locking/rtmutex: Move rt_mutex_debug_task_free() to rtmutex.c
[linux-2.6-block.git] / kernel / locking / rtmutex.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
23f78d4a
IM
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
d07fe82c 11 *
387b1468 12 * See Documentation/locking/rt-mutex-design.rst for details.
23f78d4a
IM
13 */
14#include <linux/spinlock.h>
9984de1a 15#include <linux/export.h>
174cd4b1 16#include <linux/sched/signal.h>
8bd75c77 17#include <linux/sched/rt.h>
fb00aca4 18#include <linux/sched/deadline.h>
84f001e1 19#include <linux/sched/wake_q.h>
b17b0153 20#include <linux/sched/debug.h>
23f78d4a
IM
21#include <linux/timer.h>
22
23#include "rtmutex_common.h"
24
23f78d4a
IM
25/*
26 * lock->owner state tracking:
27 *
8161239a
LJ
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
23f78d4a 30 *
8161239a
LJ
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
23f78d4a
IM
37 *
38 * The fast atomic compare exchange based acquire and release is only
8161239a
LJ
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
23f78d4a 45 *
8161239a
LJ
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
23f78d4a
IM
50 */
51
bd197234 52static void
8161239a 53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
23f78d4a 54{
8161239a 55 unsigned long val = (unsigned long)owner;
23f78d4a
IM
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
0050c7b2 60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
23f78d4a
IM
61}
62
63static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64{
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67}
68
69static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70{
dbb26055
TG
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
23f78d4a
IM
137}
138
bd197234 139/*
cede8841
SAS
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
bd197234 142 */
cede8841 143#ifndef CONFIG_DEBUG_RT_MUTEXES
700318d1
DB
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
bd197234
TG
152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
700318d1
DB
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
bd197234 160}
27e35715
TG
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
b4abf910
TG
168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
27e35715
TG
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
b4abf910 175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
27e35715
TG
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
700318d1 200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
27e35715
TG
201}
202
bd197234 203#else
700318d1
DB
204# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205# define rt_mutex_cmpxchg_release(l,c,n) (0)
206
bd197234
TG
207static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208{
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211}
27e35715
TG
212
213/*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
b4abf910
TG
216static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
27e35715
TG
218 __releases(lock->wait_lock)
219{
220 lock->owner = NULL;
b4abf910 221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
27e35715
TG
222 return true;
223}
bd197234
TG
224#endif
225
19830e55
PZ
226/*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229#define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
fb00aca4
PZ
232static inline int
233rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 struct rt_mutex_waiter *right)
235{
2d3d891d 236 if (left->prio < right->prio)
fb00aca4
PZ
237 return 1;
238
239 /*
2d3d891d
DF
240 * If both waiters have dl_prio(), we check the deadlines of the
241 * associated tasks.
242 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 * then right waiter has a dl_prio() too.
fb00aca4 244 */
2d3d891d 245 if (dl_prio(left->prio))
e0aad5b4 246 return dl_time_before(left->deadline, right->deadline);
fb00aca4
PZ
247
248 return 0;
249}
250
19830e55
PZ
251static inline int
252rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 struct rt_mutex_waiter *right)
254{
255 if (left->prio != right->prio)
256 return 0;
257
258 /*
259 * If both waiters have dl_prio(), we check the deadlines of the
260 * associated tasks.
261 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 * then right waiter has a dl_prio() too.
263 */
264 if (dl_prio(left->prio))
265 return left->deadline == right->deadline;
266
267 return 1;
268}
269
5a798725
PZ
270#define __node_2_waiter(node) \
271 rb_entry((node), struct rt_mutex_waiter, tree_entry)
272
273static inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
274{
275 return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
276}
277
fb00aca4
PZ
278static void
279rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
280{
5a798725 281 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
fb00aca4
PZ
282}
283
284static void
285rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
286{
287 if (RB_EMPTY_NODE(&waiter->tree_entry))
288 return;
289
a23ba907 290 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
fb00aca4
PZ
291 RB_CLEAR_NODE(&waiter->tree_entry);
292}
293
5a798725
PZ
294#define __node_2_pi_waiter(node) \
295 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
296
297static inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
298{
299 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
300}
301
fb00aca4
PZ
302static void
303rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
304{
5a798725 305 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
fb00aca4
PZ
306}
307
308static void
309rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
310{
311 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
312 return;
313
a23ba907 314 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
fb00aca4
PZ
315 RB_CLEAR_NODE(&waiter->pi_tree_entry);
316}
317
acd58620 318static void rt_mutex_adjust_prio(struct task_struct *p)
c365c292 319{
acd58620 320 struct task_struct *pi_task = NULL;
e96a7705 321
acd58620 322 lockdep_assert_held(&p->pi_lock);
c365c292 323
acd58620
PZ
324 if (task_has_pi_waiters(p))
325 pi_task = task_top_pi_waiter(p)->task;
c365c292 326
acd58620 327 rt_mutex_setprio(p, pi_task);
23f78d4a
IM
328}
329
8930ed80
TG
330/*
331 * Deadlock detection is conditional:
332 *
333 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
334 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
335 *
336 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
337 * conducted independent of the detect argument.
338 *
339 * If the waiter argument is NULL this indicates the deboost path and
340 * deadlock detection is disabled independent of the detect argument
341 * and the config settings.
342 */
343static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
344 enum rtmutex_chainwalk chwalk)
345{
346 /*
347 * This is just a wrapper function for the following call,
348 * because debug_rt_mutex_detect_deadlock() smells like a magic
349 * debug feature and I wanted to keep the cond function in the
350 * main source file along with the comments instead of having
351 * two of the same in the headers.
352 */
353 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
354}
355
23f78d4a
IM
356/*
357 * Max number of times we'll walk the boosting chain:
358 */
359int max_lock_depth = 1024;
360
82084984
TG
361static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
362{
363 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
364}
365
23f78d4a
IM
366/*
367 * Adjust the priority chain. Also used for deadlock detection.
368 * Decreases task's usage by one - may thus free the task.
0c106173 369 *
82084984
TG
370 * @task: the task owning the mutex (owner) for which a chain walk is
371 * probably needed
e6beaa36 372 * @chwalk: do we have to carry out deadlock detection?
82084984
TG
373 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
374 * things for a task that has just got its priority adjusted, and
375 * is waiting on a mutex)
376 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
377 * we dropped its pi_lock. Is never dereferenced, only used for
378 * comparison to detect lock chain changes.
0c106173 379 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
82084984
TG
380 * its priority to the mutex owner (can be NULL in the case
381 * depicted above or if the top waiter is gone away and we are
382 * actually deboosting the owner)
383 * @top_task: the current top waiter
0c106173 384 *
23f78d4a 385 * Returns 0 or -EDEADLK.
3eb65aea
TG
386 *
387 * Chain walk basics and protection scope
388 *
389 * [R] refcount on task
390 * [P] task->pi_lock held
391 * [L] rtmutex->wait_lock held
392 *
393 * Step Description Protected by
394 * function arguments:
395 * @task [R]
396 * @orig_lock if != NULL @top_task is blocked on it
397 * @next_lock Unprotected. Cannot be
398 * dereferenced. Only used for
399 * comparison.
