cpu-timers: Cleanup arm_timer()
[linux-2.6-block.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
3f0a525e 11#include <trace/events/timer.h>
1da177e4 12
f06febc9 13/*
f55db609
SG
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
17 * well.
f06febc9
FM
18 */
19void update_rlimit_cpu(unsigned long rlim_new)
20{
42c4ab41 21 cputime_t cputime = secs_to_cputime(rlim_new);
f06febc9 22
f55db609
SG
23 spin_lock_irq(&current->sighand->siglock);
24 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
25 spin_unlock_irq(&current->sighand->siglock);
f06febc9
FM
26}
27
a924b04d 28static int check_clock(const clockid_t which_clock)
1da177e4
LT
29{
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
8dc86af0 41 p = find_task_by_vpid(pid);
bac0abd6
PE
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49}
50
51static inline union cpu_time_count
a924b04d 52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
53{
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62}
63
a924b04d 64static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
65 union cpu_time_count cpu,
66 struct timespec *tp)
67{
f8bd2258
RZ
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
1da177e4 71 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
72}
73
a924b04d 74static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
75 union cpu_time_count now,
76 union cpu_time_count then)
77{
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83}
a924b04d 84static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87{
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93}
a924b04d 94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
95 union cpu_time_count a,
96 union cpu_time_count b)
97{
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104}
105
ac08c264
TG
106/*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113{
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117}
118
1da177e4
LT
119/*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
7a4ed937 123static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
124 union cpu_time_count now)
125{
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 142 if (delta < incr)
1da177e4
LT
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 160 if (cputime_lt(delta, incr))
1da177e4
LT
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168}
169
170static inline cputime_t prof_ticks(struct task_struct *p)
171{
172 return cputime_add(p->utime, p->stime);
173}
174static inline cputime_t virt_ticks(struct task_struct *p)
175{
176 return p->utime;
177}
1da177e4 178
a924b04d 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
180{
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195}
196
a924b04d 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
198{
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208}
209
210
211/*
212 * Sample a per-thread clock for the given task.
213 */
a924b04d 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
215 union cpu_time_count *cpu)
216{
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
c5f8d995 227 cpu->sched = task_sched_runtime(p);
1da177e4
LT
228 break;
229 }
230 return 0;
231}
232
4cd4c1b4
PZ
233void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234{
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
238
239 *times = INIT_CPUTIME;
240
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
245
246 sig = tsk->signal;
247
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254 t = next_thread(t);
255 } while (t != tsk);
256
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260out:
261 rcu_read_unlock();
262}
263
4da94d49
PZ
264static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265{
266 if (cputime_gt(b->utime, a->utime))
267 a->utime = b->utime;
268
269 if (cputime_gt(b->stime, a->stime))
270 a->stime = b->stime;
271
272 if (b->sum_exec_runtime > a->sum_exec_runtime)
273 a->sum_exec_runtime = b->sum_exec_runtime;
274}
275
276void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277{
278 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 struct task_cputime sum;
280 unsigned long flags;
281
282 spin_lock_irqsave(&cputimer->lock, flags);
283 if (!cputimer->running) {
284 cputimer->running = 1;
285 /*
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
289 * it.
290 */
291 thread_group_cputime(tsk, &sum);
292 update_gt_cputime(&cputimer->cputime, &sum);
293 }
294 *times = cputimer->cputime;
295 spin_unlock_irqrestore(&cputimer->lock, flags);
296}
297
1da177e4
LT
298/*
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
1da177e4 301 */
bb34d92f
FM
302static int cpu_clock_sample_group(const clockid_t which_clock,
303 struct task_struct *p,
304 union cpu_time_count *cpu)
1da177e4 305{
f06febc9
FM
306 struct task_cputime cputime;
307
eccdaeaf 308 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
309 default:
310 return -EINVAL;
311 case CPUCLOCK_PROF:
c5f8d995 312 thread_group_cputime(p, &cputime);
f06febc9 313 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1da177e4
LT
314 break;
315 case CPUCLOCK_VIRT:
c5f8d995 316 thread_group_cputime(p, &cputime);
f06febc9 317 cpu->cpu = cputime.utime;
1da177e4
LT
318 break;
319 case CPUCLOCK_SCHED:
c5f8d995 320 cpu->sched = thread_group_sched_runtime(p);
1da177e4
LT
321 break;
322 }
323 return 0;
324}
325
1da177e4 326
a924b04d 327int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
328{
329 const pid_t pid = CPUCLOCK_PID(which_clock);
330 int error = -EINVAL;
331 union cpu_time_count rtn;
332
333 if (pid == 0) {
334 /*
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
337 */
338 if (CPUCLOCK_PERTHREAD(which_clock)) {
339 /*
340 * Sampling just ourselves we can do with no locking.
341 */
342 error = cpu_clock_sample(which_clock,
343 current, &rtn);
344 } else {
345 read_lock(&tasklist_lock);
346 error = cpu_clock_sample_group(which_clock,
347 current, &rtn);
348 read_unlock(&tasklist_lock);
349 }
350 } else {
351 /*
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
354 */
355 struct task_struct *p;
1f2ea083 356 rcu_read_lock();
8dc86af0 357 p = find_task_by_vpid(pid);
1da177e4
LT
358 if (p) {
359 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 360 if (same_thread_group(p, current)) {
1da177e4
LT
361 error = cpu_clock_sample(which_clock,
362 p, &rtn);
363 }
1f2ea083
PM
364 } else {
365 read_lock(&tasklist_lock);
bac0abd6 366 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
367 error =
368 cpu_clock_sample_group(which_clock,
369 p, &rtn);
370 }
371 read_unlock(&tasklist_lock);
1da177e4
LT
372 }
373 }
1f2ea083 374 rcu_read_unlock();
1da177e4
LT
375 }
376
377 if (error)
378 return error;
379 sample_to_timespec(which_clock, rtn, tp);
380 return 0;
381}
382
383
384/*
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
386 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
387 * new timer already all-zeros initialized.
