Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic pidhash and scalable, time-bounded PID allocator | |
3 | * | |
4 | * (C) 2002-2003 William Irwin, IBM | |
5 | * (C) 2004 William Irwin, Oracle | |
6 | * (C) 2002-2004 Ingo Molnar, Red Hat | |
7 | * | |
8 | * pid-structures are backing objects for tasks sharing a given ID to chain | |
9 | * against. There is very little to them aside from hashing them and | |
10 | * parking tasks using given ID's on a list. | |
11 | * | |
12 | * The hash is always changed with the tasklist_lock write-acquired, | |
13 | * and the hash is only accessed with the tasklist_lock at least | |
14 | * read-acquired, so there's no additional SMP locking needed here. | |
15 | * | |
16 | * We have a list of bitmap pages, which bitmaps represent the PID space. | |
17 | * Allocating and freeing PIDs is completely lockless. The worst-case | |
18 | * allocation scenario when all but one out of 1 million PIDs possible are | |
19 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | |
20 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | |
21 | */ | |
22 | ||
23 | #include <linux/mm.h> | |
24 | #include <linux/module.h> | |
25 | #include <linux/slab.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/bootmem.h> | |
28 | #include <linux/hash.h> | |
61a58c6c | 29 | #include <linux/pid_namespace.h> |
1da177e4 LT |
30 | |
31 | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) | |
92476d7f | 32 | static struct hlist_head *pid_hash; |
1da177e4 | 33 | static int pidhash_shift; |
e18b890b | 34 | static struct kmem_cache *pid_cachep; |
1da177e4 LT |
35 | |
36 | int pid_max = PID_MAX_DEFAULT; | |
1da177e4 LT |
37 | |
38 | #define RESERVED_PIDS 300 | |
39 | ||
40 | int pid_max_min = RESERVED_PIDS + 1; | |
41 | int pid_max_max = PID_MAX_LIMIT; | |
42 | ||
1da177e4 LT |
43 | #define BITS_PER_PAGE (PAGE_SIZE*8) |
44 | #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) | |
3fbc9648 | 45 | |
61a58c6c SB |
46 | static inline int mk_pid(struct pid_namespace *pid_ns, |
47 | struct pidmap *map, int off) | |
3fbc9648 | 48 | { |
61a58c6c | 49 | return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; |
3fbc9648 SB |
50 | } |
51 | ||
1da177e4 LT |
52 | #define find_next_offset(map, off) \ |
53 | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | |
54 | ||
55 | /* | |
56 | * PID-map pages start out as NULL, they get allocated upon | |
57 | * first use and are never deallocated. This way a low pid_max | |
58 | * value does not cause lots of bitmaps to be allocated, but | |
59 | * the scheme scales to up to 4 million PIDs, runtime. | |
60 | */ | |
61a58c6c | 61 | struct pid_namespace init_pid_ns = { |
9a575a92 CLG |
62 | .kref = { |
63 | .refcount = ATOMIC_INIT(2), | |
64 | }, | |
3fbc9648 SB |
65 | .pidmap = { |
66 | [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } | |
67 | }, | |
84d73786 SB |
68 | .last_pid = 0, |
69 | .child_reaper = &init_task | |
3fbc9648 | 70 | }; |
1da177e4 | 71 | |
92476d7f EB |
72 | /* |
73 | * Note: disable interrupts while the pidmap_lock is held as an | |
74 | * interrupt might come in and do read_lock(&tasklist_lock). | |
75 | * | |
76 | * If we don't disable interrupts there is a nasty deadlock between | |
77 | * detach_pid()->free_pid() and another cpu that does | |
78 | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | |
79 | * read_lock(&tasklist_lock); | |
80 | * | |
81 | * After we clean up the tasklist_lock and know there are no | |
82 | * irq handlers that take it we can leave the interrupts enabled. | |
83 | * For now it is easier to be safe than to prove it can't happen. | |
84 | */ | |
3fbc9648 | 85 | |
1da177e4 LT |
86 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
87 | ||
61a58c6c | 88 | static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid) |
