kernel/kexec_file.c: split up __kexec_load_puragory
[linux-2.6-block.git] / kernel / kexec_file.c
CommitLineData
a43cac0d
DY
1/*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
de90a6bc
MH
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
a43cac0d
DY
14#include <linux/capability.h>
15#include <linux/mm.h>
16#include <linux/file.h>
17#include <linux/slab.h>
18#include <linux/kexec.h>
19#include <linux/mutex.h>
20#include <linux/list.h>
b804defe 21#include <linux/fs.h>
7b8589cc 22#include <linux/ima.h>
a43cac0d
DY
23#include <crypto/hash.h>
24#include <crypto/sha.h>
babac4a8
AT
25#include <linux/elf.h>
26#include <linux/elfcore.h>
27#include <linux/kernel.h>
28#include <linux/kexec.h>
29#include <linux/slab.h>
a43cac0d
DY
30#include <linux/syscalls.h>
31#include <linux/vmalloc.h>
32#include "kexec_internal.h"
33
a43cac0d
DY
34static int kexec_calculate_store_digests(struct kimage *image);
35
9ec4ecef
AT
36/*
37 * Currently this is the only default function that is exported as some
38 * architectures need it to do additional handlings.
39 * In the future, other default functions may be exported too if required.
40 */
41int kexec_image_probe_default(struct kimage *image, void *buf,
42 unsigned long buf_len)
43{
44 const struct kexec_file_ops * const *fops;
45 int ret = -ENOEXEC;
46
47 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
48 ret = (*fops)->probe(buf, buf_len);
49 if (!ret) {
50 image->fops = *fops;
51 return ret;
52 }
53 }
54
55 return ret;
56}
57
a43cac0d
DY
58/* Architectures can provide this probe function */
59int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
60 unsigned long buf_len)
61{
9ec4ecef
AT
62 return kexec_image_probe_default(image, buf, buf_len);
63}
64
65static void *kexec_image_load_default(struct kimage *image)
66{
67 if (!image->fops || !image->fops->load)
68 return ERR_PTR(-ENOEXEC);
69
70 return image->fops->load(image, image->kernel_buf,
71 image->kernel_buf_len, image->initrd_buf,
72 image->initrd_buf_len, image->cmdline_buf,
73 image->cmdline_buf_len);
a43cac0d
DY
74}
75
76void * __weak arch_kexec_kernel_image_load(struct kimage *image)
77{
9ec4ecef
AT
78 return kexec_image_load_default(image);
79}
80
81static int kexec_image_post_load_cleanup_default(struct kimage *image)
82{
83 if (!image->fops || !image->fops->cleanup)
84 return 0;
85
86 return image->fops->cleanup(image->image_loader_data);
a43cac0d
DY
87}
88
89int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
90{
9ec4ecef 91 return kexec_image_post_load_cleanup_default(image);
a43cac0d
DY
92}
93
978e30c9 94#ifdef CONFIG_KEXEC_VERIFY_SIG
9ec4ecef
AT
95static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
96 unsigned long buf_len)
97{
98 if (!image->fops || !image->fops->verify_sig) {
99 pr_debug("kernel loader does not support signature verification.\n");
100 return -EKEYREJECTED;
101 }
102
103 return image->fops->verify_sig(buf, buf_len);
104}
105
a43cac0d
DY
106int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
107 unsigned long buf_len)
108{
9ec4ecef 109 return kexec_image_verify_sig_default(image, buf, buf_len);
a43cac0d 110}
978e30c9 111#endif
a43cac0d 112
8aec395b
PR
113/*
114 * arch_kexec_apply_relocations_add - apply relocations of type RELA
115 * @pi: Purgatory to be relocated.
116 * @section: Section relocations applying to.
117 * @relsec: Section containing RELAs.
118 * @symtab: Corresponding symtab.
119 *
120 * Return: 0 on success, negative errno on error.
121 */
a43cac0d 122int __weak
8aec395b
PR
123arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
124 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
125{
126 pr_err("RELA relocation unsupported.\n");
127 return -ENOEXEC;
128}
129
8aec395b
PR
130/*
131 * arch_kexec_apply_relocations - apply relocations of type REL
132 * @pi: Purgatory to be relocated.
133 * @section: Section relocations applying to.
134 * @relsec: Section containing RELs.
135 * @symtab: Corresponding symtab.
136 *
137 * Return: 0 on success, negative errno on error.
138 */
a43cac0d 139int __weak
8aec395b
PR
140arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
141 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
a43cac0d
DY
142{
143 pr_err("REL relocation unsupported.\n");
144 return -ENOEXEC;
145}
146
147/*
148 * Free up memory used by kernel, initrd, and command line. This is temporary
149 * memory allocation which is not needed any more after these buffers have
150 * been loaded into separate segments and have been copied elsewhere.
