drbd: Fix build error when CONFIG_CRYPTO_HMAC is not set
[linux-block.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
0606f422 44#include <linux/posix-clock.h>
1da177e4
LT
45#include <linux/posix-timers.h>
46#include <linux/syscalls.h>
47#include <linux/wait.h>
48#include <linux/workqueue.h>
9984de1a 49#include <linux/export.h>
1da177e4 50
1da177e4
LT
51/*
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
55 *
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
67 */
68
69/*
70 * Lets keep our timers in a slab cache :-)
71 */
e18b890b 72static struct kmem_cache *posix_timers_cache;
1da177e4
LT
73static struct idr posix_timers_id;
74static DEFINE_SPINLOCK(idr_lock);
75
1da177e4
LT
76/*
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
79 */
80#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83#endif
84
65da528d
TG
85/*
86 * parisc wants ENOTSUP instead of EOPNOTSUPP
87 */
88#ifndef ENOTSUP
89# define ENANOSLEEP_NOTSUP EOPNOTSUPP
90#else
91# define ENANOSLEEP_NOTSUP ENOTSUP
92#endif
1da177e4
LT
93
94/*
95 * The timer ID is turned into a timer address by idr_find().
96 * Verifying a valid ID consists of:
97 *
98 * a) checking that idr_find() returns other than -1.
99 * b) checking that the timer id matches the one in the timer itself.
100 * c) that the timer owner is in the callers thread group.
101 */
102
103/*
104 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
105 * to implement others. This structure defines the various
0061748d 106 * clocks.
1da177e4
LT
107 *
108 * RESOLUTION: Clock resolution is used to round up timer and interval
109 * times, NOT to report clock times, which are reported with as
110 * much resolution as the system can muster. In some cases this
111 * resolution may depend on the underlying clock hardware and
112 * may not be quantifiable until run time, and only then is the
113 * necessary code is written. The standard says we should say
114 * something about this issue in the documentation...
115 *
0061748d
RC
116 * FUNCTIONS: The CLOCKs structure defines possible functions to
117 * handle various clock functions.
1da177e4 118 *
0061748d
RC
119 * The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for
121 * the timer. 2.) The list, it_lock, it_clock, it_id and
122 * it_pid fields are not modified by timer code.
1da177e4
LT
123 *
124 * Permissions: It is assumed that the clock_settime() function defined
125 * for each clock will take care of permission checks. Some
126 * clocks may be set able by any user (i.e. local process
127 * clocks) others not. Currently the only set able clock we
128 * have is CLOCK_REALTIME and its high res counter part, both of
129 * which we beg off on and pass to do_sys_settimeofday().
130 */
131
132static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 133
1da177e4 134/*
becf8b5d 135 * These ones are defined below.
1da177e4 136 */
becf8b5d
TG
137static int common_nsleep(const clockid_t, int flags, struct timespec *t,
138 struct timespec __user *rmtp);
838394fb 139static int common_timer_create(struct k_itimer *new_timer);
becf8b5d
TG
140static void common_timer_get(struct k_itimer *, struct itimerspec *);
141static int common_timer_set(struct k_itimer *, int,
142 struct itimerspec *, struct itimerspec *);
143static int common_timer_del(struct k_itimer *timer);
1da177e4 144
c9cb2e3d 145static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4 146
20f33a03
NK
147static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
148
149#define lock_timer(tid, flags) \
150({ struct k_itimer *__timr; \
151 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
152 __timr; \
153})
1da177e4
LT
154
155static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
156{
157 spin_unlock_irqrestore(&timr->it_lock, flags);
158}
159
42285777
TG
160/* Get clock_realtime */
161static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
162{
163 ktime_get_real_ts(tp);
164 return 0;
165}
166
26f9a479
TG
167/* Set clock_realtime */
168static int posix_clock_realtime_set(const clockid_t which_clock,
169 const struct timespec *tp)
170{
171 return do_sys_settimeofday(tp, NULL);
172}
173
f1f1d5eb
RC
174static int posix_clock_realtime_adj(const clockid_t which_clock,
175 struct timex *t)
176{
177 return do_adjtimex(t);
178}
179
becf8b5d
TG
180/*
181 * Get monotonic time for posix timers
182 */
