Merge tag 'linux-watchdog-6.3-rc1' of git://www.linux-watchdog.org/linux-watchdog
[linux-2.6-block.git] / kernel / power / snapshot.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
25761b6e 2/*
96bc7aec 3 * linux/kernel/power/snapshot.c
25761b6e 4 *
8357376d 5 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 6 *
a2531293 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e
RW
9 */
10
7a7b99bf 11#define pr_fmt(fmt) "PM: hibernation: " fmt
64ec72a1 12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
57c8a661 24#include <linux/memblock.h>
38b8d208 25#include <linux/nmi.h>
25761b6e
RW
26#include <linux/syscalls.h>
27#include <linux/console.h>
28#include <linux/highmem.h>
846705de 29#include <linux/list.h>
5a0e3ad6 30#include <linux/slab.h>
52f5684c 31#include <linux/compiler.h>
db597605 32#include <linux/ktime.h>
61f6d09a 33#include <linux/set_memory.h>
25761b6e 34
7c0f6ba6 35#include <linux/uaccess.h>
25761b6e 36#include <asm/mmu_context.h>
25761b6e
RW
37#include <asm/tlbflush.h>
38#include <asm/io.h>
39
25761b6e
RW
40#include "power.h"
41
49368a47 42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
4c0b6c10
RW
43static bool hibernate_restore_protection;
44static bool hibernate_restore_protection_active;
45
46void enable_restore_image_protection(void)
47{
48 hibernate_restore_protection = true;
49}
50
51static inline void hibernate_restore_protection_begin(void)
52{
53 hibernate_restore_protection_active = hibernate_restore_protection;
54}
55
56static inline void hibernate_restore_protection_end(void)
57{
58 hibernate_restore_protection_active = false;
59}
60
61static inline void hibernate_restore_protect_page(void *page_address)
62{
63 if (hibernate_restore_protection_active)
64 set_memory_ro((unsigned long)page_address, 1);
65}
66
67static inline void hibernate_restore_unprotect_page(void *page_address)
68{
69 if (hibernate_restore_protection_active)
70 set_memory_rw((unsigned long)page_address, 1);
71}
72#else
73static inline void hibernate_restore_protection_begin(void) {}
74static inline void hibernate_restore_protection_end(void) {}
75static inline void hibernate_restore_protect_page(void *page_address) {}
76static inline void hibernate_restore_unprotect_page(void *page_address) {}
49368a47 77#endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
4c0b6c10 78
2abf962a
MR
79
80/*
81 * The calls to set_direct_map_*() should not fail because remapping a page
82 * here means that we only update protection bits in an existing PTE.
83 * It is still worth to have a warning here if something changes and this
84 * will no longer be the case.
85 */
86static inline void hibernate_map_page(struct page *page)
87{
88 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 int ret = set_direct_map_default_noflush(page);
90
91 if (ret)
92 pr_warn_once("Failed to remap page\n");
93 } else {
94 debug_pagealloc_map_pages(page, 1);
95 }
96}
97
98static inline void hibernate_unmap_page(struct page *page)
99{
100 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 unsigned long addr = (unsigned long)page_address(page);
102 int ret = set_direct_map_invalid_noflush(page);
103
104 if (ret)
105 pr_warn_once("Failed to remap page\n");
106
107 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 } else {
109 debug_pagealloc_unmap_pages(page, 1);
110 }
111}
112
74dfd666
RW
113static int swsusp_page_is_free(struct page *);
114static void swsusp_set_page_forbidden(struct page *);
115static void swsusp_unset_page_forbidden(struct page *);
116
ddeb6487
RW
117/*
118 * Number of bytes to reserve for memory allocations made by device drivers
119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120 * cause image creation to fail (tunable via /sys/power/reserved_size).
121 */
122unsigned long reserved_size;
123
124void __init hibernate_reserved_size_init(void)
125{
126 reserved_size = SPARE_PAGES * PAGE_SIZE;
127}
128
fe419535
RW
129/*
130 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
131 * When it is set to N, swsusp will do its best to ensure the image
132 * size will not exceed N bytes, but if that is impossible, it will
133 * try to create the smallest image possible.
fe419535 134 */
ac5c24ec
RW
135unsigned long image_size;
136
137void __init hibernate_image_size_init(void)
138{
ca79b0c2 139 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
ac5c24ec 140}
fe419535 141
ef96f639
RW
142/*
143 * List of PBEs needed for restoring the pages that were allocated before
8357376d
RW
144 * the suspend and included in the suspend image, but have also been
145 * allocated by the "resume" kernel, so their contents cannot be written
146 * directly to their "original" page frames.
147 */
75534b50
RW
148struct pbe *restore_pblist;
149
9c744481
RW
150/* struct linked_page is used to build chains of pages */
151
152#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
153
154struct linked_page {
155 struct linked_page *next;
156 char data[LINKED_PAGE_DATA_SIZE];
157} __packed;
158
159/*
160 * List of "safe" pages (ie. pages that were not used by the image kernel
161 * before hibernation) that may be used as temporary storage for image kernel
162 * memory contents.
163 */
164static struct linked_page *safe_pages_list;
165
8357376d 166/* Pointer to an auxiliary buffer (1 page) */
940864dd 167static void *buffer;
7088a5c0 168
0bcd888d
RW
169#define PG_ANY 0
170#define PG_SAFE 1
171#define PG_UNSAFE_CLEAR 1
172#define PG_UNSAFE_KEEP 0
173
940864dd 174static unsigned int allocated_unsafe_pages;
f6143aa6 175
ef96f639
RW
176/**
177 * get_image_page - Allocate a page for a hibernation image.
178 * @gfp_mask: GFP mask for the allocation.
179 * @safe_needed: Get pages that were not used before hibernation (restore only)
180 *
181 * During image restoration, for storing the PBE list and the image data, we can
182 * only use memory pages that do not conflict with the pages used before
183 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
184 * using allocated_unsafe_pages.
185 *
186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187 * swsusp_free() can release it.
188 */
8357376d 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
190{
191 void *res;
192
193 res = (void *)get_zeroed_page(gfp_mask);
194 if (safe_needed)
7be98234 195 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 196 /* The page is unsafe, mark it for swsusp_free() */
7be98234 197 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 198 allocated_unsafe_pages++;
f6143aa6
RW
199 res = (void *)get_zeroed_page(gfp_mask);
200 }
201 if (res) {
7be98234
RW
202 swsusp_set_page_forbidden(virt_to_page(res));
203 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
204 }
205 return res;
206}
207
9c744481
RW
208static void *__get_safe_page(gfp_t gfp_mask)
209{
210 if (safe_pages_list) {
211 void *ret = safe_pages_list;
212
213 safe_pages_list = safe_pages_list->next;
214 memset(ret, 0, PAGE_SIZE);
215 return ret;
216 }
217 return get_image_page(gfp_mask, PG_SAFE);
218}
219
f6143aa6
RW
220unsigned long get_safe_page(gfp_t gfp_mask)
221{
9c744481 222 return (unsigned long)__get_safe_page(gfp_mask);
8357376d
RW
223}
224
5b6d15de
RW
225static struct page *alloc_image_page(gfp_t gfp_mask)
226{
8357376d
RW
227 struct page *page;
228
229 page = alloc_page(gfp_mask);
230 if (page) {
7be98234
RW
231 swsusp_set_page_forbidden(page);
232 swsusp_set_page_free(page);
8357376d
RW
233 }
234 return page;
f6143aa6
RW
235}
236
307c5971
RW
237static void recycle_safe_page(void *page_address)
238{
239 struct linked_page *lp = page_address;
240
241 lp->next = safe_pages_list;
242 safe_pages_list = lp;
243}
244
f6143aa6 245/**
ef96f639
RW
246 * free_image_page - Free a page allocated for hibernation image.
247 * @addr: Address of the page to free.
248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249 *
250 * The page to free should have been allocated by get_image_page() (page flags
251 * set by it are affected).
f6143aa6 252 */
f6143aa6
RW
253static inline void free_image_page(void *addr, int clear_nosave_free)
254{
8357376d
RW
255 struct page *page;
256
257 BUG_ON(!virt_addr_valid(addr));
258
259 page = virt_to_page(addr);
260
7be98234 261 swsusp_unset_page_forbidden(page);
f6143aa6 262 if (clear_nosave_free)
7be98234 263 swsusp_unset_page_free(page);
8357376d
RW
264
265 __free_page(page);
f6143aa6
RW
266}
267
efd5a852
RW
268static inline void free_list_of_pages(struct linked_page *list,
269 int clear_page_nosave)
b788db79
RW
270{
271 while (list) {
272 struct linked_page *lp = list->next;
273
274 free_image_page(list, clear_page_nosave);
275 list = lp;
276 }
277}
278
ef96f639
RW
279/*
280 * struct chain_allocator is used for allocating small objects out of
281 * a linked list of pages called 'the chain'.
282 *
283 * The chain grows each time when there is no room for a new object in
284 * the current page. The allocated objects cannot be freed individually.
285 * It is only possible to free them all at once, by freeing the entire
286 * chain.
287 *
288 * NOTE: The chain allocator may be inefficient if the allocated objects
289 * are not much smaller than PAGE_SIZE.
290 */
b788db79
RW
291struct chain_allocator {
292 struct linked_page *chain; /* the chain */
293 unsigned int used_space; /* total size of objects allocated out
ef96f639 294 of the current page */
b788db79
RW
295 gfp_t gfp_mask; /* mask for allocating pages */
296 int safe_needed; /* if set, only "safe" pages are allocated */
297};
298
efd5a852
RW
299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 int safe_needed)
b788db79
RW
301{
302 ca->chain = NULL;
303 ca->used_space = LINKED_PAGE_DATA_SIZE;
304 ca->gfp_mask = gfp_mask;
305 ca->safe_needed = safe_needed;
306}
307
308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309{
310 void *ret;
311
312 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 struct linked_page *lp;
314
9c744481
RW
315 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 get_image_page(ca->gfp_mask, PG_ANY);
b788db79
RW
317 if (!lp)
318 return NULL;
319
320 lp->next = ca->chain;
321 ca->chain = lp;
322 ca->used_space = 0;
323 }
324 ret = ca->chain->data + ca->used_space;
325 ca->used_space += size;
326 return ret;
327}
328
e5a3b0c5 329/*
ef96f639 330 * Data types related to memory bitmaps.
b788db79 331 *
e4b2897a 332 * Memory bitmap is a structure consisting of many linked lists of
ef96f639 333 * objects. The main list's elements are of type struct zone_bitmap
6be2408a 334 * and each of them corresponds to one zone. For each zone bitmap
ef96f639
RW
335 * object there is a list of objects of type struct bm_block that
336 * represent each blocks of bitmap in which information is stored.
b788db79 337 *
ef96f639
RW
338 * struct memory_bitmap contains a pointer to the main list of zone
339 * bitmap objects, a struct bm_position used for browsing the bitmap,
340 * and a pointer to the list of pages used for allocating all of the
341 * zone bitmap objects and bitmap block objects.
b788db79 342 *
ef96f639
RW
343 * NOTE: It has to be possible to lay out the bitmap in memory
344 * using only allocations of order 0. Additionally, the bitmap is
345 * designed to work with arbitrary number of zones (this is over the
346 * top for now, but let's avoid making unnecessary assumptions ;-).
b788db79 347 *
ef96f639
RW
348 * struct zone_bitmap contains a pointer to a list of bitmap block
349 * objects and a pointer to the bitmap block object that has been
350 * most recently used for setting bits. Additionally, it contains the
351 * PFNs that correspond to the start and end of the represented zone.
b788db79 352 *
ef96f639
RW
353 * struct bm_block contains a pointer to the memory page in which
354 * information is stored (in the form of a block of bitmap)
355 * It also contains the pfns that correspond to the start and end of
356 * the represented memory area.
f469f02d 357 *
ef96f639
RW
358 * The memory bitmap is organized as a radix tree to guarantee fast random
359 * access to the bits. There is one radix tree for each zone (as returned
360 * from create_mem_extents).
f469f02d 361 *
ef96f639
RW
362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363 * two linked lists for the nodes of the tree, one for the inner nodes and
364 * one for the leave nodes. The linked leave nodes are used for fast linear
365 * access of the memory bitmap.
f469f02d 366 *
ef96f639 367 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
368 */
369
370#define BM_END_OF_MAP (~0UL)
371
8de03073 372#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
373#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
374#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79 375
f469f02d
JR
376/*
377 * struct rtree_node is a wrapper struct to link the nodes
378 * of the rtree together for easy linear iteration over
379 * bits and easy freeing
380 */
381struct rtree_node {
382 struct list_head list;
383 unsigned long *data;
384};
385
386/*
387 * struct mem_zone_bm_rtree represents a bitmap used for one
388 * populated memory zone.