400 * @orig_waiter if != NULL @top_task is blocked on it
401 * @top_task current, or in case of proxy
402 * locking protected by calling
403 * code
404 * again:
405 * loop_sanity_check();
406 * retry:
407 * [1] lock(task->pi_lock); [R] acquire [P]
408 * [2] waiter = task->pi_blocked_on; [P]
409 * [3] check_exit_conditions_1(); [P]
410 * [4] lock = waiter->lock; [P]
411 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
412 * unlock(task->pi_lock); release [P]
413 * goto retry;
414 * }
415 * [6] check_exit_conditions_2(); [P] + [L]
416 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
417 * [8] unlock(task->pi_lock); release [P]
418 * put_task_struct(task); release [R]
419 * [9] check_exit_conditions_3(); [L]
420 * [10] task = owner(lock); [L]
421 * get_task_struct(task); [L] acquire [R]
422 * lock(task->pi_lock); [L] acquire [P]
423 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
424 * [12] check_exit_conditions_4(); [P] + [L]
425 * [13] unlock(task->pi_lock); release [P]
426 * unlock(lock->wait_lock); release [L]
427 * goto again;
23f78d4a 428 */
bd197234 429static int rt_mutex_adjust_prio_chain(struct task_struct *task,
8930ed80 430 enum rtmutex_chainwalk chwalk,
bd197234 431 struct rt_mutex *orig_lock,
82084984 432 struct rt_mutex *next_lock,
bd197234
TG
433 struct rt_mutex_waiter *orig_waiter,
434 struct task_struct *top_task)
23f78d4a 435{
23f78d4a 436 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
a57594a1 437 struct rt_mutex_waiter *prerequeue_top_waiter;
8930ed80 438 int ret = 0, depth = 0;
a57594a1 439 struct rt_mutex *lock;
8930ed80 440 bool detect_deadlock;
67792e2c 441 bool requeue = true;
23f78d4a 442
8930ed80 443 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
23f78d4a
IM
444
445 /*
446 * The (de)boosting is a step by step approach with a lot of
447 * pitfalls. We want this to be preemptible and we want hold a
448 * maximum of two locks per step. So we have to check
449 * carefully whether things change under us.
450 */
451 again:
3eb65aea
TG
452 /*
453 * We limit the lock chain length for each invocation.
454 */
23f78d4a
IM
455 if (++depth > max_lock_depth) {
456 static int prev_max;
457
458 /*
459 * Print this only once. If the admin changes the limit,
460 * print a new message when reaching the limit again.
461 */
462 if (prev_max != max_lock_depth) {
463 prev_max = max_lock_depth;
464 printk(KERN_WARNING "Maximum lock depth %d reached "
465 "task: %s (%d)\n", max_lock_depth,
ba25f9dc 466 top_task->comm, task_pid_nr(top_task));
23f78d4a
IM
467 }
468 put_task_struct(task);
469
3d5c9340 470 return -EDEADLK;
23f78d4a 471 }
3eb65aea
TG
472
473 /*
474 * We are fully preemptible here and only hold the refcount on
475 * @task. So everything can have changed under us since the
476 * caller or our own code below (goto retry/again) dropped all
477 * locks.
478 */
23f78d4a
IM
479 retry:
480 /*
3eb65aea 481 * [1] Task cannot go away as we did a get_task() before !
23f78d4a 482 */
b4abf910 483 raw_spin_lock_irq(&task->pi_lock);
23f78d4a 484
3eb65aea
TG
485 /*
486 * [2] Get the waiter on which @task is blocked on.
487 */
23f78d4a 488 waiter = task->pi_blocked_on;
3eb65aea
TG
489
490 /*
491 * [3] check_exit_conditions_1() protected by task->pi_lock.
492 */
493
23f78d4a
IM
494 /*
495 * Check whether the end of the boosting chain has been
496 * reached or the state of the chain has changed while we
497 * dropped the locks.
498 */
8161239a 499 if (!waiter)
23f78d4a
IM
500 goto out_unlock_pi;
501
1a539a87
TG
502 /*
503 * Check the orig_waiter state. After we dropped the locks,
8161239a 504 * the previous owner of the lock might have released the lock.
1a539a87 505 */
8161239a 506 if (orig_waiter && !rt_mutex_owner(orig_lock))
1a539a87
TG
507 goto out_unlock_pi;
508
82084984
TG
509 /*
510 * We dropped all locks after taking a refcount on @task, so
511 * the task might have moved on in the lock chain or even left
512 * the chain completely and blocks now on an unrelated lock or
513 * on @orig_lock.
514 *
515 * We stored the lock on which @task was blocked in @next_lock,
516 * so we can detect the chain change.
517 */
518 if (next_lock != waiter->lock)
519 goto out_unlock_pi;
520
1a539a87
TG
521 /*
522 * Drop out, when the task has no waiters. Note,
523 * top_waiter can be NULL, when we are in the deboosting
524 * mode!
525 */
397335f0
TG
526 if (top_waiter) {
527 if (!task_has_pi_waiters(task))
528 goto out_unlock_pi;
529 /*
530 * If deadlock detection is off, we stop here if we
67792e2c
TG
531 * are not the top pi waiter of the task. If deadlock
532 * detection is enabled we continue, but stop the
533 * requeueing in the chain walk.
397335f0 534 */
67792e2c
TG
535 if (top_waiter != task_top_pi_waiter(task)) {
536 if (!detect_deadlock)
537 goto out_unlock_pi;
538 else
539 requeue = false;
540 }
397335f0 541 }
23f78d4a
IM
542
543 /*
67792e2c
TG
544 * If the waiter priority is the same as the task priority
545 * then there is no further priority adjustment necessary. If
546 * deadlock detection is off, we stop the chain walk. If its
547 * enabled we continue, but stop the requeueing in the chain
548 * walk.
23f78d4a 549 */
19830e55 550 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
67792e2c
TG
551 if (!detect_deadlock)
552 goto out_unlock_pi;
553 else
554 requeue = false;
555 }
23f78d4a 556
3eb65aea
TG
557 /*
558 * [4] Get the next lock
559 */
23f78d4a 560 lock = waiter->lock;
3eb65aea
TG
561 /*
562 * [5] We need to trylock here as we are holding task->pi_lock,
563 * which is the reverse lock order versus the other rtmutex
564 * operations.
565 */
d209d74d 566 if (!raw_spin_trylock(&lock->wait_lock)) {
b4abf910 567 raw_spin_unlock_irq(&task->pi_lock);
23f78d4a
IM
568 cpu_relax();
569 goto retry;
570 }
571
397335f0 572 /*
3eb65aea
TG
573 * [6] check_exit_conditions_2() protected by task->pi_lock and
574 * lock->wait_lock.
575 *
397335f0
TG
576 * Deadlock detection. If the lock is the same as the original
577 * lock which caused us to walk the lock chain or if the
578 * current lock is owned by the task which initiated the chain
579 * walk, we detected a deadlock.
580 */
95e02ca9 581 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
d209d74d 582 raw_spin_unlock(&lock->wait_lock);
3d5c9340 583 ret = -EDEADLK;
23f78d4a
IM
584 goto out_unlock_pi;
585 }
586
67792e2c
TG
587 /*
588 * If we just follow the lock chain for deadlock detection, no
589 * need to do all the requeue operations. To avoid a truckload
590 * of conditionals around the various places below, just do the
591 * minimum chain walk checks.
592 */
593 if (!requeue) {
594 /*
595 * No requeue[7] here. Just release @task [8]
596 */
b4abf910 597 raw_spin_unlock(&task->pi_lock);
67792e2c
TG
598 put_task_struct(task);
599
600 /*
601 * [9] check_exit_conditions_3 protected by lock->wait_lock.
602 * If there is no owner of the lock, end of chain.
