PM / Hibernate: Implement position keeping in radix tree
[linux-block.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
52f5684c 30#include <linux/compiler.h>
25761b6e
RW
31
32#include <asm/uaccess.h>
33#include <asm/mmu_context.h>
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <asm/io.h>
37
25761b6e
RW
38#include "power.h"
39
74dfd666
RW
40static int swsusp_page_is_free(struct page *);
41static void swsusp_set_page_forbidden(struct page *);
42static void swsusp_unset_page_forbidden(struct page *);
43
ddeb6487
RW
44/*
45 * Number of bytes to reserve for memory allocations made by device drivers
46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47 * cause image creation to fail (tunable via /sys/power/reserved_size).
48 */
49unsigned long reserved_size;
50
51void __init hibernate_reserved_size_init(void)
52{
53 reserved_size = SPARE_PAGES * PAGE_SIZE;
54}
55
fe419535
RW
56/*
57 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
58 * When it is set to N, swsusp will do its best to ensure the image
59 * size will not exceed N bytes, but if that is impossible, it will
60 * try to create the smallest image possible.
fe419535 61 */
ac5c24ec
RW
62unsigned long image_size;
63
64void __init hibernate_image_size_init(void)
65{
1c1be3a9 66 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 67}
fe419535 68
8357376d
RW
69/* List of PBEs needed for restoring the pages that were allocated before
70 * the suspend and included in the suspend image, but have also been
71 * allocated by the "resume" kernel, so their contents cannot be written
72 * directly to their "original" page frames.
73 */
75534b50
RW
74struct pbe *restore_pblist;
75
8357376d 76/* Pointer to an auxiliary buffer (1 page) */
940864dd 77static void *buffer;
7088a5c0 78
f6143aa6
RW
79/**
80 * @safe_needed - on resume, for storing the PBE list and the image,
81 * we can only use memory pages that do not conflict with the pages
8357376d
RW
82 * used before suspend. The unsafe pages have PageNosaveFree set
83 * and we count them using unsafe_pages.
f6143aa6 84 *
8357376d
RW
85 * Each allocated image page is marked as PageNosave and PageNosaveFree
86 * so that swsusp_free() can release it.
f6143aa6
RW
87 */
88
0bcd888d
RW
89#define PG_ANY 0
90#define PG_SAFE 1
91#define PG_UNSAFE_CLEAR 1
92#define PG_UNSAFE_KEEP 0
93
940864dd 94static unsigned int allocated_unsafe_pages;
f6143aa6 95
8357376d 96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
97{
98 void *res;
99
100 res = (void *)get_zeroed_page(gfp_mask);
101 if (safe_needed)
7be98234 102 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 103 /* The page is unsafe, mark it for swsusp_free() */
7be98234 104 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 105 allocated_unsafe_pages++;
f6143aa6
RW
106 res = (void *)get_zeroed_page(gfp_mask);
107 }
108 if (res) {
7be98234
RW
109 swsusp_set_page_forbidden(virt_to_page(res));
110 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
111 }
112 return res;
113}
114
115unsigned long get_safe_page(gfp_t gfp_mask)
116{
8357376d
RW
117 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118}
119
5b6d15de
RW
120static struct page *alloc_image_page(gfp_t gfp_mask)
121{
8357376d
RW
122 struct page *page;
123
124 page = alloc_page(gfp_mask);
125 if (page) {
7be98234
RW
126 swsusp_set_page_forbidden(page);
127 swsusp_set_page_free(page);
8357376d
RW
128 }
129 return page;
f6143aa6
RW
130}
131
132/**
133 * free_image_page - free page represented by @addr, allocated with
8357376d 134 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
135 */
136
137static inline void free_image_page(void *addr, int clear_nosave_free)
138{
8357376d
RW
139 struct page *page;
140
141 BUG_ON(!virt_addr_valid(addr));
142
143 page = virt_to_page(addr);
144
7be98234 145 swsusp_unset_page_forbidden(page);
f6143aa6 146 if (clear_nosave_free)
7be98234 147 swsusp_unset_page_free(page);
8357376d
RW
148
149 __free_page(page);
f6143aa6
RW
150}
151
b788db79
RW
152/* struct linked_page is used to build chains of pages */
153
154#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
155
156struct linked_page {
157 struct linked_page *next;
158 char data[LINKED_PAGE_DATA_SIZE];
52f5684c 159} __packed;
b788db79
RW
160
161static inline void
162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163{
164 while (list) {
165 struct linked_page *lp = list->next;
166
167 free_image_page(list, clear_page_nosave);
168 list = lp;
169 }
170}
171
172/**
173 * struct chain_allocator is used for allocating small objects out of
174 * a linked list of pages called 'the chain'.
175 *
176 * The chain grows each time when there is no room for a new object in
177 * the current page. The allocated objects cannot be freed individually.
178 * It is only possible to free them all at once, by freeing the entire
179 * chain.
180 *
181 * NOTE: The chain allocator may be inefficient if the allocated objects
182 * are not much smaller than PAGE_SIZE.
183 */
184
185struct chain_allocator {
186 struct linked_page *chain; /* the chain */
187 unsigned int used_space; /* total size of objects allocated out
188 * of the current page
189 */
190 gfp_t gfp_mask; /* mask for allocating pages */
191 int safe_needed; /* if set, only "safe" pages are allocated */
192};
193
194static void
195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196{
197 ca->chain = NULL;
198 ca->used_space = LINKED_PAGE_DATA_SIZE;
199 ca->gfp_mask = gfp_mask;
200 ca->safe_needed = safe_needed;
201}
202
203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204{
205 void *ret;
206
207 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 struct linked_page *lp;
209
8357376d 210 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
211 if (!lp)
212 return NULL;
213
214 lp->next = ca->chain;
215 ca->chain = lp;
216 ca->used_space = 0;
217 }
218 ret = ca->chain->data + ca->used_space;
219 ca->used_space += size;
220 return ret;
221}
222
b788db79
RW
223/**
224 * Data types related to memory bitmaps.
225 *
226 * Memory bitmap is a structure consiting of many linked lists of
227 * objects. The main list's elements are of type struct zone_bitmap
228 * and each of them corresonds to one zone. For each zone bitmap
229 * object there is a list of objects of type struct bm_block that
0d83304c 230 * represent each blocks of bitmap in which information is stored.
b788db79
RW
231 *
232 * struct memory_bitmap contains a pointer to the main list of zone
233 * bitmap objects, a struct bm_position used for browsing the bitmap,
234 * and a pointer to the list of pages used for allocating all of the
235 * zone bitmap objects and bitmap block objects.
236 *
237 * NOTE: It has to be possible to lay out the bitmap in memory
238 * using only allocations of order 0. Additionally, the bitmap is
239 * designed to work with arbitrary number of zones (this is over the
240 * top for now, but let's avoid making unnecessary assumptions ;-).
241 *
242 * struct zone_bitmap contains a pointer to a list of bitmap block
243 * objects and a pointer to the bitmap block object that has been
244 * most recently used for setting bits. Additionally, it contains the
245 * pfns that correspond to the start and end of the represented zone.
246 *
247 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
248 * information is stored (in the form of a block of bitmap)
249 * It also contains the pfns that correspond to the start and end of
250 * the represented memory area.
f469f02d
JR
251 *
252 * The memory bitmap is organized as a radix tree to guarantee fast random
253 * access to the bits. There is one radix tree for each zone (as returned
254 * from create_mem_extents).
255 *
256 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
257 * two linked lists for the nodes of the tree, one for the inner nodes and
258 * one for the leave nodes. The linked leave nodes are used for fast linear
259 * access of the memory bitmap.
260 *
261 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
262 */
263
264#define BM_END_OF_MAP (~0UL)
265
8de03073 266#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
267#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
268#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79
RW
269
270struct bm_block {
846705de 271 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
272 unsigned long start_pfn; /* pfn represented by the first bit */
273 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 274 unsigned long *data; /* bitmap representing pages */
b788db79
RW
275};
276
0d83304c
AM
277static inline unsigned long bm_block_bits(struct bm_block *bb)
278{
279 return bb->end_pfn - bb->start_pfn;
280}
281
f469f02d
JR
282/*
283 * struct rtree_node is a wrapper struct to link the nodes
284 * of the rtree together for easy linear iteration over
285 * bits and easy freeing
286 */
287struct rtree_node {
288 struct list_head list;
289 unsigned long *data;
290};
291
292/*
293 * struct mem_zone_bm_rtree represents a bitmap used for one
294 * populated memory zone.
295 */
296struct mem_zone_bm_rtree {
297 struct list_head list; /* Link Zones together */
298 struct list_head nodes; /* Radix Tree inner nodes */
299 struct list_head leaves; /* Radix Tree leaves */
300 unsigned long start_pfn; /* Zone start page frame */
301 unsigned long end_pfn; /* Zone end page frame + 1 */
302 struct rtree_node *rtree; /* Radix Tree Root */
303 int levels; /* Number of Radix Tree Levels */
304 unsigned int blocks; /* Number of Bitmap Blocks */
305};
306
b788db79
RW
307/* strcut bm_position is used for browsing memory bitmaps */
308
309struct bm_position {
b788db79 310 struct bm_block *block;
b788db79 311 int bit;
3a20cb17
JR
312
313 struct mem_zone_bm_rtree *zone;
314 struct rtree_node *node;
315 unsigned long node_pfn;
316 int node_bit;
b788db79
RW
317};
318
319struct memory_bitmap {
f469f02d 320 struct list_head zones;
846705de 321 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
322 struct linked_page *p_list; /* list of pages used to store zone
323 * bitmap objects and bitmap block
324 * objects
325 */
326 struct bm_position cur; /* most recently used bit position */
327};
328
329/* Functions that operate on memory bitmaps */
330
f469f02d
JR
331#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
332#if BITS_PER_LONG == 32
333#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
334#else
335#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
336#endif
337#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
338
339/*
340 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
341 *
342 * This function is used to allocate inner nodes as well as the
343 * leave nodes of the radix tree. It also adds the node to the
344 * corresponding linked list passed in by the *list parameter.
345 */
346static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
347 struct chain_allocator *ca,
348 struct list_head *list)
349{
350 struct rtree_node *node;
351
352 node = chain_alloc(ca, sizeof(struct rtree_node));
353 if (!node)
354 return NULL;
355
356 node->data = get_image_page(gfp_mask, safe_needed);
357 if (!node->data)
358 return NULL;
359
360 list_add_tail(&node->list, list);
361
362 return node;
363}
364
365/*
366 * add_rtree_block - Add a new leave node to the radix tree
367 *
368 * The leave nodes need to be allocated in order to keep the leaves
369 * linked list in order. This is guaranteed by the zone->blocks
370 * counter.