183static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
184{
185 ktime_get_ts(tp);
186 return 0;
187}
1da177e4 188
2d42244a 189/*
7fdd7f89 190 * Get monotonic-raw time for posix timers
2d42244a
JS
191 */
192static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
193{
194 getrawmonotonic(tp);
195 return 0;
196}
197
da15cfda 198
199static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
200{
201 *tp = current_kernel_time();
202 return 0;
203}
204
205static int posix_get_monotonic_coarse(clockid_t which_clock,
206 struct timespec *tp)
207{
208 *tp = get_monotonic_coarse();
209 return 0;
210}
211
6622e670 212static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda 213{
214 *tp = ktime_to_timespec(KTIME_LOW_RES);
215 return 0;
216}
7fdd7f89
JS
217
218static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
219{
220 get_monotonic_boottime(tp);
221 return 0;
222}
223
224
1da177e4
LT
225/*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228static __init int init_posix_timers(void)
229{
becf8b5d 230 struct k_clock clock_realtime = {
2fd1f040 231 .clock_getres = hrtimer_get_res,
42285777 232 .clock_get = posix_clock_realtime_get,
26f9a479 233 .clock_set = posix_clock_realtime_set,
f1f1d5eb 234 .clock_adj = posix_clock_realtime_adj,
a5cd2880 235 .nsleep = common_nsleep,
59bd5bc2 236 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 237 .timer_create = common_timer_create,
27722df1 238 .timer_set = common_timer_set,
a7319fa2 239 .timer_get = common_timer_get,
6761c670 240 .timer_del = common_timer_del,
1da177e4 241 };
becf8b5d 242 struct k_clock clock_monotonic = {
2fd1f040
TG
243 .clock_getres = hrtimer_get_res,
244 .clock_get = posix_ktime_get_ts,
a5cd2880 245 .nsleep = common_nsleep,
59bd5bc2 246 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 247 .timer_create = common_timer_create,
27722df1 248 .timer_set = common_timer_set,
a7319fa2 249 .timer_get = common_timer_get,
6761c670 250 .timer_del = common_timer_del,
1da177e4 251 };
2d42244a 252 struct k_clock clock_monotonic_raw = {
2fd1f040
TG
253 .clock_getres = hrtimer_get_res,
254 .clock_get = posix_get_monotonic_raw,
2d42244a 255 };
da15cfda 256 struct k_clock clock_realtime_coarse = {
2fd1f040
TG
257 .clock_getres = posix_get_coarse_res,
258 .clock_get = posix_get_realtime_coarse,
da15cfda 259 };
260 struct k_clock clock_monotonic_coarse = {
2fd1f040
TG
261 .clock_getres = posix_get_coarse_res,
262 .clock_get = posix_get_monotonic_coarse,
da15cfda 263 };
7fdd7f89
JS
264 struct k_clock clock_boottime = {
265 .clock_getres = hrtimer_get_res,
266 .clock_get = posix_get_boottime,
267 .nsleep = common_nsleep,
268 .nsleep_restart = hrtimer_nanosleep_restart,
269 .timer_create = common_timer_create,
270 .timer_set = common_timer_set,
271 .timer_get = common_timer_get,
272 .timer_del = common_timer_del,
273 };
1da177e4 274
52708737
TG
275 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
276 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
277 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
278 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
279 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
7fdd7f89 280 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
1da177e4
LT
281
282 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
283 sizeof (struct k_itimer), 0, SLAB_PANIC,
284 NULL);
1da177e4
LT
285 idr_init(&posix_timers_id);
286 return 0;
287}
288
289__initcall(init_posix_timers);
290
1da177e4
LT
291static void schedule_next_timer(struct k_itimer *timr)
292{
44f21475
RZ
293 struct hrtimer *timer = &timr->it.real.timer;
294
becf8b5d 295 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
296 return;
297
4d672e7a
DL
298 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
299 timer->base->get_time(),
300 timr->it.real.interval);
44f21475 301
1da177e4
LT
302 timr->it_overrun_last = timr->it_overrun;
303 timr->it_overrun = -1;
304 ++timr->it_requeue_pending;
44f21475 305 hrtimer_restart(timer);
1da177e4
LT
306}
307
308/*
309 * This function is exported for use by the signal deliver code. It is
310 * called just prior to the info block being released and passes that
311 * block to us. It's function is to update the overrun entry AND to
312 * restart the timer. It should only be called if the timer is to be
313 * restarted (i.e. we have flagged this in the sys_private entry of the
314 * info block).
