[PATCH] swsusp: Untangle freeze_processes
[linux-2.6-block.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e
RW
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/smp_lock.h>
25761b6e 18#include <linux/delay.h>
25761b6e 19#include <linux/bitops.h>
25761b6e 20#include <linux/spinlock.h>
25761b6e 21#include <linux/kernel.h>
25761b6e
RW
22#include <linux/pm.h>
23#include <linux/device.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
25761b6e
RW
28
29#include <asm/uaccess.h>
30#include <asm/mmu_context.h>
31#include <asm/pgtable.h>
32#include <asm/tlbflush.h>
33#include <asm/io.h>
34
25761b6e
RW
35#include "power.h"
36
8357376d
RW
37/* List of PBEs needed for restoring the pages that were allocated before
38 * the suspend and included in the suspend image, but have also been
39 * allocated by the "resume" kernel, so their contents cannot be written
40 * directly to their "original" page frames.
41 */
75534b50
RW
42struct pbe *restore_pblist;
43
8357376d 44/* Pointer to an auxiliary buffer (1 page) */
940864dd 45static void *buffer;
7088a5c0 46
f6143aa6
RW
47/**
48 * @safe_needed - on resume, for storing the PBE list and the image,
49 * we can only use memory pages that do not conflict with the pages
8357376d
RW
50 * used before suspend. The unsafe pages have PageNosaveFree set
51 * and we count them using unsafe_pages.
f6143aa6 52 *
8357376d
RW
53 * Each allocated image page is marked as PageNosave and PageNosaveFree
54 * so that swsusp_free() can release it.
f6143aa6
RW
55 */
56
0bcd888d
RW
57#define PG_ANY 0
58#define PG_SAFE 1
59#define PG_UNSAFE_CLEAR 1
60#define PG_UNSAFE_KEEP 0
61
940864dd 62static unsigned int allocated_unsafe_pages;
f6143aa6 63
8357376d 64static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
65{
66 void *res;
67
68 res = (void *)get_zeroed_page(gfp_mask);
69 if (safe_needed)
70 while (res && PageNosaveFree(virt_to_page(res))) {
71 /* The page is unsafe, mark it for swsusp_free() */
72 SetPageNosave(virt_to_page(res));
940864dd 73 allocated_unsafe_pages++;
f6143aa6
RW
74 res = (void *)get_zeroed_page(gfp_mask);
75 }
76 if (res) {
77 SetPageNosave(virt_to_page(res));
78 SetPageNosaveFree(virt_to_page(res));
79 }
80 return res;
81}
82
83unsigned long get_safe_page(gfp_t gfp_mask)
84{
8357376d
RW
85 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
86}
87
88static struct page *alloc_image_page(gfp_t gfp_mask) {
89 struct page *page;
90
91 page = alloc_page(gfp_mask);
92 if (page) {
93 SetPageNosave(page);
94 SetPageNosaveFree(page);
95 }
96 return page;
f6143aa6
RW
97}
98
99/**
100 * free_image_page - free page represented by @addr, allocated with
8357376d 101 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
102 */
103
104static inline void free_image_page(void *addr, int clear_nosave_free)
105{
8357376d
RW
106 struct page *page;
107
108 BUG_ON(!virt_addr_valid(addr));
109
110 page = virt_to_page(addr);
111
112 ClearPageNosave(page);
f6143aa6 113 if (clear_nosave_free)
8357376d
RW
114 ClearPageNosaveFree(page);
115
116 __free_page(page);
f6143aa6
RW
117}
118
b788db79
RW
119/* struct linked_page is used to build chains of pages */
120
121#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
122
123struct linked_page {
124 struct linked_page *next;
125 char data[LINKED_PAGE_DATA_SIZE];
126} __attribute__((packed));
127
128static inline void
129free_list_of_pages(struct linked_page *list, int clear_page_nosave)
130{
131 while (list) {
132 struct linked_page *lp = list->next;
133
134 free_image_page(list, clear_page_nosave);
135 list = lp;
136 }
137}
138
139/**
140 * struct chain_allocator is used for allocating small objects out of
141 * a linked list of pages called 'the chain'.
142 *
143 * The chain grows each time when there is no room for a new object in
144 * the current page. The allocated objects cannot be freed individually.
145 * It is only possible to free them all at once, by freeing the entire
146 * chain.
147 *
148 * NOTE: The chain allocator may be inefficient if the allocated objects
149 * are not much smaller than PAGE_SIZE.
150 */
151
152struct chain_allocator {
153 struct linked_page *chain; /* the chain */
154 unsigned int used_space; /* total size of objects allocated out
155 * of the current page
156 */
157 gfp_t gfp_mask; /* mask for allocating pages */
158 int safe_needed; /* if set, only "safe" pages are allocated */
159};
160
161static void
162chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
163{
164 ca->chain = NULL;
165 ca->used_space = LINKED_PAGE_DATA_SIZE;
166 ca->gfp_mask = gfp_mask;
167 ca->safe_needed = safe_needed;
168}
169
170static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
171{
172 void *ret;
173
174 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
175 struct linked_page *lp;
176
8357376d 177 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
178 if (!lp)
179 return NULL;
180
181 lp->next = ca->chain;
182 ca->chain = lp;
183 ca->used_space = 0;
184 }
185 ret = ca->chain->data + ca->used_space;
186 ca->used_space += size;
187 return ret;
188}
189
190static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
191{
192 free_list_of_pages(ca->chain, clear_page_nosave);
193 memset(ca, 0, sizeof(struct chain_allocator));
194}
195
196/**
197 * Data types related to memory bitmaps.
198 *
199 * Memory bitmap is a structure consiting of many linked lists of
200 * objects. The main list's elements are of type struct zone_bitmap
201 * and each of them corresonds to one zone. For each zone bitmap
202 * object there is a list of objects of type struct bm_block that
203 * represent each blocks of bit chunks in which information is
204 * stored.
205 *
206 * struct memory_bitmap contains a pointer to the main list of zone
207 * bitmap objects, a struct bm_position used for browsing the bitmap,
208 * and a pointer to the list of pages used for allocating all of the
209 * zone bitmap objects and bitmap block objects.
210 *
211 * NOTE: It has to be possible to lay out the bitmap in memory
212 * using only allocations of order 0. Additionally, the bitmap is
213 * designed to work with arbitrary number of zones (this is over the
214 * top for now, but let's avoid making unnecessary assumptions ;-).
215 *
216 * struct zone_bitmap contains a pointer to a list of bitmap block
217 * objects and a pointer to the bitmap block object that has been
218 * most recently used for setting bits. Additionally, it contains the
219 * pfns that correspond to the start and end of the represented zone.
220 *
221 * struct bm_block contains a pointer to the memory page in which
222 * information is stored (in the form of a block of bit chunks
223 * of type unsigned long each). It also contains the pfns that
224 * correspond to the start and end of the represented memory area and
225 * the number of bit chunks in the block.