151 */
152void kimage_file_post_load_cleanup(struct kimage *image)
153{
154 struct purgatory_info *pi = &image->purgatory_info;
155
156 vfree(image->kernel_buf);
157 image->kernel_buf = NULL;
158
159 vfree(image->initrd_buf);
160 image->initrd_buf = NULL;
161
162 kfree(image->cmdline_buf);
163 image->cmdline_buf = NULL;
164
165 vfree(pi->purgatory_buf);
166 pi->purgatory_buf = NULL;
167
168 vfree(pi->sechdrs);
169 pi->sechdrs = NULL;
170
171 /* See if architecture has anything to cleanup post load */
172 arch_kimage_file_post_load_cleanup(image);
173
174 /*
175 * Above call should have called into bootloader to free up
176 * any data stored in kimage->image_loader_data. It should
177 * be ok now to free it up.
178 */
179 kfree(image->image_loader_data);
180 image->image_loader_data = NULL;
181}
182
183/*
184 * In file mode list of segments is prepared by kernel. Copy relevant
185 * data from user space, do error checking, prepare segment list
186 */
187static int
188kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
189 const char __user *cmdline_ptr,
190 unsigned long cmdline_len, unsigned flags)
191{
192 int ret = 0;
193 void *ldata;
b804defe 194 loff_t size;
a43cac0d 195
b804defe
MZ
196 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
197 &size, INT_MAX, READING_KEXEC_IMAGE);
a43cac0d
DY
198 if (ret)
199 return ret;
b804defe 200 image->kernel_buf_len = size;
a43cac0d 201
7b8589cc
MZ
202 /* IMA needs to pass the measurement list to the next kernel. */
203 ima_add_kexec_buffer(image);
204
a43cac0d
DY
205 /* Call arch image probe handlers */
206 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
207 image->kernel_buf_len);
a43cac0d
DY
208 if (ret)
209 goto out;
210
211#ifdef CONFIG_KEXEC_VERIFY_SIG
212 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
213 image->kernel_buf_len);
214 if (ret) {
215 pr_debug("kernel signature verification failed.\n");
216 goto out;
217 }
218 pr_debug("kernel signature verification successful.\n");
219#endif
220 /* It is possible that there no initramfs is being loaded */
221 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
b804defe
MZ
222 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
223 &size, INT_MAX,
224 READING_KEXEC_INITRAMFS);
a43cac0d
DY
225 if (ret)
226 goto out;
b804defe 227 image->initrd_buf_len = size;
a43cac0d
DY
228 }
229
230 if (cmdline_len) {
a9bd8dfa
AV
231 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
232 if (IS_ERR(image->cmdline_buf)) {
233 ret = PTR_ERR(image->cmdline_buf);
234 image->cmdline_buf = NULL;
a43cac0d
DY
235 goto out;
236 }
237
238 image->cmdline_buf_len = cmdline_len;
239
240 /* command line should be a string with last byte null */
241 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
242 ret = -EINVAL;
243 goto out;
244 }
245 }
246
247 /* Call arch image load handlers */
248 ldata = arch_kexec_kernel_image_load(image);
249
250 if (IS_ERR(ldata)) {
251 ret = PTR_ERR(ldata);
252 goto out;
253 }
254
255 image->image_loader_data = ldata;
256out:
257 /* In case of error, free up all allocated memory in this function */
258 if (ret)
259 kimage_file_post_load_cleanup(image);
260 return ret;
261}
262
263static int
264kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
265 int initrd_fd, const char __user *cmdline_ptr,
266 unsigned long cmdline_len, unsigned long flags)
267{
268 int ret;
269 struct kimage *image;
270 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
271
272 image = do_kimage_alloc_init();
273 if (!image)
274 return -ENOMEM;
275
276 image->file_mode = 1;
277
278 if (kexec_on_panic) {
279 /* Enable special crash kernel control page alloc policy. */
280 image->control_page = crashk_res.start;
281 image->type = KEXEC_TYPE_CRASH;
282 }
283
284 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
285 cmdline_ptr, cmdline_len, flags);
286 if (ret)
287 goto out_free_image;
288
289 ret = sanity_check_segment_list(image);
290 if (ret)
291 goto out_free_post_load_bufs;
292
293 ret = -ENOMEM;
294 image->control_code_page = kimage_alloc_control_pages(image,
295 get_order(KEXEC_CONTROL_PAGE_SIZE));
296 if (!image->control_code_page) {
297 pr_err("Could not allocate control_code_buffer\n");
298 goto out_free_post_load_bufs;
299 }
300
301 if (!kexec_on_panic) {
302 image->swap_page = kimage_alloc_control_pages(image, 0);
303 if (!image->swap_page) {
304 pr_err("Could not allocate swap buffer\n");
305 goto out_free_control_pages;
306 }
307 }
308
309 *rimage = image;
310 return 0;
311out_free_control_pages:
312 kimage_free_page_list(&image->control_pages);
313out_free_post_load_bufs:
314 kimage_file_post_load_cleanup(image);
315out_free_image:
316 kfree(image);
317 return ret;
318}
319
320SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
321 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
322 unsigned long, flags)
323{
324 int ret = 0, i;
325 struct kimage **dest_image, *image;
326
327 /* We only trust the superuser with rebooting the system. */
328 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
329 return -EPERM;
330
331 /* Make sure we have a legal set of flags */
332 if (flags != (flags & KEXEC_FILE_FLAGS))
333 return -EINVAL;
334
335 image = NULL;
336
337 if (!mutex_trylock(&kexec_mutex))
338 return -EBUSY;
339
340 dest_image = &kexec_image;
9b492cf5 341 if (flags & KEXEC_FILE_ON_CRASH) {
a43cac0d 342 dest_image = &kexec_crash_image;
9b492cf5
XP
343 if (kexec_crash_image)
344 arch_kexec_unprotect_crashkres();
345 }
a43cac0d
DY
346
347 if (flags & KEXEC_FILE_UNLOAD)
348 goto exchange;
349
350 /*
351 * In case of crash, new kernel gets loaded in reserved region. It is
352 * same memory where old crash kernel might be loaded. Free any
353 * current crash dump kernel before we corrupt it.