603 */
604 if (!rt_mutex_owner(lock)) {
b4abf910 605 raw_spin_unlock_irq(&lock->wait_lock);
67792e2c
TG
606 return 0;
607 }
608
609 /* [10] Grab the next task, i.e. owner of @lock */
7b3c92b8 610 task = get_task_struct(rt_mutex_owner(lock));
b4abf910 611 raw_spin_lock(&task->pi_lock);
67792e2c
TG
612
613 /*
614 * No requeue [11] here. We just do deadlock detection.
615 *
616 * [12] Store whether owner is blocked
617 * itself. Decision is made after dropping the locks
618 */
619 next_lock = task_blocked_on_lock(task);
620 /*
621 * Get the top waiter for the next iteration
622 */
623 top_waiter = rt_mutex_top_waiter(lock);
624
625 /* [13] Drop locks */
b4abf910
TG
626 raw_spin_unlock(&task->pi_lock);
627 raw_spin_unlock_irq(&lock->wait_lock);
67792e2c
TG
628
629 /* If owner is not blocked, end of chain. */
630 if (!next_lock)
631 goto out_put_task;
632 goto again;
633 }
634
a57594a1
TG
635 /*
636 * Store the current top waiter before doing the requeue
637 * operation on @lock. We need it for the boost/deboost
638 * decision below.
639 */
640 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
23f78d4a 641
9f40a51a 642 /* [7] Requeue the waiter in the lock waiter tree. */
fb00aca4 643 rt_mutex_dequeue(lock, waiter);
e0aad5b4
PZ
644
645 /*
646 * Update the waiter prio fields now that we're dequeued.
647 *
648 * These values can have changed through either:
649 *
650 * sys_sched_set_scheduler() / sys_sched_setattr()
651 *
652 * or
653 *
654 * DL CBS enforcement advancing the effective deadline.
655 *
656 * Even though pi_waiters also uses these fields, and that tree is only
657 * updated in [11], we can do this here, since we hold [L], which
658 * serializes all pi_waiters access and rb_erase() does not care about
659 * the values of the node being removed.
660 */
2d3d891d 661 waiter->prio = task->prio;
e0aad5b4
PZ
662 waiter->deadline = task->dl.deadline;
663
fb00aca4 664 rt_mutex_enqueue(lock, waiter);
23f78d4a 665
3eb65aea 666 /* [8] Release the task */
b4abf910 667 raw_spin_unlock(&task->pi_lock);
2ffa5a5c
TG
668 put_task_struct(task);
669
a57594a1 670 /*
3eb65aea
TG
671 * [9] check_exit_conditions_3 protected by lock->wait_lock.
672 *
a57594a1
TG
673 * We must abort the chain walk if there is no lock owner even
674 * in the dead lock detection case, as we have nothing to
675 * follow here. This is the end of the chain we are walking.
676 */
8161239a
LJ
677 if (!rt_mutex_owner(lock)) {
678 /*
3eb65aea
TG
679 * If the requeue [7] above changed the top waiter,
680 * then we need to wake the new top waiter up to try
681 * to get the lock.
8161239a 682 */
a57594a1 683 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
8161239a 684 wake_up_process(rt_mutex_top_waiter(lock)->task);
b4abf910 685 raw_spin_unlock_irq(&lock->wait_lock);
2ffa5a5c 686 return 0;
8161239a 687 }
23f78d4a 688
3eb65aea 689 /* [10] Grab the next task, i.e. the owner of @lock */
7b3c92b8 690 task = get_task_struct(rt_mutex_owner(lock));
b4abf910 691 raw_spin_lock(&task->pi_lock);
23f78d4a 692
3eb65aea 693 /* [11] requeue the pi waiters if necessary */
23f78d4a 694 if (waiter == rt_mutex_top_waiter(lock)) {
a57594a1
TG
695 /*
696 * The waiter became the new top (highest priority)
697 * waiter on the lock. Replace the previous top waiter
9f40a51a 698 * in the owner tasks pi waiters tree with this waiter
a57594a1
TG
699 * and adjust the priority of the owner.
700 */
701 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
fb00aca4 702 rt_mutex_enqueue_pi(task, waiter);
acd58620 703 rt_mutex_adjust_prio(task);
23f78d4a 704
a57594a1
TG
705 } else if (prerequeue_top_waiter == waiter) {
706 /*
707 * The waiter was the top waiter on the lock, but is
e2db7592 708 * no longer the top priority waiter. Replace waiter in
9f40a51a 709 * the owner tasks pi waiters tree with the new top
a57594a1
TG
710 * (highest priority) waiter and adjust the priority
711 * of the owner.
712 * The new top waiter is stored in @waiter so that
713 * @waiter == @top_waiter evaluates to true below and
714 * we continue to deboost the rest of the chain.
715 */
fb00aca4 716 rt_mutex_dequeue_pi(task, waiter);
23f78d4a 717 waiter = rt_mutex_top_waiter(lock);
fb00aca4 718 rt_mutex_enqueue_pi(task, waiter);
acd58620 719 rt_mutex_adjust_prio(task);
a57594a1
TG
720 } else {
721 /*
722 * Nothing changed. No need to do any priority
723 * adjustment.
724 */
23f78d4a
IM
725 }
726
82084984 727 /*
3eb65aea
TG
728 * [12] check_exit_conditions_4() protected by task->pi_lock
729 * and lock->wait_lock. The actual decisions are made after we
730 * dropped the locks.
731 *
82084984
TG
732 * Check whether the task which owns the current lock is pi
733 * blocked itself. If yes we store a pointer to the lock for
734 * the lock chain change detection above. After we dropped
735 * task->pi_lock next_lock cannot be dereferenced anymore.
736 */
737 next_lock = task_blocked_on_lock(task);
a57594a1
TG
738 /*
739 * Store the top waiter of @lock for the end of chain walk
740 * decision below.
741 */
23f78d4a 742 top_waiter = rt_mutex_top_waiter(lock);
3eb65aea
TG
743
744 /* [13] Drop the locks */
b4abf910
TG
745 raw_spin_unlock(&task->pi_lock);
746 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 747
82084984 748 /*
3eb65aea
TG
749 * Make the actual exit decisions [12], based on the stored
750 * values.
751 *
82084984
TG
752 * We reached the end of the lock chain. Stop right here. No
753 * point to go back just to figure that out.
754 */
755 if (!next_lock)
756 goto out_put_task;
757
a57594a1
TG
758 /*
759 * If the current waiter is not the top waiter on the lock,
760 * then we can stop the chain walk here if we are not in full
761 * deadlock detection mode.
762 */
23f78d4a
IM
763 if (!detect_deadlock && waiter != top_waiter)
764 goto out_put_task;
765
766 goto again;
767
768 out_unlock_pi:
b4abf910 769 raw_spin_unlock_irq(&task->pi_lock);
23f78d4a
IM
770 out_put_task:
771 put_task_struct(task);
36c8b586 772
23f78d4a
IM
773 return ret;
774}
775
23f78d4a
IM
776/*
777 * Try to take an rt-mutex
778 *
b4abf910 779 * Must be called with lock->wait_lock held and interrupts disabled
8161239a 780 *
358c331f
TG
781 * @lock: The lock to be acquired.
782 * @task: The task which wants to acquire the lock
9f40a51a 783 * @waiter: The waiter that is queued to the lock's wait tree if the
358c331f 784 * callsite called task_blocked_on_lock(), otherwise NULL
23f78d4a 785 */
8161239a 786static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
358c331f 787 struct rt_mutex_waiter *waiter)
23f78d4a 788{
e0aad5b4
PZ
789 lockdep_assert_held(&lock->wait_lock);
790
23f78d4a 791 /*
358c331f
TG
792 * Before testing whether we can acquire @lock, we set the
793 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
794 * other tasks which try to modify @lock into the slow path
795 * and they serialize on @lock->wait_lock.
