Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Implement CPU time clocks for the POSIX clock interface. | |
3 | */ | |
4 | ||
5 | #include <linux/sched.h> | |
6 | #include <linux/posix-timers.h> | |
7 | #include <asm/uaccess.h> | |
8 | #include <linux/errno.h> | |
9 | ||
a924b04d | 10 | static int check_clock(const clockid_t which_clock) |
1da177e4 LT |
11 | { |
12 | int error = 0; | |
13 | struct task_struct *p; | |
14 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
15 | ||
16 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | |
17 | return -EINVAL; | |
18 | ||
19 | if (pid == 0) | |
20 | return 0; | |
21 | ||
22 | read_lock(&tasklist_lock); | |
23 | p = find_task_by_pid(pid); | |
24 | if (!p || (CPUCLOCK_PERTHREAD(which_clock) ? | |
25 | p->tgid != current->tgid : p->tgid != pid)) { | |
26 | error = -EINVAL; | |
27 | } | |
28 | read_unlock(&tasklist_lock); | |
29 | ||
30 | return error; | |
31 | } | |
32 | ||
33 | static inline union cpu_time_count | |
a924b04d | 34 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
1da177e4 LT |
35 | { |
36 | union cpu_time_count ret; | |
37 | ret.sched = 0; /* high half always zero when .cpu used */ | |
38 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
ee500f27 | 39 | ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
1da177e4 LT |
40 | } else { |
41 | ret.cpu = timespec_to_cputime(tp); | |
42 | } | |
43 | return ret; | |
44 | } | |
45 | ||
a924b04d | 46 | static void sample_to_timespec(const clockid_t which_clock, |
1da177e4 LT |
47 | union cpu_time_count cpu, |
48 | struct timespec *tp) | |
49 | { | |
50 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
51 | tp->tv_sec = div_long_long_rem(cpu.sched, | |
52 | NSEC_PER_SEC, &tp->tv_nsec); | |
53 | } else { | |
54 | cputime_to_timespec(cpu.cpu, tp); | |
55 | } | |
56 | } | |
57 | ||
a924b04d | 58 | static inline int cpu_time_before(const clockid_t which_clock, |
1da177e4 LT |
59 | union cpu_time_count now, |
60 | union cpu_time_count then) | |
61 | { | |
62 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
63 | return now.sched < then.sched; | |
64 | } else { | |
65 | return cputime_lt(now.cpu, then.cpu); | |
66 | } | |
67 | } | |
a924b04d | 68 | static inline void cpu_time_add(const clockid_t which_clock, |
1da177e4 LT |
69 | union cpu_time_count *acc, |
70 | union cpu_time_count val) | |
71 | { | |
72 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
73 | acc->sched += val.sched; | |
74 | } else { | |
75 | acc->cpu = cputime_add(acc->cpu, val.cpu); | |
76 | } | |
77 | } | |
a924b04d | 78 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
1da177e4 LT |
79 | union cpu_time_count a, |
80 | union cpu_time_count b) | |
81 | { | |
82 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
83 | a.sched -= b.sched; | |
84 | } else { | |
85 | a.cpu = cputime_sub(a.cpu, b.cpu); | |
86 | } | |
87 | return a; | |
88 | } | |
89 | ||
ac08c264 TG |
90 | /* |
91 | * Divide and limit the result to res >= 1 | |
92 | * | |
93 | * This is necessary to prevent signal delivery starvation, when the result of | |
94 | * the division would be rounded down to 0. | |
95 | */ | |
96 | static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div) | |
97 | { | |
98 | cputime_t res = cputime_div(time, div); | |
99 | ||
100 | return max_t(cputime_t, res, 1); | |
101 | } | |
102 | ||
1da177e4 LT |
103 | /* |
104 | * Update expiry time from increment, and increase overrun count, | |
105 | * given the current clock sample. | |
106 | */ | |
7a4ed937 | 107 | static void bump_cpu_timer(struct k_itimer *timer, |
1da177e4 LT |
108 | union cpu_time_count now) |
109 | { | |
110 | int i; | |
111 | ||
112 | if (timer->it.cpu.incr.sched == 0) | |
113 | return; | |
114 | ||
115 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | |
116 | unsigned long long delta, incr; | |
117 | ||
118 | if (now.sched < timer->it.cpu.expires.sched) | |
119 | return; | |
120 | incr = timer->it.cpu.incr.sched; | |
121 | delta = now.sched + incr - timer->it.cpu.expires.sched; | |
122 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | |
123 | for (i = 0; incr < delta - incr; i++) | |
124 | incr = incr << 1; | |
125 | for (; i >= 0; incr >>= 1, i--) { | |
7a4ed937 | 126 | if (delta < incr) |
1da177e4 LT |
127 | continue; |
128 | timer->it.cpu.expires.sched += incr; | |
129 | timer->it_overrun += 1 << i; | |
130 | delta -= incr; | |
131 | } | |
132 | } else { | |
133 | cputime_t delta, incr; | |
134 | ||
135 | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) | |
136 | return; | |
137 | incr = timer->it.cpu.incr.cpu; | |
138 | delta = cputime_sub(cputime_add(now.cpu, incr), | |
139 | timer->it.cpu.expires.cpu); | |
140 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | |
141 | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) | |
142 | incr = cputime_add(incr, incr); | |
143 | for (; i >= 0; incr = cputime_halve(incr), i--) { | |
7a4ed937 | 144 | if (cputime_lt(delta, incr)) |
1da177e4 LT |
145 | continue; |
146 | timer->it.cpu.expires.cpu = | |
147 | cputime_add(timer->it.cpu.expires.cpu, incr); | |
148 | timer->it_overrun += 1 << i; | |
149 | delta = cputime_sub(delta, incr); | |
150 | } | |
151 | } | |
152 | } | |
153 | ||
154 | static inline cputime_t prof_ticks(struct task_struct *p) | |
155 | { | |
156 | return cputime_add(p->utime, p->stime); | |
157 | } | |
158 | static inline cputime_t virt_ticks(struct task_struct *p) | |
159 | { | |
160 | return p->utime; | |
161 | } | |
162 | static inline unsigned long long sched_ns(struct task_struct *p) | |
163 | { | |
164 | return (p == current) ? current_sched_time(p) : p->sched_time; | |
165 | } | |
166 | ||
a924b04d | 167 | int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
1da177e4 LT |
168 | { |
169 | int error = check_clock(which_clock); | |
170 | if (!error) { | |
171 | tp->tv_sec = 0; | |
172 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | |
173 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
174 | /* | |
175 | * If sched_clock is using a cycle counter, we | |
176 | * don't have any idea of its true resolution | |
177 | * exported, but it is much more than 1s/HZ. | |
178 | */ | |
179 | tp->tv_nsec = 1; | |
180 | } | |
181 | } | |
182 | return error; | |
183 | } | |
184 | ||
a924b04d | 185 | int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) |
1da177e4 LT |
186 | { |
187 | /* | |
188 | * You can never reset a CPU clock, but we check for other errors | |
189 | * in the call before failing with EPERM. | |
190 | */ | |
191 | int error = check_clock(which_clock); | |
192 | if (error == 0) { | |
193 | error = -EPERM; | |
194 | } | |
195 | return error; | |
196 | } | |
197 | ||
198 | ||
199 | /* | |
200 | * Sample a per-thread clock for the given task. | |
201 | */ | |
a924b04d | 202 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
1da177e4 LT |
203 | union cpu_time_count *cpu) |
204 | { | |
205 | switch (CPUCLOCK_WHICH(which_clock)) { | |
206 | default: | |
207 | return -EINVAL; | |
208 | case CPUCLOCK_PROF: | |
209 | cpu->cpu = prof_ticks(p); | |
210 | break; | |
211 | case CPUCLOCK_VIRT: | |
212 | cpu->cpu = virt_ticks(p); | |
213 | break; | |
214 | case CPUCLOCK_SCHED: | |
215 | cpu->sched = sched_ns(p); | |