1da177e4
LT
388 */
389int posix_cpu_timer_create(struct k_itimer *new_timer)
390{
391 int ret = 0;
392 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
393 struct task_struct *p;
394
395 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
396 return -EINVAL;
397
398 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4
LT
399
400 read_lock(&tasklist_lock);
401 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
402 if (pid == 0) {
403 p = current;
404 } else {
8dc86af0 405 p = find_task_by_vpid(pid);
bac0abd6 406 if (p && !same_thread_group(p, current))
1da177e4
LT
407 p = NULL;
408 }
409 } else {
410 if (pid == 0) {
411 p = current->group_leader;
412 } else {
8dc86af0 413 p = find_task_by_vpid(pid);
bac0abd6 414 if (p && !thread_group_leader(p))
1da177e4
LT
415 p = NULL;
416 }
417 }
418 new_timer->it.cpu.task = p;
419 if (p) {
420 get_task_struct(p);
421 } else {
422 ret = -EINVAL;
423 }
424 read_unlock(&tasklist_lock);
425
426 return ret;
427}
428
429/*
430 * Clean up a CPU-clock timer that is about to be destroyed.
431 * This is called from timer deletion with the timer already locked.
432 * If we return TIMER_RETRY, it's necessary to release the timer's lock
433 * and try again. (This happens when the timer is in the middle of firing.)
434 */
435int posix_cpu_timer_del(struct k_itimer *timer)
436{
437 struct task_struct *p = timer->it.cpu.task;
108150ea 438 int ret = 0;
1da177e4 439
108150ea 440 if (likely(p != NULL)) {
9465bee8
LT
441 read_lock(&tasklist_lock);
442 if (unlikely(p->signal == NULL)) {
443 /*
444 * We raced with the reaping of the task.
445 * The deletion should have cleared us off the list.
446 */
447 BUG_ON(!list_empty(&timer->it.cpu.entry));
448 } else {
9465bee8 449 spin_lock(&p->sighand->siglock);
108150ea
ON
450 if (timer->it.cpu.firing)
451 ret = TIMER_RETRY;
452 else
453 list_del(&timer->it.cpu.entry);
9465bee8
LT
454 spin_unlock(&p->sighand->siglock);
455 }
456 read_unlock(&tasklist_lock);
108150ea
ON
457
458 if (!ret)
459 put_task_struct(p);
1da177e4 460 }
1da177e4 461
108150ea 462 return ret;
1da177e4
LT
463}
464
465/*
466 * Clean out CPU timers still ticking when a thread exited. The task
467 * pointer is cleared, and the expiry time is replaced with the residual
468 * time for later timer_gettime calls to return.
469 * This must be called with the siglock held.
470 */
471static void cleanup_timers(struct list_head *head,
472 cputime_t utime, cputime_t stime,
41b86e9c 473 unsigned long long sum_exec_runtime)
1da177e4
LT
474{
475 struct cpu_timer_list *timer, *next;
476 cputime_t ptime = cputime_add(utime, stime);
477
478 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
479 list_del_init(&timer->entry);
480 if (cputime_lt(timer->expires.cpu, ptime)) {
481 timer->expires.cpu = cputime_zero;
482 } else {
483 timer->expires.cpu = cputime_sub(timer->expires.cpu,
484 ptime);
485 }
486 }
487
488 ++head;
489 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
490 list_del_init(&timer->entry);
491 if (cputime_lt(timer->expires.cpu, utime)) {
492 timer->expires.cpu = cputime_zero;
493 } else {
494 timer->expires.cpu = cputime_sub(timer->expires.cpu,
495 utime);
496 }
497 }
498
499 ++head;
500 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 501 list_del_init(&timer->entry);
41b86e9c 502 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
503 timer->expires.sched = 0;
504 } else {
41b86e9c 505 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
506 }
507 }
508}
509
510/*
511 * These are both called with the siglock held, when the current thread
512 * is being reaped. When the final (leader) thread in the group is reaped,
513 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
514 */
515void posix_cpu_timers_exit(struct task_struct *tsk)
516{
517 cleanup_timers(tsk->cpu_timers,
41b86e9c 518 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
519
520}
521void posix_cpu_timers_exit_group(struct task_struct *tsk)
522{
17d42c1c 523 struct signal_struct *const sig = tsk->signal;
ca531a0a 524
f06febc9 525 cleanup_timers(tsk->signal->cpu_timers,
17d42c1c
SG
526 cputime_add(tsk->utime, sig->utime),
527 cputime_add(tsk->stime, sig->stime),
528 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
1da177e4
LT
529}
530
531static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
532{
533 /*
534 * That's all for this thread or process.
535 * We leave our residual in expires to be reported.
536 */
537 put_task_struct(timer->it.cpu.task);
538 timer->it.cpu.task = NULL;
539 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
540 timer->it.cpu.expires,
541 now);
542}
543
d1e3b6d1
SG
544static inline int expires_gt(cputime_t expires, cputime_t new_exp)
545{
546 return cputime_eq(expires, cputime_zero) ||
547 cputime_gt(expires, new_exp);
548}
549
1da177e4
LT
550/*
551 * Insert the timer on the appropriate list before any timers that
552 * expire later. This must be called with the tasklist_lock held
553 * for reading, and interrupts disabled.