389 */
390struct mem_zone_bm_rtree {
391 struct list_head list; /* Link Zones together */
392 struct list_head nodes; /* Radix Tree inner nodes */
393 struct list_head leaves; /* Radix Tree leaves */
394 unsigned long start_pfn; /* Zone start page frame */
395 unsigned long end_pfn; /* Zone end page frame + 1 */
396 struct rtree_node *rtree; /* Radix Tree Root */
397 int levels; /* Number of Radix Tree Levels */
398 unsigned int blocks; /* Number of Bitmap Blocks */
399};
400
b788db79
RW
401/* strcut bm_position is used for browsing memory bitmaps */
402
403struct bm_position {
3a20cb17
JR
404 struct mem_zone_bm_rtree *zone;
405 struct rtree_node *node;
406 unsigned long node_pfn;
407 int node_bit;
b788db79
RW
408};
409
410struct memory_bitmap {
f469f02d 411 struct list_head zones;
b788db79 412 struct linked_page *p_list; /* list of pages used to store zone
ef96f639
RW
413 bitmap objects and bitmap block
414 objects */
b788db79
RW
415 struct bm_position cur; /* most recently used bit position */
416};
417
418/* Functions that operate on memory bitmaps */
419
f469f02d
JR
420#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
421#if BITS_PER_LONG == 32
422#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
423#else
424#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
425#endif
426#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
427
ef96f639
RW
428/**
429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
467df4cf
YL
430 * @gfp_mask: GFP mask for the allocation.
431 * @safe_needed: Get pages not used before hibernation (restore only)
432 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
433 * @list: Radix Tree node to add.
f469f02d 434 *
ef96f639
RW
435 * This function is used to allocate inner nodes as well as the
436 * leave nodes of the radix tree. It also adds the node to the
437 * corresponding linked list passed in by the *list parameter.
f469f02d
JR
438 */
439static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
440 struct chain_allocator *ca,
441 struct list_head *list)
442{
443 struct rtree_node *node;
444
445 node = chain_alloc(ca, sizeof(struct rtree_node));
446 if (!node)
447 return NULL;
448
449 node->data = get_image_page(gfp_mask, safe_needed);
450 if (!node->data)
451 return NULL;
452
453 list_add_tail(&node->list, list);
454
455 return node;
456}
457
ef96f639
RW
458/**
459 * add_rtree_block - Add a new leave node to the radix tree.
f469f02d 460 *
ef96f639
RW
461 * The leave nodes need to be allocated in order to keep the leaves
462 * linked list in order. This is guaranteed by the zone->blocks
463 * counter.
f469f02d
JR
464 */
465static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
466 int safe_needed, struct chain_allocator *ca)
467{
468 struct rtree_node *node, *block, **dst;
469 unsigned int levels_needed, block_nr;
470 int i;
471
472 block_nr = zone->blocks;
473 levels_needed = 0;
474
475 /* How many levels do we need for this block nr? */
476 while (block_nr) {
477 levels_needed += 1;
478 block_nr >>= BM_RTREE_LEVEL_SHIFT;
479 }
480
481 /* Make sure the rtree has enough levels */
482 for (i = zone->levels; i < levels_needed; i++) {
483 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
484 &zone->nodes);
485 if (!node)
486 return -ENOMEM;
487
488 node->data[0] = (unsigned long)zone->rtree;
489 zone->rtree = node;
490 zone->levels += 1;
491 }
492
493 /* Allocate new block */
494 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
495 if (!block)
496 return -ENOMEM;
497
498 /* Now walk the rtree to insert the block */
499 node = zone->rtree;
500 dst = &zone->rtree;
501 block_nr = zone->blocks;
502 for (i = zone->levels; i > 0; i--) {
503 int index;
504
505 if (!node) {
506 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
507 &zone->nodes);
508 if (!node)
509 return -ENOMEM;
510 *dst = node;
511 }
512
513 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
514 index &= BM_RTREE_LEVEL_MASK;
515 dst = (struct rtree_node **)&((*dst)->data[index]);
516 node = *dst;
517 }
518
519 zone->blocks += 1;
520 *dst = block;
521
522 return 0;
523}
524
525static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
526 int clear_nosave_free);
527
ef96f639
RW
528/**
529 * create_zone_bm_rtree - Create a radix tree for one zone.
f469f02d 530 *
ef96f639
RW
531 * Allocated the mem_zone_bm_rtree structure and initializes it.
532 * This function also allocated and builds the radix tree for the
533 * zone.
f469f02d 534 */
efd5a852
RW
535static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
536 int safe_needed,
537 struct chain_allocator *ca,
538 unsigned long start,
539 unsigned long end)
f469f02d
JR
540{
541 struct mem_zone_bm_rtree *zone;
542 unsigned int i, nr_blocks;
543 unsigned long pages;
544
545 pages = end - start;
546 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
547 if (!zone)
548 return NULL;
549
550 INIT_LIST_HEAD(&zone->nodes);
551 INIT_LIST_HEAD(&zone->leaves);
552 zone->start_pfn = start;
553 zone->end_pfn = end;
554 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
555
556 for (i = 0; i < nr_blocks; i++) {
557 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
558 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
559 return NULL;
560 }
561 }
562
563 return zone;
564}
565
ef96f639
RW
566/**
567 * free_zone_bm_rtree - Free the memory of the radix tree.
f469f02d 568 *
ef96f639
RW
569 * Free all node pages of the radix tree. The mem_zone_bm_rtree
570 * structure itself is not freed here nor are the rtree_node
571 * structs.
f469f02d
JR
572 */
573static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
574 int clear_nosave_free)
575{
576 struct rtree_node *node;
577
578 list_for_each_entry(node, &zone->nodes, list)
579 free_image_page(node->data, clear_nosave_free);
580
581 list_for_each_entry(node, &zone->leaves, list)
582 free_image_page(node->data, clear_nosave_free);
583}
584
b788db79
RW
585static void memory_bm_position_reset(struct memory_bitmap *bm)
586{
3a20cb17
JR
587 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
588 list);
589 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
590 struct rtree_node, list);
591 bm->cur.node_pfn = 0;
592 bm->cur.node_bit = 0;
b788db79
RW
593}
594
595static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
596
846705de
RW
597struct mem_extent {
598 struct list_head hook;
599 unsigned long start;
600 unsigned long end;
601};
602
b788db79 603/**
ef96f639
RW
604 * free_mem_extents - Free a list of memory extents.
605 * @list: List of extents to free.
b788db79 606 */
846705de
RW
607static void free_mem_extents(struct list_head *list)
608{
609 struct mem_extent *ext, *aux;
b788db79 610
846705de
RW
611 list_for_each_entry_safe(ext, aux, list, hook) {
612 list_del(&ext->hook);
613 kfree(ext);
614 }
615}
616
617/**
ef96f639
RW
618 * create_mem_extents - Create a list of memory extents.
619 * @list: List to put the extents into.
620 * @gfp_mask: Mask to use for memory allocations.
621 *
622 * The extents represent contiguous ranges of PFNs.
846705de
RW
623 */
624static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 625{
846705de 626 struct zone *zone;
b788db79 627
846705de 628 INIT_LIST_HEAD(list);
b788db79 629
ee99c71c 630 for_each_populated_zone(zone) {
846705de
RW
631 unsigned long zone_start, zone_end;
632 struct mem_extent *ext, *cur, *aux;
633
846705de 634 zone_start = zone->zone_start_pfn;
c33bc315 635 zone_end = zone_end_pfn(zone);
846705de
RW
636
637 list_for_each_entry(ext, list, hook)
638 if (zone_start <= ext->end)
639 break;
b788db79 640
846705de
RW
641 if (&ext->hook == list || zone_end < ext->start) {
642 /* New extent is necessary */
643 struct mem_extent *new_ext;
644
645 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
646 if (!new_ext) {
647 free_mem_extents(list);
648 return -ENOMEM;
649 }
650 new_ext->start = zone_start;
651 new_ext->end = zone_end;
652 list_add_tail(&new_ext->hook, &ext->hook);
653 continue;
654 }
655
656 /* Merge this zone's range of PFNs with the existing one */
657 if (zone_start < ext->start)
658 ext->start = zone_start;
659 if (zone_end > ext->end)
660 ext->end = zone_end;
661
662 /* More merging may be possible */
663 cur = ext;
664 list_for_each_entry_safe_continue(cur, aux, list, hook) {
665 if (zone_end < cur->start)
666 break;
667 if (zone_end < cur->end)
668 ext->end = cur->end;
669 list_del(&cur->hook);
670 kfree(cur);
671 }
b788db79 672 }
846705de
RW
673
674 return 0;
b788db79
RW
675}
676
677/**
ef96f639
RW
678 * memory_bm_create - Allocate memory for a memory bitmap.
679 */
efd5a852
RW
680static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
681 int safe_needed)
b788db79
RW
682{
683 struct chain_allocator ca;
846705de
RW
684 struct list_head mem_extents;
685 struct mem_extent *ext;
686 int error;
b788db79
RW
687
688 chain_init(&ca, gfp_mask, safe_needed);
f469f02d 689 INIT_LIST_HEAD(&bm->zones);
b788db79 690
846705de
RW
691 error = create_mem_extents(&mem_extents, gfp_mask);
692 if (error)
693 return error;
b788db79 694
846705de 695 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 696 struct mem_zone_bm_rtree *zone;
f469f02d
JR
697
698 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
699 ext->start, ext->end);
9047eb62
JR
700 if (!zone) {
701 error = -ENOMEM;
f469f02d 702 goto Error;
9047eb62 703 }
f469f02d 704 list_add_tail(&zone->list, &bm->zones);
b788db79 705 }
846705de 706
b788db79
RW
707 bm->p_list = ca.chain;
708 memory_bm_position_reset(bm);
846705de
RW
709 Exit:
710 free_mem_extents(&mem_extents);
711 return error;
b788db79 712
846705de 713 Error:
b788db79
RW
714 bm->p_list = ca.chain;
715 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 716 goto Exit;
b788db79
RW
717}
718
719/**
ef96f639
RW
720 * memory_bm_free - Free memory occupied by the memory bitmap.
721 * @bm: Memory bitmap.
722 */
b788db79
RW
723static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
724{
f469f02d 725 struct mem_zone_bm_rtree *zone;
b788db79 726
f469f02d
JR
727 list_for_each_entry(zone, &bm->zones, list)
728 free_zone_bm_rtree(zone, clear_nosave_free);
729
b788db79 730 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 731
f469f02d 732 INIT_LIST_HEAD(&bm->zones);
b788db79
RW
733}
734
735/**
ef96f639 736 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
07a33823 737 *
ef96f639
RW
738 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
739 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
740 *
741 * Walk the radix tree to find the page containing the bit that represents @pfn
742 * and return the position of the bit in @addr and @bit_nr.
