posix-timers: sys_timer_create: cleanup the error handling
[linux-block.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
200/*
becf8b5d 201 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 202 */
a924b04d 203static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
204{
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
1da177e4
LT
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
1da177e4
LT
213 return 1;
214}
215
becf8b5d
TG
216/*
217 * Get monotonic time for posix timers
218 */
219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220{
221 ktime_get_ts(tp);
222 return 0;
223}
1da177e4
LT
224
225/*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228static __init int init_posix_timers(void)
229{
becf8b5d
TG
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
1da177e4 232 };
becf8b5d
TG
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
1da177e4
LT
237 };
238
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
241
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
1da177e4
LT
245 idr_init(&posix_timers_id);
246 return 0;
247}
248
249__initcall(init_posix_timers);
250
1da177e4
LT
251static void schedule_next_timer(struct k_itimer *timr)
252{
44f21475
RZ
253 struct hrtimer *timer = &timr->it.real.timer;
254
becf8b5d 255 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
256 return;
257
4d672e7a
DL
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
44f21475 261
1da177e4
LT
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
44f21475 265 hrtimer_restart(timer);
1da177e4
LT
266}
267
268/*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279void do_schedule_next_timer(struct siginfo *info)
280{
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
becf8b5d
TG
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
1da177e4 291
54da1174 292 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
293 }
294
b6557fbc
TG
295 if (timr)
296 unlock_timer(timr, flags);
1da177e4
LT
297}
298
ba661292 299int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 300{
4aa73611 301 int shared, ret;
ba661292
ON
302 /*
303 * FIXME: if ->sigq is queued we can race with
304 * dequeue_signal()->do_schedule_next_timer().
305 *
306 * If dequeue_signal() sees the "right" value of
307 * si_sys_private it calls do_schedule_next_timer().
308 * We re-queue ->sigq and drop ->it_lock().
309 * do_schedule_next_timer() locks the timer
310 * and re-schedules it while ->sigq is pending.
311 * Not really bad, but not that we want.
312 */
1da177e4 313 timr->sigq->info.si_sys_private = si_private;
1da177e4 314
4aa73611
ON
315 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
316 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
317 /* If we failed to send the signal the timer stops. */
318 return ret > 0;
1da177e4
LT
319}
320EXPORT_SYMBOL_GPL(posix_timer_event);
321
322/*
323 * This function gets called when a POSIX.1b interval timer expires. It
324 * is used as a callback from the kernel internal timer. The
325 * run_timer_list code ALWAYS calls with interrupts on.
326
327 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
328 */
c9cb2e3d 329static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 330{
05cfb614 331 struct k_itimer *timr;
1da177e4 332 unsigned long flags;
becf8b5d 333 int si_private = 0;
c9cb2e3d 334 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 335
05cfb614 336 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 337 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 338
becf8b5d
TG
339 if (timr->it.real.interval.tv64 != 0)
340 si_private = ++timr->it_requeue_pending;
1da177e4 341
becf8b5d
TG
342 if (posix_timer_event(timr, si_private)) {
343 /*
344 * signal was not sent because of sig_ignor
345 * we will not get a call back to restart it AND
346 * it should be restarted.
347 */
348 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
349 ktime_t now = hrtimer_cb_get_time(timer);
350
351 /*
352 * FIXME: What we really want, is to stop this
353 * timer completely and restart it in case the
354 * SIG_IGN is removed. This is a non trivial
355 * change which involves sighand locking
356 * (sigh !), which we don't want to do late in
357 * the release cycle.
358 *
359 * For now we just let timers with an interval
360 * less than a jiffie expire every jiffie to
361 * avoid softirq starvation in case of SIG_IGN
362 * and a very small interval, which would put
363 * the timer right back on the softirq pending
364 * list. By moving now ahead of time we trick
365 * hrtimer_forward() to expire the timer
366 * later, while we still maintain the overrun
367 * accuracy, but have some inconsistency in
368 * the timer_gettime() case. This is at least
369 * better than a starved softirq. A more
370 * complex fix which solves also another related
371 * inconsistency is already in the pipeline.
