locking/pvqspinlock: Implement hybrid PV queued/unfair locks
[linux-2.6-block.git] / kernel / locking / qspinlock_paravirt.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
a23db284
WL
2#ifndef _GEN_PV_LOCK_SLOWPATH
3#error "do not include this file"
4#endif
5
6#include <linux/hash.h>
7#include <linux/bootmem.h>
cba77f03 8#include <linux/debug_locks.h>
a23db284
WL
9
10/*
11 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
12 * of spinning them.
13 *
14 * This relies on the architecture to provide two paravirt hypercalls:
15 *
16 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
17 * pv_kick(cpu) -- wakes a suspended vcpu
18 *
19 * Using these we implement __pv_queued_spin_lock_slowpath() and
20 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
21 * native_queued_spin_unlock().
22 */
23
24#define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET)
25
cd0272fa
WL
26/*
27 * Queue Node Adaptive Spinning
28 *
29 * A queue node vCPU will stop spinning if the vCPU in the previous node is
30 * not running. The one lock stealing attempt allowed at slowpath entry
31 * mitigates the slight slowdown for non-overcommitted guest with this
32 * aggressive wait-early mechanism.
33 *
34 * The status of the previous node will be checked at fixed interval
35 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
36 * pound on the cacheline of the previous node too heavily.
37 */
38#define PV_PREV_CHECK_MASK 0xff
39
75d22702
WL
40/*
41 * Queue node uses: vcpu_running & vcpu_halted.
42 * Queue head uses: vcpu_running & vcpu_hashed.
43 */
a23db284
WL
44enum vcpu_state {
45 vcpu_running = 0,
75d22702
WL
46 vcpu_halted, /* Used only in pv_wait_node */
47 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */
a23db284
WL
48};
49
50struct pv_node {
51 struct mcs_spinlock mcs;
52 struct mcs_spinlock __res[3];
53
54 int cpu;
55 u8 state;
56};
57
eaff0e70
WL
58/*
59 * Include queued spinlock statistics code
60 */
61#include "qspinlock_stat.h"
62
1c4941fd 63/*
11752adb
WL
64 * Hybrid PV queued/unfair lock
65 *
1c4941fd
WL
66 * By replacing the regular queued_spin_trylock() with the function below,
67 * it will be called once when a lock waiter enter the PV slowpath before
11752adb
WL
68 * being queued.
69 *
70 * The pending bit is set by the queue head vCPU of the MCS wait queue in
71 * pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
72 * When that bit becomes visible to the incoming waiters, no lock stealing
73 * is allowed. The function will return immediately to make the waiters
74 * enter the MCS wait queue. So lock starvation shouldn't happen as long
75 * as the queued mode vCPUs are actively running to set the pending bit
76 * and hence disabling lock stealing.
77 *
78 * When the pending bit isn't set, the lock waiters will stay in the unfair
79 * mode spinning on the lock unless the MCS wait queue is empty. In this
80 * case, the lock waiters will enter the queued mode slowpath trying to
81 * become the queue head and set the pending bit.
82 *
83 * This hybrid PV queued/unfair lock combines the best attributes of a
84 * queued lock (no lock starvation) and an unfair lock (good performance
85 * on not heavily contended locks).
1c4941fd 86 */
11752adb
WL
87#define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l)
88static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
1c4941fd
WL
89{
90 struct __qspinlock *l = (void *)lock;
91
11752adb
WL
92 /*
93 * Stay in unfair lock mode as long as queued mode waiters are
94 * present in the MCS wait queue but the pending bit isn't set.
95 */
96 for (;;) {
97 int val = atomic_read(&lock->val);
98
99 if (!(val & _Q_LOCKED_PENDING_MASK) &&
100 (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) {
101 qstat_inc(qstat_pv_lock_stealing, true);
102 return true;
103 }
104 if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
105 break;
106
107 cpu_relax();
64a5e3cb
PZ
108 }
109
110 return false;
1c4941fd
WL
111}
112
113/*
114 * The pending bit is used by the queue head vCPU to indicate that it
115 * is actively spinning on the lock and no lock stealing is allowed.