315 *
25985edc 316 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
317 * we require that the it_requeue_pending flag be set.
318 */
319void do_schedule_next_timer(struct siginfo *info)
320{
321 struct k_itimer *timr;
322 unsigned long flags;
323
324 timr = lock_timer(info->si_tid, &flags);
325
becf8b5d
TG
326 if (timr && timr->it_requeue_pending == info->si_sys_private) {
327 if (timr->it_clock < 0)
328 posix_cpu_timer_schedule(timr);
329 else
330 schedule_next_timer(timr);
1da177e4 331
54da1174 332 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
333 }
334
b6557fbc
TG
335 if (timr)
336 unlock_timer(timr, flags);
1da177e4
LT
337}
338
ba661292 339int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 340{
27af4245
ON
341 struct task_struct *task;
342 int shared, ret = -1;
ba661292
ON
343 /*
344 * FIXME: if ->sigq is queued we can race with
345 * dequeue_signal()->do_schedule_next_timer().
346 *
347 * If dequeue_signal() sees the "right" value of
348 * si_sys_private it calls do_schedule_next_timer().
349 * We re-queue ->sigq and drop ->it_lock().
350 * do_schedule_next_timer() locks the timer
351 * and re-schedules it while ->sigq is pending.
352 * Not really bad, but not that we want.
353 */
1da177e4 354 timr->sigq->info.si_sys_private = si_private;
1da177e4 355
27af4245
ON
356 rcu_read_lock();
357 task = pid_task(timr->it_pid, PIDTYPE_PID);
358 if (task) {
359 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
360 ret = send_sigqueue(timr->sigq, task, shared);
361 }
362 rcu_read_unlock();
4aa73611
ON
363 /* If we failed to send the signal the timer stops. */
364 return ret > 0;
1da177e4
LT
365}
366EXPORT_SYMBOL_GPL(posix_timer_event);
367
368/*
369 * This function gets called when a POSIX.1b interval timer expires. It
370 * is used as a callback from the kernel internal timer. The
371 * run_timer_list code ALWAYS calls with interrupts on.
372
373 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
374 */
c9cb2e3d 375static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 376{
05cfb614 377 struct k_itimer *timr;
1da177e4 378 unsigned long flags;
becf8b5d 379 int si_private = 0;
c9cb2e3d 380 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 381
05cfb614 382 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 383 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 384
becf8b5d
TG
385 if (timr->it.real.interval.tv64 != 0)
386 si_private = ++timr->it_requeue_pending;
1da177e4 387
becf8b5d
TG
388 if (posix_timer_event(timr, si_private)) {
389 /*
390 * signal was not sent because of sig_ignor
391 * we will not get a call back to restart it AND
392 * it should be restarted.
393 */
394 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
395 ktime_t now = hrtimer_cb_get_time(timer);
396
397 /*
398 * FIXME: What we really want, is to stop this
399 * timer completely and restart it in case the
400 * SIG_IGN is removed. This is a non trivial
401 * change which involves sighand locking
402 * (sigh !), which we don't want to do late in
403 * the release cycle.
404 *
405 * For now we just let timers with an interval
406 * less than a jiffie expire every jiffie to
407 * avoid softirq starvation in case of SIG_IGN
408 * and a very small interval, which would put
409 * the timer right back on the softirq pending
410 * list. By moving now ahead of time we trick
411 * hrtimer_forward() to expire the timer
412 * later, while we still maintain the overrun
413 * accuracy, but have some inconsistency in
414 * the timer_gettime() case. This is at least
415 * better than a starved softirq. A more
416 * complex fix which solves also another related
417 * inconsistency is already in the pipeline.