372 */
373#ifdef CONFIG_HIGH_RES_TIMERS
374 {
375 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
376
377 if (timr->it.real.interval.tv64 < kj.tv64)
378 now = ktime_add(now, kj);
379 }
380#endif
4d672e7a 381 timr->it_overrun += (unsigned int)
58229a18 382 hrtimer_forward(timer, now,
becf8b5d
TG
383 timr->it.real.interval);
384 ret = HRTIMER_RESTART;
a0a0c28c 385 ++timr->it_requeue_pending;
1da177e4 386 }
1da177e4 387 }
1da177e4 388
becf8b5d
TG
389 unlock_timer(timr, flags);
390 return ret;
391}
1da177e4 392
858119e1 393static struct task_struct * good_sigevent(sigevent_t * event)
1da177e4
LT
394{
395 struct task_struct *rtn = current->group_leader;
396
397 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 398 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 399 !same_thread_group(rtn, current) ||
1da177e4
LT
400 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
401 return NULL;
402
403 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
404 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
405 return NULL;
406
407 return rtn;
408}
409
a924b04d 410void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
411{
412 if ((unsigned) clock_id >= MAX_CLOCKS) {
413 printk("POSIX clock register failed for clock_id %d\n",
414 clock_id);
415 return;
416 }
417
418 posix_clocks[clock_id] = *new_clock;
419}
420EXPORT_SYMBOL_GPL(register_posix_clock);
421
422static struct k_itimer * alloc_posix_timer(void)
423{
424 struct k_itimer *tmr;
c3762229 425 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
426 if (!tmr)
427 return tmr;
1da177e4
LT
428 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
429 kmem_cache_free(posix_timers_cache, tmr);
430 tmr = NULL;
431 }
ba661292 432 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
433 return tmr;
434}
435
436#define IT_ID_SET 1
437#define IT_ID_NOT_SET 0
438static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
439{
440 if (it_id_set) {
441 unsigned long flags;
442 spin_lock_irqsave(&idr_lock, flags);
443 idr_remove(&posix_timers_id, tmr->it_id);
444 spin_unlock_irqrestore(&idr_lock, flags);
445 }
446 sigqueue_free(tmr->sigq);
1da177e4
LT
447 kmem_cache_free(posix_timers_cache, tmr);
448}
449
450/* Create a POSIX.1b interval timer. */
451
452asmlinkage long
a924b04d 453sys_timer_create(const clockid_t which_clock,
1da177e4
LT
454 struct sigevent __user *timer_event_spec,
455 timer_t __user * created_timer_id)
456{
2cd499e3 457 struct k_itimer *new_timer;
ef864c95 458 int error, new_timer_id;
2cd499e3 459 struct task_struct *process;
1da177e4
LT
460 sigevent_t event;
461 int it_id_set = IT_ID_NOT_SET;
462
463 if (invalid_clockid(which_clock))
464 return -EINVAL;
465
466 new_timer = alloc_posix_timer();
467 if (unlikely(!new_timer))
468 return -EAGAIN;
469
470 spin_lock_init(&new_timer->it_lock);
471 retry:
472 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
473 error = -EAGAIN;
474 goto out;
475 }
476 spin_lock_irq(&idr_lock);
becf8b5d 477 error = idr_get_new(&posix_timers_id, (void *) new_timer,
1da177e4
LT
478 &new_timer_id);
479 spin_unlock_irq(&idr_lock);
ef864c95
ON
480 if (error) {
481 if (error == -EAGAIN)
482 goto retry;
1da177e4 483 /*
0b0a3e7b 484 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
485 * full (proper POSIX return value for this)
486 */
487 error = -EAGAIN;
488 goto out;
489 }
490
491 it_id_set = IT_ID_SET;
492 new_timer->it_id = (timer_t) new_timer_id;
493 new_timer->it_clock = which_clock;
494 new_timer->it_overrun = -1;
495 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
496 if (error)
497 goto out;
498
499 /*
500 * return the timer_id now. The next step is hard to
501 * back out if there is an error.
