PM / Hibernate: Iterate over set bits instead of PFNs in swsusp_free()
[linux-block.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
52f5684c 30#include <linux/compiler.h>
25761b6e
RW
31
32#include <asm/uaccess.h>
33#include <asm/mmu_context.h>
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <asm/io.h>
37
25761b6e
RW
38#include "power.h"
39
74dfd666
RW
40static int swsusp_page_is_free(struct page *);
41static void swsusp_set_page_forbidden(struct page *);
42static void swsusp_unset_page_forbidden(struct page *);
43
ddeb6487
RW
44/*
45 * Number of bytes to reserve for memory allocations made by device drivers
46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47 * cause image creation to fail (tunable via /sys/power/reserved_size).
48 */
49unsigned long reserved_size;
50
51void __init hibernate_reserved_size_init(void)
52{
53 reserved_size = SPARE_PAGES * PAGE_SIZE;
54}
55
fe419535
RW
56/*
57 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
58 * When it is set to N, swsusp will do its best to ensure the image
59 * size will not exceed N bytes, but if that is impossible, it will
60 * try to create the smallest image possible.
fe419535 61 */
ac5c24ec
RW
62unsigned long image_size;
63
64void __init hibernate_image_size_init(void)
65{
1c1be3a9 66 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 67}
fe419535 68
8357376d
RW
69/* List of PBEs needed for restoring the pages that were allocated before
70 * the suspend and included in the suspend image, but have also been
71 * allocated by the "resume" kernel, so their contents cannot be written
72 * directly to their "original" page frames.
73 */
75534b50
RW
74struct pbe *restore_pblist;
75
8357376d 76/* Pointer to an auxiliary buffer (1 page) */
940864dd 77static void *buffer;
7088a5c0 78
f6143aa6
RW
79/**
80 * @safe_needed - on resume, for storing the PBE list and the image,
81 * we can only use memory pages that do not conflict with the pages
8357376d
RW
82 * used before suspend. The unsafe pages have PageNosaveFree set
83 * and we count them using unsafe_pages.
f6143aa6 84 *
8357376d
RW
85 * Each allocated image page is marked as PageNosave and PageNosaveFree
86 * so that swsusp_free() can release it.
f6143aa6
RW
87 */
88
0bcd888d
RW
89#define PG_ANY 0
90#define PG_SAFE 1
91#define PG_UNSAFE_CLEAR 1
92#define PG_UNSAFE_KEEP 0
93
940864dd 94static unsigned int allocated_unsafe_pages;
f6143aa6 95
8357376d 96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
97{
98 void *res;
99
100 res = (void *)get_zeroed_page(gfp_mask);
101 if (safe_needed)
7be98234 102 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 103 /* The page is unsafe, mark it for swsusp_free() */
7be98234 104 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 105 allocated_unsafe_pages++;
f6143aa6
RW
106 res = (void *)get_zeroed_page(gfp_mask);
107 }
108 if (res) {
7be98234
RW
109 swsusp_set_page_forbidden(virt_to_page(res));
110 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
111 }
112 return res;
113}
114
115unsigned long get_safe_page(gfp_t gfp_mask)
116{
8357376d
RW
117 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118}
119
5b6d15de
RW
120static struct page *alloc_image_page(gfp_t gfp_mask)
121{
8357376d
RW
122 struct page *page;
123
124 page = alloc_page(gfp_mask);
125 if (page) {
7be98234
RW
126 swsusp_set_page_forbidden(page);
127 swsusp_set_page_free(page);
8357376d
RW
128 }
129 return page;
f6143aa6
RW
130}
131
132/**
133 * free_image_page - free page represented by @addr, allocated with
8357376d 134 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
135 */
136
137static inline void free_image_page(void *addr, int clear_nosave_free)
138{
8357376d
RW
139 struct page *page;
140
141 BUG_ON(!virt_addr_valid(addr));
142
143 page = virt_to_page(addr);
144
7be98234 145 swsusp_unset_page_forbidden(page);
f6143aa6 146 if (clear_nosave_free)
7be98234 147 swsusp_unset_page_free(page);
8357376d
RW
148
149 __free_page(page);
f6143aa6
RW
150}
151
b788db79
RW
152/* struct linked_page is used to build chains of pages */
153
154#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
155
156struct linked_page {
157 struct linked_page *next;
158 char data[LINKED_PAGE_DATA_SIZE];
52f5684c 159} __packed;
b788db79
RW
160
161static inline void
162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163{
164 while (list) {
165 struct linked_page *lp = list->next;
166
167 free_image_page(list, clear_page_nosave);
168 list = lp;
169 }
170}
171
172/**
173 * struct chain_allocator is used for allocating small objects out of
174 * a linked list of pages called 'the chain'.
175 *
176 * The chain grows each time when there is no room for a new object in
177 * the current page. The allocated objects cannot be freed individually.
178 * It is only possible to free them all at once, by freeing the entire
179 * chain.
180 *
181 * NOTE: The chain allocator may be inefficient if the allocated objects
182 * are not much smaller than PAGE_SIZE.
183 */
184
185struct chain_allocator {
186 struct linked_page *chain; /* the chain */
187 unsigned int used_space; /* total size of objects allocated out
188 * of the current page
189 */
190 gfp_t gfp_mask; /* mask for allocating pages */
191 int safe_needed; /* if set, only "safe" pages are allocated */
192};
193
194static void
195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196{
197 ca->chain = NULL;
198 ca->used_space = LINKED_PAGE_DATA_SIZE;
199 ca->gfp_mask = gfp_mask;
200 ca->safe_needed = safe_needed;
201}
202
203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204{
205 void *ret;
206
207 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 struct linked_page *lp;
209
8357376d 210 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
211 if (!lp)
212 return NULL;
213
214 lp->next = ca->chain;
215 ca->chain = lp;
216 ca->used_space = 0;
217 }
218 ret = ca->chain->data + ca->used_space;
219 ca->used_space += size;
220 return ret;
221}
222
b788db79
RW
223/**
224 * Data types related to memory bitmaps.
225 *
226 * Memory bitmap is a structure consiting of many linked lists of
227 * objects. The main list's elements are of type struct zone_bitmap
228 * and each of them corresonds to one zone. For each zone bitmap
229 * object there is a list of objects of type struct bm_block that
0d83304c 230 * represent each blocks of bitmap in which information is stored.
b788db79
RW
231 *
232 * struct memory_bitmap contains a pointer to the main list of zone
233 * bitmap objects, a struct bm_position used for browsing the bitmap,
234 * and a pointer to the list of pages used for allocating all of the
235 * zone bitmap objects and bitmap block objects.
236 *
237 * NOTE: It has to be possible to lay out the bitmap in memory
238 * using only allocations of order 0. Additionally, the bitmap is
239 * designed to work with arbitrary number of zones (this is over the
240 * top for now, but let's avoid making unnecessary assumptions ;-).
241 *
242 * struct zone_bitmap contains a pointer to a list of bitmap block
243 * objects and a pointer to the bitmap block object that has been
244 * most recently used for setting bits. Additionally, it contains the
245 * pfns that correspond to the start and end of the represented zone.
246 *
247 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
248 * information is stored (in the form of a block of bitmap)
249 * It also contains the pfns that correspond to the start and end of
250 * the represented memory area.
f469f02d
JR
251 *
252 * The memory bitmap is organized as a radix tree to guarantee fast random
253 * access to the bits. There is one radix tree for each zone (as returned
254 * from create_mem_extents).
255 *
256 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
257 * two linked lists for the nodes of the tree, one for the inner nodes and
258 * one for the leave nodes. The linked leave nodes are used for fast linear
259 * access of the memory bitmap.
260 *
261 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
262 */
263
264#define BM_END_OF_MAP (~0UL)
265
8de03073 266#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
267#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
268#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79
RW
269
270struct bm_block {
846705de 271 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
272 unsigned long start_pfn; /* pfn represented by the first bit */
273 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 274 unsigned long *data; /* bitmap representing pages */
b788db79
RW
275};
276
0d83304c
AM
277static inline unsigned long bm_block_bits(struct bm_block *bb)
278{
279 return bb->end_pfn - bb->start_pfn;
280}
281
f469f02d
JR
282/*
283 * struct rtree_node is a wrapper struct to link the nodes
284 * of the rtree together for easy linear iteration over
285 * bits and easy freeing
286 */
287struct rtree_node {
288 struct list_head list;
289 unsigned long *data;
290};
291
292/*
293 * struct mem_zone_bm_rtree represents a bitmap used for one
294 * populated memory zone.
295 */
296struct mem_zone_bm_rtree {
297 struct list_head list; /* Link Zones together */
298 struct list_head nodes; /* Radix Tree inner nodes */
299 struct list_head leaves; /* Radix Tree leaves */
300 unsigned long start_pfn; /* Zone start page frame */
301 unsigned long end_pfn; /* Zone end page frame + 1 */
302 struct rtree_node *rtree; /* Radix Tree Root */
303 int levels; /* Number of Radix Tree Levels */
304 unsigned int blocks; /* Number of Bitmap Blocks */
305};
306
b788db79
RW
307/* strcut bm_position is used for browsing memory bitmaps */
308
309struct bm_position {
b788db79 310 struct bm_block *block;
b788db79 311 int bit;
3a20cb17
JR
312
313 struct mem_zone_bm_rtree *zone;
314 struct rtree_node *node;
315 unsigned long node_pfn;
316 int node_bit;
b788db79
RW
317};
318
319struct memory_bitmap {
f469f02d 320 struct list_head zones;
846705de 321 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
322 struct linked_page *p_list; /* list of pages used to store zone
323 * bitmap objects and bitmap block
324 * objects
325 */
326 struct bm_position cur; /* most recently used bit position */
327};
328
329/* Functions that operate on memory bitmaps */
330
f469f02d
JR
331#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
332#if BITS_PER_LONG == 32
333#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
334#else
335#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
336#endif
337#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
338
339/*
340 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
341 *
342 * This function is used to allocate inner nodes as well as the
343 * leave nodes of the radix tree. It also adds the node to the
344 * corresponding linked list passed in by the *list parameter.
345 */
346static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
347 struct chain_allocator *ca,
348 struct list_head *list)
349{
350 struct rtree_node *node;
351
352 node = chain_alloc(ca, sizeof(struct rtree_node));
353 if (!node)
354 return NULL;
355
356 node->data = get_image_page(gfp_mask, safe_needed);
357 if (!node->data)
358 return NULL;
359
360 list_add_tail(&node->list, list);
361
362 return node;
363}
364
365/*
366 * add_rtree_block - Add a new leave node to the radix tree
367 *
368 * The leave nodes need to be allocated in order to keep the leaves
369 * linked list in order. This is guaranteed by the zone->blocks
370 * counter.