418 */
419#ifdef CONFIG_HIGH_RES_TIMERS
420 {
421 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
422
423 if (timr->it.real.interval.tv64 < kj.tv64)
424 now = ktime_add(now, kj);
425 }
426#endif
4d672e7a 427 timr->it_overrun += (unsigned int)
58229a18 428 hrtimer_forward(timer, now,
becf8b5d
TG
429 timr->it.real.interval);
430 ret = HRTIMER_RESTART;
a0a0c28c 431 ++timr->it_requeue_pending;
1da177e4 432 }
1da177e4 433 }
1da177e4 434
becf8b5d
TG
435 unlock_timer(timr, flags);
436 return ret;
437}
1da177e4 438
27af4245 439static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
440{
441 struct task_struct *rtn = current->group_leader;
442
443 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 444 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 445 !same_thread_group(rtn, current) ||
1da177e4
LT
446 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
447 return NULL;
448
449 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
450 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
451 return NULL;
452
27af4245 453 return task_pid(rtn);
1da177e4
LT
454}
455
52708737
TG
456void posix_timers_register_clock(const clockid_t clock_id,
457 struct k_clock *new_clock)
1da177e4
LT
458{
459 if ((unsigned) clock_id >= MAX_CLOCKS) {
4359ac0a
TG
460 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
461 clock_id);
462 return;
463 }
464
465 if (!new_clock->clock_get) {
466 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
467 clock_id);
468 return;
469 }
470 if (!new_clock->clock_getres) {
471 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
1da177e4
LT
472 clock_id);
473 return;
474 }
475
476 posix_clocks[clock_id] = *new_clock;
477}
52708737 478EXPORT_SYMBOL_GPL(posix_timers_register_clock);
1da177e4
LT
479
480static struct k_itimer * alloc_posix_timer(void)
481{
482 struct k_itimer *tmr;
c3762229 483 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
484 if (!tmr)
485 return tmr;
1da177e4
LT
486 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
487 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 488 return NULL;
1da177e4 489 }
ba661292 490 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
491 return tmr;
492}
493
8af08871
ED
494static void k_itimer_rcu_free(struct rcu_head *head)
495{
496 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
497
498 kmem_cache_free(posix_timers_cache, tmr);
499}
500
1da177e4
LT
501#define IT_ID_SET 1
502#define IT_ID_NOT_SET 0
503static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
504{
505 if (it_id_set) {
506 unsigned long flags;
507 spin_lock_irqsave(&idr_lock, flags);
508 idr_remove(&posix_timers_id, tmr->it_id);
509 spin_unlock_irqrestore(&idr_lock, flags);
510 }
89992102 511 put_pid(tmr->it_pid);
1da177e4 512 sigqueue_free(tmr->sigq);
8af08871 513 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
514}
515
cc785ac2
TG
516static struct k_clock *clockid_to_kclock(const clockid_t id)
517{
518 if (id < 0)
0606f422
RC
519 return (id & CLOCKFD_MASK) == CLOCKFD ?
520 &clock_posix_dynamic : &clock_posix_cpu;
cc785ac2
TG
521
522 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
523 return NULL;
524 return &posix_clocks[id];
525}
526
838394fb
TG
527static int common_timer_create(struct k_itimer *new_timer)
528{
529 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
530 return 0;
531}
532
1da177e4
LT
533/* Create a POSIX.1b interval timer. */
534
362e9c07
HC
535SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
536 struct sigevent __user *, timer_event_spec,
537 timer_t __user *, created_timer_id)
1da177e4 538{
838394fb 539 struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 540 struct k_itimer *new_timer;
ef864c95 541 int error, new_timer_id;
1da177e4
LT
542 sigevent_t event;
543 int it_id_set = IT_ID_NOT_SET;
544
838394fb 545 if (!kc)
1da177e4 546 return -EINVAL;
838394fb
TG
547 if (!kc->timer_create)
548 return -EOPNOTSUPP;
1da177e4
LT
549
550 new_timer = alloc_posix_timer();
551 if (unlikely(!new_timer))
552 return -EAGAIN;
553
554 spin_lock_init(&new_timer->it_lock);
ee94d523
TH
555
556 idr_preload(GFP_KERNEL);
1da177e4 557 spin_lock_irq(&idr_lock);
ee94d523 558 error = idr_alloc(&posix_timers_id, new_timer, 0, 0, GFP_NOWAIT);
