP) {
2269 if (PageHighMem(pfn_to_page(pfn)))
2270 cnt++;
2271
2272 pfn = memory_bm_next_pfn(bm);
2273 }
2274 return cnt;
2275}
2276
8357376d
RW
2277static unsigned int safe_highmem_pages;
2278
2279static struct memory_bitmap *safe_highmem_bm;
2280
ef96f639
RW
2281/**
2282 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2283 * @bm: Pointer to an uninitialized memory bitmap structure.
2284 * @nr_highmem_p: Pointer to the number of highmem image pages.
2285 *
2286 * Try to allocate as many highmem pages as there are highmem image pages
2287 * (@nr_highmem_p points to the variable containing the number of highmem image
2288 * pages). The pages that are "safe" (ie. will not be overwritten when the
2289 * hibernation image is restored entirely) have the corresponding bits set in
2290 * @bm (it must be unitialized).
2291 *
2292 * NOTE: This function should not be called if there are no highmem image pages.
2293 */
efd5a852
RW
2294static int prepare_highmem_image(struct memory_bitmap *bm,
2295 unsigned int *nr_highmem_p)
8357376d
RW
2296{
2297 unsigned int to_alloc;
2298
2299 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2300 return -ENOMEM;
2301
2302 if (get_highmem_buffer(PG_SAFE))
2303 return -ENOMEM;
2304
2305 to_alloc = count_free_highmem_pages();
2306 if (to_alloc > *nr_highmem_p)
2307 to_alloc = *nr_highmem_p;
2308 else
2309 *nr_highmem_p = to_alloc;
2310
2311 safe_highmem_pages = 0;
2312 while (to_alloc-- > 0) {
2313 struct page *page;
2314
2315 page = alloc_page(__GFP_HIGHMEM);
7be98234 2316 if (!swsusp_page_is_free(page)) {
8357376d
RW
2317 /* The page is "safe", set its bit the bitmap */
2318 memory_bm_set_bit(bm, page_to_pfn(page));
2319 safe_highmem_pages++;
2320 }
2321 /* Mark the page as allocated */
7be98234
RW
2322 swsusp_set_page_forbidden(page);
2323 swsusp_set_page_free(page);
8357376d
RW
2324 }
2325 memory_bm_position_reset(bm);
2326 safe_highmem_bm = bm;
2327 return 0;
2328}
2329
ef96f639
RW
2330static struct page *last_highmem_page;
2331
8357376d 2332/**
ef96f639
RW
2333 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2334 *
2335 * For a given highmem image page get a buffer that suspend_write_next() should
2336 * return to its caller to write to.
8357376d 2337 *
ef96f639
RW
2338 * If the page is to be saved to its "original" page frame or a copy of
2339 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2340 * the copy of the page is to be made in normal memory, so the address of
2341 * the copy is returned.
8357376d 2342 *
ef96f639
RW
2343 * If @buffer is returned, the caller of suspend_write_next() will write
2344 * the page's contents to @buffer, so they will have to be copied to the
2345 * right location on the next call to suspend_write_next() and it is done
2346 * with the help of copy_last_highmem_page(). For this purpose, if
2347 * @buffer is returned, @last_highmem_page is set to the page to which
2348 * the data will have to be copied from @buffer.
8357376d 2349 */
efd5a852
RW
2350static void *get_highmem_page_buffer(struct page *page,
2351 struct chain_allocator *ca)
8357376d
RW
2352{
2353 struct highmem_pbe *pbe;
2354 void *kaddr;
2355
7be98234 2356 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
ef96f639
RW
2357 /*
2358 * We have allocated the "original" page frame and we can
8357376d
RW
2359 * use it directly to store the loaded page.
2360 */
2361 last_highmem_page = page;
2362 return buffer;
2363 }
ef96f639
RW
2364 /*
2365 * The "original" page frame has not been allocated and we have to
8357376d
RW
2366 * use a "safe" page frame to store the loaded page.
2367 */
2368 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2369 if (!pbe) {
2370 swsusp_free();
69643279 2371 return ERR_PTR(-ENOMEM);
8357376d
RW
2372 }
2373 pbe->orig_page = page;
2374 if (safe_highmem_pages > 0) {
2375 struct page *tmp;
2376
2377 /* Copy of the page will be stored in high memory */
2378 kaddr = buffer;
2379 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2380 safe_highmem_pages--;
2381 last_highmem_page = tmp;
2382 pbe->copy_page = tmp;
2383 } else {
2384 /* Copy of the page will be stored in normal memory */
2385 kaddr = safe_pages_list;
2386 safe_pages_list = safe_pages_list->next;
2387 pbe->copy_page = virt_to_page(kaddr);
2388 }
2389 pbe->next = highmem_pblist;
2390 highmem_pblist = pbe;
2391 return kaddr;
2392}
2393
2394/**
ef96f639
RW
2395 * copy_last_highmem_page - Copy most the most recent highmem image page.