371 */
372static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
373 int safe_needed, struct chain_allocator *ca)
374{
375 struct rtree_node *node, *block, **dst;
376 unsigned int levels_needed, block_nr;
377 int i;
378
379 block_nr = zone->blocks;
380 levels_needed = 0;
381
382 /* How many levels do we need for this block nr? */
383 while (block_nr) {
384 levels_needed += 1;
385 block_nr >>= BM_RTREE_LEVEL_SHIFT;
386 }
387
388 /* Make sure the rtree has enough levels */
389 for (i = zone->levels; i < levels_needed; i++) {
390 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
391 &zone->nodes);
392 if (!node)
393 return -ENOMEM;
394
395 node->data[0] = (unsigned long)zone->rtree;
396 zone->rtree = node;
397 zone->levels += 1;
398 }
399
400 /* Allocate new block */
401 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
402 if (!block)
403 return -ENOMEM;
404
405 /* Now walk the rtree to insert the block */
406 node = zone->rtree;
407 dst = &zone->rtree;
408 block_nr = zone->blocks;
409 for (i = zone->levels; i > 0; i--) {
410 int index;
411
412 if (!node) {
413 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
414 &zone->nodes);
415 if (!node)
416 return -ENOMEM;
417 *dst = node;
418 }
419
420 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
421 index &= BM_RTREE_LEVEL_MASK;
422 dst = (struct rtree_node **)&((*dst)->data[index]);
423 node = *dst;
424 }
425
426 zone->blocks += 1;
427 *dst = block;
428
429 return 0;
430}
431
432static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
433 int clear_nosave_free);
434
435/*
436 * create_zone_bm_rtree - create a radix tree for one zone
437 *
438 * Allocated the mem_zone_bm_rtree structure and initializes it.
439 * This function also allocated and builds the radix tree for the
440 * zone.
441 */
442static struct mem_zone_bm_rtree *
443create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
444 struct chain_allocator *ca,
445 unsigned long start, unsigned long end)
446{
447 struct mem_zone_bm_rtree *zone;
448 unsigned int i, nr_blocks;
449 unsigned long pages;
450
451 pages = end - start;
452 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
453 if (!zone)
454 return NULL;
455
456 INIT_LIST_HEAD(&zone->nodes);
457 INIT_LIST_HEAD(&zone->leaves);
458 zone->start_pfn = start;
459 zone->end_pfn = end;
460 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
461
462 for (i = 0; i < nr_blocks; i++) {
463 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
464 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
465 return NULL;
466 }
467 }
468
469 return zone;
470}
471
472/*
473 * free_zone_bm_rtree - Free the memory of the radix tree
474 *
475 * Free all node pages of the radix tree. The mem_zone_bm_rtree
476 * structure itself is not freed here nor are the rtree_node
477 * structs.
478 */
479static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
480 int clear_nosave_free)
481{
482 struct rtree_node *node;
483
484 list_for_each_entry(node, &zone->nodes, list)
485 free_image_page(node->data, clear_nosave_free);
486
487 list_for_each_entry(node, &zone->leaves, list)
488 free_image_page(node->data, clear_nosave_free);
489}
490
b788db79
RW
491static void memory_bm_position_reset(struct memory_bitmap *bm)
492{
846705de 493 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 494 bm->cur.bit = 0;
3a20cb17
JR
495
496 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
497 list);
498 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
499 struct rtree_node, list);
500 bm->cur.node_pfn = 0;
501 bm->cur.node_bit = 0;
b788db79
RW
502}
503
504static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
505
506/**
507 * create_bm_block_list - create a list of block bitmap objects
8de03073 508 * @pages - number of pages to track
846705de
RW
509 * @list - list to put the allocated blocks into
510 * @ca - chain allocator to be used for allocating memory
b788db79 511 */
846705de
RW
512static int create_bm_block_list(unsigned long pages,
513 struct list_head *list,
514 struct chain_allocator *ca)
b788db79 515{
846705de 516 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
517
518 while (nr_blocks-- > 0) {
519 struct bm_block *bb;
520
521 bb = chain_alloc(ca, sizeof(struct bm_block));
522 if (!bb)
846705de
RW
523 return -ENOMEM;
524 list_add(&bb->hook, list);
b788db79 525 }
846705de
RW
526
527 return 0;
b788db79
RW
528}
529
846705de
RW
530struct mem_extent {
531 struct list_head hook;
532 unsigned long start;
533 unsigned long end;
534};
535
b788db79 536/**
846705de
RW
537 * free_mem_extents - free a list of memory extents
538 * @list - list of extents to empty
b788db79 539 */
846705de
RW
540static void free_mem_extents(struct list_head *list)
541{
542 struct mem_extent *ext, *aux;
b788db79 543
846705de
RW
544 list_for_each_entry_safe(ext, aux, list, hook) {
545 list_del(&ext->hook);
546 kfree(ext);
547 }
548}
549
550/**
551 * create_mem_extents - create a list of memory extents representing
552 * contiguous ranges of PFNs
553 * @list - list to put the extents into
554 * @gfp_mask - mask to use for memory allocations
555 */
556static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 557{
846705de 558 struct zone *zone;
b788db79 559
846705de 560 INIT_LIST_HEAD(list);
b788db79 561
ee99c71c 562 for_each_populated_zone(zone) {
846705de
RW
563 unsigned long zone_start, zone_end;
564 struct mem_extent *ext, *cur, *aux;
565
846705de 566 zone_start = zone->zone_start_pfn;
c33bc315 567 zone_end = zone_end_pfn(zone);
846705de
RW
568
569 list_for_each_entry(ext, list, hook)
570 if (zone_start <= ext->end)
571 break;
b788db79 572
846705de
RW
573 if (&ext->hook == list || zone_end < ext->start) {
574 /* New extent is necessary */
575 struct mem_extent *new_ext;
576
577 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
578 if (!new_ext) {
579 free_mem_extents(list);
580 return -ENOMEM;
581 }
582 new_ext->start = zone_start;
583 new_ext->end = zone_end;
584 list_add_tail(&new_ext->hook, &ext->hook);
585 continue;
586 }
587
588 /* Merge this zone's range of PFNs with the existing one */
589 if (zone_start < ext->start)
590 ext->start = zone_start;
591 if (zone_end > ext->end)
592 ext->end = zone_end;
593
594 /* More merging may be possible */
595 cur = ext;
596 list_for_each_entry_safe_continue(cur, aux, list, hook) {
597 if (zone_end < cur->start)
598 break;
599 if (zone_end < cur->end)
600 ext->end = cur->end;
601 list_del(&cur->hook);
602 kfree(cur);
603 }
b788db79 604 }
846705de
RW
605
606 return 0;
b788db79
RW
607}
608
609/**
610 * memory_bm_create - allocate memory for a memory bitmap
611 */
b788db79
RW
612static int
613memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
614{
615 struct chain_allocator ca;
846705de
RW
616 struct list_head mem_extents;
617 struct mem_extent *ext;
618 int error;
b788db79
RW
619
620 chain_init(&ca, gfp_mask, safe_needed);
846705de 621 INIT_LIST_HEAD(&bm->blocks);
f469f02d 622 INIT_LIST_HEAD(&bm->zones);
b788db79 623
846705de
RW
624 error = create_mem_extents(&mem_extents, gfp_mask);
625 if (error)
626 return error;
b788db79 627
846705de 628 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 629 struct mem_zone_bm_rtree *zone;
846705de
RW
630 struct bm_block *bb;
631 unsigned long pfn = ext->start;
632 unsigned long pages = ext->end - ext->start;
b788db79 633
846705de 634 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 635
846705de
RW
636 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
637 if (error)
638 goto Error;
b788db79 639
846705de
RW
640 list_for_each_entry_continue(bb, &bm->blocks, hook) {
641 bb->data = get_image_page(gfp_mask, safe_needed);
642 if (!bb->data) {
643 error = -ENOMEM;
644 goto Error;
645 }
b788db79
RW
646
647 bb->start_pfn = pfn;
846705de 648 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 649 pfn += BM_BITS_PER_BLOCK;
846705de 650 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
651 } else {
652 /* This is executed only once in the loop */
846705de 653 pfn += pages;
b788db79
RW
654 }
655 bb->end_pfn = pfn;
b788db79 656 }
f469f02d
JR
657
658 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
659 ext->start, ext->end);
660 if (!zone)
661 goto Error;
662 list_add_tail(&zone->list, &bm->zones);
b788db79 663 }
846705de 664
b788db79
RW
665 bm->p_list = ca.chain;
666 memory_bm_position_reset(bm);
846705de
RW
667 Exit:
668 free_mem_extents(&mem_extents);
669 return error;
b788db79 670
846705de 671 Error:
b788db79
RW
672 bm->p_list = ca.chain;
673 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 674 goto Exit;
b788db79
RW
675}
676
677/**
678 * memory_bm_free - free memory occupied by the memory bitmap @bm
679 */
b788db79
RW
680static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
681{
f469f02d 682 struct mem_zone_bm_rtree *zone;
846705de 683 struct bm_block *bb;
b788db79 684
846705de
RW
685 list_for_each_entry(bb, &bm->blocks, hook)
686 if (bb->data)
687 free_image_page(bb->data, clear_nosave_free);
b788db79 688
f469f02d
JR
689 list_for_each_entry(zone, &bm->zones, list)
690 free_zone_bm_rtree(zone, clear_nosave_free);
691
b788db79 692 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 693
f469f02d 694 INIT_LIST_HEAD(&bm->zones);
846705de 695 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
696}
697
698/**
74dfd666 699 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
700 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
701 * of @bm->cur_zone_bm are updated.
b788db79 702 */
a82f7119 703static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 704 void **addr, unsigned int *bit_nr)
b788db79 705{
b788db79
RW
706 struct bm_block *bb;
707
846705de
RW
708 /*
709 * Check if the pfn corresponds to the current bitmap block and find
710 * the block where it fits if this is not the case.
711 */
712 bb = bm->cur.block;
b788db79 713 if (pfn < bb->start_pfn)
846705de
RW
714 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
715 if (pfn >= bb->start_pfn)
716 break;
b788db79 717
846705de
RW
718 if (pfn >= bb->end_pfn)
719 list_for_each_entry_continue(bb, &bm->blocks, hook)
720 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
721 break;
74dfd666 722
846705de
RW
723 if (&bb->hook == &bm->blocks)
724 return -EFAULT;
725
726 /* The block has been found */
727 bm->cur.block = bb;
b788db79 728 pfn -= bb->start_pfn;
846705de 729 bm->cur.bit = pfn + 1;
0d83304c
AM
730 *bit_nr = pfn;
731 *addr = bb->data;
a82f7119 732 return 0;
74dfd666
RW
733}
734
07a33823
JR
735/*
736 * memory_rtree_find_bit - Find the bit for pfn in the memory
737 * bitmap
738 *
739 * Walks the radix tree to find the page which contains the bit for
740 * pfn and returns the bit position in **addr and *bit_nr.