1da177e4 559 spin_unlock_irq(&idr_lock);
ee94d523
TH
560 idr_preload_end();
561 if (error < 0) {
1da177e4 562 /*
0b0a3e7b 563 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
564 * full (proper POSIX return value for this)
565 */
ee94d523
TH
566 if (error == -ENOSPC)
567 error = -EAGAIN;
1da177e4
LT
568 goto out;
569 }
ee94d523 570 new_timer_id = error;
1da177e4
LT
571
572 it_id_set = IT_ID_SET;
573 new_timer->it_id = (timer_t) new_timer_id;
574 new_timer->it_clock = which_clock;
575 new_timer->it_overrun = -1;
1da177e4 576
1da177e4
LT
577 if (timer_event_spec) {
578 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
579 error = -EFAULT;
580 goto out;
581 }
36b2f046 582 rcu_read_lock();
89992102 583 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 584 rcu_read_unlock();
89992102 585 if (!new_timer->it_pid) {
1da177e4
LT
586 error = -EINVAL;
587 goto out;
588 }
589 } else {
5a9fa730
ON
590 event.sigev_notify = SIGEV_SIGNAL;
591 event.sigev_signo = SIGALRM;
592 event.sigev_value.sival_int = new_timer->it_id;
89992102 593 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
594 }
595
5a9fa730
ON
596 new_timer->it_sigev_notify = event.sigev_notify;
597 new_timer->sigq->info.si_signo = event.sigev_signo;
598 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 599 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 600 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 601
2b08de00
AV
602 if (copy_to_user(created_timer_id,
603 &new_timer_id, sizeof (new_timer_id))) {
604 error = -EFAULT;
605 goto out;
606 }
607
838394fb 608 error = kc->timer_create(new_timer);
45e0fffc
AV
609 if (error)
610 goto out;
611
36b2f046 612 spin_lock_irq(&current->sighand->siglock);
27af4245 613 new_timer->it_signal = current->signal;
36b2f046
ON
614 list_add(&new_timer->list, &current->signal->posix_timers);
615 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
616
617 return 0;
838394fb 618 /*
1da177e4
LT
619 * In the case of the timer belonging to another task, after
620 * the task is unlocked, the timer is owned by the other task
621 * and may cease to exist at any time. Don't use or modify
622 * new_timer after the unlock call.
623 */
1da177e4 624out:
ef864c95 625 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
626 return error;
627}
628
1da177e4
LT
629/*
630 * Locking issues: We need to protect the result of the id look up until
631 * we get the timer locked down so it is not deleted under us. The
632 * removal is done under the idr spinlock so we use that here to bridge
633 * the find to the timer lock. To avoid a dead lock, the timer id MUST
634 * be release with out holding the timer lock.
635 */
20f33a03 636static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
637{
638 struct k_itimer *timr;
8af08871 639
e182bb38
TH
640 /*
641 * timer_t could be any type >= int and we want to make sure any
642 * @timer_id outside positive int range fails lookup.
643 */
644 if ((unsigned long long)timer_id > INT_MAX)
645 return NULL;
646
8af08871 647 rcu_read_lock();
31d92845 648 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4 649 if (timr) {
8af08871 650 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 651 if (timr->it_signal == current->signal) {
8af08871 652 rcu_read_unlock();
31d92845
ON
653 return timr;
654 }
8af08871 655 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 656 }
8af08871 657 rcu_read_unlock();
1da177e4 658
31d92845 659 return NULL;
1da177e4
LT
660}
661
662/*
663 * Get the time remaining on a POSIX.1b interval timer. This function
664 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
665 * mess with irq.
666 *
667 * We have a couple of messes to clean up here. First there is the case
668 * of a timer that has a requeue pending. These timers should appear to
669 * be in the timer list with an expiry as if we were to requeue them
670 * now.
671 *
672 * The second issue is the SIGEV_NONE timer which may be active but is
673 * not really ever put in the timer list (to save system resources).
674 * This timer may be expired, and if so, we will do it here. Otherwise
675 * it is the same as a requeue pending timer WRT to what we should
676 * report.