502 */
503 if (copy_to_user(created_timer_id,
504 &new_timer_id, sizeof (new_timer_id))) {
505 error = -EFAULT;
506 goto out;
507 }
508 if (timer_event_spec) {
509 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
510 error = -EFAULT;
511 goto out;
512 }
513 new_timer->it_sigev_notify = event.sigev_notify;
514 new_timer->it_sigev_signo = event.sigev_signo;
515 new_timer->it_sigev_value = event.sigev_value;
516
36b2f046
ON
517 rcu_read_lock();
518 process = good_sigevent(&event);
519 if (process)
2cd499e3 520 get_task_struct(process);
36b2f046 521 rcu_read_unlock();
1da177e4
LT
522 if (!process) {
523 error = -EINVAL;
524 goto out;
525 }
526 } else {
527 new_timer->it_sigev_notify = SIGEV_SIGNAL;
528 new_timer->it_sigev_signo = SIGALRM;
529 new_timer->it_sigev_value.sival_int = new_timer->it_id;
530 process = current->group_leader;
918fc037 531 get_task_struct(process);
1da177e4
LT
532 }
533
717835d9
ON
534 new_timer->sigq->info.si_code = SI_TIMER;
535 new_timer->sigq->info.si_tid = new_timer->it_id;
536 new_timer->sigq->info.si_signo = new_timer->it_sigev_signo;
537 new_timer->sigq->info.si_value = new_timer->it_sigev_value;
538
36b2f046
ON
539 spin_lock_irq(&current->sighand->siglock);
540 new_timer->it_process = process;
541 list_add(&new_timer->list, &current->signal->posix_timers);
542 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
543
544 return 0;
1da177e4
LT
545 /*
546 * In the case of the timer belonging to another task, after
547 * the task is unlocked, the timer is owned by the other task
548 * and may cease to exist at any time. Don't use or modify
549 * new_timer after the unlock call.
550 */
1da177e4 551out:
ef864c95 552 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
553 return error;
554}
555
1da177e4
LT
556/*
557 * Locking issues: We need to protect the result of the id look up until
558 * we get the timer locked down so it is not deleted under us. The
559 * removal is done under the idr spinlock so we use that here to bridge
560 * the find to the timer lock. To avoid a dead lock, the timer id MUST
561 * be release with out holding the timer lock.
562 */
563static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
564{
565 struct k_itimer *timr;
566 /*
567 * Watch out here. We do a irqsave on the idr_lock and pass the
568 * flags part over to the timer lock. Must not let interrupts in
569 * while we are moving the lock.
570 */
571
572 spin_lock_irqsave(&idr_lock, *flags);
573 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
574 if (timr) {
575 spin_lock(&timr->it_lock);
1da177e4
LT
576
577 if ((timr->it_id != timer_id) || !(timr->it_process) ||
bac0abd6 578 !same_thread_group(timr->it_process, current)) {
179394af
TG
579 spin_unlock(&timr->it_lock);
580 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 581 timr = NULL;
179394af
TG
582 } else
583 spin_unlock(&idr_lock);
1da177e4
LT
584 } else
585 spin_unlock_irqrestore(&idr_lock, *flags);
586
587 return timr;
588}
589
590/*
591 * Get the time remaining on a POSIX.1b interval timer. This function
592 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
593 * mess with irq.
594 *
595 * We have a couple of messes to clean up here. First there is the case
596 * of a timer that has a requeue pending. These timers should appear to
597 * be in the timer list with an expiry as if we were to requeue them
598 * now.