741 */
742static int memory_rtree_find_bit(struct memory_bitmap *bm, unsigned long pfn,
743 void **addr, unsigned int *bit_nr)
744{
745 struct mem_zone_bm_rtree *curr, *zone;
746 struct rtree_node *node;
747 int i, block_nr;
748
3a20cb17
JR
749 zone = bm->cur.zone;
750
751 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
752 goto zone_found;
753
07a33823
JR
754 zone = NULL;
755
756 /* Find the right zone */
757 list_for_each_entry(curr, &bm->zones, list) {
758 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
759 zone = curr;
760 break;
761 }
762 }
763
764 if (!zone)
765 return -EFAULT;
766
3a20cb17 767zone_found:
07a33823
JR
768 /*
769 * We have a zone. Now walk the radix tree to find the leave
770 * node for our pfn.
771 */
3a20cb17
JR
772
773 node = bm->cur.node;
774 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
775 goto node_found;
776
07a33823
JR
777 node = zone->rtree;
778 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
779
780 for (i = zone->levels; i > 0; i--) {
781 int index;
782
783 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
784 index &= BM_RTREE_LEVEL_MASK;
785 BUG_ON(node->data[index] == 0);
786 node = (struct rtree_node *)node->data[index];
787 }
788
3a20cb17
JR
789node_found:
790 /* Update last position */
791 bm->cur.zone = zone;
792 bm->cur.node = node;
793 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
794
07a33823
JR
795 /* Set return values */
796 *addr = node->data;
797 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
798
799 return 0;
800}
801
74dfd666
RW
802static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
803{
804 void *addr;
805 unsigned int bit;
a82f7119 806 int error;
74dfd666 807
a82f7119
RW
808 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
809 BUG_ON(error);
74dfd666 810 set_bit(bit, addr);
07a33823
JR
811
812 error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
813 BUG_ON(error);
814 set_bit(bit, addr);
74dfd666
RW
815}
816
a82f7119
RW
817static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
818{
819 void *addr;
820 unsigned int bit;
821 int error;
822
823 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
824 if (!error)
825 set_bit(bit, addr);
07a33823
JR
826 else
827 return error;
828
829 error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
830 if (!error)
831 set_bit(bit, addr);
832
a82f7119
RW
833 return error;
834}
835
74dfd666
RW
836static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
837{
838 void *addr;
839 unsigned int bit;
a82f7119 840 int error;
74dfd666 841
a82f7119
RW
842 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
843 BUG_ON(error);
74dfd666 844 clear_bit(bit, addr);
07a33823
JR
845
846 error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
847 BUG_ON(error);
848 clear_bit(bit, addr);
74dfd666
RW
849}
850
6efde38f
JR
851static void memory_bm_clear_current(struct memory_bitmap *bm)
852{
853 int bit;
854
855 bit = max(bm->cur.node_bit - 1, 0);
856 clear_bit(bit, bm->cur.node->data);
857
858 bit = max(bm->cur.bit - 1, 0);
859 clear_bit(bit, bm->cur.block->data);
860}
861
74dfd666
RW
862static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
863{
864 void *addr;
865 unsigned int bit;
07a33823
JR
866 int error, error2;
867 int v;
74dfd666 868
a82f7119
RW
869 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
870 BUG_ON(error);
07a33823
JR
871 v = test_bit(bit, addr);
872
873 error2 = memory_rtree_find_bit(bm, pfn, &addr, &bit);
874 BUG_ON(error2);
875
876 WARN_ON_ONCE(v != test_bit(bit, addr));
877
878 return v;
b788db79
RW
879}
880
69643279
RW
881static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
882{
883 void *addr;
884 unsigned int bit;
07a33823
JR
885 int present;
886
887 present = !memory_bm_find_bit(bm, pfn, &addr, &bit);
888
889 WARN_ON_ONCE(present != !memory_rtree_find_bit(bm, pfn, &addr, &bit));
69643279 890
07a33823 891 return present;
69643279
RW
892}
893
b788db79
RW
894/**
895 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
896 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
897 * returned.
898 *
899 * It is required to run memory_bm_position_reset() before the first call to
900 * this function.
901 */
902
3a20cb17
JR
903static unsigned long memory_bm_rtree_next_pfn(struct memory_bitmap *bm);
904
b788db79
RW
905static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
906{
3a20cb17 907 unsigned long rtree_pfn;
b788db79 908 struct bm_block *bb;
b788db79
RW
909 int bit;
910
3a20cb17
JR
911 rtree_pfn = memory_bm_rtree_next_pfn(bm);
912
846705de 913 bb = bm->cur.block;
b788db79 914 do {
846705de
RW
915 bit = bm->cur.bit;
916 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
917 if (bit < bm_block_bits(bb))
918 goto Return_pfn;
919
920 bb = list_entry(bb->hook.next, struct bm_block, hook);
921 bm->cur.block = bb;
922 bm->cur.bit = 0;
923 } while (&bb->hook != &bm->blocks);
924
b788db79 925 memory_bm_position_reset(bm);
3a20cb17 926 WARN_ON_ONCE(rtree_pfn != BM_END_OF_MAP);
b788db79
RW
927 return BM_END_OF_MAP;
928
59a49335 929 Return_pfn:
3a20cb17 930 WARN_ON_ONCE(bb->start_pfn + bit != rtree_pfn);
0d83304c
AM
931 bm->cur.bit = bit + 1;
932 return bb->start_pfn + bit;
b788db79
RW
933}
934
3a20cb17
JR
935/*
936 * rtree_next_node - Jumps to the next leave node
937 *
938 * Sets the position to the beginning of the next node in the
939 * memory bitmap. This is either the next node in the current
940 * zone's radix tree or the first node in the radix tree of the
941 * next zone.
942 *
943 * Returns true if there is a next node, false otherwise.
944 */
945static bool rtree_next_node(struct memory_bitmap *bm)
946{
947 bm->cur.node = list_entry(bm->cur.node->list.next,
948 struct rtree_node, list);
949 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
950 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
951 bm->cur.node_bit = 0;
952 return true;
953 }
954
955 /* No more nodes, goto next zone */
956 bm->cur.zone = list_entry(bm->cur.zone->list.next,
957 struct mem_zone_bm_rtree, list);
958 if (&bm->cur.zone->list != &bm->zones) {
959 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
960 struct rtree_node, list);
961 bm->cur.node_pfn = 0;
962 bm->cur.node_bit = 0;
963 return true;
964 }
965
966 /* No more zones */
967 return false;
968}
969
970/*
971 * memory_bm_rtree_next_pfn - Find the next set bit
972 *
973 * Starting from the last returned position this function searches
974 * for the next set bit in the memory bitmap and returns its
975 * number. If no more bit is set BM_END_OF_MAP is returned.
976 */
977static unsigned long memory_bm_rtree_next_pfn(struct memory_bitmap *bm)
978{
979 unsigned long bits, pfn, pages;
980 int bit;
981
982 do {
983 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
984 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
985 bit = find_next_bit(bm->cur.node->data, bits,
986 bm->cur.node_bit);
987 if (bit < bits) {
988 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
989 bm->cur.node_bit = bit + 1;
990 return pfn;
991 }
992 } while (rtree_next_node(bm));
993
994 return BM_END_OF_MAP;
995}
996
74dfd666
RW
997/**
998 * This structure represents a range of page frames the contents of which
999 * should not be saved during the suspend.
1000 */
1001
1002struct nosave_region {
1003 struct list_head list;
1004 unsigned long start_pfn;
1005 unsigned long end_pfn;
1006};
1007
1008static LIST_HEAD(nosave_regions);
1009
1010/**
1011 * register_nosave_region - register a range of page frames the contents
1012 * of which should not be saved during the suspend (to be used in the early
1013 * initialization code)
1014 */
1015
1016void __init
940d67f6
JB
1017__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
1018 int use_kmalloc)
74dfd666
RW
1019{
1020 struct nosave_region *region;
1021
1022 if (start_pfn >= end_pfn)
1023 return;
1024
1025 if (!list_empty(&nosave_regions)) {
1026 /* Try to extend the previous region (they should be sorted) */
1027 region = list_entry(nosave_regions.prev,
1028 struct nosave_region, list);
1029 if (region->end_pfn == start_pfn) {
1030 region->end_pfn = end_pfn;
1031 goto Report;
1032 }
1033 }
940d67f6
JB
1034 if (use_kmalloc) {
1035 /* during init, this shouldn't fail */
1036 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
1037 BUG_ON(!region);
1038 } else
1039 /* This allocation cannot fail */
c2f69cda 1040 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
74dfd666
RW
1041 region->start_pfn = start_pfn;
1042 region->end_pfn = end_pfn;
1043 list_add_tail(&region->list, &nosave_regions);
1044 Report:
cd38ca85
BH
1045 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
1046 (unsigned long long) start_pfn << PAGE_SHIFT,
1047 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
1048}
1049
1050/*
1051 * Set bits in this map correspond to the page frames the contents of which
1052 * should not be saved during the suspend.
1053 */
1054static struct memory_bitmap *forbidden_pages_map;
1055
1056/* Set bits in this map correspond to free page frames. */
1057static struct memory_bitmap *free_pages_map;
1058
1059/*
1060 * Each page frame allocated for creating the image is marked by setting the
1061 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1062 */
1063
1064void swsusp_set_page_free(struct page *page)
1065{
1066 if (free_pages_map)
1067 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1068}
1069
1070static int swsusp_page_is_free(struct page *page)
1071{
1072 return free_pages_map ?
1073 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1074}
1075
1076void swsusp_unset_page_free(struct page *page)
1077{
1078 if (free_pages_map)
1079 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1080}
1081
1082static void swsusp_set_page_forbidden(struct page *page)
1083{
1084 if (forbidden_pages_map)
1085 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1086}
1087
1088int swsusp_page_is_forbidden(struct page *page)
1089{
1090 return forbidden_pages_map ?
1091 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1092}
1093
1094static void swsusp_unset_page_forbidden(struct page *page)
1095{
1096 if (forbidden_pages_map)
1097 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1098}
1099
1100/**
1101 * mark_nosave_pages - set bits corresponding to the page frames the
1102 * contents of which should not be saved in a given bitmap.
1103 */
1104
1105static void mark_nosave_pages(struct memory_bitmap *bm)
1106{
1107 struct nosave_region *region;
1108
1109 if (list_empty(&nosave_regions))
1110 return;
1111
1112 list_for_each_entry(region, &nosave_regions, list) {
1113 unsigned long pfn;
1114
69f1d475
BH
1115 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1116 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1117 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1118 - 1);
74dfd666
RW
1119
1120 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1121 if (pfn_valid(pfn)) {
1122 /*
1123 * It is safe to ignore the result of
1124 * mem_bm_set_bit_check() here, since we won't
1125 * touch the PFNs for which the error is
1126 * returned anyway.
