sched,arch: Remove unused TASK_STATE offsets
[linux-block.git] / kernel / locking / mutex.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
6053ee3b 2/*
67a6de49 3 * kernel/locking/mutex.c
6053ee3b
IM
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
0d66bf6d
PZ
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
387b1468 19 * Also see Documentation/locking/mutex-design.rst.
6053ee3b
IM
20 */
21#include <linux/mutex.h>
1b375dc3 22#include <linux/ww_mutex.h>
174cd4b1 23#include <linux/sched/signal.h>
8bd75c77 24#include <linux/sched/rt.h>
84f001e1 25#include <linux/sched/wake_q.h>
b17b0153 26#include <linux/sched/debug.h>
9984de1a 27#include <linux/export.h>
6053ee3b
IM
28#include <linux/spinlock.h>
29#include <linux/interrupt.h>
9a11b49a 30#include <linux/debug_locks.h>
7a215f89 31#include <linux/osq_lock.h>
6053ee3b 32
6053ee3b
IM
33#ifdef CONFIG_DEBUG_MUTEXES
34# include "mutex-debug.h"
6053ee3b
IM
35#else
36# include "mutex.h"
6053ee3b
IM
37#endif
38
ef5d4707
IM
39void
40__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b 41{
3ca0ff57 42 atomic_long_set(&lock->owner, 0);
6053ee3b
IM
43 spin_lock_init(&lock->wait_lock);
44 INIT_LIST_HEAD(&lock->wait_list);
2bd2c92c 45#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4d9d951e 46 osq_lock_init(&lock->osq);
2bd2c92c 47#endif
6053ee3b 48
ef5d4707 49 debug_mutex_init(lock, name, key);
6053ee3b 50}
6053ee3b
IM
51EXPORT_SYMBOL(__mutex_init);
52
3ca0ff57
PZ
53/*
54 * @owner: contains: 'struct task_struct *' to the current lock owner,
55 * NULL means not owned. Since task_struct pointers are aligned at
e274795e 56 * at least L1_CACHE_BYTES, we have low bits to store extra state.
3ca0ff57
PZ
57 *
58 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
9d659ae1 59 * Bit1 indicates unlock needs to hand the lock to the top-waiter
e274795e 60 * Bit2 indicates handoff has been done and we're waiting for pickup.
3ca0ff57
PZ
61 */
62#define MUTEX_FLAG_WAITERS 0x01
9d659ae1 63#define MUTEX_FLAG_HANDOFF 0x02
e274795e 64#define MUTEX_FLAG_PICKUP 0x04
3ca0ff57 65
e274795e 66#define MUTEX_FLAGS 0x07
3ca0ff57 67
5f35d5a6
MO
68/*
69 * Internal helper function; C doesn't allow us to hide it :/
70 *
71 * DO NOT USE (outside of mutex code).
72 */
73static inline struct task_struct *__mutex_owner(struct mutex *lock)
74{
a037d269 75 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
5f35d5a6
MO
76}
77
3ca0ff57
PZ
78static inline struct task_struct *__owner_task(unsigned long owner)
79{
80 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
81}
82
5f35d5a6
MO
83bool mutex_is_locked(struct mutex *lock)
84{
85 return __mutex_owner(lock) != NULL;
86}
87EXPORT_SYMBOL(mutex_is_locked);
88
3ca0ff57
PZ
89static inline unsigned long __owner_flags(unsigned long owner)
90{
91 return owner & MUTEX_FLAGS;
92}
93
94/*
e2db7592 95 * Trylock variant that returns the owning task on failure.
3ca0ff57 96 */
e274795e 97static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
3ca0ff57
PZ
98{
99 unsigned long owner, curr = (unsigned long)current;
100
101 owner = atomic_long_read(&lock->owner);
102 for (;;) { /* must loop, can race against a flag */
9d659ae1 103 unsigned long old, flags = __owner_flags(owner);
e274795e 104 unsigned long task = owner & ~MUTEX_FLAGS;
9d659ae1 105
e274795e
PZ
106 if (task) {
107 if (likely(task != curr))
108 break;
3ca0ff57 109
e274795e
PZ
110 if (likely(!(flags & MUTEX_FLAG_PICKUP)))
111 break;
9d659ae1 112
e274795e
PZ
113 flags &= ~MUTEX_FLAG_PICKUP;
114 } else {
115#ifdef CONFIG_DEBUG_MUTEXES
116 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
117#endif
9d659ae1
PZ
118 }
119
120 /*
121 * We set the HANDOFF bit, we must make sure it doesn't live
122 * past the point where we acquire it. This would be possible
123 * if we (accidentally) set the bit on an unlocked mutex.
124 */
e274795e 125 flags &= ~MUTEX_FLAG_HANDOFF;
3ca0ff57 126
9d659ae1 127 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
3ca0ff57 128 if (old == owner)
e274795e 129 return NULL;
3ca0ff57
PZ
130
131 owner = old;
132 }
e274795e
PZ
133
134 return __owner_task(owner);
135}
136
137/*
138 * Actual trylock that will work on any unlocked state.
139 */
140static inline bool __mutex_trylock(struct mutex *lock)
141{
142 return !__mutex_trylock_or_owner(lock);
3ca0ff57
PZ
143}
144
145#ifndef CONFIG_DEBUG_LOCK_ALLOC
146/*
147 * Lockdep annotations are contained to the slow paths for simplicity.
148 * There is nothing that would stop spreading the lockdep annotations outwards
149 * except more code.
150 */
151
152/*
153 * Optimistic trylock that only works in the uncontended case. Make sure to
154 * follow with a __mutex_trylock() before failing.
155 */
156static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
157{
158 unsigned long curr = (unsigned long)current;
c427f695 159 unsigned long zero = 0UL;
3ca0ff57 160
c427f695 161 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
3ca0ff57
PZ
162 return true;
163
164 return false;
165}
166
167static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
168{
169 unsigned long curr = (unsigned long)current;
170
171 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
172 return true;
173
174 return false;
175}
176#endif
177
178static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
179{
180 atomic_long_or(flag, &lock->owner);
181}
182
183static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
184{
185 atomic_long_andnot(flag, &lock->owner);
186}
187
9d659ae1
PZ
188static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
189{
190 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
191}
192
08295b3b
TH
193/*
194 * Add @waiter to a given location in the lock wait_list and set the
195 * FLAG_WAITERS flag if it's the first waiter.