1da177e4 | 89 | { |
61a58c6c | 90 | struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE; |
1da177e4 LT |
91 | int offset = pid & BITS_PER_PAGE_MASK; |
92 | ||
93 | clear_bit(offset, map->page); | |
94 | atomic_inc(&map->nr_free); | |
95 | } | |
96 | ||
61a58c6c | 97 | static int alloc_pidmap(struct pid_namespace *pid_ns) |
1da177e4 | 98 | { |
61a58c6c | 99 | int i, offset, max_scan, pid, last = pid_ns->last_pid; |
6a1f3b84 | 100 | struct pidmap *map; |
1da177e4 LT |
101 | |
102 | pid = last + 1; | |
103 | if (pid >= pid_max) | |
104 | pid = RESERVED_PIDS; | |
105 | offset = pid & BITS_PER_PAGE_MASK; | |
61a58c6c | 106 | map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; |
1da177e4 LT |
107 | max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; |
108 | for (i = 0; i <= max_scan; ++i) { | |
109 | if (unlikely(!map->page)) { | |
3fbc9648 | 110 | void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
1da177e4 LT |
111 | /* |
112 | * Free the page if someone raced with us | |
113 | * installing it: | |
114 | */ | |
92476d7f | 115 | spin_lock_irq(&pidmap_lock); |
1da177e4 | 116 | if (map->page) |
3fbc9648 | 117 | kfree(page); |
1da177e4 | 118 | else |
3fbc9648 | 119 | map->page = page; |
92476d7f | 120 | spin_unlock_irq(&pidmap_lock); |
1da177e4 LT |
121 | if (unlikely(!map->page)) |
122 | break; | |
123 | } | |
124 | if (likely(atomic_read(&map->nr_free))) { | |
125 | do { | |
126 | if (!test_and_set_bit(offset, map->page)) { | |
127 | atomic_dec(&map->nr_free); | |
61a58c6c | 128 | pid_ns->last_pid = pid; |
1da177e4 LT |
129 | return pid; |
130 | } | |
131 | offset = find_next_offset(map, offset); | |
61a58c6c | 132 | pid = mk_pid(pid_ns, map, offset); |
1da177e4 LT |
133 | /* |
134 | * find_next_offset() found a bit, the pid from it | |
135 | * is in-bounds, and if we fell back to the last | |
136 | * bitmap block and the final block was the same | |
137 | * as the starting point, pid is before last_pid. | |
138 | */ | |
139 | } while (offset < BITS_PER_PAGE && pid < pid_max && | |
140 | (i != max_scan || pid < last || | |
141 | !((last+1) & BITS_PER_PAGE_MASK))); | |
142 | } | |
61a58c6c | 143 | if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { |
1da177e4 LT |
144 | ++map; |
145 | offset = 0; | |
146 | } else { | |
61a58c6c | 147 | map = &pid_ns->pidmap[0]; |
1da177e4 LT |
148 | offset = RESERVED_PIDS; |
149 | if (unlikely(last == offset)) | |
150 | break; | |
151 | } | |
61a58c6c | 152 | pid = mk_pid(pid_ns, map, offset); |
1da177e4 LT |
153 | } |
154 | return -1; | |
155 | } | |
156 | ||
61a58c6c | 157 | static int next_pidmap(struct pid_namespace *pid_ns, int last) |
0804ef4b EB |
158 | { |
159 | int offset; | |
f40f50d3 | 160 | struct pidmap *map, *end; |
0804ef4b EB |
161 | |
162 | offset = (last + 1) & BITS_PER_PAGE_MASK; | |
61a58c6c SB |
163 | map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; |
164 | end = &pid_ns->pidmap[PIDMAP_ENTRIES]; | |
f40f50d3 | 165 | for (; map < end; map++, offset = 0) { |
0804ef4b EB |
166 | if (unlikely(!map->page)) |
167 | continue; | |
168 | offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); | |
169 | if (offset < BITS_PER_PAGE) | |
61a58c6c | 170 | return mk_pid(pid_ns, map, offset); |
0804ef4b EB |
171 | } |
172 | return -1; | |
173 | } | |
174 | ||
92476d7f EB |
175 | fastcall void put_pid(struct pid *pid) |
176 | { | |
177 | if (!pid) | |
178 | return; | |
179 | if ((atomic_read(&pid->count) == 1) || | |
180 | atomic_dec_and_test(&pid->count)) | |
181 | kmem_cache_free(pid_cachep, pid); | |
182 | } | |
bbf73147 | 183 | EXPORT_SYMBOL_GPL(put_pid); |
92476d7f EB |
184 | |
185 | static void delayed_put_pid(struct rcu_head *rhp) | |
186 | { | |
187 | struct pid *pid = container_of(rhp, struct pid, rcu); | |
