Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
52f5684c 30#include <linux/compiler.h>
25761b6e
RW
31
32#include <asm/uaccess.h>
33#include <asm/mmu_context.h>
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <asm/io.h>
37
25761b6e
RW
38#include "power.h"
39
74dfd666
RW
40static int swsusp_page_is_free(struct page *);
41static void swsusp_set_page_forbidden(struct page *);
42static void swsusp_unset_page_forbidden(struct page *);
43
ddeb6487
RW
44/*
45 * Number of bytes to reserve for memory allocations made by device drivers
46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47 * cause image creation to fail (tunable via /sys/power/reserved_size).
48 */
49unsigned long reserved_size;
50
51void __init hibernate_reserved_size_init(void)
52{
53 reserved_size = SPARE_PAGES * PAGE_SIZE;
54}
55
fe419535
RW
56/*
57 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
58 * When it is set to N, swsusp will do its best to ensure the image
59 * size will not exceed N bytes, but if that is impossible, it will
60 * try to create the smallest image possible.
fe419535 61 */
ac5c24ec
RW
62unsigned long image_size;
63
64void __init hibernate_image_size_init(void)
65{
1c1be3a9 66 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 67}
fe419535 68
8357376d
RW
69/* List of PBEs needed for restoring the pages that were allocated before
70 * the suspend and included in the suspend image, but have also been
71 * allocated by the "resume" kernel, so their contents cannot be written
72 * directly to their "original" page frames.
73 */
75534b50
RW
74struct pbe *restore_pblist;
75
8357376d 76/* Pointer to an auxiliary buffer (1 page) */
940864dd 77static void *buffer;
7088a5c0 78
f6143aa6
RW
79/**
80 * @safe_needed - on resume, for storing the PBE list and the image,
81 * we can only use memory pages that do not conflict with the pages
8357376d
RW
82 * used before suspend. The unsafe pages have PageNosaveFree set
83 * and we count them using unsafe_pages.
f6143aa6 84 *
8357376d
RW
85 * Each allocated image page is marked as PageNosave and PageNosaveFree
86 * so that swsusp_free() can release it.
f6143aa6
RW
87 */
88
0bcd888d
RW
89#define PG_ANY 0
90#define PG_SAFE 1
91#define PG_UNSAFE_CLEAR 1
92#define PG_UNSAFE_KEEP 0
93
940864dd 94static unsigned int allocated_unsafe_pages;
f6143aa6 95
8357376d 96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
97{
98 void *res;
99
100 res = (void *)get_zeroed_page(gfp_mask);
101 if (safe_needed)
7be98234 102 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 103 /* The page is unsafe, mark it for swsusp_free() */
7be98234 104 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 105 allocated_unsafe_pages++;
f6143aa6
RW
106 res = (void *)get_zeroed_page(gfp_mask);
107 }
108 if (res) {
7be98234
RW
109 swsusp_set_page_forbidden(virt_to_page(res));
110 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
111 }
112 return res;
113}
114
115unsigned long get_safe_page(gfp_t gfp_mask)
116{
8357376d
RW
117 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118}
119
5b6d15de
RW
120static struct page *alloc_image_page(gfp_t gfp_mask)
121{
8357376d
RW
122 struct page *page;
123
124 page = alloc_page(gfp_mask);
125 if (page) {
7be98234
RW
126 swsusp_set_page_forbidden(page);
127 swsusp_set_page_free(page);
8357376d
RW
128 }
129 return page;
f6143aa6
RW
130}
131
132/**
133 * free_image_page - free page represented by @addr, allocated with
8357376d 134 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
135 */
136
137static inline void free_image_page(void *addr, int clear_nosave_free)
138{
8357376d
RW
139 struct page *page;
140
141 BUG_ON(!virt_addr_valid(addr));
142
143 page = virt_to_page(addr);
144
7be98234 145 swsusp_unset_page_forbidden(page);
f6143aa6 146 if (clear_nosave_free)
7be98234 147 swsusp_unset_page_free(page);
8357376d
RW
148
149 __free_page(page);
f6143aa6
RW
150}
151
b788db79
RW
152/* struct linked_page is used to build chains of pages */
153
154#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
155
156struct linked_page {
157 struct linked_page *next;
158 char data[LINKED_PAGE_DATA_SIZE];
52f5684c 159} __packed;
b788db79
RW
160
161static inline void
162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163{
164 while (list) {
165 struct linked_page *lp = list->next;
166
167 free_image_page(list, clear_page_nosave);
168 list = lp;
169 }
170}
171
172/**
173 * struct chain_allocator is used for allocating small objects out of
174 * a linked list of pages called 'the chain'.
175 *
176 * The chain grows each time when there is no room for a new object in
177 * the current page. The allocated objects cannot be freed individually.
178 * It is only possible to free them all at once, by freeing the entire
179 * chain.
180 *
181 * NOTE: The chain allocator may be inefficient if the allocated objects
182 * are not much smaller than PAGE_SIZE.
183 */
184
185struct chain_allocator {
186 struct linked_page *chain; /* the chain */
187 unsigned int used_space; /* total size of objects allocated out
188 * of the current page
189 */
190 gfp_t gfp_mask; /* mask for allocating pages */
191 int safe_needed; /* if set, only "safe" pages are allocated */
192};
193
194static void
195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196{
197 ca->chain = NULL;
198 ca->used_space = LINKED_PAGE_DATA_SIZE;
199 ca->gfp_mask = gfp_mask;
200 ca->safe_needed = safe_needed;
201}
202
203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204{
205 void *ret;
206
207 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 struct linked_page *lp;
209
8357376d 210 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
211 if (!lp)
212 return NULL;
213
214 lp->next = ca->chain;
215 ca->chain = lp;
216 ca->used_space = 0;
217 }
218 ret = ca->chain->data + ca->used_space;
219 ca->used_space += size;
220 return ret;
221}
222
b788db79
RW
223/**
224 * Data types related to memory bitmaps.
225 *
226 * Memory bitmap is a structure consiting of many linked lists of
227 * objects. The main list's elements are of type struct zone_bitmap
228 * and each of them corresonds to one zone. For each zone bitmap
229 * object there is a list of objects of type struct bm_block that
0d83304c 230 * represent each blocks of bitmap in which information is stored.
b788db79
RW
231 *
232 * struct memory_bitmap contains a pointer to the main list of zone
233 * bitmap objects, a struct bm_position used for browsing the bitmap,
234 * and a pointer to the list of pages used for allocating all of the
235 * zone bitmap objects and bitmap block objects.
236 *
237 * NOTE: It has to be possible to lay out the bitmap in memory
238 * using only allocations of order 0. Additionally, the bitmap is
239 * designed to work with arbitrary number of zones (this is over the
240 * top for now, but let's avoid making unnecessary assumptions ;-).
241 *
242 * struct zone_bitmap contains a pointer to a list of bitmap block
243 * objects and a pointer to the bitmap block object that has been
244 * most recently used for setting bits. Additionally, it contains the
245 * pfns that correspond to the start and end of the represented zone.
246 *
247 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
248 * information is stored (in the form of a block of bitmap)
249 * It also contains the pfns that correspond to the start and end of
250 * the represented memory area.