196 */
3a010c49 197static void
08295b3b
TH
198__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
199 struct list_head *list)
200{
201 debug_mutex_add_waiter(lock, waiter, current);
202
203 list_add_tail(&waiter->list, list);
204 if (__mutex_waiter_is_first(lock, waiter))
205 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
206}
207
3a010c49
Z
208static void
209__mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
210{
211 list_del(&waiter->list);
212 if (likely(list_empty(&lock->wait_list)))
213 __mutex_clear_flag(lock, MUTEX_FLAGS);
214
215 debug_mutex_remove_waiter(lock, waiter, current);
216}
217
9d659ae1
PZ
218/*
219 * Give up ownership to a specific task, when @task = NULL, this is equivalent
e2db7592 220 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
e274795e
PZ
221 * WAITERS. Provides RELEASE semantics like a regular unlock, the
222 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
9d659ae1
PZ
223 */
224static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
225{
226 unsigned long owner = atomic_long_read(&lock->owner);
227
228 for (;;) {
229 unsigned long old, new;
230
231#ifdef CONFIG_DEBUG_MUTEXES
232 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
e274795e 233 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
9d659ae1
PZ
234#endif
235
236 new = (owner & MUTEX_FLAG_WAITERS);
237 new |= (unsigned long)task;
e274795e
PZ
238 if (task)
239 new |= MUTEX_FLAG_PICKUP;
9d659ae1
PZ
240
241 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
242 if (old == owner)
243 break;
244
245 owner = old;
246 }
247}
248
e4564f79 249#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
250/*
251 * We split the mutex lock/unlock logic into separate fastpath and
252 * slowpath functions, to reduce the register pressure on the fastpath.
253 * We also put the fastpath first in the kernel image, to make sure the
254 * branch is predicted by the CPU as default-untaken.
255 */
3ca0ff57 256static void __sched __mutex_lock_slowpath(struct mutex *lock);
6053ee3b 257
ef5dc121 258/**
6053ee3b
IM
259 * mutex_lock - acquire the mutex
260 * @lock: the mutex to be acquired
261 *
262 * Lock the mutex exclusively for this task. If the mutex is not
263 * available right now, it will sleep until it can get it.
264 *
265 * The mutex must later on be released by the same task that
266 * acquired it. Recursive locking is not allowed. The task
267 * may not exit without first unlocking the mutex. Also, kernel
139b6fd2 268 * memory where the mutex resides must not be freed with
6053ee3b
IM
269 * the mutex still locked. The mutex must first be initialized
270 * (or statically defined) before it can be locked. memset()-ing
271 * the mutex to 0 is not allowed.
272 *
7b4ff1ad
MCC
273 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
274 * checks that will enforce the restrictions and will also do
275 * deadlock debugging)
6053ee3b
IM
276 *
277 * This function is similar to (but not equivalent to) down().
278 */
b09d2501 279void __sched mutex_lock(struct mutex *lock)
6053ee3b 280{
c544bdb1 281 might_sleep();
6053ee3b 282
3ca0ff57
PZ
283 if (!__mutex_trylock_fast(lock))
284 __mutex_lock_slowpath(lock);
285}
6053ee3b 286EXPORT_SYMBOL(mutex_lock);
e4564f79 287#endif
6053ee3b 288
55f036ca
PZ
289/*
290 * Wait-Die:
291 * The newer transactions are killed when:
292 * It (the new transaction) makes a request for a lock being held
293 * by an older transaction.
08295b3b
TH
294 *
295 * Wound-Wait:
296 * The newer transactions are wounded when:
297 * An older transaction makes a request for a lock being held by
298 * the newer transaction.
55f036ca
PZ
299 */
300
301/*
302 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
303 * it.
304 */
427b1820
PZ
305static __always_inline void
306ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
76916515
DB
307{
308#ifdef CONFIG_DEBUG_MUTEXES
309 /*
310 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
311 * but released with a normal mutex_unlock in this call.
312 *
313 * This should never happen, always use ww_mutex_unlock.
314 */
315 DEBUG_LOCKS_WARN_ON(ww->ctx);
316
317 /*
318 * Not quite done after calling ww_acquire_done() ?
319 */
320 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
321
322 if (ww_ctx->contending_lock) {
323 /*
324 * After -EDEADLK you tried to
325 * acquire a different ww_mutex? Bad!
326 */
327 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
328
329 /*
330 * You called ww_mutex_lock after receiving -EDEADLK,
331 * but 'forgot' to unlock everything else first?
332 */
333 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
334 ww_ctx->contending_lock = NULL;
335 }
336
337 /*
338 * Naughty, using a different class will lead to undefined behavior!
339 */
340 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
341#endif
342 ww_ctx->acquired++;
55f036ca 343 ww->ctx = ww_ctx;
76916515
DB
344}
345
55f036ca
PZ
346/*
347 * Determine if context @a is 'after' context @b. IOW, @a is a younger
348 * transaction than @b and depending on algorithm either needs to wait for
349 * @b or die.
350 */
3822da3e
NH
351static inline bool __sched
352__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
353{
55f036ca
PZ
354
355 return (signed long)(a->stamp - b->stamp) > 0;
356}
357
358/*
359 * Wait-Die; wake a younger waiter context (when locks held) such that it can
360 * die.
361 *
362 * Among waiters with context, only the first one can have other locks acquired
363 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
364 * __ww_mutex_check_kill() wake any but the earliest context.
365 */
366static bool __sched
367__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
368 struct ww_acquire_ctx *ww_ctx)
369{
08295b3b
TH
370 if (!ww_ctx->is_wait_die)
371 return false;
372
55f036ca
PZ
373 if (waiter->ww_ctx->acquired > 0 &&
374 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
375 debug_mutex_wake_waiter(lock, waiter);
376 wake_up_process(waiter->task);
377 }
378
379 return true;
3822da3e
NH
380}
381
08295b3b
TH
382/*
383 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
384 *
385 * Wound the lock holder if there are waiters with older transactions than
386 * the lock holders. Even if multiple waiters may wound the lock holder,
387 * it's sufficient that only one does.