226 *
227 * NOTE: Memory bitmaps are used for two types of operations only:
228 * "set a bit" and "find the next bit set". Moreover, the searching
229 * is always carried out after all of the "set a bit" operations
230 * on given bitmap.
231 */
232
233#define BM_END_OF_MAP (~0UL)
234
235#define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
236#define BM_BITS_PER_CHUNK (sizeof(long) << 3)
237#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
238
239struct bm_block {
240 struct bm_block *next; /* next element of the list */
241 unsigned long start_pfn; /* pfn represented by the first bit */
242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
243 unsigned int size; /* number of bit chunks */
244 unsigned long *data; /* chunks of bits representing pages */
245};
246
247struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
253};
254
255/* strcut bm_position is used for browsing memory bitmaps */
256
257struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block;
260 int chunk;
261 int bit;
262};
263
264struct memory_bitmap {
265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
266 struct linked_page *p_list; /* list of pages used to store zone
267 * bitmap objects and bitmap block
268 * objects
269 */
270 struct bm_position cur; /* most recently used bit position */
271};
272
273/* Functions that operate on memory bitmaps */
274
275static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276{
277 bm->cur.chunk = 0;
278 bm->cur.bit = -1;
279}
280
281static void memory_bm_position_reset(struct memory_bitmap *bm)
282{
283 struct zone_bitmap *zone_bm;
284
285 zone_bm = bm->zone_bm_list;
286 bm->cur.zone_bm = zone_bm;
287 bm->cur.block = zone_bm->bm_blocks;
288 memory_bm_reset_chunk(bm);
289}
290
291static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292
293/**
294 * create_bm_block_list - create a list of block bitmap objects
295 */
296
297static inline struct bm_block *
298create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299{
300 struct bm_block *bblist = NULL;
301
302 while (nr_blocks-- > 0) {
303 struct bm_block *bb;
304
305 bb = chain_alloc(ca, sizeof(struct bm_block));
306 if (!bb)
307 return NULL;
308
309 bb->next = bblist;
310 bblist = bb;
311 }
312 return bblist;
313}
314
315/**
316 * create_zone_bm_list - create a list of zone bitmap objects
317 */
318
319static inline struct zone_bitmap *
320create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321{
322 struct zone_bitmap *zbmlist = NULL;
323
324 while (nr_zones-- > 0) {
325 struct zone_bitmap *zbm;
326
327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 if (!zbm)
329 return NULL;
330
331 zbm->next = zbmlist;
332 zbmlist = zbm;
333 }
334 return zbmlist;
335}
336
337/**
338 * memory_bm_create - allocate memory for a memory bitmap
339 */
340
341static int
342memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343{
344 struct chain_allocator ca;
345 struct zone *zone;
346 struct zone_bitmap *zone_bm;
347 struct bm_block *bb;
348 unsigned int nr;
349
350 chain_init(&ca, gfp_mask, safe_needed);
351
352 /* Compute the number of zones */
353 nr = 0;
8357376d
RW
354 for_each_zone(zone)
355 if (populated_zone(zone))
b788db79
RW
356 nr++;
357
358 /* Allocate the list of zones bitmap objects */
359 zone_bm = create_zone_bm_list(nr, &ca);
360 bm->zone_bm_list = zone_bm;
361 if (!zone_bm) {
362 chain_free(&ca, PG_UNSAFE_CLEAR);
363 return -ENOMEM;
364 }
365
366 /* Initialize the zone bitmap objects */
8357376d 367 for_each_zone(zone) {
b788db79
RW
368 unsigned long pfn;
369
8357376d 370 if (!populated_zone(zone))
b788db79
RW
371 continue;
372
373 zone_bm->start_pfn = zone->zone_start_pfn;
374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 /* Allocate the list of bitmap block objects */
376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 bb = create_bm_block_list(nr, &ca);
378 zone_bm->bm_blocks = bb;
379 zone_bm->cur_block = bb;
380 if (!bb)
381 goto Free;
382
383 nr = zone->spanned_pages;
384 pfn = zone->zone_start_pfn;
385 /* Initialize the bitmap block objects */
386 while (bb) {
387 unsigned long *ptr;
388
8357376d 389 ptr = get_image_page(gfp_mask, safe_needed);
b788db79
RW
390 bb->data = ptr;
391 if (!ptr)
392 goto Free;
393
394 bb->start_pfn = pfn;
395 if (nr >= BM_BITS_PER_BLOCK) {
396 pfn += BM_BITS_PER_BLOCK;
397 bb->size = BM_CHUNKS_PER_BLOCK;
398 nr -= BM_BITS_PER_BLOCK;
399 } else {
400 /* This is executed only once in the loop */
401 pfn += nr;
402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403 }
404 bb->end_pfn = pfn;
405 bb = bb->next;
406 }
407 zone_bm = zone_bm->next;
408 }
409 bm->p_list = ca.chain;
410 memory_bm_position_reset(bm);
411 return 0;
412
413Free:
414 bm->p_list = ca.chain;
415 memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 return -ENOMEM;
417}
418
419/**
420 * memory_bm_free - free memory occupied by the memory bitmap @bm
421 */
422
423static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424{
425 struct zone_bitmap *zone_bm;
426
427 /* Free the list of bit blocks for each zone_bitmap object */
428 zone_bm = bm->zone_bm_list;
429 while (zone_bm) {
430 struct bm_block *bb;
431
432 bb = zone_bm->bm_blocks;
433 while (bb) {
434 if (bb->data)
435 free_image_page(bb->data, clear_nosave_free);
436 bb = bb->next;
437 }
438 zone_bm = zone_bm->next;
439 }
440 free_list_of_pages(bm->p_list, clear_nosave_free);
441 bm->zone_bm_list = NULL;
442}
443
444/**
445 * memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
447 * of @bm->cur_zone_bm are updated.
448 *
449 * If the bit cannot be set, the function returns -EINVAL .
450 */
451
452static int
453memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
454{
455 struct zone_bitmap *zone_bm;
456 struct bm_block *bb;
457
458 /* Check if the pfn is from the current zone */
459 zone_bm = bm->cur.zone_bm;
460 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
461 zone_bm = bm->zone_bm_list;
462 /* We don't assume that the zones are sorted by pfns */
463 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
464 zone_bm = zone_bm->next;
465 if (unlikely(!zone_bm))
466 return -EINVAL;
467 }
468 bm->cur.zone_bm = zone_bm;
469 }
470 /* Check if the pfn corresponds to the current bitmap block */
471 bb = zone_bm->cur_block;
472 if (pfn < bb->start_pfn)
473 bb = zone_bm->bm_blocks;
474
475 while (pfn >= bb->end_pfn) {
476 bb = bb->next;
477 if (unlikely(!bb))
478 return -EINVAL;
479 }
480 zone_bm->cur_block = bb;
481 pfn -= bb->start_pfn;
482 set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
483 return 0;
484}
485
486/* Two auxiliary functions for memory_bm_next_pfn */
487
488/* Find the first set bit in the given chunk, if there is one */
489
490static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
491{
492 bit++;
493 while (bit < BM_BITS_PER_CHUNK) {
494 if (test_bit(bit, chunk_p))
495 return bit;
496
497 bit++;
498 }
499 return -1;
500}
501
502/* Find a chunk containing some bits set in given block of bits */
503
504static inline int next_chunk_in_block(int n, struct bm_block *bb)
505{
506 n++;
507 while (n < bb->size) {
508 if (bb->data[n])
509 return n;
510
511 n++;
512 }
513 return -1;
514}
515
516/**
517 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
518 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
519 * returned.