07a33823 743 */
9047eb62
JR
744static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
745 void **addr, unsigned int *bit_nr)
07a33823
JR
746{
747 struct mem_zone_bm_rtree *curr, *zone;
748 struct rtree_node *node;
749 int i, block_nr;
750
3a20cb17
JR
751 zone = bm->cur.zone;
752
753 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
754 goto zone_found;
755
07a33823
JR
756 zone = NULL;
757
758 /* Find the right zone */
759 list_for_each_entry(curr, &bm->zones, list) {
760 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
761 zone = curr;
762 break;
763 }
764 }
765
766 if (!zone)
767 return -EFAULT;
768
3a20cb17 769zone_found:
07a33823 770 /*
ef96f639
RW
771 * We have found the zone. Now walk the radix tree to find the leaf node
772 * for our PFN.
07a33823 773 */
da6043fe
AW
774
775 /*
7b7b8a2c 776 * If the zone we wish to scan is the current zone and the
da6043fe
AW
777 * pfn falls into the current node then we do not need to walk
778 * the tree.
779 */
3a20cb17 780 node = bm->cur.node;
da6043fe
AW
781 if (zone == bm->cur.zone &&
782 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
3a20cb17
JR
783 goto node_found;
784
07a33823
JR
785 node = zone->rtree;
786 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
787
788 for (i = zone->levels; i > 0; i--) {
789 int index;
790
791 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
792 index &= BM_RTREE_LEVEL_MASK;
793 BUG_ON(node->data[index] == 0);
794 node = (struct rtree_node *)node->data[index];
795 }
796
3a20cb17
JR
797node_found:
798 /* Update last position */
799 bm->cur.zone = zone;
800 bm->cur.node = node;
801 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
802
07a33823
JR
803 /* Set return values */
804 *addr = node->data;
805 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
806
807 return 0;
808}
809
74dfd666
RW
810static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
811{
812 void *addr;
813 unsigned int bit;
a82f7119 814 int error;
74dfd666 815
a82f7119
RW
816 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
817 BUG_ON(error);
74dfd666
RW
818 set_bit(bit, addr);
819}
820
a82f7119
RW
821static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
822{
823 void *addr;
824 unsigned int bit;
825 int error;
826
827 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
07a33823
JR
828 if (!error)
829 set_bit(bit, addr);
830
a82f7119
RW
831 return error;
832}
833
74dfd666
RW
834static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
835{
836 void *addr;
837 unsigned int bit;
a82f7119 838 int error;
74dfd666 839
a82f7119
RW
840 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
841 BUG_ON(error);
74dfd666
RW
842 clear_bit(bit, addr);
843}
844
fdd64ed5
JR
845static void memory_bm_clear_current(struct memory_bitmap *bm)
846{
847 int bit;
848
849 bit = max(bm->cur.node_bit - 1, 0);
850 clear_bit(bit, bm->cur.node->data);
851}
852
74dfd666
RW
853static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
854{
855 void *addr;
856 unsigned int bit;
9047eb62 857 int error;
74dfd666 858
a82f7119
RW
859 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
860 BUG_ON(error);
9047eb62 861 return test_bit(bit, addr);
b788db79
RW
862}
863
69643279
RW
864static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
865{
866 void *addr;
867 unsigned int bit;
07a33823 868
9047eb62 869 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
b788db79
RW
870}
871
3a20cb17 872/*
ef96f639 873 * rtree_next_node - Jump to the next leaf node.
3a20cb17 874 *
ef96f639
RW
875 * Set the position to the beginning of the next node in the
876 * memory bitmap. This is either the next node in the current
877 * zone's radix tree or the first node in the radix tree of the
878 * next zone.
3a20cb17 879 *
ef96f639 880 * Return true if there is a next node, false otherwise.
3a20cb17
JR
881 */
882static bool rtree_next_node(struct memory_bitmap *bm)
883{
924d8696
JM
884 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
885 bm->cur.node = list_entry(bm->cur.node->list.next,
886 struct rtree_node, list);
3a20cb17
JR
887 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
888 bm->cur.node_bit = 0;
0f7d83e8 889 touch_softlockup_watchdog();
3a20cb17
JR
890 return true;
891 }
892
893 /* No more nodes, goto next zone */
924d8696
JM
894 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
895 bm->cur.zone = list_entry(bm->cur.zone->list.next,
3a20cb17 896 struct mem_zone_bm_rtree, list);
3a20cb17
JR
897 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
898 struct rtree_node, list);
899 bm->cur.node_pfn = 0;
900 bm->cur.node_bit = 0;
901 return true;
902 }
903
904 /* No more zones */
905 return false;
906}
907
9047eb62 908/**
467df4cf 909 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
ef96f639 910 * @bm: Memory bitmap.
3a20cb17 911 *
ef96f639
RW
912 * Starting from the last returned position this function searches for the next
913 * set bit in @bm and returns the PFN represented by it. If no more bits are
914 * set, BM_END_OF_MAP is returned.
9047eb62 915 *
ef96f639
RW
916 * It is required to run memory_bm_position_reset() before the first call to
917 * this function for the given memory bitmap.
3a20cb17 918 */
9047eb62 919static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
3a20cb17
JR
920{
921 unsigned long bits, pfn, pages;
922 int bit;
923
924 do {
925 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
926 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
927 bit = find_next_bit(bm->cur.node->data, bits,
928 bm->cur.node_bit);
929 if (bit < bits) {
930 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
931 bm->cur.node_bit = bit + 1;
932 return pfn;
933 }
934 } while (rtree_next_node(bm));
935
936 return BM_END_OF_MAP;
937}
938
ef96f639
RW
939/*
940 * This structure represents a range of page frames the contents of which
941 * should not be saved during hibernation.
74dfd666 942 */
74dfd666
RW
943struct nosave_region {
944 struct list_head list;
945 unsigned long start_pfn;
946 unsigned long end_pfn;
947};
948
949static LIST_HEAD(nosave_regions);
950
307c5971
RW
951static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
952{
953 struct rtree_node *node;
954
955 list_for_each_entry(node, &zone->nodes, list)
956 recycle_safe_page(node->data);
957
958 list_for_each_entry(node, &zone->leaves, list)
959 recycle_safe_page(node->data);
960}
961
962static void memory_bm_recycle(struct memory_bitmap *bm)
963{
964 struct mem_zone_bm_rtree *zone;
965 struct linked_page *p_list;
966
967 list_for_each_entry(zone, &bm->zones, list)
968 recycle_zone_bm_rtree(zone);
969
970 p_list = bm->p_list;
971 while (p_list) {
972 struct linked_page *lp = p_list;
973
974 p_list = lp->next;
975 recycle_safe_page(lp);
976 }
977}
978
74dfd666 979/**
ef96f639
RW
980 * register_nosave_region - Register a region of unsaveable memory.
981 *
982 * Register a range of page frames the contents of which should not be saved
983 * during hibernation (to be used in the early initialization code).
74dfd666 984 */
33569ef3 985void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
74dfd666
RW
986{
987 struct nosave_region *region;
988
989 if (start_pfn >= end_pfn)
990 return;
991
992 if (!list_empty(&nosave_regions)) {
993 /* Try to extend the previous region (they should be sorted) */
994 region = list_entry(nosave_regions.prev,
995 struct nosave_region, list);
996 if (region->end_pfn == start_pfn) {
997 region->end_pfn = end_pfn;
998 goto Report;
999 }
1000 }
33569ef3
AS
1001 /* This allocation cannot fail */
1002 region = memblock_alloc(sizeof(struct nosave_region),
1003 SMP_CACHE_BYTES);
1004 if (!region)
1005 panic("%s: Failed to allocate %zu bytes\n", __func__,
1006 sizeof(struct nosave_region));
74dfd666
RW
1007 region->start_pfn = start_pfn;
1008 region->end_pfn = end_pfn;
1009 list_add_tail(&region->list, &nosave_regions);
1010 Report:
64ec72a1 1011 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
cd38ca85
BH
1012 (unsigned long long) start_pfn << PAGE_SHIFT,
1013 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
1014}
1015
1016/*
1017 * Set bits in this map correspond to the page frames the contents of which
1018 * should not be saved during the suspend.
1019 */
1020static struct memory_bitmap *forbidden_pages_map;
1021
1022/* Set bits in this map correspond to free page frames. */
1023static struct memory_bitmap *free_pages_map;
1024
1025/*
1026 * Each page frame allocated for creating the image is marked by setting the
1027 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1028 */
1029
1030void swsusp_set_page_free(struct page *page)
1031{
1032 if (free_pages_map)
1033 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1034}
1035
1036static int swsusp_page_is_free(struct page *page)
1037{
1038 return free_pages_map ?
1039 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1040}
1041
1042void swsusp_unset_page_free(struct page *page)
1043{
1044 if (free_pages_map)
1045 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1046}
1047
1048static void swsusp_set_page_forbidden(struct page *page)
1049{
1050 if (forbidden_pages_map)
1051 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1052}
1053
1054int swsusp_page_is_forbidden(struct page *page)
1055{
1056 return forbidden_pages_map ?
1057 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1058}
1059
1060static void swsusp_unset_page_forbidden(struct page *page)
1061{
1062 if (forbidden_pages_map)
1063 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1064}
1065
1066/**
ef96f639
RW
1067 * mark_nosave_pages - Mark pages that should not be saved.
1068 * @bm: Memory bitmap.
1069 *
1070 * Set the bits in @bm that correspond to the page frames the contents of which
1071 * should not be saved.
74dfd666 1072 */
74dfd666
RW
1073static void mark_nosave_pages(struct memory_bitmap *bm)
1074{
1075 struct nosave_region *region;
1076
1077 if (list_empty(&nosave_regions))
1078 return;
1079
1080 list_for_each_entry(region, &nosave_regions, list) {
1081 unsigned long pfn;
1082
64ec72a1 1083 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
69f1d475
BH
1084 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1085 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1086 - 1);
74dfd666
RW
1087
1088 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1089 if (pfn_valid(pfn)) {
1090 /*
1091 * It is safe to ignore the result of
1092 * mem_bm_set_bit_check() here, since we won't
1093 * touch the PFNs for which the error is
1094 * returned anyway.
1095 */
1096 mem_bm_set_bit_check(bm, pfn);
1097 }
74dfd666
RW
1098 }
1099}
1100
1101/**
ef96f639
RW
1102 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1103 *
1104 * Create bitmaps needed for marking page frames that should not be saved and
1105 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1106 * only modified if everything goes well, because we don't want the bits to be
1107 * touched before both bitmaps are set up.
74dfd666 1108 */
74dfd666
RW
1109int create_basic_memory_bitmaps(void)
1110{
1111 struct memory_bitmap *bm1, *bm2;
1112 int error = 0;
1113
aab17289
RW
1114 if (forbidden_pages_map && free_pages_map)
1115 return 0;
1116 else
1117 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1118
0709db60 1119 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1120 if (!bm1)
1121 return -ENOMEM;
1122
0709db60 1123 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1124 if (error)
1125 goto Free_first_object;
1126
0709db60 1127 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1128 if (!bm2)
1129 goto Free_first_bitmap;
1130
0709db60 1131 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1132 if (error)
1133 goto Free_second_object;
1134
1135 forbidden_pages_map = bm1;
1136 free_pages_map = bm2;
1137 mark_nosave_pages(forbidden_pages_map);
1138
64ec72a1 1139 pr_debug("Basic memory bitmaps created\n");
74dfd666
RW
1140
1141 return 0;
1142
1143 Free_second_object:
1144 kfree(bm2);
1145 Free_first_bitmap:
480f0de6 1146 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
74dfd666
RW
1147 Free_first_object:
1148 kfree(bm1);
1149 return -ENOMEM;
1150}
1151
1152/**
ef96f639
RW
1153 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1154 *
1155 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1156 * auxiliary pointers are necessary so that the bitmaps themselves are not
1157 * referred to while they are being freed.