23f78d4a 796 *
358c331f
TG
797 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
798 * as explained at the top of this file if and only if:
23f78d4a 799 *
358c331f
TG
800 * - There is a lock owner. The caller must fixup the
801 * transient state if it does a trylock or leaves the lock
802 * function due to a signal or timeout.
803 *
804 * - @task acquires the lock and there are no other
805 * waiters. This is undone in rt_mutex_set_owner(@task) at
806 * the end of this function.
23f78d4a
IM
807 */
808 mark_rt_mutex_waiters(lock);
809
358c331f
TG
810 /*
811 * If @lock has an owner, give up.
812 */
8161239a 813 if (rt_mutex_owner(lock))
23f78d4a
IM
814 return 0;
815
8161239a 816 /*
358c331f 817 * If @waiter != NULL, @task has already enqueued the waiter
9f40a51a 818 * into @lock waiter tree. If @waiter == NULL then this is a
358c331f 819 * trylock attempt.
8161239a 820 */
358c331f
TG
821 if (waiter) {
822 /*
823 * If waiter is not the highest priority waiter of
824 * @lock, give up.
825 */
826 if (waiter != rt_mutex_top_waiter(lock))
827 return 0;
8161239a 828
358c331f
TG
829 /*
830 * We can acquire the lock. Remove the waiter from the
9f40a51a 831 * lock waiters tree.
358c331f
TG
832 */
833 rt_mutex_dequeue(lock, waiter);
8161239a 834
358c331f 835 } else {
8161239a 836 /*
358c331f
TG
837 * If the lock has waiters already we check whether @task is
838 * eligible to take over the lock.
839 *
840 * If there are no other waiters, @task can acquire
841 * the lock. @task->pi_blocked_on is NULL, so it does
842 * not need to be dequeued.
8161239a
LJ
843 */
844 if (rt_mutex_has_waiters(lock)) {
358c331f
TG
845 /*
846 * If @task->prio is greater than or equal to
847 * the top waiter priority (kernel view),
848 * @task lost.
849 */
19830e55
PZ
850 if (!rt_mutex_waiter_less(task_to_waiter(task),
851 rt_mutex_top_waiter(lock)))
358c331f
TG
852 return 0;
853
854 /*
855 * The current top waiter stays enqueued. We
856 * don't have to change anything in the lock
857 * waiters order.
858 */
859 } else {
860 /*
861 * No waiters. Take the lock without the
862 * pi_lock dance.@task->pi_blocked_on is NULL
863 * and we have no waiters to enqueue in @task
9f40a51a 864 * pi waiters tree.
358c331f
TG
865 */
866 goto takeit;
8161239a 867 }
8161239a
LJ
868 }
869
358c331f
TG
870 /*
871 * Clear @task->pi_blocked_on. Requires protection by
872 * @task->pi_lock. Redundant operation for the @waiter == NULL
873 * case, but conditionals are more expensive than a redundant
874 * store.
875 */
b4abf910 876 raw_spin_lock(&task->pi_lock);
358c331f
TG
877 task->pi_blocked_on = NULL;
878 /*
879 * Finish the lock acquisition. @task is the new owner. If
880 * other waiters exist we have to insert the highest priority
9f40a51a 881 * waiter into @task->pi_waiters tree.
358c331f
TG
882 */
883 if (rt_mutex_has_waiters(lock))
884 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
b4abf910 885 raw_spin_unlock(&task->pi_lock);
358c331f
TG
886
887takeit:
358c331f
TG
888 /*
889 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
890 * are still waiters or clears it.
891 */
8161239a 892 rt_mutex_set_owner(lock, task);
23f78d4a 893
23f78d4a
IM
894 return 1;
895}
896
897/*
898 * Task blocks on lock.
899 *
900 * Prepare waiter and propagate pi chain
901 *
b4abf910 902 * This must be called with lock->wait_lock held and interrupts disabled
23f78d4a
IM
903 */
904static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
905 struct rt_mutex_waiter *waiter,
8dac456a 906 struct task_struct *task,
8930ed80 907 enum rtmutex_chainwalk chwalk)
23f78d4a 908{
36c8b586 909 struct task_struct *owner = rt_mutex_owner(lock);
23f78d4a 910 struct rt_mutex_waiter *top_waiter = waiter;
82084984 911 struct rt_mutex *next_lock;
db630637 912 int chain_walk = 0, res;
23f78d4a 913
e0aad5b4
PZ
914 lockdep_assert_held(&lock->wait_lock);
915
397335f0
TG
916 /*
917 * Early deadlock detection. We really don't want the task to
918 * enqueue on itself just to untangle the mess later. It's not
919 * only an optimization. We drop the locks, so another waiter
920 * can come in before the chain walk detects the deadlock. So
921 * the other will detect the deadlock and return -EDEADLOCK,
922 * which is wrong, as the other waiter is not in a deadlock
923 * situation.
924 */
3d5c9340 925 if (owner == task)
397335f0
TG
926 return -EDEADLK;
927
b4abf910 928 raw_spin_lock(&task->pi_lock);
8dac456a 929 waiter->task = task;
23f78d4a 930 waiter->lock = lock;
2d3d891d 931 waiter->prio = task->prio;
e0aad5b4 932 waiter->deadline = task->dl.deadline;
23f78d4a
IM
933
934 /* Get the top priority waiter on the lock */
935 if (rt_mutex_has_waiters(lock))
936 top_waiter = rt_mutex_top_waiter(lock);
fb00aca4 937 rt_mutex_enqueue(lock, waiter);
23f78d4a 938
8dac456a 939 task->pi_blocked_on = waiter;
23f78d4a 940
b4abf910 941 raw_spin_unlock(&task->pi_lock);
23f78d4a 942
8161239a
LJ
943 if (!owner)
944 return 0;
945
b4abf910 946 raw_spin_lock(&owner->pi_lock);
23f78d4a 947 if (waiter == rt_mutex_top_waiter(lock)) {
fb00aca4
PZ
948 rt_mutex_dequeue_pi(owner, top_waiter);
949 rt_mutex_enqueue_pi(owner, waiter);
23f78d4a 950
acd58620 951 rt_mutex_adjust_prio(owner);
db630637
SR
952 if (owner->pi_blocked_on)
953 chain_walk = 1;
8930ed80 954 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
db630637 955 chain_walk = 1;
82084984 956 }
db630637 957
82084984
TG
958 /* Store the lock on which owner is blocked or NULL */
959 next_lock = task_blocked_on_lock(owner);
960
b4abf910 961 raw_spin_unlock(&owner->pi_lock);
82084984
TG
962 /*
963 * Even if full deadlock detection is on, if the owner is not
964 * blocked itself, we can avoid finding this out in the chain
965 * walk.
966 */
967 if (!chain_walk || !next_lock)
23f78d4a
IM
968 return 0;
969
db630637
SR
970 /*
971 * The owner can't disappear while holding a lock,
972 * so the owner struct is protected by wait_lock.
973 * Gets dropped in rt_mutex_adjust_prio_chain()!
974 */
975 get_task_struct(owner);
976
b4abf910 977 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 978
8930ed80 979 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
82084984 980 next_lock, waiter, task);
23f78d4a 981
b4abf910 982 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
983
984 return res;
985}
986
987/*
9f40a51a 988 * Remove the top waiter from the current tasks pi waiter tree and
45ab4eff 989 * queue it up.
23f78d4a 990 *
b4abf910 991 * Called with lock->wait_lock held and interrupts disabled.