371 */
372static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
373 int safe_needed, struct chain_allocator *ca)
374{
375 struct rtree_node *node, *block, **dst;
376 unsigned int levels_needed, block_nr;
377 int i;
378
379 block_nr = zone->blocks;
380 levels_needed = 0;
381
382 /* How many levels do we need for this block nr? */
383 while (block_nr) {
384 levels_needed += 1;
385 block_nr >>= BM_RTREE_LEVEL_SHIFT;
386 }
387
388 /* Make sure the rtree has enough levels */
389 for (i = zone->levels; i < levels_needed; i++) {
390 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
391 &zone->nodes);
392 if (!node)
393 return -ENOMEM;
394
395 node->data[0] = (unsigned long)zone->rtree;
396 zone->rtree = node;
397 zone->levels += 1;
398 }
399
400 /* Allocate new block */
401 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
402 if (!block)
403 return -ENOMEM;
404
405 /* Now walk the rtree to insert the block */
406 node = zone->rtree;
407 dst = &zone->rtree;
408 block_nr = zone->blocks;
409 for (i = zone->levels; i > 0; i--) {
410 int index;
411
412 if (!node) {
413 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
414 &zone->nodes);
415 if (!node)
416 return -ENOMEM;
417 *dst = node;
418 }
419
420 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
421 index &= BM_RTREE_LEVEL_MASK;
422 dst = (struct rtree_node **)&((*dst)->data[index]);
423 node = *dst;
424 }
425
426 zone->blocks += 1;
427 *dst = block;
428
429 return 0;
430}
431
432static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
433 int clear_nosave_free);
434
435/*
436 * create_zone_bm_rtree - create a radix tree for one zone
437 *
438 * Allocated the mem_zone_bm_rtree structure and initializes it.
439 * This function also allocated and builds the radix tree for the
440 * zone.
441 */
442static struct mem_zone_bm_rtree *
443create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
444 struct chain_allocator *ca,
445 unsigned long start, unsigned long end)
446{
447 struct mem_zone_bm_rtree *zone;
448 unsigned int i, nr_blocks;
449 unsigned long pages;
450
451 pages = end - start;
452 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
453 if (!zone)
454 return NULL;
455
456 INIT_LIST_HEAD(&zone->nodes);
457 INIT_LIST_HEAD(&zone->leaves);
458 zone->start_pfn = start;
459 zone->end_pfn = end;
460 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
461
462 for (i = 0; i < nr_blocks; i++) {
463 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
464 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
465 return NULL;
466 }
467 }
468
469 return zone;
470}
471
472/*
473 * free_zone_bm_rtree - Free the memory of the radix tree
474 *
475 * Free all node pages of the radix tree. The mem_zone_bm_rtree
476 * structure itself is not freed here nor are the rtree_node
477 * structs.
478 */
479static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
480 int clear_nosave_free)
481{
482 struct rtree_node *node;
483
484 list_for_each_entry(node, &zone->nodes, list)
485 free_image_page(node->data, clear_nosave_free);
486
487 list_for_each_entry(node, &zone->leaves, list)
488 free_image_page(node->data, clear_nosave_free);
489}
490
b788db79
RW
491static void memory_bm_position_reset(struct memory_bitmap *bm)
492{
846705de 493 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 494 bm->cur.bit = 0;
3a20cb17
JR
495
496 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
497 list);
498 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
499 struct rtree_node, list);
500 bm->cur.node_pfn = 0;
501 bm->cur.node_bit = 0;
b788db79
RW
502}
503
504static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
505
506/**
507 * create_bm_block_list - create a list of block bitmap objects
8de03073 508 * @pages - number of pages to track
846705de
RW
509 * @list - list to put the allocated blocks into
510 * @ca - chain allocator to be used for allocating memory
b788db79 511 */
846705de
RW
512static int create_bm_block_list(unsigned long pages,
513 struct list_head *list,
514 struct chain_allocator *ca)
b788db79 515{
846705de 516 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
517
518 while (nr_blocks-- > 0) {
519 struct bm_block *bb;
520
521 bb = chain_alloc(ca, sizeof(struct bm_block));
522 if (!bb)
846705de
RW
523 return -ENOMEM;
524 list_add(&bb->hook, list);
b788db79 525 }
846705de
RW
526
527 return 0;
b788db79
RW
528}
529
846705de
RW
530struct mem_extent {
531 struct list_head hook;
532 unsigned long start;
533 unsigned long end;
534};
535
b788db79 536/**
846705de
RW
537 * free_mem_extents - free a list of memory extents
538 * @list - list of extents to empty
b788db79 539 */
846705de
RW
540static void free_mem_extents(struct list_head *list)
541{
542 struct mem_extent *ext, *aux;
b788db79 543
846705de
RW
544 list_for_each_entry_safe(ext, aux, list, hook) {
545 list_del(&ext->hook);
546 kfree(ext);
547 }
548}
549
550/**
551 * create_mem_extents - create a list of memory extents representing
552 * contiguous ranges of PFNs
553 * @list - list to put the extents into
554 * @gfp_mask - mask to use for memory allocations
555 */
556static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 557{
846705de 558 struct zone *zone;
b788db79 559
846705de 560 INIT_LIST_HEAD(list);
b788db79 561
ee99c71c 562 for_each_populated_zone(zone) {
846705de
RW
563 unsigned long zone_start, zone_end;
564 struct mem_extent *ext, *cur, *aux;
565
846705de 566 zone_start = zone->zone_start_pfn;
c33bc315 567 zone_end = zone_end_pfn(zone);
846705de
RW
568
569 list_for_each_entry(ext, list, hook)
570 if (zone_start <= ext->end)
571 break;
b788db79 572
846705de
RW
573 if (&ext->hook == list || zone_end < ext->start) {
574 /* New extent is necessary */
575 struct mem_extent *new_ext;
576
577 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
578 if (!new_ext) {
579 free_mem_extents(list);
580 return -ENOMEM;
581 }
582 new_ext->start = zone_start;
583 new_ext->end = zone_end;
584 list_add_tail(&new_ext->hook, &ext->hook);
585 continue;
586 }
587
588 /* Merge this zone's range of PFNs with the existing one */
589 if (zone_start < ext->start)
590 ext->start = zone_start;
591 if (zone_end > ext->end)
592 ext->end = zone_end;
593
594 /* More merging may be possible */
595 cur = ext;
596 list_for_each_entry_safe_continue(cur, aux, list, hook) {
597 if (zone_end < cur->start)
598 break;
599 if (zone_end < cur->end)
600 ext->end = cur->end;
601 list_del(&cur->hook);
602 kfree(cur);
603 }
b788db79 604 }
846705de
RW
605
606 return 0;
b788db79
RW
607}
608
609/**
610 * memory_bm_create - allocate memory for a memory bitmap
611 */
b788db79
RW
612static int
613memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
614{
615 struct chain_allocator ca;
846705de
RW
616 struct list_head mem_extents;
617 struct mem_extent *ext;
618 int error;
b788db79
RW
619
620 chain_init(&ca, gfp_mask, safe_needed);
846705de 621 INIT_LIST_HEAD(&bm->blocks);
f469f02d 622 INIT_LIST_HEAD(&bm->zones);
b788db79 623
846705de
RW
624 error = create_mem_extents(&mem_extents, gfp_mask);
625 if (error)
626 return error;
b788db79 627
846705de 628 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 629 struct mem_zone_bm_rtree *zone;
846705de
RW
630 struct bm_block *bb;
631 unsigned long pfn = ext->start;
632 unsigned long pages = ext->end - ext->start;
b788db79 633
846705de 634 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 635
846705de
RW
636 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
637 if (error)
638 goto Error;
b788db79 639
846705de
RW
640 list_for_each_entry_continue(bb, &bm->blocks, hook) {
641 bb->data = get_image_page(gfp_mask, safe_needed);
642 if (!bb->data) {
643 error = -ENOMEM;
644 goto Error;
645 }
b788db79
RW
646
647 bb->start_pfn = pfn;
846705de 648 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 649 pfn += BM_BITS_PER_BLOCK;
846705de 650 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
651 } else {
652 /* This is executed only once in the loop */
846705de 653 pfn += pages;
b788db79
RW
654 }
655 bb->end_pfn = pfn;
b788db79 656 }
f469f02d
JR
657
658 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
659 ext->start, ext->end);
660 if (!zone)
661 goto Error;
662 list_add_tail(&zone->list, &bm->zones);
b788db79 663 }
846705de 664
b788db79
RW
665 bm->p_list = ca.chain;
666 memory_bm_position_reset(bm);
846705de
RW
667 Exit:
668 free_mem_extents(&mem_extents);
669 return error;
b788db79 670
846705de 671 Error:
b788db79
RW
672 bm->p_list = ca.chain;
673 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 674 goto Exit;
b788db79
RW
675}
676
677/**
678 * memory_bm_free - free memory occupied by the memory bitmap @bm
679 */
b788db79
RW
680static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
681{
f469f02d 682 struct mem_zone_bm_rtree *zone;
846705de 683 struct bm_block *bb;
b788db79 684
846705de
RW
685 list_for_each_entry(bb, &bm->blocks, hook)
686 if (bb->data)
687 free_image_page(bb->data, clear_nosave_free);
b788db79 688
f469f02d
JR
689 list_for_each_entry(zone, &bm->zones, list)
690 free_zone_bm_rtree(zone, clear_nosave_free);
691
b788db79 692 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 693
f469f02d 694 INIT_LIST_HEAD(&bm->zones);
846705de 695 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
696}
697
698/**
74dfd666 699 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
700 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
701 * of @bm->cur_zone_bm are updated.
b788db79 702 */
a82f7119 703static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 704 void **addr, unsigned int *bit_nr)
b788db79 705{
b788db79
RW
706 struct bm_block *bb;
707
846705de
RW
708 /*
709 * Check if the pfn corresponds to the current bitmap block and find
710 * the block where it fits if this is not the case.
711 */
712 bb = bm->cur.block;
b788db79 713 if (pfn < bb->start_pfn)
846705de
RW
714 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
715 if (pfn >= bb->start_pfn)
716 break;
b788db79 717
846705de
RW
718 if (pfn >= bb->end_pfn)
719 list_for_each_entry_continue(bb, &bm->blocks, hook)
720 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
721 break;
74dfd666 722
846705de
RW
723 if (&bb->hook == &bm->blocks)
724 return -EFAULT;
725
726 /* The block has been found */
727 bm->cur.block = bb;
b788db79 728 pfn -= bb->start_pfn;
846705de 729 bm->cur.bit = pfn + 1;
0d83304c
AM
730 *bit_nr = pfn;
731 *addr = bb->data;
a82f7119 732 return 0;
74dfd666
RW
733}
734
07a33823
JR
735/*
736 * memory_rtree_find_bit - Find the bit for pfn in the memory
737 * bitmap
738 *
739 * Walks the radix tree to find the page which contains the bit for
740 * pfn and returns the bit position in **addr and *bit_nr.