599 *
600 * The second issue is the SIGEV_NONE timer which may be active but is
601 * not really ever put in the timer list (to save system resources).
602 * This timer may be expired, and if so, we will do it here. Otherwise
603 * it is the same as a requeue pending timer WRT to what we should
604 * report.
605 */
606static void
607common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
608{
3b98a532 609 ktime_t now, remaining, iv;
becf8b5d 610 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 611
becf8b5d 612 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 613
3b98a532
RZ
614 iv = timr->it.real.interval;
615
becf8b5d 616 /* interval timer ? */
3b98a532
RZ
617 if (iv.tv64)
618 cur_setting->it_interval = ktime_to_timespec(iv);
619 else if (!hrtimer_active(timer) &&
620 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 621 return;
3b98a532
RZ
622
623 now = timer->base->get_time();
624
becf8b5d 625 /*
3b98a532
RZ
626 * When a requeue is pending or this is a SIGEV_NONE
627 * timer move the expiry time forward by intervals, so
628 * expiry is > now.
becf8b5d 629 */
3b98a532
RZ
630 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
631 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 632 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532
RZ
633
634 remaining = ktime_sub(timer->expires, now);
becf8b5d 635 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
636 if (remaining.tv64 <= 0) {
637 /*
638 * A single shot SIGEV_NONE timer must return 0, when
639 * it is expired !
640 */
641 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
642 cur_setting->it_value.tv_nsec = 1;
643 } else
becf8b5d 644 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
645}
646
647/* Get the time remaining on a POSIX.1b interval timer. */
648asmlinkage long
649sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
650{
651 struct k_itimer *timr;
652 struct itimerspec cur_setting;
653 unsigned long flags;
654
655 timr = lock_timer(timer_id, &flags);
656 if (!timr)
657 return -EINVAL;
658
659 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
660
661 unlock_timer(timr, flags);
662
663 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
664 return -EFAULT;
665
666 return 0;
667}
becf8b5d 668
1da177e4
LT
669/*
670 * Get the number of overruns of a POSIX.1b interval timer. This is to
671 * be the overrun of the timer last delivered. At the same time we are
672 * accumulating overruns on the next timer. The overrun is frozen when
673 * the signal is delivered, either at the notify time (if the info block
674 * is not queued) or at the actual delivery time (as we are informed by
675 * the call back to do_schedule_next_timer(). So all we need to do is
676 * to pick up the frozen overrun.
677 */
1da177e4
LT
678asmlinkage long
679sys_timer_getoverrun(timer_t timer_id)
680{
681 struct k_itimer *timr;
682 int overrun;
5ba25331 683 unsigned long flags;
1da177e4
LT
684
685 timr = lock_timer(timer_id, &flags);
686 if (!timr)
687 return -EINVAL;
688
689 overrun = timr->it_overrun_last;
690 unlock_timer(timr, flags);
691
692 return overrun;
693}
1da177e4
LT
694
695/* Set a POSIX.1b interval timer. */
696/* timr->it_lock is taken. */
858119e1 697static int
1da177e4
LT
698common_timer_set(struct k_itimer *timr, int flags,
699 struct itimerspec *new_setting, struct itimerspec *old_setting)
700{
becf8b5d 701 struct hrtimer *timer = &timr->it.real.timer;
7978672c 702 enum hrtimer_mode mode;
1da177e4
LT
703
704 if (old_setting)
705 common_timer_get(timr, old_setting);
706
707 /* disable the timer */
becf8b5d 708 timr->it.real.interval.tv64 = 0;
1da177e4
LT
709 /*
710 * careful here. If smp we could be in the "fire" routine which will
711 * be spinning as we hold the lock. But this is ONLY an SMP issue.