2396 *
2397 * Copy the contents of a highmem image from @buffer, where the caller of
2398 * snapshot_write_next() has stored them, to the right location represented by
2399 * @last_highmem_page .
8357376d 2400 */
8357376d
RW
2401static void copy_last_highmem_page(void)
2402{
2403 if (last_highmem_page) {
2404 void *dst;
2405
0de9a1e2 2406 dst = kmap_atomic(last_highmem_page);
3ecb01df 2407 copy_page(dst, buffer);
0de9a1e2 2408 kunmap_atomic(dst);
8357376d
RW
2409 last_highmem_page = NULL;
2410 }
2411}
2412
2413static inline int last_highmem_page_copied(void)
2414{
2415 return !last_highmem_page;
2416}
2417
2418static inline void free_highmem_data(void)
2419{
2420 if (safe_highmem_bm)
2421 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2422
2423 if (buffer)
2424 free_image_page(buffer, PG_UNSAFE_CLEAR);
2425}
2426#else
efd5a852 2427static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
8357376d 2428
efd5a852
RW
2429static inline int prepare_highmem_image(struct memory_bitmap *bm,
2430 unsigned int *nr_highmem_p) { return 0; }
8357376d 2431
efd5a852
RW
2432static inline void *get_highmem_page_buffer(struct page *page,
2433 struct chain_allocator *ca)
8357376d 2434{
69643279 2435 return ERR_PTR(-EINVAL);
8357376d
RW
2436}
2437
2438static inline void copy_last_highmem_page(void) {}
2439static inline int last_highmem_page_copied(void) { return 1; }
2440static inline void free_highmem_data(void) {}
2441#endif /* CONFIG_HIGHMEM */
2442
ef96f639
RW
2443#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2444
f577eb30 2445/**
ef96f639
RW
2446 * prepare_image - Make room for loading hibernation image.
2447 * @new_bm: Unitialized memory bitmap structure.
2448 * @bm: Memory bitmap with unsafe pages marked.
2449 *
2450 * Use @bm to mark the pages that will be overwritten in the process of
2451 * restoring the system memory state from the suspend image ("unsafe" pages)
2452 * and allocate memory for the image.
968808b8 2453 *
ef96f639
RW
2454 * The idea is to allocate a new memory bitmap first and then allocate
2455 * as many pages as needed for image data, but without specifying what those
2456 * pages will be used for just yet. Instead, we mark them all as allocated and
2457 * create a lists of "safe" pages to be used later. On systems with high
2458 * memory a list of "safe" highmem pages is created too.
f577eb30 2459 */
efd5a852 2460static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2461{
8357376d 2462 unsigned int nr_pages, nr_highmem;
9c744481 2463 struct linked_page *lp;
940864dd 2464 int error;
f577eb30 2465
8357376d
RW
2466 /* If there is no highmem, the buffer will not be necessary */
2467 free_image_page(buffer, PG_UNSAFE_CLEAR);
2468 buffer = NULL;
2469
2470 nr_highmem = count_highmem_image_pages(bm);
6dbecfd3 2471 mark_unsafe_pages(bm);
940864dd
RW
2472
2473 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2474 if (error)
2475 goto Free;
2476
2477 duplicate_memory_bitmap(new_bm, bm);
2478 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2479 if (nr_highmem > 0) {
2480 error = prepare_highmem_image(bm, &nr_highmem);
2481 if (error)
2482 goto Free;
2483 }
ef96f639
RW
2484 /*
2485 * Reserve some safe pages for potential later use.
940864dd
RW
2486 *
2487 * NOTE: This way we make sure there will be enough safe pages for the
2488 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2489 * nr_copy_pages cannot be greater than 50% of the memory anyway.
