Merge branch 'sched/core' into locking/core
[linux-2.6-block.git] / kernel / locking / rtmutex.c
CommitLineData
23f78d4a
IM
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
d07fe82c 10 *
214e0aed 11 * See Documentation/locking/rt-mutex-design.txt for details.
23f78d4a
IM
12 */
13#include <linux/spinlock.h>
9984de1a 14#include <linux/export.h>
174cd4b1 15#include <linux/sched/signal.h>
8bd75c77 16#include <linux/sched/rt.h>
fb00aca4 17#include <linux/sched/deadline.h>
84f001e1 18#include <linux/sched/wake_q.h>
b17b0153 19#include <linux/sched/debug.h>
23f78d4a
IM
20#include <linux/timer.h>
21
22#include "rtmutex_common.h"
23
23f78d4a
IM
24/*
25 * lock->owner state tracking:
26 *
8161239a
LJ
27 * lock->owner holds the task_struct pointer of the owner. Bit 0
28 * is used to keep track of the "lock has waiters" state.
23f78d4a 29 *
8161239a
LJ
30 * owner bit0
31 * NULL 0 lock is free (fast acquire possible)
32 * NULL 1 lock is free and has waiters and the top waiter
33 * is going to take the lock*
34 * taskpointer 0 lock is held (fast release possible)
35 * taskpointer 1 lock is held and has waiters**
23f78d4a
IM
36 *
37 * The fast atomic compare exchange based acquire and release is only
8161239a
LJ
38 * possible when bit 0 of lock->owner is 0.
39 *
40 * (*) It also can be a transitional state when grabbing the lock
41 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
42 * we need to set the bit0 before looking at the lock, and the owner may be
43 * NULL in this small time, hence this can be a transitional state.
23f78d4a 44 *
8161239a
LJ
45 * (**) There is a small time when bit 0 is set but there are no
46 * waiters. This can happen when grabbing the lock in the slow path.
47 * To prevent a cmpxchg of the owner releasing the lock, we need to
48 * set this bit before looking at the lock.
23f78d4a
IM
49 */
50
bd197234 51static void
8161239a 52rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
23f78d4a 53{
8161239a 54 unsigned long val = (unsigned long)owner;
23f78d4a
IM
55
56 if (rt_mutex_has_waiters(lock))
57 val |= RT_MUTEX_HAS_WAITERS;
58
59 lock->owner = (struct task_struct *)val;
60}
61
62static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
63{
64 lock->owner = (struct task_struct *)
65 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
66}
67
68static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
69{
dbb26055
TG
70 unsigned long owner, *p = (unsigned long *) &lock->owner;
71
72 if (rt_mutex_has_waiters(lock))
73 return;
74
75 /*
76 * The rbtree has no waiters enqueued, now make sure that the
77 * lock->owner still has the waiters bit set, otherwise the
78 * following can happen:
79 *
80 * CPU 0 CPU 1 CPU2
81 * l->owner=T1
82 * rt_mutex_lock(l)
83 * lock(l->lock)
84 * l->owner = T1 | HAS_WAITERS;
85 * enqueue(T2)
86 * boost()
87 * unlock(l->lock)
88 * block()
89 *
90 * rt_mutex_lock(l)
91 * lock(l->lock)
92 * l->owner = T1 | HAS_WAITERS;
93 * enqueue(T3)
94 * boost()
95 * unlock(l->lock)
96 * block()
97 * signal(->T2) signal(->T3)
98 * lock(l->lock)
99 * dequeue(T2)
100 * deboost()
101 * unlock(l->lock)
102 * lock(l->lock)
103 * dequeue(T3)
104 * ==> wait list is empty
105 * deboost()
106 * unlock(l->lock)
107 * lock(l->lock)
108 * fixup_rt_mutex_waiters()
109 * if (wait_list_empty(l) {
110 * l->owner = owner
111 * owner = l->owner & ~HAS_WAITERS;
112 * ==> l->owner = T1
113 * }
114 * lock(l->lock)
115 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
116 * if (wait_list_empty(l) {
117 * owner = l->owner & ~HAS_WAITERS;
118 * cmpxchg(l->owner, T1, NULL)
119 * ===> Success (l->owner = NULL)
120 *
121 * l->owner = owner
122 * ==> l->owner = T1
123 * }
124 *
125 * With the check for the waiter bit in place T3 on CPU2 will not
126 * overwrite. All tasks fiddling with the waiters bit are
127 * serialized by l->lock, so nothing else can modify the waiters
128 * bit. If the bit is set then nothing can change l->owner either
129 * so the simple RMW is safe. The cmpxchg() will simply fail if it
130 * happens in the middle of the RMW because the waiters bit is
131 * still set.
132 */
133 owner = READ_ONCE(*p);
134 if (owner & RT_MUTEX_HAS_WAITERS)
135 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
23f78d4a
IM
136}
137
bd197234 138/*
cede8841
SAS
139 * We can speed up the acquire/release, if there's no debugging state to be
140 * set up.
bd197234 141 */
cede8841 142#ifndef CONFIG_DEBUG_RT_MUTEXES
700318d1
DB
143# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
bd197234
TG
152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
700318d1
DB
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
bd197234 160}
27e35715
TG
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
b4abf910
TG
168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
27e35715
TG
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
b4abf910 175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
27e35715
TG
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
700318d1 200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
27e35715
TG
201}
202
bd197234 203#else
700318d1
DB
204# define rt_mutex_cmpxchg_relaxed(l,c,n) (0)
205# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
206# define rt_mutex_cmpxchg_release(l,c,n) (0)
207
bd197234
TG
208static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
209{
210 lock->owner = (struct task_struct *)
211 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
212}
27e35715
TG
213
214/*
215 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
216 */
b4abf910
TG
217static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218 unsigned long flags)
27e35715
TG
219 __releases(lock->wait_lock)
220{
221 lock->owner = NULL;
b4abf910 222 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
27e35715
TG
223 return true;
224}
bd197234
TG
225#endif
226
fb00aca4
PZ
227static inline int
228rt_mutex_waiter_less(struct rt_mutex_waiter *left,
229 struct rt_mutex_waiter *right)
230{
2d3d891d 231 if (left->prio < right->prio)
fb00aca4
PZ
232 return 1;
233
234 /*
2d3d891d
DF
235 * If both waiters have dl_prio(), we check the deadlines of the
236 * associated tasks.
237 * If left waiter has a dl_prio(), and we didn't return 1 above,
238 * then right waiter has a dl_prio() too.
fb00aca4 239 */
2d3d891d 240 if (dl_prio(left->prio))
f5240575
JL
241 return dl_time_before(left->task->dl.deadline,
242 right->task->dl.deadline);
fb00aca4
PZ
243
244 return 0;
245}
246
247static void
248rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
249{
250 struct rb_node **link = &lock->waiters.rb_node;
251 struct rb_node *parent = NULL;
252 struct rt_mutex_waiter *entry;
253 int leftmost = 1;
254
255 while (*link) {
256 parent = *link;
257 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
258 if (rt_mutex_waiter_less(waiter, entry)) {
259 link = &parent->rb_left;
260 } else {
261 link = &parent->rb_right;
262 leftmost = 0;
263 }
264 }
265
266 if (leftmost)
267 lock->waiters_leftmost = &waiter->tree_entry;
268
269 rb_link_node(&waiter->tree_entry, parent, link);
270 rb_insert_color(&waiter->tree_entry, &lock->waiters);
271}
272
273static void
274rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
275{
276 if (RB_EMPTY_NODE(&waiter->tree_entry))
277 return;
278
279 if (lock->waiters_leftmost == &waiter->tree_entry)
280 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
281
282 rb_erase(&waiter->tree_entry, &lock->waiters);
283 RB_CLEAR_NODE(&waiter->tree_entry);
284}
285
286static void
287rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
288{
289 struct rb_node **link = &task->pi_waiters.rb_node;
290 struct rb_node *parent = NULL;
291 struct rt_mutex_waiter *entry;
292 int leftmost = 1;
293
294 while (*link) {
295 parent = *link;
296 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
297 if (rt_mutex_waiter_less(waiter, entry)) {
298 link = &parent->rb_left;
299 } else {
300 link = &parent->rb_right;
301 leftmost = 0;
302 }
303 }
304
305 if (leftmost)
306 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
307
308 rb_link_node(&waiter->pi_tree_entry, parent, link);
309 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
310}
311
312static void
313rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
314{
315 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
316 return;
317
318 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
319 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
320
321 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
322 RB_CLEAR_NODE(&waiter->pi_tree_entry);
323}
324
23f78d4a 325/*
fb00aca4 326 * Calculate task priority from the waiter tree priority
23f78d4a 327 *
fb00aca4 328 * Return task->normal_prio when the waiter tree is empty or when
23f78d4a
IM
329 * the waiter is not allowed to do priority boosting
330 */
331int rt_mutex_getprio(struct task_struct *task)
332{
333 if (likely(!task_has_pi_waiters(task)))
334 return task->normal_prio;
335
2d3d891d 336 return min(task_top_pi_waiter(task)->prio,
23f78d4a
IM
337 task->normal_prio);
338}
339
2d3d891d
DF
340struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
341{
342 if (likely(!task_has_pi_waiters(task)))
343 return NULL;
344
345 return task_top_pi_waiter(task)->task;
346}
347
c365c292 348/*
0782e63b
TG
349 * Called by sched_setscheduler() to get the priority which will be
350 * effective after the change.