74dfd666 1158 */
74dfd666
RW
1159void free_basic_memory_bitmaps(void)
1160{
1161 struct memory_bitmap *bm1, *bm2;
1162
6a0c7cd3
RW
1163 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1164 return;
74dfd666
RW
1165
1166 bm1 = forbidden_pages_map;
1167 bm2 = free_pages_map;
1168 forbidden_pages_map = NULL;
1169 free_pages_map = NULL;
1170 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1171 kfree(bm1);
1172 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1173 kfree(bm2);
1174
64ec72a1 1175 pr_debug("Basic memory bitmaps freed\n");
74dfd666
RW
1176}
1177
03b6c9a3
VB
1178static void clear_or_poison_free_page(struct page *page)
1179{
1180 if (page_poisoning_enabled_static())
1181 __kernel_poison_pages(page, 1);
1182 else if (want_init_on_free())
1183 clear_highpage(page);
1184}
1185
1186void clear_or_poison_free_pages(void)
1ad1410f 1187{
1ad1410f
AA
1188 struct memory_bitmap *bm = free_pages_map;
1189 unsigned long pfn;
1190
1191 if (WARN_ON(!(free_pages_map)))
1192 return;
1193
03b6c9a3 1194 if (page_poisoning_enabled() || want_init_on_free()) {
18451f9f 1195 memory_bm_position_reset(bm);
1ad1410f 1196 pfn = memory_bm_next_pfn(bm);
18451f9f
AP
1197 while (pfn != BM_END_OF_MAP) {
1198 if (pfn_valid(pfn))
03b6c9a3 1199 clear_or_poison_free_page(pfn_to_page(pfn));
18451f9f
AP
1200
1201 pfn = memory_bm_next_pfn(bm);
1202 }
1203 memory_bm_position_reset(bm);
1204 pr_info("free pages cleared after restore\n");
1ad1410f 1205 }
1ad1410f
AA
1206}
1207
b788db79 1208/**
ef96f639
RW
1209 * snapshot_additional_pages - Estimate the number of extra pages needed.
1210 * @zone: Memory zone to carry out the computation for.
1211 *
1212 * Estimate the number of additional pages needed for setting up a hibernation
1213 * image data structures for @zone (usually, the returned value is greater than
1214 * the exact number).
b788db79 1215 */
b788db79
RW
1216unsigned int snapshot_additional_pages(struct zone *zone)
1217{
f469f02d 1218 unsigned int rtree, nodes;
b788db79 1219
f469f02d
JR
1220 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1221 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1222 LINKED_PAGE_DATA_SIZE);
1223 while (nodes > 1) {
1224 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1225 rtree += nodes;
1226 }
1227
9047eb62 1228 return 2 * rtree;
b788db79
RW
1229}
1230
8357376d
RW
1231#ifdef CONFIG_HIGHMEM
1232/**
ef96f639
RW
1233 * count_free_highmem_pages - Compute the total number of free highmem pages.
1234 *
1235 * The returned number is system-wide.
8357376d 1236 */
8357376d
RW
1237static unsigned int count_free_highmem_pages(void)
1238{
1239 struct zone *zone;
1240 unsigned int cnt = 0;
1241
ee99c71c
KM
1242 for_each_populated_zone(zone)
1243 if (is_highmem(zone))
d23ad423 1244 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1245
1246 return cnt;
1247}
1248
1249/**
ef96f639
RW
1250 * saveable_highmem_page - Check if a highmem page is saveable.
1251 *
1252 * Determine whether a highmem page should be included in a hibernation image.
8357376d 1253 *
ef96f639
RW
1254 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1255 * and it isn't part of a free chunk of pages.
8357376d 1256 */
846705de 1257static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1258{
1259 struct page *page;
1260
1261 if (!pfn_valid(pfn))
1262 return NULL;
1263
5b56db37
DH
1264 page = pfn_to_online_page(pfn);
1265 if (!page || page_zone(page) != zone)
846705de 1266 return NULL;
8357376d
RW
1267
1268 BUG_ON(!PageHighMem(page));
1269
abd02ac6
DH
1270 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1271 return NULL;
1272
1273 if (PageReserved(page) || PageOffline(page))
8357376d
RW
1274 return NULL;
1275
c6968e73
SG
1276 if (page_is_guard(page))
1277 return NULL;
1278
8357376d
RW
1279 return page;
1280}
1281
1282/**
ef96f639 1283 * count_highmem_pages - Compute the total number of saveable highmem pages.
8357376d 1284 */
fe419535 1285static unsigned int count_highmem_pages(void)
8357376d
RW
1286{
1287 struct zone *zone;
1288 unsigned int n = 0;
1289
98e73dc5 1290 for_each_populated_zone(zone) {
8357376d
RW
1291 unsigned long pfn, max_zone_pfn;
1292
1293 if (!is_highmem(zone))
1294 continue;
1295
1296 mark_free_pages(zone);
c33bc315 1297 max_zone_pfn = zone_end_pfn(zone);
8357376d 1298 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1299 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1300 n++;
1301 }
1302 return n;
1303}
1304#else
846705de
RW
1305static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1306{
1307 return NULL;
1308}
8357376d
RW
1309#endif /* CONFIG_HIGHMEM */
1310
25761b6e 1311/**
ef96f639
RW
1312 * saveable_page - Check if the given page is saveable.
1313 *
1314 * Determine whether a non-highmem page should be included in a hibernation
1315 * image.
25761b6e 1316 *
ef96f639
RW
1317 * We should save the page if it isn't Nosave, and is not in the range
1318 * of pages statically defined as 'unsaveable', and it isn't part of
1319 * a free chunk of pages.
25761b6e 1320 */
846705de 1321static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1322{
de491861 1323 struct page *page;
25761b6e
RW
1324
1325 if (!pfn_valid(pfn))
ae83c5ee 1326 return NULL;
25761b6e 1327
5b56db37
DH
1328 page = pfn_to_online_page(pfn);
1329 if (!page || page_zone(page) != zone)
846705de 1330 return NULL;
ae83c5ee 1331
8357376d
RW
1332 BUG_ON(PageHighMem(page));
1333
7be98234 1334 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1335 return NULL;
8357376d 1336
abd02ac6
DH
1337 if (PageOffline(page))
1338 return NULL;
1339
8a235efa
RW
1340 if (PageReserved(page)
1341 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1342 return NULL;
25761b6e 1343
c6968e73
SG
1344 if (page_is_guard(page))
1345 return NULL;
1346
ae83c5ee 1347 return page;
25761b6e
RW
1348}
1349
8357376d 1350/**
ef96f639 1351 * count_data_pages - Compute the total number of saveable non-highmem pages.
8357376d 1352 */
fe419535 1353static unsigned int count_data_pages(void)
25761b6e
RW
1354{
1355 struct zone *zone;
ae83c5ee 1356 unsigned long pfn, max_zone_pfn;
dc19d507 1357 unsigned int n = 0;
25761b6e 1358
98e73dc5 1359 for_each_populated_zone(zone) {
25761b6e
RW
1360 if (is_highmem(zone))
1361 continue;
8357376d 1362
25761b6e 1363 mark_free_pages(zone);
c33bc315 1364 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1365 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1366 if (saveable_page(zone, pfn))
8357376d 1367 n++;
25761b6e 1368 }
a0f49651 1369 return n;
25761b6e
RW
1370}
1371
ef96f639
RW
1372/*
1373 * This is needed, because copy_page and memcpy are not usable for copying
8357376d
RW
1374 * task structs.
1375 */
1376static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1377{
1378 int n;
1379
f623f0db
RW
1380 for (n = PAGE_SIZE / sizeof(long); n; n--)
1381 *dst++ = *src++;
1382}
1383
8a235efa 1384/**
ef96f639
RW
1385 * safe_copy_page - Copy a page in a safe way.
1386 *
1387 * Check if the page we are going to copy is marked as present in the kernel
d6332692
RE
1388 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1389 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1390 * always returns 'true'.
8a235efa
RW
1391 */
1392static void safe_copy_page(void *dst, struct page *s_page)
1393{
1394 if (kernel_page_present(s_page)) {
1395 do_copy_page(dst, page_address(s_page));
1396 } else {
2abf962a 1397 hibernate_map_page(s_page);
8a235efa 1398 do_copy_page(dst, page_address(s_page));
2abf962a 1399 hibernate_unmap_page(s_page);
8a235efa
RW
1400 }
1401}
1402
8357376d 1403#ifdef CONFIG_HIGHMEM
efd5a852 1404static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
8357376d
RW
1405{
1406 return is_highmem(zone) ?
846705de 1407 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1408}
1409
8a235efa 1410static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1411{
1412 struct page *s_page, *d_page;
1413 void *src, *dst;
1414
1415 s_page = pfn_to_page(src_pfn);
1416 d_page = pfn_to_page(dst_pfn);
1417 if (PageHighMem(s_page)) {
0de9a1e2
CW
1418 src = kmap_atomic(s_page);
1419 dst = kmap_atomic(d_page);
8357376d 1420 do_copy_page(dst, src);
0de9a1e2
CW
1421 kunmap_atomic(dst);
1422 kunmap_atomic(src);
8357376d 1423 } else {
8357376d 1424 if (PageHighMem(d_page)) {
ef96f639
RW
1425 /*
1426 * The page pointed to by src may contain some kernel
8357376d
RW
1427 * data modified by kmap_atomic()
1428 */
8a235efa 1429 safe_copy_page(buffer, s_page);
0de9a1e2 1430 dst = kmap_atomic(d_page);
3ecb01df 1431 copy_page(dst, buffer);
0de9a1e2 1432 kunmap_atomic(dst);
8357376d 1433 } else {
8a235efa 1434 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1435 }
1436 }
1437}
1438#else
846705de 1439#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1440
8a235efa 1441static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1442{
8a235efa
RW
1443 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1444 pfn_to_page(src_pfn));
8357376d
RW
1445}
1446#endif /* CONFIG_HIGHMEM */
1447
efd5a852
RW
1448static void copy_data_pages(struct memory_bitmap *copy_bm,
1449 struct memory_bitmap *orig_bm)
25761b6e
RW
1450{
1451 struct zone *zone;
b788db79 1452 unsigned long pfn;
25761b6e 1453
98e73dc5 1454 for_each_populated_zone(zone) {
b788db79
RW
1455 unsigned long max_zone_pfn;
1456
25761b6e 1457 mark_free_pages(zone);
c33bc315 1458 max_zone_pfn = zone_end_pfn(zone);
b788db79 1459 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1460 if (page_is_saveable(zone, pfn))
b788db79 1461 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1462 }
b788db79
RW
1463 memory_bm_position_reset(orig_bm);
1464 memory_bm_position_reset(copy_bm);
df7c4872 1465 for(;;) {
b788db79 1466 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1467 if (unlikely(pfn == BM_END_OF_MAP))
1468 break;
1469 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1470 }
25761b6e
RW
1471}
1472
8357376d
RW
1473/* Total number of image pages */
1474static unsigned int nr_copy_pages;
1475/* Number of pages needed for saving the original pfns of the image pages */
1476static unsigned int nr_meta_pages;
64a473cb
RW
1477/*
1478 * Numbers of normal and highmem page frames allocated for hibernation image
1479 * before suspending devices.
1480 */
0bae5fd3 1481static unsigned int alloc_normal, alloc_highmem;
64a473cb
RW
1482/*
1483 * Memory bitmap used for marking saveable pages (during hibernation) or
1484 * hibernation image pages (during restore)
1485 */
1486static struct memory_bitmap orig_bm;
1487/*
1488 * Memory bitmap used during hibernation for marking allocated page frames that
1489 * will contain copies of saveable pages. During restore it is initially used
1490 * for marking hibernation image pages, but then the set bits from it are
1491 * duplicated in @orig_bm and it is released. On highmem systems it is next
1492 * used for marking "safe" highmem pages, but it has to be reinitialized for
1493 * this purpose.