677 */
678static void
679common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
680{
3b98a532 681 ktime_t now, remaining, iv;
becf8b5d 682 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 683
becf8b5d 684 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 685
3b98a532
RZ
686 iv = timr->it.real.interval;
687
becf8b5d 688 /* interval timer ? */
3b98a532
RZ
689 if (iv.tv64)
690 cur_setting->it_interval = ktime_to_timespec(iv);
691 else if (!hrtimer_active(timer) &&
692 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 693 return;
3b98a532
RZ
694
695 now = timer->base->get_time();
696
becf8b5d 697 /*
3b98a532
RZ
698 * When a requeue is pending or this is a SIGEV_NONE
699 * timer move the expiry time forward by intervals, so
700 * expiry is > now.
becf8b5d 701 */
3b98a532
RZ
702 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
703 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 704 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 705
cc584b21 706 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 707 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
708 if (remaining.tv64 <= 0) {
709 /*
710 * A single shot SIGEV_NONE timer must return 0, when
711 * it is expired !
712 */
713 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
714 cur_setting->it_value.tv_nsec = 1;
715 } else
becf8b5d 716 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
717}
718
719/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
720SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
721 struct itimerspec __user *, setting)
1da177e4 722{
1da177e4 723 struct itimerspec cur_setting;
a7319fa2
TG
724 struct k_itimer *timr;
725 struct k_clock *kc;
1da177e4 726 unsigned long flags;
a7319fa2 727 int ret = 0;
1da177e4
LT
728
729 timr = lock_timer(timer_id, &flags);
730 if (!timr)
731 return -EINVAL;
732
a7319fa2
TG
733 kc = clockid_to_kclock(timr->it_clock);
734 if (WARN_ON_ONCE(!kc || !kc->timer_get))
735 ret = -EINVAL;
736 else
737 kc->timer_get(timr, &cur_setting);
1da177e4
LT
738
739 unlock_timer(timr, flags);
740
a7319fa2 741 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
1da177e4
LT
742 return -EFAULT;
743
a7319fa2 744 return ret;
1da177e4 745}
becf8b5d 746
1da177e4
LT
747/*
748 * Get the number of overruns of a POSIX.1b interval timer. This is to
749 * be the overrun of the timer last delivered. At the same time we are
750 * accumulating overruns on the next timer. The overrun is frozen when
751 * the signal is delivered, either at the notify time (if the info block
752 * is not queued) or at the actual delivery time (as we are informed by
753 * the call back to do_schedule_next_timer(). So all we need to do is
754 * to pick up the frozen overrun.
755 */
362e9c07 756SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
757{
758 struct k_itimer *timr;
759 int overrun;
5ba25331 760 unsigned long flags;
1da177e4
LT
761
762 timr = lock_timer(timer_id, &flags);
763 if (!timr)
764 return -EINVAL;
765
766 overrun = timr->it_overrun_last;
767 unlock_timer(timr, flags);
768
769 return overrun;
770}
1da177e4
LT
771
772/* Set a POSIX.1b interval timer. */
773/* timr->it_lock is taken. */
858119e1 774static int
1da177e4
LT
775common_timer_set(struct k_itimer *timr, int flags,
776 struct itimerspec *new_setting, struct itimerspec *old_setting)
777{
becf8b5d 778 struct hrtimer *timer = &timr->it.real.timer;
7978672c 779 enum hrtimer_mode mode;
1da177e4
LT
780
781 if (old_setting)
782 common_timer_get(timr, old_setting);
783
784 /* disable the timer */
becf8b5d 785 timr->it.real.interval.tv64 = 0;
1da177e4
LT
786 /*
787 * careful here. If smp we could be in the "fire" routine which will
788 * be spinning as we hold the lock. But this is ONLY an SMP issue.