c365c292 351 */
0782e63b 352int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
c365c292
TG
353{
354 if (!task_has_pi_waiters(task))
0782e63b 355 return newprio;
c365c292 356
0782e63b
TG
357 if (task_top_pi_waiter(task)->task->prio <= newprio)
358 return task_top_pi_waiter(task)->task->prio;
359 return newprio;
c365c292
TG
360}
361
23f78d4a
IM
362/*
363 * Adjust the priority of a task, after its pi_waiters got modified.
364 *
365 * This can be both boosting and unboosting. task->pi_lock must be held.
366 */
bd197234 367static void __rt_mutex_adjust_prio(struct task_struct *task)
23f78d4a
IM
368{
369 int prio = rt_mutex_getprio(task);
370
2d3d891d 371 if (task->prio != prio || dl_prio(prio))
23f78d4a
IM
372 rt_mutex_setprio(task, prio);
373}
374
375/*
376 * Adjust task priority (undo boosting). Called from the exit path of
377 * rt_mutex_slowunlock() and rt_mutex_slowlock().
378 *
379 * (Note: We do this outside of the protection of lock->wait_lock to
380 * allow the lock to be taken while or before we readjust the priority
381 * of task. We do not use the spin_xx_mutex() variants here as we are
382 * outside of the debug path.)
383 */
802ab58d 384void rt_mutex_adjust_prio(struct task_struct *task)
23f78d4a
IM
385{
386 unsigned long flags;
387
1d615482 388 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 389 __rt_mutex_adjust_prio(task);
1d615482 390 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
391}
392
8930ed80
TG
393/*
394 * Deadlock detection is conditional:
395 *
396 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
397 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
398 *
399 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
400 * conducted independent of the detect argument.
401 *
402 * If the waiter argument is NULL this indicates the deboost path and
403 * deadlock detection is disabled independent of the detect argument
404 * and the config settings.
405 */
406static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
407 enum rtmutex_chainwalk chwalk)
408{
409 /*
410 * This is just a wrapper function for the following call,
411 * because debug_rt_mutex_detect_deadlock() smells like a magic
412 * debug feature and I wanted to keep the cond function in the
413 * main source file along with the comments instead of having
414 * two of the same in the headers.
415 */
416 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
417}
418
23f78d4a
IM
419/*
420 * Max number of times we'll walk the boosting chain:
421 */
422int max_lock_depth = 1024;
423
82084984
TG
424static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
425{
426 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
427}
428
23f78d4a
IM
429/*
430 * Adjust the priority chain. Also used for deadlock detection.
431 * Decreases task's usage by one - may thus free the task.
0c106173 432 *
82084984
TG
433 * @task: the task owning the mutex (owner) for which a chain walk is
434 * probably needed
e6beaa36 435 * @chwalk: do we have to carry out deadlock detection?
82084984
TG
436 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
437 * things for a task that has just got its priority adjusted, and
438 * is waiting on a mutex)
439 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
440 * we dropped its pi_lock. Is never dereferenced, only used for
441 * comparison to detect lock chain changes.
0c106173 442 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
82084984
TG
443 * its priority to the mutex owner (can be NULL in the case
444 * depicted above or if the top waiter is gone away and we are
445 * actually deboosting the owner)
446 * @top_task: the current top waiter
0c106173 447 *
23f78d4a 448 * Returns 0 or -EDEADLK.
3eb65aea
TG
449 *
450 * Chain walk basics and protection scope
451 *
452 * [R] refcount on task
453 * [P] task->pi_lock held
454 * [L] rtmutex->wait_lock held
455 *
456 * Step Description Protected by
457 * function arguments:
458 * @task [R]
459 * @orig_lock if != NULL @top_task is blocked on it
460 * @next_lock Unprotected. Cannot be
461 * dereferenced. Only used for
462 * comparison.
463 * @orig_waiter if != NULL @top_task is blocked on it
464 * @top_task current, or in case of proxy
465 * locking protected by calling
466 * code
467 * again:
468 * loop_sanity_check();
469 * retry:
470 * [1] lock(task->pi_lock); [R] acquire [P]
471 * [2] waiter = task->pi_blocked_on; [P]
472 * [3] check_exit_conditions_1(); [P]
473 * [4] lock = waiter->lock; [P]
474 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
475 * unlock(task->pi_lock); release [P]
476 * goto retry;
477 * }
478 * [6] check_exit_conditions_2(); [P] + [L]
479 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
480 * [8] unlock(task->pi_lock); release [P]
481 * put_task_struct(task); release [R]
482 * [9] check_exit_conditions_3(); [L]
483 * [10] task = owner(lock); [L]
484 * get_task_struct(task); [L] acquire [R]
485 * lock(task->pi_lock); [L] acquire [P]
486 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
487 * [12] check_exit_conditions_4(); [P] + [L]
488 * [13] unlock(task->pi_lock); release [P]
489 * unlock(lock->wait_lock); release [L]
490 * goto again;
23f78d4a 491 */
bd197234 492static int rt_mutex_adjust_prio_chain(struct task_struct *task,
8930ed80 493 enum rtmutex_chainwalk chwalk,
bd197234 494 struct rt_mutex *orig_lock,
82084984 495 struct rt_mutex *next_lock,
bd197234
TG
496 struct rt_mutex_waiter *orig_waiter,
497 struct task_struct *top_task)
23f78d4a 498{
23f78d4a 499 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
a57594a1 500 struct rt_mutex_waiter *prerequeue_top_waiter;
8930ed80 501 int ret = 0, depth = 0;
a57594a1 502 struct rt_mutex *lock;
8930ed80 503 bool detect_deadlock;
67792e2c 504 bool requeue = true;
23f78d4a 505
8930ed80 506 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
23f78d4a
IM
507
508 /*
509 * The (de)boosting is a step by step approach with a lot of
510 * pitfalls. We want this to be preemptible and we want hold a
511 * maximum of two locks per step. So we have to check
512 * carefully whether things change under us.
513 */
514 again:
3eb65aea
TG
515 /*
516 * We limit the lock chain length for each invocation.
517 */
23f78d4a
IM
518 if (++depth > max_lock_depth) {
519 static int prev_max;
520
521 /*
522 * Print this only once. If the admin changes the limit,
523 * print a new message when reaching the limit again.