116 */
117#if _Q_PENDING_BITS == 8
118static __always_inline void set_pending(struct qspinlock *lock)
119{
120 struct __qspinlock *l = (void *)lock;
121
122 WRITE_ONCE(l->pending, 1);
123}
124
125static __always_inline void clear_pending(struct qspinlock *lock)
126{
127 struct __qspinlock *l = (void *)lock;
128
129 WRITE_ONCE(l->pending, 0);
130}
131
132/*
133 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
34d54f3d
WL
134 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
135 * lock just to be sure that it will get it.
1c4941fd
WL
136 */
137static __always_inline int trylock_clear_pending(struct qspinlock *lock)
138{
139 struct __qspinlock *l = (void *)lock;
140
141 return !READ_ONCE(l->locked) &&
34d54f3d
WL
142 (cmpxchg_acquire(&l->locked_pending, _Q_PENDING_VAL,
143 _Q_LOCKED_VAL) == _Q_PENDING_VAL);
1c4941fd
WL
144}
145#else /* _Q_PENDING_BITS == 8 */
146static __always_inline void set_pending(struct qspinlock *lock)
147{
e37837fb 148 atomic_or(_Q_PENDING_VAL, &lock->val);
1c4941fd
WL
149}
150
151static __always_inline void clear_pending(struct qspinlock *lock)
152{
e37837fb 153 atomic_andnot(_Q_PENDING_VAL, &lock->val);
1c4941fd
WL
154}
155
156static __always_inline int trylock_clear_pending(struct qspinlock *lock)
157{
158 int val = atomic_read(&lock->val);
159
160 for (;;) {
161 int old, new;
162
163 if (val & _Q_LOCKED_MASK)
164 break;
165
166 /*
167 * Try to clear pending bit & set locked bit
168 */
169 old = val;
170 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
34d54f3d 171 val = atomic_cmpxchg_acquire(&lock->val, old, new);
1c4941fd
WL
172
173 if (val == old)
174 return 1;
175 }
176 return 0;
177}
178#endif /* _Q_PENDING_BITS == 8 */
179
a23db284
WL
180/*
181 * Lock and MCS node addresses hash table for fast lookup
182 *
183 * Hashing is done on a per-cacheline basis to minimize the need to access
184 * more than one cacheline.
185 *
186 * Dynamically allocate a hash table big enough to hold at least 4X the
187 * number of possible cpus in the system. Allocation is done on page
188 * granularity. So the minimum number of hash buckets should be at least
189 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
190 *
191 * Since we should not be holding locks from NMI context (very rare indeed) the
192 * max load factor is 0.75, which is around the point where open addressing
193 * breaks down.
194 *
195 */
196struct pv_hash_entry {
197 struct qspinlock *lock;
198 struct pv_node *node;
199};
200
201#define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
202#define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry))
203
204static struct pv_hash_entry *pv_lock_hash;
205static unsigned int pv_lock_hash_bits __read_mostly;
206
207/*
208 * Allocate memory for the PV qspinlock hash buckets
209 *
210 * This function should be called from the paravirt spinlock initialization
211 * routine.
212 */
213void __init __pv_init_lock_hash(void)
214{
215 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
216
217 if (pv_hash_size < PV_HE_MIN)
218 pv_hash_size = PV_HE_MIN;
219
220 /*
221 * Allocate space from bootmem which should be page-size aligned
222 * and hence cacheline aligned.
223 */
224 pv_lock_hash = alloc_large_system_hash("PV qspinlock",
225 sizeof(struct pv_hash_entry),
3d375d78
PT
226 pv_hash_size, 0,
227 HASH_EARLY | HASH_ZERO,
a23db284
WL
228 &pv_lock_hash_bits, NULL,
229 pv_hash_size, pv_hash_size);
230}
231
232#define for_each_hash_entry(he, offset, hash) \
233 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \
234 offset < (1 << pv_lock_hash_bits); \
235 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
236
237static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
238{
239 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
240 struct pv_hash_entry *he;
45e898b7 241 int hopcnt = 0;
a23db284
WL
242
243 for_each_hash_entry(he, offset, hash) {
45e898b7 244 hopcnt++;
a23db284
WL
245 if (!cmpxchg(&he->lock, NULL, lock)) {
246 WRITE_ONCE(he->node, node);
45e898b7 247 qstat_hop(hopcnt);
a23db284
WL
248 return &he->lock;
249 }
250 }
251 /*
252 * Hard assume there is a free entry for us.