1494 */
1495static struct memory_bitmap copy_bm;
8357376d 1496
25761b6e 1497/**
ef96f639 1498 * swsusp_free - Free pages allocated for hibernation image.
cd560bb2 1499 *
6be2408a 1500 * Image pages are allocated before snapshot creation, so they need to be
ef96f639 1501 * released after resume.
25761b6e 1502 */
25761b6e
RW
1503void swsusp_free(void)
1504{
fdd64ed5 1505 unsigned long fb_pfn, fr_pfn;
6efde38f 1506
fdd64ed5
JR
1507 if (!forbidden_pages_map || !free_pages_map)
1508 goto out;
1509
1510 memory_bm_position_reset(forbidden_pages_map);
1511 memory_bm_position_reset(free_pages_map);
1512
1513loop:
1514 fr_pfn = memory_bm_next_pfn(free_pages_map);
1515 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1516
1517 /*
1518 * Find the next bit set in both bitmaps. This is guaranteed to
1519 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1520 */
1521 do {
1522 if (fb_pfn < fr_pfn)
1523 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1524 if (fr_pfn < fb_pfn)
1525 fr_pfn = memory_bm_next_pfn(free_pages_map);
1526 } while (fb_pfn != fr_pfn);
1527
1528 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1529 struct page *page = pfn_to_page(fr_pfn);
1530
1531 memory_bm_clear_current(forbidden_pages_map);
1532 memory_bm_clear_current(free_pages_map);
4c0b6c10 1533 hibernate_restore_unprotect_page(page_address(page));
fdd64ed5
JR
1534 __free_page(page);
1535 goto loop;
25761b6e 1536 }
fdd64ed5
JR
1537
1538out:
f577eb30
RW
1539 nr_copy_pages = 0;
1540 nr_meta_pages = 0;
75534b50 1541 restore_pblist = NULL;
6e1819d6 1542 buffer = NULL;
64a473cb
RW
1543 alloc_normal = 0;
1544 alloc_highmem = 0;
4c0b6c10 1545 hibernate_restore_protection_end();
25761b6e
RW
1546}
1547
4bb33435
RW
1548/* Helper functions used for the shrinking of memory. */
1549
1550#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1551
fe419535 1552/**
ef96f639 1553 * preallocate_image_pages - Allocate a number of pages for hibernation image.
4bb33435
RW
1554 * @nr_pages: Number of page frames to allocate.
1555 * @mask: GFP flags to use for the allocation.
fe419535 1556 *
4bb33435
RW
1557 * Return value: Number of page frames actually allocated
1558 */
1559static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1560{
1561 unsigned long nr_alloc = 0;
1562
1563 while (nr_pages > 0) {
64a473cb
RW
1564 struct page *page;
1565
1566 page = alloc_image_page(mask);
1567 if (!page)
4bb33435 1568 break;
64a473cb
RW
1569 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1570 if (PageHighMem(page))
1571 alloc_highmem++;
1572 else
1573 alloc_normal++;
4bb33435
RW
1574 nr_pages--;
1575 nr_alloc++;
1576 }
1577
1578 return nr_alloc;
1579}
1580
6715045d
RW
1581static unsigned long preallocate_image_memory(unsigned long nr_pages,
1582 unsigned long avail_normal)
4bb33435 1583{
6715045d
RW
1584 unsigned long alloc;
1585
1586 if (avail_normal <= alloc_normal)
1587 return 0;
1588
1589 alloc = avail_normal - alloc_normal;
1590 if (nr_pages < alloc)
1591 alloc = nr_pages;
1592
1593 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1594}
1595
1596#ifdef CONFIG_HIGHMEM
1597static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1598{
1599 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1600}
1601
1602/**
ef96f639 1603 * __fraction - Compute (an approximation of) x * (multiplier / base).
fe419535 1604 */
4bb33435
RW
1605static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1606{
809ed78a 1607 return div64_u64(x * multiplier, base);
4bb33435 1608}
fe419535 1609
4bb33435 1610static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1611 unsigned long highmem,
1612 unsigned long total)
fe419535 1613{
4bb33435
RW
1614 unsigned long alloc = __fraction(nr_pages, highmem, total);
1615
1616 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1617}
4bb33435
RW
1618#else /* CONFIG_HIGHMEM */
1619static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1620{
1621 return 0;
1622}
1623
1624static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1625 unsigned long highmem,
1626 unsigned long total)
4bb33435
RW
1627{
1628 return 0;
1629}
1630#endif /* CONFIG_HIGHMEM */
fe419535 1631
4bb33435 1632/**
ef96f639 1633 * free_unnecessary_pages - Release preallocated pages not needed for the image.
64a473cb 1634 */
a64fc82c 1635static unsigned long free_unnecessary_pages(void)
64a473cb 1636{
a64fc82c 1637 unsigned long save, to_free_normal, to_free_highmem, free;
64a473cb 1638
6715045d
RW
1639 save = count_data_pages();
1640 if (alloc_normal >= save) {
1641 to_free_normal = alloc_normal - save;
1642 save = 0;
1643 } else {
1644 to_free_normal = 0;
1645 save -= alloc_normal;
1646 }
1647 save += count_highmem_pages();
1648 if (alloc_highmem >= save) {
1649 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1650 } else {
1651 to_free_highmem = 0;
4d4cf23c
RW
1652 save -= alloc_highmem;
1653 if (to_free_normal > save)
1654 to_free_normal -= save;
1655 else
1656 to_free_normal = 0;
64a473cb 1657 }
a64fc82c 1658 free = to_free_normal + to_free_highmem;
64a473cb
RW
1659
1660 memory_bm_position_reset(&copy_bm);
1661
a9c9b442 1662 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1663 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1664 struct page *page = pfn_to_page(pfn);
1665
1666 if (PageHighMem(page)) {
1667 if (!to_free_highmem)
1668 continue;
1669 to_free_highmem--;
1670 alloc_highmem--;
1671 } else {
1672 if (!to_free_normal)
1673 continue;
1674 to_free_normal--;
1675 alloc_normal--;
1676 }
1677 memory_bm_clear_bit(&copy_bm, pfn);
1678 swsusp_unset_page_forbidden(page);
1679 swsusp_unset_page_free(page);
1680 __free_page(page);
1681 }
a64fc82c
WK
1682
1683 return free;
64a473cb
RW
1684}
1685
ef4aede3 1686/**
ef96f639 1687 * minimum_image_size - Estimate the minimum acceptable size of an image.
ef4aede3
RW
1688 * @saveable: Number of saveable pages in the system.
1689 *
1690 * We want to avoid attempting to free too much memory too hard, so estimate the
1691 * minimum acceptable size of a hibernation image to use as the lower limit for
1692 * preallocating memory.
1693 *
1694 * We assume that the minimum image size should be proportional to
1695 *
1696 * [number of saveable pages] - [number of pages that can be freed in theory]
1697 *
1698 * where the second term is the sum of (1) reclaimable slab pages, (2) active
bdbc98ab 1699 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
ef4aede3
RW
1700 */
1701static unsigned long minimum_image_size(unsigned long saveable)
1702{
1703 unsigned long size;
1704
d42f3245 1705 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
599d0c95
MG
1706 + global_node_page_state(NR_ACTIVE_ANON)
1707 + global_node_page_state(NR_INACTIVE_ANON)
1708 + global_node_page_state(NR_ACTIVE_FILE)
bdbc98ab 1709 + global_node_page_state(NR_INACTIVE_FILE);
ef4aede3
RW
1710
1711 return saveable <= size ? 0 : saveable - size;
1712}
1713
64a473cb 1714/**
ef96f639 1715 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
4bb33435
RW
1716 *
1717 * To create a hibernation image it is necessary to make a copy of every page
1718 * frame in use. We also need a number of page frames to be free during
1719 * hibernation for allocations made while saving the image and for device
1720 * drivers, in case they need to allocate memory from their hibernation
ddeb6487 1721 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
b0c609ab 1722 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
ddeb6487
RW
1723 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1724 * total number of available page frames and allocate at least
4bb33435 1725 *
6e5d7300 1726 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1727 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1728 *
1729 * of them, which corresponds to the maximum size of a hibernation image.
1730 *
1731 * If image_size is set below the number following from the above formula,
1732 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1733 * pages in the system is below the requested image size or the minimum
1734 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1735 */
64a473cb 1736int hibernate_preallocate_memory(void)
fe419535 1737{
fe419535 1738 struct zone *zone;
4bb33435 1739 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1740 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
db597605 1741 ktime_t start, stop;
64a473cb 1742 int error;
fe419535 1743
7a7b99bf 1744 pr_info("Preallocating image memory\n");
db597605 1745 start = ktime_get();
fe419535 1746
64a473cb 1747 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
7a7b99bf
LS
1748 if (error) {
1749 pr_err("Cannot allocate original bitmap\n");
64a473cb 1750 goto err_out;
7a7b99bf 1751 }
64a473cb
RW
1752
1753 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
7a7b99bf
LS
1754 if (error) {
1755 pr_err("Cannot allocate copy bitmap\n");
64a473cb 1756 goto err_out;
7a7b99bf 1757 }
64a473cb
RW
1758
1759 alloc_normal = 0;
1760 alloc_highmem = 0;
1761
4bb33435 1762 /* Count the number of saveable data pages. */
64a473cb 1763 save_highmem = count_highmem_pages();
4bb33435 1764 saveable = count_data_pages();
fe419535 1765
4bb33435
RW
1766 /*
1767 * Compute the total number of page frames we can use (count) and the
1768 * number of pages needed for image metadata (size).
1769 */
1770 count = saveable;
64a473cb
RW
1771 saveable += save_highmem;
1772 highmem = save_highmem;
4bb33435
RW
1773 size = 0;
1774 for_each_populated_zone(zone) {
1775 size += snapshot_additional_pages(zone);
1776 if (is_highmem(zone))
1777 highmem += zone_page_state(zone, NR_FREE_PAGES);
1778 else
1779 count += zone_page_state(zone, NR_FREE_PAGES);
1780 }
6715045d 1781 avail_normal = count;
4bb33435
RW
1782 count += highmem;
1783 count -= totalreserve_pages;
1784
1785 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1786 max_size = (count - (size + PAGES_FOR_IO)) / 2
1787 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1788 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1789 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1790 if (size > max_size)
1791 size = max_size;
1792 /*
266f1a25
RW
1793 * If the desired number of image pages is at least as large as the
1794 * current number of saveable pages in memory, allocate page frames for
1795 * the image and we're done.
4bb33435 1796 */
64a473cb
RW
1797 if (size >= saveable) {
1798 pages = preallocate_image_highmem(save_highmem);
6715045d 1799 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1800 goto out;
64a473cb 1801 }
4bb33435 1802
ef4aede3
RW
1803 /* Estimate the minimum size of the image. */
1804 pages = minimum_image_size(saveable);
6715045d
RW
1805 /*
1806 * To avoid excessive pressure on the normal zone, leave room in it to
1807 * accommodate an image of the minimum size (unless it's already too
1808 * small, in which case don't preallocate pages from it at all).
1809 */
1810 if (avail_normal > pages)
1811 avail_normal -= pages;
1812 else
1813 avail_normal = 0;
ef4aede3
RW
1814 if (size < pages)
1815 size = min_t(unsigned long, pages, max_size);
1816
4bb33435
RW
1817 /*
1818 * Let the memory management subsystem know that we're going to need a
1819 * large number of page frames to allocate and make it free some memory.
1820 * NOTE: If this is not done, performance will be hurt badly in some
1821 * test cases.