524 */
525 if (prev_max != max_lock_depth) {
526 prev_max = max_lock_depth;
527 printk(KERN_WARNING "Maximum lock depth %d reached "
528 "task: %s (%d)\n", max_lock_depth,
ba25f9dc 529 top_task->comm, task_pid_nr(top_task));
23f78d4a
IM
530 }
531 put_task_struct(task);
532
3d5c9340 533 return -EDEADLK;
23f78d4a 534 }
3eb65aea
TG
535
536 /*
537 * We are fully preemptible here and only hold the refcount on
538 * @task. So everything can have changed under us since the
539 * caller or our own code below (goto retry/again) dropped all
540 * locks.
541 */
23f78d4a
IM
542 retry:
543 /*
3eb65aea 544 * [1] Task cannot go away as we did a get_task() before !
23f78d4a 545 */
b4abf910 546 raw_spin_lock_irq(&task->pi_lock);
23f78d4a 547
3eb65aea
TG
548 /*
549 * [2] Get the waiter on which @task is blocked on.
550 */
23f78d4a 551 waiter = task->pi_blocked_on;
3eb65aea
TG
552
553 /*
554 * [3] check_exit_conditions_1() protected by task->pi_lock.
555 */
556
23f78d4a
IM
557 /*
558 * Check whether the end of the boosting chain has been
559 * reached or the state of the chain has changed while we
560 * dropped the locks.
561 */
8161239a 562 if (!waiter)
23f78d4a
IM
563 goto out_unlock_pi;
564
1a539a87
TG
565 /*
566 * Check the orig_waiter state. After we dropped the locks,
8161239a 567 * the previous owner of the lock might have released the lock.
1a539a87 568 */
8161239a 569 if (orig_waiter && !rt_mutex_owner(orig_lock))
1a539a87
TG
570 goto out_unlock_pi;
571
82084984
TG
572 /*
573 * We dropped all locks after taking a refcount on @task, so
574 * the task might have moved on in the lock chain or even left
575 * the chain completely and blocks now on an unrelated lock or
576 * on @orig_lock.
577 *
578 * We stored the lock on which @task was blocked in @next_lock,
579 * so we can detect the chain change.
580 */
581 if (next_lock != waiter->lock)
582 goto out_unlock_pi;
583
1a539a87
TG
584 /*
585 * Drop out, when the task has no waiters. Note,
586 * top_waiter can be NULL, when we are in the deboosting
587 * mode!
588 */
397335f0
TG
589 if (top_waiter) {
590 if (!task_has_pi_waiters(task))
591 goto out_unlock_pi;
592 /*
593 * If deadlock detection is off, we stop here if we
67792e2c
TG
594 * are not the top pi waiter of the task. If deadlock
595 * detection is enabled we continue, but stop the
596 * requeueing in the chain walk.
397335f0 597 */
67792e2c
TG
598 if (top_waiter != task_top_pi_waiter(task)) {
599 if (!detect_deadlock)
600 goto out_unlock_pi;
601 else
602 requeue = false;
603 }
397335f0 604 }
23f78d4a
IM
605
606 /*
67792e2c
TG
607 * If the waiter priority is the same as the task priority
608 * then there is no further priority adjustment necessary. If
609 * deadlock detection is off, we stop the chain walk. If its
610 * enabled we continue, but stop the requeueing in the chain
611 * walk.
23f78d4a 612 */
67792e2c
TG
613 if (waiter->prio == task->prio) {
614 if (!detect_deadlock)
615 goto out_unlock_pi;
616 else
617 requeue = false;
618 }
23f78d4a 619
3eb65aea
TG
620 /*
621 * [4] Get the next lock
622 */
23f78d4a 623 lock = waiter->lock;
3eb65aea
TG
624 /*
625 * [5] We need to trylock here as we are holding task->pi_lock,
626 * which is the reverse lock order versus the other rtmutex
627 * operations.
628 */
d209d74d 629 if (!raw_spin_trylock(&lock->wait_lock)) {
b4abf910 630 raw_spin_unlock_irq(&task->pi_lock);
23f78d4a
IM
631 cpu_relax();
632 goto retry;
633 }
634
397335f0 635 /*
3eb65aea
TG
636 * [6] check_exit_conditions_2() protected by task->pi_lock and
637 * lock->wait_lock.
638 *
397335f0
TG
639 * Deadlock detection. If the lock is the same as the original
640 * lock which caused us to walk the lock chain or if the
641 * current lock is owned by the task which initiated the chain
642 * walk, we detected a deadlock.
643 */
95e02ca9 644 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
8930ed80 645 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
d209d74d 646 raw_spin_unlock(&lock->wait_lock);
3d5c9340 647 ret = -EDEADLK;
23f78d4a
IM
648 goto out_unlock_pi;
649 }
650
67792e2c
TG
651 /*
652 * If we just follow the lock chain for deadlock detection, no
653 * need to do all the requeue operations. To avoid a truckload
654 * of conditionals around the various places below, just do the
655 * minimum chain walk checks.
656 */
657 if (!requeue) {
658 /*
659 * No requeue[7] here. Just release @task [8]
660 */
b4abf910 661 raw_spin_unlock(&task->pi_lock);
67792e2c
TG
662 put_task_struct(task);
663
664 /*
665 * [9] check_exit_conditions_3 protected by lock->wait_lock.
666 * If there is no owner of the lock, end of chain.
667 */
668 if (!rt_mutex_owner(lock)) {
b4abf910 669 raw_spin_unlock_irq(&lock->wait_lock);
67792e2c
TG
670 return 0;
671 }
672
673 /* [10] Grab the next task, i.e. owner of @lock */
674 task = rt_mutex_owner(lock);
675 get_task_struct(task);
b4abf910 676 raw_spin_lock(&task->pi_lock);
67792e2c
TG
677
678 /*
679 * No requeue [11] here. We just do deadlock detection.
680 *
681 * [12] Store whether owner is blocked
682 * itself. Decision is made after dropping the locks
683 */
684 next_lock = task_blocked_on_lock(task);
685 /*
686 * Get the top waiter for the next iteration
687 */
688 top_waiter = rt_mutex_top_waiter(lock);
689
690 /* [13] Drop locks */
b4abf910
TG
691 raw_spin_unlock(&task->pi_lock);
692 raw_spin_unlock_irq(&lock->wait_lock);
67792e2c
TG
693
694 /* If owner is not blocked, end of chain. */
695 if (!next_lock)
696 goto out_put_task;
697 goto again;
698 }
699
a57594a1
TG
700 /*
701 * Store the current top waiter before doing the requeue
702 * operation on @lock. We need it for the boost/deboost
703 * decision below.
704 */
705 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
23f78d4a 706
9f40a51a 707 /* [7] Requeue the waiter in the lock waiter tree. */
fb00aca4 708 rt_mutex_dequeue(lock, waiter);
2d3d891d 709 waiter->prio = task->prio;
fb00aca4 710 rt_mutex_enqueue(lock, waiter);
23f78d4a 711
3eb65aea 712 /* [8] Release the task */
b4abf910 713 raw_spin_unlock(&task->pi_lock);
2ffa5a5c
TG
714 put_task_struct(task);
715
a57594a1 716 /*
3eb65aea
TG
717 * [9] check_exit_conditions_3 protected by lock->wait_lock.
718 *
a57594a1
TG
719 * We must abort the chain walk if there is no lock owner even
720 * in the dead lock detection case, as we have nothing to
721 * follow here. This is the end of the chain we are walking.
722 */
8161239a
LJ
723 if (!rt_mutex_owner(lock)) {
724 /*
3eb65aea
TG
725 * If the requeue [7] above changed the top waiter,
726 * then we need to wake the new top waiter up to try
727 * to get the lock.
8161239a 728 */
a57594a1 729 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
8161239a 730 wake_up_process(rt_mutex_top_waiter(lock)->task);
b4abf910 731 raw_spin_unlock_irq(&lock->wait_lock);
2ffa5a5c 732 return 0;
8161239a 733 }
23f78d4a 734
3eb65aea 735 /* [10] Grab the next task, i.e. the owner of @lock */
23f78d4a 736 task = rt_mutex_owner(lock);
db630637 737 get_task_struct(task);
b4abf910 738 raw_spin_lock(&task->pi_lock);
23f78d4a 739
3eb65aea 740 /* [11] requeue the pi waiters if necessary */
23f78d4a 741 if (waiter == rt_mutex_top_waiter(lock)) {
a57594a1
TG
742 /*
743 * The waiter became the new top (highest priority)
744 * waiter on the lock. Replace the previous top waiter
9f40a51a 745 * in the owner tasks pi waiters tree with this waiter
a57594a1
TG
746 * and adjust the priority of the owner.