741 */
742static int memory_rtree_find_bit(struct memory_bitmap *bm, unsigned long pfn,
743 void **addr, unsigned int *bit_nr)
744{
745 struct mem_zone_bm_rtree *curr, *zone;
746 struct rtree_node *node;
747 int i, block_nr;
748
3a20cb17
JR
749 zone = bm->cur.zone;
750
751 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
752 goto zone_found;
753
07a33823
JR
754 zone = NULL;
755
756 /* Find the right zone */
757 list_for_each_entry(curr, &bm->zones, list) {
758 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
759 zone = curr;
760 break;
761 }
762 }
763
764 if (!zone)
765 return -EFAULT;
766
3a20cb17 767zone_found:
07a33823
JR
768 /*
769 * We have a zone. Now walk the radix tree to find the leave
770 * node for our pfn.
771 */
3a20cb17
JR
772
773 node = bm->cur.node;
774 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
775 goto node_found;
776
07a33823
JR
777 node = zone->rtree;
778 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
779
780 for (i = zone->levels; i > 0; i--) {
781 int index;
782
783 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
784 index &= BM_RTREE_LEVEL_MASK;
785 BUG_ON(node->data[index] == 0);
786 node = (struct rtree_node *)node->data[index];
787 }
788
3a20cb17
JR
789node_found:
790 /* Update last position */
791 bm->cur.zone = zone;
792 bm->cur.node = node;
793 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
794
07a33823
JR
795 /* Set return values */
796 *addr = node->data;
797 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
798
799 return 0;
800}
801
74dfd666
RW
802static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
803{
804 void *addr;
805 unsigned int bit;
a82f7119 806 int error;
74dfd666 807
a82f7119
RW
808 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
809 BUG_ON(error);
74dfd666 810 set_bit(bit, addr);
07a33823
JR
811
812 error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
813 BUG_ON(error);
814 set_bit(bit, addr);
74dfd666
RW
815}
816
a82f7119
RW
817static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
818{
819 void *addr;
820 unsigned int bit;
821 int error;
822
823 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
824 if (!error)
825 set_bit(bit, addr);
07a33823
JR
826 else
827 return error;
828
829 error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
830 if (!error)
831 set_bit(bit, addr);
832
a82f7119
RW
833 return error;
834}
835
74dfd666
RW
836static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
837{
838 void *addr;
839 unsigned int bit;
a82f7119 840 int error;
74dfd666 841
a82f7119
RW
842 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
843 BUG_ON(error);
74dfd666 844 clear_bit(bit, addr);
07a33823
JR
845
846 error = memory_rtree_find_bit(bm, pfn, &addr, &bit);
847 BUG_ON(error);
848 clear_bit(bit, addr);
74dfd666
RW
849}
850
851static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
852{
853 void *addr;
854 unsigned int bit;
07a33823
JR
855 int error, error2;
856 int v;
74dfd666 857
a82f7119
RW
858 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
859 BUG_ON(error);
07a33823
JR
860 v = test_bit(bit, addr);
861
862 error2 = memory_rtree_find_bit(bm, pfn, &addr, &bit);
863 BUG_ON(error2);
864
865 WARN_ON_ONCE(v != test_bit(bit, addr));
866
867 return v;
b788db79
RW
868}
869
69643279
RW
870static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
871{
872 void *addr;
873 unsigned int bit;
07a33823
JR
874 int present;
875
876 present = !memory_bm_find_bit(bm, pfn, &addr, &bit);
877
878 WARN_ON_ONCE(present != !memory_rtree_find_bit(bm, pfn, &addr, &bit));
69643279 879
07a33823 880 return present;
69643279
RW
881}
882
b788db79
RW
883/**
884 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
885 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
886 * returned.
887 *
888 * It is required to run memory_bm_position_reset() before the first call to
889 * this function.
890 */
891
3a20cb17
JR
892static unsigned long memory_bm_rtree_next_pfn(struct memory_bitmap *bm);
893
b788db79
RW
894static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
895{
3a20cb17 896 unsigned long rtree_pfn;
b788db79 897 struct bm_block *bb;
b788db79
RW
898 int bit;
899
3a20cb17
JR
900 rtree_pfn = memory_bm_rtree_next_pfn(bm);
901
846705de 902 bb = bm->cur.block;
b788db79 903 do {
846705de
RW
904 bit = bm->cur.bit;
905 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
906 if (bit < bm_block_bits(bb))
907 goto Return_pfn;
908
909 bb = list_entry(bb->hook.next, struct bm_block, hook);
910 bm->cur.block = bb;
911 bm->cur.bit = 0;
912 } while (&bb->hook != &bm->blocks);
913
b788db79 914 memory_bm_position_reset(bm);
3a20cb17 915 WARN_ON_ONCE(rtree_pfn != BM_END_OF_MAP);
b788db79
RW
916 return BM_END_OF_MAP;
917
59a49335 918 Return_pfn:
3a20cb17 919 WARN_ON_ONCE(bb->start_pfn + bit != rtree_pfn);
0d83304c
AM
920 bm->cur.bit = bit + 1;
921 return bb->start_pfn + bit;
b788db79
RW
922}
923
3a20cb17
JR
924/*
925 * rtree_next_node - Jumps to the next leave node
926 *
927 * Sets the position to the beginning of the next node in the
928 * memory bitmap. This is either the next node in the current
929 * zone's radix tree or the first node in the radix tree of the
930 * next zone.
931 *
932 * Returns true if there is a next node, false otherwise.
933 */
934static bool rtree_next_node(struct memory_bitmap *bm)
935{
936 bm->cur.node = list_entry(bm->cur.node->list.next,
937 struct rtree_node, list);
938 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
939 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
940 bm->cur.node_bit = 0;
941 return true;
942 }
943
944 /* No more nodes, goto next zone */
945 bm->cur.zone = list_entry(bm->cur.zone->list.next,
946 struct mem_zone_bm_rtree, list);
947 if (&bm->cur.zone->list != &bm->zones) {
948 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
949 struct rtree_node, list);
950 bm->cur.node_pfn = 0;
951 bm->cur.node_bit = 0;
952 return true;
953 }
954
955 /* No more zones */
956 return false;
957}
958
959/*
960 * memory_bm_rtree_next_pfn - Find the next set bit
961 *
962 * Starting from the last returned position this function searches
963 * for the next set bit in the memory bitmap and returns its
964 * number. If no more bit is set BM_END_OF_MAP is returned.
965 */
966static unsigned long memory_bm_rtree_next_pfn(struct memory_bitmap *bm)
967{
968 unsigned long bits, pfn, pages;
969 int bit;
970
971 do {
972 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
973 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
974 bit = find_next_bit(bm->cur.node->data, bits,
975 bm->cur.node_bit);
976 if (bit < bits) {
977 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
978 bm->cur.node_bit = bit + 1;
979 return pfn;
980 }
981 } while (rtree_next_node(bm));
982
983 return BM_END_OF_MAP;
984}
985
74dfd666
RW
986/**
987 * This structure represents a range of page frames the contents of which
988 * should not be saved during the suspend.
989 */
990
991struct nosave_region {
992 struct list_head list;
993 unsigned long start_pfn;
994 unsigned long end_pfn;
995};
996
997static LIST_HEAD(nosave_regions);
998
999/**
1000 * register_nosave_region - register a range of page frames the contents
1001 * of which should not be saved during the suspend (to be used in the early
1002 * initialization code)
1003 */
1004
1005void __init
940d67f6
JB
1006__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
1007 int use_kmalloc)
74dfd666
RW
1008{
1009 struct nosave_region *region;
1010
1011 if (start_pfn >= end_pfn)
1012 return;
1013
1014 if (!list_empty(&nosave_regions)) {
1015 /* Try to extend the previous region (they should be sorted) */
1016 region = list_entry(nosave_regions.prev,
1017 struct nosave_region, list);
1018 if (region->end_pfn == start_pfn) {
1019 region->end_pfn = end_pfn;
1020 goto Report;
1021 }
1022 }
940d67f6
JB
1023 if (use_kmalloc) {
1024 /* during init, this shouldn't fail */
1025 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
1026 BUG_ON(!region);
1027 } else
1028 /* This allocation cannot fail */
c2f69cda 1029 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
74dfd666
RW
1030 region->start_pfn = start_pfn;
1031 region->end_pfn = end_pfn;
1032 list_add_tail(&region->list, &nosave_regions);
1033 Report:
cd38ca85
BH
1034 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
1035 (unsigned long long) start_pfn << PAGE_SHIFT,
1036 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
1037}
1038
1039/*
1040 * Set bits in this map correspond to the page frames the contents of which
1041 * should not be saved during the suspend.
1042 */
1043static struct memory_bitmap *forbidden_pages_map;
1044
1045/* Set bits in this map correspond to free page frames. */
1046static struct memory_bitmap *free_pages_map;
1047
1048/*
1049 * Each page frame allocated for creating the image is marked by setting the
1050 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1051 */
1052
1053void swsusp_set_page_free(struct page *page)
1054{
1055 if (free_pages_map)
1056 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1057}
1058
1059static int swsusp_page_is_free(struct page *page)
1060{
1061 return free_pages_map ?
1062 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1063}
1064
1065void swsusp_unset_page_free(struct page *page)
1066{
1067 if (free_pages_map)
1068 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1069}
1070
1071static void swsusp_set_page_forbidden(struct page *page)
1072{
1073 if (forbidden_pages_map)
1074 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1075}
1076
1077int swsusp_page_is_forbidden(struct page *page)
1078{
1079 return forbidden_pages_map ?
1080 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1081}
1082
1083static void swsusp_unset_page_forbidden(struct page *page)
1084{
1085 if (forbidden_pages_map)
1086 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1087}
1088
1089/**
1090 * mark_nosave_pages - set bits corresponding to the page frames the
1091 * contents of which should not be saved in a given bitmap.
1092 */
1093
1094static void mark_nosave_pages(struct memory_bitmap *bm)
1095{
1096 struct nosave_region *region;
1097
1098 if (list_empty(&nosave_regions))
1099 return;
1100
1101 list_for_each_entry(region, &nosave_regions, list) {
1102 unsigned long pfn;
1103
69f1d475
BH
1104 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1105 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1106 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1107 - 1);
74dfd666
RW
1108
1109 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1110 if (pfn_valid(pfn)) {
1111 /*
1112 * It is safe to ignore the result of
1113 * mem_bm_set_bit_check() here, since we won't
1114 * touch the PFNs for which the error is
1115 * returned anyway.