1822 */
1823 shrink_all_memory(saveable - size);
1824
1825 /*
1826 * The number of saveable pages in memory was too high, so apply some
1827 * pressure to decrease it. First, make room for the largest possible
1828 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1829 * of the image as much as indicated by 'size' using allocations from
1830 * highmem and non-highmem zones separately.
4bb33435
RW
1831 */
1832 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1833 alloc = count - max_size;
1834 if (alloc > pages_highmem)
1835 alloc -= pages_highmem;
1836 else
1837 alloc = 0;
6715045d
RW
1838 pages = preallocate_image_memory(alloc, avail_normal);
1839 if (pages < alloc) {
1840 /* We have exhausted non-highmem pages, try highmem. */
1841 alloc -= pages;
1842 pages += pages_highmem;
1843 pages_highmem = preallocate_image_highmem(alloc);
7a7b99bf
LS
1844 if (pages_highmem < alloc) {
1845 pr_err("Image allocation is %lu pages short\n",
1846 alloc - pages_highmem);
6715045d 1847 goto err_out;
7a7b99bf 1848 }
6715045d
RW
1849 pages += pages_highmem;
1850 /*
1851 * size is the desired number of saveable pages to leave in
1852 * memory, so try to preallocate (all memory - size) pages.
1853 */
1854 alloc = (count - pages) - size;
1855 pages += preallocate_image_highmem(alloc);
1856 } else {
1857 /*
1858 * There are approximately max_size saveable pages at this point
1859 * and we want to reduce this number down to size.
1860 */
1861 alloc = max_size - size;
1862 size = preallocate_highmem_fraction(alloc, highmem, count);
1863 pages_highmem += size;
1864 alloc -= size;
1865 size = preallocate_image_memory(alloc, avail_normal);
1866 pages_highmem += preallocate_image_highmem(alloc - size);
1867 pages += pages_highmem + size;
1868 }
4bb33435 1869
64a473cb
RW
1870 /*
1871 * We only need as many page frames for the image as there are saveable
1872 * pages in memory, but we have allocated more. Release the excessive
1873 * ones now.
1874 */
a64fc82c 1875 pages -= free_unnecessary_pages();
4bb33435
RW
1876
1877 out:
db597605 1878 stop = ktime_get();
5c0e9de0 1879 pr_info("Allocated %lu pages for snapshot\n", pages);
db597605 1880 swsusp_show_speed(start, stop, pages, "Allocated");
fe419535
RW
1881
1882 return 0;
64a473cb
RW
1883
1884 err_out:
64a473cb
RW
1885 swsusp_free();
1886 return -ENOMEM;
fe419535
RW
1887}
1888
8357376d
RW
1889#ifdef CONFIG_HIGHMEM
1890/**
ef96f639
RW
1891 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1892 *
1893 * Compute the number of non-highmem pages that will be necessary for creating
1894 * copies of highmem pages.
1895 */
8357376d
RW
1896static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1897{
64a473cb 1898 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1899
1900 if (free_highmem >= nr_highmem)
1901 nr_highmem = 0;
1902 else
1903 nr_highmem -= free_highmem;
1904
1905 return nr_highmem;
1906}
1907#else
efd5a852 1908static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
8357376d 1909#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1910
1911/**
ef96f639 1912 * enough_free_mem - Check if there is enough free memory for the image.
25761b6e 1913 */
8357376d 1914static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1915{
e5e2fa78 1916 struct zone *zone;
64a473cb 1917 unsigned int free = alloc_normal;
e5e2fa78 1918
98e73dc5 1919 for_each_populated_zone(zone)
8357376d 1920 if (!is_highmem(zone))
d23ad423 1921 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1922
8357376d 1923 nr_pages += count_pages_for_highmem(nr_highmem);
64ec72a1
JP
1924 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1925 nr_pages, PAGES_FOR_IO, free);
940864dd 1926
64a473cb 1927 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1928}
1929
8357376d
RW
1930#ifdef CONFIG_HIGHMEM
1931/**
ef96f639
RW
1932 * get_highmem_buffer - Allocate a buffer for highmem pages.
1933 *
1934 * If there are some highmem pages in the hibernation image, we may need a
1935 * buffer to copy them and/or load their data.
8357376d 1936 */
8357376d
RW
1937static inline int get_highmem_buffer(int safe_needed)
1938{
453f85d4 1939 buffer = get_image_page(GFP_ATOMIC, safe_needed);
8357376d
RW
1940 return buffer ? 0 : -ENOMEM;
1941}
1942
1943/**
467df4cf 1944 * alloc_highmem_pages - Allocate some highmem pages for the image.
ef96f639
RW
1945 *
1946 * Try to allocate as many pages as needed, but if the number of free highmem
1947 * pages is less than that, allocate them all.
8357376d 1948 */
efd5a852
RW
1949static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1950 unsigned int nr_highmem)
8357376d
RW
1951{
1952 unsigned int to_alloc = count_free_highmem_pages();
1953
1954 if (to_alloc > nr_highmem)
1955 to_alloc = nr_highmem;
1956
1957 nr_highmem -= to_alloc;
1958 while (to_alloc-- > 0) {
1959 struct page *page;
1960
d0164adc 1961 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
8357376d
RW
1962 memory_bm_set_bit(bm, page_to_pfn(page));
1963 }
1964 return nr_highmem;
1965}
1966#else
1967static inline int get_highmem_buffer(int safe_needed) { return 0; }
1968
efd5a852
RW
1969static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1970 unsigned int n) { return 0; }
8357376d
RW
1971#endif /* CONFIG_HIGHMEM */
1972
1973/**
ef96f639 1974 * swsusp_alloc - Allocate memory for hibernation image.
8357376d 1975 *
ef96f639
RW
1976 * We first try to allocate as many highmem pages as there are
1977 * saveable highmem pages in the system. If that fails, we allocate
1978 * non-highmem pages for the copies of the remaining highmem ones.
8357376d 1979 *
ef96f639
RW
1980 * In this approach it is likely that the copies of highmem pages will
1981 * also be located in the high memory, because of the way in which
1982 * copy_data_pages() works.
8357376d 1983 */
eba74c29 1984static int swsusp_alloc(struct memory_bitmap *copy_bm,
efd5a852 1985 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1986{
8357376d 1987 if (nr_highmem > 0) {
2e725a06 1988 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1989 goto err_out;
1990 if (nr_highmem > alloc_highmem) {
1991 nr_highmem -= alloc_highmem;
1992 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1993 }
8357376d 1994 }
64a473cb
RW
1995 if (nr_pages > alloc_normal) {
1996 nr_pages -= alloc_normal;
1997 while (nr_pages-- > 0) {
1998 struct page *page;
1999
453f85d4 2000 page = alloc_image_page(GFP_ATOMIC);
64a473cb
RW
2001 if (!page)
2002 goto err_out;
2003 memory_bm_set_bit(copy_bm, page_to_pfn(page));
2004 }
25761b6e 2005 }
64a473cb 2006
b788db79 2007 return 0;
25761b6e 2008
64a473cb 2009 err_out:
b788db79 2010 swsusp_free();
2e725a06 2011 return -ENOMEM;
25761b6e
RW
2012}
2013
722a9f92 2014asmlinkage __visible int swsusp_save(void)
25761b6e 2015{
8357376d 2016 unsigned int nr_pages, nr_highmem;
25761b6e 2017
7a7b99bf 2018 pr_info("Creating image:\n");
25761b6e 2019
9f8f2172 2020 drain_local_pages(NULL);
a0f49651 2021 nr_pages = count_data_pages();
8357376d 2022 nr_highmem = count_highmem_pages();
64ec72a1 2023 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 2024
8357376d 2025 if (!enough_free_mem(nr_pages, nr_highmem)) {
64ec72a1 2026 pr_err("Not enough free memory\n");
25761b6e
RW
2027 return -ENOMEM;
2028 }
2029
eba74c29 2030 if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
64ec72a1 2031 pr_err("Memory allocation failed\n");
a0f49651 2032 return -ENOMEM;
8357376d 2033 }
25761b6e 2034
ef96f639
RW
2035 /*
2036 * During allocating of suspend pagedir, new cold pages may appear.
25761b6e
RW
2037 * Kill them.
2038 */
9f8f2172 2039 drain_local_pages(NULL);
b788db79 2040 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
2041
2042 /*
2043 * End of critical section. From now on, we can write to memory,
2044 * but we should not touch disk. This specially means we must _not_
2045 * touch swap space! Except we must write out our image of course.
2046 */
2047
8357376d 2048 nr_pages += nr_highmem;
a0f49651 2049 nr_copy_pages = nr_pages;
8357376d 2050 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 2051
7a7b99bf 2052 pr_info("Image created (%d pages copied)\n", nr_pages);
8357376d 2053
25761b6e
RW
2054 return 0;
2055}
f577eb30 2056
d307c4a8
RW
2057#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2058static int init_header_complete(struct swsusp_info *info)
f577eb30 2059{
d307c4a8 2060 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 2061 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
2062 return 0;
2063}
2064
02d7f400 2065static const char *check_image_kernel(struct swsusp_info *info)
d307c4a8
RW
2066{
2067 if (info->version_code != LINUX_VERSION_CODE)
2068 return "kernel version";
2069 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2070 return "system type";
2071 if (strcmp(info->uts.release,init_utsname()->release))
2072 return "kernel release";
2073 if (strcmp(info->uts.version,init_utsname()->version))
2074 return "version";
2075 if (strcmp(info->uts.machine,init_utsname()->machine))
2076 return "machine";
2077 return NULL;
2078}
2079#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2080
af508b34
RW
2081unsigned long snapshot_get_image_size(void)
2082{
2083 return nr_copy_pages + nr_meta_pages + 1;
2084}
2085
d307c4a8
RW
2086static int init_header(struct swsusp_info *info)
2087{
2088 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 2089 info->num_physpages = get_num_physpages();
f577eb30 2090 info->image_pages = nr_copy_pages;
af508b34 2091 info->pages = snapshot_get_image_size();
6e1819d6
RW
2092 info->size = info->pages;
2093 info->size <<= PAGE_SHIFT;
d307c4a8 2094 return init_header_complete(info);
f577eb30
RW
2095}
2096
2097/**
ef96f639
RW
2098 * pack_pfns - Prepare PFNs for saving.
2099 * @bm: Memory bitmap.
2100 * @buf: Memory buffer to store the PFNs in.
2101 *
2102 * PFNs corresponding to set bits in @bm are stored in the area of memory
2103 * pointed to by @buf (1 page at a time).
f577eb30 2104 */
efd5a852 2105static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2106{
2107 int j;
2108
b788db79 2109 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
2110 buf[j] = memory_bm_next_pfn(bm);
2111 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 2112 break;
f577eb30 2113 }
f577eb30
RW
2114}
2115
2116/**
ef96f639
RW
2117 * snapshot_read_next - Get the address to read the next image page from.
2118 * @handle: Snapshot handle to be used for the reading.
f577eb30 2119 *
ef96f639
RW
2120 * On the first call, @handle should point to a zeroed snapshot_handle
2121 * structure. The structure gets populated then and a pointer to it should be
2122 * passed to this function every next time.
f577eb30 2123 *
ef96f639
RW
2124 * On success, the function returns a positive number. Then, the caller
2125 * is allowed to read up to the returned number of bytes from the memory
2126 * location computed by the data_of() macro.
f577eb30 2127 *
ef96f639
RW
2128 * The function returns 0 to indicate the end of the data stream condition,
2129 * and negative numbers are returned on errors. If that happens, the structure
2130 * pointed to by @handle is not updated and should not be used any more.
f577eb30 2131 */
d3c1b24c 2132int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2133{
fb13a28b 2134 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2135 return 0;
b788db79 2136
f577eb30
RW
2137 if (!buffer) {
2138 /* This makes the buffer be freed by swsusp_free() */
8357376d 2139 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2140 if (!buffer)
2141 return -ENOMEM;
2142 }
d3c1b24c 2143 if (!handle->cur) {
d307c4a8
RW
2144 int error;
2145
2146 error = init_header((struct swsusp_info *)buffer);
2147 if (error)
2148 return error;
f577eb30 2149 handle->buffer = buffer;
b788db79
RW
2150 memory_bm_position_reset(&orig_bm);
2151 memory_bm_position_reset(&copy_bm);
d3c1b24c 2152 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2153 clear_page(buffer);
d3c1b24c
JS
2154 pack_pfns(buffer, &orig_bm);
2155 } else {
2156 struct page *page;
b788db79 2157
d3c1b24c
JS
2158 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2159 if (PageHighMem(page)) {
ef96f639
RW
2160 /*
2161 * Highmem pages are copied to the buffer,
d3c1b24c
JS
2162 * because we can't return with a kmapped
2163 * highmem page (we may not be called again).