388 */
389static bool __ww_mutex_wound(struct mutex *lock,
390 struct ww_acquire_ctx *ww_ctx,
391 struct ww_acquire_ctx *hold_ctx)
392{
393 struct task_struct *owner = __mutex_owner(lock);
394
395 lockdep_assert_held(&lock->wait_lock);
396
397 /*
398 * Possible through __ww_mutex_add_waiter() when we race with
399 * ww_mutex_set_context_fastpath(). In that case we'll get here again
400 * through __ww_mutex_check_waiters().
401 */
402 if (!hold_ctx)
403 return false;
404
405 /*
406 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
407 * it cannot go away because we'll have FLAG_WAITERS set and hold
408 * wait_lock.
409 */
410 if (!owner)
411 return false;
412
413 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
414 hold_ctx->wounded = 1;
415
416 /*
417 * wake_up_process() paired with set_current_state()
418 * inserts sufficient barriers to make sure @owner either sees
e13e2366 419 * it's wounded in __ww_mutex_check_kill() or has a
08295b3b
TH
420 * wakeup pending to re-read the wounded state.
421 */
422 if (owner != current)
423 wake_up_process(owner);
424
425 return true;
426 }
427
428 return false;
429}
430
659cf9f5 431/*
55f036ca 432 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
08295b3b 433 * behind us on the wait-list, check if they need to die, or wound us.
659cf9f5 434 *
55f036ca
PZ
435 * See __ww_mutex_add_waiter() for the list-order construction; basically the
436 * list is ordered by stamp, smallest (oldest) first.
659cf9f5 437 *
08295b3b
TH
438 * This relies on never mixing wait-die/wound-wait on the same wait-list;
439 * which is currently ensured by that being a ww_class property.
440 *
659cf9f5
NH
441 * The current task must not be on the wait list.
442 */
443static void __sched
55f036ca 444__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
659cf9f5
NH
445{
446 struct mutex_waiter *cur;
447
448 lockdep_assert_held(&lock->wait_lock);
449
450 list_for_each_entry(cur, &lock->wait_list, list) {
451 if (!cur->ww_ctx)
452 continue;
453
08295b3b
TH
454 if (__ww_mutex_die(lock, cur, ww_ctx) ||
455 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
55f036ca 456 break;
659cf9f5
NH
457 }
458}
459
76916515 460/*
55f036ca
PZ
461 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
462 * and wake up any waiters so they can recheck.
76916515
DB
463 */
464static __always_inline void
427b1820 465ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
76916515 466{
76916515
DB
467 ww_mutex_lock_acquired(lock, ctx);
468
76916515
DB
469 /*
470 * The lock->ctx update should be visible on all cores before
55f036ca 471 * the WAITERS check is done, otherwise contended waiters might be
76916515
DB
472 * missed. The contended waiters will either see ww_ctx == NULL
473 * and keep spinning, or it will acquire wait_lock, add itself
474 * to waiter list and sleep.
475 */
08295b3b 476 smp_mb(); /* See comments above and below. */
76916515
DB
477
478 /*
08295b3b
TH
479 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
480 * MB MB
481 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
482 *
483 * The memory barrier above pairs with the memory barrier in
484 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
485 * and/or !empty list.
76916515 486 */
3ca0ff57 487 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
76916515
DB
488 return;
489
490 /*
55f036ca 491 * Uh oh, we raced in fastpath, check if any of the waiters need to
08295b3b 492 * die or wound us.
76916515 493 */
b9c16a0e 494 spin_lock(&lock->base.wait_lock);
55f036ca 495 __ww_mutex_check_waiters(&lock->base, ctx);
b9c16a0e 496 spin_unlock(&lock->base.wait_lock);
76916515
DB
497}
498
41fcb9f2 499#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
c516df97
NH
500
501static inline
502bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
503 struct mutex_waiter *waiter)
504{
505 struct ww_mutex *ww;
506
507 ww = container_of(lock, struct ww_mutex, base);
4bd19084
DB
508
509 /*
c516df97
NH
510 * If ww->ctx is set the contents are undefined, only
511 * by acquiring wait_lock there is a guarantee that
512 * they are not invalid when reading.
513 *
514 * As such, when deadlock detection needs to be
515 * performed the optimistic spinning cannot be done.
516 *
517 * Check this in every inner iteration because we may
518 * be racing against another thread's ww_mutex_lock.
4bd19084 519 */
c516df97
NH
520 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
521 return false;
522
523 /*
524 * If we aren't on the wait list yet, cancel the spin
525 * if there are waiters. We want to avoid stealing the
526 * lock from a waiter with an earlier stamp, since the
527 * other thread may already own a lock that we also
528 * need.
529 */
530 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
531 return false;
532
533 /*
534 * Similarly, stop spinning if we are no longer the
535 * first waiter.
536 */
537 if (waiter && !__mutex_waiter_is_first(lock, waiter))
538 return false;
539
540 return true;
4bd19084 541}
76916515 542
41fcb9f2 543/*
25f13b40
NH
544 * Look out! "owner" is an entirely speculative pointer access and not
545 * reliable.
546 *
547 * "noinline" so that this function shows up on perf profiles.
41fcb9f2
WL
548 */
549static noinline
25f13b40 550bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
c516df97 551 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
41fcb9f2 552{
01ac33c1 553 bool ret = true;
be1f7bf2 554
41fcb9f2 555 rcu_read_lock();
3ca0ff57 556 while (__mutex_owner(lock) == owner) {
be1f7bf2
JL
557 /*
558 * Ensure we emit the owner->on_cpu, dereference _after_
01ac33c1
JL
559 * checking lock->owner still matches owner. If that fails,
560 * owner might point to freed memory. If it still matches,
be1f7bf2
JL
561 * the rcu_read_lock() ensures the memory stays valid.
562 */
563 barrier();
564
05ffc951
PX
565 /*
566 * Use vcpu_is_preempted to detect lock holder preemption issue.