b788db79
RW
251 */
252
253#define BM_END_OF_MAP (~0UL)
254
8de03073 255#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
b788db79
RW
256
257struct bm_block {
846705de 258 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
259 unsigned long start_pfn; /* pfn represented by the first bit */
260 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 261 unsigned long *data; /* bitmap representing pages */
b788db79
RW
262};
263
0d83304c
AM
264static inline unsigned long bm_block_bits(struct bm_block *bb)
265{
266 return bb->end_pfn - bb->start_pfn;
267}
268
b788db79
RW
269/* strcut bm_position is used for browsing memory bitmaps */
270
271struct bm_position {
b788db79 272 struct bm_block *block;
b788db79
RW
273 int bit;
274};
275
276struct memory_bitmap {
846705de 277 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
278 struct linked_page *p_list; /* list of pages used to store zone
279 * bitmap objects and bitmap block
280 * objects
281 */
282 struct bm_position cur; /* most recently used bit position */
283};
284
285/* Functions that operate on memory bitmaps */
286
b788db79
RW
287static void memory_bm_position_reset(struct memory_bitmap *bm)
288{
846705de 289 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 290 bm->cur.bit = 0;
b788db79
RW
291}
292
293static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
294
295/**
296 * create_bm_block_list - create a list of block bitmap objects
8de03073 297 * @pages - number of pages to track
846705de
RW
298 * @list - list to put the allocated blocks into
299 * @ca - chain allocator to be used for allocating memory
b788db79 300 */
846705de
RW
301static int create_bm_block_list(unsigned long pages,
302 struct list_head *list,
303 struct chain_allocator *ca)
b788db79 304{
846705de 305 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
306
307 while (nr_blocks-- > 0) {
308 struct bm_block *bb;
309
310 bb = chain_alloc(ca, sizeof(struct bm_block));
311 if (!bb)
846705de
RW
312 return -ENOMEM;
313 list_add(&bb->hook, list);
b788db79 314 }
846705de
RW
315
316 return 0;
b788db79
RW
317}
318
846705de
RW
319struct mem_extent {
320 struct list_head hook;
321 unsigned long start;
322 unsigned long end;
323};
324
b788db79 325/**
846705de
RW
326 * free_mem_extents - free a list of memory extents
327 * @list - list of extents to empty
b788db79 328 */
846705de
RW
329static void free_mem_extents(struct list_head *list)
330{
331 struct mem_extent *ext, *aux;
b788db79 332
846705de
RW
333 list_for_each_entry_safe(ext, aux, list, hook) {
334 list_del(&ext->hook);
335 kfree(ext);
336 }
337}
338
339/**
340 * create_mem_extents - create a list of memory extents representing
341 * contiguous ranges of PFNs
342 * @list - list to put the extents into
343 * @gfp_mask - mask to use for memory allocations
344 */
345static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 346{
846705de 347 struct zone *zone;
b788db79 348
846705de 349 INIT_LIST_HEAD(list);
b788db79 350
ee99c71c 351 for_each_populated_zone(zone) {
846705de
RW
352 unsigned long zone_start, zone_end;
353 struct mem_extent *ext, *cur, *aux;
354
846705de 355 zone_start = zone->zone_start_pfn;
c33bc315 356 zone_end = zone_end_pfn(zone);
846705de
RW
357
358 list_for_each_entry(ext, list, hook)
359 if (zone_start <= ext->end)
360 break;
b788db79 361
846705de
RW
362 if (&ext->hook == list || zone_end < ext->start) {
363 /* New extent is necessary */
364 struct mem_extent *new_ext;
365
366 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
367 if (!new_ext) {
368 free_mem_extents(list);
369 return -ENOMEM;
370 }
371 new_ext->start = zone_start;
372 new_ext->end = zone_end;
373 list_add_tail(&new_ext->hook, &ext->hook);
374 continue;
375 }
376
377 /* Merge this zone's range of PFNs with the existing one */
378 if (zone_start < ext->start)
379 ext->start = zone_start;
380 if (zone_end > ext->end)
381 ext->end = zone_end;
382
383 /* More merging may be possible */
384 cur = ext;
385 list_for_each_entry_safe_continue(cur, aux, list, hook) {
386 if (zone_end < cur->start)
387 break;
388 if (zone_end < cur->end)
389 ext->end = cur->end;
390 list_del(&cur->hook);
391 kfree(cur);
392 }
b788db79 393 }
846705de
RW
394
395 return 0;
b788db79
RW
396}
397
398/**
399 * memory_bm_create - allocate memory for a memory bitmap
400 */
b788db79
RW
401static int
402memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
403{
404 struct chain_allocator ca;
846705de
RW
405 struct list_head mem_extents;
406 struct mem_extent *ext;
407 int error;
b788db79
RW
408
409 chain_init(&ca, gfp_mask, safe_needed);
846705de 410 INIT_LIST_HEAD(&bm->blocks);
b788db79 411
846705de
RW
412 error = create_mem_extents(&mem_extents, gfp_mask);
413 if (error)
414 return error;
b788db79 415
846705de
RW
416 list_for_each_entry(ext, &mem_extents, hook) {
417 struct bm_block *bb;
418 unsigned long pfn = ext->start;
419 unsigned long pages = ext->end - ext->start;
b788db79 420
846705de 421 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 422
846705de
RW
423 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
424 if (error)
425 goto Error;
b788db79 426
846705de
RW
427 list_for_each_entry_continue(bb, &bm->blocks, hook) {
428 bb->data = get_image_page(gfp_mask, safe_needed);
429 if (!bb->data) {
430 error = -ENOMEM;
431 goto Error;
432 }
b788db79
RW
433
434 bb->start_pfn = pfn;
846705de 435 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 436 pfn += BM_BITS_PER_BLOCK;
846705de 437 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
438 } else {
439 /* This is executed only once in the loop */
846705de 440 pfn += pages;
b788db79
RW
441 }
442 bb->end_pfn = pfn;
b788db79 443 }
b788db79 444 }
846705de 445
b788db79
RW
446 bm->p_list = ca.chain;
447 memory_bm_position_reset(bm);
846705de
RW
448 Exit:
449 free_mem_extents(&mem_extents);
450 return error;
b788db79 451
846705de 452 Error:
b788db79
RW
453 bm->p_list = ca.chain;
454 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 455 goto Exit;
b788db79
RW
456}
457
458/**
459 * memory_bm_free - free memory occupied by the memory bitmap @bm
460 */
b788db79
RW
461static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
462{
846705de 463 struct bm_block *bb;
b788db79 464
846705de
RW
465 list_for_each_entry(bb, &bm->blocks, hook)
466 if (bb->data)
467 free_image_page(bb->data, clear_nosave_free);
b788db79 468
b788db79 469 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
470
471 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
472}
473
474/**
74dfd666 475 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
476 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
477 * of @bm->cur_zone_bm are updated.
b788db79 478 */
a82f7119 479static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 480 void **addr, unsigned int *bit_nr)
b788db79 481{
b788db79
RW
482 struct bm_block *bb;
483
846705de
RW
484 /*
485 * Check if the pfn corresponds to the current bitmap block and find
486 * the block where it fits if this is not the case.
487 */
488 bb = bm->cur.block;
b788db79 489 if (pfn < bb->start_pfn)
846705de
RW
490 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
491 if (pfn >= bb->start_pfn)
492 break;
b788db79 493
846705de
RW
494 if (pfn >= bb->end_pfn)
495 list_for_each_entry_continue(bb, &bm->blocks, hook)
496 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
497 break;
74dfd666 498
846705de
RW
499 if (&bb->hook == &bm->blocks)
500 return -EFAULT;
501
502 /* The block has been found */
503 bm->cur.block = bb;
b788db79 504 pfn -= bb->start_pfn;
846705de 505 bm->cur.bit = pfn + 1;
0d83304c
AM
506 *bit_nr = pfn;
507 *addr = bb->data;
a82f7119 508 return 0;
74dfd666
RW
509}
510
511static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
512{
513 void *addr;
514 unsigned int bit;
a82f7119 515 int error;
74dfd666 516
a82f7119
RW
517 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
518 BUG_ON(error);
74dfd666
RW
519 set_bit(bit, addr);
520}
521
a82f7119
RW
522static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
523{
524 void *addr;
525 unsigned int bit;
526 int error;
527
528 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
529 if (!error)
530 set_bit(bit, addr);
531 return error;
532}
533
74dfd666
RW
534static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
535{
536 void *addr;
537 unsigned int bit;
a82f7119 538 int error;
74dfd666 539
a82f7119
RW
540 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
541 BUG_ON(error);
74dfd666
RW
542 clear_bit(bit, addr);
543}
544
545static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
546{
547 void *addr;
548 unsigned int bit;
a82f7119 549 int error;
74dfd666 550
a82f7119
RW
551 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
552 BUG_ON(error);
74dfd666 553 return test_bit(bit, addr);
b788db79
RW
554}
555
69643279
RW
556static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
557{
558 void *addr;
559 unsigned int bit;
560
561 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
562}
563
b788db79
RW
564/**
565 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
566 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
567 * returned.
568 *
569 * It is required to run memory_bm_position_reset() before the first call to
570 * this function.
571 */
572
573static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
574{
b788db79 575 struct bm_block *bb;
b788db79
RW
576 int bit;
577
846705de 578 bb = bm->cur.block;
b788db79 579 do {
846705de
RW
580 bit = bm->cur.bit;
581 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
582 if (bit < bm_block_bits(bb))
583 goto Return_pfn;
584
585 bb = list_entry(bb->hook.next, struct bm_block, hook);
586 bm->cur.block = bb;
587 bm->cur.bit = 0;
588 } while (&bb->hook != &bm->blocks);
589
b788db79
RW
590 memory_bm_position_reset(bm);
591 return BM_END_OF_MAP;
592
59a49335 593 Return_pfn:
0d83304c
AM
594 bm->cur.bit = bit + 1;
595 return bb->start_pfn + bit;
b788db79
RW
596}
597
74dfd666
RW
598/**
599 * This structure represents a range of page frames the contents of which
600 * should not be saved during the suspend.
601 */
602
603struct nosave_region {
604 struct list_head list;
605 unsigned long start_pfn;
606 unsigned long end_pfn;
607};
608
609static LIST_HEAD(nosave_regions);
610
611/**
612 * register_nosave_region - register a range of page frames the contents
613 * of which should not be saved during the suspend (to be used in the early
614 * initialization code)
615 */
616
617void __init
940d67f6
JB
618__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
619 int use_kmalloc)
74dfd666
RW
620{
621 struct nosave_region *region;
622
623 if (start_pfn >= end_pfn)
624 return;
625
626 if (!list_empty(&nosave_regions)) {
627 /* Try to extend the previous region (they should be sorted) */
628 region = list_entry(nosave_regions.prev,
629 struct nosave_region, list);
630 if (region->end_pfn == start_pfn) {
631 region->end_pfn = end_pfn;
632 goto Report;
633 }
634 }
940d67f6
JB
635 if (use_kmalloc) {
636 /* during init, this shouldn't fail */
637 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
638 BUG_ON(!region);
639 } else
640 /* This allocation cannot fail */
c2f69cda 641 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
74dfd666
RW
642 region->start_pfn = start_pfn;
643 region->end_pfn = end_pfn;
644 list_add_tail(&region->list, &nosave_regions);
645 Report:
cd38ca85
BH
646 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
647 (unsigned long long) start_pfn << PAGE_SHIFT,
648 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
649}
650
651/*
652 * Set bits in this map correspond to the page frames the contents of which
653 * should not be saved during the suspend.
