kexec: Improve & fix crash_exclude_mem_range() to handle overlapping ranges
[linux-block.git] / kernel / kexec_file.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
a43cac0d
DY
2/*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
a43cac0d
DY
8 */
9
de90a6bc
MH
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
a43cac0d
DY
12#include <linux/capability.h>
13#include <linux/mm.h>
14#include <linux/file.h>
15#include <linux/slab.h>
16#include <linux/kexec.h>
735c2f90 17#include <linux/memblock.h>
a43cac0d
DY
18#include <linux/mutex.h>
19#include <linux/list.h>
b804defe 20#include <linux/fs.h>
7b8589cc 21#include <linux/ima.h>
a43cac0d
DY
22#include <crypto/hash.h>
23#include <crypto/sha.h>
babac4a8
AT
24#include <linux/elf.h>
25#include <linux/elfcore.h>
26#include <linux/kernel.h>
a43cac0d
DY
27#include <linux/syscalls.h>
28#include <linux/vmalloc.h>
29#include "kexec_internal.h"
30
a43cac0d
DY
31static int kexec_calculate_store_digests(struct kimage *image);
32
9ec4ecef
AT
33/*
34 * Currently this is the only default function that is exported as some
35 * architectures need it to do additional handlings.
36 * In the future, other default functions may be exported too if required.
37 */
38int kexec_image_probe_default(struct kimage *image, void *buf,
39 unsigned long buf_len)
40{
41 const struct kexec_file_ops * const *fops;
42 int ret = -ENOEXEC;
43
44 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 ret = (*fops)->probe(buf, buf_len);
46 if (!ret) {
47 image->fops = *fops;
48 return ret;
49 }
50 }
51
52 return ret;
53}
54
a43cac0d
DY
55/* Architectures can provide this probe function */
56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 unsigned long buf_len)
58{
9ec4ecef
AT
59 return kexec_image_probe_default(image, buf, buf_len);
60}
61
62static void *kexec_image_load_default(struct kimage *image)
63{
64 if (!image->fops || !image->fops->load)
65 return ERR_PTR(-ENOEXEC);
66
67 return image->fops->load(image, image->kernel_buf,
68 image->kernel_buf_len, image->initrd_buf,
69 image->initrd_buf_len, image->cmdline_buf,
70 image->cmdline_buf_len);
a43cac0d
DY
71}
72
73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74{
9ec4ecef
AT
75 return kexec_image_load_default(image);
76}
77
92a98a2b 78int kexec_image_post_load_cleanup_default(struct kimage *image)
9ec4ecef
AT
79{
80 if (!image->fops || !image->fops->cleanup)
81 return 0;
82
83 return image->fops->cleanup(image->image_loader_data);
a43cac0d
DY
84}
85
86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87{
9ec4ecef 88 return kexec_image_post_load_cleanup_default(image);
a43cac0d
DY
89}
90
99d5cadf 91#ifdef CONFIG_KEXEC_SIG
9ec4ecef
AT
92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 unsigned long buf_len)
94{
95 if (!image->fops || !image->fops->verify_sig) {
96 pr_debug("kernel loader does not support signature verification.\n");
97 return -EKEYREJECTED;
98 }
99
100 return image->fops->verify_sig(buf, buf_len);
101}
102
a43cac0d
DY
103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 unsigned long buf_len)
105{
9ec4ecef 106 return kexec_image_verify_sig_default(image, buf, buf_len);
a43cac0d 107}
978e30c9 108#endif
a43cac0d 109
8aec395b
PR
110/*
111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
112 * @pi: Purgatory to be relocated.
113 * @section: Section relocations applying to.
114 * @relsec: Section containing RELAs.
115 * @symtab: Corresponding symtab.
116 *
117 * Return: 0 on success, negative errno on error.
118 */
a43cac0d 119int __weak
8aec395b
PR
120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
122{
123 pr_err("RELA relocation unsupported.\n");
124 return -ENOEXEC;
125}
126
8aec395b
PR
127/*
128 * arch_kexec_apply_relocations - apply relocations of type REL
129 * @pi: Purgatory to be relocated.
130 * @section: Section relocations applying to.
131 * @relsec: Section containing RELs.
132 * @symtab: Corresponding symtab.
133 *
134 * Return: 0 on success, negative errno on error.
135 */
a43cac0d 136int __weak
8aec395b
PR
137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
139{
140 pr_err("REL relocation unsupported.\n");
141 return -ENOEXEC;
142}
143
144/*
145 * Free up memory used by kernel, initrd, and command line. This is temporary
146 * memory allocation which is not needed any more after these buffers have
147 * been loaded into separate segments and have been copied elsewhere.
148 */
149void kimage_file_post_load_cleanup(struct kimage *image)
150{
151 struct purgatory_info *pi = &image->purgatory_info;
152
153 vfree(image->kernel_buf);
154 image->kernel_buf = NULL;
155
156 vfree(image->initrd_buf);
157 image->initrd_buf = NULL;
158
159 kfree(image->cmdline_buf);
160 image->cmdline_buf = NULL;
161
162 vfree(pi->purgatory_buf);
163 pi->purgatory_buf = NULL;
164
165 vfree(pi->sechdrs);
166 pi->sechdrs = NULL;
167
168 /* See if architecture has anything to cleanup post load */
169 arch_kimage_file_post_load_cleanup(image);
170
171 /*
172 * Above call should have called into bootloader to free up
173 * any data stored in kimage->image_loader_data. It should
174 * be ok now to free it up.