1127 */
1128 mem_bm_set_bit_check(bm, pfn);
1129 }
74dfd666
RW
1130 }
1131}
1132
1133/**
1134 * create_basic_memory_bitmaps - create bitmaps needed for marking page
1135 * frames that should not be saved and free page frames. The pointers
1136 * forbidden_pages_map and free_pages_map are only modified if everything
1137 * goes well, because we don't want the bits to be used before both bitmaps
1138 * are set up.
1139 */
1140
1141int create_basic_memory_bitmaps(void)
1142{
1143 struct memory_bitmap *bm1, *bm2;
1144 int error = 0;
1145
aab17289
RW
1146 if (forbidden_pages_map && free_pages_map)
1147 return 0;
1148 else
1149 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1150
0709db60 1151 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1152 if (!bm1)
1153 return -ENOMEM;
1154
0709db60 1155 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1156 if (error)
1157 goto Free_first_object;
1158
0709db60 1159 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1160 if (!bm2)
1161 goto Free_first_bitmap;
1162
0709db60 1163 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1164 if (error)
1165 goto Free_second_object;
1166
1167 forbidden_pages_map = bm1;
1168 free_pages_map = bm2;
1169 mark_nosave_pages(forbidden_pages_map);
1170
23976728 1171 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
1172
1173 return 0;
1174
1175 Free_second_object:
1176 kfree(bm2);
1177 Free_first_bitmap:
1178 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1179 Free_first_object:
1180 kfree(bm1);
1181 return -ENOMEM;
1182}
1183
1184/**
1185 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1186 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1187 * so that the bitmaps themselves are not referred to while they are being
1188 * freed.
1189 */
1190
1191void free_basic_memory_bitmaps(void)
1192{
1193 struct memory_bitmap *bm1, *bm2;
1194
6a0c7cd3
RW
1195 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1196 return;
74dfd666
RW
1197
1198 bm1 = forbidden_pages_map;
1199 bm2 = free_pages_map;
1200 forbidden_pages_map = NULL;
1201 free_pages_map = NULL;
1202 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1203 kfree(bm1);
1204 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1205 kfree(bm2);
1206
23976728 1207 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
1208}
1209
b788db79
RW
1210/**
1211 * snapshot_additional_pages - estimate the number of additional pages
1212 * be needed for setting up the suspend image data structures for given
1213 * zone (usually the returned value is greater than the exact number)
1214 */
1215
1216unsigned int snapshot_additional_pages(struct zone *zone)
1217{
f469f02d 1218 unsigned int rtree, nodes;
b788db79
RW
1219 unsigned int res;
1220
1221 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
160cb5a9
NK
1222 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
1223 LINKED_PAGE_DATA_SIZE);
f469f02d
JR
1224 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1225 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1226 LINKED_PAGE_DATA_SIZE);
1227 while (nodes > 1) {
1228 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1229 rtree += nodes;
1230 }
1231
1232 return 2 * (res + rtree);
b788db79
RW
1233}
1234
8357376d
RW
1235#ifdef CONFIG_HIGHMEM
1236/**
1237 * count_free_highmem_pages - compute the total number of free highmem
1238 * pages, system-wide.
1239 */
1240
1241static unsigned int count_free_highmem_pages(void)
1242{
1243 struct zone *zone;
1244 unsigned int cnt = 0;
1245
ee99c71c
KM
1246 for_each_populated_zone(zone)
1247 if (is_highmem(zone))
d23ad423 1248 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1249
1250 return cnt;
1251}
1252
1253/**
1254 * saveable_highmem_page - Determine whether a highmem page should be
1255 * included in the suspend image.
1256 *
1257 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1258 * and it isn't a part of a free chunk of pages.
1259 */
846705de 1260static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1261{
1262 struct page *page;
1263
1264 if (!pfn_valid(pfn))
1265 return NULL;
1266
1267 page = pfn_to_page(pfn);
846705de
RW
1268 if (page_zone(page) != zone)
1269 return NULL;
8357376d
RW
1270
1271 BUG_ON(!PageHighMem(page));
1272
7be98234
RW
1273 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1274 PageReserved(page))
8357376d
RW
1275 return NULL;
1276
c6968e73
SG
1277 if (page_is_guard(page))
1278 return NULL;
1279
8357376d
RW
1280 return page;
1281}
1282
1283/**
1284 * count_highmem_pages - compute the total number of saveable highmem
1285 * pages.
1286 */
1287
fe419535 1288static unsigned int count_highmem_pages(void)
8357376d
RW
1289{
1290 struct zone *zone;
1291 unsigned int n = 0;
1292
98e73dc5 1293 for_each_populated_zone(zone) {
8357376d
RW
1294 unsigned long pfn, max_zone_pfn;
1295
1296 if (!is_highmem(zone))
1297 continue;
1298
1299 mark_free_pages(zone);
c33bc315 1300 max_zone_pfn = zone_end_pfn(zone);
8357376d 1301 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1302 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1303 n++;
1304 }
1305 return n;
1306}
1307#else
846705de
RW
1308static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1309{
1310 return NULL;
1311}
8357376d
RW
1312#endif /* CONFIG_HIGHMEM */
1313
25761b6e 1314/**
8a235efa
RW
1315 * saveable_page - Determine whether a non-highmem page should be included
1316 * in the suspend image.
25761b6e 1317 *
8357376d
RW
1318 * We should save the page if it isn't Nosave, and is not in the range
1319 * of pages statically defined as 'unsaveable', and it isn't a part of
1320 * a free chunk of pages.
25761b6e 1321 */
846705de 1322static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1323{
de491861 1324 struct page *page;
25761b6e
RW
1325
1326 if (!pfn_valid(pfn))
ae83c5ee 1327 return NULL;
25761b6e
RW
1328
1329 page = pfn_to_page(pfn);
846705de
RW
1330 if (page_zone(page) != zone)
1331 return NULL;
ae83c5ee 1332
8357376d
RW
1333 BUG_ON(PageHighMem(page));
1334
7be98234 1335 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1336 return NULL;
8357376d 1337
8a235efa
RW
1338 if (PageReserved(page)
1339 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1340 return NULL;
25761b6e 1341
c6968e73
SG
1342 if (page_is_guard(page))
1343 return NULL;
1344
ae83c5ee 1345 return page;
25761b6e
RW
1346}
1347
8357376d
RW
1348/**
1349 * count_data_pages - compute the total number of saveable non-highmem
1350 * pages.
1351 */
1352
fe419535 1353static unsigned int count_data_pages(void)
25761b6e
RW
1354{
1355 struct zone *zone;
ae83c5ee 1356 unsigned long pfn, max_zone_pfn;
dc19d507 1357 unsigned int n = 0;
25761b6e 1358
98e73dc5 1359 for_each_populated_zone(zone) {
25761b6e
RW
1360 if (is_highmem(zone))
1361 continue;
8357376d 1362
25761b6e 1363 mark_free_pages(zone);
c33bc315 1364 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1365 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1366 if (saveable_page(zone, pfn))
8357376d 1367 n++;
25761b6e 1368 }
a0f49651 1369 return n;
25761b6e
RW
1370}
1371
8357376d
RW
1372/* This is needed, because copy_page and memcpy are not usable for copying
1373 * task structs.
1374 */
1375static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1376{
1377 int n;
1378
f623f0db
RW
1379 for (n = PAGE_SIZE / sizeof(long); n; n--)
1380 *dst++ = *src++;
1381}
1382
8a235efa
RW
1383
1384/**
1385 * safe_copy_page - check if the page we are going to copy is marked as
1386 * present in the kernel page tables (this always is the case if
1387 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1388 * kernel_page_present() always returns 'true').
1389 */
1390static void safe_copy_page(void *dst, struct page *s_page)
1391{
1392 if (kernel_page_present(s_page)) {
1393 do_copy_page(dst, page_address(s_page));
1394 } else {
1395 kernel_map_pages(s_page, 1, 1);
1396 do_copy_page(dst, page_address(s_page));
1397 kernel_map_pages(s_page, 1, 0);
1398 }
1399}
1400
1401
8357376d
RW
1402#ifdef CONFIG_HIGHMEM
1403static inline struct page *
1404page_is_saveable(struct zone *zone, unsigned long pfn)
1405{
1406 return is_highmem(zone) ?
846705de 1407 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1408}
1409
8a235efa 1410static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1411{
1412 struct page *s_page, *d_page;
1413 void *src, *dst;
1414
1415 s_page = pfn_to_page(src_pfn);
1416 d_page = pfn_to_page(dst_pfn);
1417 if (PageHighMem(s_page)) {
0de9a1e2
CW
1418 src = kmap_atomic(s_page);
1419 dst = kmap_atomic(d_page);
8357376d 1420 do_copy_page(dst, src);
0de9a1e2
CW
1421 kunmap_atomic(dst);
1422 kunmap_atomic(src);
8357376d 1423 } else {
8357376d
RW
1424 if (PageHighMem(d_page)) {
1425 /* Page pointed to by src may contain some kernel
1426 * data modified by kmap_atomic()
1427 */
8a235efa 1428 safe_copy_page(buffer, s_page);
0de9a1e2 1429 dst = kmap_atomic(d_page);
3ecb01df 1430 copy_page(dst, buffer);
0de9a1e2 1431 kunmap_atomic(dst);
8357376d 1432 } else {
8a235efa 1433 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1434 }
1435 }
1436}
1437#else
846705de 1438#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1439
8a235efa 1440static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1441{
8a235efa
RW
1442 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1443 pfn_to_page(src_pfn));
8357376d
RW
1444}
1445#endif /* CONFIG_HIGHMEM */
1446
b788db79
RW
1447static void
1448copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1449{
1450 struct zone *zone;
b788db79 1451 unsigned long pfn;
25761b6e 1452
98e73dc5 1453 for_each_populated_zone(zone) {
b788db79
RW
1454 unsigned long max_zone_pfn;
1455
25761b6e 1456 mark_free_pages(zone);
c33bc315 1457 max_zone_pfn = zone_end_pfn(zone);
b788db79 1458 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1459 if (page_is_saveable(zone, pfn))
b788db79 1460 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1461 }
b788db79
RW
1462 memory_bm_position_reset(orig_bm);
1463 memory_bm_position_reset(copy_bm);
df7c4872 1464 for(;;) {
b788db79 1465 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1466 if (unlikely(pfn == BM_END_OF_MAP))
1467 break;
1468 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1469 }
25761b6e
RW
1470}
1471
8357376d
RW
1472/* Total number of image pages */
1473static unsigned int nr_copy_pages;
1474/* Number of pages needed for saving the original pfns of the image pages */
1475static unsigned int nr_meta_pages;
64a473cb
RW
1476/*
1477 * Numbers of normal and highmem page frames allocated for hibernation image
1478 * before suspending devices.