23f78d4a 992 */
45ab4eff
DB
993static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
994 struct rt_mutex *lock)
23f78d4a
IM
995{
996 struct rt_mutex_waiter *waiter;
23f78d4a 997
b4abf910 998 raw_spin_lock(&current->pi_lock);
23f78d4a
IM
999
1000 waiter = rt_mutex_top_waiter(lock);
23f78d4a
IM
1001
1002 /*
acd58620
PZ
1003 * Remove it from current->pi_waiters and deboost.
1004 *
1005 * We must in fact deboost here in order to ensure we call
1006 * rt_mutex_setprio() to update p->pi_top_task before the
1007 * task unblocks.
23f78d4a 1008 */
fb00aca4 1009 rt_mutex_dequeue_pi(current, waiter);
acd58620 1010 rt_mutex_adjust_prio(current);
23f78d4a 1011
27e35715
TG
1012 /*
1013 * As we are waking up the top waiter, and the waiter stays
1014 * queued on the lock until it gets the lock, this lock
1015 * obviously has waiters. Just set the bit here and this has
1016 * the added benefit of forcing all new tasks into the
1017 * slow path making sure no task of lower priority than
1018 * the top waiter can steal this lock.
1019 */
1020 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
23f78d4a 1021
acd58620
PZ
1022 /*
1023 * We deboosted before waking the top waiter task such that we don't
1024 * run two tasks with the 'same' priority (and ensure the
1025 * p->pi_top_task pointer points to a blocked task). This however can
1026 * lead to priority inversion if we would get preempted after the
1027 * deboost but before waking our donor task, hence the preempt_disable()
1028 * before unlock.
1029 *
1030 * Pairs with preempt_enable() in rt_mutex_postunlock();
1031 */
1032 preempt_disable();
45ab4eff 1033 wake_q_add(wake_q, waiter->task);
acd58620 1034 raw_spin_unlock(&current->pi_lock);
23f78d4a
IM
1035}
1036
1037/*
8161239a 1038 * Remove a waiter from a lock and give up
23f78d4a 1039 *
b4abf910 1040 * Must be called with lock->wait_lock held and interrupts disabled. I must
8161239a 1041 * have just failed to try_to_take_rt_mutex().
23f78d4a 1042 */
bd197234
TG
1043static void remove_waiter(struct rt_mutex *lock,
1044 struct rt_mutex_waiter *waiter)
23f78d4a 1045{
1ca7b860 1046 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
36c8b586 1047 struct task_struct *owner = rt_mutex_owner(lock);
1ca7b860 1048 struct rt_mutex *next_lock;
23f78d4a 1049
e0aad5b4
PZ
1050 lockdep_assert_held(&lock->wait_lock);
1051
b4abf910 1052 raw_spin_lock(&current->pi_lock);
fb00aca4 1053 rt_mutex_dequeue(lock, waiter);
23f78d4a 1054 current->pi_blocked_on = NULL;
b4abf910 1055 raw_spin_unlock(&current->pi_lock);
23f78d4a 1056
1ca7b860
TG
1057 /*
1058 * Only update priority if the waiter was the highest priority
1059 * waiter of the lock and there is an owner to update.
1060 */
1061 if (!owner || !is_top_waiter)
8161239a
LJ
1062 return;
1063
b4abf910 1064 raw_spin_lock(&owner->pi_lock);
23f78d4a 1065
1ca7b860 1066 rt_mutex_dequeue_pi(owner, waiter);
23f78d4a 1067
1ca7b860
TG
1068 if (rt_mutex_has_waiters(lock))
1069 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
23f78d4a 1070
acd58620 1071 rt_mutex_adjust_prio(owner);
23f78d4a 1072
1ca7b860
TG
1073 /* Store the lock on which owner is blocked or NULL */
1074 next_lock = task_blocked_on_lock(owner);
db630637 1075
b4abf910 1076 raw_spin_unlock(&owner->pi_lock);
23f78d4a 1077
1ca7b860
TG
1078 /*
1079 * Don't walk the chain, if the owner task is not blocked
1080 * itself.
1081 */
82084984 1082 if (!next_lock)
23f78d4a
IM
1083 return;
1084
db630637
SR
1085 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1086 get_task_struct(owner);
1087
b4abf910 1088 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 1089
8930ed80
TG
1090 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1091 next_lock, NULL, current);
23f78d4a 1092
b4abf910 1093 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
1094}
1095
95e02ca9
TG
1096/*
1097 * Recheck the pi chain, in case we got a priority setting
1098 *
1099 * Called from sched_setscheduler
1100 */
1101void rt_mutex_adjust_pi(struct task_struct *task)
1102{
1103 struct rt_mutex_waiter *waiter;
82084984 1104 struct rt_mutex *next_lock;
95e02ca9
TG
1105 unsigned long flags;
1106
1d615482 1107 raw_spin_lock_irqsave(&task->pi_lock, flags);
95e02ca9
TG
1108
1109 waiter = task->pi_blocked_on;
19830e55 1110 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1d615482 1111 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9
TG
1112 return;
1113 }
82084984 1114 next_lock = waiter->lock;
1d615482 1115 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9 1116
db630637
SR
1117 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1118 get_task_struct(task);
82084984 1119
8930ed80
TG
1120 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1121 next_lock, NULL, task);
95e02ca9
TG
1122}
1123
50809358
PZ
1124void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1125{
1126 debug_rt_mutex_init_waiter(waiter);
1127 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1128 RB_CLEAR_NODE(&waiter->tree_entry);
1129 waiter->task = NULL;
1130}
1131
8dac456a
DH
1132/**
1133 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1134 * @lock: the rt_mutex to take
1135 * @state: the state the task should block in (TASK_INTERRUPTIBLE
b4abf910 1136 * or TASK_UNINTERRUPTIBLE)
8dac456a
DH
1137 * @timeout: the pre-initialized and started timer, or NULL for none
1138 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a 1139 *
b4abf910 1140 * Must be called with lock->wait_lock held and interrupts disabled
23f78d4a
IM
1141 */
1142static int __sched
8dac456a
DH
1143__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1144 struct hrtimer_sleeper *timeout,
8161239a 1145 struct rt_mutex_waiter *waiter)
23f78d4a 1146{
23f78d4a
IM
1147 int ret = 0;
1148
23f78d4a
IM
1149 for (;;) {
1150 /* Try to acquire the lock: */
8161239a 1151 if (try_to_take_rt_mutex(lock, current, waiter))
23f78d4a
IM
1152 break;
1153
1154 /*
1155 * TASK_INTERRUPTIBLE checks for signals and
1156 * timeout. Ignored otherwise.
1157 */
4009f4b3 1158 if (likely(state == TASK_INTERRUPTIBLE)) {
23f78d4a
IM
1159 /* Signal pending? */
1160 if (signal_pending(current))
1161 ret = -EINTR;
1162 if (timeout && !timeout->task)
1163 ret = -ETIMEDOUT;
1164 if (ret)
1165 break;
1166 }
1167
b4abf910 1168 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 1169
1b0b7c17 1170 schedule();
23f78d4a 1171
b4abf910 1172 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
1173 set_current_state(state);
1174 }
1175
afffc6c1 1176 __set_current_state(TASK_RUNNING);
8dac456a
DH
1177 return ret;
1178}
1179
3d5c9340
TG
1180static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1181 struct rt_mutex_waiter *w)
1182{
1183 /*
1184 * If the result is not -EDEADLOCK or the caller requested
1185 * deadlock detection, nothing to do here.
1186 */
1187 if (res != -EDEADLOCK || detect_deadlock)
1188 return;
1189
1190 /*
e2db7592 1191 * Yell loudly and stop the task right here.