175 */
176 kfree(image->image_loader_data);
177 image->image_loader_data = NULL;
178}
179
99d5cadf
JB
180#ifdef CONFIG_KEXEC_SIG
181static int
182kimage_validate_signature(struct kimage *image)
183{
99d5cadf
JB
184 int ret;
185
186 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
187 image->kernel_buf_len);
fd7af71b 188 if (ret) {
99d5cadf 189
99d5cadf 190 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
fd7af71b 191 pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
99d5cadf
JB
192 return ret;
193 }
194
fd7af71b
LJ
195 /*
196 * If IMA is guaranteed to appraise a signature on the kexec
29d3c1c8
MG
197 * image, permit it even if the kernel is otherwise locked
198 * down.
199 */
200 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
201 security_locked_down(LOCKDOWN_KEXEC))
202 return -EPERM;
203
fd7af71b 204 pr_debug("kernel signature verification failed (%d).\n", ret);
99d5cadf
JB
205 }
206
fd7af71b 207 return 0;
99d5cadf
JB
208}
209#endif
210
a43cac0d
DY
211/*
212 * In file mode list of segments is prepared by kernel. Copy relevant
213 * data from user space, do error checking, prepare segment list
214 */
215static int
216kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
217 const char __user *cmdline_ptr,
218 unsigned long cmdline_len, unsigned flags)
219{
99d5cadf 220 int ret;
a43cac0d 221 void *ldata;
b804defe 222 loff_t size;
a43cac0d 223
b804defe
MZ
224 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
225 &size, INT_MAX, READING_KEXEC_IMAGE);
a43cac0d
DY
226 if (ret)
227 return ret;
b804defe 228 image->kernel_buf_len = size;
a43cac0d
DY
229
230 /* Call arch image probe handlers */
231 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
232 image->kernel_buf_len);
a43cac0d
DY
233 if (ret)
234 goto out;
235
99d5cadf
JB
236#ifdef CONFIG_KEXEC_SIG
237 ret = kimage_validate_signature(image);
238
239 if (ret)
a43cac0d 240 goto out;
a43cac0d
DY
241#endif
242 /* It is possible that there no initramfs is being loaded */
243 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
b804defe
MZ
244 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
245 &size, INT_MAX,
246 READING_KEXEC_INITRAMFS);
a43cac0d
DY
247 if (ret)
248 goto out;
b804defe 249 image->initrd_buf_len = size;
a43cac0d
DY
250 }
251
252 if (cmdline_len) {
a9bd8dfa
AV
253 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
254 if (IS_ERR(image->cmdline_buf)) {
255 ret = PTR_ERR(image->cmdline_buf);
256 image->cmdline_buf = NULL;
a43cac0d
DY
257 goto out;
258 }
259
260 image->cmdline_buf_len = cmdline_len;
261
262 /* command line should be a string with last byte null */
263 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
264 ret = -EINVAL;
265 goto out;
266 }
6a31fcd4 267
4834177e 268 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
6a31fcd4 269 image->cmdline_buf_len - 1);
a43cac0d
DY
270 }
271
6a31fcd4
PS
272 /* IMA needs to pass the measurement list to the next kernel. */
273 ima_add_kexec_buffer(image);
274
a43cac0d
DY
275 /* Call arch image load handlers */
276 ldata = arch_kexec_kernel_image_load(image);
277
278 if (IS_ERR(ldata)) {
279 ret = PTR_ERR(ldata);
280 goto out;
281 }
282
283 image->image_loader_data = ldata;
284out:
285 /* In case of error, free up all allocated memory in this function */
286 if (ret)
287 kimage_file_post_load_cleanup(image);
288 return ret;
289}
290
291static int
292kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
293 int initrd_fd, const char __user *cmdline_ptr,
294 unsigned long cmdline_len, unsigned long flags)
295{
296 int ret;
297 struct kimage *image;
298 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
299
300 image = do_kimage_alloc_init();
301 if (!image)
302 return -ENOMEM;
303
304 image->file_mode = 1;
305
306 if (kexec_on_panic) {
307 /* Enable special crash kernel control page alloc policy. */
308 image->control_page = crashk_res.start;
309 image->type = KEXEC_TYPE_CRASH;
310 }
311
312 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
313 cmdline_ptr, cmdline_len, flags);
314 if (ret)
315 goto out_free_image;
316
317 ret = sanity_check_segment_list(image);
318 if (ret)
319 goto out_free_post_load_bufs;
320
321 ret = -ENOMEM;
322 image->control_code_page = kimage_alloc_control_pages(image,
323 get_order(KEXEC_CONTROL_PAGE_SIZE));
324 if (!image->control_code_page) {
325 pr_err("Could not allocate control_code_buffer\n");
326 goto out_free_post_load_bufs;
327 }
328
329 if (!kexec_on_panic) {
330 image->swap_page = kimage_alloc_control_pages(image, 0);
331 if (!image->swap_page) {
332 pr_err("Could not allocate swap buffer\n");
333 goto out_free_control_pages;
334 }
335 }
336
337 *rimage = image;
338 return 0;
339out_free_control_pages:
340 kimage_free_page_list(&image->control_pages);
341out_free_post_load_bufs:
342 kimage_file_post_load_cleanup(image);
343out_free_image:
344 kfree(image);
345 return ret;
346}
347
348SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
349 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
350 unsigned long, flags)
351{
352 int ret = 0, i;
353 struct kimage **dest_image, *image;
354
355 /* We only trust the superuser with rebooting the system. */
356 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
357 return -EPERM;
358
359 /* Make sure we have a legal set of flags */
360 if (flags != (flags & KEXEC_FILE_FLAGS))
361 return -EINVAL;
362
363 image = NULL;
364
365 if (!mutex_trylock(&kexec_mutex))
366 return -EBUSY;
367
368 dest_image = &kexec_image;
9b492cf5 369 if (flags & KEXEC_FILE_ON_CRASH) {
a43cac0d 370 dest_image = &kexec_crash_image;
9b492cf5
XP
371 if (kexec_crash_image)
372 arch_kexec_unprotect_crashkres();
373 }
a43cac0d
DY
374
375 if (flags & KEXEC_FILE_UNLOAD)
376 goto exchange;
377
378 /*
379 * In case of crash, new kernel gets loaded in reserved region. It is
380 * same memory where old crash kernel might be loaded. Free any
381 * current crash dump kernel before we corrupt it.