654 */
655static struct memory_bitmap *forbidden_pages_map;
656
657/* Set bits in this map correspond to free page frames. */
658static struct memory_bitmap *free_pages_map;
659
660/*
661 * Each page frame allocated for creating the image is marked by setting the
662 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
663 */
664
665void swsusp_set_page_free(struct page *page)
666{
667 if (free_pages_map)
668 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
669}
670
671static int swsusp_page_is_free(struct page *page)
672{
673 return free_pages_map ?
674 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
675}
676
677void swsusp_unset_page_free(struct page *page)
678{
679 if (free_pages_map)
680 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
681}
682
683static void swsusp_set_page_forbidden(struct page *page)
684{
685 if (forbidden_pages_map)
686 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
687}
688
689int swsusp_page_is_forbidden(struct page *page)
690{
691 return forbidden_pages_map ?
692 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
693}
694
695static void swsusp_unset_page_forbidden(struct page *page)
696{
697 if (forbidden_pages_map)
698 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
699}
700
701/**
702 * mark_nosave_pages - set bits corresponding to the page frames the
703 * contents of which should not be saved in a given bitmap.
704 */
705
706static void mark_nosave_pages(struct memory_bitmap *bm)
707{
708 struct nosave_region *region;
709
710 if (list_empty(&nosave_regions))
711 return;
712
713 list_for_each_entry(region, &nosave_regions, list) {
714 unsigned long pfn;
715
69f1d475
BH
716 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
717 (unsigned long long) region->start_pfn << PAGE_SHIFT,
718 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
719 - 1);
74dfd666
RW
720
721 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
722 if (pfn_valid(pfn)) {
723 /*
724 * It is safe to ignore the result of
725 * mem_bm_set_bit_check() here, since we won't
726 * touch the PFNs for which the error is
727 * returned anyway.
728 */
729 mem_bm_set_bit_check(bm, pfn);
730 }
74dfd666
RW
731 }
732}
733
734/**
735 * create_basic_memory_bitmaps - create bitmaps needed for marking page
736 * frames that should not be saved and free page frames. The pointers
737 * forbidden_pages_map and free_pages_map are only modified if everything
738 * goes well, because we don't want the bits to be used before both bitmaps
739 * are set up.
740 */
741
742int create_basic_memory_bitmaps(void)
743{
744 struct memory_bitmap *bm1, *bm2;
745 int error = 0;
746
aab17289
RW
747 if (forbidden_pages_map && free_pages_map)
748 return 0;
749 else
750 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 751
0709db60 752 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
753 if (!bm1)
754 return -ENOMEM;
755
0709db60 756 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
757 if (error)
758 goto Free_first_object;
759
0709db60 760 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
761 if (!bm2)
762 goto Free_first_bitmap;
763
0709db60 764 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
765 if (error)
766 goto Free_second_object;
767
768 forbidden_pages_map = bm1;
769 free_pages_map = bm2;
770 mark_nosave_pages(forbidden_pages_map);
771
23976728 772 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
773
774 return 0;
775
776 Free_second_object:
777 kfree(bm2);
778 Free_first_bitmap:
779 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
780 Free_first_object:
781 kfree(bm1);
782 return -ENOMEM;
783}
784
785/**
786 * free_basic_memory_bitmaps - free memory bitmaps allocated by
787 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
788 * so that the bitmaps themselves are not referred to while they are being
789 * freed.
790 */
791
792void free_basic_memory_bitmaps(void)
793{
794 struct memory_bitmap *bm1, *bm2;
795
6a0c7cd3
RW
796 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
797 return;
74dfd666
RW
798
799 bm1 = forbidden_pages_map;
800 bm2 = free_pages_map;
801 forbidden_pages_map = NULL;
802 free_pages_map = NULL;
803 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
804 kfree(bm1);
805 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
806 kfree(bm2);
807
23976728 808 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
809}
810
b788db79
RW
811/**
812 * snapshot_additional_pages - estimate the number of additional pages
813 * be needed for setting up the suspend image data structures for given
814 * zone (usually the returned value is greater than the exact number)
815 */
816
817unsigned int snapshot_additional_pages(struct zone *zone)
818{
819 unsigned int res;
820
821 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
160cb5a9
NK
822 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
823 LINKED_PAGE_DATA_SIZE);
8357376d 824 return 2 * res;
b788db79
RW
825}
826
8357376d
RW
827#ifdef CONFIG_HIGHMEM
828/**
829 * count_free_highmem_pages - compute the total number of free highmem
830 * pages, system-wide.
831 */
832
833static unsigned int count_free_highmem_pages(void)
834{
835 struct zone *zone;
836 unsigned int cnt = 0;
837
ee99c71c
KM
838 for_each_populated_zone(zone)
839 if (is_highmem(zone))
d23ad423 840 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
841
842 return cnt;
843}
844
845/**
846 * saveable_highmem_page - Determine whether a highmem page should be
847 * included in the suspend image.
848 *
849 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
850 * and it isn't a part of a free chunk of pages.
851 */
846705de 852static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
853{
854 struct page *page;
855
856 if (!pfn_valid(pfn))
857 return NULL;
858
859 page = pfn_to_page(pfn);
846705de
RW
860 if (page_zone(page) != zone)
861 return NULL;
8357376d
RW
862
863 BUG_ON(!PageHighMem(page));
864
7be98234
RW
865 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
866 PageReserved(page))
8357376d
RW
867 return NULL;
868
c6968e73
SG
869 if (page_is_guard(page))
870 return NULL;
871
8357376d
RW
872 return page;
873}
874
875/**
876 * count_highmem_pages - compute the total number of saveable highmem
877 * pages.
878 */
879
fe419535 880static unsigned int count_highmem_pages(void)
8357376d
RW
881{
882 struct zone *zone;
883 unsigned int n = 0;
884
98e73dc5 885 for_each_populated_zone(zone) {
8357376d
RW
886 unsigned long pfn, max_zone_pfn;
887
888 if (!is_highmem(zone))
889 continue;
890
891 mark_free_pages(zone);
c33bc315 892 max_zone_pfn = zone_end_pfn(zone);
8357376d 893 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 894 if (saveable_highmem_page(zone, pfn))
8357376d
RW
895 n++;
896 }
897 return n;
898}
899#else
846705de
RW
900static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
901{
902 return NULL;
903}
8357376d
RW
904#endif /* CONFIG_HIGHMEM */
905
25761b6e 906/**
8a235efa
RW
907 * saveable_page - Determine whether a non-highmem page should be included
908 * in the suspend image.
25761b6e 909 *
8357376d
RW
910 * We should save the page if it isn't Nosave, and is not in the range
911 * of pages statically defined as 'unsaveable', and it isn't a part of
912 * a free chunk of pages.
25761b6e 913 */
846705de 914static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 915{
de491861 916 struct page *page;
25761b6e
RW
917
918 if (!pfn_valid(pfn))
ae83c5ee 919 return NULL;
25761b6e
RW
920
921 page = pfn_to_page(pfn);
846705de
RW
922 if (page_zone(page) != zone)
923 return NULL;
ae83c5ee 924
8357376d
RW
925 BUG_ON(PageHighMem(page));
926
7be98234 927 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 928 return NULL;
8357376d 929
8a235efa
RW
930 if (PageReserved(page)
931 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 932 return NULL;
25761b6e 933
c6968e73
SG
934 if (page_is_guard(page))
935 return NULL;
936
ae83c5ee 937 return page;
25761b6e
RW
938}
939
8357376d
RW
940/**
941 * count_data_pages - compute the total number of saveable non-highmem
942 * pages.
943 */
944
fe419535 945static unsigned int count_data_pages(void)
25761b6e
RW
946{
947 struct zone *zone;
ae83c5ee 948 unsigned long pfn, max_zone_pfn;
dc19d507 949 unsigned int n = 0;
25761b6e 950
98e73dc5 951 for_each_populated_zone(zone) {
25761b6e
RW
952 if (is_highmem(zone))
953 continue;
8357376d 954
25761b6e 955 mark_free_pages(zone);
c33bc315 956 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 957 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 958 if (saveable_page(zone, pfn))
8357376d 959 n++;
25761b6e 960 }
a0f49651 961 return n;
25761b6e
RW
962}
963
8357376d
RW
964/* This is needed, because copy_page and memcpy are not usable for copying
965 * task structs.
966 */
967static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
968{
969 int n;
970
f623f0db
RW
971 for (n = PAGE_SIZE / sizeof(long); n; n--)
972 *dst++ = *src++;
973}
974
8a235efa
RW
975
976/**
977 * safe_copy_page - check if the page we are going to copy is marked as
978 * present in the kernel page tables (this always is the case if
979 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
980 * kernel_page_present() always returns 'true').