354 */
355 if (flags & KEXEC_FILE_ON_CRASH)
356 kimage_free(xchg(&kexec_crash_image, NULL));
357
358 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
359 cmdline_len, flags);
360 if (ret)
361 goto out;
362
363 ret = machine_kexec_prepare(image);
364 if (ret)
365 goto out;
366
1229384f
XP
367 /*
368 * Some architecture(like S390) may touch the crash memory before
369 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
370 */
371 ret = kimage_crash_copy_vmcoreinfo(image);
372 if (ret)
373 goto out;
374
a43cac0d
DY
375 ret = kexec_calculate_store_digests(image);
376 if (ret)
377 goto out;
378
379 for (i = 0; i < image->nr_segments; i++) {
380 struct kexec_segment *ksegment;
381
382 ksegment = &image->segment[i];
383 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
384 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
385 ksegment->memsz);
386
387 ret = kimage_load_segment(image, &image->segment[i]);
388 if (ret)
389 goto out;
390 }
391
392 kimage_terminate(image);
393
394 /*
395 * Free up any temporary buffers allocated which are not needed
396 * after image has been loaded
397 */
398 kimage_file_post_load_cleanup(image);
399exchange:
400 image = xchg(dest_image, image);
401out:
9b492cf5
XP
402 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
403 arch_kexec_protect_crashkres();
404
a43cac0d
DY
405 mutex_unlock(&kexec_mutex);
406 kimage_free(image);
407 return ret;
408}
409
410static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
411 struct kexec_buf *kbuf)
412{
413 struct kimage *image = kbuf->image;
414 unsigned long temp_start, temp_end;
415
416 temp_end = min(end, kbuf->buf_max);
417 temp_start = temp_end - kbuf->memsz;
418
419 do {
420 /* align down start */
421 temp_start = temp_start & (~(kbuf->buf_align - 1));
422
423 if (temp_start < start || temp_start < kbuf->buf_min)
424 return 0;
425
426 temp_end = temp_start + kbuf->memsz - 1;
427
428 /*
429 * Make sure this does not conflict with any of existing
430 * segments
431 */
432 if (kimage_is_destination_range(image, temp_start, temp_end)) {
433 temp_start = temp_start - PAGE_SIZE;
434 continue;
435 }
436
437 /* We found a suitable memory range */
438 break;
439 } while (1);
440
441 /* If we are here, we found a suitable memory range */
442 kbuf->mem = temp_start;
443
444 /* Success, stop navigating through remaining System RAM ranges */
445 return 1;
446}
447
448static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
449 struct kexec_buf *kbuf)
450{
451 struct kimage *image = kbuf->image;
452 unsigned long temp_start, temp_end;
453
454 temp_start = max(start, kbuf->buf_min);
455
456 do {
457 temp_start = ALIGN(temp_start, kbuf->buf_align);
458 temp_end = temp_start + kbuf->memsz - 1;
459
460 if (temp_end > end || temp_end > kbuf->buf_max)
461 return 0;
462 /*
463 * Make sure this does not conflict with any of existing
464 * segments
465 */
466 if (kimage_is_destination_range(image, temp_start, temp_end)) {
467 temp_start = temp_start + PAGE_SIZE;
468 continue;
469 }
470
471 /* We found a suitable memory range */
472 break;
473 } while (1);
474
475 /* If we are here, we found a suitable memory range */
476 kbuf->mem = temp_start;
477
478 /* Success, stop navigating through remaining System RAM ranges */
479 return 1;
480}
481
1d2e733b 482static int locate_mem_hole_callback(struct resource *res, void *arg)
a43cac0d
DY
483{
484 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
1d2e733b 485 u64 start = res->start, end = res->end;
a43cac0d
DY
486 unsigned long sz = end - start + 1;
487
488 /* Returning 0 will take to next memory range */
489 if (sz < kbuf->memsz)
490 return 0;
491
492 if (end < kbuf->buf_min || start > kbuf->buf_max)
493 return 0;
494
495 /*
496 * Allocate memory top down with-in ram range. Otherwise bottom up
497 * allocation.
498 */
499 if (kbuf->top_down)
500 return locate_mem_hole_top_down(start, end, kbuf);
501 return locate_mem_hole_bottom_up(start, end, kbuf);
502}
503
60fe3910
TJB
504/**
505 * arch_kexec_walk_mem - call func(data) on free memory regions
506 * @kbuf: Context info for the search. Also passed to @func.