382 */
383 if (flags & KEXEC_FILE_ON_CRASH)
384 kimage_free(xchg(&kexec_crash_image, NULL));
385
386 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
387 cmdline_len, flags);
388 if (ret)
389 goto out;
390
391 ret = machine_kexec_prepare(image);
392 if (ret)
393 goto out;
394
1229384f
XP
395 /*
396 * Some architecture(like S390) may touch the crash memory before
397 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
398 */
399 ret = kimage_crash_copy_vmcoreinfo(image);
400 if (ret)
401 goto out;
402
a43cac0d
DY
403 ret = kexec_calculate_store_digests(image);
404 if (ret)
405 goto out;
406
407 for (i = 0; i < image->nr_segments; i++) {
408 struct kexec_segment *ksegment;
409
410 ksegment = &image->segment[i];
411 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
412 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
413 ksegment->memsz);
414
415 ret = kimage_load_segment(image, &image->segment[i]);
416 if (ret)
417 goto out;
418 }
419
420 kimage_terminate(image);
421
de68e4da
PT
422 ret = machine_kexec_post_load(image);
423 if (ret)
424 goto out;
425
a43cac0d
DY
426 /*
427 * Free up any temporary buffers allocated which are not needed
428 * after image has been loaded
429 */
430 kimage_file_post_load_cleanup(image);
431exchange:
432 image = xchg(dest_image, image);
433out:
9b492cf5
XP
434 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
435 arch_kexec_protect_crashkres();
436
a43cac0d
DY
437 mutex_unlock(&kexec_mutex);
438 kimage_free(image);
439 return ret;
440}
441
442static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
443 struct kexec_buf *kbuf)
444{
445 struct kimage *image = kbuf->image;
446 unsigned long temp_start, temp_end;
447
448 temp_end = min(end, kbuf->buf_max);
449 temp_start = temp_end - kbuf->memsz;
450
451 do {
452 /* align down start */
453 temp_start = temp_start & (~(kbuf->buf_align - 1));
454
455 if (temp_start < start || temp_start < kbuf->buf_min)
456 return 0;
457
458 temp_end = temp_start + kbuf->memsz - 1;
459
460 /*
461 * Make sure this does not conflict with any of existing
462 * segments
463 */
464 if (kimage_is_destination_range(image, temp_start, temp_end)) {
465 temp_start = temp_start - PAGE_SIZE;
466 continue;
467 }
468
469 /* We found a suitable memory range */
470 break;
471 } while (1);
472
473 /* If we are here, we found a suitable memory range */
474 kbuf->mem = temp_start;
475
476 /* Success, stop navigating through remaining System RAM ranges */
477 return 1;
478}
479
480static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
481 struct kexec_buf *kbuf)
482{
483 struct kimage *image = kbuf->image;
484 unsigned long temp_start, temp_end;
485
486 temp_start = max(start, kbuf->buf_min);
487
488 do {
489 temp_start = ALIGN(temp_start, kbuf->buf_align);
490 temp_end = temp_start + kbuf->memsz - 1;
491
492 if (temp_end > end || temp_end > kbuf->buf_max)
493 return 0;
494 /*
495 * Make sure this does not conflict with any of existing
496 * segments
497 */
498 if (kimage_is_destination_range(image, temp_start, temp_end)) {
499 temp_start = temp_start + PAGE_SIZE;
500 continue;
501 }
502
503 /* We found a suitable memory range */
504 break;
505 } while (1);
506
507 /* If we are here, we found a suitable memory range */
508 kbuf->mem = temp_start;
509
510 /* Success, stop navigating through remaining System RAM ranges */
511 return 1;
512}
513
1d2e733b 514static int locate_mem_hole_callback(struct resource *res, void *arg)
a43cac0d
DY
515{
516 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
1d2e733b 517 u64 start = res->start, end = res->end;
a43cac0d
DY
518 unsigned long sz = end - start + 1;
519
520 /* Returning 0 will take to next memory range */
3fe4f499
DH
521
522 /* Don't use memory that will be detected and handled by a driver. */
523 if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
524 return 0;
525
a43cac0d
DY
526 if (sz < kbuf->memsz)
527 return 0;
528
529 if (end < kbuf->buf_min || start > kbuf->buf_max)
530 return 0;
531
532 /*
533 * Allocate memory top down with-in ram range. Otherwise bottom up
534 * allocation.