216 | break; | |
217 | } | |
218 | return 0; | |
219 | } | |
220 | ||
221 | /* | |
222 | * Sample a process (thread group) clock for the given group_leader task. | |
223 | * Must be called with tasklist_lock held for reading. | |
224 | * Must be called with tasklist_lock held for reading, and p->sighand->siglock. | |
225 | */ | |
226 | static int cpu_clock_sample_group_locked(unsigned int clock_idx, | |
227 | struct task_struct *p, | |
228 | union cpu_time_count *cpu) | |
229 | { | |
230 | struct task_struct *t = p; | |
231 | switch (clock_idx) { | |
232 | default: | |
233 | return -EINVAL; | |
234 | case CPUCLOCK_PROF: | |
235 | cpu->cpu = cputime_add(p->signal->utime, p->signal->stime); | |
236 | do { | |
237 | cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t)); | |
238 | t = next_thread(t); | |
239 | } while (t != p); | |
240 | break; | |
241 | case CPUCLOCK_VIRT: | |
242 | cpu->cpu = p->signal->utime; | |
243 | do { | |
244 | cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t)); | |
245 | t = next_thread(t); | |
246 | } while (t != p); | |
247 | break; | |
248 | case CPUCLOCK_SCHED: | |
249 | cpu->sched = p->signal->sched_time; | |
250 | /* Add in each other live thread. */ | |
251 | while ((t = next_thread(t)) != p) { | |
252 | cpu->sched += t->sched_time; | |
253 | } | |
0aec63e6 | 254 | cpu->sched += sched_ns(p); |
1da177e4 LT |
255 | break; |
256 | } | |
257 | return 0; | |
258 | } | |
259 | ||
260 | /* | |
261 | * Sample a process (thread group) clock for the given group_leader task. | |
262 | * Must be called with tasklist_lock held for reading. | |
263 | */ | |
a924b04d | 264 | static int cpu_clock_sample_group(const clockid_t which_clock, |
1da177e4 LT |
265 | struct task_struct *p, |
266 | union cpu_time_count *cpu) | |
267 | { | |
268 | int ret; | |
269 | unsigned long flags; | |
270 | spin_lock_irqsave(&p->sighand->siglock, flags); | |
271 | ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p, | |
272 | cpu); | |
273 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | |
274 | return ret; | |
275 | } | |
276 | ||
277 | ||
a924b04d | 278 | int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
1da177e4 LT |
279 | { |
280 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
281 | int error = -EINVAL; | |
282 | union cpu_time_count rtn; | |
283 | ||
284 | if (pid == 0) { | |
285 | /* | |
286 | * Special case constant value for our own clocks. | |
287 | * We don't have to do any lookup to find ourselves. | |
288 | */ | |
289 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
290 | /* | |
291 | * Sampling just ourselves we can do with no locking. | |
292 | */ | |
293 | error = cpu_clock_sample(which_clock, | |
294 | current, &rtn); | |
295 | } else { | |
296 | read_lock(&tasklist_lock); | |
297 | error = cpu_clock_sample_group(which_clock, | |
298 | current, &rtn); | |
299 | read_unlock(&tasklist_lock); | |
300 | } | |
301 | } else { | |
302 | /* | |
303 | * Find the given PID, and validate that the caller | |
304 | * should be able to see it. | |
305 | */ | |
306 | struct task_struct *p; | |
307 | read_lock(&tasklist_lock); | |
308 | p = find_task_by_pid(pid); | |
309 | if (p) { | |
310 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
311 | if (p->tgid == current->tgid) { | |
312 | error = cpu_clock_sample(which_clock, | |
313 | p, &rtn); | |
314 | } | |
315 | } else if (p->tgid == pid && p->signal) { | |
316 | error = cpu_clock_sample_group(which_clock, | |
317 | p, &rtn); | |
318 | } | |
319 | } | |
320 | read_unlock(&tasklist_lock); | |
321 | } | |
322 | ||
323 | if (error) | |
324 | return error; | |
325 | sample_to_timespec(which_clock, rtn, tp); | |
326 | return 0; | |
327 | } | |
328 | ||
329 | ||
330 | /* | |
331 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | |
332 | * This is called from sys_timer_create with the new timer already locked. | |
333 | */ | |
334 | int posix_cpu_timer_create(struct k_itimer *new_timer) | |
335 | { | |
336 | int ret = 0; | |
337 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | |
338 | struct task_struct *p; | |
339 | ||
340 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | |
341 | return -EINVAL; | |
342 | ||
343 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | |
344 | new_timer->it.cpu.incr.sched = 0; | |
345 | new_timer->it.cpu.expires.sched = 0; | |
346 | ||
347 | read_lock(&tasklist_lock); | |
348 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { | |
349 | if (pid == 0) { | |
350 | p = current; | |
351 | } else { | |
352 | p = find_task_by_pid(pid); | |
353 | if (p && p->tgid != current->tgid) | |
354 | p = NULL; | |
355 | } | |
356 | } else { | |
357 | if (pid == 0) { | |
358 | p = current->group_leader; | |
359 | } else { | |
360 | p = find_task_by_pid(pid); | |
361 | if (p && p->tgid != pid) | |
362 | p = NULL; | |
363 | } | |
364 | } | |
365 | new_timer->it.cpu.task = p; | |
366 | if (p) { | |
367 | get_task_struct(p); | |
368 | } else { | |
369 | ret = -EINVAL; | |
370 | } | |
371 | read_unlock(&tasklist_lock); | |
372 | ||
373 | return ret; | |
374 | } | |
375 | ||
376 | /* | |
377 | * Clean up a CPU-clock timer that is about to be destroyed. | |
378 | * This is called from timer deletion with the timer already locked. | |
379 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
380 | * and try again. (This happens when the timer is in the middle of firing.) | |
381 | */ | |
382 | int posix_cpu_timer_del(struct k_itimer *timer) | |
383 | { | |
384 | struct task_struct *p = timer->it.cpu.task; | |
108150ea | 385 | int ret = 0; |
1da177e4 | 386 | |
108150ea | 387 | if (likely(p != NULL)) { |
9465bee8 LT |
388 | read_lock(&tasklist_lock); |
389 | if (unlikely(p->signal == NULL)) { | |
390 | /* | |
391 | * We raced with the reaping of the task. | |
392 | * The deletion should have cleared us off the list. | |
393 | */ | |
394 | BUG_ON(!list_empty(&timer->it.cpu.entry)); | |
395 | } else { | |
9465bee8 | 396 | spin_lock(&p->sighand->siglock); |
108150ea ON |
397 | if (timer->it.cpu.firing) |
398 | ret = TIMER_RETRY; | |
399 | else | |
400 | list_del(&timer->it.cpu.entry); | |
9465bee8 LT |
401 | spin_unlock(&p->sighand->siglock); |
402 | } | |
403 | read_unlock(&tasklist_lock); | |
108150ea ON |
404 | |
405 | if (!ret) | |
406 | put_task_struct(p); | |
1da177e4 | 407 | } |
1da177e4 | 408 | |
108150ea | 409 | return ret; |
1da177e4 LT |
410 | } |
411 | ||
412 | /* | |
413 | * Clean out CPU timers still ticking when a thread exited. The task | |
414 | * pointer is cleared, and the expiry time is replaced with the residual | |
415 | * time for later timer_gettime calls to return. | |
416 | * This must be called with the siglock held. | |
417 | */ | |
418 | static void cleanup_timers(struct list_head *head, | |
419 | cputime_t utime, cputime_t stime, | |
420 | unsigned long long sched_time) | |
421 | { | |
422 | struct cpu_timer_list *timer, *next; | |
423 | cputime_t ptime = cputime_add(utime, stime); | |
424 | ||
425 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
426 | list_del_init(&timer->entry); |
427 | if (cputime_lt(timer->expires.cpu, ptime)) { | |
428 | timer->expires.cpu = cputime_zero; | |
429 | } else { | |
430 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | |
431 | ptime); | |
432 | } | |
433 | } | |
434 | ||
435 | ++head; | |
436 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
437 | list_del_init(&timer->entry); |
438 | if (cputime_lt(timer->expires.cpu, utime)) { | |
439 | timer->expires.cpu = cputime_zero; | |
440 | } else { | |
441 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | |
442 | utime); | |
443 | } | |
444 | } | |
445 | ||
446 | ++head; | |
447 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
448 | list_del_init(&timer->entry); |
449 | if (timer->expires.sched < sched_time) { | |
450 | timer->expires.sched = 0; | |
451 | } else { | |
452 | timer->expires.sched -= sched_time; | |
453 | } | |
454 | } | |
455 | } | |
456 | ||
457 | /* | |
458 | * These are both called with the siglock held, when the current thread | |
459 | * is being reaped. When the final (leader) thread in the group is reaped, | |
460 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | |
461 | */ | |
462 | void posix_cpu_timers_exit(struct task_struct *tsk) | |
463 | { | |
464 | cleanup_timers(tsk->cpu_timers, | |
465 | tsk->utime, tsk->stime, tsk->sched_time); | |
466 | ||
467 | } | |
468 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | |
469 | { | |
470 | cleanup_timers(tsk->signal->cpu_timers, | |
471 | cputime_add(tsk->utime, tsk->signal->utime), | |
472 | cputime_add(tsk->stime, tsk->signal->stime), | |
473 | tsk->sched_time + tsk->signal->sched_time); | |
474 | } | |
475 | ||
476 | ||
477 | /* | |
478 | * Set the expiry times of all the threads in the process so one of them | |
479 | * will go off before the process cumulative expiry total is reached. | |
480 | */ | |
481 | static void process_timer_rebalance(struct task_struct *p, | |
482 | unsigned int clock_idx, | |
483 | union cpu_time_count expires, | |
484 | union cpu_time_count val) | |
485 | { | |
486 | cputime_t ticks, left; | |
487 | unsigned long long ns, nsleft; | |
488 | struct task_struct *t = p; | |
489 | unsigned int nthreads = atomic_read(&p->signal->live); | |
490 | ||
ca531a0a ON |
491 | if (!nthreads) |
492 | return; | |
493 | ||
1da177e4 LT |
494 | switch (clock_idx) { |
495 | default: | |
496 | BUG(); | |
497 | break; | |
498 | case CPUCLOCK_PROF: | |
ac08c264 TG |
499 | left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu), |
500 | nthreads); | |
1da177e4 | 501 | do { |
7fd93cf3 | 502 | if (likely(!(t->flags & PF_EXITING))) { |
1da177e4 LT |
503 | ticks = cputime_add(prof_ticks(t), left); |
504 | if (cputime_eq(t->it_prof_expires, | |
505 | cputime_zero) || | |
506 | cputime_gt(t->it_prof_expires, ticks)) { | |
507 | t->it_prof_expires = ticks; | |
508 | } | |
509 | } | |
510 | t = next_thread(t); | |
511 | } while (t != p); | |
512 | break; | |
513 | case CPUCLOCK_VIRT: | |
ac08c264 TG |
514 | left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu), |
515 | nthreads); | |
1da177e4 | 516 | do { |
7fd93cf3 | 517 | if (likely(!(t->flags & PF_EXITING))) { |
1da177e4 LT |
518 | ticks = cputime_add(virt_ticks(t), left); |
519 | if (cputime_eq(t->it_virt_expires, | |
520 | cputime_zero) || | |
521 | cputime_gt(t->it_virt_expires, ticks)) { | |
522 | t->it_virt_expires = ticks; | |
523 | } | |
524 | } | |
525 | t = next_thread(t); | |
526 | } while (t != p); | |
527 | break; | |
528 | case CPUCLOCK_SCHED: | |
529 | nsleft = expires.sched - val.sched; | |
530 | do_div(nsleft, nthreads); | |
ac08c264 | 531 | nsleft = max_t(unsigned long long, nsleft, 1); |
1da177e4 | 532 | do { |
7fd93cf3 | 533 | if (likely(!(t->flags & PF_EXITING))) { |
1da177e4 LT |
534 | ns = t->sched_time + nsleft; |
535 | if (t->it_sched_expires == 0 || | |
536 | t->it_sched_expires > ns) { | |
537 | t->it_sched_expires = ns; | |
538 | } | |
539 | } | |
540 | t = next_thread(t); | |
541 | } while (t != p); | |
542 | break; | |
543 | } | |
544 | } | |
545 | ||
546 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |
547 | { | |
548 | /* | |
549 | * That's all for this thread or process. | |
550 | * We leave our residual in expires to be reported. | |
551 | */ | |
552 | put_task_struct(timer->it.cpu.task); | |
553 | timer->it.cpu.task = NULL; | |
554 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | |
555 | timer->it.cpu.expires, | |
556 | now); | |
557 | } | |
558 | ||
559 | /* | |
560 | * Insert the timer on the appropriate list before any timers that | |
561 | * expire later. This must be called with the tasklist_lock held | |
562 | * for reading, and interrupts disabled. | |
563 | */ | |
564 | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |
565 | { | |
566 | struct task_struct *p = timer->it.cpu.task; | |
567 | struct list_head *head, *listpos; | |
568 | struct cpu_timer_list *const nt = &timer->it.cpu; | |
569 | struct cpu_timer_list *next; | |
570 | unsigned long i; | |
571 | ||
572 | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | |
573 | p->cpu_timers : p->signal->cpu_timers); | |
574 | head += CPUCLOCK_WHICH(timer->it_clock); | |
575 | ||
576 | BUG_ON(!irqs_disabled()); | |
577 | spin_lock(&p->sighand->siglock); | |
578 | ||
579 | listpos = head; | |
580 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | |
581 | list_for_each_entry(next, head, entry) { | |
70ab81c2 | 582 | if (next->expires.sched > nt->expires.sched) |
1da177e4 | 583 | break; |
70ab81c2 | 584 | listpos = &next->entry; |
1da177e4 LT |
585 | } |
586 | } else { | |
587 | list_for_each_entry(next, head, entry) { | |
70ab81c2 | 588 | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) |
1da177e4 | 589 | break; |
70ab81c2 | 590 | listpos = &next->entry; |
1da177e4 LT |
591 | } |
592 | } | |
593 | list_add(&nt->entry, listpos); | |
594 | ||
595 | if (listpos == head) { | |
596 | /* | |
597 | * We are the new earliest-expiring timer. | |
598 | * If we are a thread timer, there can always | |
599 | * be a process timer telling us to stop earlier. | |
600 | */ | |
601 | ||
602 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
603 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | |
604 | default: | |
605 | BUG(); | |
606 | case CPUCLOCK_PROF: | |
607 | if (cputime_eq(p->it_prof_expires, | |
608 | cputime_zero) || | |
609 | cputime_gt(p->it_prof_expires, | |
610 | nt->expires.cpu)) | |
611 | p->it_prof_expires = nt->expires.cpu; | |
612 | break; | |
613 | case CPUCLOCK_VIRT: | |
614 | if (cputime_eq(p->it_virt_expires, | |
615 | cputime_zero) || | |
616 | cputime_gt(p->it_virt_expires, | |
617 | nt->expires.cpu)) | |
618 | p->it_virt_expires = nt->expires.cpu; | |
619 | break; | |
620 | case CPUCLOCK_SCHED: | |
621 | if (p->it_sched_expires == 0 || | |
622 | p->it_sched_expires > nt->expires.sched) | |
623 | p->it_sched_expires = nt->expires.sched; | |
624 | break; | |
625 | } | |
626 | } else { | |
627 | /* | |
628 | * For a process timer, we must balance | |
629 | * all the live threads' expirations. | |
630 | */ | |
631 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | |
632 | default: | |
633 | BUG(); | |
634 | case CPUCLOCK_VIRT: | |
635 | if (!cputime_eq(p->signal->it_virt_expires, | |
636 | cputime_zero) && | |
637 | cputime_lt(p->signal->it_virt_expires, | |
638 | timer->it.cpu.expires.cpu)) | |
639 | break; | |
640 | goto rebalance; | |
641 | case CPUCLOCK_PROF: | |