1479 */
1480unsigned int alloc_normal, alloc_highmem;
1481/*
1482 * Memory bitmap used for marking saveable pages (during hibernation) or
1483 * hibernation image pages (during restore)
1484 */
1485static struct memory_bitmap orig_bm;
1486/*
1487 * Memory bitmap used during hibernation for marking allocated page frames that
1488 * will contain copies of saveable pages. During restore it is initially used
1489 * for marking hibernation image pages, but then the set bits from it are
1490 * duplicated in @orig_bm and it is released. On highmem systems it is next
1491 * used for marking "safe" highmem pages, but it has to be reinitialized for
1492 * this purpose.
1493 */
1494static struct memory_bitmap copy_bm;
8357376d 1495
25761b6e 1496/**
940864dd 1497 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1498 *
940864dd
RW
1499 * Suspend pages are alocated before the atomic copy is made, so we
1500 * need to release them after the resume.
25761b6e
RW
1501 */
1502
1503void swsusp_free(void)
1504{
6efde38f 1505 unsigned long fb_pfn, fr_pfn;
25761b6e 1506
6efde38f
JR
1507 memory_bm_position_reset(forbidden_pages_map);
1508 memory_bm_position_reset(free_pages_map);
1509
1510loop:
1511 fr_pfn = memory_bm_next_pfn(free_pages_map);
1512 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1513
1514 /*
1515 * Find the next bit set in both bitmaps. This is guaranteed to
1516 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1517 */
1518 do {
1519 if (fb_pfn < fr_pfn)
1520 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1521 if (fr_pfn < fb_pfn)
1522 fr_pfn = memory_bm_next_pfn(free_pages_map);
1523 } while (fb_pfn != fr_pfn);
1524
1525 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1526 struct page *page = pfn_to_page(fr_pfn);
1527
1528 memory_bm_clear_current(forbidden_pages_map);
1529 memory_bm_clear_current(free_pages_map);
1530 __free_page(page);
1531 goto loop;
25761b6e 1532 }
6efde38f 1533
f577eb30
RW
1534 nr_copy_pages = 0;
1535 nr_meta_pages = 0;
75534b50 1536 restore_pblist = NULL;
6e1819d6 1537 buffer = NULL;
64a473cb
RW
1538 alloc_normal = 0;
1539 alloc_highmem = 0;
25761b6e
RW
1540}
1541
4bb33435
RW
1542/* Helper functions used for the shrinking of memory. */
1543
1544#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1545
fe419535 1546/**
4bb33435
RW
1547 * preallocate_image_pages - Allocate a number of pages for hibernation image
1548 * @nr_pages: Number of page frames to allocate.
1549 * @mask: GFP flags to use for the allocation.
fe419535 1550 *
4bb33435
RW
1551 * Return value: Number of page frames actually allocated
1552 */
1553static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1554{
1555 unsigned long nr_alloc = 0;
1556
1557 while (nr_pages > 0) {
64a473cb
RW
1558 struct page *page;
1559
1560 page = alloc_image_page(mask);
1561 if (!page)
4bb33435 1562 break;
64a473cb
RW
1563 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1564 if (PageHighMem(page))
1565 alloc_highmem++;
1566 else
1567 alloc_normal++;
4bb33435
RW
1568 nr_pages--;
1569 nr_alloc++;
1570 }
1571
1572 return nr_alloc;
1573}
1574
6715045d
RW
1575static unsigned long preallocate_image_memory(unsigned long nr_pages,
1576 unsigned long avail_normal)
4bb33435 1577{
6715045d
RW
1578 unsigned long alloc;
1579
1580 if (avail_normal <= alloc_normal)
1581 return 0;
1582
1583 alloc = avail_normal - alloc_normal;
1584 if (nr_pages < alloc)
1585 alloc = nr_pages;
1586
1587 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1588}
1589
1590#ifdef CONFIG_HIGHMEM
1591static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1592{
1593 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1594}
1595
1596/**
1597 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1598 */
4bb33435
RW
1599static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1600{
1601 x *= multiplier;
1602 do_div(x, base);
1603 return (unsigned long)x;
1604}
fe419535 1605
4bb33435
RW
1606static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1607 unsigned long highmem,
1608 unsigned long total)
fe419535 1609{
4bb33435
RW
1610 unsigned long alloc = __fraction(nr_pages, highmem, total);
1611
1612 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1613}
4bb33435
RW
1614#else /* CONFIG_HIGHMEM */
1615static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1616{
1617 return 0;
1618}
1619
1620static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1621 unsigned long highmem,
1622 unsigned long total)
1623{
1624 return 0;
1625}
1626#endif /* CONFIG_HIGHMEM */
fe419535 1627
4bb33435 1628/**
64a473cb
RW
1629 * free_unnecessary_pages - Release preallocated pages not needed for the image
1630 */
1631static void free_unnecessary_pages(void)
1632{
6715045d 1633 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1634
6715045d
RW
1635 save = count_data_pages();
1636 if (alloc_normal >= save) {
1637 to_free_normal = alloc_normal - save;
1638 save = 0;
1639 } else {
1640 to_free_normal = 0;
1641 save -= alloc_normal;
1642 }
1643 save += count_highmem_pages();
1644 if (alloc_highmem >= save) {
1645 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1646 } else {
1647 to_free_highmem = 0;
4d4cf23c
RW
1648 save -= alloc_highmem;
1649 if (to_free_normal > save)
1650 to_free_normal -= save;
1651 else
1652 to_free_normal = 0;
64a473cb
RW
1653 }
1654
1655 memory_bm_position_reset(&copy_bm);
1656
a9c9b442 1657 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1658 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1659 struct page *page = pfn_to_page(pfn);
1660
1661 if (PageHighMem(page)) {
1662 if (!to_free_highmem)
1663 continue;
1664 to_free_highmem--;
1665 alloc_highmem--;
1666 } else {
1667 if (!to_free_normal)
1668 continue;
1669 to_free_normal--;
1670 alloc_normal--;
1671 }
1672 memory_bm_clear_bit(&copy_bm, pfn);
1673 swsusp_unset_page_forbidden(page);
1674 swsusp_unset_page_free(page);
1675 __free_page(page);
1676 }
1677}
1678
ef4aede3
RW
1679/**
1680 * minimum_image_size - Estimate the minimum acceptable size of an image
1681 * @saveable: Number of saveable pages in the system.
1682 *
1683 * We want to avoid attempting to free too much memory too hard, so estimate the
1684 * minimum acceptable size of a hibernation image to use as the lower limit for
1685 * preallocating memory.
1686 *
1687 * We assume that the minimum image size should be proportional to
1688 *
1689 * [number of saveable pages] - [number of pages that can be freed in theory]
1690 *
1691 * where the second term is the sum of (1) reclaimable slab pages, (2) active
4d434820 1692 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
ef4aede3
RW
1693 * minus mapped file pages.
1694 */
1695static unsigned long minimum_image_size(unsigned long saveable)
1696{
1697 unsigned long size;
1698
1699 size = global_page_state(NR_SLAB_RECLAIMABLE)
1700 + global_page_state(NR_ACTIVE_ANON)
1701 + global_page_state(NR_INACTIVE_ANON)
1702 + global_page_state(NR_ACTIVE_FILE)
1703 + global_page_state(NR_INACTIVE_FILE)
1704 - global_page_state(NR_FILE_MAPPED);
1705
1706 return saveable <= size ? 0 : saveable - size;
1707}
1708
64a473cb
RW
1709/**
1710 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1711 *
1712 * To create a hibernation image it is necessary to make a copy of every page
1713 * frame in use. We also need a number of page frames to be free during
1714 * hibernation for allocations made while saving the image and for device
1715 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1716 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1717 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1718 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1719 * total number of available page frames and allocate at least
4bb33435 1720 *
ddeb6487
RW
1721 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1722 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1723 *
1724 * of them, which corresponds to the maximum size of a hibernation image.
1725 *
1726 * If image_size is set below the number following from the above formula,
1727 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1728 * pages in the system is below the requested image size or the minimum
1729 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1730 */
64a473cb 1731int hibernate_preallocate_memory(void)
fe419535 1732{
fe419535 1733 struct zone *zone;
4bb33435 1734 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1735 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
fe419535 1736 struct timeval start, stop;
64a473cb 1737 int error;
fe419535 1738
64a473cb 1739 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1740 do_gettimeofday(&start);
fe419535 1741
64a473cb
RW
1742 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1743 if (error)
1744 goto err_out;
1745
1746 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1747 if (error)
1748 goto err_out;
1749
1750 alloc_normal = 0;
1751 alloc_highmem = 0;
1752
4bb33435 1753 /* Count the number of saveable data pages. */
64a473cb 1754 save_highmem = count_highmem_pages();
4bb33435 1755 saveable = count_data_pages();
fe419535 1756
4bb33435
RW
1757 /*
1758 * Compute the total number of page frames we can use (count) and the
1759 * number of pages needed for image metadata (size).
1760 */
1761 count = saveable;
64a473cb
RW
1762 saveable += save_highmem;
1763 highmem = save_highmem;
4bb33435
RW
1764 size = 0;
1765 for_each_populated_zone(zone) {
1766 size += snapshot_additional_pages(zone);
1767 if (is_highmem(zone))
1768 highmem += zone_page_state(zone, NR_FREE_PAGES);
1769 else
1770 count += zone_page_state(zone, NR_FREE_PAGES);
1771 }
6715045d 1772 avail_normal = count;
4bb33435
RW
1773 count += highmem;
1774 count -= totalreserve_pages;
1775
85055dd8
MS
1776 /* Add number of pages required for page keys (s390 only). */
1777 size += page_key_additional_pages(saveable);
1778
4bb33435 1779 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1780 max_size = (count - (size + PAGES_FOR_IO)) / 2
1781 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1782 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1783 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1784 if (size > max_size)
1785 size = max_size;
1786 /*
266f1a25
RW
1787 * If the desired number of image pages is at least as large as the
1788 * current number of saveable pages in memory, allocate page frames for
1789 * the image and we're done.
4bb33435 1790 */
64a473cb
RW
1791 if (size >= saveable) {
1792 pages = preallocate_image_highmem(save_highmem);
6715045d 1793 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1794 goto out;
64a473cb 1795 }
4bb33435 1796
ef4aede3
RW
1797 /* Estimate the minimum size of the image. */
1798 pages = minimum_image_size(saveable);
6715045d
RW
1799 /*
1800 * To avoid excessive pressure on the normal zone, leave room in it to
1801 * accommodate an image of the minimum size (unless it's already too
1802 * small, in which case don't preallocate pages from it at all).