188 | put_pid(pid); | |
189 | } | |
190 | ||
191 | fastcall void free_pid(struct pid *pid) | |
192 | { | |
193 | /* We can be called with write_lock_irq(&tasklist_lock) held */ | |
194 | unsigned long flags; | |
195 | ||
196 | spin_lock_irqsave(&pidmap_lock, flags); | |
197 | hlist_del_rcu(&pid->pid_chain); | |
198 | spin_unlock_irqrestore(&pidmap_lock, flags); | |
199 | ||
6cc1b22a | 200 | free_pidmap(current->nsproxy->pid_ns, pid->nr); |
92476d7f EB |
201 | call_rcu(&pid->rcu, delayed_put_pid); |
202 | } | |
203 | ||
204 | struct pid *alloc_pid(void) | |
205 | { | |
206 | struct pid *pid; | |
207 | enum pid_type type; | |
208 | int nr = -1; | |
209 | ||
210 | pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL); | |
211 | if (!pid) | |
212 | goto out; | |
213 | ||
6cc1b22a | 214 | nr = alloc_pidmap(current->nsproxy->pid_ns); |
92476d7f EB |
215 | if (nr < 0) |
216 | goto out_free; | |
217 | ||
218 | atomic_set(&pid->count, 1); | |
219 | pid->nr = nr; | |
220 | for (type = 0; type < PIDTYPE_MAX; ++type) | |
221 | INIT_HLIST_HEAD(&pid->tasks[type]); | |
222 | ||
223 | spin_lock_irq(&pidmap_lock); | |
224 | hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]); | |
225 | spin_unlock_irq(&pidmap_lock); | |
226 | ||
227 | out: | |
228 | return pid; | |
229 | ||
230 | out_free: | |
231 | kmem_cache_free(pid_cachep, pid); | |
232 | pid = NULL; | |
233 | goto out; | |
234 | } | |
235 | ||
236 | struct pid * fastcall find_pid(int nr) | |
1da177e4 LT |
237 | { |
238 | struct hlist_node *elem; | |
239 | struct pid *pid; | |
240 | ||
e56d0903 | 241 | hlist_for_each_entry_rcu(pid, elem, |
92476d7f | 242 | &pid_hash[pid_hashfn(nr)], pid_chain) { |
1da177e4 LT |
243 | if (pid->nr == nr) |
244 | return pid; | |
245 | } | |
246 | return NULL; | |
247 | } | |
bbf73147 | 248 | EXPORT_SYMBOL_GPL(find_pid); |
1da177e4 | 249 | |
36c8b586 | 250 | int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr) |
1da177e4 | 251 | { |
92476d7f EB |
252 | struct pid_link *link; |
253 | struct pid *pid; | |
254 | ||
92476d7f EB |
255 | link = &task->pids[type]; |
256 | link->pid = pid = find_pid(nr); | |
257 | hlist_add_head_rcu(&link->node, &pid->tasks[type]); | |
1da177e4 LT |
258 | |
259 | return 0; | |
260 | } | |
261 | ||
36c8b586 | 262 | void fastcall detach_pid(struct task_struct *task, enum pid_type type) |
1da177e4 | 263 | { |
92476d7f EB |
264 | struct pid_link *link; |
265 | struct pid *pid; | |
266 | int tmp; | |
1da177e4 | 267 | |
92476d7f EB |
268 | link = &task->pids[type]; |
269 | pid = link->pid; | |
1da177e4 | 270 | |
92476d7f EB |
271 | hlist_del_rcu(&link->node); |
272 | link->pid = NULL; | |
1da177e4 | 273 | |
92476d7f EB |
274 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
275 | if (!hlist_empty(&pid->tasks[tmp])) | |
276 | return; | |
1da177e4 | 277 | |
92476d7f | 278 | free_pid(pid); |
1da177e4 LT |
279 | } |
280 | ||
c18258c6 EB |
281 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ |
282 | void fastcall transfer_pid(struct task_struct *old, struct task_struct *new, | |
283 | enum pid_type type) | |
284 | { | |
285 | new->pids[type].pid = old->pids[type].pid; | |
286 | hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | |
287 | old->pids[type].pid = NULL; | |
288 | } | |
289 | ||
92476d7f | 290 | struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type) |
1da177e4 | 291 | { |
92476d7f EB |
292 | struct task_struct *result = NULL; |
293 | if (pid) { | |
294 | struct hlist_node *first; | |
295 | first = rcu_dereference(pid->tasks[type].first); | |
296 | if (first) | |
297 | result = hlist_entry(first, struct task_struct, pids[(type)].node); | |
298 | } | |
299 | return result; | |
300 | } | |
1da177e4 | 301 | |
92476d7f EB |
302 | /* |
303 | * Must be called under rcu_read_lock() or with tasklist_lock read-held. | |