981 */
982static void safe_copy_page(void *dst, struct page *s_page)
983{
984 if (kernel_page_present(s_page)) {
985 do_copy_page(dst, page_address(s_page));
986 } else {
987 kernel_map_pages(s_page, 1, 1);
988 do_copy_page(dst, page_address(s_page));
989 kernel_map_pages(s_page, 1, 0);
990 }
991}
992
993
8357376d
RW
994#ifdef CONFIG_HIGHMEM
995static inline struct page *
996page_is_saveable(struct zone *zone, unsigned long pfn)
997{
998 return is_highmem(zone) ?
846705de 999 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1000}
1001
8a235efa 1002static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1003{
1004 struct page *s_page, *d_page;
1005 void *src, *dst;
1006
1007 s_page = pfn_to_page(src_pfn);
1008 d_page = pfn_to_page(dst_pfn);
1009 if (PageHighMem(s_page)) {
0de9a1e2
CW
1010 src = kmap_atomic(s_page);
1011 dst = kmap_atomic(d_page);
8357376d 1012 do_copy_page(dst, src);
0de9a1e2
CW
1013 kunmap_atomic(dst);
1014 kunmap_atomic(src);
8357376d 1015 } else {
8357376d
RW
1016 if (PageHighMem(d_page)) {
1017 /* Page pointed to by src may contain some kernel
1018 * data modified by kmap_atomic()
1019 */
8a235efa 1020 safe_copy_page(buffer, s_page);
0de9a1e2 1021 dst = kmap_atomic(d_page);
3ecb01df 1022 copy_page(dst, buffer);
0de9a1e2 1023 kunmap_atomic(dst);
8357376d 1024 } else {
8a235efa 1025 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1026 }
1027 }
1028}
1029#else
846705de 1030#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1031
8a235efa 1032static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1033{
8a235efa
RW
1034 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1035 pfn_to_page(src_pfn));
8357376d
RW
1036}
1037#endif /* CONFIG_HIGHMEM */
1038
b788db79
RW
1039static void
1040copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1041{
1042 struct zone *zone;
b788db79 1043 unsigned long pfn;
25761b6e 1044
98e73dc5 1045 for_each_populated_zone(zone) {
b788db79
RW
1046 unsigned long max_zone_pfn;
1047
25761b6e 1048 mark_free_pages(zone);
c33bc315 1049 max_zone_pfn = zone_end_pfn(zone);
b788db79 1050 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1051 if (page_is_saveable(zone, pfn))
b788db79 1052 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1053 }
b788db79
RW
1054 memory_bm_position_reset(orig_bm);
1055 memory_bm_position_reset(copy_bm);
df7c4872 1056 for(;;) {
b788db79 1057 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1058 if (unlikely(pfn == BM_END_OF_MAP))
1059 break;
1060 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1061 }
25761b6e
RW
1062}
1063
8357376d
RW
1064/* Total number of image pages */
1065static unsigned int nr_copy_pages;
1066/* Number of pages needed for saving the original pfns of the image pages */
1067static unsigned int nr_meta_pages;
64a473cb
RW
1068/*
1069 * Numbers of normal and highmem page frames allocated for hibernation image
1070 * before suspending devices.
1071 */
1072unsigned int alloc_normal, alloc_highmem;
1073/*
1074 * Memory bitmap used for marking saveable pages (during hibernation) or
1075 * hibernation image pages (during restore)
1076 */
1077static struct memory_bitmap orig_bm;
1078/*
1079 * Memory bitmap used during hibernation for marking allocated page frames that
1080 * will contain copies of saveable pages. During restore it is initially used
1081 * for marking hibernation image pages, but then the set bits from it are
1082 * duplicated in @orig_bm and it is released. On highmem systems it is next
1083 * used for marking "safe" highmem pages, but it has to be reinitialized for
1084 * this purpose.
1085 */
1086static struct memory_bitmap copy_bm;
8357376d 1087
25761b6e 1088/**
940864dd 1089 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1090 *
940864dd
RW
1091 * Suspend pages are alocated before the atomic copy is made, so we
1092 * need to release them after the resume.
25761b6e
RW
1093 */
1094
1095void swsusp_free(void)
1096{
1097 struct zone *zone;
ae83c5ee 1098 unsigned long pfn, max_zone_pfn;
25761b6e 1099
98e73dc5 1100 for_each_populated_zone(zone) {
c33bc315 1101 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
1102 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1103 if (pfn_valid(pfn)) {
1104 struct page *page = pfn_to_page(pfn);
1105
7be98234
RW
1106 if (swsusp_page_is_forbidden(page) &&
1107 swsusp_page_is_free(page)) {
1108 swsusp_unset_page_forbidden(page);
1109 swsusp_unset_page_free(page);
8357376d 1110 __free_page(page);
25761b6e
RW
1111 }
1112 }
1113 }
f577eb30
RW
1114 nr_copy_pages = 0;
1115 nr_meta_pages = 0;
75534b50 1116 restore_pblist = NULL;
6e1819d6 1117 buffer = NULL;
64a473cb
RW
1118 alloc_normal = 0;
1119 alloc_highmem = 0;
25761b6e
RW
1120}
1121
4bb33435
RW
1122/* Helper functions used for the shrinking of memory. */
1123
1124#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1125
fe419535 1126/**
4bb33435
RW
1127 * preallocate_image_pages - Allocate a number of pages for hibernation image
1128 * @nr_pages: Number of page frames to allocate.
1129 * @mask: GFP flags to use for the allocation.
fe419535 1130 *
4bb33435
RW
1131 * Return value: Number of page frames actually allocated
1132 */
1133static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1134{
1135 unsigned long nr_alloc = 0;
1136
1137 while (nr_pages > 0) {
64a473cb
RW
1138 struct page *page;
1139
1140 page = alloc_image_page(mask);
1141 if (!page)
4bb33435 1142 break;
64a473cb
RW
1143 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1144 if (PageHighMem(page))
1145 alloc_highmem++;
1146 else
1147 alloc_normal++;
4bb33435
RW
1148 nr_pages--;
1149 nr_alloc++;
1150 }
1151
1152 return nr_alloc;
1153}
1154
6715045d
RW
1155static unsigned long preallocate_image_memory(unsigned long nr_pages,
1156 unsigned long avail_normal)
4bb33435 1157{
6715045d
RW
1158 unsigned long alloc;
1159
1160 if (avail_normal <= alloc_normal)
1161 return 0;
1162
1163 alloc = avail_normal - alloc_normal;
1164 if (nr_pages < alloc)
1165 alloc = nr_pages;
1166
1167 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1168}
1169
1170#ifdef CONFIG_HIGHMEM
1171static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1172{
1173 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1174}
1175
1176/**
1177 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1178 */
4bb33435
RW
1179static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1180{
1181 x *= multiplier;
1182 do_div(x, base);
1183 return (unsigned long)x;
1184}
fe419535 1185
4bb33435
RW
1186static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187 unsigned long highmem,
1188 unsigned long total)
fe419535 1189{
4bb33435
RW
1190 unsigned long alloc = __fraction(nr_pages, highmem, total);
1191
1192 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1193}
4bb33435
RW
1194#else /* CONFIG_HIGHMEM */
1195static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1196{
1197 return 0;
1198}
1199
1200static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1201 unsigned long highmem,
1202 unsigned long total)
1203{
1204 return 0;
1205}
1206#endif /* CONFIG_HIGHMEM */
fe419535 1207
4bb33435 1208/**
64a473cb
RW
1209 * free_unnecessary_pages - Release preallocated pages not needed for the image
1210 */
1211static void free_unnecessary_pages(void)
1212{
6715045d 1213 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1214
6715045d
RW
1215 save = count_data_pages();
1216 if (alloc_normal >= save) {
1217 to_free_normal = alloc_normal - save;
1218 save = 0;
1219 } else {
1220 to_free_normal = 0;
1221 save -= alloc_normal;
1222 }
1223 save += count_highmem_pages();
1224 if (alloc_highmem >= save) {
1225 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1226 } else {
1227 to_free_highmem = 0;
4d4cf23c
RW
1228 save -= alloc_highmem;
1229 if (to_free_normal > save)
1230 to_free_normal -= save;
1231 else
1232 to_free_normal = 0;
64a473cb
RW
1233 }
1234
1235 memory_bm_position_reset(&copy_bm);
1236
a9c9b442 1237 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1238 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1239 struct page *page = pfn_to_page(pfn);
1240
1241 if (PageHighMem(page)) {
1242 if (!to_free_highmem)
1243 continue;
1244 to_free_highmem--;
1245 alloc_highmem--;
1246 } else {
1247 if (!to_free_normal)
1248 continue;
1249 to_free_normal--;
1250 alloc_normal--;
1251 }
1252 memory_bm_clear_bit(&copy_bm, pfn);
1253 swsusp_unset_page_forbidden(page);
1254 swsusp_unset_page_free(page);
1255 __free_page(page);
1256 }
1257}
1258
ef4aede3
RW
1259/**
1260 * minimum_image_size - Estimate the minimum acceptable size of an image
1261 * @saveable: Number of saveable pages in the system.