554 */
5eb9aa64 555static void arm_timer(struct k_itimer *timer)
1da177e4
LT
556{
557 struct task_struct *p = timer->it.cpu.task;
558 struct list_head *head, *listpos;
5eb9aa64 559 struct task_cputime *cputime_expires;
1da177e4
LT
560 struct cpu_timer_list *const nt = &timer->it.cpu;
561 struct cpu_timer_list *next;
1da177e4 562
5eb9aa64
SG
563 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
564 head = p->cpu_timers;
565 cputime_expires = &p->cputime_expires;
566 } else {
567 head = p->signal->cpu_timers;
568 cputime_expires = &p->signal->cputime_expires;
569 }
1da177e4
LT
570 head += CPUCLOCK_WHICH(timer->it_clock);
571
572 BUG_ON(!irqs_disabled());
573 spin_lock(&p->sighand->siglock);
574
575 listpos = head;
5eb9aa64
SG
576 list_for_each_entry(next, head, entry) {
577 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
578 break;
579 listpos = &next->entry;
1da177e4
LT
580 }
581 list_add(&nt->entry, listpos);
582
583 if (listpos == head) {
5eb9aa64
SG
584 union cpu_time_count *exp = &nt->expires;
585
1da177e4 586 /*
5eb9aa64
SG
587 * We are the new earliest-expiring POSIX 1.b timer, hence
588 * need to update expiration cache. Take into account that
589 * for process timers we share expiration cache with itimers
590 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
591 */
592
5eb9aa64
SG
593 switch (CPUCLOCK_WHICH(timer->it_clock)) {
594 case CPUCLOCK_PROF:
595 if (expires_gt(cputime_expires->prof_exp, exp->cpu))
596 cputime_expires->prof_exp = exp->cpu;
597 break;
598 case CPUCLOCK_VIRT:
599 if (expires_gt(cputime_expires->virt_exp, exp->cpu))
600 cputime_expires->virt_exp = exp->cpu;
601 break;
602 case CPUCLOCK_SCHED:
603 if (cputime_expires->sched_exp == 0 ||
604 cputime_expires->sched_exp > exp->sched)
605 cputime_expires->sched_exp = exp->sched;
606 break;
1da177e4
LT
607 }
608 }
609
610 spin_unlock(&p->sighand->siglock);
611}
612
613/*
614 * The timer is locked, fire it and arrange for its reload.
615 */
616static void cpu_timer_fire(struct k_itimer *timer)
617{
618 if (unlikely(timer->sigq == NULL)) {
619 /*
620 * This a special case for clock_nanosleep,
621 * not a normal timer from sys_timer_create.
622 */
623 wake_up_process(timer->it_process);
624 timer->it.cpu.expires.sched = 0;
625 } else if (timer->it.cpu.incr.sched == 0) {
626 /*
627 * One-shot timer. Clear it as soon as it's fired.
628 */
629 posix_timer_event(timer, 0);
630 timer->it.cpu.expires.sched = 0;
631 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
632 /*
633 * The signal did not get queued because the signal
634 * was ignored, so we won't get any callback to
635 * reload the timer. But we need to keep it
636 * ticking in case the signal is deliverable next time.
637 */
638 posix_cpu_timer_schedule(timer);
639 }
640}
641
3997ad31
PZ
642/*
643 * Sample a process (thread group) timer for the given group_leader task.
644 * Must be called with tasklist_lock held for reading.
645 */
646static int cpu_timer_sample_group(const clockid_t which_clock,
647 struct task_struct *p,
648 union cpu_time_count *cpu)
649{
650 struct task_cputime cputime;
651
652 thread_group_cputimer(p, &cputime);
653 switch (CPUCLOCK_WHICH(which_clock)) {
654 default:
655 return -EINVAL;
656 case CPUCLOCK_PROF:
657 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
658 break;
659 case CPUCLOCK_VIRT:
660 cpu->cpu = cputime.utime;
661 break;
662 case CPUCLOCK_SCHED:
663 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
664 break;
665 }
666 return 0;
667}
668
1da177e4
LT
669/*
670 * Guts of sys_timer_settime for CPU timers.
671 * This is called with the timer locked and interrupts disabled.
672 * If we return TIMER_RETRY, it's necessary to release the timer's lock
673 * and try again. (This happens when the timer is in the middle of firing.)
674 */
675int posix_cpu_timer_set(struct k_itimer *timer, int flags,
676 struct itimerspec *new, struct itimerspec *old)
677{
678 struct task_struct *p = timer->it.cpu.task;
679 union cpu_time_count old_expires, new_expires, val;
680 int ret;
681
682 if (unlikely(p == NULL)) {
683 /*
684 * Timer refers to a dead task's clock.
685 */
686 return -ESRCH;
687 }
688
689 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
690
691 read_lock(&tasklist_lock);
692 /*
693 * We need the tasklist_lock to protect against reaping that
694 * clears p->signal. If p has just been reaped, we can no
695 * longer get any information about it at all.
696 */
697 if (unlikely(p->signal == NULL)) {
698 read_unlock(&tasklist_lock);
699 put_task_struct(p);
700 timer->it.cpu.task = NULL;
701 return -ESRCH;
702 }
703
704 /*
705 * Disarm any old timer after extracting its expiry time.
706 */
707 BUG_ON(!irqs_disabled());
a69ac4a7
ON
708
709 ret = 0;
1da177e4
LT
710 spin_lock(&p->sighand->siglock);
711 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
712 if (unlikely(timer->it.cpu.firing)) {
713 timer->it.cpu.firing = -1;
714 ret = TIMER_RETRY;
715 } else
716 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
717 spin_unlock(&p->sighand->siglock);
718
719 /*
720 * We need to sample the current value to convert the new
721 * value from to relative and absolute, and to convert the
722 * old value from absolute to relative. To set a process
723 * timer, we need a sample to balance the thread expiry
724 * times (in arm_timer). With an absolute time, we must
725 * check if it's already passed. In short, we need a sample.
726 */
727 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
728 cpu_clock_sample(timer->it_clock, p, &val);
729 } else {
3997ad31 730 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
731 }
732
733 if (old) {
734 if (old_expires.sched == 0) {
735 old->it_value.tv_sec = 0;
736 old->it_value.tv_nsec = 0;
737 } else {
738 /*
739 * Update the timer in case it has
740 * overrun already. If it has,
741 * we'll report it as having overrun
742 * and with the next reloaded timer
743 * already ticking, though we are
744 * swallowing that pending
745 * notification here to install the
746 * new setting.
747 */
748 bump_cpu_timer(timer, val);
749 if (cpu_time_before(timer->it_clock, val,
750 timer->it.cpu.expires)) {
751 old_expires = cpu_time_sub(
752 timer->it_clock,
753 timer->it.cpu.expires, val);
754 sample_to_timespec(timer->it_clock,
755 old_expires,
756 &old->it_value);
757 } else {
758 old->it_value.tv_nsec = 1;
759 old->it_value.tv_sec = 0;
760 }
761 }
762 }
763
a69ac4a7 764 if (unlikely(ret)) {
1da177e4
LT
765 /*
766 * We are colliding with the timer actually firing.