2164 */
2165 void *kaddr;
8357376d 2166
0de9a1e2 2167 kaddr = kmap_atomic(page);
3ecb01df 2168 copy_page(buffer, kaddr);
0de9a1e2 2169 kunmap_atomic(kaddr);
d3c1b24c
JS
2170 handle->buffer = buffer;
2171 } else {
2172 handle->buffer = page_address(page);
f577eb30 2173 }
f577eb30 2174 }
d3c1b24c
JS
2175 handle->cur++;
2176 return PAGE_SIZE;
f577eb30
RW
2177}
2178
6dbecfd3
RW
2179static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2180 struct memory_bitmap *src)
2181{
2182 unsigned long pfn;
2183
2184 memory_bm_position_reset(src);
2185 pfn = memory_bm_next_pfn(src);
2186 while (pfn != BM_END_OF_MAP) {
2187 memory_bm_set_bit(dst, pfn);
2188 pfn = memory_bm_next_pfn(src);
2189 }
2190}
2191
f577eb30 2192/**
ef96f639
RW
2193 * mark_unsafe_pages - Mark pages that were used before hibernation.
2194 *
2195 * Mark the pages that cannot be used for storing the image during restoration,
2196 * because they conflict with the pages that had been used before hibernation.
f577eb30 2197 */
6dbecfd3 2198static void mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30 2199{
6dbecfd3 2200 unsigned long pfn;
f577eb30 2201
6dbecfd3
RW
2202 /* Clear the "free"/"unsafe" bit for all PFNs */
2203 memory_bm_position_reset(free_pages_map);
2204 pfn = memory_bm_next_pfn(free_pages_map);
2205 while (pfn != BM_END_OF_MAP) {
2206 memory_bm_clear_current(free_pages_map);
2207 pfn = memory_bm_next_pfn(free_pages_map);
f577eb30
RW
2208 }
2209
6dbecfd3
RW
2210 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2211 duplicate_memory_bitmap(free_pages_map, bm);
f577eb30 2212
940864dd 2213 allocated_unsafe_pages = 0;
f577eb30
RW
2214}
2215
d307c4a8 2216static int check_header(struct swsusp_info *info)
f577eb30 2217{
02d7f400 2218 const char *reason;
f577eb30 2219
d307c4a8 2220 reason = check_image_kernel(info);
0ed5fd13 2221 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2222 reason = "memory size";
f577eb30 2223 if (reason) {
64ec72a1 2224 pr_err("Image mismatch: %s\n", reason);
f577eb30
RW
2225 return -EPERM;
2226 }
2227 return 0;
2228}
2229
2230/**
467df4cf 2231 * load_header - Check the image header and copy the data from it.
f577eb30 2232 */
efd5a852 2233static int load_header(struct swsusp_info *info)
f577eb30
RW
2234{
2235 int error;
f577eb30 2236
940864dd 2237 restore_pblist = NULL;
f577eb30
RW
2238 error = check_header(info);
2239 if (!error) {
f577eb30
RW
2240 nr_copy_pages = info->image_pages;
2241 nr_meta_pages = info->pages - info->image_pages - 1;
2242 }
2243 return error;
2244}
2245
2246/**
ef96f639
RW
2247 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2248 * @bm: Memory bitmap.
2249 * @buf: Area of memory containing the PFNs.
2250 *
2251 * For each element of the array pointed to by @buf (1 page at a time), set the
2252 * corresponding bit in @bm.
f577eb30 2253 */
69643279 2254static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2255{
2256 int j;
2257
940864dd
RW
2258 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2259 if (unlikely(buf[j] == BM_END_OF_MAP))
2260 break;
2261
3363e0ad 2262 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) {
69643279 2263 memory_bm_set_bit(bm, buf[j]);
3363e0ad
XL
2264 } else {
2265 if (!pfn_valid(buf[j]))
2266 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2267 (unsigned long long)PFN_PHYS(buf[j]));
69643279 2268 return -EFAULT;
3363e0ad 2269 }
f577eb30 2270 }
69643279
RW
2271
2272 return 0;
f577eb30
RW
2273}
2274
8357376d 2275#ifdef CONFIG_HIGHMEM
ef96f639
RW
2276/*
2277 * struct highmem_pbe is used for creating the list of highmem pages that
8357376d
RW
2278 * should be restored atomically during the resume from disk, because the page
2279 * frames they have occupied before the suspend are in use.
2280 */
2281struct highmem_pbe {
2282 struct page *copy_page; /* data is here now */
2283 struct page *orig_page; /* data was here before the suspend */
2284 struct highmem_pbe *next;
2285};
2286
ef96f639
RW
2287/*
2288 * List of highmem PBEs needed for restoring the highmem pages that were
8357376d
RW
2289 * allocated before the suspend and included in the suspend image, but have
2290 * also been allocated by the "resume" kernel, so their contents cannot be
2291 * written directly to their "original" page frames.
2292 */
2293static struct highmem_pbe *highmem_pblist;
2294
2295/**
ef96f639
RW
2296 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2297 * @bm: Memory bitmap.
2298 *
2299 * The bits in @bm that correspond to image pages are assumed to be set.
8357376d 2300 */
8357376d
RW
2301static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2302{
2303 unsigned long pfn;
2304 unsigned int cnt = 0;
2305
2306 memory_bm_position_reset(bm);
2307 pfn = memory_bm_next_pfn(bm);
2308 while (pfn != BM_END_OF_MAP) {
2309 if (PageHighMem(pfn_to_page(pfn)))
2310 cnt++;
2311
2312 pfn = memory_bm_next_pfn(bm);
2313 }
2314 return cnt;
2315}
2316
8357376d
RW
2317static unsigned int safe_highmem_pages;
2318
2319static struct memory_bitmap *safe_highmem_bm;
2320
ef96f639
RW
2321/**
2322 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2323 * @bm: Pointer to an uninitialized memory bitmap structure.
2324 * @nr_highmem_p: Pointer to the number of highmem image pages.
2325 *
2326 * Try to allocate as many highmem pages as there are highmem image pages
2327 * (@nr_highmem_p points to the variable containing the number of highmem image
2328 * pages). The pages that are "safe" (ie. will not be overwritten when the
2329 * hibernation image is restored entirely) have the corresponding bits set in
6be2408a 2330 * @bm (it must be uninitialized).
ef96f639
RW
2331 *
2332 * NOTE: This function should not be called if there are no highmem image pages.
2333 */
efd5a852
RW
2334static int prepare_highmem_image(struct memory_bitmap *bm,
2335 unsigned int *nr_highmem_p)
8357376d
RW
2336{
2337 unsigned int to_alloc;
2338
2339 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2340 return -ENOMEM;
2341
2342 if (get_highmem_buffer(PG_SAFE))
2343 return -ENOMEM;
2344
2345 to_alloc = count_free_highmem_pages();
2346 if (to_alloc > *nr_highmem_p)
2347 to_alloc = *nr_highmem_p;
2348 else
2349 *nr_highmem_p = to_alloc;
2350
2351 safe_highmem_pages = 0;
2352 while (to_alloc-- > 0) {
2353 struct page *page;
2354
2355 page = alloc_page(__GFP_HIGHMEM);
7be98234 2356 if (!swsusp_page_is_free(page)) {
8357376d
RW
2357 /* The page is "safe", set its bit the bitmap */
2358 memory_bm_set_bit(bm, page_to_pfn(page));
2359 safe_highmem_pages++;
2360 }
2361 /* Mark the page as allocated */
7be98234
RW
2362 swsusp_set_page_forbidden(page);
2363 swsusp_set_page_free(page);
8357376d
RW
2364 }
2365 memory_bm_position_reset(bm);
2366 safe_highmem_bm = bm;
2367 return 0;
2368}
2369
ef96f639
RW
2370static struct page *last_highmem_page;
2371
8357376d 2372/**
ef96f639
RW
2373 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2374 *
2375 * For a given highmem image page get a buffer that suspend_write_next() should
2376 * return to its caller to write to.
8357376d 2377 *
ef96f639
RW
2378 * If the page is to be saved to its "original" page frame or a copy of
2379 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2380 * the copy of the page is to be made in normal memory, so the address of
2381 * the copy is returned.
8357376d 2382 *
ef96f639
RW
2383 * If @buffer is returned, the caller of suspend_write_next() will write
2384 * the page's contents to @buffer, so they will have to be copied to the
2385 * right location on the next call to suspend_write_next() and it is done
2386 * with the help of copy_last_highmem_page(). For this purpose, if
2387 * @buffer is returned, @last_highmem_page is set to the page to which
2388 * the data will have to be copied from @buffer.
8357376d 2389 */
efd5a852
RW
2390static void *get_highmem_page_buffer(struct page *page,
2391 struct chain_allocator *ca)
8357376d
RW
2392{
2393 struct highmem_pbe *pbe;
2394 void *kaddr;
2395
7be98234 2396 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
ef96f639
RW
2397 /*
2398 * We have allocated the "original" page frame and we can
8357376d
RW
2399 * use it directly to store the loaded page.
2400 */
2401 last_highmem_page = page;
2402 return buffer;
2403 }
ef96f639
RW
2404 /*
2405 * The "original" page frame has not been allocated and we have to
8357376d
RW
2406 * use a "safe" page frame to store the loaded page.
2407 */
2408 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2409 if (!pbe) {
2410 swsusp_free();
69643279 2411 return ERR_PTR(-ENOMEM);
8357376d
RW
2412 }
2413 pbe->orig_page = page;
2414 if (safe_highmem_pages > 0) {
2415 struct page *tmp;
2416
2417 /* Copy of the page will be stored in high memory */
2418 kaddr = buffer;
2419 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2420 safe_highmem_pages--;
2421 last_highmem_page = tmp;
2422 pbe->copy_page = tmp;
2423 } else {
2424 /* Copy of the page will be stored in normal memory */
2425 kaddr = safe_pages_list;
2426 safe_pages_list = safe_pages_list->next;
2427 pbe->copy_page = virt_to_page(kaddr);
2428 }
2429 pbe->next = highmem_pblist;
2430 highmem_pblist = pbe;
2431 return kaddr;
2432}
2433
2434/**
ef96f639
RW
2435 * copy_last_highmem_page - Copy most the most recent highmem image page.
2436 *
2437 * Copy the contents of a highmem image from @buffer, where the caller of
2438 * snapshot_write_next() has stored them, to the right location represented by
2439 * @last_highmem_page .