253 *
254 * This is guaranteed by ensuring every blocked lock only ever consumes
255 * a single entry, and since we only have 4 nesting levels per CPU
256 * and allocated 4*nr_possible_cpus(), this must be so.
257 *
258 * The single entry is guaranteed by having the lock owner unhash
259 * before it releases.
260 */
261 BUG();
262}
263
264static struct pv_node *pv_unhash(struct qspinlock *lock)
265{
266 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
267 struct pv_hash_entry *he;
268 struct pv_node *node;
269
270 for_each_hash_entry(he, offset, hash) {
271 if (READ_ONCE(he->lock) == lock) {
272 node = READ_ONCE(he->node);
273 WRITE_ONCE(he->lock, NULL);
274 return node;
275 }
276 }
277 /*
278 * Hard assume we'll find an entry.
279 *
280 * This guarantees a limited lookup time and is itself guaranteed by
281 * having the lock owner do the unhash -- IFF the unlock sees the
282 * SLOW flag, there MUST be a hash entry.
283 */
284 BUG();
285}
286
cd0272fa
WL
287/*
288 * Return true if when it is time to check the previous node which is not
289 * in a running state.
290 */
291static inline bool
292pv_wait_early(struct pv_node *prev, int loop)
293{
cd0272fa
WL
294 if ((loop & PV_PREV_CHECK_MASK) != 0)
295 return false;
296
75437bb3 297 return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu);
cd0272fa
WL
298}
299
a23db284
WL
300/*
301 * Initialize the PV part of the mcs_spinlock node.
302 */
303static void pv_init_node(struct mcs_spinlock *node)
304{
305 struct pv_node *pn = (struct pv_node *)node;
306
307 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
308
309 pn->cpu = smp_processor_id();
310 pn->state = vcpu_running;
311}
312
313/*
314 * Wait for node->locked to become true, halt the vcpu after a short spin.
75d22702
WL
315 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
316 * behalf.
a23db284 317 */
cd0272fa 318static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
a23db284
WL
319{
320 struct pv_node *pn = (struct pv_node *)node;
cd0272fa 321 struct pv_node *pp = (struct pv_node *)prev;
a23db284 322 int loop;
cd0272fa 323 bool wait_early;
a23db284 324
08be8f63 325 for (;;) {
cd0272fa 326 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
a23db284
WL
327 if (READ_ONCE(node->locked))
328 return;
cd0272fa
WL
329 if (pv_wait_early(pp, loop)) {
330 wait_early = true;
331 break;
332 }
a23db284
WL
333 cpu_relax();
334 }
335
336 /*
337 * Order pn->state vs pn->locked thusly:
338 *
339 * [S] pn->state = vcpu_halted [S] next->locked = 1
340 * MB MB
75d22702 341 * [L] pn->locked [RmW] pn->state = vcpu_hashed
a23db284 342 *
75d22702 343 * Matches the cmpxchg() from pv_kick_node().
a23db284 344 */
b92b8b35 345 smp_store_mb(pn->state, vcpu_halted);
a23db284 346
45e898b7
WL
347 if (!READ_ONCE(node->locked)) {
348 qstat_inc(qstat_pv_wait_node, true);
cd0272fa 349 qstat_inc(qstat_pv_wait_early, wait_early);
a23db284 350 pv_wait(&pn->state, vcpu_halted);
45e898b7 351 }
a23db284
WL
352
353 /*
45e898b7 354 * If pv_kick_node() changed us to vcpu_hashed, retain that
1c4941fd
WL
355 * value so that pv_wait_head_or_lock() knows to not also try
356 * to hash this lock.
a23db284 357 */
75d22702 358 cmpxchg(&pn->state, vcpu_halted, vcpu_running);
a23db284
WL
359
360 /*
361 * If the locked flag is still not set after wakeup, it is a
362 * spurious wakeup and the vCPU should wait again. However,
363 * there is a pretty high overhead for CPU halting and kicking.
364 * So it is better to spin for a while in the hope that the
365 * MCS lock will be released soon.