789 */
becf8b5d 790 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 791 return TIMER_RETRY;
1da177e4
LT
792
793 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
794 ~REQUEUE_PENDING;
795 timr->it_overrun_last = 0;
1da177e4 796
becf8b5d
TG
797 /* switch off the timer when it_value is zero */
798 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
799 return 0;
1da177e4 800
c9cb2e3d 801 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 802 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 803 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 804
cc584b21 805 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
806
807 /* Convert interval */
808 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
809
810 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
811 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
812 /* Setup correct expiry time for relative timers */
5a7780e7 813 if (mode == HRTIMER_MODE_REL) {
cc584b21 814 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 815 }
becf8b5d 816 return 0;
952bbc87 817 }
becf8b5d 818
cc584b21 819 hrtimer_start_expires(timer, mode);
1da177e4
LT
820 return 0;
821}
822
823/* Set a POSIX.1b interval timer */
362e9c07
HC
824SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
825 const struct itimerspec __user *, new_setting,
826 struct itimerspec __user *, old_setting)
1da177e4
LT
827{
828 struct k_itimer *timr;
829 struct itimerspec new_spec, old_spec;
830 int error = 0;
5ba25331 831 unsigned long flag;
1da177e4 832 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
27722df1 833 struct k_clock *kc;
1da177e4
LT
834
835 if (!new_setting)
836 return -EINVAL;
837
838 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
839 return -EFAULT;
840
becf8b5d
TG
841 if (!timespec_valid(&new_spec.it_interval) ||
842 !timespec_valid(&new_spec.it_value))
1da177e4
LT
843 return -EINVAL;
844retry:
845 timr = lock_timer(timer_id, &flag);
846 if (!timr)
847 return -EINVAL;
848
27722df1
TG
849 kc = clockid_to_kclock(timr->it_clock);
850 if (WARN_ON_ONCE(!kc || !kc->timer_set))
851 error = -EINVAL;
852 else
853 error = kc->timer_set(timr, flags, &new_spec, rtn);
1da177e4
LT
854
855 unlock_timer(timr, flag);
856 if (error == TIMER_RETRY) {
857 rtn = NULL; // We already got the old time...
858 goto retry;
859 }
860
becf8b5d
TG
861 if (old_setting && !error &&
862 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
863 error = -EFAULT;
864
865 return error;
866}
867
6761c670 868static int common_timer_del(struct k_itimer *timer)
1da177e4 869{
becf8b5d 870 timer->it.real.interval.tv64 = 0;
f972be33 871
becf8b5d 872 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 873 return TIMER_RETRY;
1da177e4
LT
874 return 0;
875}
876
877static inline int timer_delete_hook(struct k_itimer *timer)
878{
6761c670
TG
879 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
880
881 if (WARN_ON_ONCE(!kc || !kc->timer_del))
882 return -EINVAL;
883 return kc->timer_del(timer);
1da177e4
LT
884}
885
886/* Delete a POSIX.1b interval timer. */
362e9c07 887SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
888{
889 struct k_itimer *timer;
5ba25331 890 unsigned long flags;
1da177e4 891
1da177e4 892retry_delete:
1da177e4
LT
893 timer = lock_timer(timer_id, &flags);
894 if (!timer)
895 return -EINVAL;
896
becf8b5d 897 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
898 unlock_timer(timer, flags);
899 goto retry_delete;
900 }
becf8b5d 901
1da177e4
LT
902 spin_lock(&current->sighand->siglock);
903 list_del(&timer->list);
904 spin_unlock(&current->sighand->siglock);
905 /*
906 * This keeps any tasks waiting on the spin lock from thinking
907 * they got something (see the lock code above).
908 */
89992102 909 timer->it_signal = NULL;
4b7a1304 910
1da177e4
LT
911 unlock_timer(timer, flags);
912 release_posix_timer(timer, IT_ID_SET);
913 return 0;
914}
becf8b5d 915
1da177e4
LT
916/*
917 * return timer owned by the process, used by exit_itimers
918 */
858119e1 919static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
920{
921 unsigned long flags;
922
1da177e4 923retry_delete:
1da177e4
LT
924 spin_lock_irqsave(&timer->it_lock, flags);
925
becf8b5d 926 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
927 unlock_timer(timer, flags);
928 goto retry_delete;
929 }
1da177e4
LT
930 list_del(&timer->list);
931 /*
932 * This keeps any tasks waiting on the spin lock from thinking
933 * they got something (see the lock code above).