1262 *
1263 * We want to avoid attempting to free too much memory too hard, so estimate the
1264 * minimum acceptable size of a hibernation image to use as the lower limit for
1265 * preallocating memory.
1266 *
1267 * We assume that the minimum image size should be proportional to
1268 *
1269 * [number of saveable pages] - [number of pages that can be freed in theory]
1270 *
1271 * where the second term is the sum of (1) reclaimable slab pages, (2) active
4d434820 1272 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
ef4aede3
RW
1273 * minus mapped file pages.
1274 */
1275static unsigned long minimum_image_size(unsigned long saveable)
1276{
1277 unsigned long size;
1278
1279 size = global_page_state(NR_SLAB_RECLAIMABLE)
1280 + global_page_state(NR_ACTIVE_ANON)
1281 + global_page_state(NR_INACTIVE_ANON)
1282 + global_page_state(NR_ACTIVE_FILE)
1283 + global_page_state(NR_INACTIVE_FILE)
1284 - global_page_state(NR_FILE_MAPPED);
1285
1286 return saveable <= size ? 0 : saveable - size;
1287}
1288
64a473cb
RW
1289/**
1290 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1291 *
1292 * To create a hibernation image it is necessary to make a copy of every page
1293 * frame in use. We also need a number of page frames to be free during
1294 * hibernation for allocations made while saving the image and for device
1295 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1296 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1299 * total number of available page frames and allocate at least
4bb33435 1300 *
ddeb6487
RW
1301 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1303 *
1304 * of them, which corresponds to the maximum size of a hibernation image.
1305 *
1306 * If image_size is set below the number following from the above formula,
1307 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1308 * pages in the system is below the requested image size or the minimum
1309 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1310 */
64a473cb 1311int hibernate_preallocate_memory(void)
fe419535 1312{
fe419535 1313 struct zone *zone;
4bb33435 1314 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1315 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
fe419535 1316 struct timeval start, stop;
64a473cb 1317 int error;
fe419535 1318
64a473cb 1319 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1320 do_gettimeofday(&start);
fe419535 1321
64a473cb
RW
1322 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1323 if (error)
1324 goto err_out;
1325
1326 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1327 if (error)
1328 goto err_out;
1329
1330 alloc_normal = 0;
1331 alloc_highmem = 0;
1332
4bb33435 1333 /* Count the number of saveable data pages. */
64a473cb 1334 save_highmem = count_highmem_pages();
4bb33435 1335 saveable = count_data_pages();
fe419535 1336
4bb33435
RW
1337 /*
1338 * Compute the total number of page frames we can use (count) and the
1339 * number of pages needed for image metadata (size).
1340 */
1341 count = saveable;
64a473cb
RW
1342 saveable += save_highmem;
1343 highmem = save_highmem;
4bb33435
RW
1344 size = 0;
1345 for_each_populated_zone(zone) {
1346 size += snapshot_additional_pages(zone);
1347 if (is_highmem(zone))
1348 highmem += zone_page_state(zone, NR_FREE_PAGES);
1349 else
1350 count += zone_page_state(zone, NR_FREE_PAGES);
1351 }
6715045d 1352 avail_normal = count;
4bb33435
RW
1353 count += highmem;
1354 count -= totalreserve_pages;
1355
85055dd8
MS
1356 /* Add number of pages required for page keys (s390 only). */
1357 size += page_key_additional_pages(saveable);
1358
4bb33435 1359 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1360 max_size = (count - (size + PAGES_FOR_IO)) / 2
1361 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1362 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1363 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1364 if (size > max_size)
1365 size = max_size;
1366 /*
266f1a25
RW
1367 * If the desired number of image pages is at least as large as the
1368 * current number of saveable pages in memory, allocate page frames for
1369 * the image and we're done.
4bb33435 1370 */
64a473cb
RW
1371 if (size >= saveable) {
1372 pages = preallocate_image_highmem(save_highmem);
6715045d 1373 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1374 goto out;
64a473cb 1375 }
4bb33435 1376
ef4aede3
RW
1377 /* Estimate the minimum size of the image. */
1378 pages = minimum_image_size(saveable);
6715045d
RW
1379 /*
1380 * To avoid excessive pressure on the normal zone, leave room in it to
1381 * accommodate an image of the minimum size (unless it's already too
1382 * small, in which case don't preallocate pages from it at all).
1383 */
1384 if (avail_normal > pages)
1385 avail_normal -= pages;
1386 else
1387 avail_normal = 0;
ef4aede3
RW
1388 if (size < pages)
1389 size = min_t(unsigned long, pages, max_size);
1390
4bb33435
RW
1391 /*
1392 * Let the memory management subsystem know that we're going to need a
1393 * large number of page frames to allocate and make it free some memory.
1394 * NOTE: If this is not done, performance will be hurt badly in some
1395 * test cases.
1396 */
1397 shrink_all_memory(saveable - size);
1398
1399 /*
1400 * The number of saveable pages in memory was too high, so apply some
1401 * pressure to decrease it. First, make room for the largest possible
1402 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1403 * of the image as much as indicated by 'size' using allocations from
1404 * highmem and non-highmem zones separately.
4bb33435
RW
1405 */
1406 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1407 alloc = count - max_size;
1408 if (alloc > pages_highmem)
1409 alloc -= pages_highmem;
1410 else
1411 alloc = 0;
6715045d
RW
1412 pages = preallocate_image_memory(alloc, avail_normal);
1413 if (pages < alloc) {
1414 /* We have exhausted non-highmem pages, try highmem. */
1415 alloc -= pages;
1416 pages += pages_highmem;
1417 pages_highmem = preallocate_image_highmem(alloc);
1418 if (pages_highmem < alloc)
1419 goto err_out;
1420 pages += pages_highmem;
1421 /*
1422 * size is the desired number of saveable pages to leave in
1423 * memory, so try to preallocate (all memory - size) pages.
1424 */
1425 alloc = (count - pages) - size;
1426 pages += preallocate_image_highmem(alloc);
1427 } else {
1428 /*
1429 * There are approximately max_size saveable pages at this point
1430 * and we want to reduce this number down to size.
1431 */
1432 alloc = max_size - size;
1433 size = preallocate_highmem_fraction(alloc, highmem, count);
1434 pages_highmem += size;
1435 alloc -= size;
1436 size = preallocate_image_memory(alloc, avail_normal);
1437 pages_highmem += preallocate_image_highmem(alloc - size);
1438 pages += pages_highmem + size;
1439 }
4bb33435 1440
64a473cb
RW
1441 /*
1442 * We only need as many page frames for the image as there are saveable
1443 * pages in memory, but we have allocated more. Release the excessive
1444 * ones now.
1445 */
1446 free_unnecessary_pages();
4bb33435
RW
1447
1448 out:
fe419535 1449 do_gettimeofday(&stop);
64a473cb
RW
1450 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1451 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1452
1453 return 0;
64a473cb
RW
1454
1455 err_out:
1456 printk(KERN_CONT "\n");
1457 swsusp_free();
1458 return -ENOMEM;
fe419535
RW
1459}
1460
8357376d
RW
1461#ifdef CONFIG_HIGHMEM
1462/**
1463 * count_pages_for_highmem - compute the number of non-highmem pages
1464 * that will be necessary for creating copies of highmem pages.
1465 */
1466
1467static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1468{
64a473cb 1469 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1470
1471 if (free_highmem >= nr_highmem)
1472 nr_highmem = 0;
1473 else
1474 nr_highmem -= free_highmem;
1475
1476 return nr_highmem;
1477}
1478#else
1479static unsigned int
1480count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1481#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1482
1483/**
8357376d
RW
1484 * enough_free_mem - Make sure we have enough free memory for the
1485 * snapshot image.
25761b6e
RW
1486 */
1487
8357376d 1488static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1489{
e5e2fa78 1490 struct zone *zone;
64a473cb 1491 unsigned int free = alloc_normal;
e5e2fa78 1492
98e73dc5 1493 for_each_populated_zone(zone)
8357376d 1494 if (!is_highmem(zone))
d23ad423 1495 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1496
8357376d 1497 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1498 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499 nr_pages, PAGES_FOR_IO, free);
940864dd 1500
64a473cb 1501 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1502}
1503
8357376d
RW
1504#ifdef CONFIG_HIGHMEM
1505/**
1506 * get_highmem_buffer - if there are some highmem pages in the suspend
1507 * image, we may need the buffer to copy them and/or load their data.
1508 */
1509
1510static inline int get_highmem_buffer(int safe_needed)
1511{
1512 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1513 return buffer ? 0 : -ENOMEM;
1514}
1515
1516/**
1517 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1518 * Try to allocate as many pages as needed, but if the number of free
1519 * highmem pages is lesser than that, allocate them all.