1803 */
1804 if (avail_normal > pages)
1805 avail_normal -= pages;
1806 else
1807 avail_normal = 0;
ef4aede3
RW
1808 if (size < pages)
1809 size = min_t(unsigned long, pages, max_size);
1810
4bb33435
RW
1811 /*
1812 * Let the memory management subsystem know that we're going to need a
1813 * large number of page frames to allocate and make it free some memory.
1814 * NOTE: If this is not done, performance will be hurt badly in some
1815 * test cases.
1816 */
1817 shrink_all_memory(saveable - size);
1818
1819 /*
1820 * The number of saveable pages in memory was too high, so apply some
1821 * pressure to decrease it. First, make room for the largest possible
1822 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1823 * of the image as much as indicated by 'size' using allocations from
1824 * highmem and non-highmem zones separately.
4bb33435
RW
1825 */
1826 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1827 alloc = count - max_size;
1828 if (alloc > pages_highmem)
1829 alloc -= pages_highmem;
1830 else
1831 alloc = 0;
6715045d
RW
1832 pages = preallocate_image_memory(alloc, avail_normal);
1833 if (pages < alloc) {
1834 /* We have exhausted non-highmem pages, try highmem. */
1835 alloc -= pages;
1836 pages += pages_highmem;
1837 pages_highmem = preallocate_image_highmem(alloc);
1838 if (pages_highmem < alloc)
1839 goto err_out;
1840 pages += pages_highmem;
1841 /*
1842 * size is the desired number of saveable pages to leave in
1843 * memory, so try to preallocate (all memory - size) pages.
1844 */
1845 alloc = (count - pages) - size;
1846 pages += preallocate_image_highmem(alloc);
1847 } else {
1848 /*
1849 * There are approximately max_size saveable pages at this point
1850 * and we want to reduce this number down to size.
1851 */
1852 alloc = max_size - size;
1853 size = preallocate_highmem_fraction(alloc, highmem, count);
1854 pages_highmem += size;
1855 alloc -= size;
1856 size = preallocate_image_memory(alloc, avail_normal);
1857 pages_highmem += preallocate_image_highmem(alloc - size);
1858 pages += pages_highmem + size;
1859 }
4bb33435 1860
64a473cb
RW
1861 /*
1862 * We only need as many page frames for the image as there are saveable
1863 * pages in memory, but we have allocated more. Release the excessive
1864 * ones now.
1865 */
1866 free_unnecessary_pages();
4bb33435
RW
1867
1868 out:
fe419535 1869 do_gettimeofday(&stop);
64a473cb
RW
1870 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1871 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1872
1873 return 0;
64a473cb
RW
1874
1875 err_out:
1876 printk(KERN_CONT "\n");
1877 swsusp_free();
1878 return -ENOMEM;
fe419535
RW
1879}
1880
8357376d
RW
1881#ifdef CONFIG_HIGHMEM
1882/**
1883 * count_pages_for_highmem - compute the number of non-highmem pages
1884 * that will be necessary for creating copies of highmem pages.
1885 */
1886
1887static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1888{
64a473cb 1889 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1890
1891 if (free_highmem >= nr_highmem)
1892 nr_highmem = 0;
1893 else
1894 nr_highmem -= free_highmem;
1895
1896 return nr_highmem;
1897}
1898#else
1899static unsigned int
1900count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1901#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1902
1903/**
8357376d
RW
1904 * enough_free_mem - Make sure we have enough free memory for the
1905 * snapshot image.
25761b6e
RW
1906 */
1907
8357376d 1908static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1909{
e5e2fa78 1910 struct zone *zone;
64a473cb 1911 unsigned int free = alloc_normal;
e5e2fa78 1912
98e73dc5 1913 for_each_populated_zone(zone)
8357376d 1914 if (!is_highmem(zone))
d23ad423 1915 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1916
8357376d 1917 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1918 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1919 nr_pages, PAGES_FOR_IO, free);
940864dd 1920
64a473cb 1921 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1922}
1923
8357376d
RW
1924#ifdef CONFIG_HIGHMEM
1925/**
1926 * get_highmem_buffer - if there are some highmem pages in the suspend
1927 * image, we may need the buffer to copy them and/or load their data.
1928 */
1929
1930static inline int get_highmem_buffer(int safe_needed)
1931{
1932 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1933 return buffer ? 0 : -ENOMEM;
1934}
1935
1936/**
1937 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1938 * Try to allocate as many pages as needed, but if the number of free
1939 * highmem pages is lesser than that, allocate them all.
1940 */
1941
1942static inline unsigned int
64a473cb 1943alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1944{
1945 unsigned int to_alloc = count_free_highmem_pages();
1946
1947 if (to_alloc > nr_highmem)
1948 to_alloc = nr_highmem;
1949
1950 nr_highmem -= to_alloc;
1951 while (to_alloc-- > 0) {
1952 struct page *page;
1953
1954 page = alloc_image_page(__GFP_HIGHMEM);
1955 memory_bm_set_bit(bm, page_to_pfn(page));
1956 }
1957 return nr_highmem;
1958}
1959#else
1960static inline int get_highmem_buffer(int safe_needed) { return 0; }
1961
1962static inline unsigned int
64a473cb 1963alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1964#endif /* CONFIG_HIGHMEM */
1965
1966/**
1967 * swsusp_alloc - allocate memory for the suspend image
1968 *
1969 * We first try to allocate as many highmem pages as there are
1970 * saveable highmem pages in the system. If that fails, we allocate
1971 * non-highmem pages for the copies of the remaining highmem ones.
1972 *
1973 * In this approach it is likely that the copies of highmem pages will
1974 * also be located in the high memory, because of the way in which
1975 * copy_data_pages() works.
1976 */
1977
b788db79
RW
1978static int
1979swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1980 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1981{
8357376d 1982 if (nr_highmem > 0) {
2e725a06 1983 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1984 goto err_out;
1985 if (nr_highmem > alloc_highmem) {
1986 nr_highmem -= alloc_highmem;
1987 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1988 }
8357376d 1989 }
64a473cb
RW
1990 if (nr_pages > alloc_normal) {
1991 nr_pages -= alloc_normal;
1992 while (nr_pages-- > 0) {
1993 struct page *page;
1994
1995 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1996 if (!page)
1997 goto err_out;
1998 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1999 }
25761b6e 2000 }
64a473cb 2001
b788db79 2002 return 0;
25761b6e 2003
64a473cb 2004 err_out:
b788db79 2005 swsusp_free();
2e725a06 2006 return -ENOMEM;
25761b6e
RW
2007}
2008
722a9f92 2009asmlinkage __visible int swsusp_save(void)
25761b6e 2010{
8357376d 2011 unsigned int nr_pages, nr_highmem;
25761b6e 2012
07c3bb57 2013 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 2014
9f8f2172 2015 drain_local_pages(NULL);
a0f49651 2016 nr_pages = count_data_pages();
8357376d 2017 nr_highmem = count_highmem_pages();
23976728 2018 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 2019
8357376d 2020 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 2021 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
2022 return -ENOMEM;
2023 }
2024
8357376d 2025 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 2026 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 2027 return -ENOMEM;
8357376d 2028 }
25761b6e
RW
2029
2030 /* During allocating of suspend pagedir, new cold pages may appear.
2031 * Kill them.
2032 */
9f8f2172 2033 drain_local_pages(NULL);
b788db79 2034 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
2035
2036 /*
2037 * End of critical section. From now on, we can write to memory,
2038 * but we should not touch disk. This specially means we must _not_
2039 * touch swap space! Except we must write out our image of course.
2040 */
2041
8357376d 2042 nr_pages += nr_highmem;
a0f49651 2043 nr_copy_pages = nr_pages;
8357376d 2044 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 2045
23976728
RW
2046 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
2047 nr_pages);
8357376d 2048
25761b6e
RW
2049 return 0;
2050}
f577eb30 2051
d307c4a8
RW
2052#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2053static int init_header_complete(struct swsusp_info *info)
f577eb30 2054{
d307c4a8 2055 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 2056 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
2057 return 0;
2058}
2059
2060static char *check_image_kernel(struct swsusp_info *info)
2061{
2062 if (info->version_code != LINUX_VERSION_CODE)
2063 return "kernel version";
2064 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2065 return "system type";
2066 if (strcmp(info->uts.release,init_utsname()->release))
2067 return "kernel release";
2068 if (strcmp(info->uts.version,init_utsname()->version))
2069 return "version";
2070 if (strcmp(info->uts.machine,init_utsname()->machine))
2071 return "machine";
2072 return NULL;
2073}
2074#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2075
af508b34
RW
2076unsigned long snapshot_get_image_size(void)
2077{
2078 return nr_copy_pages + nr_meta_pages + 1;
2079}
2080
d307c4a8
RW
2081static int init_header(struct swsusp_info *info)
2082{
2083 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 2084 info->num_physpages = get_num_physpages();
f577eb30 2085 info->image_pages = nr_copy_pages;
af508b34 2086 info->pages = snapshot_get_image_size();
6e1819d6
RW
2087 info->size = info->pages;
2088 info->size <<= PAGE_SHIFT;
d307c4a8 2089 return init_header_complete(info);
f577eb30
RW
2090}
2091
2092/**
940864dd
RW
2093 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
2094 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
2095 */
2096
b788db79 2097static inline void
940864dd 2098pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2099{
2100 int j;
2101
b788db79 2102 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
2103 buf[j] = memory_bm_next_pfn(bm);
2104 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 2105 break;
85055dd8
MS
2106 /* Save page key for data page (s390 only). */
2107 page_key_read(buf + j);
f577eb30 2108 }
f577eb30
RW
2109}
2110
2111/**
2112 * snapshot_read_next - used for reading the system memory snapshot.
2113 *
2114 * On the first call to it @handle should point to a zeroed
2115 * snapshot_handle structure. The structure gets updated and a pointer
2116 * to it should be passed to this function every next time.
2117 *
f577eb30
RW
2118 * On success the function returns a positive number. Then, the caller
2119 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 2120 * location computed by the data_of() macro.
f577eb30
RW
2121 *
2122 * The function returns 0 to indicate the end of data stream condition,
2123 * and a negative number is returned on error. In such cases the
2124 * structure pointed to by @handle is not updated and should not be used
2125 * any more.
2126 */
2127
d3c1b24c 2128int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2129{
fb13a28b 2130 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2131 return 0;
b788db79 2132
f577eb30
RW
2133 if (!buffer) {
2134 /* This makes the buffer be freed by swsusp_free() */
8357376d 2135 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2136 if (!buffer)
2137 return -ENOMEM;
2138 }
d3c1b24c 2139 if (!handle->cur) {
d307c4a8
RW
2140 int error;
2141
2142 error = init_header((struct swsusp_info *)buffer);
2143 if (error)
2144 return error;
f577eb30 2145 handle->buffer = buffer;
b788db79
RW
2146 memory_bm_position_reset(&orig_bm);
2147 memory_bm_position_reset(&copy_bm);
d3c1b24c 2148 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2149 clear_page(buffer);
d3c1b24c
JS
2150 pack_pfns(buffer, &orig_bm);
2151 } else {
2152 struct page *page;
b788db79 2153
d3c1b24c
JS
2154 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2155 if (PageHighMem(page)) {
2156 /* Highmem pages are copied to the buffer,
2157 * because we can't return with a kmapped
2158 * highmem page (we may not be called again).