507 * @func: Function to call for each memory region.
508 *
509 * Return: The memory walk will stop when func returns a non-zero value
510 * and that value will be returned. If all free regions are visited without
511 * func returning non-zero, then zero will be returned.
512 */
513int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
1d2e733b 514 int (*func)(struct resource *, void *))
60fe3910
TJB
515{
516 if (kbuf->image->type == KEXEC_TYPE_CRASH)
517 return walk_iomem_res_desc(crashk_res.desc,
518 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
519 crashk_res.start, crashk_res.end,
520 kbuf, func);
521 else
522 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
523}
524
e2e806f9
TJB
525/**
526 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
527 * @kbuf: Parameters for the memory search.
528 *
529 * On success, kbuf->mem will have the start address of the memory region found.
530 *
531 * Return: 0 on success, negative errno on error.
532 */
533int kexec_locate_mem_hole(struct kexec_buf *kbuf)
534{
535 int ret;
536
537 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
538
539 return ret == 1 ? 0 : -EADDRNOTAVAIL;
540}
541
ec2b9bfa
TJB
542/**
543 * kexec_add_buffer - place a buffer in a kexec segment
544 * @kbuf: Buffer contents and memory parameters.
545 *
546 * This function assumes that kexec_mutex is held.
547 * On successful return, @kbuf->mem will have the physical address of
548 * the buffer in memory.
549 *
550 * Return: 0 on success, negative errno on error.
a43cac0d 551 */
ec2b9bfa 552int kexec_add_buffer(struct kexec_buf *kbuf)
a43cac0d
DY
553{
554
555 struct kexec_segment *ksegment;
a43cac0d
DY
556 int ret;
557
558 /* Currently adding segment this way is allowed only in file mode */
ec2b9bfa 559 if (!kbuf->image->file_mode)
a43cac0d
DY
560 return -EINVAL;
561
ec2b9bfa 562 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
a43cac0d
DY
563 return -EINVAL;
564
565 /*
566 * Make sure we are not trying to add buffer after allocating
567 * control pages. All segments need to be placed first before
568 * any control pages are allocated. As control page allocation
569 * logic goes through list of segments to make sure there are
570 * no destination overlaps.
571 */
ec2b9bfa 572 if (!list_empty(&kbuf->image->control_pages)) {
a43cac0d
DY
573 WARN_ON(1);
574 return -EINVAL;
575 }
576
ec2b9bfa
TJB
577 /* Ensure minimum alignment needed for segments. */
578 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
579 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
a43cac0d
DY
580
581 /* Walk the RAM ranges and allocate a suitable range for the buffer */
e2e806f9
TJB
582 ret = kexec_locate_mem_hole(kbuf);
583 if (ret)
584 return ret;
a43cac0d
DY
585
586 /* Found a suitable memory range */
ec2b9bfa 587 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
a43cac0d
DY
588 ksegment->kbuf = kbuf->buffer;
589 ksegment->bufsz = kbuf->bufsz;
590 ksegment->mem = kbuf->mem;
591 ksegment->memsz = kbuf->memsz;
ec2b9bfa 592 kbuf->image->nr_segments++;
a43cac0d
DY
593 return 0;
594}
595
596/* Calculate and store the digest of segments */
597static int kexec_calculate_store_digests(struct kimage *image)
598{
599 struct crypto_shash *tfm;
600 struct shash_desc *desc;
601 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
602 size_t desc_size, nullsz;
603 char *digest;
604 void *zero_buf;
605 struct kexec_sha_region *sha_regions;
606 struct purgatory_info *pi = &image->purgatory_info;
607
b799a09f
AT
608 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
609 return 0;
610
a43cac0d
DY
611 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
612 zero_buf_sz = PAGE_SIZE;
613
614 tfm = crypto_alloc_shash("sha256", 0, 0);
615 if (IS_ERR(tfm)) {
616 ret = PTR_ERR(tfm);
617 goto out;
618 }
619
620 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
621 desc = kzalloc(desc_size, GFP_KERNEL);
622 if (!desc) {
623 ret = -ENOMEM;
624 goto out_free_tfm;
625 }
626
627 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
628 sha_regions = vzalloc(sha_region_sz);
629 if (!sha_regions)
630 goto out_free_desc;
631
632 desc->tfm = tfm;
633 desc->flags = 0;
634
635 ret = crypto_shash_init(desc);
636 if (ret < 0)
637 goto out_free_sha_regions;
638
639 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
640 if (!digest) {
641 ret = -ENOMEM;
642 goto out_free_sha_regions;
643 }
644
645 for (j = i = 0; i < image->nr_segments; i++) {
646 struct kexec_segment *ksegment;
647
648 ksegment = &image->segment[i];
649 /*
650 * Skip purgatory as it will be modified once we put digest
651 * info in purgatory.
652 */
653 if (ksegment->kbuf == pi->purgatory_buf)
654 continue;
655
656 ret = crypto_shash_update(desc, ksegment->kbuf,
657 ksegment->bufsz);
658 if (ret)
659 break;
660
661 /*
662 * Assume rest of the buffer is filled with zero and
663 * update digest accordingly.