1520 */
1521
1522static inline unsigned int
64a473cb 1523alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1524{
1525 unsigned int to_alloc = count_free_highmem_pages();
1526
1527 if (to_alloc > nr_highmem)
1528 to_alloc = nr_highmem;
1529
1530 nr_highmem -= to_alloc;
1531 while (to_alloc-- > 0) {
1532 struct page *page;
1533
1534 page = alloc_image_page(__GFP_HIGHMEM);
1535 memory_bm_set_bit(bm, page_to_pfn(page));
1536 }
1537 return nr_highmem;
1538}
1539#else
1540static inline int get_highmem_buffer(int safe_needed) { return 0; }
1541
1542static inline unsigned int
64a473cb 1543alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1544#endif /* CONFIG_HIGHMEM */
1545
1546/**
1547 * swsusp_alloc - allocate memory for the suspend image
1548 *
1549 * We first try to allocate as many highmem pages as there are
1550 * saveable highmem pages in the system. If that fails, we allocate
1551 * non-highmem pages for the copies of the remaining highmem ones.
1552 *
1553 * In this approach it is likely that the copies of highmem pages will
1554 * also be located in the high memory, because of the way in which
1555 * copy_data_pages() works.
1556 */
1557
b788db79
RW
1558static int
1559swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1560 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1561{
8357376d 1562 if (nr_highmem > 0) {
2e725a06 1563 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1564 goto err_out;
1565 if (nr_highmem > alloc_highmem) {
1566 nr_highmem -= alloc_highmem;
1567 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1568 }
8357376d 1569 }
64a473cb
RW
1570 if (nr_pages > alloc_normal) {
1571 nr_pages -= alloc_normal;
1572 while (nr_pages-- > 0) {
1573 struct page *page;
1574
1575 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1576 if (!page)
1577 goto err_out;
1578 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1579 }
25761b6e 1580 }
64a473cb 1581
b788db79 1582 return 0;
25761b6e 1583
64a473cb 1584 err_out:
b788db79 1585 swsusp_free();
2e725a06 1586 return -ENOMEM;
25761b6e
RW
1587}
1588
722a9f92 1589asmlinkage __visible int swsusp_save(void)
25761b6e 1590{
8357376d 1591 unsigned int nr_pages, nr_highmem;
25761b6e 1592
07c3bb57 1593 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1594
9f8f2172 1595 drain_local_pages(NULL);
a0f49651 1596 nr_pages = count_data_pages();
8357376d 1597 nr_highmem = count_highmem_pages();
23976728 1598 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1599
8357376d 1600 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1601 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1602 return -ENOMEM;
1603 }
1604
8357376d 1605 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1606 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1607 return -ENOMEM;
8357376d 1608 }
25761b6e
RW
1609
1610 /* During allocating of suspend pagedir, new cold pages may appear.
1611 * Kill them.
1612 */
9f8f2172 1613 drain_local_pages(NULL);
b788db79 1614 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1615
1616 /*
1617 * End of critical section. From now on, we can write to memory,
1618 * but we should not touch disk. This specially means we must _not_
1619 * touch swap space! Except we must write out our image of course.
1620 */
1621
8357376d 1622 nr_pages += nr_highmem;
a0f49651 1623 nr_copy_pages = nr_pages;
8357376d 1624 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1625
23976728
RW
1626 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1627 nr_pages);
8357376d 1628
25761b6e
RW
1629 return 0;
1630}
f577eb30 1631
d307c4a8
RW
1632#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633static int init_header_complete(struct swsusp_info *info)
f577eb30 1634{
d307c4a8 1635 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1636 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1637 return 0;
1638}
1639
1640static char *check_image_kernel(struct swsusp_info *info)
1641{
1642 if (info->version_code != LINUX_VERSION_CODE)
1643 return "kernel version";
1644 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1645 return "system type";
1646 if (strcmp(info->uts.release,init_utsname()->release))
1647 return "kernel release";
1648 if (strcmp(info->uts.version,init_utsname()->version))
1649 return "version";
1650 if (strcmp(info->uts.machine,init_utsname()->machine))
1651 return "machine";
1652 return NULL;
1653}
1654#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1655
af508b34
RW
1656unsigned long snapshot_get_image_size(void)
1657{
1658 return nr_copy_pages + nr_meta_pages + 1;
1659}
1660
d307c4a8
RW
1661static int init_header(struct swsusp_info *info)
1662{
1663 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 1664 info->num_physpages = get_num_physpages();
f577eb30 1665 info->image_pages = nr_copy_pages;
af508b34 1666 info->pages = snapshot_get_image_size();
6e1819d6
RW
1667 info->size = info->pages;
1668 info->size <<= PAGE_SHIFT;
d307c4a8 1669 return init_header_complete(info);
f577eb30
RW
1670}
1671
1672/**
940864dd
RW
1673 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1675 */
1676
b788db79 1677static inline void
940864dd 1678pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1679{
1680 int j;
1681
b788db79 1682 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1683 buf[j] = memory_bm_next_pfn(bm);
1684 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1685 break;
85055dd8
MS
1686 /* Save page key for data page (s390 only). */
1687 page_key_read(buf + j);
f577eb30 1688 }
f577eb30
RW
1689}
1690
1691/**
1692 * snapshot_read_next - used for reading the system memory snapshot.
1693 *
1694 * On the first call to it @handle should point to a zeroed
1695 * snapshot_handle structure. The structure gets updated and a pointer
1696 * to it should be passed to this function every next time.
1697 *
f577eb30
RW
1698 * On success the function returns a positive number. Then, the caller
1699 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 1700 * location computed by the data_of() macro.
f577eb30
RW
1701 *
1702 * The function returns 0 to indicate the end of data stream condition,
1703 * and a negative number is returned on error. In such cases the
1704 * structure pointed to by @handle is not updated and should not be used
1705 * any more.
1706 */
1707
d3c1b24c 1708int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 1709{
fb13a28b 1710 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1711 return 0;
b788db79 1712
f577eb30
RW
1713 if (!buffer) {
1714 /* This makes the buffer be freed by swsusp_free() */
8357376d 1715 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1716 if (!buffer)
1717 return -ENOMEM;
1718 }
d3c1b24c 1719 if (!handle->cur) {
d307c4a8
RW
1720 int error;
1721
1722 error = init_header((struct swsusp_info *)buffer);
1723 if (error)
1724 return error;
f577eb30 1725 handle->buffer = buffer;
b788db79
RW
1726 memory_bm_position_reset(&orig_bm);
1727 memory_bm_position_reset(&copy_bm);
d3c1b24c 1728 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 1729 clear_page(buffer);
d3c1b24c
JS
1730 pack_pfns(buffer, &orig_bm);
1731 } else {
1732 struct page *page;
b788db79 1733
d3c1b24c
JS
1734 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1735 if (PageHighMem(page)) {
1736 /* Highmem pages are copied to the buffer,
1737 * because we can't return with a kmapped
1738 * highmem page (we may not be called again).
1739 */
1740 void *kaddr;
8357376d 1741
0de9a1e2 1742 kaddr = kmap_atomic(page);
3ecb01df 1743 copy_page(buffer, kaddr);
0de9a1e2 1744 kunmap_atomic(kaddr);
d3c1b24c
JS
1745 handle->buffer = buffer;
1746 } else {
1747 handle->buffer = page_address(page);
f577eb30 1748 }
f577eb30 1749 }
d3c1b24c
JS
1750 handle->cur++;
1751 return PAGE_SIZE;
f577eb30
RW
1752}
1753
1754/**
1755 * mark_unsafe_pages - mark the pages that cannot be used for storing
1756 * the image during resume, because they conflict with the pages that
1757 * had been used before suspend
1758 */
1759
940864dd 1760static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1761{
1762 struct zone *zone;
ae83c5ee 1763 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1764
1765 /* Clear page flags */
98e73dc5 1766 for_each_populated_zone(zone) {
c33bc315 1767 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
1768 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1769 if (pfn_valid(pfn))
7be98234 1770 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1771 }
1772
940864dd
RW
1773 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1774 memory_bm_position_reset(bm);
1775 do {
1776 pfn = memory_bm_next_pfn(bm);
1777 if (likely(pfn != BM_END_OF_MAP)) {
1778 if (likely(pfn_valid(pfn)))
7be98234 1779 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1780 else
1781 return -EFAULT;
1782 }
1783 } while (pfn != BM_END_OF_MAP);
f577eb30 1784
940864dd 1785 allocated_unsafe_pages = 0;
968808b8 1786
f577eb30
RW
1787 return 0;
1788}
1789
940864dd
RW
1790static void
1791duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1792{
940864dd
RW
1793 unsigned long pfn;
1794
1795 memory_bm_position_reset(src);
1796 pfn = memory_bm_next_pfn(src);
1797 while (pfn != BM_END_OF_MAP) {
1798 memory_bm_set_bit(dst, pfn);
1799 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1800 }
1801}
1802
d307c4a8 1803static int check_header(struct swsusp_info *info)
f577eb30 1804{
d307c4a8 1805 char *reason;
f577eb30 1806
d307c4a8 1807 reason = check_image_kernel(info);
0ed5fd13 1808 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 1809 reason = "memory size";
f577eb30 1810 if (reason) {
23976728 1811 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1812 return -EPERM;
1813 }
1814 return 0;
1815}
1816
1817/**
1818 * load header - check the image header and copy data from it
1819 */
1820
940864dd
RW
1821static int
1822load_header(struct swsusp_info *info)
f577eb30
RW
1823{
1824 int error;
f577eb30 1825
940864dd 1826 restore_pblist = NULL;
f577eb30
RW
1827 error = check_header(info);
1828 if (!error) {
f577eb30
RW
1829 nr_copy_pages = info->image_pages;
1830 nr_meta_pages = info->pages - info->image_pages - 1;
1831 }
1832 return error;
1833}
1834
1835/**
940864dd
RW
1836 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837 * the corresponding bit in the memory bitmap @bm
f577eb30 1838 */
69643279 1839static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1840{
1841 int j;
1842
940864dd
RW
1843 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1844 if (unlikely(buf[j] == BM_END_OF_MAP))
1845 break;
1846
85055dd8
MS
1847 /* Extract and buffer page key for data page (s390 only). */
1848 page_key_memorize(buf + j);
1849
69643279
RW
1850 if (memory_bm_pfn_present(bm, buf[j]))
1851 memory_bm_set_bit(bm, buf[j]);
1852 else
1853 return -EFAULT;
f577eb30 1854 }
69643279
RW
1855
1856 return 0;
f577eb30
RW
1857}
1858
8357376d
RW
1859/* List of "safe" pages that may be used to store data loaded from the suspend
1860 * image
1861 */
1862static struct linked_page *safe_pages_list;
1863
1864#ifdef CONFIG_HIGHMEM
1865/* struct highmem_pbe is used for creating the list of highmem pages that
1866 * should be restored atomically during the resume from disk, because the page
1867 * frames they have occupied before the suspend are in use.