1116 */
1117 mem_bm_set_bit_check(bm, pfn);
1118 }
74dfd666
RW
1119 }
1120}
1121
1122/**
1123 * create_basic_memory_bitmaps - create bitmaps needed for marking page
1124 * frames that should not be saved and free page frames. The pointers
1125 * forbidden_pages_map and free_pages_map are only modified if everything
1126 * goes well, because we don't want the bits to be used before both bitmaps
1127 * are set up.
1128 */
1129
1130int create_basic_memory_bitmaps(void)
1131{
1132 struct memory_bitmap *bm1, *bm2;
1133 int error = 0;
1134
aab17289
RW
1135 if (forbidden_pages_map && free_pages_map)
1136 return 0;
1137 else
1138 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1139
0709db60 1140 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1141 if (!bm1)
1142 return -ENOMEM;
1143
0709db60 1144 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1145 if (error)
1146 goto Free_first_object;
1147
0709db60 1148 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1149 if (!bm2)
1150 goto Free_first_bitmap;
1151
0709db60 1152 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1153 if (error)
1154 goto Free_second_object;
1155
1156 forbidden_pages_map = bm1;
1157 free_pages_map = bm2;
1158 mark_nosave_pages(forbidden_pages_map);
1159
23976728 1160 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
1161
1162 return 0;
1163
1164 Free_second_object:
1165 kfree(bm2);
1166 Free_first_bitmap:
1167 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1168 Free_first_object:
1169 kfree(bm1);
1170 return -ENOMEM;
1171}
1172
1173/**
1174 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1175 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1176 * so that the bitmaps themselves are not referred to while they are being
1177 * freed.
1178 */
1179
1180void free_basic_memory_bitmaps(void)
1181{
1182 struct memory_bitmap *bm1, *bm2;
1183
6a0c7cd3
RW
1184 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1185 return;
74dfd666
RW
1186
1187 bm1 = forbidden_pages_map;
1188 bm2 = free_pages_map;
1189 forbidden_pages_map = NULL;
1190 free_pages_map = NULL;
1191 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1192 kfree(bm1);
1193 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1194 kfree(bm2);
1195
23976728 1196 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
1197}
1198
b788db79
RW
1199/**
1200 * snapshot_additional_pages - estimate the number of additional pages
1201 * be needed for setting up the suspend image data structures for given
1202 * zone (usually the returned value is greater than the exact number)
1203 */
1204
1205unsigned int snapshot_additional_pages(struct zone *zone)
1206{
f469f02d 1207 unsigned int rtree, nodes;
b788db79
RW
1208 unsigned int res;
1209
1210 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
160cb5a9
NK
1211 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
1212 LINKED_PAGE_DATA_SIZE);
f469f02d
JR
1213 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1214 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1215 LINKED_PAGE_DATA_SIZE);
1216 while (nodes > 1) {
1217 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1218 rtree += nodes;
1219 }
1220
1221 return 2 * (res + rtree);
b788db79
RW
1222}
1223
8357376d
RW
1224#ifdef CONFIG_HIGHMEM
1225/**
1226 * count_free_highmem_pages - compute the total number of free highmem
1227 * pages, system-wide.
1228 */
1229
1230static unsigned int count_free_highmem_pages(void)
1231{
1232 struct zone *zone;
1233 unsigned int cnt = 0;
1234
ee99c71c
KM
1235 for_each_populated_zone(zone)
1236 if (is_highmem(zone))
d23ad423 1237 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1238
1239 return cnt;
1240}
1241
1242/**
1243 * saveable_highmem_page - Determine whether a highmem page should be
1244 * included in the suspend image.
1245 *
1246 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1247 * and it isn't a part of a free chunk of pages.
1248 */
846705de 1249static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1250{
1251 struct page *page;
1252
1253 if (!pfn_valid(pfn))
1254 return NULL;
1255
1256 page = pfn_to_page(pfn);
846705de
RW
1257 if (page_zone(page) != zone)
1258 return NULL;
8357376d
RW
1259
1260 BUG_ON(!PageHighMem(page));
1261
7be98234
RW
1262 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1263 PageReserved(page))
8357376d
RW
1264 return NULL;
1265
c6968e73
SG
1266 if (page_is_guard(page))
1267 return NULL;
1268
8357376d
RW
1269 return page;
1270}
1271
1272/**
1273 * count_highmem_pages - compute the total number of saveable highmem
1274 * pages.
1275 */
1276
fe419535 1277static unsigned int count_highmem_pages(void)
8357376d
RW
1278{
1279 struct zone *zone;
1280 unsigned int n = 0;
1281
98e73dc5 1282 for_each_populated_zone(zone) {
8357376d
RW
1283 unsigned long pfn, max_zone_pfn;
1284
1285 if (!is_highmem(zone))
1286 continue;
1287
1288 mark_free_pages(zone);
c33bc315 1289 max_zone_pfn = zone_end_pfn(zone);
8357376d 1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1291 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1292 n++;
1293 }
1294 return n;
1295}
1296#else
846705de
RW
1297static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1298{
1299 return NULL;
1300}
8357376d
RW
1301#endif /* CONFIG_HIGHMEM */
1302
25761b6e 1303/**
8a235efa
RW
1304 * saveable_page - Determine whether a non-highmem page should be included
1305 * in the suspend image.
25761b6e 1306 *
8357376d
RW
1307 * We should save the page if it isn't Nosave, and is not in the range
1308 * of pages statically defined as 'unsaveable', and it isn't a part of
1309 * a free chunk of pages.
25761b6e 1310 */
846705de 1311static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1312{
de491861 1313 struct page *page;
25761b6e
RW
1314
1315 if (!pfn_valid(pfn))
ae83c5ee 1316 return NULL;
25761b6e
RW
1317
1318 page = pfn_to_page(pfn);
846705de
RW
1319 if (page_zone(page) != zone)
1320 return NULL;
ae83c5ee 1321
8357376d
RW
1322 BUG_ON(PageHighMem(page));
1323
7be98234 1324 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1325 return NULL;
8357376d 1326
8a235efa
RW
1327 if (PageReserved(page)
1328 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1329 return NULL;
25761b6e 1330
c6968e73
SG
1331 if (page_is_guard(page))
1332 return NULL;
1333
ae83c5ee 1334 return page;
25761b6e
RW
1335}
1336
8357376d
RW
1337/**
1338 * count_data_pages - compute the total number of saveable non-highmem
1339 * pages.
1340 */
1341
fe419535 1342static unsigned int count_data_pages(void)
25761b6e
RW
1343{
1344 struct zone *zone;
ae83c5ee 1345 unsigned long pfn, max_zone_pfn;
dc19d507 1346 unsigned int n = 0;
25761b6e 1347
98e73dc5 1348 for_each_populated_zone(zone) {
25761b6e
RW
1349 if (is_highmem(zone))
1350 continue;
8357376d 1351
25761b6e 1352 mark_free_pages(zone);
c33bc315 1353 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1354 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1355 if (saveable_page(zone, pfn))
8357376d 1356 n++;
25761b6e 1357 }
a0f49651 1358 return n;
25761b6e
RW
1359}
1360
8357376d
RW
1361/* This is needed, because copy_page and memcpy are not usable for copying
1362 * task structs.
1363 */
1364static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1365{
1366 int n;
1367
f623f0db
RW
1368 for (n = PAGE_SIZE / sizeof(long); n; n--)
1369 *dst++ = *src++;
1370}
1371
8a235efa
RW
1372
1373/**
1374 * safe_copy_page - check if the page we are going to copy is marked as
1375 * present in the kernel page tables (this always is the case if
1376 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1377 * kernel_page_present() always returns 'true').
1378 */
1379static void safe_copy_page(void *dst, struct page *s_page)
1380{
1381 if (kernel_page_present(s_page)) {
1382 do_copy_page(dst, page_address(s_page));
1383 } else {
1384 kernel_map_pages(s_page, 1, 1);
1385 do_copy_page(dst, page_address(s_page));
1386 kernel_map_pages(s_page, 1, 0);
1387 }
1388}
1389
1390
8357376d
RW
1391#ifdef CONFIG_HIGHMEM
1392static inline struct page *
1393page_is_saveable(struct zone *zone, unsigned long pfn)
1394{
1395 return is_highmem(zone) ?
846705de 1396 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1397}
1398
8a235efa 1399static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1400{
1401 struct page *s_page, *d_page;
1402 void *src, *dst;
1403
1404 s_page = pfn_to_page(src_pfn);
1405 d_page = pfn_to_page(dst_pfn);
1406 if (PageHighMem(s_page)) {
0de9a1e2
CW
1407 src = kmap_atomic(s_page);
1408 dst = kmap_atomic(d_page);
8357376d 1409 do_copy_page(dst, src);
0de9a1e2
CW
1410 kunmap_atomic(dst);
1411 kunmap_atomic(src);
8357376d 1412 } else {
8357376d
RW
1413 if (PageHighMem(d_page)) {
1414 /* Page pointed to by src may contain some kernel
1415 * data modified by kmap_atomic()
1416 */
8a235efa 1417 safe_copy_page(buffer, s_page);
0de9a1e2 1418 dst = kmap_atomic(d_page);
3ecb01df 1419 copy_page(dst, buffer);
0de9a1e2 1420 kunmap_atomic(dst);
8357376d 1421 } else {
8a235efa 1422 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1423 }
1424 }
1425}
1426#else
846705de 1427#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1428
8a235efa 1429static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1430{
8a235efa
RW
1431 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1432 pfn_to_page(src_pfn));
8357376d
RW
1433}
1434#endif /* CONFIG_HIGHMEM */
1435
b788db79
RW
1436static void
1437copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1438{
1439 struct zone *zone;
b788db79 1440 unsigned long pfn;
25761b6e 1441
98e73dc5 1442 for_each_populated_zone(zone) {
b788db79
RW
1443 unsigned long max_zone_pfn;
1444
25761b6e 1445 mark_free_pages(zone);
c33bc315 1446 max_zone_pfn = zone_end_pfn(zone);
b788db79 1447 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1448 if (page_is_saveable(zone, pfn))
b788db79 1449 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1450 }
b788db79
RW
1451 memory_bm_position_reset(orig_bm);
1452 memory_bm_position_reset(copy_bm);
df7c4872 1453 for(;;) {
b788db79 1454 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1455 if (unlikely(pfn == BM_END_OF_MAP))
1456 break;
1457 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1458 }
25761b6e
RW
1459}
1460
8357376d
RW
1461/* Total number of image pages */
1462static unsigned int nr_copy_pages;
1463/* Number of pages needed for saving the original pfns of the image pages */
1464static unsigned int nr_meta_pages;
64a473cb
RW
1465/*
1466 * Numbers of normal and highmem page frames allocated for hibernation image
1467 * before suspending devices.