567 */
568 if (!owner->on_cpu || need_resched() ||
569 vcpu_is_preempted(task_cpu(owner))) {
be1f7bf2
JL
570 ret = false;
571 break;
572 }
41fcb9f2 573
c516df97
NH
574 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
575 ret = false;
576 break;
25f13b40
NH
577 }
578
f2f09a4c 579 cpu_relax();
41fcb9f2
WL
580 }
581 rcu_read_unlock();
582
be1f7bf2 583 return ret;
41fcb9f2 584}
2bd2c92c
WL
585
586/*
587 * Initial check for entering the mutex spinning loop
588 */
589static inline int mutex_can_spin_on_owner(struct mutex *lock)
590{
1e40c2ed 591 struct task_struct *owner;
2bd2c92c
WL
592 int retval = 1;
593
46af29e4
JL
594 if (need_resched())
595 return 0;
596
2bd2c92c 597 rcu_read_lock();
3ca0ff57 598 owner = __mutex_owner(lock);
05ffc951
PX
599
600 /*
601 * As lock holder preemption issue, we both skip spinning if task is not
602 * on cpu or its cpu is preempted
603 */
1e40c2ed 604 if (owner)
05ffc951 605 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
2bd2c92c 606 rcu_read_unlock();
3ca0ff57 607
2bd2c92c 608 /*
3ca0ff57
PZ
609 * If lock->owner is not set, the mutex has been released. Return true
610 * such that we'll trylock in the spin path, which is a faster option
611 * than the blocking slow path.
2bd2c92c
WL
612 */
613 return retval;
614}
76916515 615
76916515
DB
616/*
617 * Optimistic spinning.
618 *
619 * We try to spin for acquisition when we find that the lock owner
620 * is currently running on a (different) CPU and while we don't
621 * need to reschedule. The rationale is that if the lock owner is
622 * running, it is likely to release the lock soon.
623 *
76916515
DB
624 * The mutex spinners are queued up using MCS lock so that only one
625 * spinner can compete for the mutex. However, if mutex spinning isn't
626 * going to happen, there is no point in going through the lock/unlock
627 * overhead.
628 *
629 * Returns true when the lock was taken, otherwise false, indicating
630 * that we need to jump to the slowpath and sleep.
b341afb3
WL
631 *
632 * The waiter flag is set to true if the spinner is a waiter in the wait
633 * queue. The waiter-spinner will spin on the lock directly and concurrently
634 * with the spinner at the head of the OSQ, if present, until the owner is
635 * changed to itself.
76916515 636 */
427b1820
PZ
637static __always_inline bool
638mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
5de2055d 639 struct mutex_waiter *waiter)
76916515 640{
b341afb3
WL
641 if (!waiter) {
642 /*
643 * The purpose of the mutex_can_spin_on_owner() function is
644 * to eliminate the overhead of osq_lock() and osq_unlock()
645 * in case spinning isn't possible. As a waiter-spinner
646 * is not going to take OSQ lock anyway, there is no need
647 * to call mutex_can_spin_on_owner().
648 */
649 if (!mutex_can_spin_on_owner(lock))
650 goto fail;
76916515 651
b341afb3
WL
652 /*
653 * In order to avoid a stampede of mutex spinners trying to
654 * acquire the mutex all at once, the spinners need to take a
655 * MCS (queued) lock first before spinning on the owner field.
656 */
657 if (!osq_lock(&lock->osq))
658 goto fail;
659 }
76916515 660
b341afb3 661 for (;;) {
76916515
DB
662 struct task_struct *owner;
663
e274795e
PZ
664 /* Try to acquire the mutex... */
665 owner = __mutex_trylock_or_owner(lock);
666 if (!owner)
667 break;
76916515
DB
668
669 /*
e274795e 670 * There's an owner, wait for it to either
76916515
DB
671 * release the lock or go to sleep.
672 */
c516df97 673 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
e274795e 674 goto fail_unlock;
b341afb3 675
76916515
DB
676 /*
677 * The cpu_relax() call is a compiler barrier which forces
678 * everything in this loop to be re-loaded. We don't need
679 * memory barriers as we'll eventually observe the right
680 * values at the cost of a few extra spins.
681 */
f2f09a4c 682 cpu_relax();
76916515
DB
683 }
684
b341afb3
WL
685 if (!waiter)
686 osq_unlock(&lock->osq);
687
688 return true;
689
690
691fail_unlock:
692 if (!waiter)
693 osq_unlock(&lock->osq);
694
695fail:
76916515
DB
696 /*
697 * If we fell out of the spin path because of need_resched(),
698 * reschedule now, before we try-lock the mutex. This avoids getting
699 * scheduled out right after we obtained the mutex.
700 */
6f942a1f
PZ
701 if (need_resched()) {
702 /*
703 * We _should_ have TASK_RUNNING here, but just in case
704 * we do not, make it so, otherwise we might get stuck.
705 */
706 __set_current_state(TASK_RUNNING);
76916515 707 schedule_preempt_disabled();
6f942a1f 708 }
76916515
DB
709
710 return false;
711}
712#else
427b1820
PZ
713static __always_inline bool
714mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
5de2055d 715 struct mutex_waiter *waiter)
76916515
DB
716{
717 return false;
718}
41fcb9f2
WL
719#endif
720
3ca0ff57 721static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
6053ee3b 722
ef5dc121 723/**
6053ee3b
IM
724 * mutex_unlock - release the mutex
725 * @lock: the mutex to be released
726 *
727 * Unlock a mutex that has been locked by this task previously.
728 *
729 * This function must not be used in interrupt context. Unlocking
730 * of a not locked mutex is not allowed.
731 *
732 * This function is similar to (but not equivalent to) up().
733 */
7ad5b3a5 734void __sched mutex_unlock(struct mutex *lock)
6053ee3b 735{
3ca0ff57
PZ
736#ifndef CONFIG_DEBUG_LOCK_ALLOC
737 if (__mutex_unlock_fast(lock))
738 return;
0d66bf6d 739#endif
3ca0ff57 740 __mutex_unlock_slowpath(lock, _RET_IP_);
6053ee3b 741}
6053ee3b
IM
742EXPORT_SYMBOL(mutex_unlock);
743
040a0a37
ML
744/**
745 * ww_mutex_unlock - release the w/w mutex
746 * @lock: the mutex to be released
747 *
748 * Unlock a mutex that has been locked by this task previously with any of the
749 * ww_mutex_lock* functions (with or without an acquire context). It is
750 * forbidden to release the locks after releasing the acquire context.