3d5c9340 1192 */
6d41c675 1193 WARN(1, "rtmutex deadlock detected\n");
3d5c9340
TG
1194 while (1) {
1195 set_current_state(TASK_INTERRUPTIBLE);
1196 schedule();
1197 }
1198}
1199
8dac456a
DH
1200/*
1201 * Slow path lock function:
1202 */
1203static int __sched
1204rt_mutex_slowlock(struct rt_mutex *lock, int state,
1205 struct hrtimer_sleeper *timeout,
8930ed80 1206 enum rtmutex_chainwalk chwalk)
8dac456a
DH
1207{
1208 struct rt_mutex_waiter waiter;
b4abf910 1209 unsigned long flags;
8dac456a
DH
1210 int ret = 0;
1211
50809358 1212 rt_mutex_init_waiter(&waiter);
8dac456a 1213
b4abf910
TG
1214 /*
1215 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1216 * be called in early boot if the cmpxchg() fast path is disabled
1217 * (debug, no architecture support). In this case we will acquire the
1218 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1219 * enable interrupts in that early boot case. So we need to use the
1220 * irqsave/restore variants.
1221 */
1222 raw_spin_lock_irqsave(&lock->wait_lock, flags);
8dac456a
DH
1223
1224 /* Try to acquire the lock again: */
8161239a 1225 if (try_to_take_rt_mutex(lock, current, NULL)) {
b4abf910 1226 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
8dac456a
DH
1227 return 0;
1228 }
1229
1230 set_current_state(state);
1231
1232 /* Setup the timer, when timeout != NULL */
ccdd92c1 1233 if (unlikely(timeout))
8dac456a 1234 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
8dac456a 1235
8930ed80 1236 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
8161239a
LJ
1237
1238 if (likely(!ret))
afffc6c1 1239 /* sleep on the mutex */
8161239a 1240 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
8dac456a 1241
3d5c9340 1242 if (unlikely(ret)) {
9d3e2d02 1243 __set_current_state(TASK_RUNNING);
c28d62cf 1244 remove_waiter(lock, &waiter);
8930ed80 1245 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
3d5c9340 1246 }
23f78d4a
IM
1247
1248 /*
1249 * try_to_take_rt_mutex() sets the waiter bit
1250 * unconditionally. We might have to fix that up.
1251 */
1252 fixup_rt_mutex_waiters(lock);
1253
b4abf910 1254 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a
IM
1255
1256 /* Remove pending timer: */
1257 if (unlikely(timeout))
1258 hrtimer_cancel(&timeout->timer);
1259
23f78d4a
IM
1260 debug_rt_mutex_free_waiter(&waiter);
1261
1262 return ret;
1263}
1264
c1e2f0ea
PZ
1265static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1266{
1267 int ret = try_to_take_rt_mutex(lock, current, NULL);
1268
1269 /*
1270 * try_to_take_rt_mutex() sets the lock waiters bit
1271 * unconditionally. Clean this up.
1272 */
1273 fixup_rt_mutex_waiters(lock);
1274
1275 return ret;
1276}
1277
23f78d4a
IM
1278/*
1279 * Slow path try-lock function:
1280 */
88f2b4c1 1281static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
23f78d4a 1282{
b4abf910 1283 unsigned long flags;
88f2b4c1
TG
1284 int ret;
1285
1286 /*
1287 * If the lock already has an owner we fail to get the lock.
1288 * This can be done without taking the @lock->wait_lock as
1289 * it is only being read, and this is a trylock anyway.
1290 */
1291 if (rt_mutex_owner(lock))
1292 return 0;
23f78d4a 1293
88f2b4c1 1294 /*
b4abf910
TG
1295 * The mutex has currently no owner. Lock the wait lock and try to
1296 * acquire the lock. We use irqsave here to support early boot calls.
88f2b4c1 1297 */
b4abf910 1298 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a 1299
c1e2f0ea 1300 ret = __rt_mutex_slowtrylock(lock);
23f78d4a 1301
b4abf910 1302 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a
IM
1303
1304 return ret;
1305}
1306
1307/*
802ab58d 1308 * Slow path to release a rt-mutex.
aa2bfe55
PZ
1309 *
1310 * Return whether the current task needs to call rt_mutex_postunlock().
23f78d4a 1311 */
802ab58d
SAS
1312static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1313 struct wake_q_head *wake_q)
23f78d4a 1314{
b4abf910
TG
1315 unsigned long flags;
1316
1317 /* irqsave required to support early boot calls */
1318 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a
IM
1319
1320 debug_rt_mutex_unlock(lock);
1321
27e35715
TG
1322 /*
1323 * We must be careful here if the fast path is enabled. If we
1324 * have no waiters queued we cannot set owner to NULL here
1325 * because of:
1326 *
1327 * foo->lock->owner = NULL;
1328 * rtmutex_lock(foo->lock); <- fast path
1329 * free = atomic_dec_and_test(foo->refcnt);
1330 * rtmutex_unlock(foo->lock); <- fast path
1331 * if (free)
1332 * kfree(foo);
1333 * raw_spin_unlock(foo->lock->wait_lock);
1334 *
1335 * So for the fastpath enabled kernel:
1336 *
1337 * Nothing can set the waiters bit as long as we hold
1338 * lock->wait_lock. So we do the following sequence:
1339 *
1340 * owner = rt_mutex_owner(lock);
1341 * clear_rt_mutex_waiters(lock);
1342 * raw_spin_unlock(&lock->wait_lock);
1343 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1344 * return;
1345 * goto retry;
1346 *
1347 * The fastpath disabled variant is simple as all access to
1348 * lock->owner is serialized by lock->wait_lock:
1349 *
1350 * lock->owner = NULL;
1351 * raw_spin_unlock(&lock->wait_lock);
1352 */
1353 while (!rt_mutex_has_waiters(lock)) {
1354 /* Drops lock->wait_lock ! */
b4abf910 1355 if (unlock_rt_mutex_safe(lock, flags) == true)
802ab58d 1356 return false;
27e35715 1357 /* Relock the rtmutex and try again */
b4abf910 1358 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a
IM
1359 }
1360
27e35715
TG
1361 /*
1362 * The wakeup next waiter path does not suffer from the above
1363 * race. See the comments there.
45ab4eff
DB
1364 *
1365 * Queue the next waiter for wakeup once we release the wait_lock.
27e35715 1366 */
802ab58d 1367 mark_wakeup_next_waiter(wake_q, lock);
b4abf910 1368 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a 1369
aa2bfe55 1370 return true; /* call rt_mutex_postunlock() */
23f78d4a
IM
1371}
1372
1373/*
1374 * debug aware fast / slowpath lock,trylock,unlock
1375 *
1376 * The atomic acquire/release ops are compiled away, when either the
1377 * architecture does not support cmpxchg or when debugging is enabled.
1378 */
1379static inline int
1380rt_mutex_fastlock(struct rt_mutex *lock, int state,
23f78d4a
IM
1381 int (*slowfn)(struct rt_mutex *lock, int state,
1382 struct hrtimer_sleeper *timeout,
8930ed80 1383 enum rtmutex_chainwalk chwalk))
23f78d4a 1384{
fffa954f 1385 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
23f78d4a 1386 return 0;
fffa954f
PZ
1387
1388 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
23f78d4a
IM
1389}
1390
23f78d4a
IM
1391static inline int
1392rt_mutex_fasttrylock(struct rt_mutex *lock,
9a11b49a 1393 int (*slowfn)(struct rt_mutex *lock))
23f78d4a 1394{
fffa954f 1395 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
23f78d4a 1396 return 1;
fffa954f 1397
9a11b49a 1398 return slowfn(lock);
23f78d4a
IM
1399}
1400
2a1c6029 1401/*
c034f48e 1402 * Performs the wakeup of the top-waiter and re-enables preemption.