747 */
748 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
fb00aca4 749 rt_mutex_enqueue_pi(task, waiter);
23f78d4a
IM
750 __rt_mutex_adjust_prio(task);
751
a57594a1
TG
752 } else if (prerequeue_top_waiter == waiter) {
753 /*
754 * The waiter was the top waiter on the lock, but is
755 * no longer the top prority waiter. Replace waiter in
9f40a51a 756 * the owner tasks pi waiters tree with the new top
a57594a1
TG
757 * (highest priority) waiter and adjust the priority
758 * of the owner.
759 * The new top waiter is stored in @waiter so that
760 * @waiter == @top_waiter evaluates to true below and
761 * we continue to deboost the rest of the chain.
762 */
fb00aca4 763 rt_mutex_dequeue_pi(task, waiter);
23f78d4a 764 waiter = rt_mutex_top_waiter(lock);
fb00aca4 765 rt_mutex_enqueue_pi(task, waiter);
23f78d4a 766 __rt_mutex_adjust_prio(task);
a57594a1
TG
767 } else {
768 /*
769 * Nothing changed. No need to do any priority
770 * adjustment.
771 */
23f78d4a
IM
772 }
773
82084984 774 /*
3eb65aea
TG
775 * [12] check_exit_conditions_4() protected by task->pi_lock
776 * and lock->wait_lock. The actual decisions are made after we
777 * dropped the locks.
778 *
82084984
TG
779 * Check whether the task which owns the current lock is pi
780 * blocked itself. If yes we store a pointer to the lock for
781 * the lock chain change detection above. After we dropped
782 * task->pi_lock next_lock cannot be dereferenced anymore.
783 */
784 next_lock = task_blocked_on_lock(task);
a57594a1
TG
785 /*
786 * Store the top waiter of @lock for the end of chain walk
787 * decision below.
788 */
23f78d4a 789 top_waiter = rt_mutex_top_waiter(lock);
3eb65aea
TG
790
791 /* [13] Drop the locks */
b4abf910
TG
792 raw_spin_unlock(&task->pi_lock);
793 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 794
82084984 795 /*
3eb65aea
TG
796 * Make the actual exit decisions [12], based on the stored
797 * values.
798 *
82084984
TG
799 * We reached the end of the lock chain. Stop right here. No
800 * point to go back just to figure that out.
801 */
802 if (!next_lock)
803 goto out_put_task;
804
a57594a1
TG
805 /*
806 * If the current waiter is not the top waiter on the lock,
807 * then we can stop the chain walk here if we are not in full
808 * deadlock detection mode.
809 */
23f78d4a
IM
810 if (!detect_deadlock && waiter != top_waiter)
811 goto out_put_task;
812
813 goto again;
814
815 out_unlock_pi:
b4abf910 816 raw_spin_unlock_irq(&task->pi_lock);
23f78d4a
IM
817 out_put_task:
818 put_task_struct(task);
36c8b586 819
23f78d4a
IM
820 return ret;
821}
822
23f78d4a
IM
823/*
824 * Try to take an rt-mutex
825 *
b4abf910 826 * Must be called with lock->wait_lock held and interrupts disabled
8161239a 827 *
358c331f
TG
828 * @lock: The lock to be acquired.
829 * @task: The task which wants to acquire the lock
9f40a51a 830 * @waiter: The waiter that is queued to the lock's wait tree if the
358c331f 831 * callsite called task_blocked_on_lock(), otherwise NULL
23f78d4a 832 */
8161239a 833static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
358c331f 834 struct rt_mutex_waiter *waiter)
23f78d4a
IM
835{
836 /*
358c331f
TG
837 * Before testing whether we can acquire @lock, we set the
838 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
839 * other tasks which try to modify @lock into the slow path
840 * and they serialize on @lock->wait_lock.
23f78d4a 841 *
358c331f
TG
842 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
843 * as explained at the top of this file if and only if:
23f78d4a 844 *
358c331f
TG
845 * - There is a lock owner. The caller must fixup the
846 * transient state if it does a trylock or leaves the lock
847 * function due to a signal or timeout.
848 *
849 * - @task acquires the lock and there are no other
850 * waiters. This is undone in rt_mutex_set_owner(@task) at
851 * the end of this function.
23f78d4a
IM
852 */
853 mark_rt_mutex_waiters(lock);
854
358c331f
TG
855 /*
856 * If @lock has an owner, give up.
857 */
8161239a 858 if (rt_mutex_owner(lock))
23f78d4a
IM
859 return 0;
860
8161239a 861 /*
358c331f 862 * If @waiter != NULL, @task has already enqueued the waiter
9f40a51a 863 * into @lock waiter tree. If @waiter == NULL then this is a
358c331f 864 * trylock attempt.
8161239a 865 */
358c331f
TG
866 if (waiter) {
867 /*
868 * If waiter is not the highest priority waiter of
869 * @lock, give up.
870 */
871 if (waiter != rt_mutex_top_waiter(lock))
872 return 0;
8161239a 873
358c331f
TG
874 /*
875 * We can acquire the lock. Remove the waiter from the
9f40a51a 876 * lock waiters tree.
358c331f
TG
877 */
878 rt_mutex_dequeue(lock, waiter);
8161239a 879
358c331f 880 } else {
8161239a 881 /*
358c331f
TG
882 * If the lock has waiters already we check whether @task is
883 * eligible to take over the lock.
884 *
885 * If there are no other waiters, @task can acquire
886 * the lock. @task->pi_blocked_on is NULL, so it does
887 * not need to be dequeued.
8161239a
LJ
888 */
889 if (rt_mutex_has_waiters(lock)) {
358c331f
TG
890 /*
891 * If @task->prio is greater than or equal to
892 * the top waiter priority (kernel view),
893 * @task lost.
894 */
895 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
896 return 0;
897
898 /*
899 * The current top waiter stays enqueued. We
900 * don't have to change anything in the lock
901 * waiters order.
902 */
903 } else {
904 /*
905 * No waiters. Take the lock without the
906 * pi_lock dance.@task->pi_blocked_on is NULL
907 * and we have no waiters to enqueue in @task
9f40a51a 908 * pi waiters tree.
358c331f
TG
909 */
910 goto takeit;
8161239a 911 }
8161239a
LJ
912 }
913
358c331f
TG
914 /*
915 * Clear @task->pi_blocked_on. Requires protection by
916 * @task->pi_lock. Redundant operation for the @waiter == NULL
917 * case, but conditionals are more expensive than a redundant
918 * store.
919 */
b4abf910 920 raw_spin_lock(&task->pi_lock);
358c331f
TG
921 task->pi_blocked_on = NULL;
922 /*
923 * Finish the lock acquisition. @task is the new owner. If
924 * other waiters exist we have to insert the highest priority
9f40a51a 925 * waiter into @task->pi_waiters tree.
358c331f
TG
926 */
927 if (rt_mutex_has_waiters(lock))
928 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
b4abf910 929 raw_spin_unlock(&task->pi_lock);
358c331f
TG
930
931takeit:
23f78d4a 932 /* We got the lock. */
9a11b49a 933 debug_rt_mutex_lock(lock);
23f78d4a 934
358c331f
TG
935 /*
936 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
937 * are still waiters or clears it.
938 */
8161239a 939 rt_mutex_set_owner(lock, task);
23f78d4a 940
23f78d4a
IM
941 return 1;
942}
943
944/*
945 * Task blocks on lock.