9c744481
RW
2490 *
2491 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
940864dd 2492 */
8357376d 2493 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2494 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2495 while (nr_pages > 0) {
8357376d 2496 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2497 if (!lp) {
f577eb30 2498 error = -ENOMEM;
940864dd
RW
2499 goto Free;
2500 }
9c744481
RW
2501 lp->next = safe_pages_list;
2502 safe_pages_list = lp;
940864dd 2503 nr_pages--;
f577eb30 2504 }
940864dd 2505 /* Preallocate memory for the image */
8357376d 2506 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2507 while (nr_pages > 0) {
2508 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2509 if (!lp) {
2510 error = -ENOMEM;
2511 goto Free;
2512 }
7be98234 2513 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2514 /* The page is "safe", add it to the list */
2515 lp->next = safe_pages_list;
2516 safe_pages_list = lp;
968808b8 2517 }
940864dd 2518 /* Mark the page as allocated */
7be98234
RW
2519 swsusp_set_page_forbidden(virt_to_page(lp));
2520 swsusp_set_page_free(virt_to_page(lp));
940864dd 2521 nr_pages--;
968808b8 2522 }
940864dd
RW
2523 return 0;
2524
59a49335 2525 Free:
940864dd 2526 swsusp_free();
f577eb30
RW
2527 return error;
2528}
2529
940864dd 2530/**
ef96f639
RW
2531 * get_buffer - Get the address to store the next image data page.
2532 *
2533 * Get the address that snapshot_write_next() should return to its caller to
2534 * write to.
940864dd 2535 */
940864dd 2536static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2537{
940864dd 2538 struct pbe *pbe;
69643279
RW
2539 struct page *page;
2540 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2541
69643279
RW
2542 if (pfn == BM_END_OF_MAP)
2543 return ERR_PTR(-EFAULT);
2544
2545 page = pfn_to_page(pfn);
8357376d
RW
2546 if (PageHighMem(page))
2547 return get_highmem_page_buffer(page, ca);
2548
7be98234 2549 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
ef96f639
RW
2550 /*
2551 * We have allocated the "original" page frame and we can
940864dd 2552 * use it directly to store the loaded page.
968808b8 2553 */
940864dd
RW
2554 return page_address(page);
2555
ef96f639
RW
2556 /*
2557 * The "original" page frame has not been allocated and we have to
940864dd 2558 * use a "safe" page frame to store the loaded page.
968808b8 2559 */
940864dd
RW
2560 pbe = chain_alloc(ca, sizeof(struct pbe));
2561 if (!pbe) {
2562 swsusp_free();
69643279 2563 return ERR_PTR(-ENOMEM);
940864dd 2564 }
8357376d
RW
2565 pbe->orig_address = page_address(page);
2566 pbe->address = safe_pages_list;
940864dd
RW
2567 safe_pages_list = safe_pages_list->next;
2568 pbe->next = restore_pblist;
2569 restore_pblist = pbe;
8357376d 2570 return pbe->address;
968808b8
RW
2571}
2572
f577eb30 2573/**
ef96f639
RW
2574 * snapshot_write_next - Get the address to store the next image page.
2575 * @handle: Snapshot handle structure to guide the writing.
f577eb30 2576 *
ef96f639
RW
2577 * On the first call, @handle should point to a zeroed snapshot_handle
2578 * structure. The structure gets populated then and a pointer to it should be
2579 * passed to this function every next time.
f577eb30 2580 *
ef96f639
RW
2581 * On success, the function returns a positive number. Then, the caller
2582 * is allowed to write up to the returned number of bytes to the memory
2583 * location computed by the data_of() macro.
f577eb30 2584 *
ef96f639
RW
2585 * The function returns 0 to indicate the "end of file" condition. Negative
2586 * numbers are returned on errors, in which cases the structure pointed to by
2587 * @handle is not updated and should not be used any more.