642 | if (!cputime_eq(p->signal->it_prof_expires, | |
643 | cputime_zero) && | |
644 | cputime_lt(p->signal->it_prof_expires, | |
645 | timer->it.cpu.expires.cpu)) | |
646 | break; | |
647 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | |
648 | if (i != RLIM_INFINITY && | |
649 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | |
650 | break; | |
651 | goto rebalance; | |
652 | case CPUCLOCK_SCHED: | |
653 | rebalance: | |
654 | process_timer_rebalance( | |
655 | timer->it.cpu.task, | |
656 | CPUCLOCK_WHICH(timer->it_clock), | |
657 | timer->it.cpu.expires, now); | |
658 | break; | |
659 | } | |
660 | } | |
661 | } | |
662 | ||
663 | spin_unlock(&p->sighand->siglock); | |
664 | } | |
665 | ||
666 | /* | |
667 | * The timer is locked, fire it and arrange for its reload. | |
668 | */ | |
669 | static void cpu_timer_fire(struct k_itimer *timer) | |
670 | { | |
671 | if (unlikely(timer->sigq == NULL)) { | |
672 | /* | |
673 | * This a special case for clock_nanosleep, | |
674 | * not a normal timer from sys_timer_create. | |
675 | */ | |
676 | wake_up_process(timer->it_process); | |
677 | timer->it.cpu.expires.sched = 0; | |
678 | } else if (timer->it.cpu.incr.sched == 0) { | |
679 | /* | |
680 | * One-shot timer. Clear it as soon as it's fired. | |
681 | */ | |
682 | posix_timer_event(timer, 0); | |
683 | timer->it.cpu.expires.sched = 0; | |
684 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | |
685 | /* | |
686 | * The signal did not get queued because the signal | |
687 | * was ignored, so we won't get any callback to | |
688 | * reload the timer. But we need to keep it | |
689 | * ticking in case the signal is deliverable next time. | |
690 | */ | |
691 | posix_cpu_timer_schedule(timer); | |
692 | } | |
693 | } | |
694 | ||
695 | /* | |
696 | * Guts of sys_timer_settime for CPU timers. | |
697 | * This is called with the timer locked and interrupts disabled. | |
698 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
699 | * and try again. (This happens when the timer is in the middle of firing.) | |
700 | */ | |
701 | int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |
702 | struct itimerspec *new, struct itimerspec *old) | |
703 | { | |
704 | struct task_struct *p = timer->it.cpu.task; | |
705 | union cpu_time_count old_expires, new_expires, val; | |
706 | int ret; | |
707 | ||
708 | if (unlikely(p == NULL)) { | |
709 | /* | |
710 | * Timer refers to a dead task's clock. | |
711 | */ | |
712 | return -ESRCH; | |
713 | } | |
714 | ||
715 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | |
716 | ||
717 | read_lock(&tasklist_lock); | |
718 | /* | |
719 | * We need the tasklist_lock to protect against reaping that | |
720 | * clears p->signal. If p has just been reaped, we can no | |
721 | * longer get any information about it at all. | |
722 | */ | |
723 | if (unlikely(p->signal == NULL)) { | |
724 | read_unlock(&tasklist_lock); | |
725 | put_task_struct(p); | |
726 | timer->it.cpu.task = NULL; | |
727 | return -ESRCH; | |
728 | } | |
729 | ||
730 | /* | |
731 | * Disarm any old timer after extracting its expiry time. | |
732 | */ | |
733 | BUG_ON(!irqs_disabled()); | |
a69ac4a7 ON |
734 | |
735 | ret = 0; | |
1da177e4 LT |
736 | spin_lock(&p->sighand->siglock); |
737 | old_expires = timer->it.cpu.expires; | |
a69ac4a7 ON |
738 | if (unlikely(timer->it.cpu.firing)) { |
739 | timer->it.cpu.firing = -1; | |
740 | ret = TIMER_RETRY; | |
741 | } else | |
742 | list_del_init(&timer->it.cpu.entry); | |
1da177e4 LT |
743 | spin_unlock(&p->sighand->siglock); |
744 | ||
745 | /* | |
746 | * We need to sample the current value to convert the new | |
747 | * value from to relative and absolute, and to convert the | |
748 | * old value from absolute to relative. To set a process | |
749 | * timer, we need a sample to balance the thread expiry | |
750 | * times (in arm_timer). With an absolute time, we must | |
751 | * check if it's already passed. In short, we need a sample. | |
752 | */ | |
753 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
754 | cpu_clock_sample(timer->it_clock, p, &val); | |
755 | } else { | |
756 | cpu_clock_sample_group(timer->it_clock, p, &val); | |
757 | } | |
758 | ||
759 | if (old) { | |
760 | if (old_expires.sched == 0) { | |
761 | old->it_value.tv_sec = 0; | |
762 | old->it_value.tv_nsec = 0; | |
763 | } else { | |
764 | /* | |
765 | * Update the timer in case it has | |
766 | * overrun already. If it has, | |
767 | * we'll report it as having overrun | |
768 | * and with the next reloaded timer | |
769 | * already ticking, though we are | |
770 | * swallowing that pending | |
771 | * notification here to install the | |
772 | * new setting. | |
773 | */ | |
774 | bump_cpu_timer(timer, val); | |
775 | if (cpu_time_before(timer->it_clock, val, | |
776 | timer->it.cpu.expires)) { | |
777 | old_expires = cpu_time_sub( | |
778 | timer->it_clock, | |
779 | timer->it.cpu.expires, val); | |
780 | sample_to_timespec(timer->it_clock, | |
781 | old_expires, | |
782 | &old->it_value); | |
783 | } else { | |
784 | old->it_value.tv_nsec = 1; | |
785 | old->it_value.tv_sec = 0; | |
786 | } | |
787 | } | |
788 | } | |
789 | ||
a69ac4a7 | 790 | if (unlikely(ret)) { |
1da177e4 LT |
791 | /* |
792 | * We are colliding with the timer actually firing. | |
793 | * Punt after filling in the timer's old value, and | |
794 | * disable this firing since we are already reporting | |
795 | * it as an overrun (thanks to bump_cpu_timer above). | |
796 | */ | |
797 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
798 | goto out; |
799 | } | |
800 | ||
801 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | |
802 | cpu_time_add(timer->it_clock, &new_expires, val); | |
803 | } | |
804 | ||
805 | /* | |
806 | * Install the new expiry time (or zero). | |
807 | * For a timer with no notification action, we don't actually | |
808 | * arm the timer (we'll just fake it for timer_gettime). | |
809 | */ | |
810 | timer->it.cpu.expires = new_expires; | |
811 | if (new_expires.sched != 0 && | |
812 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | |
813 | cpu_time_before(timer->it_clock, val, new_expires)) { | |
814 | arm_timer(timer, val); | |
815 | } | |
816 | ||
817 | read_unlock(&tasklist_lock); | |
818 | ||
819 | /* | |
820 | * Install the new reload setting, and | |
821 | * set up the signal and overrun bookkeeping. | |
822 | */ | |
823 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | |
824 | &new->it_interval); | |
825 | ||
826 | /* | |
827 | * This acts as a modification timestamp for the timer, | |
828 | * so any automatic reload attempt will punt on seeing | |
829 | * that we have reset the timer manually. | |
830 | */ | |
831 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | |
832 | ~REQUEUE_PENDING; | |
833 | timer->it_overrun_last = 0; | |
834 | timer->it_overrun = -1; | |
835 | ||
836 | if (new_expires.sched != 0 && | |
837 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | |
838 | !cpu_time_before(timer->it_clock, val, new_expires)) { | |
839 | /* | |
840 | * The designated time already passed, so we notify | |
841 | * immediately, even if the thread never runs to | |
842 | * accumulate more time on this clock. | |