2159 */
2160 void *kaddr;
8357376d 2161
0de9a1e2 2162 kaddr = kmap_atomic(page);
3ecb01df 2163 copy_page(buffer, kaddr);
0de9a1e2 2164 kunmap_atomic(kaddr);
d3c1b24c
JS
2165 handle->buffer = buffer;
2166 } else {
2167 handle->buffer = page_address(page);
f577eb30 2168 }
f577eb30 2169 }
d3c1b24c
JS
2170 handle->cur++;
2171 return PAGE_SIZE;
f577eb30
RW
2172}
2173
2174/**
2175 * mark_unsafe_pages - mark the pages that cannot be used for storing
2176 * the image during resume, because they conflict with the pages that
2177 * had been used before suspend
2178 */
2179
940864dd 2180static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
2181{
2182 struct zone *zone;
ae83c5ee 2183 unsigned long pfn, max_zone_pfn;
f577eb30
RW
2184
2185 /* Clear page flags */
98e73dc5 2186 for_each_populated_zone(zone) {
c33bc315 2187 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
2188 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2189 if (pfn_valid(pfn))
7be98234 2190 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
2191 }
2192
940864dd
RW
2193 /* Mark pages that correspond to the "original" pfns as "unsafe" */
2194 memory_bm_position_reset(bm);
2195 do {
2196 pfn = memory_bm_next_pfn(bm);
2197 if (likely(pfn != BM_END_OF_MAP)) {
2198 if (likely(pfn_valid(pfn)))
7be98234 2199 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
2200 else
2201 return -EFAULT;
2202 }
2203 } while (pfn != BM_END_OF_MAP);
f577eb30 2204
940864dd 2205 allocated_unsafe_pages = 0;
968808b8 2206
f577eb30
RW
2207 return 0;
2208}
2209
940864dd
RW
2210static void
2211duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 2212{
940864dd
RW
2213 unsigned long pfn;
2214
2215 memory_bm_position_reset(src);
2216 pfn = memory_bm_next_pfn(src);
2217 while (pfn != BM_END_OF_MAP) {
2218 memory_bm_set_bit(dst, pfn);
2219 pfn = memory_bm_next_pfn(src);
f577eb30
RW
2220 }
2221}
2222
d307c4a8 2223static int check_header(struct swsusp_info *info)
f577eb30 2224{
d307c4a8 2225 char *reason;
f577eb30 2226
d307c4a8 2227 reason = check_image_kernel(info);
0ed5fd13 2228 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2229 reason = "memory size";
f577eb30 2230 if (reason) {
23976728 2231 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
2232 return -EPERM;
2233 }
2234 return 0;
2235}
2236
2237/**
2238 * load header - check the image header and copy data from it
2239 */
2240
940864dd
RW
2241static int
2242load_header(struct swsusp_info *info)
f577eb30
RW
2243{
2244 int error;
f577eb30 2245
940864dd 2246 restore_pblist = NULL;
f577eb30
RW
2247 error = check_header(info);
2248 if (!error) {
f577eb30
RW
2249 nr_copy_pages = info->image_pages;
2250 nr_meta_pages = info->pages - info->image_pages - 1;
2251 }
2252 return error;
2253}
2254
2255/**
940864dd
RW
2256 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2257 * the corresponding bit in the memory bitmap @bm
f577eb30 2258 */
69643279 2259static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2260{
2261 int j;
2262
940864dd
RW
2263 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2264 if (unlikely(buf[j] == BM_END_OF_MAP))
2265 break;
2266
85055dd8
MS
2267 /* Extract and buffer page key for data page (s390 only). */
2268 page_key_memorize(buf + j);
2269
69643279
RW
2270 if (memory_bm_pfn_present(bm, buf[j]))
2271 memory_bm_set_bit(bm, buf[j]);
2272 else
2273 return -EFAULT;
f577eb30 2274 }
69643279
RW
2275
2276 return 0;
f577eb30
RW
2277}
2278
8357376d
RW
2279/* List of "safe" pages that may be used to store data loaded from the suspend
2280 * image
2281 */
2282static struct linked_page *safe_pages_list;
2283
2284#ifdef CONFIG_HIGHMEM
2285/* struct highmem_pbe is used for creating the list of highmem pages that
2286 * should be restored atomically during the resume from disk, because the page
2287 * frames they have occupied before the suspend are in use.
2288 */
2289struct highmem_pbe {
2290 struct page *copy_page; /* data is here now */
2291 struct page *orig_page; /* data was here before the suspend */
2292 struct highmem_pbe *next;
2293};
2294
2295/* List of highmem PBEs needed for restoring the highmem pages that were
2296 * allocated before the suspend and included in the suspend image, but have
2297 * also been allocated by the "resume" kernel, so their contents cannot be
2298 * written directly to their "original" page frames.
2299 */
2300static struct highmem_pbe *highmem_pblist;
2301
2302/**
2303 * count_highmem_image_pages - compute the number of highmem pages in the
2304 * suspend image. The bits in the memory bitmap @bm that correspond to the
2305 * image pages are assumed to be set.
2306 */
2307
2308static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2309{
2310 unsigned long pfn;
2311 unsigned int cnt = 0;
2312
2313 memory_bm_position_reset(bm);
2314 pfn = memory_bm_next_pfn(bm);
2315 while (pfn != BM_END_OF_MAP) {
2316 if (PageHighMem(pfn_to_page(pfn)))
2317 cnt++;
2318
2319 pfn = memory_bm_next_pfn(bm);
2320 }
2321 return cnt;
2322}
2323
2324/**
2325 * prepare_highmem_image - try to allocate as many highmem pages as
2326 * there are highmem image pages (@nr_highmem_p points to the variable
2327 * containing the number of highmem image pages). The pages that are
2328 * "safe" (ie. will not be overwritten when the suspend image is
2329 * restored) have the corresponding bits set in @bm (it must be
2330 * unitialized).
2331 *
2332 * NOTE: This function should not be called if there are no highmem
2333 * image pages.
2334 */
2335
2336static unsigned int safe_highmem_pages;
2337
2338static struct memory_bitmap *safe_highmem_bm;
2339
2340static int
2341prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2342{
2343 unsigned int to_alloc;
2344
2345 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2346 return -ENOMEM;
2347
2348 if (get_highmem_buffer(PG_SAFE))
2349 return -ENOMEM;
2350
2351 to_alloc = count_free_highmem_pages();
2352 if (to_alloc > *nr_highmem_p)
2353 to_alloc = *nr_highmem_p;
2354 else
2355 *nr_highmem_p = to_alloc;
2356
2357 safe_highmem_pages = 0;
2358 while (to_alloc-- > 0) {
2359 struct page *page;
2360
2361 page = alloc_page(__GFP_HIGHMEM);
7be98234 2362 if (!swsusp_page_is_free(page)) {
8357376d
RW
2363 /* The page is "safe", set its bit the bitmap */
2364 memory_bm_set_bit(bm, page_to_pfn(page));
2365 safe_highmem_pages++;
2366 }
2367 /* Mark the page as allocated */
7be98234
RW
2368 swsusp_set_page_forbidden(page);
2369 swsusp_set_page_free(page);
8357376d
RW
2370 }
2371 memory_bm_position_reset(bm);
2372 safe_highmem_bm = bm;
2373 return 0;
2374}
2375
2376/**
2377 * get_highmem_page_buffer - for given highmem image page find the buffer
2378 * that suspend_write_next() should set for its caller to write to.
2379 *
2380 * If the page is to be saved to its "original" page frame or a copy of
2381 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2382 * the copy of the page is to be made in normal memory, so the address of
2383 * the copy is returned.
2384 *
2385 * If @buffer is returned, the caller of suspend_write_next() will write
2386 * the page's contents to @buffer, so they will have to be copied to the
2387 * right location on the next call to suspend_write_next() and it is done
2388 * with the help of copy_last_highmem_page(). For this purpose, if
2389 * @buffer is returned, @last_highmem page is set to the page to which
2390 * the data will have to be copied from @buffer.
2391 */
2392
2393static struct page *last_highmem_page;
2394
2395static void *
2396get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2397{
2398 struct highmem_pbe *pbe;
2399 void *kaddr;
2400
7be98234 2401 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
2402 /* We have allocated the "original" page frame and we can
2403 * use it directly to store the loaded page.
2404 */
2405 last_highmem_page = page;
2406 return buffer;
2407 }
2408 /* The "original" page frame has not been allocated and we have to
2409 * use a "safe" page frame to store the loaded page.
2410 */
2411 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2412 if (!pbe) {
2413 swsusp_free();
69643279 2414 return ERR_PTR(-ENOMEM);
8357376d
RW
2415 }
2416 pbe->orig_page = page;
2417 if (safe_highmem_pages > 0) {
2418 struct page *tmp;
2419
2420 /* Copy of the page will be stored in high memory */
2421 kaddr = buffer;
2422 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2423 safe_highmem_pages--;
2424 last_highmem_page = tmp;
2425 pbe->copy_page = tmp;
2426 } else {
2427 /* Copy of the page will be stored in normal memory */
2428 kaddr = safe_pages_list;
2429 safe_pages_list = safe_pages_list->next;
2430 pbe->copy_page = virt_to_page(kaddr);
2431 }
2432 pbe->next = highmem_pblist;
2433 highmem_pblist = pbe;
2434 return kaddr;
2435}
2436
2437/**
2438 * copy_last_highmem_page - copy the contents of a highmem image from
2439 * @buffer, where the caller of snapshot_write_next() has place them,
2440 * to the right location represented by @last_highmem_page .