751 *
752 * This function must not be used in interrupt context. Unlocking
753 * of a unlocked mutex is not allowed.
754 */
755void __sched ww_mutex_unlock(struct ww_mutex *lock)
756{
757 /*
758 * The unlocking fastpath is the 0->1 transition from 'locked'
759 * into 'unlocked' state:
760 */
761 if (lock->ctx) {
762#ifdef CONFIG_DEBUG_MUTEXES
763 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
764#endif
765 if (lock->ctx->acquired > 0)
766 lock->ctx->acquired--;
767 lock->ctx = NULL;
768 }
769
3ca0ff57 770 mutex_unlock(&lock->base);
040a0a37
ML
771}
772EXPORT_SYMBOL(ww_mutex_unlock);
773
55f036ca
PZ
774
775static __always_inline int __sched
776__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
777{
778 if (ww_ctx->acquired > 0) {
779#ifdef CONFIG_DEBUG_MUTEXES
780 struct ww_mutex *ww;
781
782 ww = container_of(lock, struct ww_mutex, base);
783 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
784 ww_ctx->contending_lock = ww;
785#endif
786 return -EDEADLK;
787 }
788
789 return 0;
790}
791
792
793/*
08295b3b
TH
794 * Check the wound condition for the current lock acquire.
795 *
796 * Wound-Wait: If we're wounded, kill ourself.
55f036ca
PZ
797 *
798 * Wait-Die: If we're trying to acquire a lock already held by an older
799 * context, kill ourselves.
800 *
801 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
802 * look at waiters before us in the wait-list.
803 */
040a0a37 804static inline int __sched
55f036ca
PZ
805__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
806 struct ww_acquire_ctx *ctx)
040a0a37
ML
807{
808 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
4d3199e4 809 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
200b1874 810 struct mutex_waiter *cur;
040a0a37 811
55f036ca
PZ
812 if (ctx->acquired == 0)
813 return 0;
814
08295b3b
TH
815 if (!ctx->is_wait_die) {
816 if (ctx->wounded)
817 return __ww_mutex_kill(lock, ctx);
818
819 return 0;
820 }
821
200b1874 822 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
55f036ca 823 return __ww_mutex_kill(lock, ctx);
040a0a37 824
200b1874
NH
825 /*
826 * If there is a waiter in front of us that has a context, then its
55f036ca 827 * stamp is earlier than ours and we must kill ourself.
200b1874
NH
828 */
829 cur = waiter;
830 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
55f036ca
PZ
831 if (!cur->ww_ctx)
832 continue;
833
834 return __ww_mutex_kill(lock, ctx);
040a0a37
ML
835 }
836
837 return 0;
838}
839
55f036ca
PZ
840/*
841 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
842 * first. Such that older contexts are preferred to acquire the lock over
843 * younger contexts.
844 *
845 * Waiters without context are interspersed in FIFO order.
846 *
847 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
08295b3b
TH
848 * older contexts already waiting) to avoid unnecessary waiting and for
849 * Wound-Wait ensure we wound the owning context when it is younger.
55f036ca 850 */
6baa5c60
NH
851static inline int __sched
852__ww_mutex_add_waiter(struct mutex_waiter *waiter,
853 struct mutex *lock,
854 struct ww_acquire_ctx *ww_ctx)
855{
856 struct mutex_waiter *cur;
857 struct list_head *pos;
08295b3b 858 bool is_wait_die;
6baa5c60
NH
859
860 if (!ww_ctx) {
08295b3b 861 __mutex_add_waiter(lock, waiter, &lock->wait_list);
040a0a37 862 return 0;
6baa5c60 863 }
040a0a37 864
08295b3b
TH
865 is_wait_die = ww_ctx->is_wait_die;
866
6baa5c60
NH
867 /*
868 * Add the waiter before the first waiter with a higher stamp.
869 * Waiters without a context are skipped to avoid starving
08295b3b
TH
870 * them. Wait-Die waiters may die here. Wound-Wait waiters
871 * never die here, but they are sorted in stamp order and
872 * may wound the lock holder.
6baa5c60
NH
873 */
874 pos = &lock->wait_list;
875 list_for_each_entry_reverse(cur, &lock->wait_list, list) {
876 if (!cur->ww_ctx)
877 continue;
878
879 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
55f036ca
PZ
880 /*
881 * Wait-Die: if we find an older context waiting, there
882 * is no point in queueing behind it, as we'd have to
883 * die the moment it would acquire the lock.
884 */
08295b3b
TH
885 if (is_wait_die) {
886 int ret = __ww_mutex_kill(lock, ww_ctx);
6baa5c60 887
08295b3b
TH
888 if (ret)
889 return ret;
890 }
6baa5c60
NH
891
892 break;
893 }
894
895 pos = &cur->list;
200b1874 896
55f036ca
PZ
897 /* Wait-Die: ensure younger waiters die. */
898 __ww_mutex_die(lock, cur, ww_ctx);
040a0a37
ML
899 }
900
08295b3b
TH
901 __mutex_add_waiter(lock, waiter, pos);
902
903 /*
904 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
905 * wound that such that we might proceed.
906 */
907 if (!is_wait_die) {
908 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
909
910 /*
911 * See ww_mutex_set_context_fastpath(). Orders setting
912 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
913 * such that either we or the fastpath will wound @ww->ctx.
914 */
915 smp_mb();
916 __ww_mutex_wound(lock, ww_ctx, ww->ctx);
917 }
55f036ca 918
040a0a37
ML
919 return 0;
920}
921
6053ee3b
IM
922/*
923 * Lock a mutex (possibly interruptible), slowpath:
924 */
040a0a37 925static __always_inline int __sched
e4564f79 926__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 927 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 928 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b 929{
6053ee3b 930 struct mutex_waiter waiter;
9d659ae1 931 bool first = false;
a40ca565 932 struct ww_mutex *ww;
040a0a37 933 int ret;
6053ee3b 934
5de2055d
WL
935 if (!use_ww_ctx)
936 ww_ctx = NULL;
937
427b1820 938 might_sleep();
ea9e0fb8 939
6c11c6e3
SAS
940#ifdef CONFIG_DEBUG_MUTEXES
941 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
942#endif
943
427b1820 944 ww = container_of(lock, struct ww_mutex, base);
5de2055d 945 if (ww_ctx) {
0422e83d
CW
946 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
947 return -EALREADY;
08295b3b
TH
948
949 /*
950 * Reset the wounded flag after a kill. No other process can
951 * race and wound us here since they can't have a valid owner
952 * pointer if we don't have any locks held.