664 */
665 nullsz = ksegment->memsz - ksegment->bufsz;
666 while (nullsz) {
667 unsigned long bytes = nullsz;
668
669 if (bytes > zero_buf_sz)
670 bytes = zero_buf_sz;
671 ret = crypto_shash_update(desc, zero_buf, bytes);
672 if (ret)
673 break;
674 nullsz -= bytes;
675 }
676
677 if (ret)
678 break;
679
680 sha_regions[j].start = ksegment->mem;
681 sha_regions[j].len = ksegment->memsz;
682 j++;
683 }
684
685 if (!ret) {
686 ret = crypto_shash_final(desc, digest);
687 if (ret)
688 goto out_free_digest;
40c50c1f
TG
689 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
690 sha_regions, sha_region_sz, 0);
a43cac0d
DY
691 if (ret)
692 goto out_free_digest;
693
40c50c1f
TG
694 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
695 digest, SHA256_DIGEST_SIZE, 0);
a43cac0d
DY
696 if (ret)
697 goto out_free_digest;
698 }
699
700out_free_digest:
701 kfree(digest);
702out_free_sha_regions:
703 vfree(sha_regions);
704out_free_desc:
705 kfree(desc);
706out_free_tfm:
707 kfree(tfm);
708out:
709 return ret;
710}
711
b799a09f 712#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
93045705
PR
713/*
714 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
715 * @pi: Purgatory to be loaded.
716 * @kbuf: Buffer to setup.
717 *
718 * Allocates the memory needed for the buffer. Caller is responsible to free
719 * the memory after use.
720 *
721 * Return: 0 on success, negative errno on error.
722 */
723static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
724 struct kexec_buf *kbuf)
a43cac0d 725{
93045705
PR
726 const Elf_Shdr *sechdrs;
727 unsigned long bss_align;
728 unsigned long bss_sz;
729 unsigned long align;
730 int i, ret;
a43cac0d 731
93045705
PR
732 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
733 bss_align = 1;
734 bss_sz = 0;
735
736 for (i = 0; i < pi->ehdr->e_shnum; i++) {
737 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
738 continue;
739
740 align = sechdrs[i].sh_addralign;
741 if (sechdrs[i].sh_type != SHT_NOBITS) {
742 if (kbuf->buf_align < align)
743 kbuf->buf_align = align;
744 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
745 kbuf->bufsz += sechdrs[i].sh_size;
746 } else {
747 if (bss_align < align)
748 bss_align = align;
749 bss_sz = ALIGN(bss_sz, align);
750 bss_sz += sechdrs[i].sh_size;
751 }
752 }
753 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
754 kbuf->memsz = kbuf->bufsz + bss_sz;
755 if (kbuf->buf_align < bss_align)
756 kbuf->buf_align = bss_align;
757
758 kbuf->buffer = vzalloc(kbuf->bufsz);
759 if (!kbuf->buffer)
760 return -ENOMEM;
761 pi->purgatory_buf = kbuf->buffer;
762
763 ret = kexec_add_buffer(kbuf);
764 if (ret)
765 goto out;
766 pi->purgatory_load_addr = kbuf->mem;
767
768 return 0;
769out:
770 vfree(pi->purgatory_buf);
771 pi->purgatory_buf = NULL;
772 return ret;
773}
774
775/*
776 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
777 * @pi: Purgatory to be loaded.
778 * @kbuf: Buffer prepared to store purgatory.
779 *
780 * Allocates the memory needed for the buffer. Caller is responsible to free
781 * the memory after use.
782 *
783 * Return: 0 on success, negative errno on error.
784 */
785static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
786 struct kexec_buf *kbuf)
787{
788 unsigned long curr_load_addr;
789 unsigned long load_addr;
790 unsigned long bss_addr;
791 unsigned long offset;
792 unsigned char *buf_addr;
793 unsigned char *src;
794 Elf_Shdr *sechdrs;
795 int entry_sidx = -1;
796 int i;
a43cac0d 797
a43cac0d
DY
798 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
799 if (!sechdrs)
800 return -ENOMEM;
93045705
PR
801 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
802 pi->ehdr->e_shnum * sizeof(Elf_Shdr));
803 pi->sechdrs = sechdrs;
a43cac0d
DY
804
805 /*
806 * We seem to have multiple copies of sections. First copy is which
807 * is embedded in kernel in read only section. Some of these sections
808 * will be copied to a temporary buffer and relocated. And these
809 * sections will finally be copied to their final destination at
810 * segment load time.
811 *
812 * Use ->sh_offset to reflect section address in memory. It will
813 * point to original read only copy if section is not allocatable.
814 * Otherwise it will point to temporary copy which will be relocated.
815 *
816 * Use ->sh_addr to contain final address of the section where it
817 * will go during execution time.
818 */
819 for (i = 0; i < pi->ehdr->e_shnum; i++) {
820 if (sechdrs[i].sh_type == SHT_NOBITS)
821 continue;
822
823 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
824 sechdrs[i].sh_offset;
825 }
826
827 /*
828 * Identify entry point section and make entry relative to section
829 * start.