535 */
536 if (kbuf->top_down)
537 return locate_mem_hole_top_down(start, end, kbuf);
538 return locate_mem_hole_bottom_up(start, end, kbuf);
539}
540
350e88ba 541#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
735c2f90
AT
542static int kexec_walk_memblock(struct kexec_buf *kbuf,
543 int (*func)(struct resource *, void *))
544{
545 int ret = 0;
546 u64 i;
547 phys_addr_t mstart, mend;
548 struct resource res = { };
549
497e1858
AT
550 if (kbuf->image->type == KEXEC_TYPE_CRASH)
551 return func(&crashk_res, kbuf);
552
735c2f90 553 if (kbuf->top_down) {
497e1858 554 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
735c2f90
AT
555 &mstart, &mend, NULL) {
556 /*
557 * In memblock, end points to the first byte after the
558 * range while in kexec, end points to the last byte
559 * in the range.
560 */
561 res.start = mstart;
562 res.end = mend - 1;
563 ret = func(&res, kbuf);
564 if (ret)
565 break;
566 }
567 } else {
497e1858
AT
568 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
569 &mstart, &mend, NULL) {
735c2f90
AT
570 /*
571 * In memblock, end points to the first byte after the
572 * range while in kexec, end points to the last byte
573 * in the range.
574 */
575 res.start = mstart;
576 res.end = mend - 1;
577 ret = func(&res, kbuf);
578 if (ret)
579 break;
580 }
581 }
582
583 return ret;
584}
350e88ba
MR
585#else
586static int kexec_walk_memblock(struct kexec_buf *kbuf,
587 int (*func)(struct resource *, void *))
588{
589 return 0;
590}
735c2f90
AT
591#endif
592
60fe3910 593/**
735c2f90 594 * kexec_walk_resources - call func(data) on free memory regions
60fe3910
TJB
595 * @kbuf: Context info for the search. Also passed to @func.
596 * @func: Function to call for each memory region.
597 *
598 * Return: The memory walk will stop when func returns a non-zero value
599 * and that value will be returned. If all free regions are visited without
600 * func returning non-zero, then zero will be returned.
601 */
735c2f90
AT
602static int kexec_walk_resources(struct kexec_buf *kbuf,
603 int (*func)(struct resource *, void *))
60fe3910
TJB
604{
605 if (kbuf->image->type == KEXEC_TYPE_CRASH)
606 return walk_iomem_res_desc(crashk_res.desc,
607 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
608 crashk_res.start, crashk_res.end,
609 kbuf, func);
610 else
611 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
612}
613
e2e806f9
TJB
614/**
615 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
616 * @kbuf: Parameters for the memory search.
617 *
618 * On success, kbuf->mem will have the start address of the memory region found.
619 *
620 * Return: 0 on success, negative errno on error.
621 */
622int kexec_locate_mem_hole(struct kexec_buf *kbuf)
623{
624 int ret;
625
b6664ba4
AT
626 /* Arch knows where to place */
627 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
628 return 0;
629
350e88ba 630 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
735c2f90
AT
631 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
632 else
633 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
e2e806f9
TJB
634
635 return ret == 1 ? 0 : -EADDRNOTAVAIL;
636}
637
ec2b9bfa
TJB
638/**
639 * kexec_add_buffer - place a buffer in a kexec segment
640 * @kbuf: Buffer contents and memory parameters.
641 *
642 * This function assumes that kexec_mutex is held.
643 * On successful return, @kbuf->mem will have the physical address of
644 * the buffer in memory.
645 *
646 * Return: 0 on success, negative errno on error.
a43cac0d 647 */
ec2b9bfa 648int kexec_add_buffer(struct kexec_buf *kbuf)
a43cac0d
DY
649{
650
651 struct kexec_segment *ksegment;
a43cac0d
DY
652 int ret;
653
654 /* Currently adding segment this way is allowed only in file mode */
ec2b9bfa 655 if (!kbuf->image->file_mode)
a43cac0d
DY
656 return -EINVAL;
657
ec2b9bfa 658 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
a43cac0d
DY
659 return -EINVAL;
660
661 /*
662 * Make sure we are not trying to add buffer after allocating
663 * control pages. All segments need to be placed first before
664 * any control pages are allocated. As control page allocation
665 * logic goes through list of segments to make sure there are
666 * no destination overlaps.