843 | */ | |
844 | cpu_timer_fire(timer); | |
845 | } | |
846 | ||
847 | ret = 0; | |
848 | out: | |
849 | if (old) { | |
850 | sample_to_timespec(timer->it_clock, | |
851 | timer->it.cpu.incr, &old->it_interval); | |
852 | } | |
853 | return ret; | |
854 | } | |
855 | ||
856 | void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | |
857 | { | |
858 | union cpu_time_count now; | |
859 | struct task_struct *p = timer->it.cpu.task; | |
860 | int clear_dead; | |
861 | ||
862 | /* | |
863 | * Easy part: convert the reload time. | |
864 | */ | |
865 | sample_to_timespec(timer->it_clock, | |
866 | timer->it.cpu.incr, &itp->it_interval); | |
867 | ||
868 | if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ | |
869 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | |
870 | return; | |
871 | } | |
872 | ||
873 | if (unlikely(p == NULL)) { | |
874 | /* | |
875 | * This task already died and the timer will never fire. | |
876 | * In this case, expires is actually the dead value. | |
877 | */ | |
878 | dead: | |
879 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | |
880 | &itp->it_value); | |
881 | return; | |
882 | } | |
883 | ||
884 | /* | |
885 | * Sample the clock to take the difference with the expiry time. | |
886 | */ | |
887 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
888 | cpu_clock_sample(timer->it_clock, p, &now); | |
889 | clear_dead = p->exit_state; | |
890 | } else { | |
891 | read_lock(&tasklist_lock); | |
892 | if (unlikely(p->signal == NULL)) { | |
893 | /* | |
894 | * The process has been reaped. | |
895 | * We can't even collect a sample any more. | |
896 | * Call the timer disarmed, nothing else to do. | |
897 | */ | |
898 | put_task_struct(p); | |
899 | timer->it.cpu.task = NULL; | |
900 | timer->it.cpu.expires.sched = 0; | |
901 | read_unlock(&tasklist_lock); | |
902 | goto dead; | |
903 | } else { | |
904 | cpu_clock_sample_group(timer->it_clock, p, &now); | |
905 | clear_dead = (unlikely(p->exit_state) && | |
906 | thread_group_empty(p)); | |
907 | } | |
908 | read_unlock(&tasklist_lock); | |
909 | } | |
910 | ||
911 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | |
912 | if (timer->it.cpu.incr.sched == 0 && | |
913 | cpu_time_before(timer->it_clock, | |
914 | timer->it.cpu.expires, now)) { | |
915 | /* | |
916 | * Do-nothing timer expired and has no reload, | |
917 | * so it's as if it was never set. | |
918 | */ | |
919 | timer->it.cpu.expires.sched = 0; | |
920 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | |
921 | return; | |
922 | } | |
923 | /* | |
924 | * Account for any expirations and reloads that should | |
925 | * have happened. | |
926 | */ | |
927 | bump_cpu_timer(timer, now); | |
928 | } | |
929 | ||
930 | if (unlikely(clear_dead)) { | |
931 | /* | |
932 | * We've noticed that the thread is dead, but | |
933 | * not yet reaped. Take this opportunity to | |
934 | * drop our task ref. | |
935 | */ | |
936 | clear_dead_task(timer, now); | |
937 | goto dead; | |
938 | } | |
939 | ||
940 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | |
941 | sample_to_timespec(timer->it_clock, | |
942 | cpu_time_sub(timer->it_clock, | |
943 | timer->it.cpu.expires, now), | |
944 | &itp->it_value); | |
945 | } else { | |
946 | /* | |
947 | * The timer should have expired already, but the firing | |
948 | * hasn't taken place yet. Say it's just about to expire. | |
949 | */ | |
950 | itp->it_value.tv_nsec = 1; | |
951 | itp->it_value.tv_sec = 0; | |
952 | } | |
953 | } | |
954 | ||
955 | /* | |
956 | * Check for any per-thread CPU timers that have fired and move them off | |
957 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the | |
958 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | |
959 | */ | |
960 | static void check_thread_timers(struct task_struct *tsk, | |
961 | struct list_head *firing) | |
962 | { | |
e80eda94 | 963 | int maxfire; |
1da177e4 LT |
964 | struct list_head *timers = tsk->cpu_timers; |
965 | ||
e80eda94 | 966 | maxfire = 20; |
1da177e4 LT |
967 | tsk->it_prof_expires = cputime_zero; |
968 | while (!list_empty(timers)) { | |
969 | struct cpu_timer_list *t = list_entry(timers->next, | |
970 | struct cpu_timer_list, | |
971 | entry); | |
e80eda94 | 972 | if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { |
1da177e4 LT |
973 | tsk->it_prof_expires = t->expires.cpu; |
974 | break; | |
975 | } | |
976 | t->firing = 1; | |
977 | list_move_tail(&t->entry, firing); | |
978 | } | |
979 | ||
980 | ++timers; | |
e80eda94 | 981 | maxfire = 20; |
1da177e4 LT |
982 | tsk->it_virt_expires = cputime_zero; |
983 | while (!list_empty(timers)) { | |
984 | struct cpu_timer_list *t = list_entry(timers->next, | |
985 | struct cpu_timer_list, | |
986 | entry); | |
e80eda94 | 987 | if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { |
1da177e4 LT |
988 | tsk->it_virt_expires = t->expires.cpu; |
989 | break; | |
990 | } | |
991 | t->firing = 1; | |
992 | list_move_tail(&t->entry, firing); | |
993 | } | |
994 | ||
995 | ++timers; | |
e80eda94 | 996 | maxfire = 20; |
1da177e4 LT |
997 | tsk->it_sched_expires = 0; |
998 | while (!list_empty(timers)) { | |
999 | struct cpu_timer_list *t = list_entry(timers->next, | |
1000 | struct cpu_timer_list, | |
1001 | entry); | |
e80eda94 | 1002 | if (!--maxfire || tsk->sched_time < t->expires.sched) { |
1da177e4 LT |
1003 | tsk->it_sched_expires = t->expires.sched; |
1004 | break; | |
1005 | } | |
1006 | t->firing = 1; | |
1007 | list_move_tail(&t->entry, firing); | |
1008 | } | |
1009 | } | |
1010 | ||
1011 | /* | |
1012 | * Check for any per-thread CPU timers that have fired and move them | |
1013 | * off the tsk->*_timers list onto the firing list. Per-thread timers | |
1014 | * have already been taken off. | |
1015 | */ | |
1016 | static void check_process_timers(struct task_struct *tsk, | |
1017 | struct list_head *firing) | |
1018 | { | |
e80eda94 | 1019 | int maxfire; |
1da177e4 LT |
1020 | struct signal_struct *const sig = tsk->signal; |
1021 | cputime_t utime, stime, ptime, virt_expires, prof_expires; | |
1022 | unsigned long long sched_time, sched_expires; | |
1023 | struct task_struct *t; | |
1024 | struct list_head *timers = sig->cpu_timers; | |
1025 | ||
1026 | /* | |
1027 | * Don't sample the current process CPU clocks if there are no timers. | |
1028 | */ | |
1029 | if (list_empty(&timers[CPUCLOCK_PROF]) && | |
1030 | cputime_eq(sig->it_prof_expires, cputime_zero) && | |
1031 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | |
1032 | list_empty(&timers[CPUCLOCK_VIRT]) && | |
1033 | cputime_eq(sig->it_virt_expires, cputime_zero) && | |
1034 | list_empty(&timers[CPUCLOCK_SCHED])) | |
1035 | return; | |
1036 | ||
1037 | /* | |
1038 | * Collect the current process totals. | |
1039 | */ | |
1040 | utime = sig->utime; | |
1041 | stime = sig->stime; | |
1042 | sched_time = sig->sched_time; | |
1043 | t = tsk; | |
1044 | do { | |
1045 | utime = cputime_add(utime, t->utime); | |
1046 | stime = cputime_add(stime, t->stime); | |
1047 | sched_time += t->sched_time; | |
1048 | t = next_thread(t); | |
1049 | } while (t != tsk); | |
1050 | ptime = cputime_add(utime, stime); | |
1051 | ||
e80eda94 | 1052 | maxfire = 20; |
1da177e4 LT |
1053 | prof_expires = cputime_zero; |