767 * Punt after filling in the timer's old value, and
768 * disable this firing since we are already reporting
769 * it as an overrun (thanks to bump_cpu_timer above).
770 */
771 read_unlock(&tasklist_lock);
1da177e4
LT
772 goto out;
773 }
774
775 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
776 cpu_time_add(timer->it_clock, &new_expires, val);
777 }
778
779 /*
780 * Install the new expiry time (or zero).
781 * For a timer with no notification action, we don't actually
782 * arm the timer (we'll just fake it for timer_gettime).
783 */
784 timer->it.cpu.expires = new_expires;
785 if (new_expires.sched != 0 &&
786 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
787 cpu_time_before(timer->it_clock, val, new_expires)) {
5eb9aa64 788 arm_timer(timer);
1da177e4
LT
789 }
790
791 read_unlock(&tasklist_lock);
792
793 /*
794 * Install the new reload setting, and
795 * set up the signal and overrun bookkeeping.
796 */
797 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
798 &new->it_interval);
799
800 /*
801 * This acts as a modification timestamp for the timer,
802 * so any automatic reload attempt will punt on seeing
803 * that we have reset the timer manually.
804 */
805 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
806 ~REQUEUE_PENDING;
807 timer->it_overrun_last = 0;
808 timer->it_overrun = -1;
809
810 if (new_expires.sched != 0 &&
811 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
812 !cpu_time_before(timer->it_clock, val, new_expires)) {
813 /*
814 * The designated time already passed, so we notify
815 * immediately, even if the thread never runs to
816 * accumulate more time on this clock.
817 */
818 cpu_timer_fire(timer);
819 }
820
821 ret = 0;
822 out:
823 if (old) {
824 sample_to_timespec(timer->it_clock,
825 timer->it.cpu.incr, &old->it_interval);
826 }
827 return ret;
828}
829
830void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
831{
832 union cpu_time_count now;
833 struct task_struct *p = timer->it.cpu.task;
834 int clear_dead;
835
836 /*
837 * Easy part: convert the reload time.
838 */
839 sample_to_timespec(timer->it_clock,
840 timer->it.cpu.incr, &itp->it_interval);
841
842 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
843 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
844 return;
845 }
846
847 if (unlikely(p == NULL)) {
848 /*
849 * This task already died and the timer will never fire.
850 * In this case, expires is actually the dead value.
851 */
852 dead:
853 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
854 &itp->it_value);
855 return;
856 }
857
858 /*
859 * Sample the clock to take the difference with the expiry time.
860 */
861 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
862 cpu_clock_sample(timer->it_clock, p, &now);
863 clear_dead = p->exit_state;
864 } else {
865 read_lock(&tasklist_lock);
866 if (unlikely(p->signal == NULL)) {
867 /*
868 * The process has been reaped.
869 * We can't even collect a sample any more.
870 * Call the timer disarmed, nothing else to do.
871 */
872 put_task_struct(p);
873 timer->it.cpu.task = NULL;
874 timer->it.cpu.expires.sched = 0;
875 read_unlock(&tasklist_lock);
876 goto dead;
877 } else {
3997ad31 878 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
879 clear_dead = (unlikely(p->exit_state) &&
880 thread_group_empty(p));
881 }
882 read_unlock(&tasklist_lock);
883 }
884
885 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
886 if (timer->it.cpu.incr.sched == 0 &&
887 cpu_time_before(timer->it_clock,
888 timer->it.cpu.expires, now)) {
889 /*
890 * Do-nothing timer expired and has no reload,
891 * so it's as if it was never set.
892 */
893 timer->it.cpu.expires.sched = 0;
894 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
895 return;
896 }
897 /*
898 * Account for any expirations and reloads that should
899 * have happened.
900 */
901 bump_cpu_timer(timer, now);
902 }
903
904 if (unlikely(clear_dead)) {
905 /*
906 * We've noticed that the thread is dead, but
907 * not yet reaped. Take this opportunity to
908 * drop our task ref.
909 */
910 clear_dead_task(timer, now);
911 goto dead;
912 }
913
914 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
915 sample_to_timespec(timer->it_clock,
916 cpu_time_sub(timer->it_clock,
917 timer->it.cpu.expires, now),
918 &itp->it_value);
919 } else {
920 /*
921 * The timer should have expired already, but the firing
922 * hasn't taken place yet. Say it's just about to expire.
923 */
924 itp->it_value.tv_nsec = 1;
925 itp->it_value.tv_sec = 0;
926 }
927}
928
929/*
930 * Check for any per-thread CPU timers that have fired and move them off
931 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
932 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
933 */
934static void check_thread_timers(struct task_struct *tsk,
935 struct list_head *firing)
936{
e80eda94 937 int maxfire;
1da177e4 938 struct list_head *timers = tsk->cpu_timers;
78f2c7db 939 struct signal_struct *const sig = tsk->signal;
d4bb5274 940 unsigned long soft;
1da177e4 941
e80eda94 942 maxfire = 20;
f06febc9 943 tsk->cputime_expires.prof_exp = cputime_zero;
1da177e4 944 while (!list_empty(timers)) {
b5e61818 945 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
946 struct cpu_timer_list,
947 entry);
e80eda94 948 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
f06febc9 949 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
950 break;
951 }
952 t->firing = 1;
953 list_move_tail(&t->entry, firing);
954 }
955
956 ++timers;
e80eda94 957 maxfire = 20;
f06febc9 958 tsk->cputime_expires.virt_exp = cputime_zero;
1da177e4 959 while (!list_empty(timers)) {
b5e61818 960 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
961 struct cpu_timer_list,
962 entry);
e80eda94 963 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
f06febc9 964 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
965 break;
966 }
967 t->firing = 1;
968 list_move_tail(&t->entry, firing);
969 }
970
971 ++timers;
e80eda94 972 maxfire = 20;
f06febc9 973 tsk->cputime_expires.sched_exp = 0;
1da177e4 974 while (!list_empty(timers)) {
b5e61818 975 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
976 struct cpu_timer_list,
977 entry);
41b86e9c 978 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 979 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
980 break;
981 }
982 t->firing = 1;
983 list_move_tail(&t->entry, firing);
984 }
78f2c7db
PZ
985
986 /*
987 * Check for the special case thread timers.