830 */
93045705 831 kbuf->image->start = pi->ehdr->e_entry;
a43cac0d
DY
832 for (i = 0; i < pi->ehdr->e_shnum; i++) {
833 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
834 continue;
835
836 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
837 continue;
838
839 /* Make entry section relative */
840 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
841 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
842 pi->ehdr->e_entry)) {
843 entry_sidx = i;
93045705 844 kbuf->image->start -= sechdrs[i].sh_addr;
a43cac0d
DY
845 break;
846 }
847 }
848
a43cac0d 849 /* Load SHF_ALLOC sections */
93045705
PR
850 buf_addr = kbuf->buffer;
851 load_addr = curr_load_addr = kbuf->mem;
852 bss_addr = load_addr + kbuf->bufsz;
a43cac0d
DY
853
854 for (i = 0; i < pi->ehdr->e_shnum; i++) {
93045705
PR
855 unsigned long align;
856
a43cac0d
DY
857 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
858 continue;
859
860 align = sechdrs[i].sh_addralign;
861 if (sechdrs[i].sh_type != SHT_NOBITS) {
862 curr_load_addr = ALIGN(curr_load_addr, align);
863 offset = curr_load_addr - load_addr;
864 /* We already modifed ->sh_offset to keep src addr */
865 src = (char *) sechdrs[i].sh_offset;
866 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
867
868 /* Store load address and source address of section */
869 sechdrs[i].sh_addr = curr_load_addr;
870
871 /*
872 * This section got copied to temporary buffer. Update
873 * ->sh_offset accordingly.
874 */
875 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
876
877 /* Advance to the next address */
878 curr_load_addr += sechdrs[i].sh_size;
879 } else {
880 bss_addr = ALIGN(bss_addr, align);
881 sechdrs[i].sh_addr = bss_addr;
882 bss_addr += sechdrs[i].sh_size;
883 }
884 }
885
886 /* Update entry point based on load address of text section */
887 if (entry_sidx >= 0)
93045705 888 kbuf->image->start += sechdrs[entry_sidx].sh_addr;
a43cac0d 889
93045705 890 return 0;
a43cac0d
DY
891}
892
893static int kexec_apply_relocations(struct kimage *image)
894{
895 int i, ret;
896 struct purgatory_info *pi = &image->purgatory_info;
8aec395b
PR
897 const Elf_Shdr *sechdrs;
898
899 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
a43cac0d 900
a43cac0d 901 for (i = 0; i < pi->ehdr->e_shnum; i++) {
8aec395b
PR
902 const Elf_Shdr *relsec;
903 const Elf_Shdr *symtab;
904 Elf_Shdr *section;
905
906 relsec = sechdrs + i;
a43cac0d 907
8aec395b
PR
908 if (relsec->sh_type != SHT_RELA &&
909 relsec->sh_type != SHT_REL)
a43cac0d
DY
910 continue;
911
912 /*
913 * For section of type SHT_RELA/SHT_REL,
914 * ->sh_link contains section header index of associated
915 * symbol table. And ->sh_info contains section header
916 * index of section to which relocations apply.
917 */
8aec395b
PR
918 if (relsec->sh_info >= pi->ehdr->e_shnum ||
919 relsec->sh_link >= pi->ehdr->e_shnum)
a43cac0d
DY
920 return -ENOEXEC;
921
8aec395b
PR
922 section = pi->sechdrs + relsec->sh_info;
923 symtab = sechdrs + relsec->sh_link;
a43cac0d
DY
924
925 if (!(section->sh_flags & SHF_ALLOC))
926 continue;
927
928 /*
929 * symtab->sh_link contain section header index of associated
930 * string table.
931 */
932 if (symtab->sh_link >= pi->ehdr->e_shnum)
933 /* Invalid section number? */
934 continue;
935
936 /*
937 * Respective architecture needs to provide support for applying
938 * relocations of type SHT_RELA/SHT_REL.
939 */
8aec395b
PR
940 if (relsec->sh_type == SHT_RELA)
941 ret = arch_kexec_apply_relocations_add(pi, section,
942 relsec, symtab);
943 else if (relsec->sh_type == SHT_REL)
944 ret = arch_kexec_apply_relocations(pi, section,
945 relsec, symtab);
a43cac0d
DY
946 if (ret)
947 return ret;
948 }
949
950 return 0;
951}
952
953/* Load relocatable purgatory object and relocate it appropriately */
954int kexec_load_purgatory(struct kimage *image, unsigned long min,
955 unsigned long max, int top_down,
956 unsigned long *load_addr)
957{
958 struct purgatory_info *pi = &image->purgatory_info;
959 int ret;
93045705
PR
960 struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
961 .buf_min = min, .buf_max = max,
962 .top_down = top_down };
a43cac0d
DY
963
964 if (kexec_purgatory_size <= 0)
965 return -EINVAL;
966
65c225d3 967 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
a43cac0d 968
93045705 969 ret = kexec_purgatory_setup_kbuf(pi, &kbuf);
a43cac0d
DY
970 if (ret)
971 return ret;
972
93045705
PR
973 ret = kexec_purgatory_setup_sechdrs(pi, &kbuf);
974 if (ret)
975 goto out_free_kbuf;
976
a43cac0d
DY
977 ret = kexec_apply_relocations(image);
978 if (ret)
979 goto out;
980
981 *load_addr = pi->purgatory_load_addr;
982 return 0;
983out:
984 vfree(pi->sechdrs);
070c43ee 985 pi->sechdrs = NULL;
93045705 986out_free_kbuf:
a43cac0d 987 vfree(pi->purgatory_buf);
070c43ee 988 pi->purgatory_buf = NULL;
a43cac0d
DY
989 return ret;
990}
991
961d921a
PR
992/*
993 * kexec_purgatory_find_symbol - find a symbol in the purgatory
994 * @pi: Purgatory to search in.