667 */
ec2b9bfa 668 if (!list_empty(&kbuf->image->control_pages)) {
a43cac0d
DY
669 WARN_ON(1);
670 return -EINVAL;
671 }
672
ec2b9bfa
TJB
673 /* Ensure minimum alignment needed for segments. */
674 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
675 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
a43cac0d
DY
676
677 /* Walk the RAM ranges and allocate a suitable range for the buffer */
e2e806f9
TJB
678 ret = kexec_locate_mem_hole(kbuf);
679 if (ret)
680 return ret;
a43cac0d
DY
681
682 /* Found a suitable memory range */
ec2b9bfa 683 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
a43cac0d
DY
684 ksegment->kbuf = kbuf->buffer;
685 ksegment->bufsz = kbuf->bufsz;
686 ksegment->mem = kbuf->mem;
687 ksegment->memsz = kbuf->memsz;
ec2b9bfa 688 kbuf->image->nr_segments++;
a43cac0d
DY
689 return 0;
690}
691
692/* Calculate and store the digest of segments */
693static int kexec_calculate_store_digests(struct kimage *image)
694{
695 struct crypto_shash *tfm;
696 struct shash_desc *desc;
697 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
698 size_t desc_size, nullsz;
699 char *digest;
700 void *zero_buf;
701 struct kexec_sha_region *sha_regions;
702 struct purgatory_info *pi = &image->purgatory_info;
703
b799a09f
AT
704 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
705 return 0;
706
a43cac0d
DY
707 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
708 zero_buf_sz = PAGE_SIZE;
709
710 tfm = crypto_alloc_shash("sha256", 0, 0);
711 if (IS_ERR(tfm)) {
712 ret = PTR_ERR(tfm);
713 goto out;
714 }
715
716 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
717 desc = kzalloc(desc_size, GFP_KERNEL);
718 if (!desc) {
719 ret = -ENOMEM;
720 goto out_free_tfm;
721 }
722
723 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
724 sha_regions = vzalloc(sha_region_sz);
725 if (!sha_regions)
726 goto out_free_desc;
727
728 desc->tfm = tfm;
a43cac0d
DY
729
730 ret = crypto_shash_init(desc);
731 if (ret < 0)
732 goto out_free_sha_regions;
733
734 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
735 if (!digest) {
736 ret = -ENOMEM;
737 goto out_free_sha_regions;
738 }
739
740 for (j = i = 0; i < image->nr_segments; i++) {
741 struct kexec_segment *ksegment;
742
743 ksegment = &image->segment[i];
744 /*
745 * Skip purgatory as it will be modified once we put digest
746 * info in purgatory.
747 */
748 if (ksegment->kbuf == pi->purgatory_buf)
749 continue;
750
751 ret = crypto_shash_update(desc, ksegment->kbuf,
752 ksegment->bufsz);
753 if (ret)
754 break;
755
756 /*
757 * Assume rest of the buffer is filled with zero and
758 * update digest accordingly.
759 */
760 nullsz = ksegment->memsz - ksegment->bufsz;
761 while (nullsz) {
762 unsigned long bytes = nullsz;
763
764 if (bytes > zero_buf_sz)
765 bytes = zero_buf_sz;
766 ret = crypto_shash_update(desc, zero_buf, bytes);
767 if (ret)
768 break;
769 nullsz -= bytes;
770 }
771
772 if (ret)
773 break;
774
775 sha_regions[j].start = ksegment->mem;
776 sha_regions[j].len = ksegment->memsz;
777 j++;
778 }
779
780 if (!ret) {
781 ret = crypto_shash_final(desc, digest);
782 if (ret)
783 goto out_free_digest;
40c50c1f
TG
784 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
785 sha_regions, sha_region_sz, 0);
a43cac0d
DY
786 if (ret)
787 goto out_free_digest;
788
40c50c1f
TG
789 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
790 digest, SHA256_DIGEST_SIZE, 0);
a43cac0d
DY
791 if (ret)
792 goto out_free_digest;
793 }
794
795out_free_digest:
796 kfree(digest);
797out_free_sha_regions:
798 vfree(sha_regions);
799out_free_desc:
800 kfree(desc);
801out_free_tfm:
802 kfree(tfm);
803out:
804 return ret;
805}
806
b799a09f 807#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
93045705
PR
808/*
809 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
810 * @pi: Purgatory to be loaded.
811 * @kbuf: Buffer to setup.
812 *
813 * Allocates the memory needed for the buffer. Caller is responsible to free
814 * the memory after use.
815 *
816 * Return: 0 on success, negative errno on error.
817 */
818static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
819 struct kexec_buf *kbuf)
a43cac0d 820{
93045705
PR
821 const Elf_Shdr *sechdrs;
822 unsigned long bss_align;
823 unsigned long bss_sz;
824 unsigned long align;
825 int i, ret;
a43cac0d 826
93045705 827 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
3be3f61d
PR
828 kbuf->buf_align = bss_align = 1;
829 kbuf->bufsz = bss_sz = 0;
93045705
PR
830
831 for (i = 0; i < pi->ehdr->e_shnum; i++) {
832 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
833 continue;
834
835 align = sechdrs[i].sh_addralign;
836 if (sechdrs[i].sh_type != SHT_NOBITS) {
837 if (kbuf->buf_align < align)
838 kbuf->buf_align = align;
839 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
840 kbuf->bufsz += sechdrs[i].sh_size;
841 } else {
842 if (bss_align < align)
843 bss_align = align;
844 bss_sz = ALIGN(bss_sz, align);
845 bss_sz += sechdrs[i].sh_size;
846 }
847 }
848 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
849 kbuf->memsz = kbuf->bufsz + bss_sz;
850 if (kbuf->buf_align < bss_align)
851 kbuf->buf_align = bss_align;
852
853 kbuf->buffer = vzalloc(kbuf->bufsz);
854 if (!kbuf->buffer)
855 return -ENOMEM;
856 pi->purgatory_buf = kbuf->buffer;
857
858 ret = kexec_add_buffer(kbuf);
859 if (ret)
860 goto out;
93045705
PR
861
862 return 0;
863out:
864 vfree(pi->purgatory_buf);
865 pi->purgatory_buf = NULL;
866 return ret;
867}
868
869/*
870 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
871 * @pi: Purgatory to be loaded.
872 * @kbuf: Buffer prepared to store purgatory.
873 *
874 * Allocates the memory needed for the buffer. Caller is responsible to free
875 * the memory after use.