304 | */ | |
36c8b586 | 305 | struct task_struct *find_task_by_pid_type(int type, int nr) |
92476d7f EB |
306 | { |
307 | return pid_task(find_pid(nr), type); | |
308 | } | |
1da177e4 | 309 | |
92476d7f | 310 | EXPORT_SYMBOL(find_task_by_pid_type); |
1da177e4 | 311 | |
1a657f78 ON |
312 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) |
313 | { | |
314 | struct pid *pid; | |
315 | rcu_read_lock(); | |
316 | pid = get_pid(task->pids[type].pid); | |
317 | rcu_read_unlock(); | |
318 | return pid; | |
319 | } | |
320 | ||
92476d7f EB |
321 | struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type) |
322 | { | |
323 | struct task_struct *result; | |
324 | rcu_read_lock(); | |
325 | result = pid_task(pid, type); | |
326 | if (result) | |
327 | get_task_struct(result); | |
328 | rcu_read_unlock(); | |
329 | return result; | |
1da177e4 LT |
330 | } |
331 | ||
92476d7f | 332 | struct pid *find_get_pid(pid_t nr) |
1da177e4 LT |
333 | { |
334 | struct pid *pid; | |
335 | ||
92476d7f EB |
336 | rcu_read_lock(); |
337 | pid = get_pid(find_pid(nr)); | |
338 | rcu_read_unlock(); | |
1da177e4 | 339 | |
92476d7f | 340 | return pid; |
1da177e4 LT |
341 | } |
342 | ||
0804ef4b EB |
343 | /* |
344 | * Used by proc to find the first pid that is greater then or equal to nr. | |
345 | * | |
346 | * If there is a pid at nr this function is exactly the same as find_pid. | |
347 | */ | |
348 | struct pid *find_ge_pid(int nr) | |
349 | { | |
350 | struct pid *pid; | |
351 | ||
352 | do { | |
353 | pid = find_pid(nr); | |
354 | if (pid) | |
355 | break; | |
6cc1b22a | 356 | nr = next_pidmap(current->nsproxy->pid_ns, nr); |
0804ef4b EB |
357 | } while (nr > 0); |
358 | ||
359 | return pid; | |
360 | } | |
bbf73147 | 361 | EXPORT_SYMBOL_GPL(find_get_pid); |
0804ef4b | 362 | |
9a575a92 CLG |
363 | int copy_pid_ns(int flags, struct task_struct *tsk) |
364 | { | |
365 | struct pid_namespace *old_ns = tsk->nsproxy->pid_ns; | |
366 | int err = 0; | |
367 | ||
368 | if (!old_ns) | |
369 | return 0; | |
370 | ||
371 | get_pid_ns(old_ns); | |
372 | return err; | |
373 | } | |
374 | ||
375 | void free_pid_ns(struct kref *kref) | |
376 | { | |
377 | struct pid_namespace *ns; | |
378 | ||
379 | ns = container_of(kref, struct pid_namespace, kref); | |
380 | kfree(ns); | |
381 | } | |
382 | ||
1da177e4 LT |
383 | /* |
384 | * The pid hash table is scaled according to the amount of memory in the | |
385 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or | |
386 | * more. | |
387 | */ | |
388 | void __init pidhash_init(void) | |
389 | { | |
92476d7f | 390 | int i, pidhash_size; |
1da177e4 LT |
391 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); |
392 | ||
393 | pidhash_shift = max(4, fls(megabytes * 4)); | |
394 | pidhash_shift = min(12, pidhash_shift); | |
395 | pidhash_size = 1 << pidhash_shift; | |
396 | ||
397 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | |
398 | pidhash_size, pidhash_shift, | |
92476d7f EB |
399 | pidhash_size * sizeof(struct hlist_head)); |
400 | ||
401 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | |
402 | if (!pid_hash) | |
403 | panic("Could not alloc pidhash!\n"); | |
404 | for (i = 0; i < pidhash_size; i++) | |
405 | INIT_HLIST_HEAD(&pid_hash[i]); | |
1da177e4 LT |
406 | } |
407 | ||
408 | void __init pidmap_init(void) | |
409 | { | |
61a58c6c | 410 | init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
73b9ebfe | 411 | /* Reserve PID 0. We never call free_pidmap(0) */ |
61a58c6c SB |
412 | set_bit(0, init_pid_ns.pidmap[0].page); |
413 | atomic_dec(&init_pid_ns.pidmap[0].nr_free); | |
92476d7f EB |
414 | |
415 | pid_cachep = kmem_cache_create("pid", sizeof(struct pid), | |
416 | __alignof__(struct pid), | |
417 | SLAB_PANIC, NULL, NULL); | |
1da177e4 | 418 | } |