2a1c6029 1403 */
aa2bfe55 1404void rt_mutex_postunlock(struct wake_q_head *wake_q)
2a1c6029
XP
1405{
1406 wake_up_q(wake_q);
1407
1408 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
aa2bfe55 1409 preempt_enable();
2a1c6029
XP
1410}
1411
23f78d4a
IM
1412static inline void
1413rt_mutex_fastunlock(struct rt_mutex *lock,
802ab58d
SAS
1414 bool (*slowfn)(struct rt_mutex *lock,
1415 struct wake_q_head *wqh))
23f78d4a 1416{
194a6b5b 1417 DEFINE_WAKE_Q(wake_q);
802ab58d 1418
fffa954f
PZ
1419 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1420 return;
802ab58d 1421
aa2bfe55
PZ
1422 if (slowfn(lock, &wake_q))
1423 rt_mutex_postunlock(&wake_q);
23f78d4a
IM
1424}
1425
62cedf3e
PR
1426static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1427{
1428 might_sleep();
1429
1430 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1431 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1432}
1433
1434#ifdef CONFIG_DEBUG_LOCK_ALLOC
1435/**
1436 * rt_mutex_lock_nested - lock a rt_mutex
1437 *
1438 * @lock: the rt_mutex to be locked
1439 * @subclass: the lockdep subclass
1440 */
1441void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1442{
1443 __rt_mutex_lock(lock, subclass);
1444}
1445EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
62cedf3e 1446
84818af2
SRV
1447#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1448
23f78d4a
IM
1449/**
1450 * rt_mutex_lock - lock a rt_mutex
1451 *
1452 * @lock: the rt_mutex to be locked
1453 */
1454void __sched rt_mutex_lock(struct rt_mutex *lock)
1455{
62cedf3e 1456 __rt_mutex_lock(lock, 0);
23f78d4a
IM
1457}
1458EXPORT_SYMBOL_GPL(rt_mutex_lock);
62cedf3e 1459#endif
23f78d4a
IM
1460
1461/**
1462 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1463 *
c051b21f 1464 * @lock: the rt_mutex to be locked
23f78d4a
IM
1465 *
1466 * Returns:
c051b21f
TG
1467 * 0 on success
1468 * -EINTR when interrupted by a signal
23f78d4a 1469 */
c051b21f 1470int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
23f78d4a 1471{
f5694788
PZ
1472 int ret;
1473
23f78d4a
IM
1474 might_sleep();
1475
f5694788
PZ
1476 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1477 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1478 if (ret)
5facae4f 1479 mutex_release(&lock->dep_map, _RET_IP_);
f5694788
PZ
1480
1481 return ret;
23f78d4a
IM
1482}
1483EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1484
5293c2ef
PZ
1485/*
1486 * Futex variant, must not use fastpath.
1487 */
1488int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1489{
1490 return rt_mutex_slowtrylock(lock);
c051b21f
TG
1491}
1492
c1e2f0ea
PZ
1493int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1494{
1495 return __rt_mutex_slowtrylock(lock);
1496}
1497
23f78d4a
IM
1498/**
1499 * rt_mutex_trylock - try to lock a rt_mutex
1500 *
1501 * @lock: the rt_mutex to be locked
1502 *
6ce47fd9
TG
1503 * This function can only be called in thread context. It's safe to
1504 * call it from atomic regions, but not from hard interrupt or soft
1505 * interrupt context.
1506 *
23f78d4a
IM
1507 * Returns 1 on success and 0 on contention
1508 */
1509int __sched rt_mutex_trylock(struct rt_mutex *lock)
1510{
f5694788
PZ
1511 int ret;
1512
a461d587 1513 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
6ce47fd9
TG
1514 return 0;
1515
f5694788
PZ
1516 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1517 if (ret)
1518 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1519
1520 return ret;
23f78d4a
IM
1521}
1522EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1523
1524/**
1525 * rt_mutex_unlock - unlock a rt_mutex
1526 *
1527 * @lock: the rt_mutex to be unlocked
1528 */
1529void __sched rt_mutex_unlock(struct rt_mutex *lock)
1530{
5facae4f 1531 mutex_release(&lock->dep_map, _RET_IP_);
23f78d4a
IM
1532 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1533}
1534EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1535
802ab58d 1536/**
bf594bf4
AS
1537 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
1538 * do not use the fast-path, can be simple and will not need to retry.
1539 *
1540 * @lock: The rt_mutex to be unlocked
1541 * @wake_q: The wake queue head from which to get the next lock waiter
802ab58d 1542 */
5293c2ef
PZ
1543bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1544 struct wake_q_head *wake_q)
802ab58d 1545{
5293c2ef
PZ
1546 lockdep_assert_held(&lock->wait_lock);
1547
1548 debug_rt_mutex_unlock(lock);
1549
1550 if (!rt_mutex_has_waiters(lock)) {
1551 lock->owner = NULL;
1552 return false; /* done */
1553 }
1554
2a1c6029 1555 /*
def34eaa
MG
1556 * We've already deboosted, mark_wakeup_next_waiter() will
1557 * retain preempt_disabled when we drop the wait_lock, to
1558 * avoid inversion prior to the wakeup. preempt_disable()
1559 * therein pairs with rt_mutex_postunlock().
2a1c6029 1560 */
def34eaa 1561 mark_wakeup_next_waiter(wake_q, lock);
2a1c6029 1562
aa2bfe55 1563 return true; /* call postunlock() */
5293c2ef 1564}
fffa954f 1565
5293c2ef
PZ
1566void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1567{
1568 DEFINE_WAKE_Q(wake_q);
6b0ef92f 1569 unsigned long flags;
aa2bfe55 1570 bool postunlock;
5293c2ef 1571
6b0ef92f 1572 raw_spin_lock_irqsave(&lock->wait_lock, flags);
aa2bfe55 1573 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
6b0ef92f 1574 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
5293c2ef 1575
aa2bfe55
PZ
1576 if (postunlock)
1577 rt_mutex_postunlock(&wake_q);
802ab58d
SAS
1578}
1579
23f78d4a 1580/**
bf594bf4 1581 * __rt_mutex_init - initialize the rt_mutex
23f78d4a 1582 *
bf594bf4
AS
1583 * @lock: The rt_mutex to be initialized
1584 * @name: The lock name used for debugging
1585 * @key: The lock class key used for debugging
23f78d4a 1586 *
bf594bf4 1587 * Initialize the rt_mutex to unlocked state.
23f78d4a 1588 *
bf594bf4 1589 * Initializing of a locked rt_mutex is not allowed
23f78d4a 1590 */
f5694788
PZ
1591void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1592 struct lock_class_key *key)
23f78d4a
IM
1593{
1594 lock->owner = NULL;
d209d74d 1595 raw_spin_lock_init(&lock->wait_lock);
a23ba907 1596 lock->waiters = RB_ROOT_CACHED;
23f78d4a 1597
cde50a67
LASL
1598 if (name && key)
1599 debug_rt_mutex_init(lock, name, key);
23f78d4a
IM
1600}
1601EXPORT_SYMBOL_GPL(__rt_mutex_init);
0cdbee99
IM
1602
1603/**
1604 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1605 * proxy owner
1606 *
84d82ec5 1607 * @lock: the rt_mutex to be locked
0cdbee99
IM
1608 * @proxy_owner:the task to set as owner
1609 *
1610 * No locking. Caller has to do serializing itself
84d82ec5
TG
1611 *
1612 * Special API call for PI-futex support. This initializes the rtmutex and
1613 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1614 * possible at this point because the pi_state which contains the rtmutex
1615 * is not yet visible to other tasks.