1468 */
1469unsigned int alloc_normal, alloc_highmem;
1470/*
1471 * Memory bitmap used for marking saveable pages (during hibernation) or
1472 * hibernation image pages (during restore)
1473 */
1474static struct memory_bitmap orig_bm;
1475/*
1476 * Memory bitmap used during hibernation for marking allocated page frames that
1477 * will contain copies of saveable pages. During restore it is initially used
1478 * for marking hibernation image pages, but then the set bits from it are
1479 * duplicated in @orig_bm and it is released. On highmem systems it is next
1480 * used for marking "safe" highmem pages, but it has to be reinitialized for
1481 * this purpose.
1482 */
1483static struct memory_bitmap copy_bm;
8357376d 1484
25761b6e 1485/**
940864dd 1486 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1487 *
940864dd
RW
1488 * Suspend pages are alocated before the atomic copy is made, so we
1489 * need to release them after the resume.
25761b6e
RW
1490 */
1491
1492void swsusp_free(void)
1493{
1494 struct zone *zone;
ae83c5ee 1495 unsigned long pfn, max_zone_pfn;
25761b6e 1496
98e73dc5 1497 for_each_populated_zone(zone) {
c33bc315 1498 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
1499 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1500 if (pfn_valid(pfn)) {
1501 struct page *page = pfn_to_page(pfn);
1502
7be98234
RW
1503 if (swsusp_page_is_forbidden(page) &&
1504 swsusp_page_is_free(page)) {
1505 swsusp_unset_page_forbidden(page);
1506 swsusp_unset_page_free(page);
8357376d 1507 __free_page(page);
25761b6e
RW
1508 }
1509 }
1510 }
f577eb30
RW
1511 nr_copy_pages = 0;
1512 nr_meta_pages = 0;
75534b50 1513 restore_pblist = NULL;
6e1819d6 1514 buffer = NULL;
64a473cb
RW
1515 alloc_normal = 0;
1516 alloc_highmem = 0;
25761b6e
RW
1517}
1518
4bb33435
RW
1519/* Helper functions used for the shrinking of memory. */
1520
1521#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1522
fe419535 1523/**
4bb33435
RW
1524 * preallocate_image_pages - Allocate a number of pages for hibernation image
1525 * @nr_pages: Number of page frames to allocate.
1526 * @mask: GFP flags to use for the allocation.
fe419535 1527 *
4bb33435
RW
1528 * Return value: Number of page frames actually allocated
1529 */
1530static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1531{
1532 unsigned long nr_alloc = 0;
1533
1534 while (nr_pages > 0) {
64a473cb
RW
1535 struct page *page;
1536
1537 page = alloc_image_page(mask);
1538 if (!page)
4bb33435 1539 break;
64a473cb
RW
1540 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1541 if (PageHighMem(page))
1542 alloc_highmem++;
1543 else
1544 alloc_normal++;
4bb33435
RW
1545 nr_pages--;
1546 nr_alloc++;
1547 }
1548
1549 return nr_alloc;
1550}
1551
6715045d
RW
1552static unsigned long preallocate_image_memory(unsigned long nr_pages,
1553 unsigned long avail_normal)
4bb33435 1554{
6715045d
RW
1555 unsigned long alloc;
1556
1557 if (avail_normal <= alloc_normal)
1558 return 0;
1559
1560 alloc = avail_normal - alloc_normal;
1561 if (nr_pages < alloc)
1562 alloc = nr_pages;
1563
1564 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1565}
1566
1567#ifdef CONFIG_HIGHMEM
1568static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1569{
1570 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1571}
1572
1573/**
1574 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1575 */
4bb33435
RW
1576static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1577{
1578 x *= multiplier;
1579 do_div(x, base);
1580 return (unsigned long)x;
1581}
fe419535 1582
4bb33435
RW
1583static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1584 unsigned long highmem,
1585 unsigned long total)
fe419535 1586{
4bb33435
RW
1587 unsigned long alloc = __fraction(nr_pages, highmem, total);
1588
1589 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1590}
4bb33435
RW
1591#else /* CONFIG_HIGHMEM */
1592static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1593{
1594 return 0;
1595}
1596
1597static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1598 unsigned long highmem,
1599 unsigned long total)
1600{
1601 return 0;
1602}
1603#endif /* CONFIG_HIGHMEM */
fe419535 1604
4bb33435 1605/**
64a473cb
RW
1606 * free_unnecessary_pages - Release preallocated pages not needed for the image
1607 */
1608static void free_unnecessary_pages(void)
1609{
6715045d 1610 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1611
6715045d
RW
1612 save = count_data_pages();
1613 if (alloc_normal >= save) {
1614 to_free_normal = alloc_normal - save;
1615 save = 0;
1616 } else {
1617 to_free_normal = 0;
1618 save -= alloc_normal;
1619 }
1620 save += count_highmem_pages();
1621 if (alloc_highmem >= save) {
1622 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1623 } else {
1624 to_free_highmem = 0;
4d4cf23c
RW
1625 save -= alloc_highmem;
1626 if (to_free_normal > save)
1627 to_free_normal -= save;
1628 else
1629 to_free_normal = 0;
64a473cb
RW
1630 }
1631
1632 memory_bm_position_reset(&copy_bm);
1633
a9c9b442 1634 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1635 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1636 struct page *page = pfn_to_page(pfn);
1637
1638 if (PageHighMem(page)) {
1639 if (!to_free_highmem)
1640 continue;
1641 to_free_highmem--;
1642 alloc_highmem--;
1643 } else {
1644 if (!to_free_normal)
1645 continue;
1646 to_free_normal--;
1647 alloc_normal--;
1648 }
1649 memory_bm_clear_bit(&copy_bm, pfn);
1650 swsusp_unset_page_forbidden(page);
1651 swsusp_unset_page_free(page);
1652 __free_page(page);
1653 }
1654}
1655
ef4aede3
RW
1656/**
1657 * minimum_image_size - Estimate the minimum acceptable size of an image
1658 * @saveable: Number of saveable pages in the system.
1659 *
1660 * We want to avoid attempting to free too much memory too hard, so estimate the
1661 * minimum acceptable size of a hibernation image to use as the lower limit for
1662 * preallocating memory.
1663 *
1664 * We assume that the minimum image size should be proportional to
1665 *
1666 * [number of saveable pages] - [number of pages that can be freed in theory]
1667 *
1668 * where the second term is the sum of (1) reclaimable slab pages, (2) active
4d434820 1669 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
ef4aede3
RW
1670 * minus mapped file pages.
1671 */
1672static unsigned long minimum_image_size(unsigned long saveable)
1673{
1674 unsigned long size;
1675
1676 size = global_page_state(NR_SLAB_RECLAIMABLE)
1677 + global_page_state(NR_ACTIVE_ANON)
1678 + global_page_state(NR_INACTIVE_ANON)
1679 + global_page_state(NR_ACTIVE_FILE)
1680 + global_page_state(NR_INACTIVE_FILE)
1681 - global_page_state(NR_FILE_MAPPED);
1682
1683 return saveable <= size ? 0 : saveable - size;
1684}
1685
64a473cb
RW
1686/**
1687 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1688 *
1689 * To create a hibernation image it is necessary to make a copy of every page
1690 * frame in use. We also need a number of page frames to be free during
1691 * hibernation for allocations made while saving the image and for device
1692 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1693 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1694 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1695 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1696 * total number of available page frames and allocate at least
4bb33435 1697 *
ddeb6487
RW
1698 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1699 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1700 *
1701 * of them, which corresponds to the maximum size of a hibernation image.
1702 *
1703 * If image_size is set below the number following from the above formula,
1704 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1705 * pages in the system is below the requested image size or the minimum
1706 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1707 */
64a473cb 1708int hibernate_preallocate_memory(void)
fe419535 1709{
fe419535 1710 struct zone *zone;
4bb33435 1711 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1712 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
fe419535 1713 struct timeval start, stop;
64a473cb 1714 int error;
fe419535 1715
64a473cb 1716 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1717 do_gettimeofday(&start);
fe419535 1718
64a473cb
RW
1719 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1720 if (error)
1721 goto err_out;
1722
1723 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1724 if (error)
1725 goto err_out;
1726
1727 alloc_normal = 0;
1728 alloc_highmem = 0;
1729
4bb33435 1730 /* Count the number of saveable data pages. */
64a473cb 1731 save_highmem = count_highmem_pages();
4bb33435 1732 saveable = count_data_pages();
fe419535 1733
4bb33435
RW
1734 /*
1735 * Compute the total number of page frames we can use (count) and the
1736 * number of pages needed for image metadata (size).
1737 */
1738 count = saveable;
64a473cb
RW
1739 saveable += save_highmem;
1740 highmem = save_highmem;
4bb33435
RW
1741 size = 0;
1742 for_each_populated_zone(zone) {
1743 size += snapshot_additional_pages(zone);
1744 if (is_highmem(zone))
1745 highmem += zone_page_state(zone, NR_FREE_PAGES);
1746 else
1747 count += zone_page_state(zone, NR_FREE_PAGES);
1748 }
6715045d 1749 avail_normal = count;
4bb33435
RW
1750 count += highmem;
1751 count -= totalreserve_pages;
1752
85055dd8
MS
1753 /* Add number of pages required for page keys (s390 only). */
1754 size += page_key_additional_pages(saveable);
1755
4bb33435 1756 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1757 max_size = (count - (size + PAGES_FOR_IO)) / 2
1758 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1759 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1760 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1761 if (size > max_size)
1762 size = max_size;
1763 /*
266f1a25
RW
1764 * If the desired number of image pages is at least as large as the
1765 * current number of saveable pages in memory, allocate page frames for
1766 * the image and we're done.
4bb33435 1767 */
64a473cb
RW
1768 if (size >= saveable) {
1769 pages = preallocate_image_highmem(save_highmem);
6715045d 1770 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1771 goto out;
64a473cb 1772 }
4bb33435 1773
ef4aede3
RW
1774 /* Estimate the minimum size of the image. */
1775 pages = minimum_image_size(saveable);
6715045d
RW
1776 /*
1777 * To avoid excessive pressure on the normal zone, leave room in it to
1778 * accommodate an image of the minimum size (unless it's already too
1779 * small, in which case don't preallocate pages from it at all).
1780 */
1781 if (avail_normal > pages)
1782 avail_normal -= pages;
1783 else
1784 avail_normal = 0;
ef4aede3
RW
1785 if (size < pages)
1786 size = min_t(unsigned long, pages, max_size);
1787
4bb33435
RW
1788 /*
1789 * Let the memory management subsystem know that we're going to need a
1790 * large number of page frames to allocate and make it free some memory.