520 *
521 * It is required to run memory_bm_position_reset() before the first call to
522 * this function.
523 */
524
525static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
526{
527 struct zone_bitmap *zone_bm;
528 struct bm_block *bb;
529 int chunk;
530 int bit;
531
532 do {
533 bb = bm->cur.block;
534 do {
535 chunk = bm->cur.chunk;
536 bit = bm->cur.bit;
537 do {
538 bit = next_bit_in_chunk(bit, bb->data + chunk);
539 if (bit >= 0)
540 goto Return_pfn;
541
542 chunk = next_chunk_in_block(chunk, bb);
543 bit = -1;
544 } while (chunk >= 0);
545 bb = bb->next;
546 bm->cur.block = bb;
547 memory_bm_reset_chunk(bm);
548 } while (bb);
549 zone_bm = bm->cur.zone_bm->next;
550 if (zone_bm) {
551 bm->cur.zone_bm = zone_bm;
552 bm->cur.block = zone_bm->bm_blocks;
553 memory_bm_reset_chunk(bm);
554 }
555 } while (zone_bm);
556 memory_bm_position_reset(bm);
557 return BM_END_OF_MAP;
558
559Return_pfn:
560 bm->cur.chunk = chunk;
561 bm->cur.bit = bit;
562 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
563}
564
565/**
566 * snapshot_additional_pages - estimate the number of additional pages
567 * be needed for setting up the suspend image data structures for given
568 * zone (usually the returned value is greater than the exact number)
569 */
570
571unsigned int snapshot_additional_pages(struct zone *zone)
572{
573 unsigned int res;
574
575 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
576 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
8357376d 577 return 2 * res;
b788db79
RW
578}
579
8357376d
RW
580#ifdef CONFIG_HIGHMEM
581/**
582 * count_free_highmem_pages - compute the total number of free highmem
583 * pages, system-wide.
584 */
585
586static unsigned int count_free_highmem_pages(void)
587{
588 struct zone *zone;
589 unsigned int cnt = 0;
590
591 for_each_zone(zone)
592 if (populated_zone(zone) && is_highmem(zone))
593 cnt += zone->free_pages;
594
595 return cnt;
596}
597
598/**
599 * saveable_highmem_page - Determine whether a highmem page should be
600 * included in the suspend image.
601 *
602 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
603 * and it isn't a part of a free chunk of pages.
604 */
605
606static struct page *saveable_highmem_page(unsigned long pfn)
607{
608 struct page *page;
609
610 if (!pfn_valid(pfn))
611 return NULL;
612
613 page = pfn_to_page(pfn);
614
615 BUG_ON(!PageHighMem(page));
616
617 if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page))
618 return NULL;
619
620 return page;
621}
622
623/**
624 * count_highmem_pages - compute the total number of saveable highmem
625 * pages.
626 */
627
628unsigned int count_highmem_pages(void)
629{
630 struct zone *zone;
631 unsigned int n = 0;
632
633 for_each_zone(zone) {
634 unsigned long pfn, max_zone_pfn;
635
636 if (!is_highmem(zone))
637 continue;
638
639 mark_free_pages(zone);
640 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
641 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
642 if (saveable_highmem_page(pfn))
643 n++;
644 }
645 return n;
646}
647#else
648static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
649static inline unsigned int count_highmem_pages(void) { return 0; }
650#endif /* CONFIG_HIGHMEM */
651
f6143aa6
RW
652/**
653 * pfn_is_nosave - check if given pfn is in the 'nosave' section
654 */
655
ae83c5ee 656static inline int pfn_is_nosave(unsigned long pfn)
25761b6e
RW
657{
658 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
659 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
660 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
661}
662
663/**
8357376d
RW
664 * saveable - Determine whether a non-highmem page should be included in
665 * the suspend image.
25761b6e 666 *
8357376d
RW
667 * We should save the page if it isn't Nosave, and is not in the range
668 * of pages statically defined as 'unsaveable', and it isn't a part of
669 * a free chunk of pages.
25761b6e
RW
670 */
671
ae83c5ee 672static struct page *saveable_page(unsigned long pfn)
25761b6e 673{
de491861 674 struct page *page;
25761b6e
RW
675
676 if (!pfn_valid(pfn))
ae83c5ee 677 return NULL;
25761b6e
RW
678
679 page = pfn_to_page(pfn);
ae83c5ee 680
8357376d
RW
681 BUG_ON(PageHighMem(page));
682
683 if (PageNosave(page) || PageNosaveFree(page))
ae83c5ee 684 return NULL;
8357376d 685
72a97e08 686 if (PageReserved(page) && pfn_is_nosave(pfn))
ae83c5ee 687 return NULL;
25761b6e 688
ae83c5ee 689 return page;
25761b6e
RW
690}
691
8357376d
RW
692/**
693 * count_data_pages - compute the total number of saveable non-highmem
694 * pages.
695 */
696
72a97e08 697unsigned int count_data_pages(void)
25761b6e
RW
698{
699 struct zone *zone;
ae83c5ee 700 unsigned long pfn, max_zone_pfn;
dc19d507 701 unsigned int n = 0;
25761b6e 702
8357376d 703 for_each_zone(zone) {
25761b6e
RW
704 if (is_highmem(zone))
705 continue;
8357376d 706
25761b6e 707 mark_free_pages(zone);
ae83c5ee
RW
708 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
709 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d
RW
710 if(saveable_page(pfn))
711 n++;
25761b6e 712 }
a0f49651 713 return n;
25761b6e
RW
714}
715
8357376d
RW
716/* This is needed, because copy_page and memcpy are not usable for copying
717 * task structs.
718 */
719static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
720{
721 int n;
722
f623f0db
RW
723 for (n = PAGE_SIZE / sizeof(long); n; n--)
724 *dst++ = *src++;
725}
726
8357376d
RW
727#ifdef CONFIG_HIGHMEM
728static inline struct page *
729page_is_saveable(struct zone *zone, unsigned long pfn)
730{
731 return is_highmem(zone) ?