876 *
877 * Return: 0 on success, negative errno on error.
878 */
879static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
880 struct kexec_buf *kbuf)
881{
93045705
PR
882 unsigned long bss_addr;
883 unsigned long offset;
93045705 884 Elf_Shdr *sechdrs;
93045705 885 int i;
a43cac0d 886
8da0b724
PR
887 /*
888 * The section headers in kexec_purgatory are read-only. In order to
889 * have them modifiable make a temporary copy.
890 */
fad953ce 891 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
a43cac0d
DY
892 if (!sechdrs)
893 return -ENOMEM;
93045705
PR
894 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
895 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
896 pi->sechdrs = sechdrs;
a43cac0d 897
620f697c
PR
898 offset = 0;
899 bss_addr = kbuf->mem + kbuf->bufsz;
f1b1cca3 900 kbuf->image->start = pi->ehdr->e_entry;
a43cac0d
DY
901
902 for (i = 0; i < pi->ehdr->e_shnum; i++) {
93045705 903 unsigned long align;
620f697c 904 void *src, *dst;
93045705 905
a43cac0d
DY
906 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
907 continue;
908
909 align = sechdrs[i].sh_addralign;
f1b1cca3 910 if (sechdrs[i].sh_type == SHT_NOBITS) {
a43cac0d
DY
911 bss_addr = ALIGN(bss_addr, align);
912 sechdrs[i].sh_addr = bss_addr;
913 bss_addr += sechdrs[i].sh_size;
f1b1cca3
PR
914 continue;
915 }
916
620f697c 917 offset = ALIGN(offset, align);
f1b1cca3
PR
918 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
919 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
920 pi->ehdr->e_entry < (sechdrs[i].sh_addr
921 + sechdrs[i].sh_size)) {
922 kbuf->image->start -= sechdrs[i].sh_addr;
620f697c 923 kbuf->image->start += kbuf->mem + offset;
a43cac0d 924 }
a43cac0d 925
8da0b724 926 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
620f697c
PR
927 dst = pi->purgatory_buf + offset;
928 memcpy(dst, src, sechdrs[i].sh_size);
929
930 sechdrs[i].sh_addr = kbuf->mem + offset;
8da0b724 931 sechdrs[i].sh_offset = offset;
620f697c 932 offset += sechdrs[i].sh_size;
f1b1cca3 933 }
a43cac0d 934
93045705 935 return 0;
a43cac0d
DY
936}
937
938static int kexec_apply_relocations(struct kimage *image)
939{
940 int i, ret;
941 struct purgatory_info *pi = &image->purgatory_info;
8aec395b
PR
942 const Elf_Shdr *sechdrs;
943
944 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
a43cac0d 945
a43cac0d 946 for (i = 0; i < pi->ehdr->e_shnum; i++) {
8aec395b
PR
947 const Elf_Shdr *relsec;
948 const Elf_Shdr *symtab;
949 Elf_Shdr *section;
950
951 relsec = sechdrs + i;
a43cac0d 952
8aec395b
PR
953 if (relsec->sh_type != SHT_RELA &&
954 relsec->sh_type != SHT_REL)
a43cac0d
DY
955 continue;
956
957 /*
958 * For section of type SHT_RELA/SHT_REL,
959 * ->sh_link contains section header index of associated
960 * symbol table. And ->sh_info contains section header
961 * index of section to which relocations apply.
962 */
8aec395b
PR
963 if (relsec->sh_info >= pi->ehdr->e_shnum ||
964 relsec->sh_link >= pi->ehdr->e_shnum)
a43cac0d
DY
965 return -ENOEXEC;
966
8aec395b
PR
967 section = pi->sechdrs + relsec->sh_info;
968 symtab = sechdrs + relsec->sh_link;
a43cac0d
DY
969
970 if (!(section->sh_flags & SHF_ALLOC))
971 continue;
972
973 /*
974 * symtab->sh_link contain section header index of associated
975 * string table.
976 */
977 if (symtab->sh_link >= pi->ehdr->e_shnum)
978 /* Invalid section number? */
979 continue;
980
981 /*
982 * Respective architecture needs to provide support for applying
983 * relocations of type SHT_RELA/SHT_REL.
984 */
8aec395b
PR
985 if (relsec->sh_type == SHT_RELA)
986 ret = arch_kexec_apply_relocations_add(pi, section,
987 relsec, symtab);
988 else if (relsec->sh_type == SHT_REL)
989 ret = arch_kexec_apply_relocations(pi, section,
990 relsec, symtab);
a43cac0d
DY
991 if (ret)
992 return ret;
993 }
994
995 return 0;
996}
997
3be3f61d
PR
998/*
999 * kexec_load_purgatory - Load and relocate the purgatory object.
1000 * @image: Image to add the purgatory to.
1001 * @kbuf: Memory parameters to use.
1002 *
1003 * Allocates the memory needed for image->purgatory_info.sechdrs and
1004 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1005 * to free the memory after use.
1006 *
1007 * Return: 0 on success, negative errno on error.