1791 * NOTE: If this is not done, performance will be hurt badly in some
1792 * test cases.
1793 */
1794 shrink_all_memory(saveable - size);
1795
1796 /*
1797 * The number of saveable pages in memory was too high, so apply some
1798 * pressure to decrease it. First, make room for the largest possible
1799 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1800 * of the image as much as indicated by 'size' using allocations from
1801 * highmem and non-highmem zones separately.
4bb33435
RW
1802 */
1803 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1804 alloc = count - max_size;
1805 if (alloc > pages_highmem)
1806 alloc -= pages_highmem;
1807 else
1808 alloc = 0;
6715045d
RW
1809 pages = preallocate_image_memory(alloc, avail_normal);
1810 if (pages < alloc) {
1811 /* We have exhausted non-highmem pages, try highmem. */
1812 alloc -= pages;
1813 pages += pages_highmem;
1814 pages_highmem = preallocate_image_highmem(alloc);
1815 if (pages_highmem < alloc)
1816 goto err_out;
1817 pages += pages_highmem;
1818 /*
1819 * size is the desired number of saveable pages to leave in
1820 * memory, so try to preallocate (all memory - size) pages.
1821 */
1822 alloc = (count - pages) - size;
1823 pages += preallocate_image_highmem(alloc);
1824 } else {
1825 /*
1826 * There are approximately max_size saveable pages at this point
1827 * and we want to reduce this number down to size.
1828 */
1829 alloc = max_size - size;
1830 size = preallocate_highmem_fraction(alloc, highmem, count);
1831 pages_highmem += size;
1832 alloc -= size;
1833 size = preallocate_image_memory(alloc, avail_normal);
1834 pages_highmem += preallocate_image_highmem(alloc - size);
1835 pages += pages_highmem + size;
1836 }
4bb33435 1837
64a473cb
RW
1838 /*
1839 * We only need as many page frames for the image as there are saveable
1840 * pages in memory, but we have allocated more. Release the excessive
1841 * ones now.
1842 */
1843 free_unnecessary_pages();
4bb33435
RW
1844
1845 out:
fe419535 1846 do_gettimeofday(&stop);
64a473cb
RW
1847 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1848 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1849
1850 return 0;
64a473cb
RW
1851
1852 err_out:
1853 printk(KERN_CONT "\n");
1854 swsusp_free();
1855 return -ENOMEM;
fe419535
RW
1856}
1857
8357376d
RW
1858#ifdef CONFIG_HIGHMEM
1859/**
1860 * count_pages_for_highmem - compute the number of non-highmem pages
1861 * that will be necessary for creating copies of highmem pages.
1862 */
1863
1864static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1865{
64a473cb 1866 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1867
1868 if (free_highmem >= nr_highmem)
1869 nr_highmem = 0;
1870 else
1871 nr_highmem -= free_highmem;
1872
1873 return nr_highmem;
1874}
1875#else
1876static unsigned int
1877count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1878#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1879
1880/**
8357376d
RW
1881 * enough_free_mem - Make sure we have enough free memory for the
1882 * snapshot image.
25761b6e
RW
1883 */
1884
8357376d 1885static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1886{
e5e2fa78 1887 struct zone *zone;
64a473cb 1888 unsigned int free = alloc_normal;
e5e2fa78 1889
98e73dc5 1890 for_each_populated_zone(zone)
8357376d 1891 if (!is_highmem(zone))
d23ad423 1892 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1893
8357376d 1894 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1895 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1896 nr_pages, PAGES_FOR_IO, free);
940864dd 1897
64a473cb 1898 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1899}
1900
8357376d
RW
1901#ifdef CONFIG_HIGHMEM
1902/**
1903 * get_highmem_buffer - if there are some highmem pages in the suspend
1904 * image, we may need the buffer to copy them and/or load their data.
1905 */
1906
1907static inline int get_highmem_buffer(int safe_needed)
1908{
1909 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1910 return buffer ? 0 : -ENOMEM;
1911}
1912
1913/**
1914 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1915 * Try to allocate as many pages as needed, but if the number of free
1916 * highmem pages is lesser than that, allocate them all.
1917 */
1918
1919static inline unsigned int
64a473cb 1920alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1921{
1922 unsigned int to_alloc = count_free_highmem_pages();
1923
1924 if (to_alloc > nr_highmem)
1925 to_alloc = nr_highmem;
1926
1927 nr_highmem -= to_alloc;
1928 while (to_alloc-- > 0) {
1929 struct page *page;
1930
1931 page = alloc_image_page(__GFP_HIGHMEM);
1932 memory_bm_set_bit(bm, page_to_pfn(page));
1933 }
1934 return nr_highmem;
1935}
1936#else
1937static inline int get_highmem_buffer(int safe_needed) { return 0; }
1938
1939static inline unsigned int
64a473cb 1940alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1941#endif /* CONFIG_HIGHMEM */
1942
1943/**
1944 * swsusp_alloc - allocate memory for the suspend image
1945 *
1946 * We first try to allocate as many highmem pages as there are
1947 * saveable highmem pages in the system. If that fails, we allocate
1948 * non-highmem pages for the copies of the remaining highmem ones.
1949 *
1950 * In this approach it is likely that the copies of highmem pages will
1951 * also be located in the high memory, because of the way in which
1952 * copy_data_pages() works.
1953 */
1954
b788db79
RW
1955static int
1956swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1957 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1958{
8357376d 1959 if (nr_highmem > 0) {
2e725a06 1960 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1961 goto err_out;
1962 if (nr_highmem > alloc_highmem) {
1963 nr_highmem -= alloc_highmem;
1964 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1965 }
8357376d 1966 }
64a473cb
RW
1967 if (nr_pages > alloc_normal) {
1968 nr_pages -= alloc_normal;
1969 while (nr_pages-- > 0) {
1970 struct page *page;
1971
1972 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1973 if (!page)
1974 goto err_out;
1975 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1976 }
25761b6e 1977 }
64a473cb 1978
b788db79 1979 return 0;
25761b6e 1980
64a473cb 1981 err_out:
b788db79 1982 swsusp_free();
2e725a06 1983 return -ENOMEM;
25761b6e
RW
1984}
1985
722a9f92 1986asmlinkage __visible int swsusp_save(void)
25761b6e 1987{
8357376d 1988 unsigned int nr_pages, nr_highmem;
25761b6e 1989
07c3bb57 1990 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1991
9f8f2172 1992 drain_local_pages(NULL);
a0f49651 1993 nr_pages = count_data_pages();
8357376d 1994 nr_highmem = count_highmem_pages();
23976728 1995 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1996
8357376d 1997 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1998 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1999 return -ENOMEM;
2000 }
2001
8357376d 2002 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 2003 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 2004 return -ENOMEM;
8357376d 2005 }
25761b6e
RW
2006
2007 /* During allocating of suspend pagedir, new cold pages may appear.
2008 * Kill them.
2009 */
9f8f2172 2010 drain_local_pages(NULL);
b788db79 2011 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
2012
2013 /*
2014 * End of critical section. From now on, we can write to memory,
2015 * but we should not touch disk. This specially means we must _not_
2016 * touch swap space! Except we must write out our image of course.
2017 */
2018
8357376d 2019 nr_pages += nr_highmem;
a0f49651 2020 nr_copy_pages = nr_pages;
8357376d 2021 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 2022
23976728
RW
2023 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
2024 nr_pages);
8357376d 2025
25761b6e
RW
2026 return 0;
2027}
f577eb30 2028
d307c4a8
RW
2029#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2030static int init_header_complete(struct swsusp_info *info)
f577eb30 2031{
d307c4a8 2032 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 2033 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
2034 return 0;
2035}
2036
2037static char *check_image_kernel(struct swsusp_info *info)
2038{
2039 if (info->version_code != LINUX_VERSION_CODE)
2040 return "kernel version";
2041 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2042 return "system type";
2043 if (strcmp(info->uts.release,init_utsname()->release))
2044 return "kernel release";
2045 if (strcmp(info->uts.version,init_utsname()->version))
2046 return "version";
2047 if (strcmp(info->uts.machine,init_utsname()->machine))
2048 return "machine";
2049 return NULL;
2050}
2051#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2052
af508b34
RW
2053unsigned long snapshot_get_image_size(void)
2054{
2055 return nr_copy_pages + nr_meta_pages + 1;
2056}
2057
d307c4a8
RW
2058static int init_header(struct swsusp_info *info)
2059{
2060 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 2061 info->num_physpages = get_num_physpages();
f577eb30 2062 info->image_pages = nr_copy_pages;
af508b34 2063 info->pages = snapshot_get_image_size();
6e1819d6
RW
2064 info->size = info->pages;
2065 info->size <<= PAGE_SHIFT;
d307c4a8 2066 return init_header_complete(info);
f577eb30
RW
2067}
2068
2069/**
940864dd
RW
2070 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
2071 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
2072 */
2073
b788db79 2074static inline void
940864dd 2075pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2076{
2077 int j;
2078
b788db79 2079 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
2080 buf[j] = memory_bm_next_pfn(bm);
2081 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 2082 break;
85055dd8
MS
2083 /* Save page key for data page (s390 only). */
2084 page_key_read(buf + j);
f577eb30 2085 }
f577eb30
RW
2086}
2087
2088/**
2089 * snapshot_read_next - used for reading the system memory snapshot.
2090 *
2091 * On the first call to it @handle should point to a zeroed
2092 * snapshot_handle structure. The structure gets updated and a pointer
2093 * to it should be passed to this function every next time.
2094 *
f577eb30
RW
2095 * On success the function returns a positive number. Then, the caller
2096 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 2097 * location computed by the data_of() macro.
f577eb30
RW
2098 *
2099 * The function returns 0 to indicate the end of data stream condition,
2100 * and a negative number is returned on error. In such cases the
2101 * structure pointed to by @handle is not updated and should not be used
2102 * any more.
2103 */
2104
d3c1b24c 2105int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2106{
fb13a28b 2107 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2108 return 0;
b788db79 2109
f577eb30
RW
2110 if (!buffer) {
2111 /* This makes the buffer be freed by swsusp_free() */
8357376d 2112 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2113 if (!buffer)
2114 return -ENOMEM;
2115 }
d3c1b24c 2116 if (!handle->cur) {
d307c4a8
RW
2117 int error;
2118
2119 error = init_header((struct swsusp_info *)buffer);
2120 if (error)
2121 return error;
f577eb30 2122 handle->buffer = buffer;
b788db79
RW
2123 memory_bm_position_reset(&orig_bm);
2124 memory_bm_position_reset(&copy_bm);
d3c1b24c 2125 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2126 clear_page(buffer);
d3c1b24c
JS
2127 pack_pfns(buffer, &orig_bm);
2128 } else {
2129 struct page *page;
b788db79 2130
d3c1b24c
JS
2131 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2132 if (PageHighMem(page)) {
2133 /* Highmem pages are copied to the buffer,
2134 * because we can't return with a kmapped
2135 * highmem page (we may not be called again).