366 */
45e898b7 367 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
a23db284 368 }
75d22702 369
a23db284
WL
370 /*
371 * By now our node->locked should be 1 and our caller will not actually
372 * spin-wait for it. We do however rely on our caller to do a
373 * load-acquire for us.
374 */
375}
376
377/*
75d22702
WL
378 * Called after setting next->locked = 1 when we're the lock owner.
379 *
1c4941fd
WL
380 * Instead of waking the waiters stuck in pv_wait_node() advance their state
381 * such that they're waiting in pv_wait_head_or_lock(), this avoids a
382 * wake/sleep cycle.
a23db284 383 */
75d22702 384static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
a23db284
WL
385{
386 struct pv_node *pn = (struct pv_node *)node;
75d22702 387 struct __qspinlock *l = (void *)lock;
a23db284
WL
388
389 /*
75d22702
WL
390 * If the vCPU is indeed halted, advance its state to match that of
391 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
392 * observe its next->locked value and advance itself.
a23db284 393 *
75d22702 394 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
34d54f3d
WL
395 *
396 * The write to next->locked in arch_mcs_spin_unlock_contended()
397 * must be ordered before the read of pn->state in the cmpxchg()
398 * below for the code to work correctly. To guarantee full ordering
399 * irrespective of the success or failure of the cmpxchg(),
400 * a relaxed version with explicit barrier is used. The control
401 * dependency will order the reading of pn->state before any
402 * subsequent writes.
75d22702 403 */
34d54f3d
WL
404 smp_mb__before_atomic();
405 if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
406 != vcpu_halted)
75d22702
WL
407 return;
408
409 /*
410 * Put the lock into the hash table and set the _Q_SLOW_VAL.
a23db284 411 *
75d22702
WL
412 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
413 * the hash table later on at unlock time, no atomic instruction is
414 * needed.
a23db284 415 */
75d22702
WL
416 WRITE_ONCE(l->locked, _Q_SLOW_VAL);
417 (void)pv_hash(lock, pn);
a23db284
WL
418}
419
420/*
1c4941fd
WL
421 * Wait for l->locked to become clear and acquire the lock;
422 * halt the vcpu after a short spin.
a23db284 423 * __pv_queued_spin_unlock() will wake us.
1c4941fd
WL
424 *
425 * The current value of the lock will be returned for additional processing.
a23db284 426 */
1c4941fd
WL
427static u32
428pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
a23db284
WL
429{
430 struct pv_node *pn = (struct pv_node *)node;
431 struct __qspinlock *l = (void *)lock;
432 struct qspinlock **lp = NULL;
45e898b7 433 int waitcnt = 0;
a23db284
WL
434 int loop;
435
75d22702
WL
436 /*
437 * If pv_kick_node() already advanced our state, we don't need to
438 * insert ourselves into the hash table anymore.
439 */
440 if (READ_ONCE(pn->state) == vcpu_hashed)
441 lp = (struct qspinlock **)1;
442
32d62510
WL
443 /*
444 * Tracking # of slowpath locking operations
445 */
446 qstat_inc(qstat_pv_lock_slowpath, true);
447
45e898b7 448 for (;; waitcnt++) {
cd0272fa
WL
449 /*
450 * Set correct vCPU state to be used by queue node wait-early
451 * mechanism.
452 */
453 WRITE_ONCE(pn->state, vcpu_running);
454
1c4941fd
WL
455 /*
456 * Set the pending bit in the active lock spinning loop to
457 * disable lock stealing before attempting to acquire the lock.
458 */
459 set_pending(lock);
a23db284 460 for (loop = SPIN_THRESHOLD; loop; loop--) {
1c4941fd
WL
461 if (trylock_clear_pending(lock))
462 goto gotlock;
a23db284
WL
463 cpu_relax();
464 }
1c4941fd
WL
465 clear_pending(lock);
466
a23db284 467
a23db284
WL
468 if (!lp) { /* ONCE */
469 lp = pv_hash(lock, pn);
75d22702 470
a23db284 471 /*
3b3fdf10
WD
472 * We must hash before setting _Q_SLOW_VAL, such that
473 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
474 * we'll be sure to be able to observe our hash entry.
a23db284 475 *
3b3fdf10
WD
476 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL
477 * MB RMB
478 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash>
a23db284 479 *
3b3fdf10 480 * Matches the smp_rmb() in __pv_queued_spin_unlock().
a23db284 481 */
1c4941fd 482 if (xchg(&l->locked, _Q_SLOW_VAL) == 0) {
a23db284 483 /*
1c4941fd
WL
484 * The lock was free and now we own the lock.