732 saveable_highmem_page(pfn) : saveable_page(pfn);
733}
734
735static inline void
736copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
737{
738 struct page *s_page, *d_page;
739 void *src, *dst;
740
741 s_page = pfn_to_page(src_pfn);
742 d_page = pfn_to_page(dst_pfn);
743 if (PageHighMem(s_page)) {
744 src = kmap_atomic(s_page, KM_USER0);
745 dst = kmap_atomic(d_page, KM_USER1);
746 do_copy_page(dst, src);
747 kunmap_atomic(src, KM_USER0);
748 kunmap_atomic(dst, KM_USER1);
749 } else {
750 src = page_address(s_page);
751 if (PageHighMem(d_page)) {
752 /* Page pointed to by src may contain some kernel
753 * data modified by kmap_atomic()
754 */
755 do_copy_page(buffer, src);
756 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
757 memcpy(dst, buffer, PAGE_SIZE);
758 kunmap_atomic(dst, KM_USER0);
759 } else {
760 dst = page_address(d_page);
761 do_copy_page(dst, src);
762 }
763 }
764}
765#else
766#define page_is_saveable(zone, pfn) saveable_page(pfn)
767
768static inline void
769copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
770{
771 do_copy_page(page_address(pfn_to_page(dst_pfn)),
772 page_address(pfn_to_page(src_pfn)));
773}
774#endif /* CONFIG_HIGHMEM */
775
b788db79
RW
776static void
777copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
778{
779 struct zone *zone;
b788db79 780 unsigned long pfn;
25761b6e 781
8357376d 782 for_each_zone(zone) {
b788db79
RW
783 unsigned long max_zone_pfn;
784
25761b6e 785 mark_free_pages(zone);
ae83c5ee 786 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
b788db79 787 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 788 if (page_is_saveable(zone, pfn))
b788db79 789 memory_bm_set_bit(orig_bm, pfn);
25761b6e 790 }
b788db79
RW
791 memory_bm_position_reset(orig_bm);
792 memory_bm_position_reset(copy_bm);
793 do {
794 pfn = memory_bm_next_pfn(orig_bm);
8357376d
RW
795 if (likely(pfn != BM_END_OF_MAP))
796 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
b788db79 797 } while (pfn != BM_END_OF_MAP);
25761b6e
RW
798}
799
8357376d
RW
800/* Total number of image pages */
801static unsigned int nr_copy_pages;
802/* Number of pages needed for saving the original pfns of the image pages */
803static unsigned int nr_meta_pages;
804
25761b6e 805/**
940864dd 806 * swsusp_free - free pages allocated for the suspend.
cd560bb2 807 *
940864dd
RW
808 * Suspend pages are alocated before the atomic copy is made, so we
809 * need to release them after the resume.
25761b6e
RW
810 */
811
812void swsusp_free(void)
813{
814 struct zone *zone;
ae83c5ee 815 unsigned long pfn, max_zone_pfn;
25761b6e
RW
816
817 for_each_zone(zone) {
ae83c5ee
RW
818 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
819 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
820 if (pfn_valid(pfn)) {
821 struct page *page = pfn_to_page(pfn);
822
25761b6e
RW
823 if (PageNosave(page) && PageNosaveFree(page)) {
824 ClearPageNosave(page);
825 ClearPageNosaveFree(page);
8357376d 826 __free_page(page);
25761b6e
RW
827 }
828 }
829 }
f577eb30
RW
830 nr_copy_pages = 0;
831 nr_meta_pages = 0;
75534b50 832 restore_pblist = NULL;
6e1819d6 833 buffer = NULL;
25761b6e
RW
834}
835
8357376d
RW
836#ifdef CONFIG_HIGHMEM
837/**
838 * count_pages_for_highmem - compute the number of non-highmem pages
839 * that will be necessary for creating copies of highmem pages.
840 */
841
842static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
843{
844 unsigned int free_highmem = count_free_highmem_pages();
845
846 if (free_highmem >= nr_highmem)
847 nr_highmem = 0;
848 else
849 nr_highmem -= free_highmem;
850
851 return nr_highmem;
852}
853#else
854static unsigned int
855count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
856#endif /* CONFIG_HIGHMEM */
25761b6e
RW
857
858/**
8357376d
RW
859 * enough_free_mem - Make sure we have enough free memory for the
860 * snapshot image.
25761b6e
RW
861 */
862
8357376d 863static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 864{
e5e2fa78 865 struct zone *zone;
940864dd 866 unsigned int free = 0, meta = 0;
e5e2fa78 867
8357376d
RW
868 for_each_zone(zone) {
869 meta += snapshot_additional_pages(zone);
870 if (!is_highmem(zone))
940864dd 871 free += zone->free_pages;
8357376d 872 }
940864dd 873
8357376d
RW
874 nr_pages += count_pages_for_highmem(nr_highmem);
875 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
940864dd
RW
876 nr_pages, PAGES_FOR_IO, meta, free);
877
878 return free > nr_pages + PAGES_FOR_IO + meta;
25761b6e
RW
879}
880
8357376d
RW
881#ifdef CONFIG_HIGHMEM
882/**
883 * get_highmem_buffer - if there are some highmem pages in the suspend
884 * image, we may need the buffer to copy them and/or load their data.
885 */
886
887static inline int get_highmem_buffer(int safe_needed)
888{
889 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
890 return buffer ? 0 : -ENOMEM;
891}
892
893/**
894 * alloc_highmem_image_pages - allocate some highmem pages for the image.
895 * Try to allocate as many pages as needed, but if the number of free
896 * highmem pages is lesser than that, allocate them all.
897 */
898
899static inline unsigned int
900alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
901{
902 unsigned int to_alloc = count_free_highmem_pages();
903
904 if (to_alloc > nr_highmem)
905 to_alloc = nr_highmem;
906
907 nr_highmem -= to_alloc;
908 while (to_alloc-- > 0) {
909 struct page *page;
910
911 page = alloc_image_page(__GFP_HIGHMEM);
912 memory_bm_set_bit(bm, page_to_pfn(page));
913 }
914 return nr_highmem;
915}
916#else
917static inline int get_highmem_buffer(int safe_needed) { return 0; }
918
919static inline unsigned int
920alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
921#endif /* CONFIG_HIGHMEM */
922
923/**
924 * swsusp_alloc - allocate memory for the suspend image
925 *
926 * We first try to allocate as many highmem pages as there are
927 * saveable highmem pages in the system. If that fails, we allocate
928 * non-highmem pages for the copies of the remaining highmem ones.
929 *
930 * In this approach it is likely that the copies of highmem pages will
931 * also be located in the high memory, because of the way in which
932 * copy_data_pages() works.