946 *
947 * Prepare waiter and propagate pi chain
948 *
b4abf910 949 * This must be called with lock->wait_lock held and interrupts disabled
23f78d4a
IM
950 */
951static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
952 struct rt_mutex_waiter *waiter,
8dac456a 953 struct task_struct *task,
8930ed80 954 enum rtmutex_chainwalk chwalk)
23f78d4a 955{
36c8b586 956 struct task_struct *owner = rt_mutex_owner(lock);
23f78d4a 957 struct rt_mutex_waiter *top_waiter = waiter;
82084984 958 struct rt_mutex *next_lock;
db630637 959 int chain_walk = 0, res;
23f78d4a 960
397335f0
TG
961 /*
962 * Early deadlock detection. We really don't want the task to
963 * enqueue on itself just to untangle the mess later. It's not
964 * only an optimization. We drop the locks, so another waiter
965 * can come in before the chain walk detects the deadlock. So
966 * the other will detect the deadlock and return -EDEADLOCK,
967 * which is wrong, as the other waiter is not in a deadlock
968 * situation.
969 */
3d5c9340 970 if (owner == task)
397335f0
TG
971 return -EDEADLK;
972
b4abf910 973 raw_spin_lock(&task->pi_lock);
8dac456a
DH
974 __rt_mutex_adjust_prio(task);
975 waiter->task = task;
23f78d4a 976 waiter->lock = lock;
2d3d891d 977 waiter->prio = task->prio;
23f78d4a
IM
978
979 /* Get the top priority waiter on the lock */
980 if (rt_mutex_has_waiters(lock))
981 top_waiter = rt_mutex_top_waiter(lock);
fb00aca4 982 rt_mutex_enqueue(lock, waiter);
23f78d4a 983
8dac456a 984 task->pi_blocked_on = waiter;
23f78d4a 985
b4abf910 986 raw_spin_unlock(&task->pi_lock);
23f78d4a 987
8161239a
LJ
988 if (!owner)
989 return 0;
990
b4abf910 991 raw_spin_lock(&owner->pi_lock);
23f78d4a 992 if (waiter == rt_mutex_top_waiter(lock)) {
fb00aca4
PZ
993 rt_mutex_dequeue_pi(owner, top_waiter);
994 rt_mutex_enqueue_pi(owner, waiter);
23f78d4a
IM
995
996 __rt_mutex_adjust_prio(owner);
db630637
SR
997 if (owner->pi_blocked_on)
998 chain_walk = 1;
8930ed80 999 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
db630637 1000 chain_walk = 1;
82084984 1001 }
db630637 1002
82084984
TG
1003 /* Store the lock on which owner is blocked or NULL */
1004 next_lock = task_blocked_on_lock(owner);
1005
b4abf910 1006 raw_spin_unlock(&owner->pi_lock);
82084984
TG
1007 /*
1008 * Even if full deadlock detection is on, if the owner is not
1009 * blocked itself, we can avoid finding this out in the chain
1010 * walk.
1011 */
1012 if (!chain_walk || !next_lock)
23f78d4a
IM
1013 return 0;
1014
db630637
SR
1015 /*
1016 * The owner can't disappear while holding a lock,
1017 * so the owner struct is protected by wait_lock.
1018 * Gets dropped in rt_mutex_adjust_prio_chain()!
1019 */
1020 get_task_struct(owner);
1021
b4abf910 1022 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 1023
8930ed80 1024 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
82084984 1025 next_lock, waiter, task);
23f78d4a 1026
b4abf910 1027 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
1028
1029 return res;
1030}
1031
1032/*
9f40a51a 1033 * Remove the top waiter from the current tasks pi waiter tree and
45ab4eff 1034 * queue it up.
23f78d4a 1035 *
b4abf910 1036 * Called with lock->wait_lock held and interrupts disabled.
23f78d4a 1037 */
45ab4eff
DB
1038static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1039 struct rt_mutex *lock)
23f78d4a
IM
1040{
1041 struct rt_mutex_waiter *waiter;
23f78d4a 1042
b4abf910 1043 raw_spin_lock(&current->pi_lock);
23f78d4a
IM
1044
1045 waiter = rt_mutex_top_waiter(lock);
23f78d4a
IM
1046
1047 /*
1048 * Remove it from current->pi_waiters. We do not adjust a
1049 * possible priority boost right now. We execute wakeup in the
1050 * boosted mode and go back to normal after releasing
1051 * lock->wait_lock.
1052 */
fb00aca4 1053 rt_mutex_dequeue_pi(current, waiter);
23f78d4a 1054
27e35715
TG
1055 /*
1056 * As we are waking up the top waiter, and the waiter stays
1057 * queued on the lock until it gets the lock, this lock
1058 * obviously has waiters. Just set the bit here and this has
1059 * the added benefit of forcing all new tasks into the
1060 * slow path making sure no task of lower priority than
1061 * the top waiter can steal this lock.
1062 */
1063 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
23f78d4a 1064
b4abf910 1065 raw_spin_unlock(&current->pi_lock);
23f78d4a 1066
45ab4eff 1067 wake_q_add(wake_q, waiter->task);
23f78d4a
IM
1068}
1069
1070/*
8161239a 1071 * Remove a waiter from a lock and give up
23f78d4a 1072 *
b4abf910 1073 * Must be called with lock->wait_lock held and interrupts disabled. I must
8161239a 1074 * have just failed to try_to_take_rt_mutex().
23f78d4a 1075 */
bd197234
TG
1076static void remove_waiter(struct rt_mutex *lock,
1077 struct rt_mutex_waiter *waiter)
23f78d4a 1078{
1ca7b860 1079 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
36c8b586 1080 struct task_struct *owner = rt_mutex_owner(lock);
1ca7b860 1081 struct rt_mutex *next_lock;
23f78d4a 1082
b4abf910 1083 raw_spin_lock(&current->pi_lock);
fb00aca4 1084 rt_mutex_dequeue(lock, waiter);
23f78d4a 1085 current->pi_blocked_on = NULL;
b4abf910 1086 raw_spin_unlock(&current->pi_lock);
23f78d4a 1087
1ca7b860
TG
1088 /*
1089 * Only update priority if the waiter was the highest priority
1090 * waiter of the lock and there is an owner to update.
1091 */
1092 if (!owner || !is_top_waiter)
8161239a
LJ
1093 return;
1094
b4abf910 1095 raw_spin_lock(&owner->pi_lock);
23f78d4a 1096
1ca7b860 1097 rt_mutex_dequeue_pi(owner, waiter);
23f78d4a 1098
1ca7b860
TG
1099 if (rt_mutex_has_waiters(lock))
1100 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
23f78d4a 1101
1ca7b860 1102 __rt_mutex_adjust_prio(owner);
23f78d4a 1103
1ca7b860
TG
1104 /* Store the lock on which owner is blocked or NULL */
1105 next_lock = task_blocked_on_lock(owner);
db630637 1106
b4abf910 1107 raw_spin_unlock(&owner->pi_lock);
23f78d4a 1108
1ca7b860
TG
1109 /*
1110 * Don't walk the chain, if the owner task is not blocked
1111 * itself.