953 */
954 if (ww_ctx->acquired == 0)
955 ww_ctx->wounded = 0;
0422e83d
CW
956 }
957
41719b03 958 preempt_disable();
e4c70a66 959 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027 960
e274795e 961 if (__mutex_trylock(lock) ||
5de2055d 962 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
76916515 963 /* got the lock, yay! */
3ca0ff57 964 lock_acquired(&lock->dep_map, ip);
5de2055d 965 if (ww_ctx)
3ca0ff57 966 ww_mutex_set_context_fastpath(ww, ww_ctx);
76916515
DB
967 preempt_enable();
968 return 0;
0d66bf6d 969 }
76916515 970
b9c16a0e 971 spin_lock(&lock->wait_lock);
1e820c96 972 /*
3ca0ff57 973 * After waiting to acquire the wait_lock, try again.
1e820c96 974 */
659cf9f5 975 if (__mutex_trylock(lock)) {
5de2055d 976 if (ww_ctx)
55f036ca 977 __ww_mutex_check_waiters(lock, ww_ctx);
659cf9f5 978
ec83f425 979 goto skip_wait;
659cf9f5 980 }
ec83f425 981
9a11b49a 982 debug_mutex_lock_common(lock, &waiter);
6053ee3b 983
6baa5c60
NH
984 lock_contended(&lock->dep_map, ip);
985
986 if (!use_ww_ctx) {
987 /* add waiting tasks to the end of the waitqueue (FIFO): */
08295b3b
TH
988 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
989
977625a6
NH
990
991#ifdef CONFIG_DEBUG_MUTEXES
992 waiter.ww_ctx = MUTEX_POISON_WW_CTX;
993#endif
6baa5c60 994 } else {
55f036ca
PZ
995 /*
996 * Add in stamp order, waking up waiters that must kill
997 * themselves.
998 */
6baa5c60
NH
999 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
1000 if (ret)
55f036ca 1001 goto err_early_kill;
6baa5c60
NH
1002
1003 waiter.ww_ctx = ww_ctx;
1004 }
1005
d269a8b8 1006 waiter.task = current;
6053ee3b 1007
642fa448 1008 set_current_state(state);
6053ee3b 1009 for (;;) {
5bbd7e64
PZ
1010 /*
1011 * Once we hold wait_lock, we're serialized against
1012 * mutex_unlock() handing the lock off to us, do a trylock
1013 * before testing the error conditions to make sure we pick up
1014 * the handoff.
1015 */
e274795e 1016 if (__mutex_trylock(lock))
5bbd7e64 1017 goto acquired;
6053ee3b
IM
1018
1019 /*
55f036ca 1020 * Check for signals and kill conditions while holding
5bbd7e64
PZ
1021 * wait_lock. This ensures the lock cancellation is ordered
1022 * against mutex_unlock() and wake-ups do not go missing.
6053ee3b 1023 */
3bb5f4ac 1024 if (signal_pending_state(state, current)) {
040a0a37
ML
1025 ret = -EINTR;
1026 goto err;
1027 }
6053ee3b 1028
5de2055d 1029 if (ww_ctx) {
55f036ca 1030 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
040a0a37
ML
1031 if (ret)
1032 goto err;
6053ee3b 1033 }
040a0a37 1034
b9c16a0e 1035 spin_unlock(&lock->wait_lock);
bd2f5536 1036 schedule_preempt_disabled();
9d659ae1 1037
6baa5c60
NH
1038 /*
1039 * ww_mutex needs to always recheck its position since its waiter
1040 * list is not FIFO ordered.
1041 */
5de2055d 1042 if (ww_ctx || !first) {
6baa5c60
NH
1043 first = __mutex_waiter_is_first(lock, &waiter);
1044 if (first)
1045 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
9d659ae1 1046 }
5bbd7e64 1047
642fa448 1048 set_current_state(state);
5bbd7e64
PZ
1049 /*
1050 * Here we order against unlock; we must either see it change
1051 * state back to RUNNING and fall through the next schedule(),
1052 * or we must see its unlock and acquire.
1053 */
e274795e 1054 if (__mutex_trylock(lock) ||
5de2055d 1055 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
5bbd7e64
PZ
1056 break;
1057
b9c16a0e 1058 spin_lock(&lock->wait_lock);
6053ee3b 1059 }
b9c16a0e 1060 spin_lock(&lock->wait_lock);
5bbd7e64 1061acquired:
642fa448 1062 __set_current_state(TASK_RUNNING);
51587bcf 1063
5de2055d 1064 if (ww_ctx) {
08295b3b
TH
1065 /*
1066 * Wound-Wait; we stole the lock (!first_waiter), check the
1067 * waiters as anyone might want to wound us.