0cdbee99
IM
1616 */
1617void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1618 struct task_struct *proxy_owner)
1619{
f5694788 1620 __rt_mutex_init(lock, NULL, NULL);
8161239a 1621 rt_mutex_set_owner(lock, proxy_owner);
0cdbee99
IM
1622}
1623
1624/**
1625 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1626 *
84d82ec5 1627 * @lock: the rt_mutex to be locked
0cdbee99
IM
1628 *
1629 * No locking. Caller has to do serializing itself
84d82ec5
TG
1630 *
1631 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1632 * (debugging) state. Concurrent operations on this rt_mutex are not
1633 * possible because it belongs to the pi_state which is about to be freed
1634 * and it is not longer visible to other tasks.
0cdbee99 1635 */
2156ac19 1636void rt_mutex_proxy_unlock(struct rt_mutex *lock)
0cdbee99
IM
1637{
1638 debug_rt_mutex_proxy_unlock(lock);
8161239a 1639 rt_mutex_set_owner(lock, NULL);
0cdbee99
IM
1640}
1641
1a1fb985
TG
1642/**
1643 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1644 * @lock: the rt_mutex to take
1645 * @waiter: the pre-initialized rt_mutex_waiter
1646 * @task: the task to prepare
1647 *
1648 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1649 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1650 *
1651 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1652 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1653 *
1654 * Returns:
1655 * 0 - task blocked on lock
1656 * 1 - acquired the lock for task, caller should wake it up
1657 * <0 - error
1658 *
1659 * Special API call for PI-futex support.
1660 */
56222b21 1661int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
8dac456a 1662 struct rt_mutex_waiter *waiter,
c051b21f 1663 struct task_struct *task)
8dac456a
DH
1664{
1665 int ret;
1666
1a1fb985
TG
1667 lockdep_assert_held(&lock->wait_lock);
1668
56222b21 1669 if (try_to_take_rt_mutex(lock, task, NULL))
8dac456a 1670 return 1;
8dac456a 1671
3d5c9340 1672 /* We enforce deadlock detection for futexes */
8930ed80
TG
1673 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1674 RT_MUTEX_FULL_CHAINWALK);
8dac456a 1675
8161239a 1676 if (ret && !rt_mutex_owner(lock)) {
8dac456a
DH
1677 /*
1678 * Reset the return value. We might have
1679 * returned with -EDEADLK and the owner
1680 * released the lock while we were walking the
1681 * pi chain. Let the waiter sort it out.
1682 */
1683 ret = 0;
1684 }
8161239a 1685
8dac456a
DH
1686 return ret;
1687}
1688
56222b21
PZ
1689/**
1690 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1691 * @lock: the rt_mutex to take
1692 * @waiter: the pre-initialized rt_mutex_waiter
1693 * @task: the task to prepare
1694 *
1a1fb985
TG
1695 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1696 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1697 *
1698 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1699 * on failure.
1700 *
56222b21
PZ
1701 * Returns:
1702 * 0 - task blocked on lock
1703 * 1 - acquired the lock for task, caller should wake it up
1704 * <0 - error
1705 *
1a1fb985 1706 * Special API call for PI-futex support.
56222b21
PZ
1707 */
1708int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1709 struct rt_mutex_waiter *waiter,
1710 struct task_struct *task)
1711{
1712 int ret;
1713
1714 raw_spin_lock_irq(&lock->wait_lock);
1715 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1a1fb985
TG
1716 if (unlikely(ret))
1717 remove_waiter(lock, waiter);
56222b21
PZ
1718 raw_spin_unlock_irq(&lock->wait_lock);
1719
1720 return ret;
1721}
1722
8dac456a 1723/**
38d589f2 1724 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
8dac456a
DH
1725 * @lock: the rt_mutex we were woken on
1726 * @to: the timeout, null if none. hrtimer should already have
c051b21f 1727 * been started.
8dac456a 1728 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a 1729 *
c034f48e 1730 * Wait for the lock acquisition started on our behalf by
38d589f2
PZ
1731 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1732 * rt_mutex_cleanup_proxy_lock().
8dac456a
DH
1733 *
1734 * Returns:
1735 * 0 - success
c051b21f 1736 * <0 - error, one of -EINTR, -ETIMEDOUT
8dac456a 1737 *
38d589f2 1738 * Special API call for PI-futex support
8dac456a 1739 */
38d589f2 1740int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
8dac456a 1741 struct hrtimer_sleeper *to,
c051b21f 1742 struct rt_mutex_waiter *waiter)
8dac456a
DH
1743{
1744 int ret;
1745
b4abf910 1746 raw_spin_lock_irq(&lock->wait_lock);
afffc6c1 1747 /* sleep on the mutex */
04dc1b2f 1748 set_current_state(TASK_INTERRUPTIBLE);
8161239a 1749 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
04dc1b2f
PZ
1750 /*
1751 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1752 * have to fix that up.
1753 */
1754 fixup_rt_mutex_waiters(lock);
b4abf910 1755 raw_spin_unlock_irq(&lock->wait_lock);
8dac456a 1756
8dac456a
DH
1757 return ret;
1758}
38d589f2
PZ
1759
1760/**
1761 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1762 * @lock: the rt_mutex we were woken on
1763 * @waiter: the pre-initialized rt_mutex_waiter
1764 *
1a1fb985
TG
1765 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1766 * rt_mutex_wait_proxy_lock().
38d589f2
PZ
1767 *
1768 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1769 * in fact still be granted ownership until we're removed. Therefore we can
1770 * find we are in fact the owner and must disregard the
1771 * rt_mutex_wait_proxy_lock() failure.
1772 *
1773 * Returns:
1774 * true - did the cleanup, we done.
1775 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1776 * caller should disregards its return value.
1777 *
1778 * Special API call for PI-futex support
1779 */
1780bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1781 struct rt_mutex_waiter *waiter)
1782{
1783 bool cleanup = false;
1784
1785 raw_spin_lock_irq(&lock->wait_lock);
04dc1b2f
PZ
1786 /*
1787 * Do an unconditional try-lock, this deals with the lock stealing
1788 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1789 * sets a NULL owner.
1790 *
1791 * We're not interested in the return value, because the subsequent
1792 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1793 * we will own the lock and it will have removed the waiter. If we
1794 * failed the trylock, we're still not owner and we need to remove
1795 * ourselves.
1796 */
1797 try_to_take_rt_mutex(lock, current, waiter);
38d589f2
PZ
1798 /*
1799 * Unless we're the owner; we're still enqueued on the wait_list.
1800 * So check if we became owner, if not, take us off the wait_list.
1801 */
1802 if (rt_mutex_owner(lock) != current) {
1803 remove_waiter(lock, waiter);
38d589f2
PZ
1804 cleanup = true;
1805 }
cfafcd11
PZ
1806 /*
1807 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1808 * have to fix that up.
1809 */
1810 fixup_rt_mutex_waiters(lock);
1811
38d589f2
PZ
1812 raw_spin_unlock_irq(&lock->wait_lock);
1813
1814 return cleanup;
1815}
fae37fee
TG
1816
1817#ifdef CONFIG_DEBUG_RT_MUTEXES
1818void rt_mutex_debug_task_free(struct task_struct *task)
1819{
1820 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
1821 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
1822}
1823#endif