2136 */
2137 void *kaddr;
8357376d 2138
0de9a1e2 2139 kaddr = kmap_atomic(page);
3ecb01df 2140 copy_page(buffer, kaddr);
0de9a1e2 2141 kunmap_atomic(kaddr);
d3c1b24c
JS
2142 handle->buffer = buffer;
2143 } else {
2144 handle->buffer = page_address(page);
f577eb30 2145 }
f577eb30 2146 }
d3c1b24c
JS
2147 handle->cur++;
2148 return PAGE_SIZE;
f577eb30
RW
2149}
2150
2151/**
2152 * mark_unsafe_pages - mark the pages that cannot be used for storing
2153 * the image during resume, because they conflict with the pages that
2154 * had been used before suspend
2155 */
2156
940864dd 2157static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
2158{
2159 struct zone *zone;
ae83c5ee 2160 unsigned long pfn, max_zone_pfn;
f577eb30
RW
2161
2162 /* Clear page flags */
98e73dc5 2163 for_each_populated_zone(zone) {
c33bc315 2164 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
2165 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2166 if (pfn_valid(pfn))
7be98234 2167 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
2168 }
2169
940864dd
RW
2170 /* Mark pages that correspond to the "original" pfns as "unsafe" */
2171 memory_bm_position_reset(bm);
2172 do {
2173 pfn = memory_bm_next_pfn(bm);
2174 if (likely(pfn != BM_END_OF_MAP)) {
2175 if (likely(pfn_valid(pfn)))
7be98234 2176 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
2177 else
2178 return -EFAULT;
2179 }
2180 } while (pfn != BM_END_OF_MAP);
f577eb30 2181
940864dd 2182 allocated_unsafe_pages = 0;
968808b8 2183
f577eb30
RW
2184 return 0;
2185}
2186
940864dd
RW
2187static void
2188duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 2189{
940864dd
RW
2190 unsigned long pfn;
2191
2192 memory_bm_position_reset(src);
2193 pfn = memory_bm_next_pfn(src);
2194 while (pfn != BM_END_OF_MAP) {
2195 memory_bm_set_bit(dst, pfn);
2196 pfn = memory_bm_next_pfn(src);
f577eb30
RW
2197 }
2198}
2199
d307c4a8 2200static int check_header(struct swsusp_info *info)
f577eb30 2201{
d307c4a8 2202 char *reason;
f577eb30 2203
d307c4a8 2204 reason = check_image_kernel(info);
0ed5fd13 2205 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2206 reason = "memory size";
f577eb30 2207 if (reason) {
23976728 2208 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
2209 return -EPERM;
2210 }
2211 return 0;
2212}
2213
2214/**
2215 * load header - check the image header and copy data from it
2216 */
2217
940864dd
RW
2218static int
2219load_header(struct swsusp_info *info)
f577eb30
RW
2220{
2221 int error;
f577eb30 2222
940864dd 2223 restore_pblist = NULL;
f577eb30
RW
2224 error = check_header(info);
2225 if (!error) {
f577eb30
RW
2226 nr_copy_pages = info->image_pages;
2227 nr_meta_pages = info->pages - info->image_pages - 1;
2228 }
2229 return error;
2230}
2231
2232/**
940864dd
RW
2233 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2234 * the corresponding bit in the memory bitmap @bm
f577eb30 2235 */
69643279 2236static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2237{
2238 int j;
2239
940864dd
RW
2240 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2241 if (unlikely(buf[j] == BM_END_OF_MAP))
2242 break;
2243
85055dd8
MS
2244 /* Extract and buffer page key for data page (s390 only). */
2245 page_key_memorize(buf + j);
2246
69643279
RW
2247 if (memory_bm_pfn_present(bm, buf[j]))
2248 memory_bm_set_bit(bm, buf[j]);
2249 else
2250 return -EFAULT;
f577eb30 2251 }
69643279
RW
2252
2253 return 0;
f577eb30
RW
2254}
2255
8357376d
RW
2256/* List of "safe" pages that may be used to store data loaded from the suspend
2257 * image
2258 */
2259static struct linked_page *safe_pages_list;
2260
2261#ifdef CONFIG_HIGHMEM
2262/* struct highmem_pbe is used for creating the list of highmem pages that
2263 * should be restored atomically during the resume from disk, because the page
2264 * frames they have occupied before the suspend are in use.
2265 */
2266struct highmem_pbe {
2267 struct page *copy_page; /* data is here now */
2268 struct page *orig_page; /* data was here before the suspend */
2269 struct highmem_pbe *next;
2270};
2271
2272/* List of highmem PBEs needed for restoring the highmem pages that were
2273 * allocated before the suspend and included in the suspend image, but have
2274 * also been allocated by the "resume" kernel, so their contents cannot be
2275 * written directly to their "original" page frames.
2276 */
2277static struct highmem_pbe *highmem_pblist;
2278
2279/**
2280 * count_highmem_image_pages - compute the number of highmem pages in the
2281 * suspend image. The bits in the memory bitmap @bm that correspond to the
2282 * image pages are assumed to be set.
2283 */
2284
2285static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2286{
2287 unsigned long pfn;
2288 unsigned int cnt = 0;
2289
2290 memory_bm_position_reset(bm);
2291 pfn = memory_bm_next_pfn(bm);
2292 while (pfn != BM_END_OF_MAP) {
2293 if (PageHighMem(pfn_to_page(pfn)))
2294 cnt++;
2295
2296 pfn = memory_bm_next_pfn(bm);
2297 }
2298 return cnt;
2299}
2300
2301/**
2302 * prepare_highmem_image - try to allocate as many highmem pages as
2303 * there are highmem image pages (@nr_highmem_p points to the variable
2304 * containing the number of highmem image pages). The pages that are
2305 * "safe" (ie. will not be overwritten when the suspend image is
2306 * restored) have the corresponding bits set in @bm (it must be
2307 * unitialized).
2308 *
2309 * NOTE: This function should not be called if there are no highmem
2310 * image pages.
2311 */
2312
2313static unsigned int safe_highmem_pages;
2314
2315static struct memory_bitmap *safe_highmem_bm;
2316
2317static int
2318prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2319{
2320 unsigned int to_alloc;
2321
2322 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2323 return -ENOMEM;
2324
2325 if (get_highmem_buffer(PG_SAFE))
2326 return -ENOMEM;
2327
2328 to_alloc = count_free_highmem_pages();
2329 if (to_alloc > *nr_highmem_p)
2330 to_alloc = *nr_highmem_p;
2331 else
2332 *nr_highmem_p = to_alloc;
2333
2334 safe_highmem_pages = 0;
2335 while (to_alloc-- > 0) {
2336 struct page *page;
2337
2338 page = alloc_page(__GFP_HIGHMEM);
7be98234 2339 if (!swsusp_page_is_free(page)) {
8357376d
RW
2340 /* The page is "safe", set its bit the bitmap */
2341 memory_bm_set_bit(bm, page_to_pfn(page));
2342 safe_highmem_pages++;
2343 }
2344 /* Mark the page as allocated */
7be98234
RW
2345 swsusp_set_page_forbidden(page);
2346 swsusp_set_page_free(page);
8357376d
RW
2347 }
2348 memory_bm_position_reset(bm);
2349 safe_highmem_bm = bm;
2350 return 0;
2351}
2352
2353/**
2354 * get_highmem_page_buffer - for given highmem image page find the buffer
2355 * that suspend_write_next() should set for its caller to write to.
2356 *
2357 * If the page is to be saved to its "original" page frame or a copy of
2358 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2359 * the copy of the page is to be made in normal memory, so the address of
2360 * the copy is returned.
2361 *
2362 * If @buffer is returned, the caller of suspend_write_next() will write
2363 * the page's contents to @buffer, so they will have to be copied to the
2364 * right location on the next call to suspend_write_next() and it is done
2365 * with the help of copy_last_highmem_page(). For this purpose, if
2366 * @buffer is returned, @last_highmem page is set to the page to which
2367 * the data will have to be copied from @buffer.
2368 */
2369
2370static struct page *last_highmem_page;
2371
2372static void *
2373get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2374{
2375 struct highmem_pbe *pbe;
2376 void *kaddr;
2377
7be98234 2378 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
2379 /* We have allocated the "original" page frame and we can
2380 * use it directly to store the loaded page.
2381 */
2382 last_highmem_page = page;
2383 return buffer;
2384 }
2385 /* The "original" page frame has not been allocated and we have to
2386 * use a "safe" page frame to store the loaded page.
2387 */
2388 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2389 if (!pbe) {
2390 swsusp_free();
69643279 2391 return ERR_PTR(-ENOMEM);
8357376d
RW
2392 }
2393 pbe->orig_page = page;
2394 if (safe_highmem_pages > 0) {
2395 struct page *tmp;
2396
2397 /* Copy of the page will be stored in high memory */
2398 kaddr = buffer;
2399 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2400 safe_highmem_pages--;
2401 last_highmem_page = tmp;
2402 pbe->copy_page = tmp;
2403 } else {
2404 /* Copy of the page will be stored in normal memory */
2405 kaddr = safe_pages_list;
2406 safe_pages_list = safe_pages_list->next;
2407 pbe->copy_page = virt_to_page(kaddr);
2408 }
2409 pbe->next = highmem_pblist;
2410 highmem_pblist = pbe;
2411 return kaddr;
2412}
2413
2414/**
2415 * copy_last_highmem_page - copy the contents of a highmem image from
2416 * @buffer, where the caller of snapshot_write_next() has place them,
2417 * to the right location represented by @last_highmem_page .
2418 */
2419
2420static void copy_last_highmem_page(void)
2421{
2422 if (last_highmem_page) {
2423 void *dst;
2424
0de9a1e2 2425 dst = kmap_atomic(last_highmem_page);
3ecb01df 2426 copy_page(dst, buffer);
0de9a1e2 2427 kunmap_atomic(dst);
8357376d
RW
2428 last_highmem_page = NULL;
2429 }
2430}
2431
2432static inline int last_highmem_page_copied(void)
2433{
2434 return !last_highmem_page;
2435}
2436
2437static inline void free_highmem_data(void)
2438{
2439 if (safe_highmem_bm)
2440 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2441
2442 if (buffer)
2443 free_image_page(buffer, PG_UNSAFE_CLEAR);
2444}
2445#else
2446static inline int get_safe_write_buffer(void) { return 0; }
2447
2448static unsigned int
2449count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2450
2451static inline int
2452prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2453{
2454 return 0;
2455}
2456
2457static inline void *
2458get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2459{
69643279 2460 return ERR_PTR(-EINVAL);
8357376d
RW
2461}
2462
2463static inline void copy_last_highmem_page(void) {}
2464static inline int last_highmem_page_copied(void) { return 1; }
2465static inline void free_highmem_data(void) {}
2466#endif /* CONFIG_HIGHMEM */
2467
f577eb30 2468/**
940864dd
RW
2469 * prepare_image - use the memory bitmap @bm to mark the pages that will
2470 * be overwritten in the process of restoring the system memory state
2471 * from the suspend image ("unsafe" pages) and allocate memory for the
2472 * image.