995 * @name: Name of the symbol.
996 *
997 * Return: pointer to symbol in read-only symtab on success, NULL on error.
998 */
999static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1000 const char *name)
a43cac0d 1001{
961d921a 1002 const Elf_Shdr *sechdrs;
65c225d3 1003 const Elf_Ehdr *ehdr;
961d921a 1004 const Elf_Sym *syms;
a43cac0d 1005 const char *strtab;
961d921a 1006 int i, k;
a43cac0d 1007
961d921a 1008 if (!pi->ehdr)
a43cac0d
DY
1009 return NULL;
1010
a43cac0d 1011 ehdr = pi->ehdr;
961d921a 1012 sechdrs = (void *)ehdr + ehdr->e_shoff;
a43cac0d
DY
1013
1014 for (i = 0; i < ehdr->e_shnum; i++) {
1015 if (sechdrs[i].sh_type != SHT_SYMTAB)
1016 continue;
1017
1018 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1019 /* Invalid strtab section number */
1020 continue;
961d921a
PR
1021 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1022 syms = (void *)ehdr + sechdrs[i].sh_offset;
a43cac0d
DY
1023
1024 /* Go through symbols for a match */
1025 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1026 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1027 continue;
1028
1029 if (strcmp(strtab + syms[k].st_name, name) != 0)
1030 continue;
1031
1032 if (syms[k].st_shndx == SHN_UNDEF ||
1033 syms[k].st_shndx >= ehdr->e_shnum) {
1034 pr_debug("Symbol: %s has bad section index %d.\n",
1035 name, syms[k].st_shndx);
1036 return NULL;
1037 }
1038
1039 /* Found the symbol we are looking for */
1040 return &syms[k];
1041 }
1042 }
1043
1044 return NULL;
1045}
1046
1047void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1048{
1049 struct purgatory_info *pi = &image->purgatory_info;
961d921a 1050 const Elf_Sym *sym;
a43cac0d
DY
1051 Elf_Shdr *sechdr;
1052
1053 sym = kexec_purgatory_find_symbol(pi, name);
1054 if (!sym)
1055 return ERR_PTR(-EINVAL);
1056
1057 sechdr = &pi->sechdrs[sym->st_shndx];
1058
1059 /*
1060 * Returns the address where symbol will finally be loaded after
1061 * kexec_load_segment()
1062 */
1063 return (void *)(sechdr->sh_addr + sym->st_value);
1064}
1065
1066/*
1067 * Get or set value of a symbol. If "get_value" is true, symbol value is
1068 * returned in buf otherwise symbol value is set based on value in buf.
1069 */
1070int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1071 void *buf, unsigned int size, bool get_value)
1072{
a43cac0d 1073 struct purgatory_info *pi = &image->purgatory_info;
961d921a
PR
1074 const Elf_Sym *sym;
1075 Elf_Shdr *sec;
a43cac0d
DY
1076 char *sym_buf;
1077
1078 sym = kexec_purgatory_find_symbol(pi, name);
1079 if (!sym)
1080 return -EINVAL;
1081
1082 if (sym->st_size != size) {
1083 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1084 name, (unsigned long)sym->st_size, size);
1085 return -EINVAL;
1086 }
1087
961d921a 1088 sec = pi->sechdrs + sym->st_shndx;
a43cac0d 1089
961d921a 1090 if (sec->sh_type == SHT_NOBITS) {
a43cac0d
DY
1091 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1092 get_value ? "get" : "set");
1093 return -EINVAL;
1094 }
1095
961d921a 1096 sym_buf = (char *)sec->sh_offset + sym->st_value;
a43cac0d
DY
1097
1098 if (get_value)
1099 memcpy((void *)buf, sym_buf, size);
1100 else
1101 memcpy((void *)sym_buf, buf, size);
1102
1103 return 0;
1104}
b799a09f 1105#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
babac4a8
AT
1106
1107int crash_exclude_mem_range(struct crash_mem *mem,
1108 unsigned long long mstart, unsigned long long mend)
1109{
1110 int i, j;
1111 unsigned long long start, end;
1112 struct crash_mem_range temp_range = {0, 0};
1113
1114 for (i = 0; i < mem->nr_ranges; i++) {
1115 start = mem->ranges[i].start;
1116 end = mem->ranges[i].end;
1117
1118 if (mstart > end || mend < start)
1119 continue;
1120
1121 /* Truncate any area outside of range */
1122 if (mstart < start)
1123 mstart = start;
1124 if (mend > end)
1125 mend = end;
1126
1127 /* Found completely overlapping range */
1128 if (mstart == start && mend == end) {
1129 mem->ranges[i].start = 0;
1130 mem->ranges[i].end = 0;
1131 if (i < mem->nr_ranges - 1) {
1132 /* Shift rest of the ranges to left */
1133 for (j = i; j < mem->nr_ranges - 1; j++) {
1134 mem->ranges[j].start =
1135 mem->ranges[j+1].start;
1136 mem->ranges[j].end =
1137 mem->ranges[j+1].end;
1138 }
1139 }
1140 mem->nr_ranges--;
1141 return 0;