1068 */
1069 if (!ww_ctx->is_wait_die &&
1070 !__mutex_waiter_is_first(lock, &waiter))
1071 __ww_mutex_check_waiters(lock, ww_ctx);
1072 }
1073
3a010c49 1074 __mutex_remove_waiter(lock, &waiter);
3ca0ff57 1075
ec83f425 1076 debug_mutex_free_waiter(&waiter);
6053ee3b 1077
ec83f425
DB
1078skip_wait:
1079 /* got the lock - cleanup and rejoice! */
c7e78cff 1080 lock_acquired(&lock->dep_map, ip);
6053ee3b 1081
5de2055d 1082 if (ww_ctx)
55f036ca 1083 ww_mutex_lock_acquired(ww, ww_ctx);
040a0a37 1084
b9c16a0e 1085 spin_unlock(&lock->wait_lock);
41719b03 1086 preempt_enable();
6053ee3b 1087 return 0;
040a0a37
ML
1088
1089err:
642fa448 1090 __set_current_state(TASK_RUNNING);
3a010c49 1091 __mutex_remove_waiter(lock, &waiter);
55f036ca 1092err_early_kill:
b9c16a0e 1093 spin_unlock(&lock->wait_lock);
040a0a37 1094 debug_mutex_free_waiter(&waiter);
5facae4f 1095 mutex_release(&lock->dep_map, ip);
040a0a37
ML
1096 preempt_enable();
1097 return ret;
6053ee3b
IM
1098}
1099
427b1820
PZ
1100static int __sched
1101__mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1102 struct lockdep_map *nest_lock, unsigned long ip)
1103{
1104 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1105}
1106
1107static int __sched
1108__ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1109 struct lockdep_map *nest_lock, unsigned long ip,
1110 struct ww_acquire_ctx *ww_ctx)
1111{
1112 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1113}
1114
ef5d4707
IM
1115#ifdef CONFIG_DEBUG_LOCK_ALLOC
1116void __sched
1117mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1118{
427b1820 1119 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
ef5d4707
IM
1120}
1121
1122EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 1123
e4c70a66
PZ
1124void __sched
1125_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1126{
427b1820 1127 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
e4c70a66 1128}
e4c70a66
PZ
1129EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1130
ad776537
LH
1131int __sched
1132mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1133{
427b1820 1134 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
ad776537
LH
1135}
1136EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1137
d63a5a74
N
1138int __sched
1139mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1140{
427b1820 1141 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
d63a5a74 1142}
d63a5a74 1143EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 1144
1460cb65
TH
1145void __sched
1146mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1147{
1148 int token;
1149
1150 might_sleep();
1151
1152 token = io_schedule_prepare();
1153 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1154 subclass, NULL, _RET_IP_, NULL, 0);
1155 io_schedule_finish(token);
1156}
1157EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1158
23010027
DV
1159static inline int
1160ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1161{
1162#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1163 unsigned tmp;
1164
1165 if (ctx->deadlock_inject_countdown-- == 0) {
1166 tmp = ctx->deadlock_inject_interval;
1167 if (tmp > UINT_MAX/4)
1168 tmp = UINT_MAX;
1169 else
1170 tmp = tmp*2 + tmp + tmp/2;
1171
1172 ctx->deadlock_inject_interval = tmp;
1173 ctx->deadlock_inject_countdown = tmp;
1174 ctx->contending_lock = lock;
1175
1176 ww_mutex_unlock(lock);
1177
1178 return -EDEADLK;
1179 }
1180#endif
1181
1182 return 0;
1183}
040a0a37
ML
1184
1185int __sched
c5470b22 1186ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 1187{
23010027
DV
1188 int ret;
1189
040a0a37 1190 might_sleep();
427b1820
PZ
1191 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1192 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1193 ctx);
ea9e0fb8 1194 if (!ret && ctx && ctx->acquired > 1)
23010027
DV
1195 return ww_mutex_deadlock_injection(lock, ctx);
1196
1197 return ret;
040a0a37 1198}
c5470b22 1199EXPORT_SYMBOL_GPL(ww_mutex_lock);
040a0a37
ML
1200
1201int __sched
c5470b22 1202ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 1203{
23010027
DV
1204 int ret;
1205
040a0a37 1206 might_sleep();
427b1820
PZ
1207 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1208 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1209 ctx);
23010027 1210
ea9e0fb8 1211 if (!ret && ctx && ctx->acquired > 1)
23010027
DV
1212 return ww_mutex_deadlock_injection(lock, ctx);
1213
1214 return ret;
040a0a37 1215}
c5470b22 1216EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
040a0a37 1217
ef5d4707
IM
1218#endif
1219
6053ee3b
IM
1220/*
1221 * Release the lock, slowpath:
1222 */
3ca0ff57 1223static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
6053ee3b 1224{
9d659ae1 1225 struct task_struct *next = NULL;
194a6b5b 1226 DEFINE_WAKE_Q(wake_q);
b9c16a0e 1227 unsigned long owner;
6053ee3b 1228
5facae4f 1229 mutex_release(&lock->dep_map, ip);
3ca0ff57 1230
6053ee3b 1231 /*
9d659ae1
PZ
1232 * Release the lock before (potentially) taking the spinlock such that
1233 * other contenders can get on with things ASAP.
1234 *
1235 * Except when HANDOFF, in that case we must not clear the owner field,
1236 * but instead set it to the top waiter.
6053ee3b 1237 */
9d659ae1
PZ
1238 owner = atomic_long_read(&lock->owner);
1239 for (;;) {
1240 unsigned long old;
1241
1242#ifdef CONFIG_DEBUG_MUTEXES
1243 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
e274795e 1244 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
9d659ae1
PZ
1245#endif
1246
1247 if (owner & MUTEX_FLAG_HANDOFF)
1248 break;
1249
1250 old = atomic_long_cmpxchg_release(&lock->owner, owner,
1251 __owner_flags(owner));
1252 if (old == owner) {
1253 if (owner & MUTEX_FLAG_WAITERS)
1254 break;
1255
1256 return;
1257 }
1258
1259 owner = old;
1260 }
6053ee3b 1261
b9c16a0e 1262 spin_lock(&lock->wait_lock);
1d8fe7dc 1263 debug_mutex_unlock(lock);
6053ee3b
IM
1264 if (!list_empty(&lock->wait_list)) {
1265 /* get the first entry from the wait-list: */
1266 struct mutex_waiter *waiter =
9d659ae1
PZ
1267 list_first_entry(&lock->wait_list,
1268 struct mutex_waiter, list);
1269
1270 next = waiter->task;
6053ee3b
IM
1271
1272 debug_mutex_wake_waiter(lock, waiter);
9d659ae1 1273 wake_q_add(&wake_q, next);
6053ee3b
IM
1274 }
1275
9d659ae1
PZ
1276 if (owner & MUTEX_FLAG_HANDOFF)
1277 __mutex_handoff(lock, next);
1278
b9c16a0e 1279 spin_unlock(&lock->wait_lock);
9d659ae1 1280
1329ce6f 1281 wake_up_q(&wake_q);
6053ee3b
IM
1282}
1283
e4564f79 1284#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
1285/*
1286 * Here come the less common (and hence less performance-critical) APIs:
1287 * mutex_lock_interruptible() and mutex_trylock().