1112 */
82084984 1113 if (!next_lock)
23f78d4a
IM
1114 return;
1115
db630637
SR
1116 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1117 get_task_struct(owner);
1118
b4abf910 1119 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 1120
8930ed80
TG
1121 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1122 next_lock, NULL, current);
23f78d4a 1123
b4abf910 1124 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
1125}
1126
95e02ca9
TG
1127/*
1128 * Recheck the pi chain, in case we got a priority setting
1129 *
1130 * Called from sched_setscheduler
1131 */
1132void rt_mutex_adjust_pi(struct task_struct *task)
1133{
1134 struct rt_mutex_waiter *waiter;
82084984 1135 struct rt_mutex *next_lock;
95e02ca9
TG
1136 unsigned long flags;
1137
1d615482 1138 raw_spin_lock_irqsave(&task->pi_lock, flags);
95e02ca9
TG
1139
1140 waiter = task->pi_blocked_on;
2d3d891d
DF
1141 if (!waiter || (waiter->prio == task->prio &&
1142 !dl_prio(task->prio))) {
1d615482 1143 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9
TG
1144 return;
1145 }
82084984 1146 next_lock = waiter->lock;
1d615482 1147 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9 1148
db630637
SR
1149 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1150 get_task_struct(task);
82084984 1151
8930ed80
TG
1152 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1153 next_lock, NULL, task);
95e02ca9
TG
1154}
1155
50809358
PZ
1156void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1157{
1158 debug_rt_mutex_init_waiter(waiter);
1159 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1160 RB_CLEAR_NODE(&waiter->tree_entry);
1161 waiter->task = NULL;
1162}
1163
8dac456a
DH
1164/**
1165 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1166 * @lock: the rt_mutex to take
1167 * @state: the state the task should block in (TASK_INTERRUPTIBLE
b4abf910 1168 * or TASK_UNINTERRUPTIBLE)
8dac456a
DH
1169 * @timeout: the pre-initialized and started timer, or NULL for none
1170 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a 1171 *
b4abf910 1172 * Must be called with lock->wait_lock held and interrupts disabled
23f78d4a
IM
1173 */
1174static int __sched
8dac456a
DH
1175__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1176 struct hrtimer_sleeper *timeout,
8161239a 1177 struct rt_mutex_waiter *waiter)
23f78d4a 1178{
23f78d4a
IM
1179 int ret = 0;
1180
23f78d4a
IM
1181 for (;;) {
1182 /* Try to acquire the lock: */
8161239a 1183 if (try_to_take_rt_mutex(lock, current, waiter))
23f78d4a
IM
1184 break;
1185
1186 /*
1187 * TASK_INTERRUPTIBLE checks for signals and
1188 * timeout. Ignored otherwise.
1189 */
4009f4b3 1190 if (likely(state == TASK_INTERRUPTIBLE)) {
23f78d4a
IM
1191 /* Signal pending? */
1192 if (signal_pending(current))
1193 ret = -EINTR;
1194 if (timeout && !timeout->task)
1195 ret = -ETIMEDOUT;
1196 if (ret)
1197 break;
1198 }
1199
b4abf910 1200 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 1201
8dac456a 1202 debug_rt_mutex_print_deadlock(waiter);
23f78d4a 1203
1b0b7c17 1204 schedule();
23f78d4a 1205
b4abf910 1206 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
1207 set_current_state(state);
1208 }
1209
afffc6c1 1210 __set_current_state(TASK_RUNNING);
8dac456a
DH
1211 return ret;
1212}
1213
3d5c9340
TG
1214static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1215 struct rt_mutex_waiter *w)
1216{
1217 /*
1218 * If the result is not -EDEADLOCK or the caller requested
1219 * deadlock detection, nothing to do here.
1220 */
1221 if (res != -EDEADLOCK || detect_deadlock)
1222 return;
1223
1224 /*
1225 * Yell lowdly and stop the task right here.
1226 */
1227 rt_mutex_print_deadlock(w);
1228 while (1) {
1229 set_current_state(TASK_INTERRUPTIBLE);
1230 schedule();
1231 }
1232}
1233
8dac456a
DH
1234/*
1235 * Slow path lock function:
1236 */
1237static int __sched
1238rt_mutex_slowlock(struct rt_mutex *lock, int state,
1239 struct hrtimer_sleeper *timeout,
8930ed80 1240 enum rtmutex_chainwalk chwalk)
8dac456a
DH
1241{
1242 struct rt_mutex_waiter waiter;
b4abf910 1243 unsigned long flags;
8dac456a
DH
1244 int ret = 0;
1245
50809358 1246 rt_mutex_init_waiter(&waiter);
8dac456a 1247
b4abf910
TG
1248 /*
1249 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1250 * be called in early boot if the cmpxchg() fast path is disabled
1251 * (debug, no architecture support). In this case we will acquire the
1252 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1253 * enable interrupts in that early boot case. So we need to use the
1254 * irqsave/restore variants.
1255 */
1256 raw_spin_lock_irqsave(&lock->wait_lock, flags);
8dac456a
DH
1257
1258 /* Try to acquire the lock again: */
8161239a 1259 if (try_to_take_rt_mutex(lock, current, NULL)) {
b4abf910 1260 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
8dac456a
DH
1261 return 0;
1262 }
1263
1264 set_current_state(state);
1265
1266 /* Setup the timer, when timeout != NULL */
ccdd92c1 1267 if (unlikely(timeout))
8dac456a 1268 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
8dac456a 1269
8930ed80 1270 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
8161239a
LJ
1271
1272 if (likely(!ret))
afffc6c1 1273 /* sleep on the mutex */
8161239a 1274 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
8dac456a 1275
3d5c9340 1276 if (unlikely(ret)) {
9d3e2d02 1277 __set_current_state(TASK_RUNNING);
8d1e5a1a
SAS
1278 if (rt_mutex_has_waiters(lock))
1279 remove_waiter(lock, &waiter);
8930ed80 1280 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
3d5c9340 1281 }
23f78d4a
IM
1282
1283 /*
1284 * try_to_take_rt_mutex() sets the waiter bit
1285 * unconditionally. We might have to fix that up.
1286 */
1287 fixup_rt_mutex_waiters(lock);
1288
b4abf910 1289 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a
IM
1290
1291 /* Remove pending timer: */
1292 if (unlikely(timeout))
1293 hrtimer_cancel(&timeout->timer);
1294
23f78d4a
IM
1295 debug_rt_mutex_free_waiter(&waiter);
1296
1297 return ret;
1298}
1299
1300/*
1301 * Slow path try-lock function:
1302 */
88f2b4c1 1303static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
23f78d4a 1304{
b4abf910 1305 unsigned long flags;
88f2b4c1
TG
1306 int ret;
1307
1308 /*
1309 * If the lock already has an owner we fail to get the lock.
1310 * This can be done without taking the @lock->wait_lock as
1311 * it is only being read, and this is a trylock anyway.
1312 */
1313 if (rt_mutex_owner(lock))
1314 return 0;
23f78d4a 1315
88f2b4c1 1316 /*
b4abf910
TG
1317 * The mutex has currently no owner. Lock the wait lock and try to
1318 * acquire the lock. We use irqsave here to support early boot calls.
88f2b4c1 1319 */
b4abf910 1320 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a 1321
88f2b4c1 1322 ret = try_to_take_rt_mutex(lock, current, NULL);
23f78d4a 1323
88f2b4c1
TG
1324 /*
1325 * try_to_take_rt_mutex() sets the lock waiters bit
1326 * unconditionally. Clean this up.
1327 */
1328 fixup_rt_mutex_waiters(lock);
23f78d4a 1329
b4abf910 1330 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a
IM
1331
1332 return ret;
1333}
1334
1335/*
802ab58d
SAS
1336 * Slow path to release a rt-mutex.
1337 * Return whether the current task needs to undo a potential priority boosting.
23f78d4a 1338 */
802ab58d
SAS
1339static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1340 struct wake_q_head *wake_q)
23f78d4a 1341{
b4abf910
TG
1342 unsigned long flags;
1343
1344 /* irqsave required to support early boot calls */
1345 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a
IM
1346
1347 debug_rt_mutex_unlock(lock);
1348
27e35715
TG
1349 /*
1350 * We must be careful here if the fast path is enabled. If we
1351 * have no waiters queued we cannot set owner to NULL here
1352 * because of:
1353 *
1354 * foo->lock->owner = NULL;
1355 * rtmutex_lock(foo->lock); <- fast path
1356 * free = atomic_dec_and_test(foo->refcnt);
1357 * rtmutex_unlock(foo->lock); <- fast path
1358 * if (free)
1359 * kfree(foo);
1360 * raw_spin_unlock(foo->lock->wait_lock);
1361 *
1362 * So for the fastpath enabled kernel:
1363 *
1364 * Nothing can set the waiters bit as long as we hold
1365 * lock->wait_lock. So we do the following sequence:
1366 *
1367 * owner = rt_mutex_owner(lock);
1368 * clear_rt_mutex_waiters(lock);
1369 * raw_spin_unlock(&lock->wait_lock);
1370 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1371 * return;
1372 * goto retry;
1373 *
1374 * The fastpath disabled variant is simple as all access to
1375 * lock->owner is serialized by lock->wait_lock:
1376 *
1377 * lock->owner = NULL;
1378 * raw_spin_unlock(&lock->wait_lock);
1379 */
1380 while (!rt_mutex_has_waiters(lock)) {
1381 /* Drops lock->wait_lock ! */
b4abf910 1382 if (unlock_rt_mutex_safe(lock, flags) == true)
802ab58d 1383 return false;
27e35715 1384 /* Relock the rtmutex and try again */
b4abf910 1385 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a
IM
1386 }
1387
27e35715
TG
1388 /*
1389 * The wakeup next waiter path does not suffer from the above
1390 * race. See the comments there.