988 */
78d7d407 989 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 990 if (soft != RLIM_INFINITY) {
78d7d407
JS
991 unsigned long hard =
992 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 993
5a52dd50
PZ
994 if (hard != RLIM_INFINITY &&
995 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
996 /*
997 * At the hard limit, we just die.
998 * No need to calculate anything else now.
999 */
1000 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1001 return;
1002 }
d4bb5274 1003 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
1004 /*
1005 * At the soft limit, send a SIGXCPU every second.
1006 */
d4bb5274
JS
1007 if (soft < hard) {
1008 soft += USEC_PER_SEC;
1009 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 1010 }
81d50bb2
HS
1011 printk(KERN_INFO
1012 "RT Watchdog Timeout: %s[%d]\n",
1013 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
1014 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1015 }
1016 }
1da177e4
LT
1017}
1018
3fccfd67
PZ
1019static void stop_process_timers(struct task_struct *tsk)
1020{
1021 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1022 unsigned long flags;
1023
1024 if (!cputimer->running)
1025 return;
1026
1027 spin_lock_irqsave(&cputimer->lock, flags);
1028 cputimer->running = 0;
1029 spin_unlock_irqrestore(&cputimer->lock, flags);
1030}
1031
8356b5f9
SG
1032static u32 onecputick;
1033
42c4ab41
SG
1034static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1035 cputime_t *expires, cputime_t cur_time, int signo)
1036{
1037 if (cputime_eq(it->expires, cputime_zero))
1038 return;
1039
1040 if (cputime_ge(cur_time, it->expires)) {
8356b5f9
SG
1041 if (!cputime_eq(it->incr, cputime_zero)) {
1042 it->expires = cputime_add(it->expires, it->incr);
1043 it->error += it->incr_error;
1044 if (it->error >= onecputick) {
1045 it->expires = cputime_sub(it->expires,
a42548a1 1046 cputime_one_jiffy);
8356b5f9
SG
1047 it->error -= onecputick;
1048 }
3f0a525e 1049 } else {
8356b5f9 1050 it->expires = cputime_zero;
3f0a525e 1051 }
42c4ab41 1052
3f0a525e
XG
1053 trace_itimer_expire(signo == SIGPROF ?
1054 ITIMER_PROF : ITIMER_VIRTUAL,
1055 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
1056 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1057 }
1058
1059 if (!cputime_eq(it->expires, cputime_zero) &&
1060 (cputime_eq(*expires, cputime_zero) ||
1061 cputime_lt(it->expires, *expires))) {
1062 *expires = it->expires;
1063 }
1064}
1065
1da177e4
LT
1066/*
1067 * Check for any per-thread CPU timers that have fired and move them
1068 * off the tsk->*_timers list onto the firing list. Per-thread timers
1069 * have already been taken off.
1070 */
1071static void check_process_timers(struct task_struct *tsk,
1072 struct list_head *firing)
1073{
e80eda94 1074 int maxfire;
1da177e4 1075 struct signal_struct *const sig = tsk->signal;
f06febc9 1076 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 1077 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 1078 struct list_head *timers = sig->cpu_timers;
f06febc9 1079 struct task_cputime cputime;
d4bb5274 1080 unsigned long soft;
1da177e4
LT
1081
1082 /*
1083 * Don't sample the current process CPU clocks if there are no timers.
1084 */
1085 if (list_empty(&timers[CPUCLOCK_PROF]) &&
42c4ab41 1086 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1da177e4
LT
1087 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1088 list_empty(&timers[CPUCLOCK_VIRT]) &&
42c4ab41 1089 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
4cd4c1b4
PZ
1090 list_empty(&timers[CPUCLOCK_SCHED])) {
1091 stop_process_timers(tsk);
1da177e4 1092 return;
4cd4c1b4 1093 }
1da177e4
LT
1094
1095 /*
1096 * Collect the current process totals.
1097 */
4cd4c1b4 1098 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
1099 utime = cputime.utime;
1100 ptime = cputime_add(utime, cputime.stime);
1101 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1102 maxfire = 20;
1da177e4
LT
1103 prof_expires = cputime_zero;
1104 while (!list_empty(timers)) {
ee7dd205 1105 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1106 struct cpu_timer_list,
1107 entry);
ee7dd205
WC
1108 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1109 prof_expires = tl->expires.cpu;
1da177e4
LT
1110 break;
1111 }
ee7dd205
WC
1112 tl->firing = 1;
1113 list_move_tail(&tl->entry, firing);
1da177e4
LT
1114 }
1115
1116 ++timers;
e80eda94 1117 maxfire = 20;
1da177e4
LT
1118 virt_expires = cputime_zero;
1119 while (!list_empty(timers)) {
ee7dd205 1120 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1121 struct cpu_timer_list,
1122 entry);
ee7dd205
WC
1123 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1124 virt_expires = tl->expires.cpu;
1da177e4
LT
1125 break;
1126 }
ee7dd205
WC
1127 tl->firing = 1;
1128 list_move_tail(&tl->entry, firing);
1da177e4
LT
1129 }
1130
1131 ++timers;
e80eda94 1132 maxfire = 20;
1da177e4
LT
1133 sched_expires = 0;
1134 while (!list_empty(timers)) {
ee7dd205 1135 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1136 struct cpu_timer_list,
1137 entry);
ee7dd205
WC
1138 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1139 sched_expires = tl->expires.sched;
1da177e4
LT
1140 break;
1141 }
ee7dd205
WC
1142 tl->firing = 1;
1143 list_move_tail(&tl->entry, firing);
1da177e4
LT
1144 }
1145
1146 /*
1147 * Check for the special case process timers.