933 */
934
b788db79
RW
935static int
936swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 937 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 938{
b788db79 939 int error;
054bd4c1 940
b788db79
RW
941 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
942 if (error)
943 goto Free;
25761b6e 944
b788db79
RW
945 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
946 if (error)
947 goto Free;
25761b6e 948
8357376d
RW
949 if (nr_highmem > 0) {
950 error = get_highmem_buffer(PG_ANY);
951 if (error)
952 goto Free;
953
954 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
955 }
b788db79 956 while (nr_pages-- > 0) {
8357376d
RW
957 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
958
b788db79
RW
959 if (!page)
960 goto Free;
25761b6e 961
b788db79 962 memory_bm_set_bit(copy_bm, page_to_pfn(page));
25761b6e 963 }
b788db79 964 return 0;
25761b6e 965
b788db79
RW
966Free:
967 swsusp_free();
968 return -ENOMEM;
25761b6e
RW
969}
970
8357376d
RW
971/* Memory bitmap used for marking saveable pages (during suspend) or the
972 * suspend image pages (during resume)
973 */
b788db79 974static struct memory_bitmap orig_bm;
8357376d
RW
975/* Memory bitmap used on suspend for marking allocated pages that will contain
976 * the copies of saveable pages. During resume it is initially used for
977 * marking the suspend image pages, but then its set bits are duplicated in
978 * @orig_bm and it is released. Next, on systems with high memory, it may be
979 * used for marking "safe" highmem pages, but it has to be reinitialized for
980 * this purpose.
b788db79
RW
981 */
982static struct memory_bitmap copy_bm;
983
2e32a43e 984asmlinkage int swsusp_save(void)
25761b6e 985{
8357376d 986 unsigned int nr_pages, nr_highmem;
25761b6e 987
8357376d 988 printk("swsusp: critical section: \n");
25761b6e
RW
989
990 drain_local_pages();
a0f49651 991 nr_pages = count_data_pages();
8357376d
RW
992 nr_highmem = count_highmem_pages();
993 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 994
8357376d 995 if (!enough_free_mem(nr_pages, nr_highmem)) {
25761b6e
RW
996 printk(KERN_ERR "swsusp: Not enough free memory\n");
997 return -ENOMEM;
998 }
999
8357376d
RW
1000 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1001 printk(KERN_ERR "swsusp: Memory allocation failed\n");
a0f49651 1002 return -ENOMEM;
8357376d 1003 }
25761b6e
RW
1004
1005 /* During allocating of suspend pagedir, new cold pages may appear.
1006 * Kill them.
1007 */
1008 drain_local_pages();
b788db79 1009 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1010
1011 /*
1012 * End of critical section. From now on, we can write to memory,
1013 * but we should not touch disk. This specially means we must _not_
1014 * touch swap space! Except we must write out our image of course.
1015 */
1016
8357376d 1017 nr_pages += nr_highmem;
a0f49651 1018 nr_copy_pages = nr_pages;
8357376d 1019 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651
RW
1020
1021 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
8357376d 1022
25761b6e
RW
1023 return 0;
1024}
f577eb30
RW
1025
1026static void init_header(struct swsusp_info *info)
1027{
1028 memset(info, 0, sizeof(struct swsusp_info));
1029 info->version_code = LINUX_VERSION_CODE;
1030 info->num_physpages = num_physpages;
96b644bd 1031 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30
RW
1032 info->cpus = num_online_cpus();
1033 info->image_pages = nr_copy_pages;
1034 info->pages = nr_copy_pages + nr_meta_pages + 1;
6e1819d6
RW
1035 info->size = info->pages;
1036 info->size <<= PAGE_SHIFT;
f577eb30
RW
1037}
1038
1039/**
940864dd
RW
1040 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1041 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1042 */
1043
b788db79 1044static inline void
940864dd 1045pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1046{
1047 int j;
1048
b788db79 1049 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1050 buf[j] = memory_bm_next_pfn(bm);
1051 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1052 break;
f577eb30 1053 }
f577eb30
RW
1054}
1055
1056/**
1057 * snapshot_read_next - used for reading the system memory snapshot.
1058 *
1059 * On the first call to it @handle should point to a zeroed
1060 * snapshot_handle structure. The structure gets updated and a pointer
1061 * to it should be passed to this function every next time.
1062 *
1063 * The @count parameter should contain the number of bytes the caller
1064 * wants to read from the snapshot. It must not be zero.
1065 *
1066 * On success the function returns a positive number. Then, the caller
1067 * is allowed to read up to the returned number of bytes from the memory
1068 * location computed by the data_of() macro. The number returned
1069 * may be smaller than @count, but this only happens if the read would
1070 * cross a page boundary otherwise.
1071 *
1072 * The function returns 0 to indicate the end of data stream condition,
1073 * and a negative number is returned on error. In such cases the
1074 * structure pointed to by @handle is not updated and should not be used
1075 * any more.
1076 */
1077
1078int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1079{
fb13a28b 1080 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1081 return 0;
b788db79 1082
f577eb30
RW
1083 if (!buffer) {
1084 /* This makes the buffer be freed by swsusp_free() */
8357376d 1085 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1086 if (!buffer)
1087 return -ENOMEM;
1088 }
1089 if (!handle->offset) {
1090 init_header((struct swsusp_info *)buffer);
1091 handle->buffer = buffer;
b788db79
RW
1092 memory_bm_position_reset(&orig_bm);
1093 memory_bm_position_reset(&copy_bm);
f577eb30 1094 }
fb13a28b
RW
1095 if (handle->prev < handle->cur) {
1096 if (handle->cur <= nr_meta_pages) {
b788db79 1097 memset(buffer, 0, PAGE_SIZE);
940864dd 1098 pack_pfns(buffer, &orig_bm);
f577eb30 1099 } else {
8357376d 1100 struct page *page;
b788db79 1101
8357376d
RW
1102 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1103 if (PageHighMem(page)) {
1104 /* Highmem pages are copied to the buffer,
1105 * because we can't return with a kmapped
1106 * highmem page (we may not be called again).