1054 | while (!list_empty(timers)) { | |
1055 | struct cpu_timer_list *t = list_entry(timers->next, | |
1056 | struct cpu_timer_list, | |
1057 | entry); | |
e80eda94 | 1058 | if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) { |
1da177e4 LT |
1059 | prof_expires = t->expires.cpu; |
1060 | break; | |
1061 | } | |
1062 | t->firing = 1; | |
1063 | list_move_tail(&t->entry, firing); | |
1064 | } | |
1065 | ||
1066 | ++timers; | |
e80eda94 | 1067 | maxfire = 20; |
1da177e4 LT |
1068 | virt_expires = cputime_zero; |
1069 | while (!list_empty(timers)) { | |
1070 | struct cpu_timer_list *t = list_entry(timers->next, | |
1071 | struct cpu_timer_list, | |
1072 | entry); | |
e80eda94 | 1073 | if (!--maxfire || cputime_lt(utime, t->expires.cpu)) { |
1da177e4 LT |
1074 | virt_expires = t->expires.cpu; |
1075 | break; | |
1076 | } | |
1077 | t->firing = 1; | |
1078 | list_move_tail(&t->entry, firing); | |
1079 | } | |
1080 | ||
1081 | ++timers; | |
e80eda94 | 1082 | maxfire = 20; |
1da177e4 LT |
1083 | sched_expires = 0; |
1084 | while (!list_empty(timers)) { | |
1085 | struct cpu_timer_list *t = list_entry(timers->next, | |
1086 | struct cpu_timer_list, | |
1087 | entry); | |
e80eda94 | 1088 | if (!--maxfire || sched_time < t->expires.sched) { |
1da177e4 LT |
1089 | sched_expires = t->expires.sched; |
1090 | break; | |
1091 | } | |
1092 | t->firing = 1; | |
1093 | list_move_tail(&t->entry, firing); | |
1094 | } | |
1095 | ||
1096 | /* | |
1097 | * Check for the special case process timers. | |
1098 | */ | |
1099 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | |
1100 | if (cputime_ge(ptime, sig->it_prof_expires)) { | |
1101 | /* ITIMER_PROF fires and reloads. */ | |
1102 | sig->it_prof_expires = sig->it_prof_incr; | |
1103 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | |
1104 | sig->it_prof_expires = cputime_add( | |
1105 | sig->it_prof_expires, ptime); | |
1106 | } | |
1107 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | |
1108 | } | |
1109 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | |
1110 | (cputime_eq(prof_expires, cputime_zero) || | |
1111 | cputime_lt(sig->it_prof_expires, prof_expires))) { | |
1112 | prof_expires = sig->it_prof_expires; | |
1113 | } | |
1114 | } | |
1115 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | |
1116 | if (cputime_ge(utime, sig->it_virt_expires)) { | |
1117 | /* ITIMER_VIRTUAL fires and reloads. */ | |
1118 | sig->it_virt_expires = sig->it_virt_incr; | |
1119 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | |
1120 | sig->it_virt_expires = cputime_add( | |
1121 | sig->it_virt_expires, utime); | |
1122 | } | |
1123 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | |
1124 | } | |
1125 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | |
1126 | (cputime_eq(virt_expires, cputime_zero) || | |
1127 | cputime_lt(sig->it_virt_expires, virt_expires))) { | |
1128 | virt_expires = sig->it_virt_expires; | |
1129 | } | |
1130 | } | |
1131 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | |
1132 | unsigned long psecs = cputime_to_secs(ptime); | |
1133 | cputime_t x; | |
1134 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { | |
1135 | /* | |
1136 | * At the hard limit, we just die. | |
1137 | * No need to calculate anything else now. | |
1138 | */ | |
1139 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | |
1140 | return; | |
1141 | } | |
1142 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { | |
1143 | /* | |
1144 | * At the soft limit, send a SIGXCPU every second. | |
1145 | */ | |
1146 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | |
1147 | if (sig->rlim[RLIMIT_CPU].rlim_cur | |
1148 | < sig->rlim[RLIMIT_CPU].rlim_max) { | |
1149 | sig->rlim[RLIMIT_CPU].rlim_cur++; | |
1150 | } | |
1151 | } | |
1152 | x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | |
1153 | if (cputime_eq(prof_expires, cputime_zero) || | |
1154 | cputime_lt(x, prof_expires)) { | |
1155 | prof_expires = x; | |
1156 | } | |
1157 | } | |
1158 | ||
1159 | if (!cputime_eq(prof_expires, cputime_zero) || | |
1160 | !cputime_eq(virt_expires, cputime_zero) || | |
1161 | sched_expires != 0) { | |
1162 | /* | |
1163 | * Rebalance the threads' expiry times for the remaining | |
1164 | * process CPU timers. | |
1165 | */ | |
1166 | ||
1167 | cputime_t prof_left, virt_left, ticks; | |
1168 | unsigned long long sched_left, sched; | |
1169 | const unsigned int nthreads = atomic_read(&sig->live); | |
1170 | ||
ca531a0a ON |
1171 | if (!nthreads) |
1172 | return; | |
1173 | ||
1da177e4 LT |
1174 | prof_left = cputime_sub(prof_expires, utime); |
1175 | prof_left = cputime_sub(prof_left, stime); | |
ac08c264 | 1176 | prof_left = cputime_div_non_zero(prof_left, nthreads); |
1da177e4 | 1177 | virt_left = cputime_sub(virt_expires, utime); |
ac08c264 | 1178 | virt_left = cputime_div_non_zero(virt_left, nthreads); |
1da177e4 LT |
1179 | if (sched_expires) { |
1180 | sched_left = sched_expires - sched_time; | |
1181 | do_div(sched_left, nthreads); | |
ac08c264 | 1182 | sched_left = max_t(unsigned long long, sched_left, 1); |
1da177e4 LT |
1183 | } else { |
1184 | sched_left = 0; | |
1185 | } | |
1186 | t = tsk; | |
1187 | do { | |
8f17fc20 ON |
1188 | if (unlikely(t->flags & PF_EXITING)) |
1189 | continue; | |
1190 | ||
1da177e4 LT |
1191 | ticks = cputime_add(cputime_add(t->utime, t->stime), |
1192 | prof_left); | |
1193 | if (!cputime_eq(prof_expires, cputime_zero) && | |
1194 | (cputime_eq(t->it_prof_expires, cputime_zero) || | |
1195 | cputime_gt(t->it_prof_expires, ticks))) { | |
1196 | t->it_prof_expires = ticks; | |
1197 | } | |
1198 | ||
1199 | ticks = cputime_add(t->utime, virt_left); | |
1200 | if (!cputime_eq(virt_expires, cputime_zero) && | |
1201 | (cputime_eq(t->it_virt_expires, cputime_zero) || | |
1202 | cputime_gt(t->it_virt_expires, ticks))) { | |
1203 | t->it_virt_expires = ticks; | |
1204 | } | |
1205 | ||
1206 | sched = t->sched_time + sched_left; | |
1207 | if (sched_expires && (t->it_sched_expires == 0 || | |
1208 | t->it_sched_expires > sched)) { | |
1209 | t->it_sched_expires = sched; | |
1210 | } | |
8f17fc20 | 1211 | } while ((t = next_thread(t)) != tsk); |
1da177e4 LT |
1212 | } |
1213 | } | |
1214 | ||
1215 | /* | |
1216 | * This is called from the signal code (via do_schedule_next_timer) | |
1217 | * when the last timer signal was delivered and we have to reload the timer. | |
1218 | */ | |
1219 | void posix_cpu_timer_schedule(struct k_itimer *timer) | |
1220 | { | |
1221 | struct task_struct *p = timer->it.cpu.task; | |
1222 | union cpu_time_count now; | |
1223 | ||
1224 | if (unlikely(p == NULL)) | |
1225 | /* | |
1226 | * The task was cleaned up already, no future firings. | |
1227 | */ | |
708f430d | 1228 | goto out; |
1da177e4 LT |
1229 | |
1230 | /* | |
1231 | * Fetch the current sample and update the timer's expiry time. | |
1232 | */ | |
1233 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
1234 | cpu_clock_sample(timer->it_clock, p, &now); | |
1235 | bump_cpu_timer(timer, now); | |
1236 | if (unlikely(p->exit_state)) { | |
1237 | clear_dead_task(timer, now); | |
708f430d | 1238 | goto out; |
1da177e4 LT |
1239 | } |
1240 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | |
1241 | } else { | |
1242 | read_lock(&tasklist_lock); | |
1243 | if (unlikely(p->signal == NULL)) { | |
1244 | /* | |
1245 | * The process has been reaped. | |
1246 | * We can't even collect a sample any more. | |
1247 | */ | |
1248 | put_task_struct(p); | |
1249 | timer->it.cpu.task = p = NULL; | |
1250 | timer->it.cpu.expires.sched = 0; | |
708f430d | 1251 | goto out_unlock; |
1da177e4 LT |
1252 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
1253 | /* | |
1254 | * We've noticed that the thread is dead, but | |
1255 | * not yet reaped. Take this opportunity to | |
1256 | * drop our task ref. | |
1257 | */ | |
1258 | clear_dead_task(timer, now); | |
708f430d | 1259 | goto out_unlock; |
1da177e4 LT |
1260 | } |
1261 | cpu_clock_sample_group(timer->it_clock, p, &now); | |
1262 | bump_cpu_timer(timer, now); | |
1263 | /* Leave the tasklist_lock locked for the call below. */ | |
1264 | } | |
1265 | ||
1266 | /* | |
1267 | * Now re-arm for the new expiry time. | |
1268 | */ | |
1269 | arm_timer(timer, now); | |
1270 | ||
708f430d | 1271 | out_unlock: |
1da177e4 | 1272 | read_unlock(&tasklist_lock); |
708f430d RM |
1273 | |
1274 | out: | |
1275 | timer->it_overrun_last = timer->it_overrun; | |
1276 | timer->it_overrun = -1; | |
1277 | ++timer->it_requeue_pending; | |
1da177e4 LT |
1278 | } |
1279 | ||
1280 | /* | |
1281 | * This is called from the timer interrupt handler. The irq handler has | |
1282 | * already updated our counts. We need to check if any timers fire now. | |
1283 | * Interrupts are disabled. | |
1284 | */ | |
1285 | void run_posix_cpu_timers(struct task_struct *tsk) | |
1286 | { | |
1287 | LIST_HEAD(firing); | |
1288 | struct k_itimer *timer, *next; | |
1289 | ||
1290 | BUG_ON(!irqs_disabled()); | |
1291 | ||
1292 | #define UNEXPIRED(clock) \ | |
1293 | (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \ | |
1294 | cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires)) | |
1295 | ||
1296 | if (UNEXPIRED(prof) && UNEXPIRED(virt) && | |
1297 | (tsk->it_sched_expires == 0 || | |
1298 | tsk->sched_time < tsk->it_sched_expires)) | |
1299 | return; | |
1300 | ||
1301 | #undef UNEXPIRED | |
1302 | ||
1da177e4 LT |
1303 | /* |
1304 | * Double-check with locks held. | |
1305 | */ | |
1306 | read_lock(&tasklist_lock); | |
30f1e3dd ON |
1307 | if (likely(tsk->signal != NULL)) { |
1308 | spin_lock(&tsk->sighand->siglock); | |
1da177e4 | 1309 | |
30f1e3dd ON |
1310 | /* |
1311 | * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N] | |
1312 | * all the timers that are firing, and put them on the firing list. | |
1313 | */ | |
1314 | check_thread_timers(tsk, &firing); | |
1315 | check_process_timers(tsk, &firing); | |
1da177e4 | 1316 | |
30f1e3dd ON |
1317 | /* |
1318 | * We must release these locks before taking any timer's lock. | |
1319 | * There is a potential race with timer deletion here, as the | |
1320 | * siglock now protects our private firing list. We have set | |
1321 | * the firing flag in each timer, so that a deletion attempt | |
1322 | * that gets the timer lock before we do will give it up and | |
1323 | * spin until we've taken care of that timer below. | |
1324 | */ | |
1325 | spin_unlock(&tsk->sighand->siglock); | |
1326 | } | |
1da177e4 LT |
1327 | read_unlock(&tasklist_lock); |
1328 | ||
1329 | /* | |
1330 | * Now that all the timers on our list have the firing flag, | |
1331 | * noone will touch their list entries but us. We'll take | |
1332 | * each timer's lock before clearing its firing flag, so no | |
1333 | * timer call will interfere. | |
1334 | */ | |
1335 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | |
1336 | int firing; | |
1337 | spin_lock(&timer->it_lock); | |
1338 | list_del_init(&timer->it.cpu.entry); | |
1339 | firing = timer->it.cpu.firing; | |
1340 | timer->it.cpu.firing = 0; | |
1341 | /* | |
1342 | * The firing flag is -1 if we collided with a reset | |
1343 | * of the timer, which already reported this | |
1344 | * almost-firing as an overrun. So don't generate an event. | |
1345 | */ | |
1346 | if (likely(firing >= 0)) { | |
1347 | cpu_timer_fire(timer); | |
1348 | } | |
1349 | spin_unlock(&timer->it_lock); | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | /* | |
1354 | * Set one of the process-wide special case CPU timers. | |
1355 | * The tasklist_lock and tsk->sighand->siglock must be held by the caller. | |
1356 | * The oldval argument is null for the RLIMIT_CPU timer, where *newval is | |
1357 | * absolute; non-null for ITIMER_*, where *newval is relative and we update | |
1358 | * it to be absolute, *oldval is absolute and we update it to be relative. | |
1359 | */ | |
1360 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |
1361 | cputime_t *newval, cputime_t *oldval) | |
1362 | { | |
1363 | union cpu_time_count now; | |
1364 | struct list_head *head; | |
1365 | ||
1366 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | |
1367 | cpu_clock_sample_group_locked(clock_idx, tsk, &now); | |
1368 | ||
1369 | if (oldval) { | |
1370 | if (!cputime_eq(*oldval, cputime_zero)) { | |
1371 | if (cputime_le(*oldval, now.cpu)) { | |
1372 | /* Just about to fire. */ | |
1373 | *oldval = jiffies_to_cputime(1); | |
1374 | } else { | |
1375 | *oldval = cputime_sub(*oldval, now.cpu); | |
1376 | } | |
1377 | } | |
1378 | ||
1379 | if (cputime_eq(*newval, cputime_zero)) | |
1380 | return; | |
1381 | *newval = cputime_add(*newval, now.cpu); | |
1382 | ||
1383 | /* | |
1384 | * If the RLIMIT_CPU timer will expire before the | |
1385 | * ITIMER_PROF timer, we have nothing else to do. | |
1386 | */ | |
1387 | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | |
1388 | < cputime_to_secs(*newval)) | |
1389 | return; | |
1390 | } | |
1391 | ||
1392 | /* | |
1393 | * Check whether there are any process timers already set to fire | |
1394 | * before this one. If so, we don't have anything more to do. | |
1395 | */ | |
1396 | head = &tsk->signal->cpu_timers[clock_idx]; | |
1397 | if (list_empty(head) || | |
1398 | cputime_ge(list_entry(head->next, | |
1399 | struct cpu_timer_list, entry)->expires.cpu, | |
1400 | *newval)) { | |
1401 | /* | |
1402 | * Rejigger each thread's expiry time so that one will | |
1403 | * notice before we hit the process-cumulative expiry time. | |
1404 | */ | |
1405 | union cpu_time_count expires = { .sched = 0 }; | |
1406 | expires.cpu = *newval; | |
1407 | process_timer_rebalance(tsk, clock_idx, expires, now); | |
1408 | } | |
1409 | } | |
1410 | ||
e4b76555 TA |
1411 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
1412 | struct timespec *rqtp, struct itimerspec *it) | |
1da177e4 | 1413 | { |
1da177e4 LT |
1414 | struct k_itimer timer; |
1415 | int error; | |
1416 | ||
1da177e4 LT |
1417 | /* |
1418 | * Set up a temporary timer and then wait for it to go off. | |
1419 | */ | |
1420 | memset(&timer, 0, sizeof timer); | |
1421 | spin_lock_init(&timer.it_lock); | |
1422 | timer.it_clock = which_clock; | |
1423 | timer.it_overrun = -1; | |
1424 | error = posix_cpu_timer_create(&timer); | |
1425 | timer.it_process = current; | |
1426 | if (!error) { | |
1da177e4 | 1427 | static struct itimerspec zero_it; |
e4b76555 TA |
1428 | |
1429 | memset(it, 0, sizeof *it); | |
1430 | it->it_value = *rqtp; | |