1148 */
42c4ab41
SG
1149 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1150 SIGPROF);
1151 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1152 SIGVTALRM);
78d7d407 1153 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 1154 if (soft != RLIM_INFINITY) {
1da177e4 1155 unsigned long psecs = cputime_to_secs(ptime);
78d7d407
JS
1156 unsigned long hard =
1157 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1da177e4 1158 cputime_t x;
d4bb5274 1159 if (psecs >= hard) {
1da177e4
LT
1160 /*
1161 * At the hard limit, we just die.
1162 * No need to calculate anything else now.
1163 */
1164 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1165 return;
1166 }
d4bb5274 1167 if (psecs >= soft) {
1da177e4
LT
1168 /*
1169 * At the soft limit, send a SIGXCPU every second.
1170 */
1171 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
1172 if (soft < hard) {
1173 soft++;
1174 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
1175 }
1176 }
d4bb5274 1177 x = secs_to_cputime(soft);
1da177e4
LT
1178 if (cputime_eq(prof_expires, cputime_zero) ||
1179 cputime_lt(x, prof_expires)) {
1180 prof_expires = x;
1181 }
1182 }
1183
f06febc9
FM
1184 if (!cputime_eq(prof_expires, cputime_zero) &&
1185 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1186 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1187 sig->cputime_expires.prof_exp = prof_expires;
1188 if (!cputime_eq(virt_expires, cputime_zero) &&
1189 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1190 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1191 sig->cputime_expires.virt_exp = virt_expires;
1192 if (sched_expires != 0 &&
1193 (sig->cputime_expires.sched_exp == 0 ||
1194 sig->cputime_expires.sched_exp > sched_expires))
1195 sig->cputime_expires.sched_exp = sched_expires;
1da177e4
LT
1196}
1197
1198/*
1199 * This is called from the signal code (via do_schedule_next_timer)
1200 * when the last timer signal was delivered and we have to reload the timer.
1201 */
1202void posix_cpu_timer_schedule(struct k_itimer *timer)
1203{
1204 struct task_struct *p = timer->it.cpu.task;
1205 union cpu_time_count now;
1206
1207 if (unlikely(p == NULL))
1208 /*
1209 * The task was cleaned up already, no future firings.
1210 */
708f430d 1211 goto out;
1da177e4
LT
1212
1213 /*
1214 * Fetch the current sample and update the timer's expiry time.
1215 */
1216 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1217 cpu_clock_sample(timer->it_clock, p, &now);
1218 bump_cpu_timer(timer, now);
1219 if (unlikely(p->exit_state)) {
1220 clear_dead_task(timer, now);
708f430d 1221 goto out;
1da177e4
LT
1222 }
1223 read_lock(&tasklist_lock); /* arm_timer needs it. */
1224 } else {
1225 read_lock(&tasklist_lock);
1226 if (unlikely(p->signal == NULL)) {
1227 /*
1228 * The process has been reaped.
1229 * We can't even collect a sample any more.
1230 */
1231 put_task_struct(p);
1232 timer->it.cpu.task = p = NULL;
1233 timer->it.cpu.expires.sched = 0;
708f430d 1234 goto out_unlock;
1da177e4
LT
1235 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1236 /*
1237 * We've noticed that the thread is dead, but
1238 * not yet reaped. Take this opportunity to
1239 * drop our task ref.
1240 */
1241 clear_dead_task(timer, now);
708f430d 1242 goto out_unlock;
1da177e4 1243 }
3997ad31 1244 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1245 bump_cpu_timer(timer, now);
1246 /* Leave the tasklist_lock locked for the call below. */
1247 }
1248
1249 /*
1250 * Now re-arm for the new expiry time.
1251 */
5eb9aa64 1252 arm_timer(timer);
1da177e4 1253
708f430d 1254out_unlock:
1da177e4 1255 read_unlock(&tasklist_lock);
708f430d
RM
1256
1257out:
1258 timer->it_overrun_last = timer->it_overrun;
1259 timer->it_overrun = -1;
1260 ++timer->it_requeue_pending;
1da177e4
LT
1261}
1262
f06febc9
FM
1263/**
1264 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1265 *
1266 * @cputime: The struct to compare.
1267 *
1268 * Checks @cputime to see if all fields are zero. Returns true if all fields
1269 * are zero, false if any field is nonzero.
1270 */
1271static inline int task_cputime_zero(const struct task_cputime *cputime)
1272{
1273 if (cputime_eq(cputime->utime, cputime_zero) &&
1274 cputime_eq(cputime->stime, cputime_zero) &&
1275 cputime->sum_exec_runtime == 0)
1276 return 1;
1277 return 0;
1278}
1279
1280/**
1281 * task_cputime_expired - Compare two task_cputime entities.
1282 *
1283 * @sample: The task_cputime structure to be checked for expiration.
1284 * @expires: Expiration times, against which @sample will be checked.
1285 *
1286 * Checks @sample against @expires to see if any field of @sample has expired.
1287 * Returns true if any field of the former is greater than the corresponding
1288 * field of the latter if the latter field is set. Otherwise returns false.
1289 */
1290static inline int task_cputime_expired(const struct task_cputime *sample,
1291 const struct task_cputime *expires)
1292{
1293 if (!cputime_eq(expires->utime, cputime_zero) &&
1294 cputime_ge(sample->utime, expires->utime))
1295 return 1;
1296 if (!cputime_eq(expires->stime, cputime_zero) &&
1297 cputime_ge(cputime_add(sample->utime, sample->stime),
1298 expires->stime))
1299 return 1;
1300 if (expires->sum_exec_runtime != 0 &&
1301 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1302 return 1;
1303 return 0;
1304}
1305
1306/**
1307 * fastpath_timer_check - POSIX CPU timers fast path.