1107 */
1108 void *kaddr;
1109
1110 kaddr = kmap_atomic(page, KM_USER0);
1111 memcpy(buffer, kaddr, PAGE_SIZE);
1112 kunmap_atomic(kaddr, KM_USER0);
1113 handle->buffer = buffer;
1114 } else {
1115 handle->buffer = page_address(page);
1116 }
f577eb30 1117 }
fb13a28b 1118 handle->prev = handle->cur;
f577eb30 1119 }
fb13a28b
RW
1120 handle->buf_offset = handle->cur_offset;
1121 if (handle->cur_offset + count >= PAGE_SIZE) {
1122 count = PAGE_SIZE - handle->cur_offset;
1123 handle->cur_offset = 0;
1124 handle->cur++;
f577eb30 1125 } else {
fb13a28b 1126 handle->cur_offset += count;
f577eb30
RW
1127 }
1128 handle->offset += count;
1129 return count;
1130}
1131
1132/**
1133 * mark_unsafe_pages - mark the pages that cannot be used for storing
1134 * the image during resume, because they conflict with the pages that
1135 * had been used before suspend
1136 */
1137
940864dd 1138static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1139{
1140 struct zone *zone;
ae83c5ee 1141 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1142
1143 /* Clear page flags */
8357376d 1144 for_each_zone(zone) {
ae83c5ee
RW
1145 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1146 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1147 if (pfn_valid(pfn))
1148 ClearPageNosaveFree(pfn_to_page(pfn));
f577eb30
RW
1149 }
1150
940864dd
RW
1151 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1152 memory_bm_position_reset(bm);
1153 do {
1154 pfn = memory_bm_next_pfn(bm);
1155 if (likely(pfn != BM_END_OF_MAP)) {
1156 if (likely(pfn_valid(pfn)))
1157 SetPageNosaveFree(pfn_to_page(pfn));
1158 else
1159 return -EFAULT;
1160 }
1161 } while (pfn != BM_END_OF_MAP);
f577eb30 1162
940864dd 1163 allocated_unsafe_pages = 0;
968808b8 1164
f577eb30
RW
1165 return 0;
1166}
1167
940864dd
RW
1168static void
1169duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1170{
940864dd
RW
1171 unsigned long pfn;
1172
1173 memory_bm_position_reset(src);
1174 pfn = memory_bm_next_pfn(src);
1175 while (pfn != BM_END_OF_MAP) {
1176 memory_bm_set_bit(dst, pfn);
1177 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1178 }
1179}
1180
940864dd 1181static inline int check_header(struct swsusp_info *info)
f577eb30
RW
1182{
1183 char *reason = NULL;
1184
1185 if (info->version_code != LINUX_VERSION_CODE)
1186 reason = "kernel version";
1187 if (info->num_physpages != num_physpages)
1188 reason = "memory size";
96b644bd 1189 if (strcmp(info->uts.sysname,init_utsname()->sysname))
f577eb30 1190 reason = "system type";
96b644bd 1191 if (strcmp(info->uts.release,init_utsname()->release))
f577eb30 1192 reason = "kernel release";
96b644bd 1193 if (strcmp(info->uts.version,init_utsname()->version))
f577eb30 1194 reason = "version";
96b644bd 1195 if (strcmp(info->uts.machine,init_utsname()->machine))
f577eb30
RW
1196 reason = "machine";
1197 if (reason) {
1198 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1199 return -EPERM;
1200 }
1201 return 0;
1202}
1203
1204/**
1205 * load header - check the image header and copy data from it
1206 */
1207
940864dd
RW
1208static int
1209load_header(struct swsusp_info *info)
f577eb30
RW
1210{
1211 int error;
f577eb30 1212
940864dd 1213 restore_pblist = NULL;
f577eb30
RW
1214 error = check_header(info);
1215 if (!error) {
f577eb30
RW
1216 nr_copy_pages = info->image_pages;
1217 nr_meta_pages = info->pages - info->image_pages - 1;
1218 }
1219 return error;
1220}
1221
1222/**
940864dd
RW
1223 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1224 * the corresponding bit in the memory bitmap @bm
f577eb30
RW
1225 */
1226
940864dd
RW
1227static inline void
1228unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1229{
1230 int j;
1231
940864dd
RW
1232 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1233 if (unlikely(buf[j] == BM_END_OF_MAP))
1234 break;
1235
1236 memory_bm_set_bit(bm, buf[j]);
f577eb30 1237 }
f577eb30
RW
1238}
1239
8357376d
RW
1240/* List of "safe" pages that may be used to store data loaded from the suspend
1241 * image
1242 */
1243static struct linked_page *safe_pages_list;
1244
1245#ifdef CONFIG_HIGHMEM
1246/* struct highmem_pbe is used for creating the list of highmem pages that
1247 * should be restored atomically during the resume from disk, because the page
1248 * frames they have occupied before the suspend are in use.
1249 */
1250struct highmem_pbe {
1251 struct page *copy_page; /* data is here now */
1252 struct page *orig_page; /* data was here before the suspend */
1253 struct highmem_pbe *next;
1254};
1255
1256/* List of highmem PBEs needed for restoring the highmem pages that were
1257 * allocated before the suspend and included in the suspend image, but have
1258 * also been allocated by the "resume" kernel, so their contents cannot be
1259 * written directly to their "original" page frames.
1260 */
1261static struct highmem_pbe *highmem_pblist;
1262
1263/**
1264 * count_highmem_image_pages - compute the number of highmem pages in the
1265 * suspend image. The bits in the memory bitmap @bm that correspond to the
1266 * image pages are assumed to be set.
1267 */
1268
1269static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1270{
1271 unsigned long pfn;
1272 unsigned int cnt = 0;
1273
1274 memory_bm_position_reset(bm);
1275 pfn = memory_bm_next_pfn(bm);
1276 while (pfn != BM_END_OF_MAP) {
1277 if (PageHighMem(pfn_to_page(pfn)))
1278 cnt++;
1279
1280 pfn = memory_bm_next_pfn(bm);
1281 }
1282 return cnt;
1283}
1284
1285/**
1286 * prepare_highmem_image - try to allocate as many highmem pages as
1287 * there are highmem image pages (@nr_highmem_p points to the variable
1288 * containing the number of highmem image pages). The pages that are
1289 * "safe" (ie. will not be overwritten when the suspend image is
1290 * restored) have the corresponding bits set in @bm (it must be
1291 * unitialized).
1292 *
1293 * NOTE: This function should not be called if there are no highmem
1294 * image pages.
1295 */
1296
1297static unsigned int safe_highmem_pages;
1298
1299static struct memory_bitmap *safe_highmem_bm;
1300
1301static int
1302prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1303{
1304 unsigned int to_alloc;
1305
1306 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1307 return -ENOMEM;
1308
1309 if (get_highmem_buffer(PG_SAFE))
1310 return -ENOMEM;
1311
1312 to_alloc = count_free_highmem_pages();
1313 if (to_alloc > *nr_highmem_p)
1314 to_alloc = *nr_highmem_p;
1315 else
1316 *nr_highmem_p = to_alloc;
1317
1318 safe_highmem_pages = 0;
1319 while (to_alloc-- > 0) {
1320 struct page *page;
1321
1322 page = alloc_page(__GFP_HIGHMEM);
1323 if (!PageNosaveFree(page)) {
1324 /* The page is "safe", set its bit the bitmap */
1325 memory_bm_set_bit(bm, page_to_pfn(page));
1326 safe_highmem_pages++;
1327 }
1328 /* Mark the page as allocated */
1329 SetPageNosave(page);
1330 SetPageNosaveFree(page);
1331 }
1332 memory_bm_position_reset(bm);
1333 safe_highmem_bm = bm;
1334 return 0;
1335}
1336
1337/**
1338 * get_highmem_page_buffer - for given highmem image page find the buffer
1339 * that suspend_write_next() should set for its caller to write to.