45ab4eff
DB
1391 *
1392 * Queue the next waiter for wakeup once we release the wait_lock.
27e35715 1393 */
802ab58d 1394 mark_wakeup_next_waiter(wake_q, lock);
23f78d4a 1395
b4abf910 1396 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a 1397
802ab58d
SAS
1398 /* check PI boosting */
1399 return true;
23f78d4a
IM
1400}
1401
1402/*
1403 * debug aware fast / slowpath lock,trylock,unlock
1404 *
1405 * The atomic acquire/release ops are compiled away, when either the
1406 * architecture does not support cmpxchg or when debugging is enabled.
1407 */
1408static inline int
1409rt_mutex_fastlock(struct rt_mutex *lock, int state,
23f78d4a
IM
1410 int (*slowfn)(struct rt_mutex *lock, int state,
1411 struct hrtimer_sleeper *timeout,
8930ed80 1412 enum rtmutex_chainwalk chwalk))
23f78d4a 1413{
fffa954f 1414 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
23f78d4a 1415 return 0;
fffa954f
PZ
1416
1417 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
23f78d4a
IM
1418}
1419
1420static inline int
1421rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
8930ed80
TG
1422 struct hrtimer_sleeper *timeout,
1423 enum rtmutex_chainwalk chwalk,
23f78d4a
IM
1424 int (*slowfn)(struct rt_mutex *lock, int state,
1425 struct hrtimer_sleeper *timeout,
8930ed80 1426 enum rtmutex_chainwalk chwalk))
23f78d4a 1427{
8930ed80 1428 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
fffa954f 1429 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
23f78d4a 1430 return 0;
fffa954f
PZ
1431
1432 return slowfn(lock, state, timeout, chwalk);
23f78d4a
IM
1433}
1434
1435static inline int
1436rt_mutex_fasttrylock(struct rt_mutex *lock,
9a11b49a 1437 int (*slowfn)(struct rt_mutex *lock))
23f78d4a 1438{
fffa954f 1439 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
23f78d4a 1440 return 1;
fffa954f 1441
9a11b49a 1442 return slowfn(lock);
23f78d4a
IM
1443}
1444
1445static inline void
1446rt_mutex_fastunlock(struct rt_mutex *lock,
802ab58d
SAS
1447 bool (*slowfn)(struct rt_mutex *lock,
1448 struct wake_q_head *wqh))
23f78d4a 1449{
194a6b5b 1450 DEFINE_WAKE_Q(wake_q);
fffa954f 1451 bool deboost;
802ab58d 1452
fffa954f
PZ
1453 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1454 return;
802ab58d 1455
fffa954f 1456 deboost = slowfn(lock, &wake_q);
802ab58d 1457
fffa954f 1458 wake_up_q(&wake_q);
802ab58d 1459
fffa954f
PZ
1460 /* Undo pi boosting if necessary: */
1461 if (deboost)
1462 rt_mutex_adjust_prio(current);
23f78d4a
IM
1463}
1464
1465/**
1466 * rt_mutex_lock - lock a rt_mutex
1467 *
1468 * @lock: the rt_mutex to be locked
1469 */
1470void __sched rt_mutex_lock(struct rt_mutex *lock)
1471{
1472 might_sleep();
1473
c051b21f 1474 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
23f78d4a
IM
1475}
1476EXPORT_SYMBOL_GPL(rt_mutex_lock);
1477
1478/**
1479 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1480 *
c051b21f 1481 * @lock: the rt_mutex to be locked
23f78d4a
IM
1482 *
1483 * Returns:
c051b21f
TG
1484 * 0 on success
1485 * -EINTR when interrupted by a signal
23f78d4a 1486 */
c051b21f 1487int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
23f78d4a
IM
1488{
1489 might_sleep();
1490
c051b21f 1491 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
23f78d4a
IM
1492}
1493EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1494
5293c2ef
PZ
1495/*
1496 * Futex variant, must not use fastpath.
1497 */
1498int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1499{
1500 return rt_mutex_slowtrylock(lock);
c051b21f
TG
1501}
1502
23f78d4a 1503/**
23b94b96
LH
1504 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1505 * the timeout structure is provided
1506 * by the caller
23f78d4a 1507 *
c051b21f 1508 * @lock: the rt_mutex to be locked
23f78d4a 1509 * @timeout: timeout structure or NULL (no timeout)
23f78d4a
IM
1510 *
1511 * Returns:
c051b21f
TG
1512 * 0 on success
1513 * -EINTR when interrupted by a signal
3ac49a1c 1514 * -ETIMEDOUT when the timeout expired
23f78d4a
IM
1515 */
1516int
c051b21f 1517rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
23f78d4a
IM
1518{
1519 might_sleep();
1520
8930ed80
TG
1521 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1522 RT_MUTEX_MIN_CHAINWALK,
c051b21f 1523 rt_mutex_slowlock);
23f78d4a
IM
1524}
1525EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1526
1527/**
1528 * rt_mutex_trylock - try to lock a rt_mutex
1529 *
1530 * @lock: the rt_mutex to be locked
1531 *
6ce47fd9
TG
1532 * This function can only be called in thread context. It's safe to
1533 * call it from atomic regions, but not from hard interrupt or soft
1534 * interrupt context.
1535 *
23f78d4a
IM
1536 * Returns 1 on success and 0 on contention
1537 */
1538int __sched rt_mutex_trylock(struct rt_mutex *lock)
1539{
a461d587 1540 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
6ce47fd9
TG
1541 return 0;
1542
23f78d4a
IM
1543 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1544}
1545EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1546
1547/**
1548 * rt_mutex_unlock - unlock a rt_mutex
1549 *
1550 * @lock: the rt_mutex to be unlocked
1551 */
1552void __sched rt_mutex_unlock(struct rt_mutex *lock)
1553{
1554 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1555}
1556EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1557
802ab58d 1558/**
5293c2ef
PZ
1559 * Futex variant, that since futex variants do not use the fast-path, can be
1560 * simple and will not need to retry.
802ab58d 1561 */
5293c2ef
PZ
1562bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1563 struct wake_q_head *wake_q)
802ab58d 1564{
5293c2ef
PZ
1565 lockdep_assert_held(&lock->wait_lock);
1566
1567 debug_rt_mutex_unlock(lock);
1568
1569 if (!rt_mutex_has_waiters(lock)) {
1570 lock->owner = NULL;
1571 return false; /* done */
1572 }
1573
1574 mark_wakeup_next_waiter(wake_q, lock);
1575 return true; /* deboost and wakeups */
1576}
fffa954f 1577
5293c2ef
PZ
1578void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1579{
1580 DEFINE_WAKE_Q(wake_q);
1581 bool deboost;
1582
1583 raw_spin_lock_irq(&lock->wait_lock);
1584 deboost = __rt_mutex_futex_unlock(lock, &wake_q);
1585 raw_spin_unlock_irq(&lock->wait_lock);
1586
1587 if (deboost) {
1588 wake_up_q(&wake_q);
1589 rt_mutex_adjust_prio(current);
1590 }
802ab58d
SAS
1591}
1592
23b94b96 1593/**
23f78d4a
IM
1594 * rt_mutex_destroy - mark a mutex unusable
1595 * @lock: the mutex to be destroyed
1596 *
1597 * This function marks the mutex uninitialized, and any subsequent
1598 * use of the mutex is forbidden. The mutex must not be locked when
1599 * this function is called.