1142 }
1143
1144 if (mstart > start && mend < end) {
1145 /* Split original range */
1146 mem->ranges[i].end = mstart - 1;
1147 temp_range.start = mend + 1;
1148 temp_range.end = end;
1149 } else if (mstart != start)
1150 mem->ranges[i].end = mstart - 1;
1151 else
1152 mem->ranges[i].start = mend + 1;
1153 break;
1154 }
1155
1156 /* If a split happened, add the split to array */
1157 if (!temp_range.end)
1158 return 0;
1159
1160 /* Split happened */
1161 if (i == mem->max_nr_ranges - 1)
1162 return -ENOMEM;
1163
1164 /* Location where new range should go */
1165 j = i + 1;
1166 if (j < mem->nr_ranges) {
1167 /* Move over all ranges one slot towards the end */
1168 for (i = mem->nr_ranges - 1; i >= j; i--)
1169 mem->ranges[i + 1] = mem->ranges[i];
1170 }
1171
1172 mem->ranges[j].start = temp_range.start;
1173 mem->ranges[j].end = temp_range.end;
1174 mem->nr_ranges++;
1175 return 0;
1176}
1177
1178int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1179 void **addr, unsigned long *sz)
1180{
1181 Elf64_Ehdr *ehdr;
1182 Elf64_Phdr *phdr;
1183 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1184 unsigned char *buf;
1185 unsigned int cpu, i;
1186 unsigned long long notes_addr;
1187 unsigned long mstart, mend;
1188
1189 /* extra phdr for vmcoreinfo elf note */
1190 nr_phdr = nr_cpus + 1;
1191 nr_phdr += mem->nr_ranges;
1192
1193 /*
1194 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1195 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1196 * I think this is required by tools like gdb. So same physical
1197 * memory will be mapped in two elf headers. One will contain kernel
1198 * text virtual addresses and other will have __va(physical) addresses.
1199 */
1200
1201 nr_phdr++;
1202 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1203 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1204
1205 buf = vzalloc(elf_sz);
1206 if (!buf)
1207 return -ENOMEM;
1208
1209 ehdr = (Elf64_Ehdr *)buf;
1210 phdr = (Elf64_Phdr *)(ehdr + 1);
1211 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1212 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1213 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1214 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1215 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1216 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1217 ehdr->e_type = ET_CORE;
1218 ehdr->e_machine = ELF_ARCH;
1219 ehdr->e_version = EV_CURRENT;
1220 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1221 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1222 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1223
1224 /* Prepare one phdr of type PT_NOTE for each present cpu */
1225 for_each_present_cpu(cpu) {
1226 phdr->p_type = PT_NOTE;
1227 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1228 phdr->p_offset = phdr->p_paddr = notes_addr;
1229 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1230 (ehdr->e_phnum)++;
1231 phdr++;
1232 }
1233
1234 /* Prepare one PT_NOTE header for vmcoreinfo */
1235 phdr->p_type = PT_NOTE;
1236 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1237 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1238 (ehdr->e_phnum)++;
1239 phdr++;
1240
1241 /* Prepare PT_LOAD type program header for kernel text region */
1242 if (kernel_map) {
1243 phdr->p_type = PT_LOAD;
1244 phdr->p_flags = PF_R|PF_W|PF_X;
1245 phdr->p_vaddr = (Elf64_Addr)_text;
1246 phdr->p_filesz = phdr->p_memsz = _end - _text;
1247 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1248 ehdr->e_phnum++;
1249 phdr++;
1250 }
1251
1252 /* Go through all the ranges in mem->ranges[] and prepare phdr */
1253 for (i = 0; i < mem->nr_ranges; i++) {
1254 mstart = mem->ranges[i].start;
1255 mend = mem->ranges[i].end;
1256
1257 phdr->p_type = PT_LOAD;
1258 phdr->p_flags = PF_R|PF_W|PF_X;
1259 phdr->p_offset = mstart;
1260
1261 phdr->p_paddr = mstart;
1262 phdr->p_vaddr = (unsigned long long) __va(mstart);
1263 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1264 phdr->p_align = 0;
1265 ehdr->e_phnum++;
1266 phdr++;
1267 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1268 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1269 ehdr->e_phnum, phdr->p_offset);
1270 }
1271
1272 *addr = buf;
1273 *sz = elf_sz;
1274 return 0;
1275}