1340 *
1341 * If the page is to be saved to its "original" page frame or a copy of
1342 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1343 * the copy of the page is to be made in normal memory, so the address of
1344 * the copy is returned.
1345 *
1346 * If @buffer is returned, the caller of suspend_write_next() will write
1347 * the page's contents to @buffer, so they will have to be copied to the
1348 * right location on the next call to suspend_write_next() and it is done
1349 * with the help of copy_last_highmem_page(). For this purpose, if
1350 * @buffer is returned, @last_highmem page is set to the page to which
1351 * the data will have to be copied from @buffer.
1352 */
1353
1354static struct page *last_highmem_page;
1355
1356static void *
1357get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1358{
1359 struct highmem_pbe *pbe;
1360 void *kaddr;
1361
1362 if (PageNosave(page) && PageNosaveFree(page)) {
1363 /* We have allocated the "original" page frame and we can
1364 * use it directly to store the loaded page.
1365 */
1366 last_highmem_page = page;
1367 return buffer;
1368 }
1369 /* The "original" page frame has not been allocated and we have to
1370 * use a "safe" page frame to store the loaded page.
1371 */
1372 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1373 if (!pbe) {
1374 swsusp_free();
1375 return NULL;
1376 }
1377 pbe->orig_page = page;
1378 if (safe_highmem_pages > 0) {
1379 struct page *tmp;
1380
1381 /* Copy of the page will be stored in high memory */
1382 kaddr = buffer;
1383 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1384 safe_highmem_pages--;
1385 last_highmem_page = tmp;
1386 pbe->copy_page = tmp;
1387 } else {
1388 /* Copy of the page will be stored in normal memory */
1389 kaddr = safe_pages_list;
1390 safe_pages_list = safe_pages_list->next;
1391 pbe->copy_page = virt_to_page(kaddr);
1392 }
1393 pbe->next = highmem_pblist;
1394 highmem_pblist = pbe;
1395 return kaddr;
1396}
1397
1398/**
1399 * copy_last_highmem_page - copy the contents of a highmem image from
1400 * @buffer, where the caller of snapshot_write_next() has place them,
1401 * to the right location represented by @last_highmem_page .
1402 */
1403
1404static void copy_last_highmem_page(void)
1405{
1406 if (last_highmem_page) {
1407 void *dst;
1408
1409 dst = kmap_atomic(last_highmem_page, KM_USER0);
1410 memcpy(dst, buffer, PAGE_SIZE);
1411 kunmap_atomic(dst, KM_USER0);
1412 last_highmem_page = NULL;
1413 }
1414}
1415
1416static inline int last_highmem_page_copied(void)
1417{
1418 return !last_highmem_page;
1419}
1420
1421static inline void free_highmem_data(void)
1422{
1423 if (safe_highmem_bm)
1424 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1425
1426 if (buffer)
1427 free_image_page(buffer, PG_UNSAFE_CLEAR);
1428}
1429#else
1430static inline int get_safe_write_buffer(void) { return 0; }
1431
1432static unsigned int
1433count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1434
1435static inline int
1436prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1437{
1438 return 0;
1439}
1440
1441static inline void *
1442get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1443{
1444 return NULL;
1445}
1446
1447static inline void copy_last_highmem_page(void) {}
1448static inline int last_highmem_page_copied(void) { return 1; }
1449static inline void free_highmem_data(void) {}
1450#endif /* CONFIG_HIGHMEM */
1451
f577eb30 1452/**
940864dd
RW
1453 * prepare_image - use the memory bitmap @bm to mark the pages that will
1454 * be overwritten in the process of restoring the system memory state
1455 * from the suspend image ("unsafe" pages) and allocate memory for the
1456 * image.
968808b8 1457 *
940864dd
RW
1458 * The idea is to allocate a new memory bitmap first and then allocate
1459 * as many pages as needed for the image data, but not to assign these
1460 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
1461 * allocated and create a lists of "safe" pages that will be used
1462 * later. On systems with high memory a list of "safe" highmem pages is
1463 * also created.
f577eb30
RW
1464 */
1465
940864dd
RW
1466#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1467
940864dd
RW
1468static int
1469prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 1470{
8357376d 1471 unsigned int nr_pages, nr_highmem;
940864dd
RW
1472 struct linked_page *sp_list, *lp;
1473 int error;
f577eb30 1474
8357376d
RW
1475 /* If there is no highmem, the buffer will not be necessary */
1476 free_image_page(buffer, PG_UNSAFE_CLEAR);
1477 buffer = NULL;
1478
1479 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
1480 error = mark_unsafe_pages(bm);
1481 if (error)
1482 goto Free;
1483
1484 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1485 if (error)
1486 goto Free;
1487
1488 duplicate_memory_bitmap(new_bm, bm);
1489 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
1490 if (nr_highmem > 0) {
1491 error = prepare_highmem_image(bm, &nr_highmem);
1492 if (error)
1493 goto Free;
1494 }
940864dd
RW
1495 /* Reserve some safe pages for potential later use.
1496 *
1497 * NOTE: This way we make sure there will be enough safe pages for the
1498 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1499 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1500 */
1501 sp_list = NULL;
1502 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 1503 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1504 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1505 while (nr_pages > 0) {
8357376d 1506 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 1507 if (!lp) {
f577eb30 1508 error = -ENOMEM;
940864dd
RW
1509 goto Free;
1510 }
1511 lp->next = sp_list;
1512 sp_list = lp;
1513 nr_pages--;
f577eb30 1514 }
940864dd
RW
1515 /* Preallocate memory for the image */
1516 safe_pages_list = NULL;
8357376d 1517 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1518 while (nr_pages > 0) {
1519 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1520 if (!lp) {
1521 error = -ENOMEM;
1522 goto Free;
1523 }
1524 if (!PageNosaveFree(virt_to_page(lp))) {
1525 /* The page is "safe", add it to the list */
1526 lp->next = safe_pages_list;
1527 safe_pages_list = lp;
968808b8 1528 }
940864dd
RW
1529 /* Mark the page as allocated */
1530 SetPageNosave(virt_to_page(lp));
1531 SetPageNosaveFree(virt_to_page(lp));
1532 nr_pages--;
968808b8 1533 }
940864dd
RW
1534 /* Free the reserved safe pages so that chain_alloc() can use them */
1535 while (sp_list) {
1536 lp = sp_list->next;
1537 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1538 sp_list = lp;
f577eb30 1539 }
940864dd
RW
1540 return 0;
1541
1542Free:
1543 swsusp_free();
f577eb30
RW
1544 return error;
1545}
1546
940864dd
RW
1547/**
1548 * get_buffer - compute the address that snapshot_write_next() should
1549 * set for its caller to write to.