1008 */
1009int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
a43cac0d
DY
1010{
1011 struct purgatory_info *pi = &image->purgatory_info;
1012 int ret;
1013
1014 if (kexec_purgatory_size <= 0)
1015 return -EINVAL;
1016
65c225d3 1017 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
a43cac0d 1018
3be3f61d 1019 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
a43cac0d
DY
1020 if (ret)
1021 return ret;
1022
3be3f61d 1023 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
93045705
PR
1024 if (ret)
1025 goto out_free_kbuf;
1026
a43cac0d
DY
1027 ret = kexec_apply_relocations(image);
1028 if (ret)
1029 goto out;
1030
a43cac0d
DY
1031 return 0;
1032out:
1033 vfree(pi->sechdrs);
070c43ee 1034 pi->sechdrs = NULL;
93045705 1035out_free_kbuf:
a43cac0d 1036 vfree(pi->purgatory_buf);
070c43ee 1037 pi->purgatory_buf = NULL;
a43cac0d
DY
1038 return ret;
1039}
1040
961d921a
PR
1041/*
1042 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1043 * @pi: Purgatory to search in.
1044 * @name: Name of the symbol.
1045 *
1046 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1047 */
1048static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1049 const char *name)
a43cac0d 1050{
961d921a 1051 const Elf_Shdr *sechdrs;
65c225d3 1052 const Elf_Ehdr *ehdr;
961d921a 1053 const Elf_Sym *syms;
a43cac0d 1054 const char *strtab;
961d921a 1055 int i, k;
a43cac0d 1056
961d921a 1057 if (!pi->ehdr)
a43cac0d
DY
1058 return NULL;
1059
a43cac0d 1060 ehdr = pi->ehdr;
961d921a 1061 sechdrs = (void *)ehdr + ehdr->e_shoff;
a43cac0d
DY
1062
1063 for (i = 0; i < ehdr->e_shnum; i++) {
1064 if (sechdrs[i].sh_type != SHT_SYMTAB)
1065 continue;
1066
1067 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1068 /* Invalid strtab section number */
1069 continue;
961d921a
PR
1070 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1071 syms = (void *)ehdr + sechdrs[i].sh_offset;
a43cac0d
DY
1072
1073 /* Go through symbols for a match */
1074 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1075 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1076 continue;
1077
1078 if (strcmp(strtab + syms[k].st_name, name) != 0)
1079 continue;
1080
1081 if (syms[k].st_shndx == SHN_UNDEF ||
1082 syms[k].st_shndx >= ehdr->e_shnum) {
1083 pr_debug("Symbol: %s has bad section index %d.\n",
1084 name, syms[k].st_shndx);
1085 return NULL;
1086 }
1087
1088 /* Found the symbol we are looking for */
1089 return &syms[k];
1090 }
1091 }
1092
1093 return NULL;
1094}
1095
1096void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1097{
1098 struct purgatory_info *pi = &image->purgatory_info;
961d921a 1099 const Elf_Sym *sym;
a43cac0d
DY
1100 Elf_Shdr *sechdr;
1101
1102 sym = kexec_purgatory_find_symbol(pi, name);
1103 if (!sym)
1104 return ERR_PTR(-EINVAL);
1105
1106 sechdr = &pi->sechdrs[sym->st_shndx];
1107
1108 /*
1109 * Returns the address where symbol will finally be loaded after
1110 * kexec_load_segment()
1111 */
1112 return (void *)(sechdr->sh_addr + sym->st_value);
1113}
1114
1115/*
1116 * Get or set value of a symbol. If "get_value" is true, symbol value is
1117 * returned in buf otherwise symbol value is set based on value in buf.
1118 */
1119int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1120 void *buf, unsigned int size, bool get_value)
1121{
a43cac0d 1122 struct purgatory_info *pi = &image->purgatory_info;
961d921a
PR
1123 const Elf_Sym *sym;
1124 Elf_Shdr *sec;
a43cac0d
DY
1125 char *sym_buf;
1126
1127 sym = kexec_purgatory_find_symbol(pi, name);
1128 if (!sym)
1129 return -EINVAL;
1130
1131 if (sym->st_size != size) {
1132 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1133 name, (unsigned long)sym->st_size, size);
1134 return -EINVAL;
1135 }
1136
961d921a 1137 sec = pi->sechdrs + sym->st_shndx;
a43cac0d 1138
961d921a 1139 if (sec->sh_type == SHT_NOBITS) {
a43cac0d
DY
1140 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1141 get_value ? "get" : "set");
1142 return -EINVAL;
1143 }
1144
8da0b724 1145 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
a43cac0d
DY
1146
1147 if (get_value)
1148 memcpy((void *)buf, sym_buf, size);
1149 else
1150 memcpy((void *)sym_buf, buf, size);
1151
1152 return 0;
1153}
b799a09f 1154#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
babac4a8
AT
1155
1156int crash_exclude_mem_range(struct crash_mem *mem,
1157 unsigned long long mstart, unsigned long long mend)
1158{
1159 int i, j;
a2e9a95d 1160 unsigned long long start, end, p_start, p_end;
babac4a8
AT
1161 struct crash_mem_range temp_range = {0, 0};
1162
1163 for (i = 0; i < mem->nr_ranges; i++) {
1164 start = mem->ranges[i].start;
1165 end = mem->ranges[i].end;
a2e9a95d
LJ
1166 p_start = mstart;
1167 p_end = mend;
babac4a8
AT
1168
1169 if (mstart > end || mend < start)
1170 continue;
1171
1172 /* Truncate any area outside of range */
1173 if (mstart < start)
a2e9a95d 1174 p_start = start;
babac4a8 1175 if (mend > end)
a2e9a95d 1176 p_end = end;
babac4a8
AT
1177
1178 /* Found completely overlapping range */
a2e9a95d 1179 if (p_start == start && p_end == end) {
babac4a8
AT
1180 mem->ranges[i].start = 0;
1181 mem->ranges[i].end = 0;
1182 if (i < mem->nr_ranges - 1) {
1183 /* Shift rest of the ranges to left */
1184 for (j = i; j < mem->nr_ranges - 1; j++) {
1185 mem->ranges[j].start =
1186 mem->ranges[j+1].start;
1187 mem->ranges[j].end =
1188 mem->ranges[j+1].end;
1189 }
a2e9a95d
LJ
1190
1191 /*
1192 * Continue to check if there are another overlapping ranges
1193 * from the current position because of shifting the above
1194 * mem ranges.