1868 */
1869struct highmem_pbe {
1870 struct page *copy_page; /* data is here now */
1871 struct page *orig_page; /* data was here before the suspend */
1872 struct highmem_pbe *next;
1873};
1874
1875/* List of highmem PBEs needed for restoring the highmem pages that were
1876 * allocated before the suspend and included in the suspend image, but have
1877 * also been allocated by the "resume" kernel, so their contents cannot be
1878 * written directly to their "original" page frames.
1879 */
1880static struct highmem_pbe *highmem_pblist;
1881
1882/**
1883 * count_highmem_image_pages - compute the number of highmem pages in the
1884 * suspend image. The bits in the memory bitmap @bm that correspond to the
1885 * image pages are assumed to be set.
1886 */
1887
1888static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1889{
1890 unsigned long pfn;
1891 unsigned int cnt = 0;
1892
1893 memory_bm_position_reset(bm);
1894 pfn = memory_bm_next_pfn(bm);
1895 while (pfn != BM_END_OF_MAP) {
1896 if (PageHighMem(pfn_to_page(pfn)))
1897 cnt++;
1898
1899 pfn = memory_bm_next_pfn(bm);
1900 }
1901 return cnt;
1902}
1903
1904/**
1905 * prepare_highmem_image - try to allocate as many highmem pages as
1906 * there are highmem image pages (@nr_highmem_p points to the variable
1907 * containing the number of highmem image pages). The pages that are
1908 * "safe" (ie. will not be overwritten when the suspend image is
1909 * restored) have the corresponding bits set in @bm (it must be
1910 * unitialized).
1911 *
1912 * NOTE: This function should not be called if there are no highmem
1913 * image pages.
1914 */
1915
1916static unsigned int safe_highmem_pages;
1917
1918static struct memory_bitmap *safe_highmem_bm;
1919
1920static int
1921prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1922{
1923 unsigned int to_alloc;
1924
1925 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1926 return -ENOMEM;
1927
1928 if (get_highmem_buffer(PG_SAFE))
1929 return -ENOMEM;
1930
1931 to_alloc = count_free_highmem_pages();
1932 if (to_alloc > *nr_highmem_p)
1933 to_alloc = *nr_highmem_p;
1934 else
1935 *nr_highmem_p = to_alloc;
1936
1937 safe_highmem_pages = 0;
1938 while (to_alloc-- > 0) {
1939 struct page *page;
1940
1941 page = alloc_page(__GFP_HIGHMEM);
7be98234 1942 if (!swsusp_page_is_free(page)) {
8357376d
RW
1943 /* The page is "safe", set its bit the bitmap */
1944 memory_bm_set_bit(bm, page_to_pfn(page));
1945 safe_highmem_pages++;
1946 }
1947 /* Mark the page as allocated */
7be98234
RW
1948 swsusp_set_page_forbidden(page);
1949 swsusp_set_page_free(page);
8357376d
RW
1950 }
1951 memory_bm_position_reset(bm);
1952 safe_highmem_bm = bm;
1953 return 0;
1954}
1955
1956/**
1957 * get_highmem_page_buffer - for given highmem image page find the buffer
1958 * that suspend_write_next() should set for its caller to write to.
1959 *
1960 * If the page is to be saved to its "original" page frame or a copy of
1961 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1962 * the copy of the page is to be made in normal memory, so the address of
1963 * the copy is returned.
1964 *
1965 * If @buffer is returned, the caller of suspend_write_next() will write
1966 * the page's contents to @buffer, so they will have to be copied to the
1967 * right location on the next call to suspend_write_next() and it is done
1968 * with the help of copy_last_highmem_page(). For this purpose, if
1969 * @buffer is returned, @last_highmem page is set to the page to which
1970 * the data will have to be copied from @buffer.
1971 */
1972
1973static struct page *last_highmem_page;
1974
1975static void *
1976get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1977{
1978 struct highmem_pbe *pbe;
1979 void *kaddr;
1980
7be98234 1981 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1982 /* We have allocated the "original" page frame and we can
1983 * use it directly to store the loaded page.
1984 */
1985 last_highmem_page = page;
1986 return buffer;
1987 }
1988 /* The "original" page frame has not been allocated and we have to
1989 * use a "safe" page frame to store the loaded page.
1990 */
1991 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1992 if (!pbe) {
1993 swsusp_free();
69643279 1994 return ERR_PTR(-ENOMEM);
8357376d
RW
1995 }
1996 pbe->orig_page = page;
1997 if (safe_highmem_pages > 0) {
1998 struct page *tmp;
1999
2000 /* Copy of the page will be stored in high memory */
2001 kaddr = buffer;
2002 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2003 safe_highmem_pages--;
2004 last_highmem_page = tmp;
2005 pbe->copy_page = tmp;
2006 } else {
2007 /* Copy of the page will be stored in normal memory */
2008 kaddr = safe_pages_list;
2009 safe_pages_list = safe_pages_list->next;
2010 pbe->copy_page = virt_to_page(kaddr);
2011 }
2012 pbe->next = highmem_pblist;
2013 highmem_pblist = pbe;
2014 return kaddr;
2015}
2016
2017/**
2018 * copy_last_highmem_page - copy the contents of a highmem image from
2019 * @buffer, where the caller of snapshot_write_next() has place them,
2020 * to the right location represented by @last_highmem_page .
2021 */
2022
2023static void copy_last_highmem_page(void)
2024{
2025 if (last_highmem_page) {
2026 void *dst;
2027
0de9a1e2 2028 dst = kmap_atomic(last_highmem_page);
3ecb01df 2029 copy_page(dst, buffer);
0de9a1e2 2030 kunmap_atomic(dst);
8357376d
RW
2031 last_highmem_page = NULL;
2032 }
2033}
2034
2035static inline int last_highmem_page_copied(void)
2036{
2037 return !last_highmem_page;
2038}
2039
2040static inline void free_highmem_data(void)
2041{
2042 if (safe_highmem_bm)
2043 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2044
2045 if (buffer)
2046 free_image_page(buffer, PG_UNSAFE_CLEAR);
2047}
2048#else
2049static inline int get_safe_write_buffer(void) { return 0; }
2050
2051static unsigned int
2052count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2053
2054static inline int
2055prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2056{
2057 return 0;
2058}
2059
2060static inline void *
2061get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2062{
69643279 2063 return ERR_PTR(-EINVAL);
8357376d
RW
2064}
2065
2066static inline void copy_last_highmem_page(void) {}
2067static inline int last_highmem_page_copied(void) { return 1; }
2068static inline void free_highmem_data(void) {}
2069#endif /* CONFIG_HIGHMEM */
2070
f577eb30 2071/**
940864dd
RW
2072 * prepare_image - use the memory bitmap @bm to mark the pages that will
2073 * be overwritten in the process of restoring the system memory state
2074 * from the suspend image ("unsafe" pages) and allocate memory for the
2075 * image.
968808b8 2076 *
940864dd
RW
2077 * The idea is to allocate a new memory bitmap first and then allocate
2078 * as many pages as needed for the image data, but not to assign these
2079 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2080 * allocated and create a lists of "safe" pages that will be used
2081 * later. On systems with high memory a list of "safe" highmem pages is
2082 * also created.
f577eb30
RW
2083 */
2084
940864dd
RW
2085#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2086
940864dd
RW
2087static int
2088prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2089{
8357376d 2090 unsigned int nr_pages, nr_highmem;
940864dd
RW
2091 struct linked_page *sp_list, *lp;
2092 int error;
f577eb30 2093
8357376d
RW
2094 /* If there is no highmem, the buffer will not be necessary */
2095 free_image_page(buffer, PG_UNSAFE_CLEAR);
2096 buffer = NULL;
2097
2098 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2099 error = mark_unsafe_pages(bm);
2100 if (error)
2101 goto Free;
2102
2103 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2104 if (error)
2105 goto Free;
2106
2107 duplicate_memory_bitmap(new_bm, bm);
2108 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2109 if (nr_highmem > 0) {
2110 error = prepare_highmem_image(bm, &nr_highmem);
2111 if (error)
2112 goto Free;
2113 }
940864dd
RW
2114 /* Reserve some safe pages for potential later use.