968808b8 2473 *
940864dd
RW
2474 * The idea is to allocate a new memory bitmap first and then allocate
2475 * as many pages as needed for the image data, but not to assign these
2476 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2477 * allocated and create a lists of "safe" pages that will be used
2478 * later. On systems with high memory a list of "safe" highmem pages is
2479 * also created.
f577eb30
RW
2480 */
2481
940864dd
RW
2482#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2483
940864dd
RW
2484static int
2485prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2486{
8357376d 2487 unsigned int nr_pages, nr_highmem;
940864dd
RW
2488 struct linked_page *sp_list, *lp;
2489 int error;
f577eb30 2490
8357376d
RW
2491 /* If there is no highmem, the buffer will not be necessary */
2492 free_image_page(buffer, PG_UNSAFE_CLEAR);
2493 buffer = NULL;
2494
2495 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2496 error = mark_unsafe_pages(bm);
2497 if (error)
2498 goto Free;
2499
2500 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2501 if (error)
2502 goto Free;
2503
2504 duplicate_memory_bitmap(new_bm, bm);
2505 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2506 if (nr_highmem > 0) {
2507 error = prepare_highmem_image(bm, &nr_highmem);
2508 if (error)
2509 goto Free;
2510 }
940864dd
RW
2511 /* Reserve some safe pages for potential later use.
2512 *
2513 * NOTE: This way we make sure there will be enough safe pages for the
2514 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2515 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2516 */
2517 sp_list = NULL;
2518 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2519 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2520 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2521 while (nr_pages > 0) {
8357376d 2522 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2523 if (!lp) {
f577eb30 2524 error = -ENOMEM;
940864dd
RW
2525 goto Free;
2526 }
2527 lp->next = sp_list;
2528 sp_list = lp;
2529 nr_pages--;
f577eb30 2530 }
940864dd
RW
2531 /* Preallocate memory for the image */
2532 safe_pages_list = NULL;
8357376d 2533 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2534 while (nr_pages > 0) {
2535 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2536 if (!lp) {
2537 error = -ENOMEM;
2538 goto Free;
2539 }
7be98234 2540 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2541 /* The page is "safe", add it to the list */
2542 lp->next = safe_pages_list;
2543 safe_pages_list = lp;
968808b8 2544 }
940864dd 2545 /* Mark the page as allocated */
7be98234
RW
2546 swsusp_set_page_forbidden(virt_to_page(lp));
2547 swsusp_set_page_free(virt_to_page(lp));
940864dd 2548 nr_pages--;
968808b8 2549 }
940864dd
RW
2550 /* Free the reserved safe pages so that chain_alloc() can use them */
2551 while (sp_list) {
2552 lp = sp_list->next;
2553 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2554 sp_list = lp;
f577eb30 2555 }
940864dd
RW
2556 return 0;
2557
59a49335 2558 Free:
940864dd 2559 swsusp_free();
f577eb30
RW
2560 return error;
2561}
2562
940864dd
RW
2563/**
2564 * get_buffer - compute the address that snapshot_write_next() should
2565 * set for its caller to write to.
2566 */
2567
2568static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2569{
940864dd 2570 struct pbe *pbe;
69643279
RW
2571 struct page *page;
2572 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2573
69643279
RW
2574 if (pfn == BM_END_OF_MAP)
2575 return ERR_PTR(-EFAULT);
2576
2577 page = pfn_to_page(pfn);
8357376d
RW
2578 if (PageHighMem(page))
2579 return get_highmem_page_buffer(page, ca);
2580
7be98234 2581 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2582 /* We have allocated the "original" page frame and we can
2583 * use it directly to store the loaded page.
968808b8 2584 */
940864dd
RW
2585 return page_address(page);
2586
2587 /* The "original" page frame has not been allocated and we have to
2588 * use a "safe" page frame to store the loaded page.
968808b8 2589 */
940864dd
RW
2590 pbe = chain_alloc(ca, sizeof(struct pbe));
2591 if (!pbe) {
2592 swsusp_free();
69643279 2593 return ERR_PTR(-ENOMEM);
940864dd 2594 }
8357376d
RW
2595 pbe->orig_address = page_address(page);
2596 pbe->address = safe_pages_list;
940864dd
RW
2597 safe_pages_list = safe_pages_list->next;
2598 pbe->next = restore_pblist;
2599 restore_pblist = pbe;
8357376d 2600 return pbe->address;
968808b8
RW
2601}
2602
f577eb30
RW
2603/**
2604 * snapshot_write_next - used for writing the system memory snapshot.
2605 *
2606 * On the first call to it @handle should point to a zeroed
2607 * snapshot_handle structure. The structure gets updated and a pointer
2608 * to it should be passed to this function every next time.
2609 *
f577eb30
RW
2610 * On success the function returns a positive number. Then, the caller
2611 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2612 * location computed by the data_of() macro.
f577eb30
RW
2613 *
2614 * The function returns 0 to indicate the "end of file" condition,
2615 * and a negative number is returned on error. In such cases the
2616 * structure pointed to by @handle is not updated and should not be used
2617 * any more.
2618 */
2619
d3c1b24c 2620int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2621{
940864dd 2622 static struct chain_allocator ca;
f577eb30
RW
2623 int error = 0;
2624
940864dd 2625 /* Check if we have already loaded the entire image */
d3c1b24c 2626 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2627 return 0;
940864dd 2628
d3c1b24c
JS
2629 handle->sync_read = 1;
2630
2631 if (!handle->cur) {
8357376d
RW
2632 if (!buffer)
2633 /* This makes the buffer be freed by swsusp_free() */
2634 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2635
f577eb30
RW
2636 if (!buffer)
2637 return -ENOMEM;
8357376d 2638
f577eb30 2639 handle->buffer = buffer;
d3c1b24c
JS
2640 } else if (handle->cur == 1) {
2641 error = load_header(buffer);
2642 if (error)
2643 return error;
940864dd 2644
d3c1b24c
JS
2645 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2646 if (error)
2647 return error;
2648
85055dd8
MS
2649 /* Allocate buffer for page keys. */
2650 error = page_key_alloc(nr_copy_pages);
2651 if (error)
2652 return error;
2653
d3c1b24c
JS
2654 } else if (handle->cur <= nr_meta_pages + 1) {
2655 error = unpack_orig_pfns(buffer, &copy_bm);
2656 if (error)
2657 return error;
940864dd 2658
d3c1b24c
JS
2659 if (handle->cur == nr_meta_pages + 1) {
2660 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2661 if (error)
2662 return error;
2663
d3c1b24c
JS
2664 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2665 memory_bm_position_reset(&orig_bm);
2666 restore_pblist = NULL;
940864dd 2667 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2668 handle->sync_read = 0;
69643279
RW
2669 if (IS_ERR(handle->buffer))
2670 return PTR_ERR(handle->buffer);
f577eb30 2671 }
f577eb30 2672 } else {
d3c1b24c 2673 copy_last_highmem_page();
85055dd8
MS
2674 /* Restore page key for data page (s390 only). */
2675 page_key_write(handle->buffer);
d3c1b24c
JS
2676 handle->buffer = get_buffer(&orig_bm, &ca);
2677 if (IS_ERR(handle->buffer))
2678 return PTR_ERR(handle->buffer);
2679 if (handle->buffer != buffer)
2680 handle->sync_read = 0;
f577eb30 2681 }
d3c1b24c
JS
2682 handle->cur++;
2683 return PAGE_SIZE;
f577eb30
RW
2684}
2685
8357376d
RW
2686/**
2687 * snapshot_write_finalize - must be called after the last call to
2688 * snapshot_write_next() in case the last page in the image happens
2689 * to be a highmem page and its contents should be stored in the
2690 * highmem. Additionally, it releases the memory that will not be
2691 * used any more.
2692 */
2693
2694void snapshot_write_finalize(struct snapshot_handle *handle)
2695{
2696 copy_last_highmem_page();
85055dd8
MS
2697 /* Restore page key for data page (s390 only). */
2698 page_key_write(handle->buffer);
2699 page_key_free();
8357376d 2700 /* Free only if we have loaded the image entirely */
d3c1b24c 2701 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2702 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2703 free_highmem_data();
2704 }
2705}
2706
f577eb30
RW
2707int snapshot_image_loaded(struct snapshot_handle *handle)
2708{
8357376d 2709 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2710 handle->cur <= nr_meta_pages + nr_copy_pages);
2711}
2712
8357376d
RW
2713#ifdef CONFIG_HIGHMEM
2714/* Assumes that @buf is ready and points to a "safe" page */
2715static inline void
2716swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2717{
8357376d
RW
2718 void *kaddr1, *kaddr2;
2719
0de9a1e2
CW
2720 kaddr1 = kmap_atomic(p1);
2721 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2722 copy_page(buf, kaddr1);
2723 copy_page(kaddr1, kaddr2);
2724 copy_page(kaddr2, buf);
0de9a1e2
CW
2725 kunmap_atomic(kaddr2);
2726 kunmap_atomic(kaddr1);
8357376d
RW
2727}
2728
2729/**
2730 * restore_highmem - for each highmem page that was allocated before
2731 * the suspend and included in the suspend image, and also has been
2732 * allocated by the "resume" kernel swap its current (ie. "before
2733 * resume") contents with the previous (ie. "before suspend") one.
2734 *
2735 * If the resume eventually fails, we can call this function once
2736 * again and restore the "before resume" highmem state.
2737 */
2738
2739int restore_highmem(void)
2740{
2741 struct highmem_pbe *pbe = highmem_pblist;
2742 void *buf;
2743
2744 if (!pbe)
2745 return 0;
2746
2747 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2748 if (!buf)
2749 return -ENOMEM;
2750
2751 while (pbe) {
2752 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2753 pbe = pbe->next;
2754 }
2755 free_image_page(buf, PG_UNSAFE_CLEAR);
2756 return 0;
f577eb30 2757}
8357376d 2758#endif /* CONFIG_HIGHMEM */