1288 */
7ad5b3a5 1289static noinline int __sched
a41b56ef 1290__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 1291
7ad5b3a5 1292static noinline int __sched
a41b56ef 1293__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 1294
ef5dc121 1295/**
45dbac0e
MW
1296 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1297 * @lock: The mutex to be acquired.
6053ee3b 1298 *
45dbac0e
MW
1299 * Lock the mutex like mutex_lock(). If a signal is delivered while the
1300 * process is sleeping, this function will return without acquiring the
1301 * mutex.
6053ee3b 1302 *
45dbac0e
MW
1303 * Context: Process context.
1304 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1305 * signal arrived.
6053ee3b 1306 */
7ad5b3a5 1307int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 1308{
c544bdb1 1309 might_sleep();
3ca0ff57
PZ
1310
1311 if (__mutex_trylock_fast(lock))
a41b56ef 1312 return 0;
3ca0ff57
PZ
1313
1314 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
1315}
1316
1317EXPORT_SYMBOL(mutex_lock_interruptible);
1318
45dbac0e
MW
1319/**
1320 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1321 * @lock: The mutex to be acquired.
1322 *
1323 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1324 * the current process is delivered while the process is sleeping, this
1325 * function will return without acquiring the mutex.
1326 *
1327 * Context: Process context.
1328 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1329 * fatal signal arrived.
1330 */
7ad5b3a5 1331int __sched mutex_lock_killable(struct mutex *lock)
ad776537
LH
1332{
1333 might_sleep();
3ca0ff57
PZ
1334
1335 if (__mutex_trylock_fast(lock))
a41b56ef 1336 return 0;
3ca0ff57
PZ
1337
1338 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
1339}
1340EXPORT_SYMBOL(mutex_lock_killable);
1341
45dbac0e
MW
1342/**
1343 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1344 * @lock: The mutex to be acquired.
1345 *
1346 * Lock the mutex like mutex_lock(). While the task is waiting for this
1347 * mutex, it will be accounted as being in the IO wait state by the
1348 * scheduler.
1349 *
1350 * Context: Process context.
1351 */
1460cb65
TH
1352void __sched mutex_lock_io(struct mutex *lock)
1353{
1354 int token;
1355
1356 token = io_schedule_prepare();
1357 mutex_lock(lock);
1358 io_schedule_finish(token);
1359}
1360EXPORT_SYMBOL_GPL(mutex_lock_io);
1361
3ca0ff57
PZ
1362static noinline void __sched
1363__mutex_lock_slowpath(struct mutex *lock)
e4564f79 1364{
427b1820 1365 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
e4564f79
PZ
1366}
1367
7ad5b3a5 1368static noinline int __sched
a41b56ef 1369__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 1370{
427b1820 1371 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
ad776537
LH
1372}
1373
7ad5b3a5 1374static noinline int __sched
a41b56ef 1375__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 1376{
427b1820 1377 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
040a0a37
ML
1378}
1379
1380static noinline int __sched
1381__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1382{
427b1820
PZ
1383 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1384 _RET_IP_, ctx);
6053ee3b 1385}
040a0a37
ML
1386
1387static noinline int __sched
1388__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1389 struct ww_acquire_ctx *ctx)
1390{
427b1820
PZ
1391 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1392 _RET_IP_, ctx);
040a0a37
ML
1393}
1394
e4564f79 1395#endif
6053ee3b 1396
ef5dc121
RD
1397/**
1398 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
1399 * @lock: the mutex to be acquired
1400 *
1401 * Try to acquire the mutex atomically. Returns 1 if the mutex
1402 * has been acquired successfully, and 0 on contention.
1403 *
1404 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 1405 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
1406 * about this when converting semaphore users to mutexes.
1407 *
1408 * This function must not be used in interrupt context. The
1409 * mutex must be released by the same task that acquired it.
1410 */
7ad5b3a5 1411int __sched mutex_trylock(struct mutex *lock)
6053ee3b 1412{
6c11c6e3
SAS
1413 bool locked;
1414
1415#ifdef CONFIG_DEBUG_MUTEXES
1416 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1417#endif
0d66bf6d 1418
6c11c6e3 1419 locked = __mutex_trylock(lock);
3ca0ff57
PZ
1420 if (locked)
1421 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
0d66bf6d 1422
3ca0ff57 1423 return locked;
6053ee3b 1424}
6053ee3b 1425EXPORT_SYMBOL(mutex_trylock);
a511e3f9 1426
040a0a37
ML
1427#ifndef CONFIG_DEBUG_LOCK_ALLOC
1428int __sched
c5470b22 1429ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 1430{
040a0a37
ML
1431 might_sleep();
1432
3ca0ff57 1433 if (__mutex_trylock_fast(&lock->base)) {
ea9e0fb8
NH
1434 if (ctx)
1435 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1436 return 0;
1437 }
1438
1439 return __ww_mutex_lock_slowpath(lock, ctx);
040a0a37 1440}
c5470b22 1441EXPORT_SYMBOL(ww_mutex_lock);
040a0a37
ML
1442
1443int __sched
c5470b22 1444ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37 1445{
040a0a37
ML
1446 might_sleep();
1447
3ca0ff57 1448 if (__mutex_trylock_fast(&lock->base)) {
ea9e0fb8
NH
1449 if (ctx)
1450 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1451 return 0;
1452 }
1453
1454 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
040a0a37 1455}
c5470b22 1456EXPORT_SYMBOL(ww_mutex_lock_interruptible);
040a0a37
ML
1457
1458#endif
1459
a511e3f9
AM
1460/**
1461 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1462 * @cnt: the atomic which we are to dec
1463 * @lock: the mutex to return holding if we dec to 0
1464 *
1465 * return true and hold lock if we dec to 0, return false otherwise
1466 */
1467int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1468{
1469 /* dec if we can't possibly hit 0 */
1470 if (atomic_add_unless(cnt, -1, 1))
1471 return 0;
1472 /* we might hit 0, so take the lock */
1473 mutex_lock(lock);
1474 if (!atomic_dec_and_test(cnt)) {
1475 /* when we actually did the dec, we didn't hit 0 */
1476 mutex_unlock(lock);
1477 return 0;
1478 }
1479 /* we hit 0, and we hold the lock */
1480 return 1;
1481}
1482EXPORT_SYMBOL(atomic_dec_and_mutex_lock);