8357376d 2440 */
8357376d
RW
2441static void copy_last_highmem_page(void)
2442{
2443 if (last_highmem_page) {
2444 void *dst;
2445
0de9a1e2 2446 dst = kmap_atomic(last_highmem_page);
3ecb01df 2447 copy_page(dst, buffer);
0de9a1e2 2448 kunmap_atomic(dst);
8357376d
RW
2449 last_highmem_page = NULL;
2450 }
2451}
2452
2453static inline int last_highmem_page_copied(void)
2454{
2455 return !last_highmem_page;
2456}
2457
2458static inline void free_highmem_data(void)
2459{
2460 if (safe_highmem_bm)
2461 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2462
2463 if (buffer)
2464 free_image_page(buffer, PG_UNSAFE_CLEAR);
2465}
2466#else
efd5a852 2467static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
8357376d 2468
efd5a852
RW
2469static inline int prepare_highmem_image(struct memory_bitmap *bm,
2470 unsigned int *nr_highmem_p) { return 0; }
8357376d 2471
efd5a852
RW
2472static inline void *get_highmem_page_buffer(struct page *page,
2473 struct chain_allocator *ca)
8357376d 2474{
69643279 2475 return ERR_PTR(-EINVAL);
8357376d
RW
2476}
2477
2478static inline void copy_last_highmem_page(void) {}
2479static inline int last_highmem_page_copied(void) { return 1; }
2480static inline void free_highmem_data(void) {}
2481#endif /* CONFIG_HIGHMEM */
2482
ef96f639
RW
2483#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2484
f577eb30 2485/**
ef96f639 2486 * prepare_image - Make room for loading hibernation image.
6be2408a 2487 * @new_bm: Uninitialized memory bitmap structure.
ef96f639
RW
2488 * @bm: Memory bitmap with unsafe pages marked.
2489 *
2490 * Use @bm to mark the pages that will be overwritten in the process of
2491 * restoring the system memory state from the suspend image ("unsafe" pages)
2492 * and allocate memory for the image.
968808b8 2493 *
ef96f639
RW
2494 * The idea is to allocate a new memory bitmap first and then allocate
2495 * as many pages as needed for image data, but without specifying what those
2496 * pages will be used for just yet. Instead, we mark them all as allocated and
2497 * create a lists of "safe" pages to be used later. On systems with high
2498 * memory a list of "safe" highmem pages is created too.
f577eb30 2499 */
efd5a852 2500static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2501{
8357376d 2502 unsigned int nr_pages, nr_highmem;
9c744481 2503 struct linked_page *lp;
940864dd 2504 int error;
f577eb30 2505
8357376d
RW
2506 /* If there is no highmem, the buffer will not be necessary */
2507 free_image_page(buffer, PG_UNSAFE_CLEAR);
2508 buffer = NULL;
2509
2510 nr_highmem = count_highmem_image_pages(bm);
6dbecfd3 2511 mark_unsafe_pages(bm);
940864dd
RW
2512
2513 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2514 if (error)
2515 goto Free;
2516
2517 duplicate_memory_bitmap(new_bm, bm);
2518 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2519 if (nr_highmem > 0) {
2520 error = prepare_highmem_image(bm, &nr_highmem);
2521 if (error)
2522 goto Free;
2523 }
ef96f639
RW
2524 /*
2525 * Reserve some safe pages for potential later use.
940864dd
RW
2526 *
2527 * NOTE: This way we make sure there will be enough safe pages for the
2528 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2529 * nr_copy_pages cannot be greater than 50% of the memory anyway.
9c744481
RW
2530 *
2531 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
940864dd 2532 */
8357376d 2533 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2534 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2535 while (nr_pages > 0) {
8357376d 2536 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2537 if (!lp) {
f577eb30 2538 error = -ENOMEM;
940864dd
RW
2539 goto Free;
2540 }
9c744481
RW
2541 lp->next = safe_pages_list;
2542 safe_pages_list = lp;
940864dd 2543 nr_pages--;
f577eb30 2544 }
940864dd 2545 /* Preallocate memory for the image */
8357376d 2546 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2547 while (nr_pages > 0) {
2548 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2549 if (!lp) {
2550 error = -ENOMEM;
2551 goto Free;
2552 }
7be98234 2553 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2554 /* The page is "safe", add it to the list */
2555 lp->next = safe_pages_list;
2556 safe_pages_list = lp;
968808b8 2557 }
940864dd 2558 /* Mark the page as allocated */
7be98234
RW
2559 swsusp_set_page_forbidden(virt_to_page(lp));
2560 swsusp_set_page_free(virt_to_page(lp));
940864dd 2561 nr_pages--;
968808b8 2562 }
940864dd
RW
2563 return 0;
2564
59a49335 2565 Free:
940864dd 2566 swsusp_free();
f577eb30
RW
2567 return error;
2568}
2569
940864dd 2570/**
ef96f639
RW
2571 * get_buffer - Get the address to store the next image data page.
2572 *
2573 * Get the address that snapshot_write_next() should return to its caller to
2574 * write to.
940864dd 2575 */
940864dd 2576static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2577{
940864dd 2578 struct pbe *pbe;
69643279
RW
2579 struct page *page;
2580 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2581
69643279
RW
2582 if (pfn == BM_END_OF_MAP)
2583 return ERR_PTR(-EFAULT);
2584
2585 page = pfn_to_page(pfn);
8357376d
RW
2586 if (PageHighMem(page))
2587 return get_highmem_page_buffer(page, ca);
2588
7be98234 2589 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
ef96f639
RW
2590 /*
2591 * We have allocated the "original" page frame and we can
940864dd 2592 * use it directly to store the loaded page.
968808b8 2593 */
940864dd
RW
2594 return page_address(page);
2595
ef96f639
RW
2596 /*
2597 * The "original" page frame has not been allocated and we have to
940864dd 2598 * use a "safe" page frame to store the loaded page.
968808b8 2599 */
940864dd
RW
2600 pbe = chain_alloc(ca, sizeof(struct pbe));
2601 if (!pbe) {
2602 swsusp_free();
69643279 2603 return ERR_PTR(-ENOMEM);
940864dd 2604 }
8357376d
RW
2605 pbe->orig_address = page_address(page);
2606 pbe->address = safe_pages_list;
940864dd
RW
2607 safe_pages_list = safe_pages_list->next;
2608 pbe->next = restore_pblist;
2609 restore_pblist = pbe;
8357376d 2610 return pbe->address;
968808b8
RW
2611}
2612
f577eb30 2613/**
ef96f639
RW
2614 * snapshot_write_next - Get the address to store the next image page.
2615 * @handle: Snapshot handle structure to guide the writing.
f577eb30 2616 *
ef96f639
RW
2617 * On the first call, @handle should point to a zeroed snapshot_handle
2618 * structure. The structure gets populated then and a pointer to it should be
2619 * passed to this function every next time.
f577eb30 2620 *
ef96f639
RW
2621 * On success, the function returns a positive number. Then, the caller
2622 * is allowed to write up to the returned number of bytes to the memory
2623 * location computed by the data_of() macro.
f577eb30 2624 *
ef96f639
RW
2625 * The function returns 0 to indicate the "end of file" condition. Negative
2626 * numbers are returned on errors, in which cases the structure pointed to by
2627 * @handle is not updated and should not be used any more.
f577eb30 2628 */
d3c1b24c 2629int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2630{
940864dd 2631 static struct chain_allocator ca;
f577eb30
RW
2632 int error = 0;
2633
940864dd 2634 /* Check if we have already loaded the entire image */
d3c1b24c 2635 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2636 return 0;
940864dd 2637
d3c1b24c
JS
2638 handle->sync_read = 1;
2639
2640 if (!handle->cur) {
8357376d
RW
2641 if (!buffer)
2642 /* This makes the buffer be freed by swsusp_free() */
2643 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2644
f577eb30
RW
2645 if (!buffer)
2646 return -ENOMEM;
8357376d 2647
f577eb30 2648 handle->buffer = buffer;
d3c1b24c
JS
2649 } else if (handle->cur == 1) {
2650 error = load_header(buffer);
2651 if (error)
2652 return error;
940864dd 2653
9c744481
RW
2654 safe_pages_list = NULL;
2655
d3c1b24c
JS
2656 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2657 if (error)
2658 return error;
2659
4c0b6c10 2660 hibernate_restore_protection_begin();
d3c1b24c
JS
2661 } else if (handle->cur <= nr_meta_pages + 1) {
2662 error = unpack_orig_pfns(buffer, &copy_bm);
2663 if (error)
2664 return error;
940864dd 2665
d3c1b24c
JS
2666 if (handle->cur == nr_meta_pages + 1) {
2667 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2668 if (error)
2669 return error;
2670
d3c1b24c
JS
2671 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2672 memory_bm_position_reset(&orig_bm);
2673 restore_pblist = NULL;
940864dd 2674 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2675 handle->sync_read = 0;
69643279
RW
2676 if (IS_ERR(handle->buffer))
2677 return PTR_ERR(handle->buffer);
f577eb30 2678 }
f577eb30 2679 } else {
d3c1b24c 2680 copy_last_highmem_page();
4c0b6c10 2681 hibernate_restore_protect_page(handle->buffer);
d3c1b24c
JS
2682 handle->buffer = get_buffer(&orig_bm, &ca);
2683 if (IS_ERR(handle->buffer))
2684 return PTR_ERR(handle->buffer);
2685 if (handle->buffer != buffer)
2686 handle->sync_read = 0;
f577eb30 2687 }
d3c1b24c
JS
2688 handle->cur++;
2689 return PAGE_SIZE;
f577eb30
RW
2690}
2691
8357376d 2692/**
ef96f639
RW
2693 * snapshot_write_finalize - Complete the loading of a hibernation image.
2694 *
2695 * Must be called after the last call to snapshot_write_next() in case the last
2696 * page in the image happens to be a highmem page and its contents should be
2697 * stored in highmem. Additionally, it recycles bitmap memory that's not
2698 * necessary any more.
8357376d 2699 */
8357376d
RW
2700void snapshot_write_finalize(struct snapshot_handle *handle)
2701{
2702 copy_last_highmem_page();
4c0b6c10 2703 hibernate_restore_protect_page(handle->buffer);
307c5971 2704 /* Do that only if we have loaded the image entirely */
d3c1b24c 2705 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
307c5971 2706 memory_bm_recycle(&orig_bm);
8357376d
RW
2707 free_highmem_data();
2708 }
2709}
2710
f577eb30
RW
2711int snapshot_image_loaded(struct snapshot_handle *handle)
2712{
8357376d 2713 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2714 handle->cur <= nr_meta_pages + nr_copy_pages);
2715}
2716
8357376d
RW
2717#ifdef CONFIG_HIGHMEM
2718/* Assumes that @buf is ready and points to a "safe" page */
efd5a852
RW
2719static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2720 void *buf)
940864dd 2721{
8357376d
RW
2722 void *kaddr1, *kaddr2;
2723
0de9a1e2
CW
2724 kaddr1 = kmap_atomic(p1);
2725 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2726 copy_page(buf, kaddr1);
2727 copy_page(kaddr1, kaddr2);
2728 copy_page(kaddr2, buf);
0de9a1e2
CW
2729 kunmap_atomic(kaddr2);
2730 kunmap_atomic(kaddr1);
8357376d
RW
2731}
2732
2733/**
ef96f639
RW
2734 * restore_highmem - Put highmem image pages into their original locations.
2735 *
2736 * For each highmem page that was in use before hibernation and is included in
2737 * the image, and also has been allocated by the "restore" kernel, swap its
2738 * current contents with the previous (ie. "before hibernation") ones.
8357376d 2739 *
ef96f639
RW
2740 * If the restore eventually fails, we can call this function once again and
2741 * restore the highmem state as seen by the restore kernel.
8357376d 2742 */
8357376d
RW
2743int restore_highmem(void)
2744{
2745 struct highmem_pbe *pbe = highmem_pblist;
2746 void *buf;
2747
2748 if (!pbe)
2749 return 0;
2750
2751 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2752 if (!buf)
2753 return -ENOMEM;
2754
2755 while (pbe) {
2756 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2757 pbe = pbe->next;
2758 }
2759 free_image_page(buf, PG_UNSAFE_CLEAR);
2760 return 0;
f577eb30 2761}
8357376d 2762#endif /* CONFIG_HIGHMEM */