1195 */
1196 i--;
1197 mem->nr_ranges--;
1198 continue;
babac4a8
AT
1199 }
1200 mem->nr_ranges--;
1201 return 0;
1202 }
1203
a2e9a95d 1204 if (p_start > start && p_end < end) {
babac4a8 1205 /* Split original range */
a2e9a95d
LJ
1206 mem->ranges[i].end = p_start - 1;
1207 temp_range.start = p_end + 1;
babac4a8 1208 temp_range.end = end;
a2e9a95d
LJ
1209 } else if (p_start != start)
1210 mem->ranges[i].end = p_start - 1;
babac4a8 1211 else
a2e9a95d 1212 mem->ranges[i].start = p_end + 1;
babac4a8
AT
1213 break;
1214 }
1215
1216 /* If a split happened, add the split to array */
1217 if (!temp_range.end)
1218 return 0;
1219
1220 /* Split happened */
1221 if (i == mem->max_nr_ranges - 1)
1222 return -ENOMEM;
1223
1224 /* Location where new range should go */
1225 j = i + 1;
1226 if (j < mem->nr_ranges) {
1227 /* Move over all ranges one slot towards the end */
1228 for (i = mem->nr_ranges - 1; i >= j; i--)
1229 mem->ranges[i + 1] = mem->ranges[i];
1230 }
1231
1232 mem->ranges[j].start = temp_range.start;
1233 mem->ranges[j].end = temp_range.end;
1234 mem->nr_ranges++;
1235 return 0;
1236}
1237
1238int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1239 void **addr, unsigned long *sz)
1240{
1241 Elf64_Ehdr *ehdr;
1242 Elf64_Phdr *phdr;
1243 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1244 unsigned char *buf;
1245 unsigned int cpu, i;
1246 unsigned long long notes_addr;
1247 unsigned long mstart, mend;
1248
1249 /* extra phdr for vmcoreinfo elf note */
1250 nr_phdr = nr_cpus + 1;
1251 nr_phdr += mem->nr_ranges;
1252
1253 /*
1254 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1255 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1256 * I think this is required by tools like gdb. So same physical
a2e9a95d 1257 * memory will be mapped in two elf headers. One will contain kernel
babac4a8
AT
1258 * text virtual addresses and other will have __va(physical) addresses.
1259 */
1260
1261 nr_phdr++;
1262 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1263 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1264
1265 buf = vzalloc(elf_sz);
1266 if (!buf)
1267 return -ENOMEM;
1268
1269 ehdr = (Elf64_Ehdr *)buf;
1270 phdr = (Elf64_Phdr *)(ehdr + 1);
1271 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1272 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1273 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1274 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1275 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1276 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1277 ehdr->e_type = ET_CORE;
1278 ehdr->e_machine = ELF_ARCH;
1279 ehdr->e_version = EV_CURRENT;
1280 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1281 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1282 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1283
a2e9a95d 1284 /* Prepare one phdr of type PT_NOTE for each present CPU */
babac4a8
AT
1285 for_each_present_cpu(cpu) {
1286 phdr->p_type = PT_NOTE;
1287 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1288 phdr->p_offset = phdr->p_paddr = notes_addr;
1289 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1290 (ehdr->e_phnum)++;
1291 phdr++;
1292 }
1293
1294 /* Prepare one PT_NOTE header for vmcoreinfo */
1295 phdr->p_type = PT_NOTE;
1296 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1297 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1298 (ehdr->e_phnum)++;
1299 phdr++;
1300
1301 /* Prepare PT_LOAD type program header for kernel text region */
1302 if (kernel_map) {
1303 phdr->p_type = PT_LOAD;
1304 phdr->p_flags = PF_R|PF_W|PF_X;
f973cce0 1305 phdr->p_vaddr = (unsigned long) _text;
babac4a8
AT
1306 phdr->p_filesz = phdr->p_memsz = _end - _text;
1307 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1308 ehdr->e_phnum++;
1309 phdr++;
1310 }
1311
1312 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1313 for (i = 0; i < mem->nr_ranges; i++) {
1314 mstart = mem->ranges[i].start;
1315 mend = mem->ranges[i].end;
1316
1317 phdr->p_type = PT_LOAD;
1318 phdr->p_flags = PF_R|PF_W|PF_X;
1319 phdr->p_offset = mstart;
1320
1321 phdr->p_paddr = mstart;
f973cce0 1322 phdr->p_vaddr = (unsigned long) __va(mstart);
babac4a8
AT
1323 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1324 phdr->p_align = 0;
1325 ehdr->e_phnum++;
1326 phdr++;
1327 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1328 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1329 ehdr->e_phnum, phdr->p_offset);
1330 }
1331
1332 *addr = buf;
1333 *sz = elf_sz;
1334 return 0;
1335}