1308 *
1309 * @tsk: The task (thread) being checked.
f06febc9 1310 *
bb34d92f
FM
1311 * Check the task and thread group timers. If both are zero (there are no
1312 * timers set) return false. Otherwise snapshot the task and thread group
1313 * timers and compare them with the corresponding expiration times. Return
1314 * true if a timer has expired, else return false.
f06febc9 1315 */
bb34d92f 1316static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1317{
ad133ba3 1318 struct signal_struct *sig;
bb34d92f 1319
ad133ba3
ON
1320 /* tsk == current, ensure it is safe to use ->signal/sighand */
1321 if (unlikely(tsk->exit_state))
f06febc9 1322 return 0;
bb34d92f
FM
1323
1324 if (!task_cputime_zero(&tsk->cputime_expires)) {
1325 struct task_cputime task_sample = {
1326 .utime = tsk->utime,
1327 .stime = tsk->stime,
1328 .sum_exec_runtime = tsk->se.sum_exec_runtime
1329 };
1330
1331 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1332 return 1;
1333 }
ad133ba3
ON
1334
1335 sig = tsk->signal;
bb34d92f
FM
1336 if (!task_cputime_zero(&sig->cputime_expires)) {
1337 struct task_cputime group_sample;
1338
4cd4c1b4 1339 thread_group_cputimer(tsk, &group_sample);
bb34d92f
FM
1340 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1341 return 1;
1342 }
37bebc70 1343
f55db609 1344 return 0;
f06febc9
FM
1345}
1346
1da177e4
LT
1347/*
1348 * This is called from the timer interrupt handler. The irq handler has
1349 * already updated our counts. We need to check if any timers fire now.
1350 * Interrupts are disabled.
1351 */
1352void run_posix_cpu_timers(struct task_struct *tsk)
1353{
1354 LIST_HEAD(firing);
1355 struct k_itimer *timer, *next;
1356
1357 BUG_ON(!irqs_disabled());
1358
1da177e4 1359 /*
f06febc9 1360 * The fast path checks that there are no expired thread or thread
bb34d92f 1361 * group timers. If that's so, just return.
1da177e4 1362 */
bb34d92f 1363 if (!fastpath_timer_check(tsk))
f06febc9 1364 return;
5ce73a4a 1365
bb34d92f
FM
1366 spin_lock(&tsk->sighand->siglock);
1367 /*
1368 * Here we take off tsk->signal->cpu_timers[N] and
1369 * tsk->cpu_timers[N] all the timers that are firing, and
1370 * put them on the firing list.
1371 */
1372 check_thread_timers(tsk, &firing);
1373 check_process_timers(tsk, &firing);
1da177e4 1374
bb34d92f
FM
1375 /*
1376 * We must release these locks before taking any timer's lock.
1377 * There is a potential race with timer deletion here, as the
1378 * siglock now protects our private firing list. We have set
1379 * the firing flag in each timer, so that a deletion attempt
1380 * that gets the timer lock before we do will give it up and
1381 * spin until we've taken care of that timer below.
1382 */
1383 spin_unlock(&tsk->sighand->siglock);
1da177e4
LT
1384
1385 /*
1386 * Now that all the timers on our list have the firing flag,
1387 * noone will touch their list entries but us. We'll take
1388 * each timer's lock before clearing its firing flag, so no
1389 * timer call will interfere.
1390 */
1391 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1392 int cpu_firing;
1393
1da177e4
LT
1394 spin_lock(&timer->it_lock);
1395 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1396 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1397 timer->it.cpu.firing = 0;
1398 /*
1399 * The firing flag is -1 if we collided with a reset
1400 * of the timer, which already reported this
1401 * almost-firing as an overrun. So don't generate an event.
1402 */
6e85c5ba 1403 if (likely(cpu_firing >= 0))
1da177e4 1404 cpu_timer_fire(timer);
1da177e4
LT
1405 spin_unlock(&timer->it_lock);
1406 }
1407}
1408
1409/*
f55db609 1410 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1411 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1412 */
1413void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1414 cputime_t *newval, cputime_t *oldval)
1415{
1416 union cpu_time_count now;
1da177e4
LT
1417
1418 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1419 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1420
1421 if (oldval) {
f55db609
SG
1422 /*
1423 * We are setting itimer. The *oldval is absolute and we update
1424 * it to be relative, *newval argument is relative and we update
1425 * it to be absolute.
1426 */
1da177e4
LT
1427 if (!cputime_eq(*oldval, cputime_zero)) {
1428 if (cputime_le(*oldval, now.cpu)) {
1429 /* Just about to fire. */
a42548a1 1430 *oldval = cputime_one_jiffy;
1da177e4
LT
1431 } else {
1432 *oldval = cputime_sub(*oldval, now.cpu);
1433 }
1434 }
1435
1436 if (cputime_eq(*newval, cputime_zero))
1437 return;
1438 *newval = cputime_add(*newval, now.cpu);
1da177e4
LT
1439 }
1440
1441 /*
f55db609
SG
1442 * Update expiration cache if we are the earliest timer, or eventually
1443 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1444 */
f55db609
SG
1445 switch (clock_idx) {
1446 case CPUCLOCK_PROF:
1447 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
f06febc9 1448 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1449 break;
1450 case CPUCLOCK_VIRT:
1451 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
f06febc9 1452 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1453 break;
1da177e4
LT
1454 }
1455}
1456
e4b76555
TA
1457static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1458 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1459{
1da177e4
LT
1460 struct k_itimer timer;
1461 int error;
1462
1da177e4
LT
1463 /*
1464 * Set up a temporary timer and then wait for it to go off.
1465 */
1466 memset(&timer, 0, sizeof timer);
1467 spin_lock_init(&timer.it_lock);
1468 timer.it_clock = which_clock;
1469 timer.it_overrun = -1;
1470 error = posix_cpu_timer_create(&timer);
1471 timer.it_process = current;
1472 if (!error) {
1da177e4 1473 static struct itimerspec zero_it;
e4b76555
TA
1474
1475 memset(it, 0, sizeof *it);
1476 it->it_value = *rqtp;
1da177e4
LT
1477
1478 spin_lock_irq(&timer.it_lock);
e4b76555 1479 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1480 if (error) {
1481 spin_unlock_irq(&timer.it_lock);
1482 return error;
1483 }
1484
1485 while (!signal_pending(current)) {
1486 if (timer.it.cpu.expires.sched == 0) {
1487 /*
1488 * Our timer fired and was reset.