1550 */
1551
1552static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 1553{
940864dd
RW
1554 struct pbe *pbe;
1555 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
968808b8 1556
8357376d
RW
1557 if (PageHighMem(page))
1558 return get_highmem_page_buffer(page, ca);
1559
940864dd
RW
1560 if (PageNosave(page) && PageNosaveFree(page))
1561 /* We have allocated the "original" page frame and we can
1562 * use it directly to store the loaded page.
968808b8 1563 */
940864dd
RW
1564 return page_address(page);
1565
1566 /* The "original" page frame has not been allocated and we have to
1567 * use a "safe" page frame to store the loaded page.
968808b8 1568 */
940864dd
RW
1569 pbe = chain_alloc(ca, sizeof(struct pbe));
1570 if (!pbe) {
1571 swsusp_free();
1572 return NULL;
1573 }
8357376d
RW
1574 pbe->orig_address = page_address(page);
1575 pbe->address = safe_pages_list;
940864dd
RW
1576 safe_pages_list = safe_pages_list->next;
1577 pbe->next = restore_pblist;
1578 restore_pblist = pbe;
8357376d 1579 return pbe->address;
968808b8
RW
1580}
1581
f577eb30
RW
1582/**
1583 * snapshot_write_next - used for writing the system memory snapshot.
1584 *
1585 * On the first call to it @handle should point to a zeroed
1586 * snapshot_handle structure. The structure gets updated and a pointer
1587 * to it should be passed to this function every next time.
1588 *
1589 * The @count parameter should contain the number of bytes the caller
1590 * wants to write to the image. It must not be zero.
1591 *
1592 * On success the function returns a positive number. Then, the caller
1593 * is allowed to write up to the returned number of bytes to the memory
1594 * location computed by the data_of() macro. The number returned
1595 * may be smaller than @count, but this only happens if the write would
1596 * cross a page boundary otherwise.
1597 *
1598 * The function returns 0 to indicate the "end of file" condition,
1599 * and a negative number is returned on error. In such cases the
1600 * structure pointed to by @handle is not updated and should not be used
1601 * any more.
1602 */
1603
1604int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1605{
940864dd 1606 static struct chain_allocator ca;
f577eb30
RW
1607 int error = 0;
1608
940864dd 1609 /* Check if we have already loaded the entire image */
fb13a28b 1610 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1611 return 0;
940864dd 1612
8357376d
RW
1613 if (handle->offset == 0) {
1614 if (!buffer)
1615 /* This makes the buffer be freed by swsusp_free() */
1616 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1617
f577eb30
RW
1618 if (!buffer)
1619 return -ENOMEM;
8357376d 1620
f577eb30 1621 handle->buffer = buffer;
8357376d 1622 }
546e0d27 1623 handle->sync_read = 1;
fb13a28b 1624 if (handle->prev < handle->cur) {
940864dd
RW
1625 if (handle->prev == 0) {
1626 error = load_header(buffer);
1627 if (error)
1628 return error;
1629
1630 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
f577eb30
RW
1631 if (error)
1632 return error;
940864dd 1633
f577eb30 1634 } else if (handle->prev <= nr_meta_pages) {
940864dd
RW
1635 unpack_orig_pfns(buffer, &copy_bm);
1636 if (handle->prev == nr_meta_pages) {
1637 error = prepare_image(&orig_bm, &copy_bm);
f577eb30
RW
1638 if (error)
1639 return error;
940864dd
RW
1640
1641 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1642 memory_bm_position_reset(&orig_bm);
1643 restore_pblist = NULL;
1644 handle->buffer = get_buffer(&orig_bm, &ca);
546e0d27 1645 handle->sync_read = 0;
940864dd
RW
1646 if (!handle->buffer)
1647 return -ENOMEM;
f577eb30
RW
1648 }
1649 } else {
8357376d 1650 copy_last_highmem_page();
940864dd 1651 handle->buffer = get_buffer(&orig_bm, &ca);
8357376d
RW
1652 if (handle->buffer != buffer)
1653 handle->sync_read = 0;
f577eb30 1654 }
fb13a28b 1655 handle->prev = handle->cur;
f577eb30 1656 }
fb13a28b
RW
1657 handle->buf_offset = handle->cur_offset;
1658 if (handle->cur_offset + count >= PAGE_SIZE) {
1659 count = PAGE_SIZE - handle->cur_offset;
1660 handle->cur_offset = 0;
1661 handle->cur++;
f577eb30 1662 } else {
fb13a28b 1663 handle->cur_offset += count;
f577eb30
RW
1664 }
1665 handle->offset += count;
1666 return count;
1667}
1668
8357376d
RW
1669/**
1670 * snapshot_write_finalize - must be called after the last call to
1671 * snapshot_write_next() in case the last page in the image happens
1672 * to be a highmem page and its contents should be stored in the
1673 * highmem. Additionally, it releases the memory that will not be
1674 * used any more.
1675 */
1676
1677void snapshot_write_finalize(struct snapshot_handle *handle)
1678{
1679 copy_last_highmem_page();
1680 /* Free only if we have loaded the image entirely */
1681 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1682 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1683 free_highmem_data();
1684 }
1685}
1686
f577eb30
RW
1687int snapshot_image_loaded(struct snapshot_handle *handle)
1688{
8357376d 1689 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
1690 handle->cur <= nr_meta_pages + nr_copy_pages);
1691}
1692
8357376d
RW
1693#ifdef CONFIG_HIGHMEM
1694/* Assumes that @buf is ready and points to a "safe" page */
1695static inline void
1696swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 1697{
8357376d
RW
1698 void *kaddr1, *kaddr2;
1699
1700 kaddr1 = kmap_atomic(p1, KM_USER0);
1701 kaddr2 = kmap_atomic(p2, KM_USER1);
1702 memcpy(buf, kaddr1, PAGE_SIZE);
1703 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1704 memcpy(kaddr2, buf, PAGE_SIZE);
1705 kunmap_atomic(kaddr1, KM_USER0);
1706 kunmap_atomic(kaddr2, KM_USER1);
1707}
1708
1709/**
1710 * restore_highmem - for each highmem page that was allocated before
1711 * the suspend and included in the suspend image, and also has been
1712 * allocated by the "resume" kernel swap its current (ie. "before
1713 * resume") contents with the previous (ie. "before suspend") one.
1714 *
1715 * If the resume eventually fails, we can call this function once
1716 * again and restore the "before resume" highmem state.
1717 */
1718
1719int restore_highmem(void)
1720{
1721 struct highmem_pbe *pbe = highmem_pblist;
1722 void *buf;
1723
1724 if (!pbe)
1725 return 0;
1726
1727 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1728 if (!buf)
1729 return -ENOMEM;
1730
1731 while (pbe) {
1732 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1733 pbe = pbe->next;
1734 }
1735 free_image_page(buf, PG_UNSAFE_CLEAR);
1736 return 0;
f577eb30 1737}
8357376d 1738#endif /* CONFIG_HIGHMEM */