1600 */
1601void rt_mutex_destroy(struct rt_mutex *lock)
1602{
1603 WARN_ON(rt_mutex_is_locked(lock));
1604#ifdef CONFIG_DEBUG_RT_MUTEXES
1605 lock->magic = NULL;
1606#endif
1607}
1608
1609EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1610
1611/**
1612 * __rt_mutex_init - initialize the rt lock
1613 *
1614 * @lock: the rt lock to be initialized
1615 *
1616 * Initialize the rt lock to unlocked state.
1617 *
1618 * Initializing of a locked rt lock is not allowed
1619 */
1620void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1621{
1622 lock->owner = NULL;
d209d74d 1623 raw_spin_lock_init(&lock->wait_lock);
fb00aca4
PZ
1624 lock->waiters = RB_ROOT;
1625 lock->waiters_leftmost = NULL;
23f78d4a
IM
1626
1627 debug_rt_mutex_init(lock, name);
1628}
1629EXPORT_SYMBOL_GPL(__rt_mutex_init);
0cdbee99
IM
1630
1631/**
1632 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1633 * proxy owner
1634 *
84d82ec5 1635 * @lock: the rt_mutex to be locked
0cdbee99
IM
1636 * @proxy_owner:the task to set as owner
1637 *
1638 * No locking. Caller has to do serializing itself
84d82ec5
TG
1639 *
1640 * Special API call for PI-futex support. This initializes the rtmutex and
1641 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1642 * possible at this point because the pi_state which contains the rtmutex
1643 * is not yet visible to other tasks.
0cdbee99
IM
1644 */
1645void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1646 struct task_struct *proxy_owner)
1647{
1648 __rt_mutex_init(lock, NULL);
9a11b49a 1649 debug_rt_mutex_proxy_lock(lock, proxy_owner);
8161239a 1650 rt_mutex_set_owner(lock, proxy_owner);
0cdbee99
IM
1651}
1652
1653/**
1654 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1655 *
84d82ec5 1656 * @lock: the rt_mutex to be locked
0cdbee99
IM
1657 *
1658 * No locking. Caller has to do serializing itself
84d82ec5
TG
1659 *
1660 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1661 * (debugging) state. Concurrent operations on this rt_mutex are not
1662 * possible because it belongs to the pi_state which is about to be freed
1663 * and it is not longer visible to other tasks.
0cdbee99
IM
1664 */
1665void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1666 struct task_struct *proxy_owner)
1667{
1668 debug_rt_mutex_proxy_unlock(lock);
8161239a 1669 rt_mutex_set_owner(lock, NULL);
0cdbee99
IM
1670}
1671
56222b21 1672int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
8dac456a 1673 struct rt_mutex_waiter *waiter,
c051b21f 1674 struct task_struct *task)
8dac456a
DH
1675{
1676 int ret;
1677
56222b21 1678 if (try_to_take_rt_mutex(lock, task, NULL))
8dac456a 1679 return 1;
8dac456a 1680
3d5c9340 1681 /* We enforce deadlock detection for futexes */
8930ed80
TG
1682 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1683 RT_MUTEX_FULL_CHAINWALK);
8dac456a 1684
8161239a 1685 if (ret && !rt_mutex_owner(lock)) {
8dac456a
DH
1686 /*
1687 * Reset the return value. We might have
1688 * returned with -EDEADLK and the owner
1689 * released the lock while we were walking the
1690 * pi chain. Let the waiter sort it out.
1691 */
1692 ret = 0;
1693 }
8161239a
LJ
1694
1695 if (unlikely(ret))
1696 remove_waiter(lock, waiter);
1697
8dac456a
DH
1698 debug_rt_mutex_print_deadlock(waiter);
1699
1700 return ret;
1701}
1702
56222b21
PZ
1703/**
1704 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1705 * @lock: the rt_mutex to take
1706 * @waiter: the pre-initialized rt_mutex_waiter
1707 * @task: the task to prepare
1708 *
1709 * Returns:
1710 * 0 - task blocked on lock
1711 * 1 - acquired the lock for task, caller should wake it up
1712 * <0 - error
1713 *
1714 * Special API call for FUTEX_REQUEUE_PI support.
1715 */
1716int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1717 struct rt_mutex_waiter *waiter,
1718 struct task_struct *task)
1719{
1720 int ret;
1721
1722 raw_spin_lock_irq(&lock->wait_lock);
1723 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1724 raw_spin_unlock_irq(&lock->wait_lock);
1725
1726 return ret;
1727}
1728
0cdbee99
IM
1729/**
1730 * rt_mutex_next_owner - return the next owner of the lock
1731 *
1732 * @lock: the rt lock query
1733 *
1734 * Returns the next owner of the lock or NULL
1735 *
1736 * Caller has to serialize against other accessors to the lock
1737 * itself.
1738 *
1739 * Special API call for PI-futex support
1740 */
1741struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1742{
1743 if (!rt_mutex_has_waiters(lock))
1744 return NULL;
1745
1746 return rt_mutex_top_waiter(lock)->task;
1747}
8dac456a
DH
1748
1749/**
38d589f2 1750 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
8dac456a
DH
1751 * @lock: the rt_mutex we were woken on
1752 * @to: the timeout, null if none. hrtimer should already have
c051b21f 1753 * been started.
8dac456a 1754 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a 1755 *
38d589f2
PZ
1756 * Wait for the the lock acquisition started on our behalf by
1757 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1758 * rt_mutex_cleanup_proxy_lock().
8dac456a
DH
1759 *
1760 * Returns:
1761 * 0 - success
c051b21f 1762 * <0 - error, one of -EINTR, -ETIMEDOUT
8dac456a 1763 *
38d589f2 1764 * Special API call for PI-futex support
8dac456a 1765 */
38d589f2 1766int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
8dac456a 1767 struct hrtimer_sleeper *to,
c051b21f 1768 struct rt_mutex_waiter *waiter)
8dac456a
DH
1769{
1770 int ret;
1771
b4abf910 1772 raw_spin_lock_irq(&lock->wait_lock);
8dac456a
DH
1773
1774 set_current_state(TASK_INTERRUPTIBLE);
1775
afffc6c1 1776 /* sleep on the mutex */
8161239a 1777 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
8dac456a 1778
b4abf910 1779 raw_spin_unlock_irq(&lock->wait_lock);
8dac456a 1780
8dac456a
DH
1781 return ret;
1782}
38d589f2
PZ
1783
1784/**
1785 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1786 * @lock: the rt_mutex we were woken on
1787 * @waiter: the pre-initialized rt_mutex_waiter
1788 *
1789 * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1790 *
1791 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1792 * in fact still be granted ownership until we're removed. Therefore we can
1793 * find we are in fact the owner and must disregard the
1794 * rt_mutex_wait_proxy_lock() failure.
1795 *
1796 * Returns:
1797 * true - did the cleanup, we done.
1798 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1799 * caller should disregards its return value.
1800 *
1801 * Special API call for PI-futex support
1802 */
1803bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1804 struct rt_mutex_waiter *waiter)
1805{
1806 bool cleanup = false;
1807
1808 raw_spin_lock_irq(&lock->wait_lock);
1809 /*
1810 * Unless we're the owner; we're still enqueued on the wait_list.
1811 * So check if we became owner, if not, take us off the wait_list.
1812 */
1813 if (rt_mutex_owner(lock) != current) {
1814 remove_waiter(lock, waiter);
1815 fixup_rt_mutex_waiters(lock);
1816 cleanup = true;
1817 }
cfafcd11
PZ
1818
1819 /*
1820 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1821 * have to fix that up.
1822 */
1823 fixup_rt_mutex_waiters(lock);
1824
38d589f2
PZ
1825 raw_spin_unlock_irq(&lock->wait_lock);
1826
1827 return cleanup;
1828}