1da177e4 LT |
1431 | |
1432 | spin_lock_irq(&timer.it_lock); | |
e4b76555 | 1433 | error = posix_cpu_timer_set(&timer, flags, it, NULL); |
1da177e4 LT |
1434 | if (error) { |
1435 | spin_unlock_irq(&timer.it_lock); | |
1436 | return error; | |
1437 | } | |
1438 | ||
1439 | while (!signal_pending(current)) { | |
1440 | if (timer.it.cpu.expires.sched == 0) { | |
1441 | /* | |
1442 | * Our timer fired and was reset. | |
1443 | */ | |
1444 | spin_unlock_irq(&timer.it_lock); | |
1445 | return 0; | |
1446 | } | |
1447 | ||
1448 | /* | |
1449 | * Block until cpu_timer_fire (or a signal) wakes us. | |
1450 | */ | |
1451 | __set_current_state(TASK_INTERRUPTIBLE); | |
1452 | spin_unlock_irq(&timer.it_lock); | |
1453 | schedule(); | |
1454 | spin_lock_irq(&timer.it_lock); | |
1455 | } | |
1456 | ||
1457 | /* | |
1458 | * We were interrupted by a signal. | |
1459 | */ | |
1460 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | |
e4b76555 | 1461 | posix_cpu_timer_set(&timer, 0, &zero_it, it); |
1da177e4 LT |
1462 | spin_unlock_irq(&timer.it_lock); |
1463 | ||
e4b76555 | 1464 | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { |
1da177e4 LT |
1465 | /* |
1466 | * It actually did fire already. | |
1467 | */ | |
1468 | return 0; | |
1469 | } | |
1470 | ||
e4b76555 TA |
1471 | error = -ERESTART_RESTARTBLOCK; |
1472 | } | |
1473 | ||
1474 | return error; | |
1475 | } | |
1476 | ||
1477 | int posix_cpu_nsleep(const clockid_t which_clock, int flags, | |
1478 | struct timespec *rqtp, struct timespec __user *rmtp) | |
1479 | { | |
1480 | struct restart_block *restart_block = | |
1481 | ¤t_thread_info()->restart_block; | |
1482 | struct itimerspec it; | |
1483 | int error; | |
1484 | ||
1485 | /* | |
1486 | * Diagnose required errors first. | |
1487 | */ | |
1488 | if (CPUCLOCK_PERTHREAD(which_clock) && | |
1489 | (CPUCLOCK_PID(which_clock) == 0 || | |
1490 | CPUCLOCK_PID(which_clock) == current->pid)) | |
1491 | return -EINVAL; | |
1492 | ||
1493 | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); | |
1494 | ||
1495 | if (error == -ERESTART_RESTARTBLOCK) { | |
1496 | ||
1497 | if (flags & TIMER_ABSTIME) | |
1498 | return -ERESTARTNOHAND; | |
1da177e4 | 1499 | /* |
e4b76555 TA |
1500 | * Report back to the user the time still remaining. |
1501 | */ | |
1502 | if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | |
1da177e4 LT |
1503 | return -EFAULT; |
1504 | ||
1711ef38 | 1505 | restart_block->fn = posix_cpu_nsleep_restart; |
1da177e4 | 1506 | restart_block->arg0 = which_clock; |
97735f25 | 1507 | restart_block->arg1 = (unsigned long) rmtp; |
1da177e4 LT |
1508 | restart_block->arg2 = rqtp->tv_sec; |
1509 | restart_block->arg3 = rqtp->tv_nsec; | |
1da177e4 | 1510 | } |
1da177e4 LT |
1511 | return error; |
1512 | } | |
1513 | ||
1711ef38 | 1514 | long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
1da177e4 LT |
1515 | { |
1516 | clockid_t which_clock = restart_block->arg0; | |
97735f25 TG |
1517 | struct timespec __user *rmtp; |
1518 | struct timespec t; | |
e4b76555 TA |
1519 | struct itimerspec it; |
1520 | int error; | |
97735f25 TG |
1521 | |
1522 | rmtp = (struct timespec __user *) restart_block->arg1; | |
1523 | t.tv_sec = restart_block->arg2; | |
1524 | t.tv_nsec = restart_block->arg3; | |
1525 | ||
1da177e4 | 1526 | restart_block->fn = do_no_restart_syscall; |
e4b76555 TA |
1527 | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); |
1528 | ||
1529 | if (error == -ERESTART_RESTARTBLOCK) { | |
1530 | /* | |
1531 | * Report back to the user the time still remaining. | |
1532 | */ | |
1533 | if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | |
1534 | return -EFAULT; | |
1535 | ||
1536 | restart_block->fn = posix_cpu_nsleep_restart; | |
1537 | restart_block->arg0 = which_clock; | |
1538 | restart_block->arg1 = (unsigned long) rmtp; | |
1539 | restart_block->arg2 = t.tv_sec; | |
1540 | restart_block->arg3 = t.tv_nsec; | |
1541 | } | |
1542 | return error; | |
1543 | ||
1da177e4 LT |
1544 | } |
1545 | ||
1546 | ||
1547 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) | |
1548 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | |
1549 | ||
a924b04d TG |
1550 | static int process_cpu_clock_getres(const clockid_t which_clock, |
1551 | struct timespec *tp) | |
1da177e4 LT |
1552 | { |
1553 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | |
1554 | } | |
a924b04d TG |
1555 | static int process_cpu_clock_get(const clockid_t which_clock, |
1556 | struct timespec *tp) | |
1da177e4 LT |
1557 | { |
1558 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | |
1559 | } | |
1560 | static int process_cpu_timer_create(struct k_itimer *timer) | |
1561 | { | |
1562 | timer->it_clock = PROCESS_CLOCK; | |
1563 | return posix_cpu_timer_create(timer); | |
1564 | } | |
a924b04d | 1565 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25 TG |
1566 | struct timespec *rqtp, |
1567 | struct timespec __user *rmtp) | |
1da177e4 | 1568 | { |
97735f25 | 1569 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
1da177e4 | 1570 | } |
1711ef38 TA |
1571 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) |
1572 | { | |
1573 | return -EINVAL; | |
1574 | } | |
a924b04d TG |
1575 | static int thread_cpu_clock_getres(const clockid_t which_clock, |
1576 | struct timespec *tp) | |
1da177e4 LT |
1577 | { |
1578 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | |
1579 | } | |
a924b04d TG |
1580 | static int thread_cpu_clock_get(const clockid_t which_clock, |
1581 | struct timespec *tp) | |
1da177e4 LT |
1582 | { |
1583 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | |
1584 | } | |
1585 | static int thread_cpu_timer_create(struct k_itimer *timer) | |
1586 | { | |
1587 | timer->it_clock = THREAD_CLOCK; | |
1588 | return posix_cpu_timer_create(timer); | |
1589 | } | |
a924b04d | 1590 | static int thread_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25 | 1591 | struct timespec *rqtp, struct timespec __user *rmtp) |
1da177e4 LT |
1592 | { |
1593 | return -EINVAL; | |
1594 | } | |
1711ef38 TA |
1595 | static long thread_cpu_nsleep_restart(struct restart_block *restart_block) |
1596 | { | |
1597 | return -EINVAL; | |
1598 | } | |
1da177e4 LT |
1599 | |
1600 | static __init int init_posix_cpu_timers(void) | |
1601 | { | |
1602 | struct k_clock process = { | |
1603 | .clock_getres = process_cpu_clock_getres, | |
1604 | .clock_get = process_cpu_clock_get, | |
1605 | .clock_set = do_posix_clock_nosettime, | |
1606 | .timer_create = process_cpu_timer_create, | |
1607 | .nsleep = process_cpu_nsleep, | |
1711ef38 | 1608 | .nsleep_restart = process_cpu_nsleep_restart, |
1da177e4 LT |
1609 | }; |
1610 | struct k_clock thread = { | |
1611 | .clock_getres = thread_cpu_clock_getres, | |
1612 | .clock_get = thread_cpu_clock_get, | |
1613 | .clock_set = do_posix_clock_nosettime, | |
1614 | .timer_create = thread_cpu_timer_create, | |
1615 | .nsleep = thread_cpu_nsleep, | |
1711ef38 | 1616 | .nsleep_restart = thread_cpu_nsleep_restart, |
1da177e4 LT |
1617 | }; |
1618 | ||
1619 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | |
1620 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | |
1621 | ||
1622 | return 0; | |
1623 | } | |
1624 | __initcall(init_posix_cpu_timers); |