1489 */
1490 spin_unlock_irq(&timer.it_lock);
1491 return 0;
1492 }
1493
1494 /*
1495 * Block until cpu_timer_fire (or a signal) wakes us.
1496 */
1497 __set_current_state(TASK_INTERRUPTIBLE);
1498 spin_unlock_irq(&timer.it_lock);
1499 schedule();
1500 spin_lock_irq(&timer.it_lock);
1501 }
1502
1503 /*
1504 * We were interrupted by a signal.
1505 */
1506 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1507 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1508 spin_unlock_irq(&timer.it_lock);
1509
e4b76555 1510 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1511 /*
1512 * It actually did fire already.
1513 */
1514 return 0;
1515 }
1516
e4b76555
TA
1517 error = -ERESTART_RESTARTBLOCK;
1518 }
1519
1520 return error;
1521}
1522
1523int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1524 struct timespec *rqtp, struct timespec __user *rmtp)
1525{
1526 struct restart_block *restart_block =
1527 &current_thread_info()->restart_block;
1528 struct itimerspec it;
1529 int error;
1530
1531 /*
1532 * Diagnose required errors first.
1533 */
1534 if (CPUCLOCK_PERTHREAD(which_clock) &&
1535 (CPUCLOCK_PID(which_clock) == 0 ||
1536 CPUCLOCK_PID(which_clock) == current->pid))
1537 return -EINVAL;
1538
1539 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1540
1541 if (error == -ERESTART_RESTARTBLOCK) {
1542
1543 if (flags & TIMER_ABSTIME)
1544 return -ERESTARTNOHAND;
1da177e4 1545 /*
e4b76555
TA
1546 * Report back to the user the time still remaining.
1547 */
1548 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1549 return -EFAULT;
1550
1711ef38 1551 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1552 restart_block->arg0 = which_clock;
97735f25 1553 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1554 restart_block->arg2 = rqtp->tv_sec;
1555 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1556 }
1da177e4
LT
1557 return error;
1558}
1559
1711ef38 1560long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1561{
1562 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1563 struct timespec __user *rmtp;
1564 struct timespec t;
e4b76555
TA
1565 struct itimerspec it;
1566 int error;
97735f25
TG
1567
1568 rmtp = (struct timespec __user *) restart_block->arg1;
1569 t.tv_sec = restart_block->arg2;
1570 t.tv_nsec = restart_block->arg3;
1571
1da177e4 1572 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1573 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1574
1575 if (error == -ERESTART_RESTARTBLOCK) {
1576 /*
1577 * Report back to the user the time still remaining.
1578 */
1579 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1580 return -EFAULT;
1581
1582 restart_block->fn = posix_cpu_nsleep_restart;
1583 restart_block->arg0 = which_clock;
1584 restart_block->arg1 = (unsigned long) rmtp;
1585 restart_block->arg2 = t.tv_sec;
1586 restart_block->arg3 = t.tv_nsec;
1587 }
1588 return error;
1589
1da177e4
LT
1590}
1591
1592
1593#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1594#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1595
a924b04d
TG
1596static int process_cpu_clock_getres(const clockid_t which_clock,
1597 struct timespec *tp)
1da177e4
LT
1598{
1599 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1600}
a924b04d
TG
1601static int process_cpu_clock_get(const clockid_t which_clock,
1602 struct timespec *tp)
1da177e4
LT
1603{
1604 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1605}
1606static int process_cpu_timer_create(struct k_itimer *timer)
1607{
1608 timer->it_clock = PROCESS_CLOCK;
1609 return posix_cpu_timer_create(timer);
1610}
a924b04d 1611static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1612 struct timespec *rqtp,
1613 struct timespec __user *rmtp)
1da177e4 1614{
97735f25 1615 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1616}
1711ef38
TA
1617static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1618{
1619 return -EINVAL;
1620}
a924b04d
TG
1621static int thread_cpu_clock_getres(const clockid_t which_clock,
1622 struct timespec *tp)
1da177e4
LT
1623{
1624 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1625}
a924b04d
TG
1626static int thread_cpu_clock_get(const clockid_t which_clock,
1627 struct timespec *tp)
1da177e4
LT
1628{
1629 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1630}
1631static int thread_cpu_timer_create(struct k_itimer *timer)
1632{
1633 timer->it_clock = THREAD_CLOCK;
1634 return posix_cpu_timer_create(timer);
1635}
a924b04d 1636static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1637 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1638{
1639 return -EINVAL;
1640}
1711ef38
TA
1641static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1642{
1643 return -EINVAL;
1644}
1da177e4
LT
1645
1646static __init int init_posix_cpu_timers(void)
1647{
1648 struct k_clock process = {
1649 .clock_getres = process_cpu_clock_getres,
1650 .clock_get = process_cpu_clock_get,
1651 .clock_set = do_posix_clock_nosettime,
1652 .timer_create = process_cpu_timer_create,
1653 .nsleep = process_cpu_nsleep,
1711ef38 1654 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1655 };
1656 struct k_clock thread = {
1657 .clock_getres = thread_cpu_clock_getres,
1658 .clock_get = thread_cpu_clock_get,
1659 .clock_set = do_posix_clock_nosettime,
1660 .timer_create = thread_cpu_timer_create,
1661 .nsleep = thread_cpu_nsleep,
1711ef38 1662 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4 1663 };
8356b5f9 1664 struct timespec ts;
1da177e4
LT
1665
1666 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1667 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1668
a42548a1 1669 cputime_to_timespec(cputime_one_jiffy, &ts);
8356b5f9
SG
1670 onecputick = ts.tv_nsec;
1671 WARN_ON(ts.tv_sec != 0);
1672
1da177e4
LT
1673 return 0;
1674}
1675__initcall(init_posix_cpu_timers);