712 */
becf8b5d 713 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 714 return TIMER_RETRY;
1da177e4
LT
715
716 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
717 ~REQUEUE_PENDING;
718 timr->it_overrun_last = 0;
1da177e4 719
becf8b5d
TG
720 /* switch off the timer when it_value is zero */
721 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
722 return 0;
1da177e4 723
c9cb2e3d 724 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 725 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 726 timr->it.real.timer.function = posix_timer_fn;
becf8b5d
TG
727
728 timer->expires = timespec_to_ktime(new_setting->it_value);
729
730 /* Convert interval */
731 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
732
733 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
734 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
735 /* Setup correct expiry time for relative timers */
5a7780e7
TG
736 if (mode == HRTIMER_MODE_REL) {
737 timer->expires =
738 ktime_add_safe(timer->expires,
739 timer->base->get_time());
740 }
becf8b5d 741 return 0;
952bbc87 742 }
becf8b5d 743
7978672c 744 hrtimer_start(timer, timer->expires, mode);
1da177e4
LT
745 return 0;
746}
747
748/* Set a POSIX.1b interval timer */
749asmlinkage long
750sys_timer_settime(timer_t timer_id, int flags,
751 const struct itimerspec __user *new_setting,
752 struct itimerspec __user *old_setting)
753{
754 struct k_itimer *timr;
755 struct itimerspec new_spec, old_spec;
756 int error = 0;
5ba25331 757 unsigned long flag;
1da177e4
LT
758 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
759
760 if (!new_setting)
761 return -EINVAL;
762
763 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
764 return -EFAULT;
765
becf8b5d
TG
766 if (!timespec_valid(&new_spec.it_interval) ||
767 !timespec_valid(&new_spec.it_value))
1da177e4
LT
768 return -EINVAL;
769retry:
770 timr = lock_timer(timer_id, &flag);
771 if (!timr)
772 return -EINVAL;
773
774 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
775 (timr, flags, &new_spec, rtn));
776
777 unlock_timer(timr, flag);
778 if (error == TIMER_RETRY) {
779 rtn = NULL; // We already got the old time...
780 goto retry;
781 }
782
becf8b5d
TG
783 if (old_setting && !error &&
784 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
785 error = -EFAULT;
786
787 return error;
788}
789
790static inline int common_timer_del(struct k_itimer *timer)
791{
becf8b5d 792 timer->it.real.interval.tv64 = 0;
f972be33 793
becf8b5d 794 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 795 return TIMER_RETRY;
1da177e4
LT
796 return 0;
797}
798
799static inline int timer_delete_hook(struct k_itimer *timer)
800{
801 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
802}
803
804/* Delete a POSIX.1b interval timer. */
805asmlinkage long
806sys_timer_delete(timer_t timer_id)
807{
808 struct k_itimer *timer;
5ba25331 809 unsigned long flags;
1da177e4 810
1da177e4 811retry_delete:
1da177e4
LT
812 timer = lock_timer(timer_id, &flags);
813 if (!timer)
814 return -EINVAL;
815
becf8b5d 816 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
817 unlock_timer(timer, flags);
818 goto retry_delete;
819 }
becf8b5d 820
1da177e4
LT
821 spin_lock(&current->sighand->siglock);
822 list_del(&timer->list);
823 spin_unlock(&current->sighand->siglock);
824 /*
825 * This keeps any tasks waiting on the spin lock from thinking
826 * they got something (see the lock code above).
827 */
918fc037 828 put_task_struct(timer->it_process);
4b7a1304
ON
829 timer->it_process = NULL;
830
1da177e4
LT
831 unlock_timer(timer, flags);
832 release_posix_timer(timer, IT_ID_SET);
833 return 0;
834}
becf8b5d 835
1da177e4
LT
836/*
837 * return timer owned by the process, used by exit_itimers
838 */
858119e1 839static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
840{
841 unsigned long flags;
842
1da177e4 843retry_delete:
1da177e4
LT
844 spin_lock_irqsave(&timer->it_lock, flags);
845
becf8b5d 846 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
847 unlock_timer(timer, flags);
848 goto retry_delete;
849 }
1da177e4
LT
850 list_del(&timer->list);
851 /*
852 * This keeps any tasks waiting on the spin lock from thinking
853 * they got something (see the lock code above).