934 */
89992102 935 timer->it_signal = NULL;
4b7a1304 936
1da177e4
LT
937 unlock_timer(timer, flags);
938 release_posix_timer(timer, IT_ID_SET);
939}
940
941/*
25f407f0 942 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
943 * references to the shared signal_struct.
944 */
945void exit_itimers(struct signal_struct *sig)
946{
947 struct k_itimer *tmr;
948
949 while (!list_empty(&sig->posix_timers)) {
950 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
951 itimer_delete(tmr);
952 }
953}
954
362e9c07
HC
955SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
956 const struct timespec __user *, tp)
1da177e4 957{
26f9a479 958 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
959 struct timespec new_tp;
960
26f9a479 961 if (!kc || !kc->clock_set)
1da177e4 962 return -EINVAL;
26f9a479 963
1da177e4
LT
964 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
965 return -EFAULT;
966
26f9a479 967 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
968}
969
362e9c07
HC
970SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
971 struct timespec __user *,tp)
1da177e4 972{
42285777 973 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
974 struct timespec kernel_tp;
975 int error;
976
42285777 977 if (!kc)
1da177e4 978 return -EINVAL;
42285777
TG
979
980 error = kc->clock_get(which_clock, &kernel_tp);
981
1da177e4
LT
982 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
983 error = -EFAULT;
984
985 return error;
1da177e4
LT
986}
987
f1f1d5eb
RC
988SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
989 struct timex __user *, utx)
990{
991 struct k_clock *kc = clockid_to_kclock(which_clock);
992 struct timex ktx;
993 int err;
994
995 if (!kc)
996 return -EINVAL;
997 if (!kc->clock_adj)
998 return -EOPNOTSUPP;
999
1000 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1001 return -EFAULT;
1002
1003 err = kc->clock_adj(which_clock, &ktx);
1004
f0dbe81f 1005 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1006 return -EFAULT;
1007
1008 return err;
1009}
1010
362e9c07
HC
1011SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1012 struct timespec __user *, tp)
1da177e4 1013{
e5e542ee 1014 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
1015 struct timespec rtn_tp;
1016 int error;
1017
e5e542ee 1018 if (!kc)
1da177e4
LT
1019 return -EINVAL;
1020
e5e542ee 1021 error = kc->clock_getres(which_clock, &rtn_tp);
1da177e4 1022
e5e542ee 1023 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1da177e4 1024 error = -EFAULT;
1da177e4
LT
1025
1026 return error;
1027}
1028
97735f25
TG
1029/*
1030 * nanosleep for monotonic and realtime clocks
1031 */
1032static int common_nsleep(const clockid_t which_clock, int flags,
1033 struct timespec *tsave, struct timespec __user *rmtp)
1034{
080344b9
ON
1035 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1036 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1037 which_clock);
97735f25 1038}
1da177e4 1039
362e9c07
HC
1040SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1041 const struct timespec __user *, rqtp,
1042 struct timespec __user *, rmtp)
1da177e4 1043{
a5cd2880 1044 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4 1045 struct timespec t;
1da177e4 1046
a5cd2880 1047 if (!kc)
1da177e4 1048 return -EINVAL;
a5cd2880
TG
1049 if (!kc->nsleep)
1050 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1051
1052 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1053 return -EFAULT;
1054
5f82b2b7 1055 if (!timespec_valid(&t))
1da177e4
LT
1056 return -EINVAL;
1057
a5cd2880 1058 return kc->nsleep(which_clock, flags, &t, rmtp);
1da177e4 1059}
1711ef38 1060
1711ef38
TA
1061/*
1062 * This will restart clock_nanosleep. This is required only by
1063 * compat_clock_nanosleep_restart for now.
1064 */
59bd5bc2 1065long clock_nanosleep_restart(struct restart_block *restart_block)
1711ef38 1066{
ab8177bc 1067 clockid_t which_clock = restart_block->nanosleep.clockid;
59bd5bc2
TG
1068 struct k_clock *kc = clockid_to_kclock(which_clock);
1069
1070 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1071 return -EINVAL;
1711ef38 1072
59bd5bc2 1073 return kc->nsleep_restart(restart_block);
1711ef38 1074}