f577eb30 2588 */
d3c1b24c 2589int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2590{
940864dd 2591 static struct chain_allocator ca;
f577eb30
RW
2592 int error = 0;
2593
940864dd 2594 /* Check if we have already loaded the entire image */
d3c1b24c 2595 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2596 return 0;
940864dd 2597
d3c1b24c
JS
2598 handle->sync_read = 1;
2599
2600 if (!handle->cur) {
8357376d
RW
2601 if (!buffer)
2602 /* This makes the buffer be freed by swsusp_free() */
2603 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2604
f577eb30
RW
2605 if (!buffer)
2606 return -ENOMEM;
8357376d 2607
f577eb30 2608 handle->buffer = buffer;
d3c1b24c
JS
2609 } else if (handle->cur == 1) {
2610 error = load_header(buffer);
2611 if (error)
2612 return error;
940864dd 2613
9c744481
RW
2614 safe_pages_list = NULL;
2615
d3c1b24c
JS
2616 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2617 if (error)
2618 return error;
2619
85055dd8
MS
2620 /* Allocate buffer for page keys. */
2621 error = page_key_alloc(nr_copy_pages);
2622 if (error)
2623 return error;
2624
4c0b6c10 2625 hibernate_restore_protection_begin();
d3c1b24c
JS
2626 } else if (handle->cur <= nr_meta_pages + 1) {
2627 error = unpack_orig_pfns(buffer, &copy_bm);
2628 if (error)
2629 return error;
940864dd 2630
d3c1b24c
JS
2631 if (handle->cur == nr_meta_pages + 1) {
2632 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2633 if (error)
2634 return error;
2635
d3c1b24c
JS
2636 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2637 memory_bm_position_reset(&orig_bm);
2638 restore_pblist = NULL;
940864dd 2639 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2640 handle->sync_read = 0;
69643279
RW
2641 if (IS_ERR(handle->buffer))
2642 return PTR_ERR(handle->buffer);
f577eb30 2643 }
f577eb30 2644 } else {
d3c1b24c 2645 copy_last_highmem_page();
85055dd8
MS
2646 /* Restore page key for data page (s390 only). */
2647 page_key_write(handle->buffer);
4c0b6c10 2648 hibernate_restore_protect_page(handle->buffer);
d3c1b24c
JS
2649 handle->buffer = get_buffer(&orig_bm, &ca);
2650 if (IS_ERR(handle->buffer))
2651 return PTR_ERR(handle->buffer);
2652 if (handle->buffer != buffer)
2653 handle->sync_read = 0;
f577eb30 2654 }
d3c1b24c
JS
2655 handle->cur++;
2656 return PAGE_SIZE;
f577eb30
RW
2657}
2658
8357376d 2659/**
ef96f639
RW
2660 * snapshot_write_finalize - Complete the loading of a hibernation image.
2661 *
2662 * Must be called after the last call to snapshot_write_next() in case the last
2663 * page in the image happens to be a highmem page and its contents should be
2664 * stored in highmem. Additionally, it recycles bitmap memory that's not
2665 * necessary any more.
8357376d 2666 */
8357376d
RW
2667void snapshot_write_finalize(struct snapshot_handle *handle)
2668{
2669 copy_last_highmem_page();
85055dd8
MS
2670 /* Restore page key for data page (s390 only). */
2671 page_key_write(handle->buffer);
2672 page_key_free();
4c0b6c10 2673 hibernate_restore_protect_page(handle->buffer);
307c5971 2674 /* Do that only if we have loaded the image entirely */
d3c1b24c 2675 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
307c5971 2676 memory_bm_recycle(&orig_bm);
8357376d
RW
2677 free_highmem_data();
2678 }
2679}
2680
f577eb30
RW
2681int snapshot_image_loaded(struct snapshot_handle *handle)
2682{
8357376d 2683 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2684 handle->cur <= nr_meta_pages + nr_copy_pages);
2685}
2686
8357376d
RW
2687#ifdef CONFIG_HIGHMEM
2688/* Assumes that @buf is ready and points to a "safe" page */
efd5a852
RW
2689static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2690 void *buf)
940864dd 2691{
8357376d
RW
2692 void *kaddr1, *kaddr2;
2693
0de9a1e2
CW
2694 kaddr1 = kmap_atomic(p1);
2695 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2696 copy_page(buf, kaddr1);
2697 copy_page(kaddr1, kaddr2);
2698 copy_page(kaddr2, buf);
0de9a1e2
CW
2699 kunmap_atomic(kaddr2);
2700 kunmap_atomic(kaddr1);
8357376d
RW
2701}
2702
2703/**
ef96f639
RW
2704 * restore_highmem - Put highmem image pages into their original locations.
2705 *
2706 * For each highmem page that was in use before hibernation and is included in
2707 * the image, and also has been allocated by the "restore" kernel, swap its
2708 * current contents with the previous (ie. "before hibernation") ones.
8357376d 2709 *
ef96f639
RW
2710 * If the restore eventually fails, we can call this function once again and
2711 * restore the highmem state as seen by the restore kernel.
8357376d 2712 */
8357376d
RW
2713int restore_highmem(void)
2714{
2715 struct highmem_pbe *pbe = highmem_pblist;
2716 void *buf;
2717
2718 if (!pbe)
2719 return 0;
2720
2721 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2722 if (!buf)
2723 return -ENOMEM;
2724
2725 while (pbe) {
2726 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2727 pbe = pbe->next;
2728 }
2729 free_image_page(buf, PG_UNSAFE_CLEAR);
2730 return 0;
f577eb30 2731}
8357376d 2732#endif /* CONFIG_HIGHMEM */