854 */
918fc037 855 put_task_struct(timer->it_process);
4b7a1304
ON
856 timer->it_process = NULL;
857
1da177e4
LT
858 unlock_timer(timer, flags);
859 release_posix_timer(timer, IT_ID_SET);
860}
861
862/*
25f407f0 863 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
864 * references to the shared signal_struct.
865 */
866void exit_itimers(struct signal_struct *sig)
867{
868 struct k_itimer *tmr;
869
870 while (!list_empty(&sig->posix_timers)) {
871 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
872 itimer_delete(tmr);
873 }
874}
875
becf8b5d 876/* Not available / possible... functions */
a924b04d 877int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
878{
879 return -EINVAL;
880}
881EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
882
a924b04d 883int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 884 struct timespec *t, struct timespec __user *r)
1da177e4
LT
885{
886#ifndef ENOTSUP
887 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
888#else /* parisc does define it separately. */
889 return -ENOTSUP;
890#endif
891}
892EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
893
a924b04d
TG
894asmlinkage long sys_clock_settime(const clockid_t which_clock,
895 const struct timespec __user *tp)
1da177e4
LT
896{
897 struct timespec new_tp;
898
899 if (invalid_clockid(which_clock))
900 return -EINVAL;
901 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
902 return -EFAULT;
903
904 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
905}
906
907asmlinkage long
a924b04d 908sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
909{
910 struct timespec kernel_tp;
911 int error;
912
913 if (invalid_clockid(which_clock))
914 return -EINVAL;
915 error = CLOCK_DISPATCH(which_clock, clock_get,
916 (which_clock, &kernel_tp));
917 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
918 error = -EFAULT;
919
920 return error;
921
922}
923
924asmlinkage long
a924b04d 925sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
926{
927 struct timespec rtn_tp;
928 int error;
929
930 if (invalid_clockid(which_clock))
931 return -EINVAL;
932
933 error = CLOCK_DISPATCH(which_clock, clock_getres,
934 (which_clock, &rtn_tp));
935
936 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
937 error = -EFAULT;
938 }
939
940 return error;
941}
942
97735f25
TG
943/*
944 * nanosleep for monotonic and realtime clocks
945 */
946static int common_nsleep(const clockid_t which_clock, int flags,
947 struct timespec *tsave, struct timespec __user *rmtp)
948{
080344b9
ON
949 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
950 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
951 which_clock);
97735f25 952}
1da177e4
LT
953
954asmlinkage long
a924b04d 955sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
956 const struct timespec __user *rqtp,
957 struct timespec __user *rmtp)
958{
959 struct timespec t;
1da177e4
LT
960
961 if (invalid_clockid(which_clock))
962 return -EINVAL;
963
964 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
965 return -EFAULT;
966
5f82b2b7 967 if (!timespec_valid(&t))
1da177e4
LT
968 return -EINVAL;
969
97735f25
TG
970 return CLOCK_DISPATCH(which_clock, nsleep,
971 (which_clock, flags, &t, rmtp));
1da177e4 972}
1711ef38
TA
973
974/*
975 * nanosleep_restart for monotonic and realtime clocks
976 */
977static int common_nsleep_restart(struct restart_block *restart_block)
978{
979 return hrtimer_nanosleep_restart(restart_block);
980}
981
982/*
983 * This will restart clock_nanosleep. This is required only by
984 * compat_clock_nanosleep_restart for now.
985 */
986long
987clock_nanosleep_restart(struct restart_block *restart_block)
988{
989 clockid_t which_clock = restart_block->arg0;
990
991 return CLOCK_DISPATCH(which_clock, nsleep_restart,
992 (restart_block));
993}