2441 */
2442
2443static void copy_last_highmem_page(void)
2444{
2445 if (last_highmem_page) {
2446 void *dst;
2447
0de9a1e2 2448 dst = kmap_atomic(last_highmem_page);
3ecb01df 2449 copy_page(dst, buffer);
0de9a1e2 2450 kunmap_atomic(dst);
8357376d
RW
2451 last_highmem_page = NULL;
2452 }
2453}
2454
2455static inline int last_highmem_page_copied(void)
2456{
2457 return !last_highmem_page;
2458}
2459
2460static inline void free_highmem_data(void)
2461{
2462 if (safe_highmem_bm)
2463 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2464
2465 if (buffer)
2466 free_image_page(buffer, PG_UNSAFE_CLEAR);
2467}
2468#else
2469static inline int get_safe_write_buffer(void) { return 0; }
2470
2471static unsigned int
2472count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2473
2474static inline int
2475prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2476{
2477 return 0;
2478}
2479
2480static inline void *
2481get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2482{
69643279 2483 return ERR_PTR(-EINVAL);
8357376d
RW
2484}
2485
2486static inline void copy_last_highmem_page(void) {}
2487static inline int last_highmem_page_copied(void) { return 1; }
2488static inline void free_highmem_data(void) {}
2489#endif /* CONFIG_HIGHMEM */
2490
f577eb30 2491/**
940864dd
RW
2492 * prepare_image - use the memory bitmap @bm to mark the pages that will
2493 * be overwritten in the process of restoring the system memory state
2494 * from the suspend image ("unsafe" pages) and allocate memory for the
2495 * image.
968808b8 2496 *
940864dd
RW
2497 * The idea is to allocate a new memory bitmap first and then allocate
2498 * as many pages as needed for the image data, but not to assign these
2499 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2500 * allocated and create a lists of "safe" pages that will be used
2501 * later. On systems with high memory a list of "safe" highmem pages is
2502 * also created.
f577eb30
RW
2503 */
2504
940864dd
RW
2505#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2506
940864dd
RW
2507static int
2508prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2509{
8357376d 2510 unsigned int nr_pages, nr_highmem;
940864dd
RW
2511 struct linked_page *sp_list, *lp;
2512 int error;
f577eb30 2513
8357376d
RW
2514 /* If there is no highmem, the buffer will not be necessary */
2515 free_image_page(buffer, PG_UNSAFE_CLEAR);
2516 buffer = NULL;
2517
2518 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2519 error = mark_unsafe_pages(bm);
2520 if (error)
2521 goto Free;
2522
2523 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2524 if (error)
2525 goto Free;
2526
2527 duplicate_memory_bitmap(new_bm, bm);
2528 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2529 if (nr_highmem > 0) {
2530 error = prepare_highmem_image(bm, &nr_highmem);
2531 if (error)
2532 goto Free;
2533 }
940864dd
RW
2534 /* Reserve some safe pages for potential later use.
2535 *
2536 * NOTE: This way we make sure there will be enough safe pages for the
2537 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2538 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2539 */
2540 sp_list = NULL;
2541 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2542 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2543 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2544 while (nr_pages > 0) {
8357376d 2545 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2546 if (!lp) {
f577eb30 2547 error = -ENOMEM;
940864dd
RW
2548 goto Free;
2549 }
2550 lp->next = sp_list;
2551 sp_list = lp;
2552 nr_pages--;
f577eb30 2553 }
940864dd
RW
2554 /* Preallocate memory for the image */
2555 safe_pages_list = NULL;
8357376d 2556 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2557 while (nr_pages > 0) {
2558 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2559 if (!lp) {
2560 error = -ENOMEM;
2561 goto Free;
2562 }
7be98234 2563 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2564 /* The page is "safe", add it to the list */
2565 lp->next = safe_pages_list;
2566 safe_pages_list = lp;
968808b8 2567 }
940864dd 2568 /* Mark the page as allocated */
7be98234
RW
2569 swsusp_set_page_forbidden(virt_to_page(lp));
2570 swsusp_set_page_free(virt_to_page(lp));
940864dd 2571 nr_pages--;
968808b8 2572 }
940864dd
RW
2573 /* Free the reserved safe pages so that chain_alloc() can use them */
2574 while (sp_list) {
2575 lp = sp_list->next;
2576 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2577 sp_list = lp;
f577eb30 2578 }
940864dd
RW
2579 return 0;
2580
59a49335 2581 Free:
940864dd 2582 swsusp_free();
f577eb30
RW
2583 return error;
2584}
2585
940864dd
RW
2586/**
2587 * get_buffer - compute the address that snapshot_write_next() should
2588 * set for its caller to write to.
2589 */
2590
2591static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2592{
940864dd 2593 struct pbe *pbe;
69643279
RW
2594 struct page *page;
2595 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2596
69643279
RW
2597 if (pfn == BM_END_OF_MAP)
2598 return ERR_PTR(-EFAULT);
2599
2600 page = pfn_to_page(pfn);
8357376d
RW
2601 if (PageHighMem(page))
2602 return get_highmem_page_buffer(page, ca);
2603
7be98234 2604 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2605 /* We have allocated the "original" page frame and we can
2606 * use it directly to store the loaded page.
968808b8 2607 */
940864dd
RW
2608 return page_address(page);
2609
2610 /* The "original" page frame has not been allocated and we have to
2611 * use a "safe" page frame to store the loaded page.
968808b8 2612 */
940864dd
RW
2613 pbe = chain_alloc(ca, sizeof(struct pbe));
2614 if (!pbe) {
2615 swsusp_free();
69643279 2616 return ERR_PTR(-ENOMEM);
940864dd 2617 }
8357376d
RW
2618 pbe->orig_address = page_address(page);
2619 pbe->address = safe_pages_list;
940864dd
RW
2620 safe_pages_list = safe_pages_list->next;
2621 pbe->next = restore_pblist;
2622 restore_pblist = pbe;
8357376d 2623 return pbe->address;
968808b8
RW
2624}
2625
f577eb30
RW
2626/**
2627 * snapshot_write_next - used for writing the system memory snapshot.
2628 *
2629 * On the first call to it @handle should point to a zeroed
2630 * snapshot_handle structure. The structure gets updated and a pointer
2631 * to it should be passed to this function every next time.
2632 *
f577eb30
RW
2633 * On success the function returns a positive number. Then, the caller
2634 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2635 * location computed by the data_of() macro.
f577eb30
RW
2636 *
2637 * The function returns 0 to indicate the "end of file" condition,
2638 * and a negative number is returned on error. In such cases the
2639 * structure pointed to by @handle is not updated and should not be used
2640 * any more.
2641 */
2642
d3c1b24c 2643int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2644{
940864dd 2645 static struct chain_allocator ca;
f577eb30
RW
2646 int error = 0;
2647
940864dd 2648 /* Check if we have already loaded the entire image */
d3c1b24c 2649 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2650 return 0;
940864dd 2651
d3c1b24c
JS
2652 handle->sync_read = 1;
2653
2654 if (!handle->cur) {
8357376d
RW
2655 if (!buffer)
2656 /* This makes the buffer be freed by swsusp_free() */
2657 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2658
f577eb30
RW
2659 if (!buffer)
2660 return -ENOMEM;
8357376d 2661
f577eb30 2662 handle->buffer = buffer;
d3c1b24c
JS
2663 } else if (handle->cur == 1) {
2664 error = load_header(buffer);
2665 if (error)
2666 return error;
940864dd 2667
d3c1b24c
JS
2668 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2669 if (error)
2670 return error;
2671
85055dd8
MS
2672 /* Allocate buffer for page keys. */
2673 error = page_key_alloc(nr_copy_pages);
2674 if (error)
2675 return error;
2676
d3c1b24c
JS
2677 } else if (handle->cur <= nr_meta_pages + 1) {
2678 error = unpack_orig_pfns(buffer, &copy_bm);
2679 if (error)
2680 return error;
940864dd 2681
d3c1b24c
JS
2682 if (handle->cur == nr_meta_pages + 1) {
2683 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2684 if (error)
2685 return error;
2686
d3c1b24c
JS
2687 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2688 memory_bm_position_reset(&orig_bm);
2689 restore_pblist = NULL;
940864dd 2690 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2691 handle->sync_read = 0;
69643279
RW
2692 if (IS_ERR(handle->buffer))
2693 return PTR_ERR(handle->buffer);
f577eb30 2694 }
f577eb30 2695 } else {
d3c1b24c 2696 copy_last_highmem_page();
85055dd8
MS
2697 /* Restore page key for data page (s390 only). */
2698 page_key_write(handle->buffer);
d3c1b24c
JS
2699 handle->buffer = get_buffer(&orig_bm, &ca);
2700 if (IS_ERR(handle->buffer))
2701 return PTR_ERR(handle->buffer);
2702 if (handle->buffer != buffer)
2703 handle->sync_read = 0;
f577eb30 2704 }
d3c1b24c
JS
2705 handle->cur++;
2706 return PAGE_SIZE;
f577eb30
RW
2707}
2708
8357376d
RW
2709/**
2710 * snapshot_write_finalize - must be called after the last call to
2711 * snapshot_write_next() in case the last page in the image happens
2712 * to be a highmem page and its contents should be stored in the
2713 * highmem. Additionally, it releases the memory that will not be
2714 * used any more.
2715 */
2716
2717void snapshot_write_finalize(struct snapshot_handle *handle)
2718{
2719 copy_last_highmem_page();
85055dd8
MS
2720 /* Restore page key for data page (s390 only). */
2721 page_key_write(handle->buffer);
2722 page_key_free();
8357376d 2723 /* Free only if we have loaded the image entirely */
d3c1b24c 2724 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2725 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2726 free_highmem_data();
2727 }
2728}
2729
f577eb30
RW
2730int snapshot_image_loaded(struct snapshot_handle *handle)
2731{
8357376d 2732 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2733 handle->cur <= nr_meta_pages + nr_copy_pages);
2734}
2735
8357376d
RW
2736#ifdef CONFIG_HIGHMEM
2737/* Assumes that @buf is ready and points to a "safe" page */
2738static inline void
2739swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2740{
8357376d
RW
2741 void *kaddr1, *kaddr2;
2742
0de9a1e2
CW
2743 kaddr1 = kmap_atomic(p1);
2744 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2745 copy_page(buf, kaddr1);
2746 copy_page(kaddr1, kaddr2);
2747 copy_page(kaddr2, buf);
0de9a1e2
CW
2748 kunmap_atomic(kaddr2);
2749 kunmap_atomic(kaddr1);
8357376d
RW
2750}
2751
2752/**
2753 * restore_highmem - for each highmem page that was allocated before
2754 * the suspend and included in the suspend image, and also has been
2755 * allocated by the "resume" kernel swap its current (ie. "before
2756 * resume") contents with the previous (ie. "before suspend") one.
2757 *
2758 * If the resume eventually fails, we can call this function once
2759 * again and restore the "before resume" highmem state.
2760 */
2761
2762int restore_highmem(void)
2763{
2764 struct highmem_pbe *pbe = highmem_pblist;
2765 void *buf;
2766
2767 if (!pbe)
2768 return 0;
2769
2770 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2771 if (!buf)
2772 return -ENOMEM;
2773
2774 while (pbe) {
2775 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2776 pbe = pbe->next;
2777 }
2778 free_image_page(buf, PG_UNSAFE_CLEAR);
2779 return 0;
f577eb30 2780}
8357376d 2781#endif /* CONFIG_HIGHMEM */