2115 *
2116 * NOTE: This way we make sure there will be enough safe pages for the
2117 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2118 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2119 */
2120 sp_list = NULL;
2121 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2122 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2123 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2124 while (nr_pages > 0) {
8357376d 2125 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2126 if (!lp) {
f577eb30 2127 error = -ENOMEM;
940864dd
RW
2128 goto Free;
2129 }
2130 lp->next = sp_list;
2131 sp_list = lp;
2132 nr_pages--;
f577eb30 2133 }
940864dd
RW
2134 /* Preallocate memory for the image */
2135 safe_pages_list = NULL;
8357376d 2136 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2137 while (nr_pages > 0) {
2138 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2139 if (!lp) {
2140 error = -ENOMEM;
2141 goto Free;
2142 }
7be98234 2143 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2144 /* The page is "safe", add it to the list */
2145 lp->next = safe_pages_list;
2146 safe_pages_list = lp;
968808b8 2147 }
940864dd 2148 /* Mark the page as allocated */
7be98234
RW
2149 swsusp_set_page_forbidden(virt_to_page(lp));
2150 swsusp_set_page_free(virt_to_page(lp));
940864dd 2151 nr_pages--;
968808b8 2152 }
940864dd
RW
2153 /* Free the reserved safe pages so that chain_alloc() can use them */
2154 while (sp_list) {
2155 lp = sp_list->next;
2156 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2157 sp_list = lp;
f577eb30 2158 }
940864dd
RW
2159 return 0;
2160
59a49335 2161 Free:
940864dd 2162 swsusp_free();
f577eb30
RW
2163 return error;
2164}
2165
940864dd
RW
2166/**
2167 * get_buffer - compute the address that snapshot_write_next() should
2168 * set for its caller to write to.
2169 */
2170
2171static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2172{
940864dd 2173 struct pbe *pbe;
69643279
RW
2174 struct page *page;
2175 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2176
69643279
RW
2177 if (pfn == BM_END_OF_MAP)
2178 return ERR_PTR(-EFAULT);
2179
2180 page = pfn_to_page(pfn);
8357376d
RW
2181 if (PageHighMem(page))
2182 return get_highmem_page_buffer(page, ca);
2183
7be98234 2184 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2185 /* We have allocated the "original" page frame and we can
2186 * use it directly to store the loaded page.
968808b8 2187 */
940864dd
RW
2188 return page_address(page);
2189
2190 /* The "original" page frame has not been allocated and we have to
2191 * use a "safe" page frame to store the loaded page.
968808b8 2192 */
940864dd
RW
2193 pbe = chain_alloc(ca, sizeof(struct pbe));
2194 if (!pbe) {
2195 swsusp_free();
69643279 2196 return ERR_PTR(-ENOMEM);
940864dd 2197 }
8357376d
RW
2198 pbe->orig_address = page_address(page);
2199 pbe->address = safe_pages_list;
940864dd
RW
2200 safe_pages_list = safe_pages_list->next;
2201 pbe->next = restore_pblist;
2202 restore_pblist = pbe;
8357376d 2203 return pbe->address;
968808b8
RW
2204}
2205
f577eb30
RW
2206/**
2207 * snapshot_write_next - used for writing the system memory snapshot.
2208 *
2209 * On the first call to it @handle should point to a zeroed
2210 * snapshot_handle structure. The structure gets updated and a pointer
2211 * to it should be passed to this function every next time.
2212 *
f577eb30
RW
2213 * On success the function returns a positive number. Then, the caller
2214 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2215 * location computed by the data_of() macro.
f577eb30
RW
2216 *
2217 * The function returns 0 to indicate the "end of file" condition,
2218 * and a negative number is returned on error. In such cases the
2219 * structure pointed to by @handle is not updated and should not be used
2220 * any more.
2221 */
2222
d3c1b24c 2223int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2224{
940864dd 2225 static struct chain_allocator ca;
f577eb30
RW
2226 int error = 0;
2227
940864dd 2228 /* Check if we have already loaded the entire image */
d3c1b24c 2229 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2230 return 0;
940864dd 2231
d3c1b24c
JS
2232 handle->sync_read = 1;
2233
2234 if (!handle->cur) {
8357376d
RW
2235 if (!buffer)
2236 /* This makes the buffer be freed by swsusp_free() */
2237 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2238
f577eb30
RW
2239 if (!buffer)
2240 return -ENOMEM;
8357376d 2241
f577eb30 2242 handle->buffer = buffer;
d3c1b24c
JS
2243 } else if (handle->cur == 1) {
2244 error = load_header(buffer);
2245 if (error)
2246 return error;
940864dd 2247
d3c1b24c
JS
2248 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2249 if (error)
2250 return error;
2251
85055dd8
MS
2252 /* Allocate buffer for page keys. */
2253 error = page_key_alloc(nr_copy_pages);
2254 if (error)
2255 return error;
2256
d3c1b24c
JS
2257 } else if (handle->cur <= nr_meta_pages + 1) {
2258 error = unpack_orig_pfns(buffer, &copy_bm);
2259 if (error)
2260 return error;
940864dd 2261
d3c1b24c
JS
2262 if (handle->cur == nr_meta_pages + 1) {
2263 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2264 if (error)
2265 return error;
2266
d3c1b24c
JS
2267 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2268 memory_bm_position_reset(&orig_bm);
2269 restore_pblist = NULL;
940864dd 2270 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2271 handle->sync_read = 0;
69643279
RW
2272 if (IS_ERR(handle->buffer))
2273 return PTR_ERR(handle->buffer);
f577eb30 2274 }
f577eb30 2275 } else {
d3c1b24c 2276 copy_last_highmem_page();
85055dd8
MS
2277 /* Restore page key for data page (s390 only). */
2278 page_key_write(handle->buffer);
d3c1b24c
JS
2279 handle->buffer = get_buffer(&orig_bm, &ca);
2280 if (IS_ERR(handle->buffer))
2281 return PTR_ERR(handle->buffer);
2282 if (handle->buffer != buffer)
2283 handle->sync_read = 0;
f577eb30 2284 }
d3c1b24c
JS
2285 handle->cur++;
2286 return PAGE_SIZE;
f577eb30
RW
2287}
2288
8357376d
RW
2289/**
2290 * snapshot_write_finalize - must be called after the last call to
2291 * snapshot_write_next() in case the last page in the image happens
2292 * to be a highmem page and its contents should be stored in the
2293 * highmem. Additionally, it releases the memory that will not be
2294 * used any more.
2295 */
2296
2297void snapshot_write_finalize(struct snapshot_handle *handle)
2298{
2299 copy_last_highmem_page();
85055dd8
MS
2300 /* Restore page key for data page (s390 only). */
2301 page_key_write(handle->buffer);
2302 page_key_free();
8357376d 2303 /* Free only if we have loaded the image entirely */
d3c1b24c 2304 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2305 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2306 free_highmem_data();
2307 }
2308}
2309
f577eb30
RW
2310int snapshot_image_loaded(struct snapshot_handle *handle)
2311{
8357376d 2312 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2313 handle->cur <= nr_meta_pages + nr_copy_pages);
2314}
2315
8357376d
RW
2316#ifdef CONFIG_HIGHMEM
2317/* Assumes that @buf is ready and points to a "safe" page */
2318static inline void
2319swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2320{
8357376d
RW
2321 void *kaddr1, *kaddr2;
2322
0de9a1e2
CW
2323 kaddr1 = kmap_atomic(p1);
2324 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2325 copy_page(buf, kaddr1);
2326 copy_page(kaddr1, kaddr2);
2327 copy_page(kaddr2, buf);
0de9a1e2
CW
2328 kunmap_atomic(kaddr2);
2329 kunmap_atomic(kaddr1);
8357376d
RW
2330}
2331
2332/**
2333 * restore_highmem - for each highmem page that was allocated before
2334 * the suspend and included in the suspend image, and also has been
2335 * allocated by the "resume" kernel swap its current (ie. "before
2336 * resume") contents with the previous (ie. "before suspend") one.
2337 *
2338 * If the resume eventually fails, we can call this function once
2339 * again and restore the "before resume" highmem state.
2340 */
2341
2342int restore_highmem(void)
2343{
2344 struct highmem_pbe *pbe = highmem_pblist;
2345 void *buf;
2346
2347 if (!pbe)
2348 return 0;
2349
2350 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2351 if (!buf)
2352 return -ENOMEM;
2353
2354 while (pbe) {
2355 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2356 pbe = pbe->next;
2357 }
2358 free_image_page(buf, PG_UNSAFE_CLEAR);
2359 return 0;
f577eb30 2360}
8357376d 2361#endif /* CONFIG_HIGHMEM */