485 * Change the lock value back to _Q_LOCKED_VAL
486 * and unhash the table.
a23db284 487 */
1c4941fd 488 WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
a23db284 489 WRITE_ONCE(*lp, NULL);
1c4941fd 490 goto gotlock;
a23db284
WL
491 }
492 }
229ce631 493 WRITE_ONCE(pn->state, vcpu_hashed);
45e898b7
WL
494 qstat_inc(qstat_pv_wait_head, true);
495 qstat_inc(qstat_pv_wait_again, waitcnt);
a23db284
WL
496 pv_wait(&l->locked, _Q_SLOW_VAL);
497
498 /*
08be8f63
WL
499 * Because of lock stealing, the queue head vCPU may not be
500 * able to acquire the lock before it has to wait again.
a23db284
WL
501 */
502 }
503
504 /*
1c4941fd
WL
505 * The cmpxchg() or xchg() call before coming here provides the
506 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
507 * here is to indicate to the compiler that the value will always
508 * be nozero to enable better code optimization.
a23db284 509 */
1c4941fd
WL
510gotlock:
511 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
a23db284
WL
512}
513
514/*
d7804530
WL
515 * PV versions of the unlock fastpath and slowpath functions to be used
516 * instead of queued_spin_unlock().
a23db284 517 */
d7804530
WL
518__visible void
519__pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
a23db284
WL
520{
521 struct __qspinlock *l = (void *)lock;
522 struct pv_node *node;
a23db284 523
0b792bf5
PZ
524 if (unlikely(locked != _Q_SLOW_VAL)) {
525 WARN(!debug_locks_silent,
526 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
527 (unsigned long)lock, atomic_read(&lock->val));
cba77f03
WL
528 return;
529 }
530
3b3fdf10
WD
531 /*
532 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
533 * so we need a barrier to order the read of the node data in
534 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
535 *
1c4941fd 536 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
3b3fdf10
WD
537 */
538 smp_rmb();
539
a23db284
WL
540 /*
541 * Since the above failed to release, this must be the SLOW path.
542 * Therefore start by looking up the blocked node and unhashing it.
543 */
544 node = pv_unhash(lock);
545
546 /*
547 * Now that we have a reference to the (likely) blocked pv_node,
548 * release the lock.
549 */
550 smp_store_release(&l->locked, 0);
551
552 /*
553 * At this point the memory pointed at by lock can be freed/reused,
554 * however we can still use the pv_node to kick the CPU.
75d22702
WL
555 * The other vCPU may not really be halted, but kicking an active
556 * vCPU is harmless other than the additional latency in completing
557 * the unlock.
a23db284 558 */
45e898b7 559 qstat_inc(qstat_pv_kick_unlock, true);
93edc8bd 560 pv_kick(node->cpu);
a23db284 561}
d7804530 562
a23db284
WL
563/*
564 * Include the architecture specific callee-save thunk of the
565 * __pv_queued_spin_unlock(). This thunk is put together with
d7804530
WL
566 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
567 * function close to each other sharing consecutive instruction cachelines.
568 * Alternatively, architecture specific version of __pv_queued_spin_unlock()
569 * can be defined.
a23db284
WL
570 */
571#include <asm/qspinlock_paravirt.h>
572
d7804530
WL
573#ifndef __pv_queued_spin_unlock
574__visible void __pv_queued_spin_unlock(struct qspinlock *lock)
575{
576 struct __qspinlock *l = (void *)lock;
577 u8 locked;
578
579 /*
580 * We must not unlock if SLOW, because in that case we must first
581 * unhash. Otherwise it would be possible to have multiple @lock
582 * entries, which would be BAD.
583 */
b1930493 584 locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0);
d7804530
WL
585 if (likely(locked == _Q_LOCKED_VAL))
586 return;
587
588 __pv_queued_spin_unlock_slowpath(lock, locked);
589}
590#endif /* __pv_queued_spin_unlock */